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 الملخص 

 نقدم بناء مقدرات النواةمع حالات محدودة.  معلميهبطريقة غير  (SMS)ماركوف يتعلق العمل الحالي بتقدير نظام شبه 

 .لمؤشرات ومقاييس مهمة مختلفة لعملية شبه ماركوف ثم نظهر التقارب القوي والحالة الطبيعية المقاربة

الرئيسية لعملية شبه ماركوف ذات الوقت المستمر، مثل أوقات الإقامة المشروطة وغير  نوفر مقدرات النواة للخصائص  أولاً،

نيكوديم المرتبطة بها. الهدف الرئيسي هو إنشاء -بالإضافة إلى مشتقات الرادون ماركوف،  شبهالمشروطة في حالة، ونواة 

.خصائص مقاربة مثل الاتساق القوي الموحد والحالة الطبيعية المقاربة   

والقياسات ذات الصلة: معدل الفشل، والتوافر، وندرس   لموثوقيةيًا، ندرس موثوقية أنظمة شبه ماركوف. نقدم مقدر النواة لثان

.الخصائص المقاربة للمقدرات المقترحة  

    .من أجل إثبات فعالية نتائجنا النظرية، يتم تحقيق كل جزء من خلال مثال رقمي

 الكلمات الرئيسية: 

كوف، مقدر النواة، أوقات الإقامة، نواة شبه ماركوف، مصفوفة تجديد ماركوف، مصفوفة انتقال شبه عمليات شبه مار

. ماركوف، التوافر، الموثوقية، معدل الفشل، الاتساق، الوضع الطبيعي المقارب  
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Résumé: Le présent travail porte sur l’estimation d’un système semi-
markovien (SMS) à états finis par une méthode non paramétrique. Nous
présentons la construction des estimateurs à noyau pour différents indica-
teurs et mesures qui sont importants pour un processus semi-markovien, puis
nous établissons la convergence forte ainsi que la normalité asymptotique de
ces estimateurs.

Premièrement, par la méthode d’estimation à noyau, nous construisons
des estimateurs des principales caractéristiques d’un processus semi-markovien
en temps continu, telles que les temps de séjour conditionnel et incondition-
nel, le noyau semi-markovien, ainsi que les premières dérivées des mesures
précédentes. L’objectif principal est donc d’établir certaines propriétés asymp-
totiques des estimateurs construits.

Dans un second temps, nous étudions la fiabilité des systèmes semi-
markoviens. Nous introduisons un estimateur à noyau de la fiabilité ainsi
que du taux de défaillance et de la disponibilité. Ensuite, nous étudions les
propriétés asymptotique des estimateurs proposés.

Afin de prouver l’efficacité de nos résultats théoriques, chaque partie est
illustré à travers un exemple numérique.

Mots clés: processus semi-markoviens, estimateur à noyau, temps de
séjour, noyau semi-markovien, matrice de renouvellement markovienne, ma-
trice de transition semi-markovienne, disponibilité, fiabilité, taux de défail-
lance, consistance, normalité asymptotique.
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Abstract: The present work concerns the estimation of a finite state
semi-Markov system (SMS) by a nonparametric method. We present the
construction of kernel estimators for different important indicators and mea-
sures of the semi-Markov process, then we prove their strong convergence
and asymptotic normality.

Firstly, we provide kernel estimators of the main characteristics of a
continuous-time semi-Markov process, like conditional and unconditional so-
journ times in a state, semi-Markov kernel, as well as their associated deriva-
tives. The main goal is to establish asymptotic properties as the uniform
strong consistency and asymptotic normality.

Secondly, we study the reliability of semi-Markov systems. We introduce
a kernel estimator of the reliability and its related measurements, as failure
rate and availability. We also study the asymptotic properties of the pro-
posed estimators.

In order to illustrate the quality of our theoretical results, each part is
achieved by a numerical example.

Keywords: semi-Markov processes, kernel estimator, sojourn times, semi-
Markov kernel, Markov renewal matrix, semi-Markov transition matrix, avail-
ability, reliability, failure rate, consistency, asymptotic normality.

Chafiâa Ayhar
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Notation 4

Probabilistic

(Ω,F ,P) Probability space
P Probability
Pi(·) Conditional probability P(·|J0 = i)

E Expectation
Ei Conditional expectation corresponding to Pi
Z := (Zt)t∈R+ Semi-Markov process (SMP)
(J, S) := (Jn, Sn)n∈N Markov renewal process (MRP)
J := (Jn)n∈N Visited states, embedded Markov chain (EMC)
S := (Sn)n∈N Jump times of the semi-Markov process
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(Sin)i∈E,n∈N Renewal process of successive times of visits to state i
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Chapter 1

General introduction

1.1 Literature review

In this dissertation, we introduce a class of stochastic processes known as
semi-Markov processes. We are interested in studying semi-Markov processes
and the corresponding functions in statistical inference (semi-Markov kernel,
sojourn time distribution function, reliability and their measurements, etc.)
using nonparametric kernel estimation, which is one of the most important
topic in mathematical statistics.

Semi-Markov processes and Markov renewal processes represent an im-
portant class of stochastic processes that naturally generalize Markov jump
processes and renewal processes. The semi-Markov approach is significantly
more flexible for applications than the Markov approach, since the sojourn
time in each state of a Markov process is exponentially distributed in con-
tinuous time (resp. geometrically distributed in discrete time); this is why
the Markov hypothesis is extremely restrictive and limited. Furthermore, a
Markov model is distinguished by the absence of memory: if we know the
past and present states of a system, the future visited states depend only on
the present state and they are independent of anything that has happened
in the past. In the semi-Markov case, the sojourn time distribution can be
any distribution on R+ (resp. on N). A semi-Markov process still preserves
the Markov property but in a modified and more flexible way. In contrast

6



1.1 Literature review 7

to the classical Markov property, the memoryless property of a semi-Markov
process does not act on the calendar time (0, 1, . . . , t, t+ 1, . . .) but on a ran-
dom time governed by the jump time process J , (J0, J1, . . . , Jn, Jn+1, . . .). In
this way, we obtain the more flexible Markov hypothesis referred before.

A semi-Markov process is built by means of a Markov renewal process,
which is defined by a two-dimensional process. The first component of the
process represents the successively states of the process, that define a Markov
chain, because the transition to the next state does not depend on the history
of the process before it enters the current state. The second process describes
the time moments when the changes in the states of the process take place.

We are also interested in this thesis to apply our methodology to ap-
plications in systems reliability data which are measurements of the time
to failure of any particular unit, that means trouble-free performance of the
device for a specified amount of time. They are particularly significant in ap-
plications and the development of genuine technological systems. Stochastic
processes represent the main tool for the reliability theory. Markov processes,
semi-Markov processes, and renewal processes have been mainly used for de-
scribing the evolution of a system. For such a system, each state can be
either up or down, framework that is considered in our work. In many real
applications, the finite state space, even the countable one, is insufficient to
characterize and predict the reliability of a real-life system. Moreover, when
using the Markov assumption, we add a supplementary constraint, since the
sojourn times of such a system are exponentially distributed in continuous
time (resp. geometrically distributed in the discrete case). As a result, we
provide a systematic modeling of reliability measures using semi-Markov pro-
cesses.

Lévy [78], Smith [116] and Takács [118] introduced the semi-Markov
processes independently and almost simultaneously; later, essential develop-
ments of this theory were proposed by Pyke [101, 102], Pyke and Schaufele
[103, 104], Çinlar [37], [36], Gikhman and Skorokhod [55] and Shurenkov
[114], Moore and Pyke [87], Koroluk and Turbin [74, 75], Limnios [83].

Chafiâa Ayhar
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The semi-Markov process limit theorem are given by Feller [53], Pyke and
Schaufele [103], Yackel [130], Moore and Pyke [87], Grigorescu and Oprisan
[59], and Athreya et al. [9], as well as the references therein.

The study of discrete and continuous-time semi-Markov processes, associ-
ated probability modeling, and accompanying estimation techniques (mostly
in a nonparametric environment) are important from both theoretically and
applied point of view. Moore and Pyke [87] and Lagakos et al. [76] were the
first to publish works on SMP estimation (empirical estimators and maxi-
mum likelihood estimators). Later Gill [56] and Andersen et al. [7] used point
process theory to investigate Kaplan-Meier type estimators. The asymptotic
local normality was investigated by Akritas and Roussas [2]. Atuncar et al.
[10] explored empirical estimators of semi-Markov process sojourn time dis-
tributions and proved their consistency and asymptotic normality. Ouhbi and
Limnios [93, 98] provided empirical estimators for finite nonlinear functionals
of SMPs with various appealing asymptotic properties, as well as associated
reliability theory and estimation. Window censored nonparametric SMP es-
timation was proposed by Alvarez [5], whereas Ouhbi and Limnios [94] were
the first to present nonparametric estimators of the Markov renewal matrix;
the same authors examined the semi-Markov transition matrix in [96]. In
that study, a maximum likelihood estimator of the hazard rate function is
developed, and the failure rate of a semi-Markov system is calculated in [95].
In [97] the rate of occurrence of the failure function is investigated. Limnios
[79] established the invariance principle for the empirical estimator of semi-
Markov kernels. Limnios et al. [84] defined and investigated the asymptotic
properties of estimators of the stationary distribution of the embedded chain
for a SMP and of the mean sojourn times. We need also to include Limnios
and Oprişan pioneer monograph [83].

Recently, there has been a surge in interest in the statistical inference of
discrete-time semi-Markov processes. Indeed, Barbu et al. [17] considered a
semi-Markov discrete-time framework and provided a computational method
to solve the corresponding Markov renewal equation. We refer to Barbu and
Limnios [19, 21] and to Trevezas and Limnios [119] for nonparametric esti-

Chafiâa Ayhar
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mation in the discrete-time semi-Markov framework. The authors explored
empirical estimators applied to nonparametric semi-Markov systems with
good asymptotic properties in the first two publications. If the sojourn time
in the system’s last state is not taken into account, these estimators can be
considered approximate maximum likelihood estimators (MLEs). They also
showed that these estimators are strongly consistent and each component of
the approximate maximum likelihood estimators is asymptotically normal.
A generalization of this setting is proposed in the third cited work, where
exact MLEs are proposed and asymptotic properties are also investigated.
We can cite also Barbu et al. [20, 17] for nonparametric estimation of failure
rate functions, reliability and survival analysis of discrete time semi-Markov
processes.

Semi-Markov models allow for more flexible sojourn time distributions,
making them ideal for applications and real-world systems in a variety of
fields. Such investigations are primarily used in reliability, survival analysis,
seismology, finance, insurance, climatology, queueing theory, and a variety
of other scientific disciplines (see, for example, Grabski [60], Bulla and Bulla
[32], Barbu and Limnios [21], Xia et al. [128], Stefanov and Manca [117], Is-
guder and Uzunoglu-Kocer [69], D’Amico[42], Votsi et al. [121, 122], Barbu
et al. [18]). We also cite the hidden form of these processes, known as hidden
semi-Markov processes, which are of special relevance in a variety of appli-
cations such as DNA investigations, speech and writing recognition, finance,
and reliability. As stated in Yu’s pioneering book [132], this type of process
has evolved into one of the most important models in the field of machine
learning and artificial intelligence, which has entered a period of intensive
development.

Semi-Markov models in continuous time are appropriate for describing
the evolution of a system. However, it is well known that they are difficult
to solve numerically. Nonetheless, several methods are proposed in the lit-
erature to this end. Csenki [41] investigated the instability of the numerical
solution of the Laplace transform, Cocozza-Thivent and Eymard [38] inves-
tigated an algorithm for computing an SMP’s marginal distribution, and
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Corradi et al. [39] proposed a general quadrature method for numerically
solving the process evolution equation of a homogeneous semi-Markov pro-
cess (HSMP), Limnios [81] proposed an algebraic method, and Hou et al. [68]
studied the existence and uniqueness of a solution for the Markov renewal
equation (MRE) of a semi-Markov process with countable state space that
can be discretized and handled in discrete time.

Only a few R packages have been developed to deal with semi-Markov
or hidden semi-Markov models. The hsmm R package (Bulla et al. [33])
implements hidden semi-Markov model simulation and maximum likelihood
estimation. The mhsmm package (O’Connell and Højsgaard [91]) estimates
and predicts hidden semi-Markov models for multiple observation sequences.
The msSurv package (Ferguson et al. [54]) offers nonparametric estima-
tion in semi-Markov models, but covariates are not taken into account. The
semiMarkov package (Król and Saint Pierre [85]), performs maximum like-
lihood estimation for parametric continuous time semi-Markov processes and
associated hazard rates. The smm package (Barbu et al. [16]), is dedicated
to the simulation and parametric and nonparametric estimation of discrete
time multi-state semi-Markov and Markov processes. Finally, smmR (Barbu
et al. [15]) package deals with estimation and simulation, as well as reliabil-
ity indicators, for multi-state discrete-time semi-Markov processes, in both
parametric and nonparametric frameworks.

Most of the existing estimation procedures for continuous-time semi-
Markov processes consider empirical estimators. However, one shortcoming
of the empirical distribution function is that it is discontinuous. In particular,
if the true distribution is known to be continuous, the empirical distribution
may yield poor approximations. Kernel smoothing solves this discontinuity
problem.

Although it may appear surprising, nonparametric Parzen-Rosenblatt
kernel estimators in a semi-Markov context are almost non-existent in the
literature, with only a few works addressing them. Shamsuddinov [113] stud-
ied the asymptotic unbiasedness and consistency of a kernel estimator of the
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density of the sojourn time distribution. This work considered a specific
case of semi-Markov kernel (dependence of sojourn time distributions only
on the current state, not on the next state to be visited), the smoothing
parameter does not depend on the states (neither on the current one, nor on
the next state to be visited), and asymptotic normality is not investigated.
Dumitrescu et al. [47] proposed kernel estimators for general semi-Markov
processes and investigated the L1 convergence associated with them.

We can cite the works of Laksaci and Yousfate [77], Roussas [107, 108]
and of Athreya and Atuncar [8] for nonparametric Parzen-Rosenblatt kernel
estimators for Markov processes. We also refer the reader to Atuncar et al.
[11], who provide some important conditions for strong consistency of kernel
density estimators for some reliability measures of ergodic Markov processes.

Note that there is a possible terminological confusion when using the term
〈〈 kernel estimator 〉〉: indeed, one can either understand (a) the nonparamet-
ric Parzen-Rosenblatt kernel estimator (of some probability density function,
distribution function, etc.); or (b) the/an estimator of the semi-Markov ker-
nel. Although it will be (more or less) clear which of these two meanings
we are referring to in this thesis, this confusion/ambiguity can occur in the
scientific literature at times.

The main goal of this dissertation is to use the kernel estimation method
to perform nonparametric estimation for continuous-time semi-Markov pro-
cesses.

Kernel density estimation is a well-known nonparametric method for es-
timating the density of a continuous random variable, and it is also useful
statistical analysis tool in data mining. Rosenblatt [105] and Parzen [99]
were the first to introduce the kenel method for density estimation. Cacoul-
los [35] and Epanechnikov [51] led the multivariate extension, while Nadaraya
[88] and Watson [125] led the regression estimation. Originally, this method
was proposed in the classical independent and identically distributed (i.i.d.)
case. Let X1, X2, . . . , Xn be a sample of n i.i.d. random variables with the
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probability density f . The Parzen-Rosenblatt kernel estimator of the density
function is defined by

f̂n(x) =
1

nhn

n∑
i=1

K

(
Xi − x
hn

)
, (1.1)

where: K is a bounded kernel function that is generally smooth and sym-
metric function; hn, the so-called bandwidth or smoothing parameter, is a
sequence of positive numbers tending to 0, as n goes to ∞.

Explicit formula defined in (1.1) can be interpreted as a transformation of
the empirical density into a continuous function, where the probability mass
of 1/n corresponding to each data point is redistributed along a neighborhood
of the point according to the function K. The properties of this estimator
were first investigated by Parzen[99], that obtained asymptotic expressions
for the bias and variance and proved that, under certain conditions on the
kernel K and the smoothing parameter hn, the kernel density estimate f̂n is
pointwise consistent and asymptotically normal.

The choice of the smoothing parameter is critical for the quality of the
smoothness because varying the bandwidth along the support of the sample
data provides flexibility to reduce the variance of the estimates in the few
observations while also reducing the bias of the estimates in the many obser-
vations. Various methods for selecting this parameter have been proposed in
the literature in virtually all nonparametric estimation; see, e.g., Jones et al.
[71], del Río [43], Silverman [115], Bowman and Azzalini [29], etc. We can
cite the methods based on plug-in and cross-validation introduced by Sarda
[111], Altman and Leger [4], Bowman et al. [31], and Polanski and Baker
[100] as methods of selecting the smoothing parameter.

