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Introduction

The birth of the control theory has been marked by the Bernoulli ’s result (1697) on the
solution of the brachistochrone problem [91] except that its real rises was in 1950−1960s, by the
work of Pontryagin and his students on the maximum principle. Since then, this theory draws
attention of many researchers of the pure mathematic as well as the applied fields. One of the
branches of the control theory that have found its way into many areas of control engineering
and modeling is the stochastic optimal control which is very useful tool in many applied sciences
fields such as medicine(e.g. optimal therapies), biology, economics (e. g. strategies), finance,
mechanic, . . . etc.

Originally, Pontryagin and his team introduce the well-known maximum principle while
studying the optimal control issues. Additionally, the maximum principle application leads to
the so called Hamiltonian system with the state equation and its adjoint equation, consequently,
forward backward differential equations have been raised. Similarly to the deterministic area,
forward backward stochastic differential equations (FBSDEs in short) have been introduced via
the definition of backward stochastic differential equations (BSDEs, in short). Formerly, the
earliest version of the BSDE’s (the linear form) has been introduced in 1973 by Bismut [13] as
the adjoint equation in the stochastic version of the Pontryagin maximum principle.

In 1983, Bensoussan [11] used the martingale representation theorem to prove the wellposed-
ness result of general linear BSDE’s. In addition, the non-linear case has been introduced by
Bismut [14] in 1978. Next, the study of the general Pontryagin maximum principle for stochastic
optimal controls done by Peng and Pardoux [72] (1990) demonstrates the first wellposedness
result for non-linear BSDE’s. A non-exhaustive list of the work carried out on this field of
research is cited. However, note the works of Peng and Pardoux [72, 73], the article of El Karoui,
Peng and Quenez [30] and the book [27].

Furthermore, the first result for a coupled FBSDE (the solution of the forward appear in the
backward one and also the solution of the backward appear in the forward one) was obtained
by Antonelli [2] in his Ph.D. thesis in 1993, since then, many authors studied this system using
different methods such as four step scheme [54] and the method of continuation [51] and many
other several authors [84, 23, 70]. Equally important, the applications of FBSDEs attract many
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authors, we set among them [84, 70].
Furthermore, in the FBSDE’s theory framework and particularly, in a Markovian framework,

the solution of a BSDE describes the viscosity solution of the associated semi-linear partial
differential equation (PDE in short). For more details, we refer to El Karoui, Peng and Quenez ’s
paper [30] and the references therein. Peng [76] obtained the Hamilton-Jacobi-Bellman equation
and proved that the value function is its viscosity solution. Many authors studied the theory
of BSDEs and its applications in stochastic control (see Peng [74]), finance (see El Karoui,
Peng and Quenez [30]), and for partial differential equations theory (see Peng [75], etc.). Since
then, BSDE’s have been widely used in stochastic control and especially in mathematical finance.

For instance, any pricing problem by replication can be written in terms of linear BSDEs or
non-linear BSDEs when portfolios constraints are taken into account as in Peng [75]. More im-
portantly, a deep study has been done on the controlled forward backward stochastic differential
equations, indeed the existence of an optimal controls theorems was the central topic developed
in this framework. For example the existence of an optimal control for the decoupled FBSDE
has been established by Buckdahn, Labed, Rainer and Tamer [17]; by using the associated
Hamilton-Jacoi-Belman equation to construct a sequence of optimal feedback controls, then,
passing to the limit and using the result of [28], they get the existence of a relaxed optimal
control. Then again, they use the Filippov convexity condition to get the existence of a strict
optimal control. This last step was also used by [5] in which they use the Jakubowsky S-topology
and compactness method. The authors shown directly the existence of a relaxed control and
established the existence of an optimal control. In the coupled case, exploiting the result of
[17] and [5] to general case (coupled), Bahlali and Kebiri [55] proved the existence of an optimal
control for degenerate FBSDE where they consider the coefficients satisfying the monotony
condition given in[84]. Because of the degeneracy of the diffusion they transform the coefficient
of the hessian uniformly elliptic by adding a strictly positive number on the contrary to the
non-degenerate case, Bahlali, Kebiri and Mezerdi [6] was not obligated to add it. However, it
does not affect any change on the system where the proof differ from of the degenerate case, it
is in some sense like [17, 5] for more details see [6].
All the results discussed above are introduced on a filtered probabilistic space where the

(additive) probability measure is very important tool and the mathematical expectation is
linear; the uncertain phenomena are expressed by using the Brownian motion. It is natural to
wonder if it is common to find a perfect situation in which an exact probability can be precisely
determined.
In our world, it is not; moreover, even the probability uncertainty itself becomes difficult to
deal with it. Furthermore, the basic tools those are widely used in the probability theory, and
in financial, commercial and many other industrial domains have been criticized. For instance,
there exists many situations where a precise probability for each feature outcome cannot be
attributed. As it is in the real world because of the randomness and the ambiguity, due to
an imprecise probability, incomplete information and vague data . . . etc. They emphasized



Introduction 3

with different kinds of uncertainty, a kind that affected the humankind’s efforts. This kind
of uncertainty has been introduced first by Frank Knight in his book "Risk, Uncertainty and
profit" [60], in which a distinction about uncertainty and risk has been established i.e. there
is a crucial difference between the feature for taking a known risk which we can convert into
an efficacious certainty easily and for supposing a "true uncertainty" -a risk whose its value
is not known- as in the real business world, all events are complex that is not susceptible to
measurement. The "true uncertainty" which is known as Knightian uncertainty in economy
and it is applicable in the situations where the level of uncertainty is higher.

On the other hand, Von Neumann-Morgenstern (1947) [92] set necessary and sufficient con-
ditions under which the expected utility hypothesis holds. Since then, the modern economic
theory is based on the Von Neumann-Morgenstern utility which deals with the mathematical
expectation.

However, in 1953 the Allais ’s paradox [1] rises in which the Von Neumann-Morgenstern axioms
(completeness, transitivity, continuity and independence) have been criticized. Actually, the
Allais’s paradox was presented by a counterexample to the independence axiom which implies
that the linear mathematical expectation cannot be used to explain the uncertain phenomena.
So, it was necessary to find a way to measure such phenomena. The non-linear expectation
was the solution. In fact, an attractive definition was given to the non-linear expectation by
Gustave Choquet (1953) [20] and it is known by "Choquet non-linear expectation" which attract
with great interest many scientists for its potential applications in uncertainty issues (Risk
measurement and super hedging in finance). But unfortunately, it was difficult to define the
conditional Choquet non-linear expectation.
In 1997, based on backward stochastic differential equation theory, the concept of g-expectation

[77] as well as the conditional g-expectation was subsequently introduced by Peng. Unfortunately,
Peng ’s g-expectation can be defined only on a BSDE framework. Thus, it was necessary to
think at a concept that makes a sense in more general setting. For that, independently of the
BSDE theory and inspired by uncertainty problems in economics, Peng [80] constructs a type
of fully non-linear expectation dynamically coherent named G-expectation using a non-linear
partial differential equations approach. More precisely, following Kolmogorov ’s method, in 2006,
Peng [80] introduced the one-dimensional G-Brownian motion (G-BM, in short) as well as the
G-expectation under which the canonical process is the G-Brownian motion. Then, by the
method used in Peng ’s paper [78], a multidimensional G-Brownian motion [81] has been defined.

Unlike the classical situation, the quadratic variation of this process 〈B〉 is as the G-Brownian
motion B itself, that is an important and a helpful tool in financial markets especially for
capturing the volatility fluctuations. Denis and Martini [25] define the G-expectation based on
a quasi-sure analysis from the abstract potential theory to construct a similar structure using a
tight family of possibly mutually singular probability.
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The main difference between the small g-framework and the big G-framework is that in the
g-framework we can’t let the uncertainty in the diffusion, whereas in the G-framework, both
the drift and the diffusion can have uncertainty.
A related stochastic calculus to the G-Brownian motion has been developed in S. Peng ’s

papers (see [80, 79, 81] and [82]).

The study of a forward stochastic differential equation driven by a G-Brownian motion under
different conditions on the coefficients attracts the attention of many authors we set among
them Peng [79, 80] and [81], Gao [40], Bai and Lin [85] . . . etc. On the other hand, a varied
result has been attended on the backward stochastic differential equation driven by the G-BM
such as [68, 95, 36, 50]. . . etc.

In recent years, G-expectation framework has found increasing applications in the domain
of finance and economics; for example, Epstein and Ji [32, 31] study the asset pricing with
ambiguity preferences, and Beissner [8] has studied the equilibrium theory with ambiguous
volatility, in addition to many others see e.g. [93, 12, 48].
However, many applications of stochastic optimal control required to solve the corresponding

Hamilton-Jacobi-Belmann equation with probabilistic methods, especially in high dimensional
problems see e.g. [41]. Furthermore, the case where we do not know the exact value of the
volatility, but only a range of it, like the case of finance, the corresponding HJB equation in
a fully non-linear G-partial differential equation, and in case of high dimension, we cannot
solve this end by the usual methods like the finite difference, so a probabilistic representation
is required, and when the control enter the diffusion see e.g. [61, 15], this will produce a fully
coupled G-FBSDE, also the application of the stochastic maximum principle gives a G-FBSDE
system. So, it becomes challenging to study the G-FBSDE.

Thus, motivated by the above results, the existence of solution to a G-FBSDE is considered as
the first issue solved in this thesis. However, we argued the existence and uniqueness of the
solution of a coupled forward-backward stochastic differential equation in the G-framework by
constructing a mapping for which the fixed point is the solution of our G-FBSDE, where we
prove that this mapping is a contraction. In this thesis, we do not require the monotonicity
condition that Wang and Yuan. [94] supposed. In addition, we allow that the solution of the
forward equation X can be multidimensional process, not necessarily one-dimensional like the
case of [94], where they needed it for the comparison reasons.
Therefore, the developments reached on the G-framework allowed to wonder about many other

fields; how to deal with it in the G-framework. Hence, to characterize the real world problems
with ambiguity and randomness in a more precise way, it is important to deal with stochastic
controlled equations that are perturbed by a G-Brownian motion. One of the relevant studies
that contributed in the development of the stochastic optimal control under G-expectation is
the Peng ’s [76] one. Moreover, the stochastic optimal control problems under G-framework have
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been defined. Also, the dynamic programming has been obtained by Zhang [96]. Since then,
the theory of optimal control in this framework received a strong attention. Furthermore, many
of results are drawn from the varied spectrum of the classical framework into the G-framework.
It becomes challengeable to generalize the methods and techniques of the classical situation into
the G-framework, we set among them ([49, 44, 37, 48, 45]). One of the remarkable results is in
particular for stochastic differential equations driven by a G-Brownian motion(G-SDEs) which
was studied by Redjil and Choutri [86], where they introduced a space of G-relaxed controls
and proved the so called G-Chattering lemma, the existence of an optimal relaxed control was
established. Therefore, one of the main results in this thesis is the study of a system driven by
decoupled forward-backward stochastic differential equations in the G-framework.

Our objective is to investigate the problem of the existence of optimal relaxed stochastic
control given by a G-FBSDE and a cost function as the first component of the solution of the
backward stochastic differential equation. The idea is to use an approximated control problem
of our original issue, to prove the existence of relaxed-optimal control for the approximated
system then pass to the limit.
As a result of the deep study done on the G-framework, we used the link between it and the

result obtained by Denis and Martini [26] as well as the result shown in [25] to study model
reduction of linear and bilinear quadratic stochastic control problems with parameter uncertain-
ties. More precisely, we consider slow-fast systems with unknown diffusion coefficient and study
the convergence of the slow process in the limit of infinite scale separation. Until now, there is no
result in the G-framework that deal with the averaging and homogenization of multiscale systems.

In this thesis, we consider a slow-fast system in which the drift and the diffusion coefficients
are uncertain parameters, then by reformulating the slow-fast system as an optimal control
problem in which the unknown parameter plays the role of a control variable that can take
values in a closed bounded set. For systems with unknown diffusion coefficient, the underlying
stochastic control problem admits an interpretation in terms of a stochastic differential equation
driven by a G-Brownian motion. Then again, we quantify the uncertainty in the reduced
system by deriving a limit equation that represents a worst-case scenario for any given (possibly
path-dependent) quantity of interest. The idea here is to formulate the nonlinear dynamic
programming equation of the underlying control problem as a forward-backward stochastic
differential equation in the G-Brownian motion framework. Next, we prove convergence of the
slow process with respect to the nonlinear expectation on the probability space induced by the
G-Brownian motion. At the end, two numerical examples are given in order to illustrate the
theoretical results.
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Outline of the thesis

The results presented in this thesis are very interesting for the theoretical and applied fields. The
results can help to deal with many problems in finance, economics, games theory and optimal
control theory as well as model reduction with uncertainty problem. The thesis statements are
organized as follow:

Chapter one "Generalities" : We recall some important notations, basic results and theorems
obtained in the G-expectation framework, which concern the formulation of the G-expectation,
the G-Brownian motion, and the G-stochastic differential equations. . . etc.