The asymptotic properties of the kernel estimators, such as consistency
and normality, were well documented. For the first time, Parzen [99] and
Silverman [115] proved the pointwise consistency, Nadaraya [89] established
the uniform almost sure convergence, Woodroofe [126] investigated the con-
text of studying the asymptotic normality.
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The kernel density estimation can also be used for modeling and simula-
tion in different domains. For applications data mining and econometrics, we
can see Scott [112], Wand and Jones [123], Wolfgang et al. [66], Alexandre
[3]; for applications in the health field one can see, Yang et al. [131] and
Rushton et al. [109]; for applications in archeology, see, e.g., Santos et al.
[110], Bonnier et al. [28], Mariani et al. [86], etc.

Many packages exist that can perform kernel density estimation in R like
spatstat (Baddeley and Turner [14]), kdde in ks (Duong [48]), np (Tristen
and Jeffrey [67]), KernSmooth (Wand and Ripley [124]), and spatialker-
nel (Zheng and Diggle [46]), kerdiest (Quintela-del Río and Estévez-Pérez
[44]), sm (Bowman and Azzalini [30]), and feature (Duong and Matt [49]),
kedd (Guidoum [63]).

In this thesis, we construct kernel estimators of the semi-Markov pro-
priety, and we study their asymptotic properties, mainly consistency and
asymptotic normality, with numerical examples and applications.

1.2 Contributions of the thesis

1.2.1 Objectives

The following points summarize the primary goals of this project.
(i) Introduce kernel estimators for the sojourn time distribution function
(whether conditional or not), the semi-Markov kernel, and the accompanying
densities; establish asymptotic properties of the estimators, namely uniform
strong consistency and asymptotic normality. We would like to emphasize
that this work is an important step forward in the theory of statistical meth-
ods for semi-Markov processes; by doing so, we close a gap in the use of an
important and already classical class of estimators (nonparametric Parzen-
Rosenblatt kernel estimators) for this type of stochastic process.
(ii) For the reliability analysis of semi-Markov systems, modeling and esti-
mating the reliability indicators, we introduce nonparametric estimators for
the reliability and for its associated measures, such as availability, failure rate
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of the semi-Markov and we study their asymptotic properties. To accomplish
this, we firstly show how estimators of the basic quantities of a semi-Markov
system are obtained by the nonparametric kernel method.

Numerical examples are used to support all of the theoretical findings
developed in this thesis.

1.2.2 Outline of the thesis

The first chapter is dedicated to bibliographical notes, in order to better
position the works presented in this thesis in the literature. In the same
chapter, we present the principal aims of our work.

In the second chapter, we introduce the basic notations and definitions
of Markov renewal theory and semi-Markov continuous-time processes in a
probabilistic and statistical context, which will be used throughout the thesis.

In the third chapter, we estimate the conditional sojourn time, the continuous-
time semi-Markov kernel, and the corresponding densities. The following sec-
tion of this chapter is devoted to the investigation of the asymptotic proper-
ties of the proposed estimators, particularly uniform strong consistency and
asymptotic normality; a numerical example illustrates the theoretical results.

The fourth chapter is devoted to the reliability and related measurements,
as availability, failure rate of a repairable finite state space system which is
described by a semi-Markov continuous time process. We obtain explicit ex-
pressions for the reliability function of such systems and for its associated
measures from probabilistic and statistical point of view. We show that there
are many methods for studying the reliability and related measurements and
we can consider that the approach based on Markov renewal theory is more
attractive due to its generality: first we find the Markov renewal equation
associated to the respective quantity; then we solve this equation and get the
desired result (solution of a Markov renewal equation). In this context, we
propose kernel estimators of the reliability and for related measures, then we
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investigate asymptotic properties of these estimators as the uniform strong
consistency and the asymptotic normality. Next, we consider a three-state
semi-Markov system and present numerical results for the reliability.

We conclude our research with a broad conclusion, remarks on the work
presented. We anticipate that we will investigate in the future several areas
to improve and expand our performance on specific directions. Finally, a
general bibliography concludes this thesis.

Our work can have multiple applications in multiple areas, such as bio-
statistics, reliability, queue theory, operations research, maintenance, com-
munication, etc.

Finally, the most important definitions and tools that clarify many no-
tions and will be used in the proofs of the main results are gathered in Ap-
pendix: for example, introducing Slutsky’s theorem, Anscombe’s theorem,
limit theorems for Markov renewal process, etc.
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Chapter 2

General concepts on
continuous-time semi-Markov
processes

This introductory chapter presents the notations and the essential notions
necessary for describing the continuous-time semi-Markov model. We give
the basic probabilistic properties of this process. In addition, we present the
continue-time Markov renewal theory, and associated quantities. Further-
more, we present the basics of the statistical inference associated with these
processes.

2.1 Semi-Markov processes and their associated
measures

In what follows we present some of the basic tools and concepts on semi-
Markov processes and Markov renewal processes, which will be used in the
remainder of this thesis.

16
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2.1.1 Semi-Markov processes

Let us consider a stochastic process Z = (Zt)t∈R+ with finite state space
E = {1, . . . , s}, continuous to the right and having left limits in any time
point. Let

0 = S0 < S1 < · · · < Sn < Sn+1 < · · · ,

be the jump times of Z and J0, J1, J2, . . . the successively visited states of Z,
that form a stochastic process J = (Jn)n∈N defined on the probability spaces
(Ω,F ,P), that takes values in the finite state space E, note also that the
process S = (Sn)n∈N takes values in [0,∞). Set also X = (Xn)n∈N for the
successive sojourn times in the visited states. Thus, Xn = Sn−Sn−1, n ∈ N∗,
and by convention, we set X0 = S0 = 0.

The semi-Markov process can be defined, by a two-dimensional Markov
renewal process, where one variable represents the states and the other the
times of state changes (jump times). Thus, all properties of a semi-Markov
process can be deduced from the properties of this Markov renewal process.
The definition of a semi-Markov process in its usual form, essentially requires
to points: A restrictive Markov condition which causes invariance of the
renewal process under time shift (stationarity), and the homogeneity, i.e.,
the independence of the transition probabilities of the number of renewals.

Definition 2.1.1. The stochastic process (J, S) = (Jn, Sn)n∈N is called a
Markov Renewal Process (MRP) with state space E, if the following relation
holds true:

P(Jn+1 = j, Sn+1 − Sn ≤ t | J0, ..., Jn;S0, ..., Sn)

= P(Jn+1 = j, Sn+1 − Sn ≤ t|Jn), j ∈ E; t ∈ R+, n ∈ N.

If this property is verified, then the process Z = {Zt, t ≥ 0} is called the
semi-Markov process associated to the MRP (J, S)

Zt = Jn with Sn ≤ t < Sn+1.

The relationships between the SMP Z and the MC J can be written as

Zt = JN(t) ⇔ Jn = ZSn ,
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with
N(t) := sup{n ≥ 0 | Sn ≤ t}, t ∈ R+, (2.1)

the counting process of the number of jumps in the time interval (0, t]. Thus,
Zt gives the state of the system at time t.
Figure 2.1 presents the evolution of a MRP.

Figure 2.1: A typical semi-Markov sample.

The semi-Markov kernel Q is the essential quantity for the probabilistic
and statistical study of the semi-Markov process, because most of the relative
measures can be expressed directly as a function of it.

Definition 2.1.2. Let us denote by Q(t) = {Qij(t), i, j ∈ E}, t ≥ 0, the
semi-Markov kernel of Z, defined by

Qij(t) := P(Jn+1 = j,Xn+1 ≤ t | J0, . . . , Jn = i,X1, . . . , Xn)

:= P(Jn+1 = j,Xn+1 ≤ t | Jn = i).
(2.2)

Qij(t) are absolutely continuous with respect to the Lebesgue measure,
and let qij(t) be the corresponding Radon-Nikodym derivative.
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If (Jn, Sn)n∈N is a MRP, it can be immediately checked that J = (Jn)n∈N

is a Markov chain, called the embedded Markov chain (EMC) with state
space E and initial distribution

αi := P(J0 = i) = P(Z0 = i), i ∈ E.

Let us denote by ν = (νi, i ∈ E) the stationary distribution of the EMC,
and let the transition probabilities be denoted by

pij := P(Jn+1 = j|Jn = i) = Qij(∞), i, j ∈ E.

It should be mentioned that the chain J does not act on the calendar time,
but on the time indexed by the number of jumps.
The MRP and the SMP are considered homogeneous with respect to the time,
in the sense that Equation (2.2) is independent of n. All along this work we
consider homogeneous MRPs/SMPs only. Also, we do not allow transitions
to the same state, i.e., pii = 0 for all i ∈ E, or equivalently Qii(t) = 0, for
all i ∈ E, t ∈ R+. We also assume that there are not instantaneous transi-
tions, that is Qij(0) = 0; note that this implies that S is a strictly increasing
sequence.
In the next definition we introduce the sojourn time distributions and asso-
ciated measures.

Definition 2.1.3. For all i, j ∈ E such that pij 6= 0, let us denote by:

(i) Fi, the distribution function of the sojourn time in state i,

Fi(t) := P(Xn+1 ≤ t | Jn = i) =
s∑
j=1

Qij(t), t ∈ R+;

(ii) F̄ (t) = (F̄i(t); i ∈ E) = (1−Fi(t); i ∈ E), t ∈ R+ the survival function
of F (t).

(iii) Fij, the conditional distribution of the sojourn time in state i before
going to state j,

Fij(t) := P(Xn+1 ≤ t | Jn = i, Jn+1 = j), t ∈ R+.
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Obviously, for all i, j ∈ E and t ∈ R+, we have

Qij(t) = pijFij(t). (2.3)

We assume that Fij(t) has a probability density fij(t) with respect to the
Lebesgue measure, such that

Fij(t) =

∫ t

0

fij(x)dx =
1

pij

∫ t

0

qij(x)dx.

That is, fij(x) =
qij(x)

pij
, x ≥ 0.

The following definition gives the mean sojourn times of a semi-Markov
process Z.

Definition 2.1.4. Let mij be the mean sojourn times of SMP Z in state i
when the next state is j, defined by

mij =
1

pij

∫ ∞
0

tqij(t)dt =

∫ ∞
0

tfij(t)dt. (2.4)

The mean sojourn time in state i, mi is defined by

mi = E[S1|J0 = i] =
∑
j∈E

pijmij =

∫ ∞
0

F i(t)dt. (2.5)

The mean sojourn time m is defined by

m =
∑
i∈E

νimi =
∑
i∈E

∑
j∈E

νipijmij.

In general, Qij is a sub-distribution, i.e., Qij(∞) ≤ 1, hence, Fi is a dis-
tribution function, Fi(∞) = 1, and Qij(0−) = Fi(0−) = 0.

Another type of semi-Markov process can be obtained if Fij(·) does not de-
pend on j, i.e., Fij(t) ≡ Fi(t) and

Qij(t) = pijFi(t).

Let (Sin)n≥0 be the renewal process (eventually delayed) of the times of
successive passages in state i. Then Ni(t) is the counting process of renewals.
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In the case where Z0 = i, we have Si0 = 0 and the renewal process Sin is an
ordinary one; otherwise, if Z0 6= i, it is a delayed renewal process.
Denote by µii the mean recurrence time of the state i of Z. This is the mean
interarrival times of the (possibly delayed) renewal process (Sin), n ≥ 0:

µii := E[Si2 − Si1].

Let us consider an irreducible positive recurrent Markov renewal process.
For any i ∈ E (see Limnios and Oprişan [83]) we have the following equality

µii =
m

νi
. (2.6)

Let µ∗ := (µ∗ii) be the vector of mean recurrence times in the state i for the
EMC J , defined by

µ∗ii := E[T ∗i |J0 = i],

where T ∗i is the first entry time in i defined by T ∗i := min{n ≥ 1 : Jn = i},
i.e. it is the minimal number of jumps to arrive in state i.
The relationship between the mean recurrence time and the stationary dis-
tribution ( see Kemeny and Snell [73]) is given by

µ∗ii =
1

νi
, (2.7)

and, from relation (2.6), we have

µii
µ∗ii

= m.

2.1.2 Renewal processes

Renewal processes (RPs) provide a theoretical framework for investigat-
ing the occurrence of patterns in repeated independent trials. The term
〈〈 renewal 〉〉 comes from the mean hypothesis that when the pattern of inter-
est occurs for the first time, the process starts anew, in the sense that the
initial situation is reestablished. More precisely, starting from this 〈〈 renewal
instant 〉〉, the waiting time for the second occurrence of the pattern has the
same distribution as the time needed for the first occurrence, and so on.
The Markov renewal equation is an essential tool in the theory of semi-
Markov processes like the renewal equation in the case of the renewal process
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theory on the half-real line.
The purpose of this subsection is to provide an introduction to the theory of
continuous-time renewal processes.

Renewal function

The following definition of the convolution product is needed for the re-
newal function.

Definition 2.1.5. Let φ(i, t), i ∈ E, t ≥ 0, be a real-valued measurable
function and define the convolution of φ by Q as follows

Q ∗ φ(i, t) =
∑
k∈E

∫ t

0

Qik(ds)φ(k, t− s).

The n-fold Stieltjes convolution of Qij(t) by itself, for any i, j ∈ E is defined
by,

Q
(n)
ij (t) =


δij1{t≥0} if n = 0,

Qij(t) if n = 1,∑
k∈E

∫ t

0

Qik(ds)Q
(n−1)
kj (t− s) if n ≥ 2,

where δij is the Kronocker symbol defined by

δij =

{
1 if i = j,

0 otherwise.

Obviously, we have

Q
(n)
ij (t) = Pi(Jn = j, Sn ≤ t). (2.8)

Here, it is clear that, Pi(Jn = j, Sn ≤ t) means P(Jn = j, Sn ≤ t|J0 = i), and
Ei is the corresponding expectation.
Let us define the renewal function Ψij(t) := Ei[Nj(t)] of the renewal process
(Sjn, n ≥ 1) with counting function Nj(t). This is called the Markov renewal
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function of the semi-Markov process. We have

Ψij(t) = Ei[Nj(t)]

= Ei
∞∑
n=0

1{Jn=j,Sn≤t}

=
∞∑
n=0

Pi(Jn = j, Sn ≤ t)

=
∞∑
n=0

Q
(n)
ij (t). (2.9)

Definition 2.1.6. [83] The semi-Markov process Z is said to be regular if

Pi(N(t) <∞) = 1,

for any t ≥ 0 and any i ∈ E.
For regular semi-Markov processes, we have Sn ≤ Sn+1, for any n ∈ N, and
Sn →∞.

Therefore, a MRP is regular if and only if
∑
j

Q
(n)
ij (t) → 0, as n → ∞,

for all i.

The following theorem gives a criterion for regularity.

Theorem 2.1.1. [106] If some real numbers, say α > 0 and β > 0, exist,
such that Fi(α) < 1−β, for all i ∈ E, then the semi-Markov process is regular.

Let us write the Markov renewal function (2.9) in matrix form

Ψ(t) = (I−Q(t))(−1) =
∞∑
n=0

Q(n)(t). (2.10)

This can also be written as

Ψ(t) = I(t) +Q ∗Ψ(t), (2.11)

where I = I(t) (the identity matrix), if t ≥ 0 and I(t) = 0, if t < 0. The upper
index (−1) in the matrix (I−Q(t)) means its inverse in the convolution sense.
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Equation (2.11) is a special case of what is called a Markov Renewal
Equation (MRE). A general MRE is as follows

Θ(t) = L(t) +Q ∗Θ(t), (2.12)

where Θ(t) = (Θi,j(t))i,j∈E, L(t) = (Li,j(t))i,j∈E are matrix-valued measur-
able functions, with Θi,j(t) = Li,j(t) = 0 for t < 0. The function L(t) is
a given matrix valued function whereas Θ(t) is an unknown matrix-valued
function. We may also consider a vector version of Equation (2.12), i.e., con-
sider corresponding columns of the matrices Θ and L.
Let A be the space of all bounded on compact sets of R+ matrix-valued
functions Θ(t), i.e., ‖Θ(t)‖ = supi,j |Θi,j(t)| is bounded on sets [0, η] for all
η ∈ R+.

We say that a matrix function Θ(t) = Θi,j(t) belongs to A, if for any
fixed j ∈ E the column vector function Θ·,j(·) belongs to A.

Equation (2.12) has a unique solution Θ = Ψ ∗L(t) belonging to A when
L(t) belongs to A (see Gámiz et al. [57]).

Let us give an example of a particular type of renewal process.

Example 1. [57] Alternating Renewal Process:
Let us consider an alternating renewal process with lifetime and repair time
distributions F and G.

• Up times: X ′1, X
′
2, . . .

• Down times: X ′′1 , X
′′
2 , . . .

Denote by Sn the starting (arrival) time of the (n+ 1)th cycle, that is

Sn =
n∑
i=1

(X
′

i +X
′′

i ), n ≥ 1.

The process
Zt =

∑
n≥0

1{Sn≤t<Sn+X
′
n+1}

, t ≥ 0,

is a semi-Markov process, with states:
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• 1 for functioning,

• 0 for failure. The semi-Markov kernel is defined by

Q(t) =

(
0 F (t)

G(t) 0

)
.

The embedded Markov chain (Jn) is a deterministic chain with transition
matrix

P =

(
0 1

1 0

)
,

and then we have the corresponding MRP (Jn, Sn).

Transition matrix

Another important function is P (·) = (Pij(·), i, j ∈ E) called the transi-
tion matrix function of the semi-Markov process Z defined by

Pij(t) = P(Zt = j|Z0 = i), i, j ∈ E, t ≥ 0.

It is known, cf. Pyke [102], that

Pij(t) = 1{i=j}

(
1−

s∑
k=1

Qik(t)

)
+
∑
k∈E

∫ t

0

Pkj(t− s)Qik(ds).

By solving the above Markov renewal equation, cf. Limnios [82], in a matrix
notation, we obtain the solution,

P (t) = (I −Q(t))(−1) ∗ (I − diag(Q(t)1)), (2.13)

where diag(·) is a diagonal matrix with ith element
s∑
j=1

Qij(t) and

1 = (1, 1, . . . , 1)′.

Definition 2.1.7. For a semi-Markov process Z, the stationary distribution
π = (πi, i ∈ E) is defined, when it exists, by

πi = lim
t→∞

Pij(t), for every i, j ∈ E.

Chafiâa Ayhar



2.2 Statistical inference of semi-Markov processes 26

Proposition 2.1.1. [84] If the MRP is positive recurrent, the limit distri-
bution is given by

πi =
νimi
s∑

k=1

νkmk

. (2.14)

The transition function is illustrated by the following example.

Example 2. [57] Alternating Renewal Process:
Let us continue the previous example. The transition function of the SMP Z

is

P (t) = M ∗

(
1− F F ∗ (1−G)

G ∗ (1− F ) 1−G

)
(t),

where M is the renewal function of the distribution function F ∗G, i.e.,

M(t) =
∞∑
n=0

(F ∗G)(n)(t).

Finally, by the Markov renewal theorem, we get also

lim
t→∞

P (t) =

(
m1 m0

m1 m0

)/
(m1 +m0),

where m0 and m1 are the mean values of F and G, respectively. So, the
limiting probability of the semi-Markov process is

π1 =
m1

m1 +m0

, π0 =
m0

m1 +m0

.

2.2 Statistical inference of semi-Markov pro-
cesses

The general theory of statistical inference in semi-Markov processes began
with Moore and Pyke [87] who studied empirical estimators for finite semi-
Markov kernels; Lagakos, Sommer, and Zelen [76] gave maximum likelihood
estimators for nonergodic finite semi-Markov kernels; Akritas and Roussas
[2] gave parametric local asymptotic normality results for semi-Markov pro-
cesses; Ouhbi and Limnios [96] studied nonparametric estimators of semi-
Markov kernels, etc.
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We give the following observational procedure for statistical inference of
stochastic processes: a single trajectory of this process is observed on the
interval [0, T ], where T ∈ R+ is an arbitrary fixed censoring instant.

Definition 2.2.1. Let us consider a sample path of the Markov renewal pro-
cesses (Jl, Sl)l∈N,

H(T ) :=
(
J0, X1, . . . , JN(T )−1, XN(T ), JN(T ), uT

)
, T ∈ R+,

where uT := T − SN(T ).
For all i, j ∈ E and t ≤ T, let us define the following counting processes:

(i) Ni(T ) =

N(T )∑
l=1

1{Jl−1=i} =
∞∑
l=1

1{Jl−1=i,Sl≤T}: the number of visits to state

i, up to time T ;

(ii) Nij(T ) =

N(T )∑
l=1

1{Jl−1=i,Jl=j} =
∞∑
l=1

1{Jl−1=i,Jl=j,Sl≤T}: the number of tran-

sitions from i to j, up to time T ;

(iii) Nij(t, T ) =

N(T )∑
l=1

1{Jl−1=i,Jl=j,Xl≤t}: the number of transitions from i to

j, up to time T, with sojourn time in state i less than or equal to t.

2.2.1 Useful technical results

We introduce the following technical results which will be needed for the
proofs.

Lemma 2.2.1. [83] Under the previous notations, if the EMC (Jn)n is pos-
itive recurrent, then, for any i, j ∈ E we have:

1. Ni(T )
N(T )

a.s.−−−→
T→∞

νi,

2. Nij(T )

N(T )

a.s.−−−→
T→∞

νipij,

3. Ni(T )
T

a.s.−−−→
T→∞

1
µii

,
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4. Nij(T )

T

a.s.−−−→
T→∞

pij
µii

,

5. N(T )
T

a.s.−−−→
T→∞

1
νiµii

.

Theorem 2.2.1. [63] Suppose that Y1, Y2, . . . are random variables such that

Yn
a.s.−−−→
n→∞

Y,

and that {N(t), t ≥ 0} is a family of positive, integer valued random variables,
such that

N(t)
a.s.−−−→
t→∞

∞.

Then
YN(t)

a.s.−−−→
t→∞

Y.

Lemma 2.2.2. For a positive recurrent MRP we have:

1. Sn
a.s.−−→∞ as n→∞,

2. N(T )
a.s.−−→∞ as T →∞.

2.2.2 Empirical estimators

The empirical estimator of the semi-Markov kernel (see Moore and Pyke
[87]; Ouhbi and Limnios [96]) is defined by

Q̂ij(t, T ) =
1

Ni(T )

N(T )∑
l=1

1{Jl−1=i,Jl=j,Xl≤t}.

The empirical estimator of the semi-Markov kernel is strongly consistent and
asymptotically normal.
From the definition of Q̂ij(t, T ) we obtain Q̂ij(t, T ) = F̂ij(t, T )p̂ij(T )

p̂ij =
Nij(T )

Ni(T )
,

and then

F̂ij(t, T ) =
1

Nij(T )

N(T )∑
l=1

1{Jl−1=i,Jl=j,Xl≤t}.
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The quantities F̂ij(t, T ) and p̂ij(T ) are respectively the empirical estimators
for the conditional distribution functions and the transition probabilities.
The conditional transition mechanism describes the probability function of
the process moving into each possible new state, given the old state and the
new one.

2.3 Conclusion

In this second chapter, we have exposed the most important works that
have been carried out on SMP and MRP. The first part was devoted to the
semi-Markov model, were their basic probabilistic properties and associated
notions are established and basic elements of Markov renewal theory are
presented. Having presented the semi-Markov framework, our objective is
to study the statistical properties of various measures based on an observed
trajectory.
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Chapter 3

On the asymptotic properties of
some kernel estimators for
continuous-time semi-Markov
processes

Our objectives in the present chapter are: (1) to introduce kernel esti-
mators for the sojourn time distribution function (conditional or not), for
the semi-Markov kernel and for the corresponding densities; (2) to establish
asymptotic properties of the estimators, namely the uniform strong consis-
tency and the asymptotic normality. We would like to stress that this work
is an important step in the theory of statistical methods for semi-Markov
processes; in this way we fill a gap in the use of the important and already
classical class of estimators (nonparametric Parzen-Rosenblatt kernel estima-
tors) for this type of stochastic processes.

This chapter is organized as follows. In Section 3.1, we impose some
assumptions and we construct kernel estimators of the conditional sojourn
time, continuous-time semi-Markov kernel, and unconditional sojourn time
distribution. Section 3.2 is devoted to the study of the asymptotic properties
of the proposed estimators, namely the uniform strong consistency and the
asymptotic normality. Moreover, a numerical example has been conducted
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in Section 3.3 in order to highlight, on three state space, the superiority of
our method to the empirical one. in Section 3.4 we prove our main results.
We end the chapter by some concluding remarks.

3.1 Nonparametric kernel estimators

For fixed states i and j and l ∈ N∗, let us denote by Xi;l the corresponding
sojourn time in state i during lth visit of this state and by Xij;l the corre-
sponding sojourn time in state i before going to state j, during lth visit.

Taking a sample path H(T ) of a Markov renewal process, for all i, j ∈ E
and t ∈ R+, t ≤ T , we define the kernel estimators of Fi(t), Fij(t), Qij(t)

and of the derivatives fi(t), fij(t), qij(t) as follows:

F̂i(t, T ) =
1

Ni(T )

Ni(T )∑
l=1

H

(
t−Xi;l

hi,T

)

=
1

Ni(T )

N(T )∑
l=1

H

(
t−Xl

hi,T

)
1{Jl−1=i}; (3.1)

F̂ij(t, T ) =
1

Nij(T )

Nij(T )∑
l=1

H

(
t−Xij;l

hij,T

)

=
1

Nij(T )

N(T )∑
l=1

H

(
t−Xl

hij,T

)
1{Jl−1=i,Jl=j}; (3.2)

f̂ij(t, T ) =
1

Nij(T )

Nij(T )∑
l=1

1

hij,T
K

(
t−Xij;l

hij,T

)
; (3.3)

f̂i(t, T ) =
1

Ni(T )

Ni(T )∑
l=1

1

hi,T
K

(
t−Xi;l

hi,T

)
, (3.4)

where H(t) =

∫ t

−∞
K(t)dt. It should be noted that the smoothing parameter

of the previous estimators depends on the sample size, so we should write
hi,T = hi,Ni(T ) (resp. hij,T = hij,Nij(T )); however we prefer to use a simpler

Chafiâa Ayhar



3.1 Nonparametric kernel estimators 32

notation.
Second, we can introduce an estimator of Qij(T ) defined by:

Q̂ij(t, T ) = p̂ij(T )F̂ij(t, T ) =
Nij(T )

Ni(T )
F̂ij(t, T ),

where p̂ij(T ) :=
Nij(T )

Ni(T )
is the empirical estimator of pij. So, we get the

corresponding kernel estimators of Qij(t) and qij(t) given by

Q̂ij(t, T ) =
1

Ni(T )

Nij(T )∑
l=1

H

(
t−Xij;l

hij,T

)
, (3.5)

q̂ij(t, T ) =
1

Ni(T )

Nij(T )∑
l=1

1

hij,T
K

(
t−Xij;l

hij,T

)
. (3.6)

3.1.1 Asymptotic properties of the estimators

Let us first focus on the assumptions we need to derive the asymptotic
behavior of our estimators.

Assumptions

All along this chapter we are working under the following three assump-
tions.

(H.1) The EMC (Jn)n∈N is an ergodic irreducible Markov chain, with station-
ary distribution ν.

(H.2) The SMP is irreducible, aperiodic, with finite mean sojourn times.

(H.3) The SMP (or equivalently, the MRP) is regular, that is
Pi(N(t) <∞) = 1 for all t > 0, i ∈ E, where Pi(·) means P(·|J0 = i).

In addition, we need to introduce the following conditions.

(H.4) i) Qij(t), Fi(t) and Fij(t) are absolutely continuous with respect to
the Lebesgue measure, and let qij(t), fi(t) and fij(t) be respec-
tively the corresponding Radon-Nikodym derivatives.
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ii) The first derivatives fij and fi are bounded.

(H.5) i) The function H is a distribution function.

ii) The kernel K is density function of bounded variation such that

lim
x→∞
|xK(x)| = 0 and |

∫
tjKk(t)dt| <∞ for j = 0, 1, and k = 1, 2,

where K is the derivative of H.

(H.6) The smoothing parameters hi,n, hij,n satisfy

lim
n−→∞

hi,n = 0 and lim
n−→∞

hij,n = 0.

(H.7) The series
∑∞

n=1 e
−γnh2i,n and

∑∞
n=1 e

−γnh2ij,n converge for every positive
value of γ.

Comments on the assumptions

Notice that these conditions are usually assumed in this context. In-
deed, Conditions (H.1) and (H.2) are classical assumptions for semi-Markov
processes, commonly used in the literature (see, for instance Dumitrescu
et al. [47]; Barbu and Limnios [19]). Note also that under condition (H.3),
Sn < Sn+1, n ∈ N, Sn

a.s.−−−→
n→∞

∞, N(t)
a.s.−−−→
t→∞

∞ (see Limnios and Oprişan [83]).
Assumption (H.4) imposed on Qij(t), Fij(t) and Fi(t) is a regularity type hy-
pothesis. Precisely, Hypothesis (H.4)(i) is a continuity-type constraint which
will allow us to get strong consistency. Moreover, as soon as one wishes to
state the asymptotic normality of our estimators, one has to introduce more
restrictive constraints, which is the role played by the second derivative hy-
pothesis (H.4)(ii). The technical conditions on the kernels are imposed for
a sake of brevity of proofs. (H.6) and (H.7) are other technical constraints.
Furthermore, (H.6) is also satisfied for hij,T and hi,T .
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3.2 Asymptotic properties

3.2.1 Uniform strong consistency

Our first results concern the uniform strong consistency of the proposed
estimators.

Theorem 3.2.1. For any fixed arbitrary states i, j ∈ E and any fixed ar-
bitrary positive t ∈ R+, t ≤ T , under Assumptions (H.5)-(H.6), the kernel
estimator F̂i(t, T ) introduced in (3.1) is uniformly strongly consistent, i.e.,

max
i

sup
t∈[0,T ]

|F̂i(t, T )− Fi(t)|
a.s.−−−→
T→∞

0.

According to the definition of the kernel estimators (3.2), (3.3) and (3.5),
we can establish their uniform strong consistency, whose proofs are straight-
forward adaptations of the proof of Theorem 3.2.1.

Corollary 3.2.1. For any fixed arbitrary states i, j ∈ E and any fixed arbi-
trary positive t ∈ R+, t ≤ T , under Assumptions (H.5)-(H.6) and additional
hypothesis (H.7) for (ii), (iii) and (iv), the following statements stand true.

(i) The kernel estimator F̂ij(t, T ) introduced in (3.2) is uniformly strong
consistent, i.e.,

max
i,j

sup
t∈[0,T ]

|F̂ij(t, T )− Fij(t)|
a.s.−−−→
T→∞

0.

(ii) The kernel estimator f̂ij(t, T ) proposed in (3.3) is uniformly strong con-
sistent, i.e.,

max
i,j

sup
t∈[0,T ]

|f̂ij(t, T )− fij(t)|
a.s.−−−→
T→∞

0.

(iii) The kernel estimator f̂i(t, T ) introduced in (3.4) is uniformly strong
consistent, i.e.,

max
i

sup
t∈[0,T ]

|f̂i(t, T )− fi(t)|
a.s.−−−→
T→∞

0.
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(iv) The kernel estimator of the semi-Markov kernel density proposed in
(3.6) is uniformly strongly consistent, i.e.,

max
i,j

sup
t∈[0,T ]

|q̂ij(t, T )− qij(t)|
a.s.−−−→
T→∞

0.

(v) Since Q̂ij(t, T ) = p̂ij(T ) F̂ij(t, T ), the uniform strong consistency of the
estimators p̂ij(T ) and F̂ij(t, T ) allow us to deduce that:

max
i,j

sup
t∈[0,T ]

|Q̂ij(t, T )−Qij(t)|
a.s.−−−→
T→∞

0.

3.2.2 Asymptotic normality

The following results concern the asymptotic normality of the proposed
estimators.

Theorem 3.2.2. For any fixed arbitrary states i, j ∈ E and any fixed arbi-
trary positive t ∈ R+, t ≤ T , under Assumptions (H.4), (H.5) and (H.6), the
following statements stand true.

(i) √
T [F̂i(t, T )− Fi(t)]

D−−−→
T→∞

N (0, σ2
F (i, t)),

with the asymptotic variance

σ2
F (i, t) = µiiFi(t) [1− Fi(t)] .

(ii) Under the condition lim
T−→∞

Thij,T =∞, we have

√
Thij,T [q̂ij(t, T )− qij(t)]

D−−−→
T→∞

N (0, σ2
q (i, j, t)),

with the asymptotic variance

σ2
q (i, j, t) = µiiqij(t)

∫ ∞
−∞

K2 (z) dz.

Similarly to Theorem 3.2.2, we establish the following asymptotic results.
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Corollary 3.2.2. Under the same conditions than those of Theorem 3.2.2,
the following statements stand true.

(i) √
T [F̂ij(t, T )− Fij(t)]

D−−−→
T→∞

N (0, σ2
F (i, j, t)),

with the asymptotic variance

σ2
F (i, j, t) =

µii
pij
Fij(t) [1− Fij(t)] .

(ii) √
T [Q̂ij(t, T )−Qij(t)]

D−−−→
T→∞

N (0, σ2
Q(i, j, t)),

with the asymptotic variance

σ2
Q(i, j, t) = µiiQij(t) [1−Qij(t)] .

(iii) If lim
T−→∞

Thij,T =∞ holds, we have

√
Thij,T [f̂ij(t, T )− fij(t)]

D−−−→
T→∞

N (0, σ2
f (i, j, t)),

with the asymptotic variance

σ2
f (i, j, t) =

µii
pij
fij(t)

∫ ∞
−∞

K2 (z) dz.

(iv) If lim
T−→∞

Thi,T =∞ holds, we have

√
Thi,T [f̂i(t, T )− fi(t)]

D−−−→
T→∞

N (0, σ2
f (i, t)),

with the asymptotic variance

σ2
f (i, t) = µiifi(t)

∫ ∞
−∞

K2 (z) dz.
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3.3 Numerical example

In this section we carry out a simulation study to evaluate the finite
sample performance of the estimation procedure described in the previous
sections. We will apply our results to a three-state semi-Markov process.
The state space of the system is given by E = {1, 2, 3}.