Chapter two "G-Forward Backward Stochastic Differential Equations" in which we present the
existed result on this kind of systems, then establish the existence and uniqueness of solution of
such coupled FBSDE in the G-framework that is the subject of our published research paper [56].

Chapter three Optimal Control of a decoupled FBSDEs in the G-framework" in which we establish
the existence of relaxed optimal control for decoupled forward-backward system defined on a
sub-linear expectation (decoupled forward-backward stochastic differential equations that is
driven by the so called G-Brownian motion).

Chapter four "Model Reduction And Uncertainty Quantification Of Multiscale Under G-Expectation:
In this last chapter we propose a general framework for the averaging and homogenization of
multiscale with uncertain parameter then we aim to use this results to quantify the uncertainty
in the reduce system and we close the chapter by two simple numerical examples. This chapter
is a subject of the submitted paper [16].



Chapter 1

Generalities

Within this chapter, we introduce the basic notions and recall all the results that will be used
throughout this thesis. In the first section, a brief summary on the forward backward stochastic
differential equations (in the classical situation). Then, we introduce the g-expectation in the
second section. Finally, the third section is devoted for the G-expectation framework.

1.1 Forward-backward stochastic differential equations

Once the backward stochastic differential equation (BSDE’s in short) appeared, the theory of
forward-backward stochastic differential equations (FBSDE’s) has been risen in it decoupled
form. So, it is necessary to recall some basics tools in the BSDE’s theory which was the
phenomenon of the last century that has been received a great attention because of its interest
in various applied fields such as mathematical finance and especially for its connection with
non-linear partial differential equation.

Backward stochastic differential equations

Let (Ω,F ,P) be a probability space with the natural filtration of the Brownian motion (Ft)t≥0,
and ξ is a FT -measurable random variable. We aim to solve the following equation:

−dYt
dt

= g(Yt), t ∈ [0, T ], with YT = ξ.

A stochastic differential equation with a given terminal condition must have an adapted solution
and a non-anticipating solution is unlikely. In general, by the martingale-representation of Y ,
the backward stochastic differential equations have the following form:

− dYt = g(t, Yt, Zt)dt− ZtdBt, YT = ξ, (1.1)

equivalently

Yt = ξ +

∫ T

t
g(s, Ys, Zs)ds+

∫ T

t
ZdBs, (1.2)
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where the terminal condition ξ is FT -measurable, square integrable random variable and (Bt)t≥0

are d-dimensional Brownian motion processes.

Let consider the following notations:

• S2(Rk) is the space of progressively measurable processes Y such that

‖ Y ‖2S2 := E( sup
0≤t≤T

|Y |2) <∞,

and S2
c (Rk) denotes the subspace of the continuous process.

• M2(Rk×d) is the space of progressively measurable processes Z such that

‖ Z ‖M2 := E

(∫ T

0
‖ Zt ‖2 dt

)
<∞,

where, for z ∈ Rk×d, ‖ z ‖2= trace(zz∗), andM2(Rk×d) denotes theM2(Rk×d) equivalent
classes.

Definition 1.1.1. A solution of the equation (1.2) is the couple process {(Yt, Zt)}0≤t≤T that
verify

1. Y and Z are progressively measurable processes with values in Rk and Rk×d respectively.

2. P-p.s.
∫ T

0 {|g(r, Yr, Zr)|+ ‖ Zr ‖2}dr <∞.

3. P-p.s. we have

Yt = ξ +

∫ T

t
g(r, Yr, Zr)dr −

∫ T

t
ZrdBr, 0 ≤ t ≤ T.

We consider a random variable ξ,FT− measurable with value in Rk.
Here are the hypothesis under which we work

1. Lipschitz condition: There exist L > 0 such that, for any y1, y2 ∈ Rk, z1, z2 ∈ Rk×d we
have :

|g(t, y1, z1)− g(t, y2, z2)| ≤ L(|y1 − y2|+ ‖ z1 − z2 ‖).

2. Integrability condition:

E

[
|ξ|2 +

∫
0
T |g(r, 0, 0)|2dr

]
<∞.

Theorem 1.1. [72] Under hypothesis (1) and (2), the BSDE (1.2) has a unique solution (Y,Z)

where Z ∈M2.

Remark 1.1.1. The role of the process Z is to make the process Y adapted and when it is not
necessary, the process Z will be equal to zero.

Now, let distinct between decoupled FBSDE system and the coupled one.



1.1 Forward-backward stochastic differential equations 9

Decoupled forward-backward stochastic differential equations

A decoupled FBSDE is a system consisting of backward stochastic differential equations that
depend on the solution of the associated forward stochastic differential equations i.e. on the
standard filtered probability space (Ω,F ,P) of a d-dimensional Brownian motion. A decoupled
FBSDE system is given by:

Y t,x
r = φ(Xt,x

T ) +
∫ T
r g(u,Xt,x

u , Y t,x
u , Zt,xu )du+

∫ T
r Zt,xu dBu, 0 ≤ r ≤ T,

Y t,x
T = φ(Xt,x

T ),

(1.3)

where, the parameter (Xr)0≤r≤T of the BSDE (1.3) is the solution of the forward stochastic
differential equation: 

Xt,x
r = x+

∫ r
t b(u,X

t,x
u )du+

∫ r
t σ(u,Xt,x

u )dBu,

Xt = x.

(1.4)

In order to solve the BSDE (1.3), we start by solving the SDE (1.4) and substitute the result in
(1.3). We use P t,x to denote the process that starts in x at the initial time t.

Coupled forward-backward stochastic differential equations

It is the case where the solution of the BSDE appears in the forward equation and conversely.
In other words, on a filtered probability space (Ω, F , P, (Ft)) of an m-dimensional Brownian
motion and which satisfies the usual conditions, we define the FBSDE system as follow:

Xt,x
t = x+

∫ T
t b(Xt,x

s , Y t,x
s , Zt,xs )ds+

∫ T
t σ(Xt,x

s , Y t,x
s , Zt,xs )dBs,

Y t,x
t = Φ(Xt,x

T )−
∫ T
t g(Xt,x

s , Y t,x
s , Zt,xs )ds+

∫ T
t Zt,xs dBs,

(1.5)

where, the deterministic functions b, σ, g and Φ are defined by:

b : Rd ×Rp ×Rp×m 7−→ Rd, σ : Rd ×Rp ×Rp×m 7−→ Rd×m,

g : Rd ×Rp ×Rp×m 7−→ Rp, Φ : Rd 7−→ Rp.

The processes Xt,x, Y t,x, Zt,x are (Ft)-adapted square integrable processes.

• S2(t, T ;Rm) denote the set of Rm-valued, F-adapted, continuous processes (Xs, s ∈ [t, T ])

which satisfy E[ sup
t≤s≤T

|Xs|2] <∞.
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• H2(t, T ;Rm) is the set of Rm-valued, F-predictable processes (Zs, s ∈ [t, T ]) which satisfy
E[
∫ T
t |Zs|

2ds] <∞.

• M2(t, T ;Rm) denotes the set of all Rm-valued, square integrable càdlàg martingales
M = (Ms)s∈[t,T ] with respect to F, with Mt = 0.

• Kd,k,p×mt = S2(t, T ;Rd)× S2(t, T ;Rk)×H2(t, T ;Rp×m)

We have to mention that the solution of FBSDEs is not necessary defined on the Brownian
filtration. In fact we have :

Definition 1.1.2. A solution of FBSDE (1.5) is a process (Xt,x, Y t,x, Zt,x) ∈ Km,p,p×mt which
satisfies equation (1.5).

Existence and uniqueness of the solution of a FBSDE’s :
In the following, we suppose that the diffusion σ is independent of Z. The existence and
uniqueness of the solution has been proven in two cases :

Non-degenerate case: it means that the forward diffusion is non-degenerate.
Let consider the following assumptions which are a special case of Delarue’s result [23]:

There exist two constants K and λ > 0, such that the functions b, σ, g and Φ satisfy the

following assumptions:

(A1) The functions b, σ, g and Φ are bounded and satisfy for any (x, y, z) and (x′, y′, z′) ∈
Rd ×R×Rd :

|b(x, y, z)− b(x′, y′, z′)| ≤ K(|x− x′|+ |y − y′|+ |z − z′|);

|σ(x, y)− σ(x′, y′)|2 ≤ K2(|x− x′|2 + |y − y′|2);

|g(x, y, z)− g(x′, y′, z′)| ≤ K(|x− x′|+ |y − y′|+ |z − z′|);

|Φ(x)− Φ(x′)| ≤ K|x− x′|.

(A2) For every (t, x, y) ∈ [0, T ]×Rd ×R;

∀ζ ∈ Rd, 〈ζ, σ(t, x, y)ζ〉 ≥ λ|ζ|2.

Therefore, the equation (1.5) has a unique solution (Xt,x, Y t,x, Zt,x) in the space

S2(t, T ;Rd)× S2(t, T ;R)×H2(t, T ;Rd).
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Degenerate case: For a given 1×d matrix G (with GT be the transpose of G) and λ := (x, y, z),
we put

A(t, λ) :=



−GT g

Gb

Gσ


(t, λ),

we assume that there exists a 1× d full rank matrix G such that the following assumptions are
satisfied.

(H1)

1. A(t, λ) is uniformly Lipschitz in λ uniformly on t, and for any λ,

A(·, λ) ∈ H2(0, T ;Rd ×R×Rd).

2. Φ(x) is uniformly Lipschitz and for any x ∈ Rd, Φ(x) ∈ L2(Ω,FT , P ;R).

We denote by K the Lipschitz constant of A and Φ.

(H2)

1. 〈A(t, λ)−A(t, λ̂), λ− λ̂〉 ≤ −β1|Gx|2 − β2(|GT y|2 + |GT z|2).

2. 〈Φ(x)− Φ(x̂), G(x− x̂)〉 ≥ µ1|Gx|2, x = x− x̂, y = y − ŷ, z = z − ẑ,
where β1, β2, µ1 are strictly positive constants.

Theorem 1.2. [84] We suppose that the assumptions (H1-H2) hold. Then, there exists a
unique adapted solution (X,Y, Z) to the FBSDE (1.5).

The systems considered in this thesis are driven by the so called G-Brownian motion (see
section (1.3.4)), which is the canonical process of the "G-expectation" (capital G) in which it
plays a crucial role. In contrast, the G-Brownian motion do not have any relation with the so
called g-expectation (g lowercase) [77]. Therefore, for the clearness of the study and to make
difference between our framework "G-expectation" and g-expectation, we set the following
section.

1.2 g-Expectation

When the Allais paradox was brought to light in 1952, many economists wondered about the
possibility to find a new notion that generalize the linear mathematical expectation concept and
that conserve as much as possible it properties because the theory of "expected utility" based
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on the linear expectation is questionable. As response, in 1997, Peng [77] suggests a non-linear
expectation named g-expectation which is introduced via a non-linear BSDE (1.3) as follow:
Let consider the generator g : Rk ×Rk×d × [0, T ]→ Rk as a function satisfying :

H.1 For all (y, z) ∈ Rk ×Rk×d, g(y, z, t) is continuous in t and
∫ T

0 g2dt <∞;

H.2 There exists a constant L > 0, for all y1, y2 ∈ Rk, z1, z2 ∈ Rk×d

|g(y1, z1, t)− g(y2, z2, t)| ≤ L(|y1 − y2|+ ‖ z1 − z2 ‖),

i.e. g is uniformly Lipschitz continuous in (y, z).

H.3 g(y, 0, t) = 0, ∀(y, t) ∈ Rk × [0, T ].

Definition 1.2.1. Assume that g satisfies H.1, H.2 and H.3. Let the couple (Y,Z) be the
solution of the BSDE (1.2) and ξ ∈ L2(Ω,F ,P), we call the function Eg

Eg(ξ) = Y0, Y0 is the initial solution of the BSDE (1.2)

the "g-expectation" of ξ related to g.

Definition 1.2.2. For a random variable X ∈ L2(Ω,F ,P), we call the random variable η
satisfying

1. η is Ft-measurable;

2. Eg(1AX) = Eg(1Aη), for all A ∈ Ft

the conditional g-expectation of a process X under Ft which coincide with yt, the value of the
solution of BSDE (1.2) at the time t. We denote it by

Eg(X/Ft) = Yt.

Remark 1.2.1. The new function Eg(.) have many properties as the classical mathematical
expectation and as the g-expectation and the conditional g-expectation depend on the choice
of the function g (if g is nonlinear, then the g-expectation is usually also nonlinear), the two
functions Eg(.) and Eg(./Ft) do not preserve the linearity.

Proposition 1.2.1. [77] The conditional g-expectation have the following properties :

• preserving of constants: If c is a constant then Eg(c) = c;

• monotonicity : If ξ1 ≥ ξ2, then Eg(ξ1) ≥ Eg(ξ2);

• Eg (Eg(ξ/Ft)) = Eg(ξ);

• If ξ is Ft−mesurable then Eg(ξ/Ft) = ξ;
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• For the real function defined on Rk × Rk×d × [0, T ], if ξ is independent of Ft, then,
Eg(ξ/Ft) = Eg(ξ)

• If g is convex (resp. concave) in (y, z), then for any ξ, η ∈ L2(Ω,F ,P)

Eg(ξ + η) ≤ Eg(ξ) + Eg(η) (resp.Eg(ξ + η) ≥ Eg(ξ) + Eg(η)).

Since Peng ’s g-expectation can be defined only on BSDE framework, Peng obtains a nonlinear
generalization of the Kolmogorov ’s consistent theorem, then use it to define the filtration-
consistent nonlinear expectations via nonlinear Markov chains [78]. Since 2006, the G-
expectation been the preferable notion to deal with probability models under uncertainty
problems.

1.3 G-Expectation

This theory is a non-axiomatically generalization of the concept of g-expectation and it is not
based on the classical probability space given a priori as it is mentioned in [80] i.e. our space
will be equipped with nonlinear(sub-linear) expectation which is, in fact, at an equivalent place
as the probability measure itself.

Let start this section by presenting the following spaces notations that I use in whole of my
thesis:

1.3.1 Notations

Cb.lip(Rd) is the space of bounded and Lipschitz continuous functions on Rd;

Cl.lip(Rd) is the Linear space of functions satisfying locally Lipschitz condition on Rd

Lip(ΩT ) :=
{
ϕ(Bt1 , . . . , Btn) : n ≥ 1, t1, . . . , tn ∈ [0, T ], ϕ ∈ Cb.lip(Rd×n)

}
;

LpG(ΩT ) is the completion of Lip(ΩT ) under the norm ‖ η ‖p,G=
{
Ê (|η|p)

} 1
p

;

M 0
G(0, T ) :=

{
ηt =

N−1∑
i=0

ξi1{ti,ti+1} : 0 = t0 < . . . < tN = T, ξ ∈ Lip(Ωti)

}
;

M p,0
G (0, T ) :=

{
ηt =

N−1∑
i=0

ξi1{ti,ti+1} : 0 = t0 < . . . < tN = T, ξi ∈ LpG(Ωti)

}
;

M̄ p
G(0, T ) is the completion of M p,0

G (0, T ) under the norm ‖ η ‖M̄
p
G

=
{∫ T

0 Ê (|ηs|pds)
} 1
p

;

M p
G(0, T ) is the completion of M 0

G(0, T ) under the norm ‖ η ‖M
p
G

=
{
Ê
(∫ T

0 |ηs|
pds
)} 1

p
;
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H p
G(0, T ) := the completion of M 0

G(0, T ) under the norm ‖ η ‖Hp=

{
Ê

[(∫ T

0
|ηs|2ds

) p
2

]} 1
p

;

S0
G(0, T ) :=

{
h(Bt1∧t, . . . , Btn∧t) : t1, . . . , tn ∈ [0, T ], h ∈ Cb.lip(Rn+1)

}
;

SpG(0, T ) is the completion of S0
G(0, T ) under the norm ‖ η ‖Sp

G
=

{
Ê

(
sup
s∈[0,T ]

|ηs|p
)} 1

p

;

LpG(ΩT ) is the space of decreasing G-martingales with K0 = 0 and KT ∈ LpG(ΩT );

Sp
G(0, T ) is the collection of processes (Y, Z,K) such that Y ∈ SpG(0, T ), Z ∈ Hp

G(0, T ), K is a
decreasing G-martingale with K0 = 0 and KT ∈ LpG(ΩT );

Hq,α
G,T := M̄ q

G([0, T ])×Sα
G(0, T ).

1.3.2 Sub-linear expectation

Let Ω be a given set and let H be a linear space of real valued functions defined on Ω. We
suppose that H satisfies the following two conditions

1. c ∈ H for each constant c;

2. |X| ∈ H if X ∈ H.

In the following, we will use the space H as the space of random variables.

Definition 1.3.1. A nonlinear expectation is a functional Ē : H → R satisfying:

i) Monotonicity: For X,Y ∈ H Ē(X) ≤ Ē(Y ) if X ≤ Y.

ii) Preservation of constants: Ē(c) = c for c ∈ R.

The triplet (Ω,H, Ē) is called a nonlinear expectation space.
Furthermore, if the following properties are satisfied we call Ē a Sub-linear expectation and
the triplet (Ω,H, Ē) is called a sub-linear expectation space.

iii) Subadditivity (or the self-dominated property): ∀X,Y ∈ H,

Ē(X + Y ) ≤ Ē(X) + Ē(Y ).

iv) Positive homogeneity: ∀λ ≥ 0, X ∈ H, Ē(λX) = λĒ(X).

It is clear that the preservation of constants with the Subadditivity implies:

v) Translation by constants:
Ē(X + c) = Ē(X) + c.
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Remark 1.3.1. • An equivalent form to the condition (iv) is given by

Ē(λX) = λ+Ē(X) + λ−Ē(−X),

where
λ+ = max{λ, 0}, and λ− = max{−λ, 0}.

• The sub-linear expectation is called also the upper expectation or the upper prevision.

• Systematically, the above notion of sub-linear expectation was introduced by Artzner,
Delbaen, Eber and Heath [3], [4], in the case where Ω is finite set. For the general
situation with the notation of risk measure, the sub-linear expectation has been introduced
by Delbaen [24]. For earlier study of this notion, see [52].

• In 2005− 2006, following Daniell’s integration [22], the notion of nonlinear expectation
was introduced in [78] and [80].

Now, let move on to define the G-Normal distribution introduced on the sub-linear expectation.

1.3.3 G-Normal distribution

It is well known that the fundamental important distribution in the classical probability space
is the Normal distribution. Since Bachelier 1900 and Einstein 1950, the standard normal
distribution of a random variable X ∼ N(0, 1) under expectation coincides with the solution of
a heat equation in (0, 1). With the same way, we define the fundamental crucial notion "the
G-Normal distribution" in the sub-linear expectation space, but let introduce some important
notions related with the distribution of random variables which is less probabilistic but rather
functional on sub-linear expectation space.

Definition 1.3.2. Let X = (X1, . . . , Xn) be a given n-dimensional random vector on a nonlinear
expectation (Ω,H, Ē). On Cl.lip(Rn), we define the functional FX which is the distribution of
X under Ē by

FX(φ) := Ē(φ(X)) : φ ∈ Cl.lip(Rn) 7→ R.

The triplet (Rn, Cl.lip(R
n,FX) forms a nonlinear expectation space.

For the case of the sub-linear expectation Ē, the functional FX is also a sub-linear expectation
and it is very useful notion in this case.

Remark 1.3.2. (Theorem1.2.2 [82]) FX characterizes the uncertainty of the distributions of X.
In fact, it can be proved that there exists a family of probability measures {FX(θ, .)}θ∈Θ defined
on (Rn,B(Rn)) such that

FX(φ) = sup
θ∈Θ

∫
Rn
φ(x)FX(θ, dx), for each φ ∈ Cl.lip.
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Definition 1.3.3. Let X1 and X2 be two n-dimensional random vectors defined on nonlinear
expectation spaces (Ω1,H1, Ē1) and (Ω2,H2, Ē2) respectively. They are called identically
distributed if

Ē1(φ(X1)) = Ē2(φ(X2)), for allφ ∈ Cb.lip(Rn),

and we denote X1
d
= X2. We say that the distribution of X1 is stronger than that of X2 if

Ē1(φ(X1)) ≥ Ē2(φ(X2)), ∀φ ∈ Cb.lip(Rn).

The distribution of X ∈ H has the following four typical parameters:

µ̄ := Ē(X); l̄2 := Ē(X2);

µ := −Ē(−X); l2 := −Ē(−X2).

The identically distributed property can also be characterized by the following:

Proposition 1.3.1. [82] Suppose that X1
d
= X2. Then

Ē1(φ(X1)) = Ē2(φ(X2)) for allφ ∈ Cl.lip(Rn).

Moreover, X1
d
= X2 if their distributions coincide.

It is well known that the following notion of independence is one of the most important notions
which plays a crucial role in the theory of non-linear expectation.

Definition 1.3.4. In a sub-linear expectation space (Ω,H, Ē), a random vector Y = (Y1, . . . , Yn), Yi ∈
H is said to be independent to another random vector X = (X1, . . . , Xn), Xi ∈ H under Ē(.), if
for each test function φ ∈ Cl.lip(Rm ×Rn), we have

Ē[φ(X,Y )] = Ē(Ē(φ(x, Y ))x=X).

It means that the uncertainty of distributions of Y does not change after the realization of
X = x i.e. Ē[φ(x,X)]X=x is the conditional sub-linear expectation of Y with respect to X.

Remark 1.3.3. Under sub-linear expectations if "X is independent from Y " it does not imply
automatically that "Y is independent from X".

The G-normal distribution is introduced as follow :

Definition 1.3.5. A random variable X ∈ Lip(ΩT ) is G-normal distributed with parameters
(0, [l2, l̄2]), i.e. X ∼ N(0, [l2, l̄2]) if for each φ ∈ Cb.Lip(R), u(t, x) := Ē(φ(x +

√
tX)) is a

viscosity solution (Section (1.3.7)) to the following nonlinear partial differential equation on
R+ ×R: ∂tu−G(∂2

xxu) = 0,

u(t0, x) = φ(x),
(1.6)

where G is called the generating function of (1.6) is given by the following sub-linear real
function G(a) := 1

2(a+ l̄2 − a−l2), a ∈ R. The PDE (1.6) is called G-heat equation.
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Proposition 1.3.2. [79] Let X be an N(0, [l2, l̄2])-distributed random variable. For each
φ ∈ Cl.Lip(R), we define a function

u(t, x) := Ē(φ(x+
√
tX)), (t, x) ∈ [0,∞)×R.

Then we have
u(t+ s, x) = Ē(u(t, x+

√
sX)), s ≥ 0,

we also have the estimates: For each T > 0 there exist constants c, k > 0 such that, for all
t, s ∈ [0, T ] and x, y ∈ R,

|u(t, x)− u(t, y)| ≤ C(1 + |x|k + |y|k)|x− y|, (1.7)

and
|u(t, x)− u(t+ s, x)| ≤ C(1 + |x|k)|s| 12 . (1.8)

Moreover, u is the unique viscosity solution (see Section (1.3.7)) continuous in the sense of (1.7)
and (1.8) of the generating PDE (1.6).

It is shown that the unique sub-linear distribution defined on (R, Cl.Lip(R)) is the G-normal
distribution N(0, [l2, l̄2])(see [79]).
Noting that a random variable withN(0, [l2, l̄2]) has no mean uncertainty. The following corollary
shows that the classical normal distribution is a special case of the G-normal distribution.

Corollary 1.3.3.1. [79] In the case where l2 = l̄2 > 0, N(0, [l2, l̄2]) is just the classical normal
distribution N(0, l̄2).

The calculation of Ē(φ(X)) is very easy in two interesting situations: When φ is a concave
function then Ē(φ(X)) coincide with

PGt =
1√
2πl2

∫ ∞
−∞

φ(x) exp(− x
2

2l2
)dx.

In case where φ is convex function, we replace l2 by l̄2 i.e. the value of Ē(φ(X)) becomes

PGt =
1√
2πl̄2

∫ ∞
−∞

φ(x) exp(− x
2

2l̄2
)dx.

Multidimensional G-normal distribution

For a given positive integer n, (x, y) denotes the scalar product of x, y ∈ Rn, and |x| = (x, x)2

denotes the Euclidian norm of x. The space of all bounded and Lipschitz real functions on Rn

is denoted lip(Rn).
Let Rd be considered as Ω and lip(Rd) as H. The G-normal distribution is a sub-linear
expectation (moreover, a nonlinear expectation) defined on lip(Rd) as follow:

PG1 (Φ) = u(1, 0) : Φ ∈ lip(Rd) 7→ R,
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where the [0,∞) × Rd-bounded continuous function u is the viscosity solution (see Section
(1.3.7)) of the following sub-linear(moreover, nonlinear) partial differential equation:∂tu−G(D2u) = 0,

u(0, x) = Φ(x), (t, x) ∈ [0,∞)×Rd,
(1.9)

where D2u = (∂2
xixj

u)di,j=1 i.e. it is the Hessian matrix of u and

G(A) = GΓ(A) =
1

2
sup
γ∈Γ

tr[γγTA], A = (Aij)
d
i,j=1 ∈ Sd.

Sd is the space of d×d symmetric matrices. Γ denotes the given non-empty, bounded and closed
subset of Rd×d, the space of all d× d matrices.

Remark 1.3.4. If Γ is a singleton {γ0}, the above G-PDE becomes a standard linear PDE.
Thus the corresponding G-distribution is the d-dimensional classical normal distribution
with parameters (0, γ0γ

T
0 ).

The sub-linear PDE (1.9) is a special kind of Hamilton-Jacobi-Bellman equation.

In
the following section, crucial notions in the G-expectation theory will be introduced that are
the (one-dimensional, multidimensional) G-Brownian motion and its properties as well as the
G-expectation Ê.