Figure 3.1: A three-state semi-Markov system.

The possible transitions between states are given in Figure 3.1. The
system is defined by:

• The initial distribution α = (1/3, 1/3, 1/3).
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• The transition matrix p of the embedded Markov chain (Jn)n∈N

p =

 0 1 0

0.95 0 0.05

1 0 0

 .

• The sojourn time in state 1 before going to state 2 is Gompertz-
Makeham distributed with parameters µ = 0.02, ν = 0.1 and γ = 3.
When state 2 is entered, the next state will be 1 or 3, if the next state
to be visited is 1, then the sojourn time is exponentially Weibull dis-
tributed, W (θ; k; γ) with θ = 0.8, k = 3 and γ = 2; otherwise the next
state to be entered is 3 and the sojourn time in this state is exponen-
tially distributed, with parameter λ = 0.3. When state 3 is entered,
the next state to be visited is state 1 and the sojourn time in state 3
is Weibull distributed W (α; β) with parameters α = 2 and β = 0.5.

3.3.1 Confidence intervals

To construct the smoothed estimators, the kernel K(·) is chosen to be the
quadratic function defined asK(u) = 3

4
(1−u2) for |u| ≤ 1 and the cumulative

distribution function H(u) is defined by H(u) =

∫ u

−∞

3

4
(1 − z2)1[−1,1](z)dz.

The bandwidth hT has been obtained by the 〈〈 PBbw 〉〉 method, that com-
putes the plug-in bandwidth of Polansky and Baker method, cf. [100]. Figure
3.2 presents the true values of the conditional distribution of sojourn time
F12(t), F21(t), F23(t) and F31(t), their estimators and the corresponding con-
fidence intervals at levels 99%, 95% and 90%. Notice that we have considered
that the observation period is the interval [0, T ] with T = 1000.
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Figure 3.2: Confidence interval of the conditional distribution estimators of
sojourn time of the system described in Figure 3.1.
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3.3.2 Mean integrate square error

One way of illustrating the accuracy of the estimators is by providing the
Mean integrate square error (MISE)

MISE(F̂ij) =
1

R

R∑
r=1

∫ ∞
0

(F̂ij(t)− Fij(t))2dt.

We have carried out R = 100 repetitions of the experiment and we have
taken m = 100 points of discretization.
Figure 3.3 and Table 3.1 give a comparison between the conditional distribu-
tion of sojourn time estimators obtained for different sample sizes (T = 500,

T = 1000 and T = 10000). We observe that the estimators approach the
true value as T increases.
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Figure 3.3: Comparison between the conditional distribution estimators of
the sojourn time for different sample sizes and the true value.

T = 1000 T = 5000 T = 10000

F12 0.1249947 0.01793063 0.003740013
F21 0.0502854 0.04285931 0.01664149
F23 0.5886443 0.2435079 0.1527249
F31 0.145625 0.01719063 0.004212039

Table 3.1: Estimators of the conditional distribution of sojourn times ob-
tained for different sample sizes.

3.3.3 Comparison between the empirical and the kernel
estimation

Table 3.2 presents the MSIE’s values for both methods. We remark easily
that the kernel method gives better results than the empirical one. This
superiority is important in F31.
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We present the results for the Weibull, exponential, exponential Weibull and
Makeham distributions. The mean squared error of the kernel method is
smaller than that of the empirical method. Furthermore, the mean squared
is the smallest when we use the exponential Weibull and Gomperty-Makeham
distributions.

Kernel estimation Empirical estimation
F12 0.003740013 0.004806194
F21 0.01664149 0.01906831
F23 0.1527249 0.1964222
F31 0.004212039 0.02892303

Table 3.2: MISEs for both methods, kernel estimation and empirical estima-
tion.
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Figure 3.4: Comparison between the conditional distribution of the sojourn
time estimators of the empirical and the kernel method.

3.4 Proofs of main results

Proof of Theorem 3.2.1

Let

F̂ ∗i (t) =
1

n

n∑
l=1

H

(
t−Xi;l

hi,n

)
.

Under assumptions (H.5) and (H.6), applying Theorem 1 of [88] we have

max
i

sup
t∈[0,T ]

|F̂ ∗i (t)− Fi(t)|
a.s.−−−→
n→∞

0.

Taking into account Theorem 2.2.1, we obtain the desired result. 2
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Proof of Corollary 3.2.1
We give here only the proof of (iv). For the other points, according to the
definition of the kernel estimators (3.2), (3.3) and (3.5), we can establish their
uniform strong consistency whose proofs are a straightforward adaptation of
the proof of Theorem 3.2.1.

(iv) We have for all i, j ∈ E, q̂ij(t, T ) = f̂ij(t, T )p̂ij(T ), |p̂ij(T )| ≤ 1, and
|fij(t, T )| ≤ 1. After some computation we obtain

P
(

max
i,j

sup
t∈[0,T ]

| q̂ij(t, T )− qij(t) |> ε

)
≤ P

(
max
i,j
| p̂ij(T )− pij |>

ε

2

)
+ P

(
max
i,j

sup
t∈[0,T ]

| f̂ij(t, T )− fij(t) |>
ε

2

)
.

Hence the result is a consequence of (ii) in Corollary 3.2.1 under assump-
tions (H.6), (H.7) and of the strong consistency of p̂ij(T ). 2

Proof of Theorem 3.2.2
(i) Remark that we can write

√
T [F̂i(t, T )− Fi(t)] = T

Ni(T )
1√
T

N(T )∑
l=1

[
H

(
t−Xl

hi,T

)
1{Jl−1=i} − Fi(t)1{Jl−1=i}

]
.

Taking into account Theorem 2.2.1, we introduce

Ul =

(
H

(
t−Xl

hi,n

)
− Fi(t)

)
1{Jl−1=i}. (3.7)

If we denote by Fl the σ-algebra Fl := σ(Jn, Xn;n ≤ l), l ≥ 0, thus Ul is
Fl-measurable and Fl ⊆ Fl+1, for all l ∈ N. Moreover, we have

E(Ul|Fl−1) = E
([
H
(
t−Xl

hi,n

)
1{Jl−1=i} − Fi(t)1{Jl−1=i}

]
|Fl−1

)
= 1{Jl−1=i}

∫ ∞
−∞

H

(
t− x
hi,n

)
fi(x)dx− Fi(t)1{Jl−1=i},

where the last equation is obtained by the fact that 1{Jl−1=i} is
Fl−1-measurable. On the other hand, using a change of variable, an
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integration by parts followed by Taylor’s expansion of Fi(t− hi,nz) in a
neighborhood of t, combined with assumptions (H.4), (H.5) and (H.6), we
get

E(Ul|Fl−1) = 1{Jl−1=i}

∫ ∞
−∞

H (z) dFi(t− zhi,n)− Fi(t)1{Jl−1=i}

= 1{Jl−1=i}

∫ ∞
−∞

K (z)Fi(t− zhi,n)dz − Fi(t)1{Jl−1=i}

= 1{Jl−1=i}

∫ ∞
−∞

K (z) (Fi(t− zhi,n)− Fi(t))dz

= 1{Jl−1=i}

∫ ∞
−∞

K (z) (−hi,nzF ′i (t∗))dz,

where t∗ is between t and t− hi,nz. It follows

|
∫ ∞
−∞

K (z)F ′i (t
∗)hi,nzdz| ≤ Chi,n

∫ ∞
−∞
|z|K (z) dz = O(hi,n).

This implies that
E(Ul|Fl−1) → 0, as n→∞.

By using the CLT for martingales, we have

1√
n

n∑
l=1

Ul
D−−−→

n→∞
N (0, σ2(i, t)).

To obtain the asymptotic variance σ2(i, t), we need to compute

σ2(i, t) = lim
n→∞

1

n

n∑
l=1

E(U2
l |Fl−1) > 0.

Firstly,
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E(U2
l |Fl−1) = E

(
H2
(
t−Xl

hi,n

)
1{Jl−1=i}|Fl−1

)
+ E

(
F 2
i (t)1{Jl−1=i}|Fl−1

)
−E

(
2Fi(t)H

(
t−Xl

hi,n

)
1{Jl−1=i}|Fl−1

)
= 1{Jl−1=i}

(∫ ∞
−∞

H2

(
t− x
hi,n

)
fi(x)dx

)
+ F 2

i (t)1{Jl−1=i}

−2Fi(t)1{Jl−1=i}

(∫ ∞
−∞

H

(
t− x
hi,n

)
fi(x)dx

)
.

Secondly, under Assumptions (H.4), (H.5), (H.6) and a change of variable,
an integration by parts followed by Taylor’s expansion, we obtain

E(U2
l |Fl−1) = 1{Jl−1=i}

∫ ∞
−∞

H2 (z) dFi(t− zhi,n) + F 2
i (t)1{Jl−1=i}

−2Fi(t)1{Jl−1=i}

∫ ∞
−∞

H (z) dFi(t− zhi,n)

= 1{Jl−1=i}

∫ ∞
−∞

2K (z)H (z)Fi(t− zhi,n)dz + F 2
i (t)1{Jl−1=i}

−2Fi(t)1{Jl−1=i}[Fi(t) +O(hi,n)]

= 1{Jl−1=i}Fi(t)

∫ ∞
−∞

2K (z)H (z) dz +O(hi,n)− F 2
i (t)1{Jl−1=i}

= 1{Jl−1=i}Fi(t)

[∫ ∞
−∞

(H2)
′
(z) dz − Fi(t)

]
+O(hi,n).

Thus,
σ2(i, t) = νiFi(t) [1− Fi(t)] . (3.8)

Furthermore,

√
T [F̂i(t, T )− Fi(t)] = T

Ni(T )

√
N(T )
T

1√
N(T )

∑N(T )
l=1

[
H
(
t−Xl

hi,T

)
1{Jl−1=i} − Fi(t)1{Jl−1=i}

]
.

Combining the statements (3) and (5) of Lemma 2.2.1 with Equation (3.8)
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and applying Anscombe’s Theorem (see [25]), we get

σ2
F (i, t) =

(
µii
√

1/µiiνi

)2

νiFi(t) [1− Fi(t)]

= µiiFi(t) [1− Fi(t)] .

Now, it suffices to show that

1

n

n∑
l=1

E(U2
l 1{|Ul|>ε

√
n}) −−−→

n→∞
0.

Indeed, using successively inequalities of Holder, Markov, Jensen and
thenMinkowski, we obtain for any ε > 0 and any p and q such that 1

p
+ 1

q
= 1 :

E(U2
l 1{|Ul|>ε

√
n}) ≤ (E(U2q

l ))1/qP{| Ul |> ε
√
n})1/p ≤ (ε

√
n)−2q/pE(| Ul |2q)

≤ (ε
√
n)−2q/pE

(
|H
(
t−Xl

hi,n

)
1{Jl−1=i} − Fi(t)1{Jl−1=i}|2q

)
≤ (ε
√
n)−2q/p(E

(
H2q

(
t−Xl

hi,n

)
1{Jl−1=i}

)
+ F 2q

i (t)1{Jl−1=i})

≤ (ε
√
n)−2q/p(1{Jl−1=i}

∫ ∞
−∞

H2q

(
t− x
hi,n

)
fi(x)dx+ F 2q

i (t)1{Jl−1=i})

≤ (ε
√
n)−2q/p

(
hi,n

∫ ∞
−∞

H2q (z) fi(t− zhi,n)dz + F 2q
i (t)

)
1{Jl−1=i}.

Consequently, since f is a density function and using Lemma 2.2.1, it follows
that

1
n

n∑
l=1

E(U2
l 1{|Ul|>ε

√
n}) ≤ (ε

√
n)−2q/pνi(hi,n‖H‖2q

∞ + F 2q
i (t)) −−−→

n→∞
0.

From the results above and the functional central limit Theorem for martin-
gale differences (see Billingsley [25]; Hall and Heyde [65]) we get the desired
result. 2
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(ii)

We start by writing

√
Thij,T [q̂ij(t, T )− qij(t)] = T

Ni(T )
1√
T

Nij(T )∑
l=1

1√
hij,T

K

(
t−Xn

hij,T

)
− qij(t)

√
hij,T

= T
Ni(T )

1√
T

N(T )∑
l=1

[
1√
hij,T

K

(
t−Xl

hij,T

)
1{Jl−1=i,Jl=j}

− qij(t)1{Jl−1=i}
√
hij,T

]
.

According to Theorem 2.2.1, we denote

Vl =
1√
hij,n

K

(
t−Xl

hij,n

)
1{Jl−1=i,Jl=j} − qij(t)1{Jl−1=i}

√
hij,n. (3.9)

Then, we use the same steps as in (i), so we give only the main details.
Let us denote by Fl the σ-algebra Fl := σ(Jn, Xn;n ≤ l), l ≥ 0, for all l ∈ N.
Thus, we have

E(Vl|Fl−1) = 1√
hij,n

1{Jl−1=i}pij

∫ ∞
−∞

K

(
t− x
hij,n

)
fij(x)dx− qij(t)1{Jl−1=i}

√
hij,n

= 1√
hij,n

1{Jl−1=i}pij

∫ ∞
−∞

K (z) dFij(t− zhij,n)− qij(t)1{Jl−1=i}
√
hij,n

=
√
hij,n1{Jl−1=i}qij(t)

∫ ∞
−∞

K (z) dz +O(hij,n)− qij(t)1{Jl−1=i}
√
hij,n

→ 0, as n→∞,

the previous result is obtained by using the Fl−1-measurability of 1{Jl−1=i},

a change of variable, Taylor’s expansions of order one and Assumptions
(H.4), (H.5) and (H.6).
To get the asymptotic variance, we need first to compute E(V 2

l |Fl−1) and
then to obtain

Chafiâa Ayhar



3.4 Proofs of main results 52

σ2(i, j, t) = lim
n→∞

1

n

n∑
l=1

E(V 2
l |Fl−1) > 0.

Firstly,

E(V 2
l |Fl−1) = 1

hij,n
1{Jl−1=i}pij

(∫ ∞
−∞

K2

(
t− x
hij,n

)
fij(x)dx

)
+ hij,nq

2
ij(t)1{Jl−1=i}

−2qij(t)1{Jl−1=i}pij

(∫ ∞
−∞

K

(
t− x
hij,n

)
fij(x)dx

)
.

Using the same steps as before, we obtain

E(V 2
l |Fl−1) = 1{Jl−1=i}pij

∫ ∞
−∞

K2 (z) fij(t− zhij,n)dz + hij,nq
2
ij(t)1{Jl−1=i}

−2qij(t)hij,n1{Jl−1=i}pij

∫ ∞
−∞

K (z) fij(t− zhij,n)dz

= 1{Jl−1=i}qij(t)

[∫ ∞
−∞

K2 (z) dz − hij,nqij(t)
]

+O(hij,n).

Secondly,

σ2(i, j, t) = νiqij(t)

∫ ∞
−∞

K2 (z) dz. (3.10)

Using (3.9) with Theorem 2.2.1, we can write√
Thij,T [q̂ij(t, T )− qij(t)] = T

Ni(T )

√
N(T )
T

1√
N(T )

∑N(T )
l=1

[
1√
hij,T

K
(
t−Xl

hij,T

)
1{Jl−1=i,Jl=j}

−qij(t)1{Jl−1=i}
√
hij,T

]
.

Using statements (3) and (5) of Lemma 2.2.1, with the application of Anscombe’s
Theorem, we deduce that

σ2
q (i, j, t) =

(
µii
√

1/µiiνi

)2

νiqij(t)

∫ ∞
−∞

K2 (z) dz

= µiiqij(t)

∫ ∞
−∞

K2 (z) dz.
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Now, it suffices to show that

1

n

n∑
l=1

E(V 2
l 1{|Vl|>ε

√
n}) −−−→

n→∞
0

and we use the same steps as in (i) to prove this result.

From the results above and the functional central limit theorem for mar-
tingale differences (see Billingsley [25]; Hall and Heyde [65]), we get the
desired result. 2

3.5 Concluding remarks

The main contribution of the work presented in this chapter is the use
of the classical technique of nonparametric Parzen-Rosenblatt kernel esti-
mation for estimating the main characteristics of a continuous-time semi-
Markov process, namely the sojourn time distribution functions (conditional
or not), the semi-Markov kernel and the corresponding densities. We have
proposed kernel estimators for these quantities and investigated the uniform
strong consistency and the asymptotic normality of these estimators. There
are several advantages of using this kernel method approach compared to
the empirical estimator. In particular, the kernel smoothing avoids discon-
tinuities in the empirical. Thus, if it is known that the true distribution is
continuous, the empirical distribution may be viewed as a poor approxima-
tion.

Note that in this chapter we have neglected the last censored sojourn
time. Since we are concerned here by one long trajectory in the time interval
[0, T ] and the asymptotic properties are obtained as T goes to infinity, this
is not a real limitation. Nonetheless, this is a very important question that
will represent the topic of a future research.