1.3.4 G-Brownian motion, G-expectation

Let start with the definition of the stochastic process on sub-linear expectation space :

Definition 1.3.6. Let (Ω,H, Ê) be a sub-linear expectation space. (Xt)t≥0 is called a d-
dimensional stochastic process if for each t ≥ 0, Xt is a d-dimensional random vector in
H.

In the following, we are interested to the case where the G-Brownian motion is symmetric
that its properties are very important for the stochastic analysis of the G-Brownian motion.

Definition 1.3.7. A d-dimensional stochastic process (Bt)t≥0 on a sub-linear expectation space
(Ω,H, Ê) is called G-Brownian motion if the following properties are satisfied:

1. B0(ω) = 0;

2. For each t, s ≥ 0, Bt+s−Bt and Bs are identically distributed and Bt+s−Bt is independent
from (Bt1 , . . . , Btn), for each n ∈ N and 0 ≤ tt ≤ . . . ≤ tn ≤ t;

3. lim
t↓0
Ê(|Bt|3)t−1 = 0.
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Moreover, if Ê(Bt) = Ê(−Bt) = 0, then (Bt)t≥0 is called a symmetric G-Brownian motion.

A characterization of the symmetric G-Brownian motion is given in the following theorem:

Theorem 1.3. [82] Let (Bt)t≥0 be a given Rd-valued symmetric G-Brownian motion on a
sub-linear expectation space (Ω,H, Ê). Then, for each fixed φ ∈ Cb.Lip(Rd), the function

u(t, x) := Ê(φ(x+Bt)), (t, x) ∈ [0,∞)×Rd, (1.10)

is the viscosity solution of the following parabolic PDE:

∂tu−G(D2u) = 0, u|t=0 = φ, (1.11)

where
G(A) =

1

2
Ê(〈AB1, B1〉), A ∈ Sd. (1.12)

In particular, B1 is G-normally distributed and Bt
d
=
√
tB1.

It is important to note that if the mean uncertainty and variance uncertainty of the symmetric
G-Brownian motion vanish i.e. if

Ê(B1) = −Ê(−B1), and Ê(B2
1) = −Ê(−B2

1),

then it becomes the classical Brownian motion.
The following proposition is very important in stochastic calculus. Ba

t denotes 〈a,Bt〉, for each
a = (a1, . . . , ad)

T ∈ Rd.

Proposition 1.3.3. [82] Let (Bt)t≥0 be a d-dimensional G-Brownian motion on a sub-linear
expectation space (Ω,H, Ê). Then (Ba

t )t≥0 is a one-dimensional Ga-Brownian motion for each
a ∈ Rd, where Ga(α) = 1

2(l2
aaT

α+ − l2−aaTα
−),

l2aaT = 2G(aaT ) = Ê(〈a,B1〉2), l2−aaT = 2G(−aaT ) = −Ê(−〈a,B1〉2).

In particular, for each t, s ≥ 0, Ba
t+s −Ba

t
d
= N({0} × [sl2−aaT , sl

2
aaT

]).

Proposition 1.3.4. [82] For each convex function φ ∈ Cl.Lip(R), we have:

Ê(φ(Ba
t+s −Ba

t )) =
1√

2πsl2
aaT

∫ ∞
−∞

φ(x) exp(− x2

2sl2
aaT

)dx.

For each concave function φ ∈ Cl.Lip(R) and l−aaT > 0, we have:

Ê(φ(Ba
t+s −Ba

t )) =
1√

2πsl2−aaT

∫ ∞
−∞

φ(x) exp(− x2

2sl2−aaT
)dx.

In particular, we have the following relations:

Ê((Ba
t −Ba

s )2) = l2
aaT

(t− s), Ê((Ba
t −Ba

s )4) = 3l4
aaT

(t− s)2,

Ê(−(Ba
t −Ba

s )2) = −l2−aaT (t− s), Ê(−(Ba
t −Ba

s )4) = −3l4−aaT (t− s)2.
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G-Expectation

Let ΩT := {ω.∧T :ω∈Ω} and let Bt(ω) = ωt, t ∈ [0,∞) for each ω ∈ Ω, where Ω = Cd0 (R+) denotes
the space of all Rd-valued continuous path (ωt)tR+ , with ω0 = 0, equipped with the distance

ρ(ω1, ω2) :=

∞∑
i=1

2i[(max
t∈[0,i]

|ω1
t − ω2

t |) ∧ 1].

For each T ∈ [0,∞), we put

Lip(ΩT ) = {φ(Bt1∧T , . . . , Btn∧T ) : n ∈ N, t1, . . . , tn ∈ [0,∞), φ ∈ Cl.Lip(Rd×n)}.

It is clear that for t ≤ T, Lip(Ωt) ⊆ Lip(ΩT ). We also have

Lip(Ω) =

∞⋃
n=1

Lip(Ωn).

Let G(.) : Sd 7→ R be a given monotone and sub-linear function.

Definition 1.3.8. The sub-linear expectation Ê(.) : Lip(Ω) 7→ R defined through the following
procedure is called a G-expectation. And the corresponding canonical process (Bt)t≥0 on the
sub-linear expectation space (Ω, Lip(Ω), Ê) is called a G-Brownian motion.

Let (Ω̃, H̃, Ẽ) be a sub-linear expectation space. On this space, we construct a sequence of d-
dimensional random vectors (ξi)

∞
i=1 such that ξi is G-normal distributed and ξi+1 is independent

from (ξ1, . . . , ξi) for each i = 1, 2, . . ..
Now, for each X ∈ Lip such that

X = φ(Bt1 −Bt0 , Bt2 −Btt , . . . , Btn −Btn−1),

and for some φ ∈ Cl.Lip(Rd×n) and 0 = t0 < t1 < . . . < tn <∞, we set

Ê(X) := Ẽ(φ(
√
t1 − t0ξ1, . . . ,

√
tn − tn−1ξn)).

The related conditional expectation of X = φ(Bt1 , Bt2 − Btt , . . . , Btn − Btn−1) under Ωtj is
defined by:

Ê(X/Ωtj ) = Ê(φ(Bt1 , Bt2 −Btt , . . . , Btn −Btn−1)/Ωtj ) (1.13)

:= ψ(Bt1 , Bt2 −Btt , . . . , Btj −Btj−1),

where
ψ(x1, . . . , xj) = Ẽ(φ(x1, . . . , xj ,

√
tj+1 − tjξj+1, . . . ,

√
tn − tn−1ξn)).

It is easy to check that Ê consistently defines a sub-linear expectation on Lip(Ω) and the
corresponding canonical process (Bt)t≥0 is a G-Brownian motion. Since Lip(ΩT ) ⊆ Lip(Ω), then
Ê is also sub-linear expectation on Lip(ΩT ).
For each X,Y ∈ Lip(Ω), Ê(./Ωt) has the following properties:



1.3.4 G-Brownian motion, G-expectation 21

Proposition 1.3.5. [80]

1. If X ≥ Y , then Ê(X/Ωt) ≥ Ê(Y/Ωt);

2. Ê(η/Ωt) = η, for each t ∈ [0,∞) and η ∈ Lip(Ωt);

3. Ê(X/Ωt)− Ê(Y/Ωt) ≤ Ê(X − Y/Ωt);

4. Ê(ηX/Ωt) = η+Ê(X/Ωt) + η−Ê(−X/Ωt) for each η ∈ Lip(Ωt).

5. Ê(Ê(Y/Ωt)/Ωs) = Ê(Y/Ωt∧s), In particular Ê(Ê(Y/Ωt)) = Ê(Y ),

for each X ∈ Lip(Ωt), Ê(X/Ωt) = Ê(X), where Lip(Ωt) is the linear space of random variables
with the form

φ(Bt2 −Bt1 , Bt3 −Bt2 , . . . , Btn+1 −Btn), n = 1, 2, . . . , φ ∈ Cl.Lip(Rd×d), t1, . . . , tn+1 ∈ [t,∞).

Remark 1.3.5. Properties (2) and (3) imply

Ê(X + η/Ωt) = Ê(X/Ωt) = η + η, for each η ∈ Lip(Ωt).

Now, let consider the completion of (Ω,H, Ê).
For p ≥ 0, we denote by

LpG(Ω) := {the completion of the spaceLip(Ω) under the norm ‖ X ‖p:= (Ê(|X|p))
1
p }.

Similarly, It is clear that for each 0 ≤ t ≤ T <∞,

LpG(Ωt) ⊆ LpG(ΩT ) ⊆ LpG(Ω).

Due to Section 1.4 in Chapter 1 in [82], Ê can be continuously extended to a sub-linear expecta-
tion on (Ω, L1

G(Ω)) and still denoted by Ê. For each fixed t ≤ T , the conditional G-expectation
Ê(./Ωt) : Lip(ΩT ) 7→ Lip(Ωt) is a continuous mapping under ‖ . ‖.

Similar to the classical situation, the independence of a random vectors is defined as follow:

Definition 1.3.9. An n-dimensional random vector Y ∈ (L1
G(Ω))n is said to be independent

from Ωt for some given t if for each φ ∈ Cb.Lip(Rn), we have

Ê(φ(Y )/Ωt) = Ê(φ(Y )).

Remark 1.3.6. Just as in the classical situation, the increments of G-Brownian motion
(Bt+s −Bt)s≥0 are independent from Ωt, for each t ≥ 0. For example: For each 0 ≤ s ≤ t and
for each fixed a ∈ Rd, we have

Ê(Ba
s −Ba

t /Ωt) = 0, Ê(−(Ba
s −Ba

t )/Ωt) = 0,

Ê((Ba
s −Ba

t )2/Ωt) = l2
aaT

(t− s), Ê((Ba
s −Ba

t )2/Ωt) = −l2−aaT (t− s),

where l2
aaT

= 2G(aaT ) and l2−aaT = −2G(−aaT ).
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The following proposition is a very useful property:

Proposition 1.3.6. [82] Let X,Y ∈ L1
G(Ω) be such that Ê(Y/Ωt) = −Ê(−Y/Ωt), for some

t ∈ [0, T ]. Then we have

Ê(X + Y/Ωt) = Ê(X/Ωt) + Ê(Y/Ωt).

In particular, if Ê(Y/Ωt) = Ê(−Y/Ωt) = 0, then Ê(X + Y/Ωt) = Ê(X/Ωt).

Recall that the almost surely property plays a crucial tool in stochastic calculus theory. In
the G-stochastic analysis and because of the particularity of the space, we use the quasi-surely
property in its place.

Theorem 1.4. [25] LetM(ΩT ) be a set of probability measures on (ΩT ,FT ) Then there exists
a weakly compact subset P ⊂M(ΩT ), such that

Ê(ξ) = sup
P∈P

EP (ξ) ,∀ξ ∈ L1
G(ΩT ) (1.14)

P is the set that represents Ê

The G-associated capacity is defined as follow:

c(A) = sup
P∈P

P(A), A ∈ FT .

Definition 1.3.10. If c(A) = 0, the set A is named polar set i.e. P(A) = 0 for any P ∈ P.
And a property holds "quasi-surely" (q.s.) if it holds outside a polar set.

Let take an overview on the quadratic variation that was established by Peng [78].

Quadratic variation

The G-Brownian motion is characterized by its quadratic variation process 〈B〉t which is
not deterministic except if l = l̄, i.e. when (Bt)t≥0 coincides with the classical Brownian motion.
This interesting process is defined as follow:

〈B〉t = lim
µ(πNt )→0

N−1∑
j=0

(BtNj+1
−BtNj

)2 = (Bt)
2 − 2

∫ t

0
BsdBs,

where πNt = {t0, . . . , tN} such that 0 = t0 ≤ . . . , TN is a partition of [0, T ] and µ(πNt ) :=

max
0≤i≤N

|tNi − tNi−1|, i.e., µ(πNt ) is a partition of [0, T ] with lim
N→∞

µ(πNt ) = 0. By construction, 〈B〉t
is an increasing process with 〈B〉0 = 0.

Lemma 1.3.1. [82] For each fixed s, t ≥ 0, 〈B〉s+t − 〈B〉s is identically distributed with 〈B〉t
and is independent from Ωs for any s ≥ 0.
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Let a = (a1, . . . , ad)
T and ā = (ā1, . . . , ād)

T be a given vectors in Rd. We have the quadratic
variation processes for the G-Brownian motion 〈Ba〉 and 〈Bā〉. Then we can define the mutual
variation processes as follow

〈Ba, Bā〉t :=
1

4

[
〈Ba +Bā〉t − 〈Ba −Bā〉t

]
=

1

4

[
〈Ba+ā〉t − 〈Ba−ā〉t

]
In particular we have

〈Ba, Ba〉t = 〈Ba〉t

The Itô integrals with respect to the G-Brownian, the quadratic variation of the G-Brownian
and the mutual variation for the G-Brownian are well defined see [82].

G-Martingale

Definition 1.3.11. For each t ∈ [0,∞) and for each s ∈ [0, t], we called a processMt ∈ Lip0(Ω), t ≥ 0:
G-martingale if

Ê(Mt/Hs) = Ms;

G-super-martingale(respectively, G-sub-martingale) if

Ê(Mt/Hs) ≤Ms(respectively, Ê(Mt/Hs) ≥Ms);

The G-Brownian motions (Bt)t≥0 and (−Bt)t≥0 are G-martingales.

Remark 1.3.7. If M is a G-martingale, then −M is not G-martingale in general.

BDG’s inequalities

The following BDG’s type inequalities (Theorems 2.1 and 2.2 in [40]) are very useful tool in the
structure of the proofs in this thesis:

Lemma 1.3.2. [40] Let p ≥ 1, η ∈Mp
G([0, T ]) and 0 ≤ s ≤ t ≤ T . Then

Ê

(
sup
s≤u≤t

∣∣∣∣∫ u

s
ηrd〈B〉r

∣∣∣∣p) ≤ ( l + l̄

4

)p
(t− s)p−1Ê

(∫ t

s
|ηu|pdu

)
. (1.15)

Lemma 1.3.3. [40] Let p ≥ 2, η ∈Mp
G([0, T ]) and 0 ≤ s ≤ t ≤ T . Then,

Ê

(
sup
s≤u≤t

∣∣∣∣∫ u

s
ηrdB

∣∣∣∣p) ≤ Cp l̄ p2 |t− s| p2−1Ê

(∫ t

s
|ηu|pdu

)
, (1.16)

where 0 < Cp <∞ is a constant.
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1.3.5 G-Stochastic differential equations

A G-Stochastic differential equation has the following form:

Xt = X0 +

∫ t

0
b(s,Xs)ds+

∫ t

0
hij(s,Xs)d〈B〉ijs +

∫ t

0
σj(s,Xs)dB

j
s , t ∈ [0, T ], (1.17)

where the initial condition X0 ∈ Rn is a given constant, B and 〈B〉 are the G-Brownian motion
and its quadratic variation respectively and the functions b, hij , σ : Rn 7→ Rn satisfying the
following assumption:

(H) There exist some constant k such that |φ(t, x)− φ(t, y)| ≤ k|x− y|, for each t ∈ [0, T ],

x, y ∈ Rn, with φ = b, hij , σj .

Theorem 1.5. [81] There exists a unique solution (Xt)0≤t≤T ∈ M̄ 2
G([0, T ],Rn) to the stochastic

differential equation (1.17).

The existence and uniqueness of the solution of the G-SDE (1.17) under Lipschitz condition
was first established in 2007 by Peng [79, 80, 81] by using the contracting mapping theorem.
Then, in 2009 by Gao [40] also by supposing the Lipschitz condition. Then again, under integral-
Lipschitz condition, Bai and Lin [85] studied its solvability. Since then, many developments
generate this kind of G-SDE, for more details we refer to [87, 69, 64, 65, 88]. Also Faizullah has
studied this kind of G-SDE under different conditions on coefficients [35, 34] and [33] in which
the G-SDE (1.17) is studied under discontinuous coefficients. Furthermore, under measurable
coefficients, it results:

Theorem 1.6. [33] Suppose that

1. The functions b(t, x) and h are measurable with
∫ t

0
Ē(|Φ(s, .)|2)ds <∞ for Φ = b and h

respectively, where σ is Lipschitz continuous in x.

2. The respective upper and lower solutions Ut and Lt of the G-SDE (1.17)

Ē(|Ut|2) <∞, Ē(|Lt|2) <∞

satisfy Lt ≤ Ut for all t ∈ [0, T ].

3. Also, X0 ∈ Rn is a given initial value with Ē(|X0|2) <∞ and L0 ≤ X0 ≤ U0.

Then, there exists a unique solution Xt for the G-SDE (1.17) such that Lt ≤ Xt ≤ Ut, for all
t ∈ [0, T ] q.s.
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1.3.6 G-Backward stochastic differential equation

Thanks to the complete representation theorem of G-martingale obtained by Peng, Song and
Zhang [83], a naturel formulation of a Backward stochastic differential equation driven by G-
Brownian motion has been founded by Hu et al. [46]. A BSDE driven by G-Brownian(G-BSDE)
is defined as follow:

Yt = ξ+

∫ T

t
f(s,Xs, Ys, Zs,Ms)ds+

∫ T

t
g(s,Xs, Ys, Zs)d〈B〉s−

∫ T

t
ZsdBs−

∫ T

t
dMs, (1.18)

where the solution of the above equation consists of a triplet (X,Y, Z). And X,Y, Z are a square
integrable adapted processes and M is a decreasing G-martingale.
The following theorem shows the existence and uniqueness of the solution for (1.18):

Theorem 1.7. [46] Assume that ξ ∈ LβG(ΩT ) and f, g satisfy:

(C1) There exists some β > 1 such thatf(., ω, Y, Z), g for any Y ∈ SpG(0, T ), Z ∈ Hp
G(0, T ),

f, g ∈Mβ
G(0, T )

(C2) |φ(., ω, Y, Z)− φ(., ω, Y ′, Z ′)| ≤ L(|Y − Y ′|+ |Z − Z ′|) for someL > 0,

then, the equation (1.18) has a unique solution (X,Y, Z).

Remark 1.3.8. The result obtained in Theorem (1.7) still hold for the case d > 1.

Note that, many development and research have been done in this frame work among them
the study of the wellposedness of multi-dimensional backward stochastic differential equations
driven by G-Brownian motion [68] and the existence and uniqueness of solutions to a class of
non-Lipschitz scalar-valued G-BSDE [95] and also G-BSDE with discontinuous drift coefficients
[36] as well as under quadratic assumptions on coefficients (see [50]).
For a complete theory of G-BSDE, comparison theorem, Feynman-Kac formula and Girsanov

transformation for the G-BSDE see [47]. In the next section, we are interested by Feynman-Kac
formula because of its important role in linking the BSDE’s theory and the PDE’s theory. First,
let define the viscosity solution.

1.3.7 Viscosity solution

Let consider the following parabolic PDE:∂tu+G(t, x, u,Du,D2u) = 0, on (0, T )×Rd,

V (0, x) = Φ(x), x ∈ Rd,
(1.19)

where G : [0, T ] × Rd × R × Rd × Sd 7→ R, Φ ∈ C(Rd). Assuming that the function G is
continuous and satisfies the degenerate elliptic condition i.e.,

G(t, x, r, p,X) ≥ G(t, x, r, p, Y ) when X ≥ Y.

Now, let T > 0 be fixed and let I ⊂ [0, T ]×Rd. We set
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LSC(I)={lower semi-continuous functions u : I 7→ R}

USC(I)={upper semi-continuous functions u : I 7→ R}.

The viscosity solution is one of the important results in the theory of partial differential equation.
It was introduced for the first-order Hamilton-Jacobi-Belman equation by Crandall and Lions
[66] while the argument for the second-order HJB was founded by Lions [67]. Now, we give the
definition of the viscosity solution

Definition 1.3.12. (i) A viscosity sub-solution of (1.19), or G-sub-solution, on (0, T )×Rd is
a function u ∈ USC((0, T )×Rd) such that for all (t, x) ∈ (0, T )×Rd,Φ ∈ C2((0, T )×Rd)
such that u(t, x) = Φ(t, x) and u < Φ on (0, T ) ∈ Rd \ (t, x), we have

∂tΦ(t, x)−G(t, x,Φ(t, x), DΦ(t, x), D2Φ(t, x)) ≤ 0.

(ii) A viscosity super-solution of (1.19), or G-super-solution, on (0, T ) × Rd is a function
u ∈ LSC((0, T )×Rd) such that for all (t, x) ∈ (0, T )×Rd,Φ ∈ C2((0, T )×Rd) such that
u(t, x) = Φ(t, x) and u > Φ on (0, T ) ∈ Rd \ (t, x), we have

∂tΦ(t, x)−G(t, x,Φ(t, x), DΦ(t, x), D2Φ(t, x)) ≥ 0.

A viscosity solution of (1.19) on (0, T )×Rd is a function which is simultaneously a viscosity
sub-solution and viscosity super-solution of (1.19) on (0, T )×Rd.

1.3.8 Feynman-Kac formula

Let define the Feynman-Kac formula

Theorem 1.8. [47] Let u(t, x) := Y t,x
t for (t, x) ∈ [0, T ] × Rn. Then u(t, x) is the unique

viscosity solution of the following PDE:∂tu(t, x) +H(D2
xxu,Dxu, u, x, t) = 0

u(T, x) = Φ(x),
(1.20)

where,

H(D2
xxu,Dxu, u, x, t) = G(F (D2

xxu,Dxu, u, x, t)) + 〈b(t, x, u), Dxu〉;

+f(t, x, u, 〈σ1(t, x), Dxu〉, . . . 〈σd(t, x), Dxu〉),

(1.21)

with

Fij(D
2
xxu,Dxu, u, x, t) = 〈D2

xxuσi(t, x), σj(t, x)〉+ 2〈Dxu, hij(t, x)〉

+2gij(t, x, 〈σ1(t, x), DxV 〉 . . . 〈σd(t, x), DxV 〉).

(1.22)



Chapter 2

G-Forward-Backward Stochastic
Differential Equations

This chapter is devised into two sections; first, we briefly recall the result of Wang et al.
[94] in which only the existence of the solution has been proved under monotone coefficients
condition. Then in the second section, we prove that there exists a unique solution to the
coupled G-FBSDE system by constructing a mapping for which the fixed point is the solution
of the G-FBSDE, without requiring the monotonicity condition to prove the existence. It is
important to mention that there are no results in this context except the following results.

2.1 Existence of solution

Let consider the following system

dXs = b(s,Xs, Ys)ds+ σ(s,Xs)dBs + h(s,Xs, Ys)d〈B〉s,

dYs = −f(s,Xs, Ys, Zs)ds− g(s,Xs, Ys, Zs)d〈B〉s + ZsdBs + dMs,

Xt = x YT = ξ = Φ(XT ) , Mt = 0, , s ∈ [t, T ],

(2.1)

where 〈B〉 denotes the quadratic variation of the 1-dimensional G-Brownian motion B = (Bs)s≥0,
(X,Y, Z,M) denotes the solution of our G-FBSDE where M is a decreasing G-martingale.
X ∈ M 2

G([0, T ])and (Y, Z,M) ∈ S2
G(0, T ).

Let consider the following assumption: For all t ∈ [0, T ], β > 2, x, x′, y, y′, z, z′ ∈ R

A.1 ξ ∈ LβG(ΩT ), f(., x, y, z, u), g(., x, y, z) ∈ M̄ β
G(0, T ), b(., x, y, u), h(., x, y) ∈ M̄ 2

G(0, T ) and
σ(., x) ∈ M̄ β

G(0, T ).
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A.2 b(., x, y, u), h(., x, y, u) are increasing in y and f(., x, y, z, u), g(., x, y, z, u) are increasing in
x.

A.3 There exists a constant k > 0 such that

|σ(s, x)− σ(s, x′)| ≤ k|x− x′|,

|b(s, x, y, u)− b(s, x′, y′, u)| ∨ |h(s, x, y, u)− h(s, x′, y′, u)| ≤ k(|x− x′|+ |y − y′|),

|f(s, x, y, z, u)−f(s, x′, y′, z′, u)|∨|g(s, x, y, z)−g(s, x′, y′, z′)| ≤ k(|x−x′|+|y−y′|+|z−z′|).

A.4 There exists a constant L > 0 such that

|σ(s, x)| ≤ L(1 + |x|),

|b(s, x, y, u)| ∨ |h(s, x, y, u)| ≤ L(1 + |x|+ |y|),

|f(s, x, y, z, u)| ∨ |g(s, x, y, z)| ≤ L(1 + |x|+ |y|+ |z|).

The following theorem shows the existence of solution for G-FBSDE (2.1)

Theorem 2.1. [94] If (A1)-(A4) hold, then there exists a solution (X,Y, Z,M) of equation
(2.1) Besides, this solution is the minimal one, in the sense that if (X̃, Ỹ , Z̃, M̃) is another
solution of (2.1), then for any t ∈ [0, T ] we have

Xt ≤ X̃t, Yt ≤ Ỹt, q.s.

Now, we sketch the proof of this theorem just to have an idea about the technique used to
argued Theorem (2.1).
Sketch of the proof:
The aim is to show that the solution of the equation (2.1) coincide with the limit of the sequence
{(Xn, Y n, Zn,Mn)}n∈N which is the solution of the following constructed iteration:
Xn
t = x+

∫ t

0
b(s,Xn

s , Y
n
s )ds+

∫ t

0
σ(s,Xn

s )dBs +

∫ t

0
h(s,Xn

s , Y
n
s )d〈B〉s,

Y n
t = ξ +

∫ T

t
f(s,Xn−1

s , Y n
s , Z

n
s )ds+

∫ T

t
g(s,Xn−1

s , Y n
s , Z

n
s )d〈B〉s −

∫ T

t
Zns dBs − (Mn

T −Mn
t ).