A symmetric problem is to consider the case when the process is not ob-
served from time 0; this generates a first observed sojourn time that is also
right censored, since we have the information that the real sojourn time is
in fact greater than the length that we observe. So, in this case also, this
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censored time can be neglected asymptotically, as T goes to infinity (our
framework). As previously mentioned for the last censored time, taking also
into account this situation of first censored sojourn time will be developed
during a future research.

As already mentioned in the introduction, semi-Markov processes are
extremely important in many fields of applied sciences. For this reason,
the work that we develop in the present chapter has an important potential
impact for those studies to come that will use semi-Markov processes as a
modelling or forecasting tool.

Chafiâa Ayhar



Chapter 4

Nonparametric estimators of the
reliability and related functions
for semi-Markov systems

In this chapter, we introduce a kernel estimator of the reliability, availabil-
ity and failure rate of a semi-Markov system when the semi-Markov process
is homogeneous and time continuous. We establish the strong consistency
and the asymptotic normality of the proposed estimators.

4.1 Introduction

In the last years, several works have been carried out in the field of the
estimation of the semi-Markov processes (SMP) for the reliability and re-
lated measurements, as availability, failure rate etc., by using empirical and
maximum likelihood estimators for discrete or continue time. Key references
on this topic is Greenwood and Wefelmeyer [62] that studied efficiency of
empirical estimators for linear functionals of semi-Markov kernels for gen-
eral state spaces; Ouhbi and Limnios [96] studied empirical estimators of
non-linear functionals of semi-Markov kernels including the Markov renewal
matrix and reliability functions [98], the failure rate of a semi-Markov system
[95]; Limnios [79] gave the invariance principle for the empirical estimator of
semi-Markov kernels. Barbu and Limnios [19] studied empirical estimation
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for discrete time semi-Markov processes with applications in reliability, [20],
[17].

More precisely, we are interested in a continue-time finite state space
semi-Markov model estimated by the kernel method, because one problem
with the empirical estimator is that it is discontinuous. In particular, if it
is known that the true distribution is continuous, the empirical distribution
may yield bad approximations. Kernel smoothing avoids this problem of dis-
continuity.
From mathematical point of view, reliability theory is essentially an applica-
tion of the theory of stochastic processes. It serves with its related measure-
ments, as failure rate, availability etc., to assist in the modeling of technical
systems as far as their dependability aspects are concerned. From a theoreti-
cal point of view, the problems related to reliability are mostly concerned by
the hitting time of a so-called failure or down subset of states of the system.
In practice, there are cases where the Markov approach is inadequate because
it is necessary to allow sojourn times in a state that are more general than
those which are exponentially distributed.
To summarize, in this chapter we introduce the kernel estimators for the re-
liability, availability and failure rate of a semi-Markov system and we study
their asymptotic properties, when T tends to infinity.

This chapter is organized as follows. Section 4.2 we impose some assump-
tions and we construct kernel estimators of the Markov renewal function.
Section 4.3 is devoted to the construction of estimators of reliability and
availability of semi-Markov systems, as well as to the asymptotic properties
of the proposed estimators. Section 4.4 is devoted to the failure rate esti-
mation and presents the strong consistency and the asymptotic normality.
Finally, in Section 4.6 we give the proof of all the above results and in Section
4.7 we give a numerical application.
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4.2 Estimation of the Markov renewal function

4.2.1 Assumptions

All along this Chapter we are working under the following three assump-
tions.

(H.1) The EMC (Jn)n∈N is an ergodic irreducible Markov chain, with station-
ary distribution ν.

(H.2) The SMP is irreducible, aperiodic, with finite mean sojourn times.

mi =

∫ ∞
0

F i(t)dt ≤ C < +∞,

m =
∑
i∈E

νimi > 0.

(H.3) The SMP (or equivalently, the MRP) is regular, that is
Pi(N(t) <∞) = 1 for all t > 0, i ∈ E.

Furthermore, we need to introduce the following conditions.

(H.4) i) Qij(t), Fi(t) and Fij(t) are absolutely continuous with respect to
the Lebesgue measure, and let qij(t), fi(t) and fij(t) be respec-
tively the corresponding Radon-Nikodym derivatives.

ii) The first derivatives fij(t), fi(t) and qij(t) are bounded.

(H.5) i) The function H is a distribution function.

ii) The kernel K is density function of bounded from below by some
constant β > 0 on its support such that

lim
x→∞
|xK(x)| = 0 and |

∫
tjKk(t)dt| <∞ for j = 0, 1, and k = 1, 2.

(H.6) The smoothing parameters hn satisfy

lim
n−→∞

hn = 0 and lim
n−→∞

nhn =∞.

(H.7) The series
∑∞

n=1 e
−γnh2n converge for every positive value of γ.

Chafiâa Ayhar



4.2 Estimation of the Markov renewal function 58

4.2.2 Comments on the assumptions

The comments on these hypotheses are the same comments those in the
above Chapter.

4.2.3 Nonparametric estimation

The Markov renewal matrix is of considerable importance when studying
the behavior of MRP. The aim of this section is to give an estimator of this
matrix and estimator of transition matrix function.
Let us denote by Ψ̂(t) the estimators of Ψ(t), defined by

Ψ̂(t, T ) =
∞∑
n=0

Q̂(n)(t, T ). (4.1)

Let P̂ be the estimator of the transition function of the semi-Markov process,
given by

P̂ (t, T ) = Ψ̂ ∗ (I − F̂ (t, T )). (4.2)

The estimator for the stationary distribution of the SMP is determined
by:

π̂i(T ) =
ν̂i(T )m̂i(T )
s∑

k=1

ν̂k(T )m̂k(T )

. (4.3)

Proposition 4.2.1. For any fixed t ∈ R+ and i, j ∈ E and under Assump-
tions (H.5)-(H.7), for all i, j ∈ E, we have

(a) For n ∈ N, we have

max
i,j

sup
t∈[0,∞]

|Q̂(n)
ij (t, T )−Q(n)

ij (t)| a.s.−−→ 0, as T →∞.

(b) (Strong consistency) For any fixed L > 0 we have

max
i,j

sup
t∈[0,L]

|Ψ̂ij(t, T )−Ψij(t)|
a.s.−−→ 0, as T →∞.

(c) (Strong consistency) For any fixed L > 0 we have

max
i,j

sup
t∈[0,L]

|P̂ij(t, T )− Pij(t)|
a.s.−−→ 0, as T →∞.
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4.3 Reliability of semi-Markov systems

4.3.1 Reliability modeling

For a stochastic system with state space E described by a semi-Markov
process Z, semi-Markov kernel Q(t) and initial distribution α, describing the
stochastic behavior of a repairable semi-Markov system, let us consider a
partition U , D of E, i.e., E = U ∪D, with U ∩D = ∅, U 6= ∅, and D 6= ∅.
The set U contains the up states and D contains the down states of the
system. The transition from one state to another state means, physically
speaking, the failure or the repair of the system. The system is operational
in U . No service is delivered if the system is in D. But, one repair will return
the system from D to U . For more details, see Limnios and Oprişan [83].
In the sequel, we will consider the kernels and the functions defined in the
previous sectionsQ(t), Ψ(t), P (t), under their matrix form and we will denote
their restrictions on the sets U , U × U , U × D. For example, QU(t) is
the restriction of the matrix Q(t) on U × U , and αU is the restriction of
the probability distribution αi of the r.v. ZU on U , and for ΨU(t) (resp.
PU(t)) we consider the restrictions to U × U (resp. U × D) induced by
the corresponding restrictions of the semi-Markov kernel QU(t). Define the
hitting time T of D, that is,

T = inf{t ≥ 0 : Zt ∈ D}, (inf ∅ = +∞).

For the finite state space case, without loss of generality, let us enumerate
first the up states and next the down states, i.e., for E = {1, 2, . . . , s}, we
have U = {1, . . . , r} and D = {r + 1, . . . , s}.
The conditional and unconditional reliability and availability, Ri(t), R(t),
and Ai(t), A(t), of a semi-Markov system are defined as follows:

Ri(t) = Pi(T > t) = Pi(Zs ∈ U,∀s ∈ [0, t]), R(t) = P(Zs ∈ U,∀s ∈ [0, t]),

with
R(t) =

∑
i∈U

αiRi(t),

and

Ai(t) = Pi(Zt ∈ U), ∀i ∈ E, A(t) = P(Zt ∈ U), and A(t) =
∑
i∈E

αiAi(t).
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The reliability and availability functions of a semi-Markov system verify
Markov renewal equations., for instance, for the reliability

Ri(t) = 1− Fi(t) +
∑
j∈U

∫ t

0

Qij(ds)Rj(t− s), i ∈ U. (4.4)

The solution of the above MRE is given by the following formula:

R(t) = αUΨU ∗ (I − FU)(t)1,

where 1 = (1, . . . , 1)′, and ΨU = (I − QU(t))(−1) is the Markov renewal
function, and t ≥ 0, FU(t) = diag(Fi(t)), i ∈ U a diagonal matrix.
Given that the process started from state i ∈ U . So

R(t) = αU · PU(t)1,

where
PU(t) = ΨU ∗ (I − FU(t)).

In the same way, we get for the availability

Ai(t) = 1U(i)(1− Fi(t)) +
∑
j∈E

∫ t

0

Qij(ds)Aj(t− s). (4.5)

The solution of the above MRE is given by the following formula:

A(t) = αΨ ∗ (I − F )(t)e,

where e = (e1, . . . , es)
′ is an s-dimensional column-vector, with ei = 1, if

i ∈ U , and ei = 0, if i ∈ D.
In matrix form

A(t) = α · P (t)e.

4.3.2 Reliability estimation

Let Q̂ be the kernel estimation (3.5) of the semi-Markov kernel Q. Then
we propose the following estimator for PU(t),

P̂U(t, T ) = Ψ̂U ∗ (I − F̂U(t, T )).
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The reliability estimator of the system is:

R̂(t, T ) = α̂U · P̂U(t, T )1.

Then we propose the following estimator for the availability of the system:

Â(t, T ) = α̂ · P̂ (t, T )e. (4.6)

We obtain plug-in estimators for the availability and reliability by sub-
stitution into the above formulas of the estimators of Ψ and Q. For these
estimators, we have the following properties.

Theorem 4.3.1. For any fixed t > 0 and for any L ∈ R+, we have:

(a) (Strong consistency)Under Assumptions (H.5)-(H.7), for all i, j ∈ E we
have.

sup
0≤t≤L

|Âij(t, T )− Aij(t)|
a.s.−−→ 0, as T →∞,

(b) (Asymptotic normality) Under (H.4), (H.5) and (H.6), setting
min
ij
hij,T = hT , we have

√
ThT (Â(t, T )− A(t))

D−−−→
T→∞

N (0, σ2
A(i, j, t)),

where

σ2
A(i, j, t) ≤

s∑
i=1

µii

s∑
j=1

[
Dij − 1{i∈U}

s∑
l=1

αlΨli

]2

∗Qij(t)

∫
K2 (z) dz,

(4.7)
and

Dij =
s∑

n=1

∑
r∈U

αnΨni ∗Ψjr ∗ (I − diag(Q · I))rr . (4.8)

Theorem 4.3.2. For any fixed t > 0 and for any L ∈ R+, we have:

(a) (Strong consistency) Under Assumptions (H.5)-(H.7), for all i, j ∈ E

we have.
sup

0≤t≤L
|R̂ij(t, T )−Rij(t)|

a.s.−−→ 0, as T →∞,
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(b) (Asymptotic normality) Under (H.4), (H.5) and (H.6), setting
min
ij
hij,T = hT , we have

√
ThT (R̂(t, T )−R(t))

D−−−→
T→∞

N (0, σ2
R(i, j, t)),

where

σ2
R(i, j, t) ≤

s∑
i=1

µii

s∑
j=1

[
DU
ij − 1{i∈U}

∑
l∈U

αlΨli

]2

∗Qij(t)

∫
K2 (z) dz.

(4.9)

4.4 Failure rate estimation

An interesting introduction to the stochastic process approach of the fail-
ure rate is given by Aalen and Gjessing [1]. The failure rate of a semi-Markov
system is defined as follows

λ(t) := lim
h↓0

1

h
P (Zt+h ∈ D|Zu ∈ U,∀u ≤ t). (4.10)

From this definition we get:

λ(t) =
αUΨU ∗ F ′U(t)1

αUΨU ∗ (I − FU(t))1
, (4.11)

where F ′U(t) is the diagonal matrix of derivatives of Fi(t), i.e., F ′U(t) =

diag(F ′i (t), i ∈ U). By replacing Q, Ψ, F by their estimators in Equation
(4.11), we get the kernel estimator for failure rate, i.e.,

λ̂(t, T ) =
α̂UΨ̂U ∗ F̂ ′U(t, T )1

α̂UΨ̂U ∗ (I − F̂U(t, T ))1
, (4.12)

where the derivative of F̂ (t, T ) is f̂(t, T ).

Theorem 4.4.1. (a) (Strong consistency) If the semi-Markov kernel is con-
tinuously differentiable, and under (H.5), (H.6), (H.7) then the estima-
tor is uniformly strongly consistent, i.e., for any fixed L ∈ R+

sup
0≤t≤L

|λ̂(t, T )− λ(t)| a.s.−−→ 0, as T →∞.
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(b) (Asymptotic normality) If fij is twice continuously differentiable for all
i, j ∈ E, and under (H.4), (H.5) and (H.6), setting min

ij
hij,T = hT , we

have √
ThT (λ̂(t, T )− λ(t))

D−−−→
T→∞

N (0, σ2
λ(i, j, t)),

σ2
λ(i, j, t) =

σ2
1(t)

(R(t))2
, (4.13)

where

σ2
1(t) =

s∑
i=1

µii(
s∑
j=1

δj ·ΨU ′

ij )2 ∗ Fi(t)
∫
K2 (z) dz. (4.14)

4.5 The evolution equation numerical solution

An approximate solution of (4.4) can be solved numerically using dis-
cretization to numerically evaluate the integrals. Let v > 0 be the step size
of discretization, then we have the countable linear system given by

Rv
i (kv) = dvi (kv) +

∑
l∈U

k∑
τ=1

Rv
l (kv − τv)qvil(τv), (4.15)

where k ≤ N , k,N ∈ N, such that Nv = T and [0, T ] is the integration
interval.

qvij(kv) =

{
Qv
ij(kv)−Qv

ij((k − 1)v) if k > 0;

0 if k = 0.

dvi (kv) = 1− F v
i (kv)

Now the Equation (4.15) is rewritten in matrix form:

Rv(kv)−
k∑
τ=1

Rv(kv − τv)qv(τv) = Dv(kv). (4.16)
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4.6 Proofs

Proof of Proposition 4.2.1
(a)
For t ∈ [0, T ] and under Assumptions (H.5)-(H.6), we will give the proof by
induction.
For n = 1, it is the result of Corollary 3.2.1 (v). Suppose that this result is
verified by order n− 1, for i and j two states, we have

max
i,j

sup
t∈[0,∞]

|Q̂(n)
ij (t, T )−Q(n)

ij (t)| ≤ max
i,j

sup
t∈[0,∞]

|Q̂(n−1)
ij (t, T )−Q(n−1)

ij (t)|

+s ·max
i,j

sup
t∈[0,∞]

|Q̂ij(t, T )−Qij(t)|.

This result converges to zero a.s., as T →∞ by the fact that
s∑
j=1

|Q̂m
ij (t, T )| ≤ s for every m ≥ 0 and the induction hypothesis. 2

(b)
Since Sn → ∞ (Lemma 2.2.2), there exists a constant n0 > 0 such that

max
i

s∑
j=1

Q
(n0)
ij (t) < 1.

Using (a), for all n ≥ 1, if we denote ε = 1−max
i

s∑
j=1

Q
(n0)
ij (t), we get

max
i

s∑
j=1

Q̂
(n0)
ij (t, T ) ≤ max

i

∣∣∣∣∣
s∑
j=1

[Q̂
(n0)
ij (t, T )−Q(n0)

ij (t)]

∣∣∣∣∣
+ max

i

s∑
j=1

Q
(n0)
ij (t) ≤ 1− ε

2
.

Moreover, for all d > n0, there exists (z, u) ∈ N∗ × N such that d = zn0 + u

where 0 ≤ u < n0 and observe that,

max
i,j

Q̂
(d)
ij (t, T ) = max

i,j

s∑
m=1

Q̂
(u)
im ∗ Q̂

(zn0)
mj (t, T )

≤ max
i,j

s∑
m=1

Q̂
(u)
im (t, T ) · Q̂(zn0)

mj (t, T )

≤ max
i,j

Q̂
(zn0)
ij (t, T ).
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Let us now prove that, for all z ∈ N∗,

max
i

s∑
j=1

Q̂
(zn0)
ij (t, T ) ≤

(
1− ε

2

)z
. (4.17)

In fact, for z = 1, (4.17) is true. Suppose now, that this result is valid until
order z and we prove it to order z + 1.

max
i

s∑
j=1

Q̂
((z+1)n0)
ij (t, T ) = max

i

s∑
j=1

s∑
m=1

Q̂
(zn0)
im ∗Q(n0)

mj (t, T )

≤ max
i

s∑
m=1

Q̂
(zn0)
im (t, T ) ·max

i

s∑
j=1

Q
(n0)
ij (t, T )

≤
(
1− ε

2

)z · (1− ε
2

)
.