(2.2)
In fact, via theorem 31 in [25] and by Taking the Lebesgue dominated convergence on integral

with respect to time variable t, then by taking the limit on the forward equation in (2.2), thus
X ∈ M 2

G(0, T ), Y ∈ M 2
G(0, T ) is a solution of the following G-FSDE:

Xs = x+

∫ t

0
b(s,Xs, Ys)ds+

∫ t

0
σ(s,Xs)dBs +

∫ t

0
h(s,Xs, Ys)d〈B〉s, q.s.. (2.3)
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On the other hand, for any n ≥ 1, we have the BSDE part

Y n
t = ξ+

∫ T

t
f(s,Xn

s , Y
n
s , Z

n
s )ds+

∫ T

t
g(s,Xn

s , Y
n
s , Z

n
s )d〈B〉s−

∫ T

t
Zns dBs−(Mn

T −Mn
t ) (2.4)

We apply Itô’s formula on |Y n|2, we got

|Y n|2 +

∫ T

t
|Zns |2d〈B〉s = |ξ|2 −

∫ T

t
2ynt z

n
s dBs +

∫ T

t
2ynt f(s,Xn

s , Y
n
s , Z

n
s )ds

+

∫ T

t
2ynt g(s,Xn

s , Y
n
s , Z

n
s )d〈B〉s

−
∫ T

t
2ynt dM

n
t

(2.5)

For t = 0, via Lemma 1.3.2, proposition 2.6 in [46], assumption (A4) and some calculation, it
results

Ê

[(∫ T

0
|Znt |2ds

)α
2

]
≤ C

Ê
(

sup
0≤t≤T

|Y n
t |α
)

+

(
Ê

(
sup

0≤t≤T
|Y n
t |α
)) 1

2

Ê (|Mn
t |α)

1
2

 , (2.6)

where C is a positive constant which may change from line to line. Furthermore, we have

Mn
t = −Y n

0 + ξ +

∫ T

t
f(s,Xn

s , Y
n
s , Z

n
s )ds+

∫ T

t
g(s,Xn

s , Y
n
s , Z

n
s )d〈B〉s −

∫ T

t
Zns dBs, (2.7)

following simple calculation, it results

Ê (|Mn
t |α)

1
2 ≤ C

{
Ê

(
sup

0≤t≤T
|Y n
t |α
)

+ Ê

[(∫ T

0
|Znt |2ds

)α
2

]}
. (2.8)

By (2.6), (2.8) and since {
Ê

(
sup

0≤t≤T
|Y n
t |α
)}
≤ C, (2.9)

it result that there exists a positive real constant C independent of n, so that

Ê (|Mn
t |α)

1
2 + Ê

[(∫ T

0
|Znt |2ds

)α
2

]
≤ C. (2.10)

Moreover, by applying Itô’s formula to |Y m − Y n|2 and via Lemma 3.4 in [46], lemma
2.5 in [94], Lemma (1.3.2), Hölder inequality and assumption (A4), the sequence (Y n

t )n∈N

is a Cauchy sequence in S2
G(0, T ). Consequently, the sequence (Y n

t )n∈N is a Cauchy se-
quence in M 2

G([0, T ]). As the sequences (Xn
t )n∈N, (Y

n
t )n∈N, (Z

n
t )n∈N are a Cauchy sequence

in M 2
G([0, T ]),S2

G(0, T ),M 2
G([0, T ]) respectively, then via simple calculation we get that the

sequence (Mn
t )n∈N is also a Cauchy sequence in L2

G(ΩT ). Then, we have

X = lim
n→∞

Xn
t , Y = lim

n→∞
Y n
t , Z = lim

n→∞
Znt , and M = lim

n→∞
Mn
t
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To finish the proof of the existence taking the limit on both side of (2.4), thus (X,Y, Z,M)

satisfies

Yt = ξ +

∫ T

t
f(s,Xs, Ys, Zs)ds+

∫ T

t
g(s,Xs, Ys, Zs)d〈B〉s −

∫ T

t
ZsdBs − (MT −Mt). (2.11)

It is clear that (X,Y ) satisfies (2.3). So, (X,Y, Z,M) is a solution of (2.1).
At the end, by using backward comparison theorem, forward comparison theorem with simple

calculation the constructed solution is the minimal one. Thus, there exists (Xn
t )t ∈ [0, T ] and

(Y n
t )t∈[0,T ] such that Xt := lim

n→∞
Xn
t and Yt = lim

n→∞
Y n
t for each t ∈ [0, T ] q.s..

For a complete proof; see [94].

2.2 Existence and uniqueness of solution to G-forward
backward stochastic differential equations

In this section we present our result on the solution of forward backward stochastic differential
equations in the G-framework [56] in which we prove the existence and the uniqueness of the
solution based on the fixed point method. Let at first present the problem.

2.2.1 Problem and hypothesis

Consider the following coupled G-forward backward stochastic differential equation:

dXs = b(s,Xs, Ys, Zs)ds+ σ(s,Xs, Ys)dBs + hij(s,Xs, Ys)d〈Bi, Bj〉s,

dYs = −f(s,Xs, Ys, Zs,Ms)ds− gij(s,Xs, Ys)d〈Bi, Bj〉s + ZsdBs + dMs, s ∈ [t, T ],

Xt = x, YT = Φ(XT ),Mt = 0,

(2.12)
where X,Y, Z are square integrable adapted processes and M is a decreasing G-martingale, and
the initial value x ∈ Rd is a given vector, B is a l-dimensional G-Brownian motion, 〈B〉 is the
quadratic variation of the process (Bs)s≥0. We set:

f : Ω× [0, T ]×Rd ×Rn ×Rn×l ×Rn → Rn; σ : Ω× [0, T ]×Rd ×Rn → Rd×l;

b : Ω× [0, T ]×Rd ×Rn ×Rn×l → Rd, hij : Ω× [0, T ]×Rd ×Rn → Rd,

gij : Ω× [0, T ]×Rd ×Rn → Rn, Φ : Rd → Rn.
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We aim to prove the existence and uniqueness of the solution (X,Y, Z,M) to our G-FBSDE in
one dimension. To reach out our goal, let suppose the following :
Hypothesis(H)
(H1) For fixed x ∈ Rd, y ∈ Rn, z ∈ Rn×l suppose that

b(., x, y, z), σ(., x, y), hij(., x, y) ∈ M 2
G([0, T ]),

also for fixed x, y, z,m, we have

f(., x, y, z,m), gij(., x, y) ∈ M 2
G([0, T ]),Φ ∈ LpG(ΩT )

(H2) We suppose also that:

|f(s, x, y, z,m)− f(s, x′, y′, z′,m′)|2 ≤ k(|x− x′|2 + |y − y′|2 + |z − z′|2 + |m−m′|2),

|b(s, x, y, z)− b(s, x′, y′, z′)|2 ≤ k(|x− x′|2 + |y − y′|2 + |z − z′|2),

|gi,j(s, x, y)− gi,j(s, x′, y′)|2 ≤ k(|x− x′|2 + |y − y′|2),

|hi,j(s, x, y)− hi,j(s, x′, y′)|2 ≤ k(|x− x′|2 + |y − y′|2),

|σ(s, x, y)− σ(s, x′, y′)|2 ≤ k1|x− x′|2 + k2|y − y′|2,

|Φ(x)− Φ(x′)|2 ≤ k|x− x′|2.

Remark 2.2.1. For a comparison reasons, Wang and Yuan [94] used the monotonicity
condition to ensure the existence of the solution, unlike them, we are not in need to this condition
to establish the existence and uniqueness of the solution. In addition to that here we can establish
a solution for the forward equation X even in higher dimension, not necessarily one-dimension
like the case of [94].

2.2.2 Important inequalities

In addition to the BDG’s inequalities shown in the first chapter we are also in need to the
following BDG’s inequalities type:

Proposition 2.2.1. [82]Let β ∈Mp
G(0, T ) with p ≥ 2. Then we have

∫ T

0
βtdBt ∈ LpG(ΩT ) and

Ê

(∣∣∣∣∫ T

0
βtdBt

∣∣∣∣p
)
≤ CpÊ

(∣∣∣∣∫ T

0
β2
t d〈B〉t

∣∣∣∣
p
2

)
. (2.13)
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Proposition 2.2.2. [46]For each η ∈ Hα
G(0, T ) with α ≥ 1 and p ∈ (0, α], we have

lpcpÊ

(
[

∫ T

0
η2
sds]

p
2

)
≤ Ê

(
sup
t∈[0,T ]

|
∫ t

0
ηsdBs|p

)
≤ l̄pCpÊ

(
[

∫ T

0
η2
sds]

p
2

)
, (2.14)

where, 0 < cp < Cp <∞ are constants.

Lemma 2.2.1. [82] For θ ∈ S2
G, we have:

Ê(

∫ T

0
|θs|2d〈B〉s) ≤ T l̄2Ê( sup

s∈[0,T ]
|θs|2).

Furthermore, for η ∈ H2
G(0, T ), we have that (

∫ t

0
ηsθsdBs)t∈[0,T ] is an uniformly integrable

martingale, equal to 0 at time t = 0, so,

Ê(

∫ T

t
ηsθsdB) = 0.

The following inequalities are very useful tools:

Lemma 2.2.2. [82] For r > 0 and 1 < q, p <∞, with 1
p + 1

q = 1, we have

|a+ b|r ≤ max{1, 2r−1}(|a|r + |b|r) for a, b ∈ R (2.15)

|ab| ≤ |a|
p

p
+
|b|q

q
. (2.16)

Proposition 2.2.3. [80] For each X,Y ∈ H, we have

E (|X + Y |r) ≤ 2r−1 (E(|X|r) + E(|Y |r)) (2.17)

E(XY ) ≤
(
E(|X|p)

1
p + E(|Y |q)

1
q

)
(2.18)

(E(|X + Y |p))
1
p ≤ (E(|X|p))

1
p + (E(|Y |p))

1
p , (2.19)

where r ≥ 1 and 1 < p, q <∞, with 1
p + 1

q = 1.

In particular, for 1 ≤ p < p′, we have

(E(|X|p))
1
p ≤

(
E(|X|p′)

) 1
p′
.

2.2.3 Main result

The following theorem shows that a G-FBSDE system has a unique solution.

Theorem 2.2. Under assumption (H), there exists a constant Ck > 0 dependant on the Lipschitz
coefficients k, k1, k2, such that for all 0 < T ≤ Ck, the G-FBSDE (2.12) has a unique solution
(X,Y, Z,K) ∈ H2,2

G,T .

To go forward in the proof of the Theorem (2.2) we are in need to the following lemmas.
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2.2.3.1 Important lemmas

The following lemmas hold for β large enough.

Lemma 2.2.3. For a given β > 0, there exist positive constants C1, C2 depending only on
k, k1, k2, l̄, l, T, β s.t.:∫ T

0
e−2βtÊ(|x̄t|2)dt ≤ C1Ê( sup

t∈[0,T ]
|yt|2) + C2Ê(

∫ T

0
|zs|2ds). (2.20)

Proof. We have from (2.29),

x̄t =

∫ t

0
(b(s, X̃s, Ys, Zs)− b(s, Ũs, Vs,Ws))ds+

∫ t

0
(σ(s, X̃s, Ys)− σ(s, Ũs, Vs))dBs

+

∫ t

0
(h(s, X̃s, Ys)− h(s, Ũs, Vs))d〈B〉s

By Young ’s inequality and simple calculations, we have for ε1, ε2, ε3:

Ê(|x̄t|2)≤
(ε1

2
+
ε2

2
+
ε3

2

)
Ê(|x̄t|2)

+ t
2ε1
Ê(

∫ t

0
|(b(s, X̃s, Ys, Zs)− b(s, Ũs, Vs,Ws))|2ds)

+ 1
2ε2
Ê(|
∫ t

0
(σ(s, X̃s, Ys)− σ(s, Ũs, Vs))dBs|2)

+ 1
2ε3
Ê(|
∫ t

0
(h(s, X̃s, Ys)− h(s, Ũs, Vs))d〈B〉s|2).

Using Lemma (1.3.2) and Lipschitz conditions, we get:

Ê(|x̄t|2)≤
(ε1

2
+
ε2

2
+
ε3

2

)
Ê(|x̄t|2)

+ kt
2ε1
Ê(

∫ t

0
(|x̄s|2 + |ys|2 + |zs|2)ds)

+C2 l̄2

2ε2
Ê(

∫ t

0
(k1|x̄s|2 + k2|ys|2)ds)

+kT (l̄+l)2

32ε3
Ê(

∫ t

0
(|x̄s|2 + |ys|2)ds),

(
1− (

ε1

2
+
k1ε2

2
+
ε3

2
)

)
Ê(|x̄t|2)≤

(
k1T

2ε1
+
kC2 l̄

2

2ε2
+
kT (l̄ + l)2

32ε3

)∫ t

0
Ê(|x̄s|2)ds

+T

(
kT

2ε1
+
kl̄2

2ε2
+
kT (l̄ + l)2

32ε3

)
Ê( sup

s∈[0,T ]
|ys|2)

+ kT
2ε1
Ê(

∫ T

0
|zs|2ds).
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We multiply both sides of the inequality by e−2βt and integrate them on [0, T ], then, simple
calculations gives:

(
1− (

ε1

2
+
ε2

2
+
ε3

2
)
)∫ T

0
e−2βtÊ(|x̄t|2)dt≤ 1

2β

(
kT

2ε1
+
k1C2 l̄

2

2ε2
+
kT (l̄ + l)2

32ε3

)∫ T

0
e−2βsÊ(|x̄s|2)ds

+
T

2β

(
kT

2ε1
+
k2C2 l̄

2

2ε2
+
kT (l̄ + l)2

32ε3

)
(1− e−2βT )Ê( sup

s∈[0,T ]
|ys|2)

+ kT
4βε1

(1− e−2βT )Ê(

∫ T

0
|zs|2ds).