On the other hand,

Ψ̂ij(t, T ) =
∞∑
n=0

Q̂
(n)
ij (t, T )

=

n0∑
n=0

Q̂
(n)
ij (t, T ) +

2n0∑
n=n0+1

Q̂
(n)
ij (t, T ) +

3n0∑
n=2n0+1

Q̂
(n)
ij (t, T ) + . . . .

Let γdij(t) be a sequence of functions defined by

γdij(t) =

{
Q̂

(d)
ij (t, T ) if d ≤ n0

n0(1− ε
2
)[d/n0] otherwise.

Where [x] is the integer part of x. We have, Ψ̂ij(t, T ) ≤
∞∑
d=0

γdij(t) < ∞.

Thus by (a) and the Lebesgue’s dominated convergence theorem, we get

Ψ̂ij(t, T )
a.s.−−→ Ψij(t), as T →∞.

The uniform consistency of Ψ̂ij(t, T ) to Ψij(t, T ) is deduced by the monotony
and the continuity of Ψij(t). 2

(c)
Let us consider the matrices B(t) = I − diag(Q(t)1) and then
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B̂(t, T ) = I − diag(Q̂(t, T )1), for (i, j) ∈ E × E be fixed,

sup
t∈[0,L]

|P̂ij(t, T )− Pij(t)| = sup
t∈[0,L]

|(Ψ̂ ∗ B̂)ij(t, T )− (Ψ ∗B)ij(t)|

≤ sup
t∈[0,L]

|(Ψ̂ij(t, T )−Ψij(t))|

+ sup
t∈[0,L]

|(Ψ̂ij(t, T )−Ψij(t))| · diag(Q̂(t, T )1)

+ sup
t∈[0,L]

|diag((Q̂−Q)1)jj(t, T )|Ψij(L).

Combining (B) with Corollary 3.2.1(v) and by the fact that Ψij(t) is finite
(cf. [103]), we deduce that diag((Q̂−Q)1)jj(t, T )

a.s−→ 0 and ∆Ψij(t, T )
a.s−→ 0

on [0, L] as T tends to infinity. 2

Proof of Theorem 4.3.1
(a)
The strong consistency of the availability estimator is obtained from the
strong consistency of the semi-Markov transition function estimator Pij(t, T )

Proposition 4.2.1(c) and from the following inequality:
√
T [Â(t, T )− A(t)] =|

∑
i∈E

∑
j∈U

αiP̂ij(t, T )−
∑
i∈E

∑
j∈U

αiPij(t, T ) |

≤
∑
i∈E

∑
j∈U

| αiP̂ij(t, T )− αiPij(t, T ) | .

2

(b)
From (2.13) and (4.6), we get that

√
ThT [Â(t, T )− A(t)] =

√
ThT

s∑
i=1

∑
j∈U

[
αiΨ̂ij ∗

(
I − diag(Q̂ · 1)

)
jj

−αiΨij ∗ (I − diag(Q · 1))jj

]
(t),

which has the same limit in law as
√
ThT

s∑
i=1

∑
j∈U

αi

[
(Ψ̂ij −Ψij) ∗ (I − diag(Q · 1))jj

−Ψij ∗ (diag(∆Q · 1))jj − (Ψ̂ij −Ψij) ∗ (diag(∆Q · 1))jj

]
(t).
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We have

√
ThT [Ψ̂ij(t, T )−Ψij(t)] =

√
ThT [Ψ̂ij − (Ψ̂ ∗Ψ)ij + (Ψ̂ ∗Ψ)ij −Ψij](t)

=
√
ThT [(Ψ̂−Ψ) ∗∆Q ∗Ψ]ij(t)

+
√
ThT [Ψ ∗∆Q ∗Ψ]ij(t). (4.18)

For every t ≥ 0, t ≤ T , and for every r,m, u, v ∈ E,
√
T (Q̂rm(t, T ) −

Qrm(t)) converges in distribution to a normal random variable (Corollary
3.2.2 (ii)), as T → ∞ , and Ψ̂uv(t, T ) − Ψuv(t)

P−→ 0 as T → ∞ is deduced
from Proposition 4.2.1 (b).
Thus, using Slutsky’s Theorem we obtain that

√
ThT [(Ψ̂ − Ψ) ∗ (Q̂ − Q) ∗

Ψ]ij(t)
P−→ 0 as T → ∞ . Consequently, applying again Slutsky’s Theorem

we get that
√
ThT [Ψ̂ij(t, T ) − Ψij(t)] has the same limit in distribution as√

ThT [Ψ ∗ (Q̂−Q) ∗Ψ]ij(t).
The last term can be written as follows:

√
ThT (Ψ ∗ (Q̂−Q) ∗Ψ)ij(t) =

√
ThT

s∑
m=1

s∑
r=1

(Ψim ∗ (Q̂(·, T )−Q)mr ∗Ψrj)(t)

=
√
ThT

s∑
m=1

s∑
r=1

(Ψim ∗ Q̂(·, T )mr ∗Ψrj)(t)

−
√
ThT

s∑
m=1

s∑
r=1

(Ψim ∗Qmr ∗Ψrj)(t)

=
√

hT
T

N(T )∑
l=1

s∑
m=1

T

Nm(T )

s∑
r=1

[(Ψim ∗H
(
· −Xl

hmr,T

)

1{Jl−1=m,Jl=r} ∗Ψrj)(t)− (Ψim ∗Qmr1{Jl−1=m} ∗Ψrj)(t)].

Since
Nm(T )

T

a.s.−−→ 1

µmm
(see Theorem 1.7 in Limnios and Oprişan [83]),

using Slutsky’s Theorem we obtain that
√
ThT [Ψ̂ij(t, T ) − Ψij(t)] has the
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same limit in distribution as

√
hT
T

N(T )∑
l=1

s∑
m=1

µmm

s∑
r=1

[(Ψim ∗H
(
· −Xl

hmr,T

)
1{Jl−1=m,Jl=r} ∗Ψrj)(t)

− (Ψim ∗Qmr1{Jl−1=m} ∗Ψrj)(t)]

=
√

N(T )
T

1√
N(T )

∑N(T )
l=1 Yl.

Taking into account Theorem 8.1, pp.302 of [64], denote

Yl =
s∑

m=1

µmm
√
hn

s∑
r=1

[(Ψim ∗H
(
· −Xl

hmr,n

)
1{Jl−1=m,Jl=r} ∗Ψrj)(t)

−(Ψim ∗Qmr1{Jl−1=m} ∗Ψrj)(t)].

Let Fl be the σ-algebra defined by Fl := σ(Jm, Xm;m ≤ l). Note that Yl is
Fl -measurable, for all l ≥ 1. Moreover, we have

E(Yl|Fl−1)) = E(
s∑

m=1

µmm
√
hn

s∑
r=1

[(Ψim ∗H
(
· −Xl

hmr,n

)
1{Jl−1=m,Jl=r} ∗Ψrj)(t)

−(Ψim ∗Qmr1{Jl−1=m} ∗Ψrj)(t)]|Fl−1)

=
s∑

m=1

µmm

s∑
r=1

[

∫ t

0

(Ψim ∗Ψrj)(t− t1)1{Jl−1=m}pmr

√
hn

hmr,n

∫
K

(
t1 − x
hmr,n

)

fmr(x)dxdt1 − (Ψim ∗Ψrj)(t) ∗Qmr(t)1{Jl−1=m}
√
hn].

The last equation is obtained by the fact that 1{Jl−1=m} is Fn−1-measurable.
Be the change of variable, Taylor’s expansion of fmr(t − hmr,nz) in a neigh-
borhood of t with assumptions (H.4), (H.5) and (H.6) we get
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E(Yl|Fl−1) =
s∑

m=1

µmm

s∑
r=1

[

∫ t

0

(Ψim ∗Ψrj)(t− t1)1{Jl−1=m}pmr
√
hn

∫
K (z)

fmr(t1 − zhmr,n)dzdt1 − (Ψim ∗Ψrj)(t) ∗Qmr(t)1{Jl−1=m}
√
hn]

=
s∑

m=1

µmm

s∑
r=1

[

∫ t

0

(Ψim ∗Ψrj)(t− t1)1{Jl−1=m}
√
hn(qmr(t)

∫
K (z) dz

+O(hmr,n))dt1 − (Ψim ∗Ψrj)(t) ∗Qmr(t1)1{Jl−1=m}
√
hn]

=
s∑

m=1

µmm

s∑
r=1

[(Ψim ∗Ψrj)(t) ∗ 1{Jl−1=m}
√
hn(Qmr(t)

∫
K (z) dz +O(hmr,n))

−(Ψim ∗Ψrj)(t) ∗Qmr(t)1{Jl−1=m}
√
hn].

This implies that
E(Yl|Fl−1) = 0, as n→∞.

To get the asymptotic variance, we need to compute E(Y 2
l |Fl−1) and then

we get,

σ2 = lim
n→∞

1

n

n∑
l=1

E(Y 2
l |Fl−1) > 0. (4.19)

Firstly, we have

Y 2
l =

s∑
m=1

µ2
mm[

s∑
r=1

(

∫ t

0

(Ψim ∗Ψrj)(t− t1)

√
hn

hmr,n
K

(
t1 −Xl

hmr,n

)
1{Jl−1=m,Jl=r}dt1)2

+1{Jl−1=m}

s∑
r1,r2=1

[

∫ t

0

(Ψim ∗Ψr1j)(t− t1)qmr1(t1)
√
hndt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t2)

qmr2(t2)
√
hndt2]− 2

s∑
r1,r2=1

[

∫ t

0

(Ψim ∗Ψr1j)(t− t1)

√
hn

hmr1,n
K

(
t1 −Xl

hmr1,n

)
1{Jl−1=m,Jl=r1}dt1

·
∫ t

0

(Ψim ∗Ψr2j)(t− t2)qmr2(t2)
√
hndt2]].
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Secondly, using Jensen’s inequality we obtain:

E(Y 2
l |Fl−1) ≤

s∑
m=1

µ2
mm[

s∑
r=1

∫ t

0

(Ψim ∗Ψrj)
2(t− t1)

hn
h2
mr,n

E(K2

(
t1 −Xl

hmr,n

)

1{Jl−1=m,Jl=r}|Fl−1)dt1

+
s∑

r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)qmr1(t1)
√
hndt1

·
∫ t

0

(Ψim ∗Ψr2j)(t− t2)qmr2(t2)
√
hndt2E(1{Jl−1=m}|Fl−1)− 2

s∑
r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)

(t− t1)
√
hn

hmr1,n
E(K

(
t1−Xl

hmr1,n

)
1{Jl−1=m,Jl=r1}|Fl−1)dt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t2)

qmr2(t2)
√
hndt2].

=
s∑

m=1

µ2
mm[

s∑
r=1

∫ t

0

(Ψim ∗Ψrj)
2(t− t1)1{Jl−1=m}pmr

hn
h2
mr,n

∫
K2

(
t1 − x
hmr,n

)

fmr(x)dxdt1 +
s∑

r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)qmr1(t1)
√
hndt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t2)

qmr2(t2)
√
hndt21{Jl−1=m} − 2

s∑
r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)1{Jl−1=m}pmr1

√
hn

hmr1,n

∫
K

(
t1 − x
hmr1,n

)
fmr1(x)dxdt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t2)qmr2(t2)
√
hndt2].

Under Assumptions (H.4), (H.5), (H.6) and a change of variable, followed by
Taylor’s expansion, we obtain

Chafiâa Ayhar



4.6 Proofs 71

!E(Y 2
l |Fl−1) ≤

s∑
m=1

µ2
mm[

s∑
r=1

∫ t

0

(Ψim ∗Ψrj)
2(t− t1)1{Jl−1=m}pmr

∫
K2 (z) fmr(t1 − zhmr,n)

dzdt1 +
s∑

r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)qmr1(t1)
√
hndt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t2)

qmr2(t2)
√
hndt21{Jl−1=m} − 2

s∑
r1,r2=1

1{Jl−1=m}

∫ t

0

(Ψim ∗Ψr1j)(t− t1)pmr1
√
hndt1

∫
K (z) fmr1(t1 − zhmr,n)dz ·

∫ t

0

(Ψim ∗Ψr2j)(t− t2)qmr2(t2)
√
hndt2]

=
s∑

m=1

µ2
mm1{Jl−1=m}[

s∑
r=1

∫ t

0

(Ψim ∗Ψrj)
2(t− t1)qmr(t1)(

∫
K2 (z) dz +O(hmr,n))dt1

+

(
s∑
r=1

√
hnΨim ∗Ψrj ∗Qmr(t)

)2

− 2
s∑

r1,r2=1

(

∫ t

0

(Ψim ∗Ψr1j)(t− t1)

√
hnqmr1(t1)(

∫
K (z) dz +O(hmr,n))dt1) ·

∫ t

0

(Ψim ∗Ψr2j)(t− t2)qmr2(t2)
√
hndt2]

=
s∑

m=1

µ2
mm1{Jl−1=m}[

s∑
r=1

(Ψim ∗Ψrj)
2 ∗Qmr(t)

∫
K2 (z) dz

−

(
s∑
r=1

√
hnΨim ∗Ψrj ∗Qmr(t)

)2

+O(hmr,n)].

Using Equation (4.19) and the fact that
Nm(T )

N(T )

a.s.−−−→
T→∞

ν(m) (see Limnios

[79]), and applying Anscombe’s Theorem (see Billingsley [25]), we obtain:

σ2 = lim
n→∞

1

n

n∑
l=1

E(Y 2
l |Fl−1)
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≤
s∑

m=1

µ2
mmν(m)

s∑
r=1

(Ψim ∗Ψrj)
2 ∗Qmr(t)

∫
K2 (z) dz.

As a final step, we have to show that the variance σ2 does not vanish. As-
suming the condition (H.4), (H.5) and (H.6), observe that:

E(Y 2
l |Fl−1) =

s∑
m=1

µ2
mmE[

s∑
r=1

(

∫ t

0

(Ψim ∗Ψrj)(t− t1)
hn
h2
mr,n

K

(
t1 −Xl

hmr,n

)
1{Jl−1=m,Jl=r}dt1)

·(
∫ t

0

(Ψim ∗Ψrj)(t− t1)K

(
t1 −Xl

hmr,n

)
1{Jl−1=m,Jl=r}dt1) + 1{Jl−1=m}

s∑
r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)qmr1(t1)
√
hndt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t1)

qmr2(t1)
√
hndt1

−2
s∑

r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)

√
hn

hmr1,n
K

(
t1 −Xl

hmr1,n

)
1{Jl−1=m,Jl=r1}dt1

·
∫ t

0

(Ψim ∗Ψr2j)(t− t1)qmr2(t1)
√
hndt1|Fl−1]

≥
s∑

m=1

µ2
mm[β

s∑
r=1

∫ t

0

(Ψim ∗Ψrj)(t− t1)
hn
h2
mr,n

E(K

(
t1 −Xl

hmr,n

)
1{Jl−1=m,Jl=r}|Fl−1)

dt1

∫ t

0

(Ψim ∗Ψrj)(t− t1)dt1

+
s∑

r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)qmr1(t1)
√
hndt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t1)qmr2(t1)

√
hndt1E(1{Jl−1=m}|Fl−1)− 2

s∑
r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)

√
hn

hmr1,n
E(K

(
t1 −Xl

hmr1,n

)

1{Jl−1=m,Jl=r1}|Fl−1)dt1 ·
∫ t

0

(Ψim ∗Ψr2j)(t− t1)qmr2(t1)dt1
√
hn].
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Therefore, we have:

1

n

n∑
l=1

E(Y 2
l |Fl−1) ≥ 1

n

n∑
l=1

s∑
m=1

µ2
mm[β

s∑
r=1

∫ t

0

(Ψim ∗Ψrj)(t− t1)
hn
h2
mr,n

E(K

(
t1 −Xl

hmr,n

)

1{Jl−1=m,Jl=r}|Fl−1)dt1

∫ t

0

(Ψim ∗Ψrj)(t− t1)dt1

+
s∑

r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)qmr1(t1)
√
hndt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t1)

qmr2(t1)
√
hnE(1{Jl−1=m}|Fl−1)dt1

−2
s∑

r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)

√
hn

hmr1,n
E(K

(
t1 −Xl

hmr1,n

)
1{Jl−1=m,Jl=r1}|Fl−1)

dt1 ·
∫ t

0

(Ψim ∗Ψr2j)(t− t1)qmr2(t1)
√
hndt1]

=
1

n

n∑
l=1

s∑
m=1

µ2
mm1{Jl−1=m}[β

s∑
r=1

∫ t

0

(Ψim ∗Ψrj)(t− t1)pmr
hn
h2
mr,n

∫
K

(
t1 − x
hmr,n

)
fmr(x)dxdt1

∫ t

0

(Ψim ∗Ψrj)(t− t1)dt1

+

(
s∑
r=1

√
hnΨim ∗Ψrj ∗Qmr(t)

)2

− 2
s∑

r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)

pmr1

√
hn

hmr1,n

∫
K

(
t1 − x
hmr1,n

)
fmr1(x)dxdt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t1)

qmr2(t1)dt1
√
hn]

Chafiâa Ayhar



4.6 Proofs 74

=
1

n

n∑
l=1

s∑
m=1

µ2
mm1{Jl−1=m}[β

s∑
r=1

∫ t

0

(Ψim ∗Ψrj)(t− t1)pmr
hn
hmr,n

∫
K (z)

fmr(t1 − zhmr,n)dzdt1

∫ t

0

(Ψim ∗Ψrj)(t− t1)dt1

+

(
s∑
r=1

√
hnΨim ∗Ψrj ∗Qmr(t)

)2

− 2
s∑

r1,r2=1

∫ t

0

(Ψim ∗Ψr1j)(t− t1)pmr1

√
hn

∫
K (z) fmr1(t1 − zhmr,n)dzdt1 ·

∫ t

0

(Ψim ∗Ψr2j)(t− t1)qmr2(t1)
√
hndt1]

≥ 1

n

n∑
l=1

s∑
m=1

µ2
mm1{Jl−1=m}[cβ

s∑
r=1

∫ t

0

(Ψim ∗Ψrj)(t− t1)qmr(t1)(

∫ ∞
0

K (z) dz)dt1

−

(
s∑
r=1

√
hnΨim ∗Ψrj ∗Qmr(t)

)2

+O(hmr,n)]

= cβ
s∑

m=1

µ2
mmν(m)

s∑
r=1

(Ψim ∗Ψrj) ∗Qmr(t)

∫ t

0

(Ψim ∗Ψrj)(t− t1)dt1 n→∞.