Now, let

ε =

(
1−

(
(
ε1

2
+
ε2

2
+
ε3

2
+

1

2β

(
kT

2ε1
+
k1C2 l̄

2

2ε2
+
kT (l̄ + l)2

32ε3

)))
,

for big β and small ε1, ε2, ε3, we have that ε > 0, then∫ T

0
e−2βtÊ(|x̄t|2)dt≤ T

2εβ

(
kT

2ε1
+
k2C2 l̄

2

2ε2
+
kT (l̄ + l)2

32ε3

)
(1− e−2βT )Ê( sup

s∈[0,T ]
|ys|2)

+ k
4εβε1

(1− e−2βT )Ê(

∫ T

0
|zs|2ds).

Similarly, to the previous technique used in the Lemma 2.2.3’s proof and for

x̄T =

∫ T

0
(b(s, X̃s, Ys, Zs)− b(s, Ũs, Vs,Ws))ds+

∫ T

0
(σ(s, X̃s, Ys)− σ(s, Ũs, Vs))dBs

+

∫ T

0
(h(s, X̃s, Ys)− h(s, Ũs, Vs))d〈B〉s,

we reach the following inequality:

Ê(|x̄T |2)≤ C

ε̄′

(
kT

2ε′1
+
k1 l̄

2

2ε′2
+
kT (l̄ + l)2

32ε′3

)∫ T

0
Ê(|x̄t|2)e−2βsds

+
T

ε̄′

(
kT

2ε′1
+
k2 l̄

2

2ε′2
+
kT (l̄ + l)2

32ε′3

)
Ê( sup

t∈[0,T ]
|yt|2)

+ kT
2ε̄′ε′1

Ê(

∫ T

0
|zs|2ds).

Then, for ε̄′ =

(
1− (

ε′1
2

+
ε′2
2

+
ε′3
2

)

)
, for strictly positive, and small enough ε′1, ε

′
2, ε
′
3, the

following lemma is proved.

Lemma 2.2.4. For a given β > 0, there exist positive constants C̃1, C̃2, C̃3 depending only on
k, k1, k2, l̄, l, T, β s.t.:

Ê(|x̄T |2) ≤ C̃1Ê( sup
t∈[0,T ]

|yt|2) + C̃2Ê(

∫ T

0
|zs|2ds) + C̃3

∫ T

0
e−2βtÊ(|x̄t|2)dt. (2.21)
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Let move to the backward stochastic differential equation part.

Lemma 2.2.5. There exist positive constants C3, C4, C5, C6, depending only on T, k, l̄, l, β s.t.:

Ê( sup
s∈[0,T ]

|ȳs|2) ≤ C3Ê
(
|mT |2

)
+ C4

∫ T

0
e−2βsÊ(|xs|2)ds

+C5Ê(

∫ T

0
|z̄s|2ds) + C6Ê(|x̄T |2).

(2.22)

Proof. We have

ȳt − ȳT =

∫ T

t
(f(s,Xs, Ỹs, Z̃s,Ms)− f(s, Us, Ṽs, W̃s, Rs))ds

+

∫ T

t
(g(s,Xs, Ỹs)− g(s, Us, Ṽs))d〈B〉s

−
∫ T

t
(Z̃s − W̃s)dBs −

∫ T

t
d(M̃t − R̃t).

We apply Itô’s formula on |ȳt|2

|ȳt|2 = −
∫ T

t
2ȳtz̄sdBs + |ϕ(X̃T )− ϕ(ŨT )|2

+

∫ T

t
2ȳt(f(s,Xs, Ỹs, Z̃s,Ms)− f(s, Us, Ṽs, W̃s, Rs))ds

+

∫ T

t
2ȳt(g(s,Xs, Ỹs)− g(s, Us, Ṽs))d〈B〉s

−
∫ T

t
|Z̄s|2d〈B〉s −

∫ T

t
2ȳtd(M̃t − R̃t),

|ȳt|2 +

∫ T

t
|z̄s|2d〈B〉s ≤ −

∫ T

t
2ȳsz̄sdBs + k|x̄T |2

+k

∫ T

t
2(xsȳs + |ȳs|2 + ȳsz̄s + ȳsms)ds

+k

∫ T

t
2ȳs(xs + ȳs)d〈B〉s

−
∫ T

t
2ȳsdm̄s,

(2.23)

let Jt =

∫ T

0
2|ȳs|dm̄s +

∫ T

0
2ȳsz̄sdBs. Then,
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sup
s∈[0,T ]

|ȳs|2 ≤ 2k sup
s∈[0,T ]

|ȳs|
∫ T

0
xsds+ 2k sup

s∈[0,T ]
|ȳs|2

∫ T

0
ds

+2k sup
s∈[0,T ]

|ȳs|
∫ T

0
|z̄s|ds+ 2k sup

s∈[0,T ]
|ȳs|

∫ T

0
|ms|ds

+k

∫ T

0
(

1

ς1
|xs|2 + ς1|ȳs|2)d〈B〉s + k

∫ T

t
|ȳs|2d〈B〉s + k|x̄T |2 + JT − Jt.

Lemma 3.4 in [46] shows that Jt is a G-martingale. Using Young ’s and the BDG inequalities,
with simple calculations, we get

Ê( sup
s∈[0,T ]

|ȳs|2)≤
(
ς3k + 2kT + ς4k + ς5k + C2 l̄T (k + kς1)

)
Ê( sup

s∈[0,T ]
|ȳs|2)

+(kTς3 + k(l̄+l)2T
16ς1

)

∫ T

0
Ê(|xs|2)ds+

kT

ς4
Ê(

∫ T

0
|z̄s|2ds)

+kÊ(|x̄T |2) + kT 2

ς5
Ê(|mT |2).

Let
ς = 1−

(
ς3k + 2kT + ς4k + ς5k + C2 l̄T (k + kς1)

)
.

Then,

ςÊ( sup
s∈[0,T ]

|ȳs|2)≤ (kTς3 + k(l̄+l)2T
16ς1

)

∫ T

0
Ê(|xs|2)ds+

kT

ς4
Ê(

∫ T

0
|z̄s|2ds)

+kÊ(|x̄T |2) + kT 2

ς5
Ê(|mT |2),

Ê( sup
s∈[0,T ]

|ȳs|2)≤ 1
ς (kTς3 + k(l̄+l)2T

16ς1
)

∫ T

0
Ê(|xs|2)ds+

kT

ςς4
Ê(

∫ T

0
|z̄s|2ds)

+k
ς Ê(|x̄T |2) + kT 2

ςς5
Ê(|mT |2).

Subsequently, from the equation (2.23), we get

∫ T

t
|z̄s|2d〈B〉s ≤ −

∫ T

t
2ȳsz̄sdBs + k|x̄T |2

+k

∫ T

t
2(xsȳs + |ȳs|2 + ȳsz̄s + ȳsms)ds

+k

∫ T

t
2ȳs(xs + ȳs)d〈B〉s

−
∫ T

t
2ȳsdm̄s
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Ê(

∫ T

t
|z̄s|2d〈B〉s)≤ Ê(k|x̄T |2

+k

∫ T

t
2(xsȳs + |ȳs|2 + ȳsz̄s + ȳsms)ds

+k

∫ T

t
2ȳs(xs + ȳs)d〈B〉s

−
(∫ T

t
2ȳsdm̄s +

∫ T

t
2ȳsz̄sdBs

)
),

Ê(

∫ T

t
|z̄s|2d〈B〉s)≤ Ê(k|x̄T |2

+k

∫ T

t
2(xsȳs + |ȳs|2 + ȳsz̄s + ȳsms)ds

+k

∫ T

t
2ȳs(xs + ȳs)d〈B〉s)

+Ê

(
−
(∫ T

t
2ȳsdm̄s +

∫ T

t
2ȳsz̄sdBs

))
.

With some simple calculations, we have for some strictly positive ς ′1, ς ′3, ς ′4, ς ′5

Ê(

∫ T

0
|z̄s|2d〈B〉s)≤ Ê((ς ′3k + 2kT + ς ′4k + ς ′5k+) sup

s∈[0,T ]
|ȳs|2

+kT
ς3

′
∫ T

0
|xs|2ds+

kT

ς ′4

∫ T

0
|z̄s|2ds

+k|x̄T |2 + kT 2

ς′5
|mT |2 + (k + kς ′1)

∫ T

0
|ȳs|2d〈B〉s +

k

ς ′1

∫ T

0
|xs|2d〈B〉s).

From Proposition (2.2.2)

Ê(

∫ T

0
|z̄s|2ds)≤ 1

l2c2
(ς ′3k + 2kT + ς ′4k + ς ′5k) Ê( sup

s∈[0,T ]
|ȳs|2) +

kT

l2c2ς ′3

∫ T

0
Ê(|xs|2)ds

+ kT
l2c2ς′4

Ê(

∫ T

0
|z̄s|2ds) +

k

l2c2

Ê(|x̄T |2) +
kT 2

l2c2ς ′5
Ê(|mT |2)

+C2 l̄T
l2c2

(k + kς ′1) Ê( sup
s∈[0,T ]

|ȳs|2) +
k(l̄ + l)2T

16ς ′1

∫ T

0
Ê(|xs|2)ds,

(
1− kT

l2c2ς′4

)
Ê(

∫ T

0
|z̄s|2ds)≤ 1

l2c2

(
ς ′3k + 2kT + ς ′4k + ς ′5k + C2 l̄T

l2c2
(k + kς ′1)

)
Ê( sup

s∈[0,T ]
|ȳs|2)

+C
(
k(l̄+l)2T

16ς′1
+ kT

l2c2ς′3

)∫ T

0
Ê(|xs|2)e−2βsds

+ k
l2c2
Ê(|x̄T |2) + kT 2

l2c2ς′5
Ê(|mT |2).
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Thus, the following lemma is argued.

Lemma 2.2.6. There exist positive constants C7, C8, C9, C10, depending only on T, k, l̄, l, β s.t.:

Ê

(∫ T

0
|z̄s|2ds

)
≤ C7Ê( sup

s∈[0,T ]
|ȳs|2) + C8Ê

(
|mT |2ds

)
+C9

∫ T

0
e−2βsÊ(|xs|2ds) + C10Ê(|x̄T |2).

(2.24)

Lemma 2.2.7. There exist positive constants C11, C12, C13, C14, C15, depending only on T, k, l̄, l, β
s.t.:

Ê(|m̄T |2)≤ C11Ê( sup
s∈[0,T ]

|ms|2) + C12Ê( sup
s∈[0,T ]

|ȳs|2) + C13Ê(

∫ T

0
|z̄s|2ds)

+C14

∫ T

0
e−2βsÊ(|xs|2)ds+ C15Ê(|x̄T |2).

(2.25)

Proof.

m̄T − m̄t = −ȳt + ȳT +

∫ T

t
(f(s,Xs, Ỹs, Z̃s,Ms)− f(s, Us, Ṽs, W̃s, Rs))ds

+

∫ T

t
(g(s,Xs, Ỹs)− g(s, Us, Ṽs))d〈B〉s

−
∫ T

t
(Z̃s − W̃s)dBs.

m̄T = m̄t − Ȳt + ϕ(x̄T ) +

∫ T

t
(f(s,Xs, Ỹs, Z̃s,Ms)− f(s, Us, Ṽs, W̃s, Rs))ds

+

∫ T

t
(g(s,Xs, Ỹs)− g(s, Us, Ṽs))d〈B〉s

−
∫ T

t
z̄sdBs.

By taking t = 0, and using that m̄t = 0, we have for some δ1, δ2, δ3, δ4, δ5

|m̄T |2 ≤ δ1
2 |m̄T |2 + 1

2δ1
sup
s∈[0,T ]

|Ȳs|2 +
δ2

2
|m̄T |2 +

1

2δ2
|
∫ T

0
(f(s,Xs, Ỹs, Z̃s,Ms)− f(s, Us, Ṽs, W̃s, Rs))ds|2

+ δ3
2 |m̄T |2 + 1

2δ3
|
∫ T

0
(g(s,Xs, Ỹs)− g(s, Us, Ṽs))d〈B〉s|2

+ δ4
2 |m̄T |2 + 1

2δ4
|
∫ T

0
z̄sdBs|2 +

kδ5

2
|m̄T |2 +

k

2δ5
|x̄T |2.
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Ê(|m̄T |2)≤ 1
2 (δ1 + δ2 + δ3 + δ4 + kδ5) Ê(|m̄T |2) + 1

2δ1
Ê( sup

s∈[0,T ]
|ȳs|2)

+ T
2δ2
Ê(

∫ T

0
|(f(s,Xs, Ỹs, Z̃s,Ms)− f(s, Us, Ṽs, W̃s, Rs))|2ds)

+ 1
2δ3
Ê( sup

t∈[0,T ]
|
∫ T

0
(g(s,Xs, Ỹs)− g(s, Us, Ṽs))d〈B〉s|2)

+ 1
2δ4
Ê( sup

t∈[0,T ]
|
∫ T

0
z̄sdBs|2) +

k

2δ5
Ê(|x̄T |2).