1

n

n∑
l=1

E(Y 2
l |Fl−1)

P−→ σ2.

To complete the proof we need to satisfy Lindeberg condition.
Now, it suffices to show that

1

n

n∑
l=1

E(Y 2
l 1{|Yl|>ε

√
n}) −−−→

n→∞
0. (4.20)

Indeed, using successively inequalities of Holder, Markov, Jensen and then
Minkowski, we obtain for any ε > 0 and any p and q such that 1

p
+ 1

q
= 1 :

E(Y 2
l 1{|Yl|>ε

√
n}) ≤ (E(Y 2q

l ))1/qP{| Yl |> ε
√
n})1/p ≤ (ε

√
n)−2q/pE(| Yl |2q)

≤ (ε
√
n)−2q/pE(|

s∑
m=1

µmm
√
hn

s∑
r=1

[(Ψim ∗H
(
· −Xl

hmr,n

)
1{Jl−1=m,Jl=r} ∗Ψrj)(t)
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−(Ψim ∗Qmr1{Jl−1=m} ∗Ψrj)(t)] |2q)

≤ (ε
√
n)−2q/p

s∑
m=1

µ2q
mm1{Jl−1=m}[

s∑
r=1

hqn
h2q−1
mr,n

∫ t

0

(Ψim ∗Ψrj)
2q(t− t1)pmr

1

hmr,n

∫
K2q

(
t1 − x
hmr,n

)
fmr(x)dxdt1 + (

s∑
r=1

√
hnΨim ∗Qmr ∗Ψrj)

2q(t)]

≤ (ε
√
n)−2q/p

s∑
m=1

µ2q
mm1{Jl−1=m}[

s∑
r=1

1

hq−1
mr,n

∫ t

0

(Ψim ∗Ψrj)
2q(t− t1)pmr

∫
K2q (z) fmr(t1 − zhmr,n)dzdt1 + (

s∑
r=1

√
hnΨim ∗Qmr ∗Ψrj)

2q(t)].

By a first order Taylor’s expansion, we have

1

n

n∑
l=1

E(Y 2
l 1{|Yl|>ε

√
n}) ≤ (ε

√
n)−2q/p

s∑
m=1

µ2q
mmν(m)

1

hq−1
mr,n

[
s∑
r=1

∫ t

0

(Ψim ∗Ψrj)
2q(t− t1)

‖ K ‖2q
∞ dt1 + (

s∑
r=1

√
hnΨim ∗Qmr ∗Ψrj)

2q(t)] −−−→
n→∞

0.

(4.21)
From the results above and the functional central limit Theorem for martin-
gale differences [see Billingsley [25], Hall and Heyde [65]] we get the desired
result. We have

σ2
Ψ(i, j, t) ≤

s∑
l=1

µll

s∑
r=1

(Ψil ∗Ψrj)
2 ∗Qlr(t)

∫
K2 (z) dz. (4.22)

So the last term, i.e.,
√
ThT (Ψ̂ij − Ψij) ∗ (diag(∆Q · 1))jj (t), converges

in probability to zero, as T tends to infinity. By using Slutsky’s Theorem,√
ThT (Ψ̂ij − Ψij)(t) converges in distribution to a normal random variable

(4.22), and ∆Qjr(t) converges in probability to zero (Corollary 3.2.1 (v)), we
can show that

√
ThT [Â(t, T )− A(t)] has the same limit in law as√

ThT

s∑
i=1

∑
j∈U

[
s∑
l=1

s∑
r=1

αiΨir∗Ψlj∗(I − diag(Q · I))jj∗∆Qrl(t)−αiΨij∗(diag(∆Q)1)jj](t),
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which can be written as√
ThT

s∑
l=1

s∑
r=1

Drl ∗∆Qrl(t)−
√
ThT

s∑
l=1

∑
r∈U

(
s∑

n=1

αnΨnr

)
∗∆Qrl(t). (4.23)

We can use two different proofs of this theorem. The first one is based
on the CLT for Markov renewal process such as the before result. The sec-
ond one relies on the Lindeberg-Lévy CLT for martingales. We use here the
second proofs

Since
Nl(T )

T

a.s.−−→ 1

µll
(Limnios and Oprişan [83]), let us consider the

function

f(i, j, x) =
s∑
l=1

s∑
r=1

µrr
√
hT

[
Drl ∗

(
H

(
· − x
hrl,T

)
1{i=r,j=l} −Qrl(·)1{i=r}

)
(t)

−1{r∈U}

(
s∑

k=1

αkΨkr

)
∗
(
H
(
·−x
hrl,T

)
1{i=r,j=l} −Qrl(·)1{i=r}

)
(t)
]

= µii
√
hT

[
Dij ∗H

(
· − x
hij,T

)
(t)− 1{i∈U}

(
s∑

k=1

αkΨki

)
∗H

(
· − x
hij,T

)
(t)

−
s∑
l=1

[Dil ∗Qil(t)− 1{i∈U}

(
s∑

k=1

αkΨki

)
∗Qil(t)]

]
.

We apply the central limit Theorem related to semi-Markov processes
(see for instance [103]) to the function

Wf (T ) =

N(T )∑
m=1

f(Jm−1, Jm, Xm)

=

N(T )∑
m=1

s∑
r,l=1

µrr
√
hT

[
Drl ∗

(
H

(
· −Xm

hrl,T

)
1{Jm−1=r,Jm=l} −Qrl(·)1{Jm−1=r}

)
(t)

− 1{r∈U}

(
s∑

k=1

αkΨkr

)
∗
(
H

(
· −Xm

hrl,T

)
1{Jm−1=r,Jm=l} −Qrl(·)1{Jm−1=r}

)
(t)
]
.
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For this function

Aij =

∫ ∞
0

f(i, j, x)dQij(x), Ai =
s∑
j=1

Aij,

Bij =

∫ ∞
0

[f(i, j, x)]2dQij(x), Bi =
s∑
j=1

Bij.

So, using a change of variable, an integration by parts followed by Taylor’s
expansion with assumptions (H.4), (H.5) and (H.6), we get

Ai = µii

[[ s∑
j=1

Dij −
s∑
j=1

1{i∈U}

(
s∑

k=1

αkΨki

)]
∗
√
hT (Qij(t)

∫ ∞
0

K (z) dz +O(hij,T ))

−
s∑
l=1

[
Dil − 1{i∈U}

(
s∑

k=1

αkΨki

)]
∗Qil(t)

√
hT

s∑
j=1

pij

]

= 0 as T →∞.

By using Jensen’s inequality followed by the same steps as before, we get:

Bi ≤ µ2
ii

s∑
j=1

[
Dij − 1{i∈U}

(
s∑

k=1

αkΨki

)]2

∗Qij(t)

∫ ∞
0

K2 (z) dz; as T →∞.

Finally, write

rj =
s∑
i=1

Ai
µ∗jj
µ∗ii

= 0, as T →∞.

Then

σ2
j =

s∑
i=1

Bi

µ∗jj
µ∗ii
≤

s∑
i=1

µ∗jj
µ∗ii

µ2
ii

s∑
j=1

[
Dij − 1{i∈U}

(
s∑

k=1

αkΨki

)]2

∗Qij(t)

∫ ∞
0

K2 (z) dz.

As a final step, we have to show that the variance σ2
j does not vanish.

Assuming the condition (H.4), (H.5) and (H.6), we observe that:

s∑
i=1

Bi

µ∗jj
µ∗ii

= σ2
j > 0.
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2

Proof of Theorem 4.3.2

(a)
The proof of the uniform strong consistency of the reliability estimator is the
same as the proof of the uniform strong consistency of the estimator of the
availability. 2

(b)
The proof of this theorem is the same as for the central limit Theorem for
the estimator of the availability except that we make restrictions of different
matrices to U instead of the whole state space. 2

Proof of Theorem 4.4.1
(a)

We have in Theorem 4.3.2 (a) the uniformly strongly consistent in the
sense that,

sup
0≤t≤L

|R̂ij(t, T )−Rij(t)|
a.s.−−→ 0, as T →∞.

Thus to prove the uniform strong consistency of the failure rate estimator,
it is sufficient to prove the same property for the numerator in (4.12). The
Markov renewal matrix estimator Ψ̂ is uniformly strongly consistent on [0, L],
for all L ∈ R+ (see Proposition 4.2.1 (b)) in the sense that

max
i,j

sup
t∈[0,L]

|Ψ̂ij(t, T )−Ψij(t)|
a.s.−−→ 0, as T →∞.

To derive the almost sure convergence of the estimator of fj(t), it can be
written as

f̂j(t, T ) =
1

Nj

Nj∑
l=1

1

hj,T
K

(
t−Xj;l

hj,T

)
.

In Chapter 1 Corollary (iii) 3.2.1, it was proved that the estimator of fj(t, T ),
is uniformly strongly consistent in the sense that,

max
j

sup
t∈[0,T ]

|f̂j(t, T )− fj(t)|
a.s.−−−→
T→∞

0.
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Thus the estimator of [F̂U ]′ buy is uniformly strongly consistent on [0, L],
for all L ∈ R+. Now, by a generalization of a Helly-Bray Theorem, cf. Baxter
and Li [22], it is easy to see that Ψ̂U ∗ (I − diag(Q̂′(t, T ) · 1)U is uniformly
strongly consistent.
Finally, since the number of states is finite, the desired result is obtained.

2

(b)

From above result, we have the convergence in probability of R̂(t) to R(t).
So, we have√

ThT

[
α̂U · Ψ̂U ∗ diag[F̂U ]′(t) · 1− αU ·ΨU ∗ diag[FU ]′(t) · 1

]
.

Firstly, remark that

√
ThT

[
α̂U · Ψ̂U ∗ diag[F̂U ]′ · 1(t)− αU ·ΨU ∗ diag[FU ]′ · 1(t)

]
=
√
ThT

[
α̂U ·∆ΨU ∗ diag[F̂U ]′ · 1(t) + αU ·ΨU ∗ diag[∆FU ]′ · 1(t)

]
=
√
ThT

[
α̂U ·∆ΨU ∗ diag[∆FU ]′ · 1(t) + αU ·ΨU ∗ diag[∆FU ]′ · 1(t)

+αU ·∆ΨU ∗ diagF ′ · 1(t)
]
.

It is clear that, if for all (i, j) ∈ E × E, fij(·) is twice continuously differen-
tiable, then

√
ThT [αU ·∆ΨU ∗diagF ′(t)·1](t) converges to zero, in probability

as T →∞.
On the other hand, the term

√
ThT α̂U ·∆ΨU ∗ diag[∆FU ]′(t) ·1 converges in

probability to zero, as T tends to infinity by applying Slutsky’s Theorem.
Thus,

√
ThT [λ̂ij(t, T )− λij(t)] has the same limit in distribution as

√
ThT

αU ·ΨU ∗ diag[∆FU ]′ · 1(t)

R(t)
,

and we obtain that
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√
ThT
R(t)

[αU ·ΨU ∗ diag[F̂U ]′ · 1− αU ·ΨU ∗ diag[FU ]′ · 1](t)

=
1

R(t)

1√
T

N(T )∑
l=1

∑
i∈U

∑
j∈U

T

Ni(T )

√
hT

×
[
αj ·Ψij ∗

(
1

hi,T
K

(
· −Xl

hi,T

)
1{Jl−1=i} − F ′i (·)1{Jl−1=i}

)
(t)

]
.

Since
Ni(T )

T

a.s.−−→ 1

µii
(see Limnios and Oprişan [83]), let us consider the

function

f(d, r, x) =
1

R(t)

∑
i∈U

∑
j∈U

µii
√
hT ×

[
αj ·Ψij ∗

(
1

hi,T
K

(
· − x
hi,T

)
1{d=i} − F ′i (·)1{d=i}

)
(t)

]
.

We apply the central limit Theorem related to semi-Markov processes
(see for instance [103]) to the function

Wf (T ) =

N(T )∑
l=1

f(Jl−1, Jl, Xl)

=

N(T )∑
l=1

1

R(t)

∑
i∈U

∑
j∈U

µii
√
hT ×

[
αj ·Ψij ∗

(
1

hi,T
K

(
· −Xl

hi,T

)
1{Jl−1=i}

− F ′i (·)1{Jl−1=i}

)
(t)

]
.

For this function

Adr =

∫ ∞
0

f(d, r, x)dQdr(x), Ad =
s∑
r=1

Adr,

Bdr =

∫ ∞
0

[f(d, r, x)]2dQdr(x), Bd =
s∑
r=1

Bdr.
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So using a change of variable, an integration by parts followed by Taylor’s
expansion and assumptions (H.4)-(H.6), we get

Ad =
∑
i∈U

∑
j∈U

µii
R(t)

[αj ·Ψij(t) ∗ 1{d=i}
√
hT (fi(t)

∫ ∞
0

K (z) dz +O(hi,T ))

− αj ·Ψij ∗ F ′i (t)1{d=i}
√
hT ].

By using Jensen’s inequality followed by the same steps as before, we obtain:

Bd ≤
∑
i∈U

µ2
ii

R(t)2
1{d=i}(

∑
j∈U

αj ·Ψij)
2 ∗ fi(t)

∫ ∞
0

K2 (z) dz; as T →∞.

Let

ri =
s∑

d=1

Ad
µ∗ii
µ∗dd

= 0, as T →∞.

Then

σ2
i =

s∑
d=1

Bd
µ∗ii
µ∗dd
≤
∑
i∈U

µ2
ii

R(t)2
(
∑
j∈U

αj ·Ψij)
2 ∗ fi(t)

∫ ∞
0

K2 (z) dz; as T →∞.

As a final step, we have to show that the variance σ2
i does not vanish.

Assuming the condition (H.4), (H.5) and (H.6), observe that:

s∑
d=1

Bd
µ∗ii
µ∗dd

= σ2
i ≥ cβ

∑
i∈U

µ2
ii

R(t)2

s∑
j1,j2∈U

αj ·Ψij1 ∗ fi(t)
∫ t

0

d(αj ·Ψij2(t1)).

2

4.7 Simulation study

In this section we apply the previous results to the three-state continuous
time semi-Markov process described in figure 4.1. Note that we study here
a semi-Markov system in a strict sense that cannot be reduced to a Markov
one.
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Figure 4.1: A three-states semi-Markov system.

Let us consider that the state space E = {1, 2, 3} is partitioned into the
upstate set U = {1, 2} and the downstate set D = {3}.
The system is defined by the initial distribution α = (1, 0, 0).
The transition probability matrix p of the embedded Markov chain (Jn)n∈N

p =

 0 1 0

0.95 0 0.05

1 0 0


Afterward, kernel estimators for all the characteristics of the semi-Markov

system (Q,F,R,A) are obtained.
Figure (4.2) and (4.3) gives a comparison between the reliability estimators
and availability estimators obtained for different sample sizes ( T = 1000 and
T = 20000). We observe that the estimators approach to the true value as
T increases.
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Figure 4.2: Comparison between the true values of the reliability and its
estimator.

Figure 4.3: Comparison between the true values of the availability and its
estimator.
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General conclusion and
perspectives

4.8 General conclusion

Throughout this work we were interested in presenting a study based on
kernel estimation of semi-Markov systems for the main parameters, as well
as in offering numerical illustration of our findings. The following points can
be used to summarize the findings of this research:

i) In the first contribution of this thesis we used the classical technique
of nonparametric Parzen-Rosenblatt kernel estimation to construct the con-
ditional sojourn time estimators for a continuous-time semi-Markov process:
the semi-Markov kernel, the sojourn time distribution functions (conditional
or not) and the corresponding densities. We have proved their asymptotic
properties of convergence and asymptotic normality by using the central limit
theorem (CLT) for Markov renewal processes or by using the Lindeberg-Lévy
CLT for martingales. Semi-Markov processes are crucial in many sectors of
applied sciences; for this reason, we illustrated our results by a numerical
example with three states with different distributions.

ii) In the second contribution of this work, we considered a theoretical
study for the reliability and related measurements like availability and failure
rate. First, we define the probabilistic expressions of the reliability indicators
of a semi-Markov system. Second, we construct plug-in estimators of these
indicators and we prove their asymptotic properties. We also illustrate our
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findings by a numerical example of a three-state semi-Markov system.

4.9 Perspectives

We can identify possible extensions of our thesis that would allow us to
complete the study of semi-Markov processes as a direct continuation of our
thesis work.

Empirical estimators were used in previous works to estimate the proper-
ties of semi-Markov systems and many works are based on these estimators.
However, one problem with the empirical distribution function is that it is
always a discontinuous function. For continuous distribution it is more suit-
able to use a continuous estimator, as the kernel estimator, instead of the
empirical one. That is what has been established in the first Chapter, where
we have established asymptotic properties for the different important indi-
cators and measures of semi-Markov systems. This is merely the first stage
in the estimating process. We can apply our method in order to estimate
the corresponding indicators in survival analysis, rocof, maintainability, and
hitting times etc. Obtaining these types of results is of particular interest
in applied sciences, for instance for engineering and biomedical studies as
suggested in [90].

This thesis presents the estimation of continuous-time finite state space
semi-Markov processus under an observable semi-Markov process Z. The
second concept that needs our investigation is the case of an unobservable
semi-Markov process Z with a companion observable process Y depending
on Z. This last setting, described by a coupled process (Z, Y ), is called a
hidden semi-Markov model (HSMM).

Another future question is the generalization of our approach to the local
linear, recursive, k-nearest neighbors, etc. (see for instance [45], [6], [34]).

We can study the same type of estimator, as well as the corresponding
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asymptotic properties, in the case of continuous state space.

Another matter that needs our attention concerns the applications and
simulation. Indeed, for the implementation of the empirical estimators and
their asymptotic proprieties, the R package SMM [16], smmR [15], were
devoted to the simulation and estimation of discrete-time multi-state semi-
Markov and Markov models, that can be adjusted by the nonparametric
kernel method. Furthermore, we can extend the existing Semi-Markov
Package [85], that is specially designed for fitting multi-state semi-Markov
models to longitudinal data, by applying the kernel estimation methodology
that we have developed.
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Appendix

In this appendix, we present some results used throughout this thesis, for
proving the asymptotic properties of all estimators obtained for semi-Markov
characteristics and for the associated reliability indicators.

Let (Ω,F ,P) be a probability space, let (E, ε) be a measurable space and
let I be a set called a parameter set. Generally, I is a subset of R, usually N
or R+.

4.10 Stochastic processes state space

Definition 4.10.1. A stochastic process is a family of random variables
{X(t), t ∈ I} defined on (Ω,F ,P) with values in E. For every t ∈ I, X(t)

is a random variable X(t) : Ω → E, whose value for the outcome ω ∈ Ω

is noted X(t, ω). If instead of t we fix an ω ∈ Ω, we obtain the function
X(., ω) : I → E which is called a trajectory or a path-function or a sample
function of the process.

The set E is called the state space of the stochastic process X = (X(t), t ∈
I). The stochastic process may be denoted by Xt instead of X(t) (respectively,
Xn if I = N).

4.11 Theorem of strong law of large numbers

The following result concern the SLLN.

Theorem 4.11.1. Let (X1, X2, . . .) be an infinite sequence of i.i.d. Lebesgue
integrable random variables with expected value E[X1] = E[X2] = . . ., then
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we have

1

n

n∑
i=1

Xi
a.s−→

n→∞
E[X1].

4.12 Slutsky’s theorem

Theorem 4.12.1. [120]
Let X,Xn, Yn, n ∈ N, be random variables or vectors. If

Xn
D−→

n→∞
X,

and
Yn

D−→
n→∞

c,

with c a constant, then

1. Xn + Yn
D−→

n→∞
X + c,

2. YnXn
D−→

n→∞
cX,

3. Y −1
n Xn

D−→
n→∞

c−1X, for c 6= 0.

4.13 Theorem of strong consistency

The following result concerns the the strong consistency given by Nadaraya
[89].

Theorem 4.13.1. Suppose that K(x) is a function of bounded variation,

f(x) is a uniformly continuous density function, and the series
∞∑
n=1

e−γnh
2

converges for every positive value of γ. Then

sup
−∞<x<∞

|fn(x)− f(x)| −→ 0,

with probability one as n→∞.
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4.14 Central limit theorems

4.14.1 CLT for martingales

The following results is the Lindeberg-Lévy Central limit theorem for
martingales by Billingsley [23].

Definition 4.14.1. (Martingale) Let F = (Fn, n ≥ 0) be a family of sub-σ-
algebras of F such that Fn ⊂ Fm, when n < m. We say that F is a filtration
of F . A real-valued F-adapted stochastic process Xn is called a martingale
with respect to a filtration F if, for every n = 0, 1, . . . ,

1. E|Xn| <∞,

2. E[Xn+1|Fn] = Xn a.s.

Theorem 4.14.1. (CLT for martingales)
Let (Xn)n∈N? be a martingale with respect to the filtration F = (Fn)n∈N

and define the process Yn = Xn − Xn−1, n ∈ N? (with Y1 := X1), called a
difference martingale. If

1.
1

n

n∑
k=1

E[Y 2
k |Fk−1]

P−→
n→∞

σ2 > 0;

2.
1

n

n∑
k=1

E[Y 2
k 1{|Yk|>ε

√
n}] −→

n→∞
0, for all ε > 0,

then
Xn

n

a.s−→
n→∞

0,

and
1√
n
Xn =

1√
n

n∑
k=1

Yk
D−→

n→∞
N (0, σ2).

4.14.2 Anscombe’s theorem

The following Theorem is from Billingsley [25].
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Theorem 4.14.2. Let (Yn)n∈N be a sequence of random variables and (Nn)n∈N

a positive integer-valued stochastic process. Suppose that

1√
n

n∑
m=1

Ym
D−→

n→∞
N (0, σ2) and Nn/n

P−→
n→∞

θ,

where θ is a constant, 0 < θ <∞. Then,

1√
Nn

Nn∑
m=1

Ym
D−→

n→∞
N (0, σ2).

4.15 Limit Theorems for Markov renewal pro-
cess

We present the strong law of large numbers and the central limit theorem
for additive functional of MRPs. Pyke and Schaufele [103] gave these results.
The notation used here comes from Moore and Pyke [87].

For a real measurable function f , defined on E× E× R, define, for each
T > 0, the functional Wf (T ) as

Wf (T ) :=

N(T )∑
n=1

f(Jn−1, Jn, Xn). (4.24)

Set

Aij :=

∫ ∞
0

f(i, j, x)dQij(x), Ai :=
s∑
j=1

Aij,

Bij :=

∫ ∞
0

(f(i, j, x))2dQij(x), Bi :=
s∑
j=1

Bij.

Let µij and µ∗ij denote the mean first passage times from state i to j in the
MRP (Jn, Sn) and in the corresponding Markov chain (Jn)n∈N, respectively.

Write
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ri :=
s∑

u=1

Au
µ∗ii
µ∗uu

,

σ2
i := −r2

i +
s∑

u=1

Bu
µ∗ii
µ∗uu

+ 2
s∑

u=1

∑
l 6=i

∑
j 6=i

AulAjµ
∗
ii

µ∗li + µ∗ij − µ∗lj
µ∗uuµ

∗
jj

.

Finally, put

mf :=
ri
µii
,

Bf :=
σ2
i

µii
.

Theorem 4.15.1. (strong law of large numbers).
For an aperiodic MRPs that satisfies Assumptions H.1 and H.2 (see Chapter
4) we have

Wf (T )

T

a.s.−→
T→∞

mf .

Theorem 4.15.2. (Central Limit Theorem)
For an irreducible recurrent MRPs that satisfies Assumptions H.1 and

H.2 (see Chapter 4) we have

T−1/2 [Wf (T )− T ·mf ]
D−−−→

T→∞
N (0, Bf ).

4.16 Classification of states

Let Sji , i, . . . , n . . . be the recurrence times for a fixed state j with commun
distribution Gij on {J0 = i}; these random variables represent a renewal
process. Furthermore, the random variables Sjn+1−Sjn, n ≥ 1, are i.i.d. with
a common distribution denoted by Gjj. If j is the initial state, i.e., {J0 = i}
(a.s.), then Sj1, S

j
n+1 − Sjn, n ≥ 1, are i.i.d.. Let µij be the first moment of

Gij.
Then

Gij(t) = Pi(Sj1 ≤ t) = Pi(Nj(t) > 0).

Let (νi; i ∈ E) be an invariant measure for p = (pij; i, j ∈ E), i.e., νp = ν.
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Definition 4.16.1. 1. States i and j are said to communicate if i = j or
Gij(∞)Gji(∞) > 0. Communication is an equivalence relation.

2. A state i is said to be recurrent if Gii(∞) = 1, otherwise it is called
transient.

3. A recurrent state i is said to be positive-recurrent if µii <∞ and null-
recurrent if µii =∞.

4. A state i is said to be periodic with period c > 0 if Gii(·) is arithmetic,
i.e., concentrated on {nc : n ∈ N}. In the opposite case it is called
aperiodic.

Definition 4.16.2. An MRP whose all states are:

1. communicating is called irreducible;

2. positive (respectively null) recurrent is called positive (respectively null)
recurrent.

Proposition 4.16.1. Let us consider an irreducible positive recurrent MRP.
For j fixed, (µij, i ∈ E) is the unique bounded solution of

µij = mi +
∑
k 6=j

pikµkj.

Proposition 4.16.2. 1. An MRP is irreducible if and only if its EMC is
irreducible.

2. A state i is recurrent (transient) in the MRP, if and only if it is recur-
rent (transient) in the EMC.

3. For an irreducible finite MRP, a state i is positive recurrent in the
MRP, if and only if it is recurrent in the EMC and if for all j ∈ E,
mj <∞.

4. If the EMC of an MRP is irreducible and recurrent, then all states are:

• positive recurrent if and only if
∑
i

νimi <∞,
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• null recurrent if and only if
∑
i

νimi =∞.

Theorem 4.16.1. [103] A regular MRP is positive recurrent if and only if
mj < ∞ for all j ∈ E and if there exists a convergent sequence (yi, i ∈ E)

of positive numbers such that
∑
i∈E

yi[pij − δij]/µi = 0. The sequence is unique

up to a multiplicative constant.

4.17 Basic definitions and properties

For B ∈ θ, B 6= ∅, we consider the random variable

τB = inf{t > S1, Z(t) ∈ B},

we suppose that the family of σ-algebras Ft = σ(Z(s), s ≤ t) satisfied Ft+ =

Ft for all t ∈ R+. Obviously τB is a stoping time with respect to the σ-
algebras (Ft, t ∈ R+).
Set

L(x,B, t) = Px(τB ≤ t), x ∈ E, t ∈ R+.

Definition 4.17.1. The set B is said to be accessible from the state x ∈ E
if L(x,B,∞) > 0.

Let ϕ be a σ-finite measure on (E, θ) such that ϕ(E) > 0.

Definition 4.17.2. 1. The semi-Markov process (Z(t), t ∈ R+) is called
ϕ-irreducible if, whenever ϕ(B) > 0, the set B is accessible from any
x ∈ E.

2. The semi-Markov process is called ϕ-recurrent if whenever ϕ(B) > 0,
we have L(x,B,∞) = 1 for any x ∈ E.

Obviously, a ϕ-recurrent process is also ϕ-irreducible.

Theorem 4.17.1. [83] The semi-Markov process (Z(t), t ∈ R+) is ϕ-irreducible
(ϕ-recurrent) if and only if the embedded Markov chain (Jn)n∈N is ϕ-irreducible
(ϕ-recurrent).
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Definition 4.17.3. A set B ∈ θ is called recurrent (respectively, transient)
for the semi-Markov process (Z(t), t ∈ R+) if it is recurrent (respectively,
transient) for the Markov chain (Jn)n∈N, i.e., if Px(Jn ∈ B, i.o.) = 1 (respec-
tively, = 0) for any x ∈ E.
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 « التقدير اللامعلمي لعمليات شبه ماركوف مع التطبيقات »
 ملخص:

( بطريقة غير معلميه مع حالات محدودة. نقدم بناء مقدرات النواة لمؤشرات ومقاييس  SMSيتعلق العمل الحالي بتقدير نظام شبه ماركوف )

 الطبيعية المقاربة. مهمة مختلفة لعملية شبه ماركوف ثم نظهر التقارب القوي والحالة 

أولاً، نوفر مقدرات النواة للخصائص الرئيسية لعملية شبه ماركوف ذات الوقت المستمر، مثل أوقات الإقامة المشروطة وغير المشروطة في 

المرتبطة بها. الهدف الرئيسي هو إنشاء خصائص مقاربة مثل الاتساق القوي    نيكوديم- بالإضافة إلى مشتقات الرادون  ماركوف،شبه   حالة، ونواة 

 الموحد والحالة الطبيعية المقاربة.  

والقياسات ذات الصلة: معدل الفشل، والتوافر، وندرس الخصائص المقاربة  الموثوقية  ثانياً، ندرس موثوقية أنظمة شبه ماركوف. نقدم مقدر النواة  

 للمقدرات المقترحة. 

 ن أجل إثبات فعالية نتائجنا النظرية، يتم تحقيق كل جزء من خلال مثال رقمي.   م

 الكلمات الرئيسية: 
عمليات شبه ماركوف، مقدر النواة، أوقات الإقامة، نواة شبه ماركوف، مصفوفة تجديد ماركوف، مصفوفة انتقال شبه ماركوف، 

.ي المقاربالتوافر، الموثوقية، معدل الفشل، الاتساق، الوضع الطبيع  
     

« Estimation non paramétrique pour les processus semi-markoviens avec applications » 

Résumé : 

Le présent travail porte sur l'estimation d'un système semi-markovien (SMS) à états finis par une méthode non 

paramétrique. Nous présentons la construction des estimateurs à noyau pour différents indicateurs et mesures 

qui sont importants pour un processus semi-markovien, puis nous établissons la convergence forte ainsi que la 

normalité asymptotique de ces estimateurs. 

Premièrement, par la méthode d'estimation à noyau, nous construisons des estimateurs des principales 

caractéristiques d'un processus semi-markovien en temps continu, telles que les temps de séjour conditionnel 

et inconditionnel, le noyau semi-markovien, ainsi que les premières dérivées des mesures précédentes. 

L'objectif principal est donc d'établir certaines propriétés asymptotiques des estimateurs construits. 

Dans un second temps, nous étudions la fiabilité des systèmes semi-markoviens. Nous introduisons un 

estimateur à noyau de la fiabilité ainsi que du taux de défaillance et de la disponibilité. Ensuite, nous étudions 

les propriétés asymptotique des estimateurs proposés. 

Afin de prouver l'efficacité de nos résultats théoriques, chaque partie est illustré à travers un exemple 

numérique. 
 Mots clés processus semi-markoviens, estimateur à noyau, temps de séjour, noyau semi-markovien, matrice de 
renouvellement de markovienne, matrice de transition semi-markovienne, disponibilité, fiabilité, taux de 
défaillance, consistance, normalité asymptotique. 
 

                « Nonparametric Estimation for semi-Markov Processes with Applications» 
Abstract : 

The present work concerns the estimation of a finite state semi-Markov system (SMS) by a nonparametric 

method. We present the construction of kernel estimators for different important indicators and measures of 

the semi-Markov process, then we prove their strong convergence and asymptotic normality. 

Firstly, we provide kernel estimators of the main characteristics of a continuous-time semi-Markov process, 

like conditional and unconditional sojourn times in a state, semi-Markov kernel, as well as their associated 

derivatives. The main goal is to establish asymptotic properties as the uniform strong consistency and 

asymptotic normality.  

Secondly, we study the reliability of semi-Markov systems. We introduce a kernel estimator of the reliability 

and its related measurements, as failure rate and availability. We also study the asymptotic properties of the 

proposed estimators. 

In order to illustrate the quality of our theoretical results, each part is achieved by a numerical example. 
Key words: semi-Markov processes, kernel estimator, sojourn times, semi-Markov kernel, Markov renewal matrix, 
semi-Markov transition matrix, availability, reliability, failure rate, consistency, asymptotic normality. 
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