From Proposition (2.2.2), we have for δ = 1− 1
2 (δ1 + δ2 + δ3 + δ4 + kδ5), and we chose δi for

i = 1, 2, 3, 4, 5 small enough such that δ > 0 and

Ê(|m̄T |2)≤ C
δ

(
Tk(l+l̄)2

32δ3
+ Tk

2δ2

)
Ê(

∫ T

0
|xs|2e−2βsds)

+1
δ

(
T 2k(l+l̄)2

32δ3
+ T 2k

2δ2
+ 1

2δ1

)
Ê( sup

s∈[0,T ]
|ȳs|2)

+1
δ

(
Tk
2δ2

+ l̄2C2
2δ4

)
Ê(

∫ T

0
|z̄s|2ds) +

Tk

2δδ2
Ê(|mT |2) +

k

2δδ5
Ê(|x̄T |2).

2.2.3.2 Proof of the main Theorem

We start by defining the map z as follow:
For (X,Y, Z,M), (U, V,W,R) ∈ M 2

G(0, T ) × S2
G(0, T ) := H2,2

G,T we define (X̃, Ỹ , Z̃, M̃)(resp.
(Ũ , Ṽ , W̃ , R̃)) as the image of (X,Y, Z,M) (resp.(U, V,W,R)) by the map z where:
S2
G(0, T ) := S2

G(0, T )×H2
G(0, T )× L2

G(ΩT ), and

z : H2,2
G,T → H2,2

G,T , (X,Y, Z,M)→ z(X,Y, Z,M) := (X̃, Ỹ , Z̃, M̃), (2.26)

where (X̃, Ỹ , Z̃, M̃) are defined by:
for t ∈ [0, T ],

X̃t = x+

∫ t

0
b(s, X̃s, Ys, Zs)ds+

∫ t

0
σ(s, X̃s, Ys)dBs +

∫ t

0
h(s, X̃s, Ys)d〈B〉s, (2.27)

and,

Ỹt = Φ(XT )+

∫ T

t
f(s,Xs, Ỹs, Z̃s,Ms)ds+

∫ T

t
g(s,Xs, Ỹs)d〈B〉s−

∫ T

t
ZsdBs−

∫ T

t
dM̃s. (2.28)

Remark 2.2.2. 1. The space H2,2
G,T is a Banach space as a product of Banach spaces

M 2
G(0, T ), S2

G(0, T ), H2
G(0, T ), and L2

G(ΩT )
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2. The map z is well defined. Indeed, because Y and Z are given respectively in S2
G(0, T ),

H2
G(0, T ), and the coefficients b, σ and h hold the conditions (H), then X̃ in equation

(2.27) exists (see e.g. [82]) as the solution of this equation and belongs to M 2
G([0, T ]),

and so we plug-in X̃ in the G-BSDE equation (2.28); then we have also Ỹs, Z̃s, M̃s

which exist (see e.g. [46]) as the solution of the BSDE (2.28) and belong to S2
G(0, T ) =

S2
G(0, T )×H2

G(0, T )× L2
G(ΩT ) for fixed (X̃,M) ∈ M 2

G(0, T )× L2
G(ΩT ).

Now, we aim to proving that the map z is a contraction, and for this, let consider the following
notations:
x̄s = X̃s − Ũs, z̄ = Z̃s − W̃s and ȳs = Ỹs − Ṽs, xs = Xs − Us, ys = Ys − Vs, ws = Zs −Ws, m̄t =

M̃t − R̃t,mt = Mt −Rt.
So,

x̄t =

∫ t

0
(b(s, X̃s, Ys, Zs)− b(s, Ũs, Vs,Ws))ds+

∫ t

0
(σ(s, X̃s, Ys)− σ(s, Ũs, Vs))dBs

+

∫ t

0
(h(s, X̃s, Ys)− h(s, Ũs, Vs))d〈B〉s

(2.29)

and,

ȳt = Ỹt − Ṽt = ȳT +

∫ T

t
(f(s,Xs, Ỹs, Z̃s,Ms)− f(s, Us, Ṽs, W̃s, Rs))ds

+

∫ T

t
(g(s,Xs, Ỹs)− g(s, Us, Ṽs))d〈B〉s

−
∫ T

t
(Z̃s − W̃s)dBs −

∫ T

t
d(M̃t − R̃t).

(2.30)

Proof. From Lemmas (2.2.3)-(2.2.7), for a given β > 0, there exists a constant C = Ck,k1,k2,l̄,l,β
>

0, such that ∀T ; 0 < T ≤ C, and there exist constants ω1, ω2, ω3, ω4 ∈ (0, 1) depending only on
k, T, β, l, l s.t.:

∫ T

0
e−2βsÊ(|x̄s|2)ds+ Ê( sup

s∈[0,T ]
|ȳs|2) + Ê

(∫ T

0
|z̄s|2ds

)
+ Ê( sup

s∈[0,T ]
|m̄s|2) ≤ ω1

∫ T

0
e−2βsÊ(|xs|2)ds

+ω2Ê( sup
s∈[0,T ]

|ys|2) + ω3Ê(

∫ T

0
|zs|2ds) + ω4Ê( sup

s∈[0,T ]
|ms|2).

(2.31)
It is noted that the following two norms are equivalent on M̄ p

G(0, T ),∫ T

0
e−2βtÊ(|x̄t|2)dt ∼

∫ T

0
Ê(|x̄t|2)dt.

So, the map z is a contracting mapping from the Banach space H2,2
G,T to itself, which ensures

the existence of a unique fixed point (X,Y, Z,M) ∈ H2,2
G,T which is (from the definition of z)

the solution of the FBSDE (2.12).
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Remark 2.2.3. This result can’t be extended to the case where σ depend to Z with

|σ(s, x, y, z)− σ(s, x′, y′, z′)|2 ≤ k1|x− x′|2 + k2|y − y′|2 + k3|z − z′|2,

indeed, the system: 

dXs = ZsdBs,

dYs = ZsdBs + dMs, s ∈ [t, T ],

Xt = x, YT = XT ,Mt = 0,

(2.32)

has an infinity number of solutions, because for any Z ∈ Hp
G(0, T ) and any decreasing G-

martingales M such that Mt = 0 and MT ∈ LpG(ΩT ); the tuple (X,Y, Z,M) with Xu :=

x+

∫ u

t
ZsdBs and Yu := x−MT is a solution of the G-FBSDE (2.32).

The result is still valid in a multi-dimension case.



Chapter 3

Optimal Control For Decoupled
Forward-Backward Stochastic
Differential Equations in the
G-framework

In this chapter, we study a controlled system for decoupled forward-backward stochastic
differential equations driven by G-Brownian motion. Our aim is to investigate the problem of
the existence of optimal relaxed stochastic control given by a G-FBSDE and a cost function as
the first component of the solution of the backward stochastic differential equation.
In first section, we recall some generalities on classical optimal control for FBSDE in classical
space. Then, we define the stochastic optimal control (SOC, for short) under G-frame work in
the second section. The third section is devoted for the G-relaxed optimal control in brief. In
the last section, we present the main issue of this chapter as well as the assumptions needed
to solve it, then, we introduce the approximated system of our original one and we show the
existence of an optimal control for it. Next, we study the convergence of the approximating
control problem; we show that this problem converges to the value function of the original
problem. Finally, to conclude the section as well as the chapter we establish the existence of
an optimal control for our system of G-decoupled BSDE as limit of the approximated control
problem.

3.1 General definitions

A control problem is to optimize a functional which depend on a solution of a dynamical
system. This dynamical system can be deterministic (Ordinary differential equation, partial
differential equation) [38] as it can be stochastic dynamical system (SDE, BSDE, FBSDE).
In our case we are interested by the study of the stochastic case. In general, it is formulated
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according to the following characteristics:

System state: Considering a dynamical system characterized by its state at all times; time
can be discrete or continuous. The horizon (time variation interval) can be finite or infinite.
The state of the system is the set of quantitative variables constituting an "exhaustive"
description of the system. The state variables are assumed to be finite numbers with real
values. We denote by Xt(ω) the state of the system (state process) at the instant t in a
scenario ω ∈ Ω a measurable space endowed with a probability P.
Once the state is defined, it is a question of defining down the laws of evolution of that
state in a function of time. The application t→ Xt describes the evolution of the system.
This evolution is provided by a probabilistic model.

Control: The dynamics Xt of the state of the system is influenced by a control that it is
modeled as a process (ut)t and in order to the stochastic integral be defined, an adaptation
constraint with respect to certain filtration is required on the control u that takes its
values in a control space U .

Cost criterion/ performance: The objective is to maximize (or minimize) the functional
J(X;u). In general, the functional is considered of the form:

J(X;u) = E[

∫ T

t
f(Xs, us)ds+ g(XT )], on finite horizon T <∞

and,

J(X;u) = E[

∫ ∞
t

e−βsf(Xs, us)ds], on infinte horizon.

The function f is the integral cost, g is the final cost and β > 0 is the actualization
coefficient. The value function is defined by

v = inf
u
J(x;u),

The objective will be to determine the value function, as well as the extremum for these
criteria and the optimal controls, if there exist whom realize them.

Definition 3.1.1. (Admissible control)
Let U be a given compact set. For each s ∈ [t, T ], we say u is an admissible control on [t, T ], if
it satisfies the following conditions:

1. u : [t, T ]× Ω→ U .

2. u ∈ M p
G.

U [t, T ] denotes the set of admissible controls on [t, T ].

Definition 3.1.2. (Strict control): a strict control is an Ft−adapted process with values in
some subset U of Rn.
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In some situations, to study the value function of stochastic optimal control, it is important to
define the essential infimum (essential supremum, resp) of the cost functional Y t,x;u

t that is a
solution of a G-backward SDE (Y t,x;u

t is deterministic).

Definition 3.1.3. • The essential infimum of {Y t,x;u
t , u ∈ U [t, T ]}, denoted by ess inf

u(.)∈U[t,T ]
Y t,x;u
t

is a random variable % ∈ L2
G(Ωt) satisfying:

1. ∀u ∈ U [t, T ], % ≤ Y t,x;u
t ;

2. If η is a random variable satisfying η ≤ Y t,x;u
t q.s., for any u ∈ U [t, T ], then

% ≥ η q.s..

• The essential supremum of {Y t,x;u
t , u ∈ U [t, T ]}, denoted by ess sup

u(.)∈U[t,T ]

Y t,x;u
t is a random

variable % ∈ L2
G(Ωt) satisfying:

1. ∀u ∈ U [t, T ], % ≥ Y t,x;u
t ;

2. If η is a random variable satisfying η ≥ Y t,x;u
t q.s., for any u ∈ U [t, T ], then

% ≤ η q.s..

3.1.1 Relaxed control

Occasionally, the limit which should be the natural candidate to optimality of the sequence
un is lacking in the space of controls. So, it will necessary to look for space in which this limit
exists. On U , characterize un(t) with the Dirac measure: δun(t)(du). Set qn a measure over the
space [0, 1]× U defined by:

δun(t)(dt, du) = δun(t)(du)dt,

and qn converges weakly to q̃n(du, dt) = 1
2 [δ−1 + δ1](du)dt. All the measures q(du, dt) should

be taken as controls. However, to reach the proof of the existence of an optimal control, we
have to restrict to a compact space which contain the "classical" controls. For this, we set the
following definition

Definition 3.1.4. Let U ∈ Rd. A relaxed control with values in U is a random measure q over
[0, T ]× U such that the projection on [0, T ] is the Lebesgue measure.
If there exist u : [0, T ]→ U , such that qn(du, dt) = δun(t)(du)dt, q is identified with ut and said
to be control process.

In the relaxed control problems, we use probability measure µt on a set A of controls values
instead of using ut ∈ A. Then the problem is modeling with the following decoupled forward
backward stochastic differential equation
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dXs =
∫
A
b(s,Xs, a)dµs(a)ds+

∫
A
σ(s,Xs, a)dµs(a)dBs, s ∈ [0, T ]

dYs = −
∫
A
g(s,Xs, Ys, a)dµs(a)ds+ ZsdBs, s ∈ [t, T ]

YT = φ(XT ) X0 = x, x ∈ Rm,

(3.1)

Remark 3.1.1. (Relation between Relaxed and Strict control): Any strict U−valued
control process ut can be represented as a relaxed control by setting νt(du) = δut(du). Moreover,
the so-called Chattering Lemma, show that any relaxed control is a weak limit of a sequence of
strict controls.

Remark 3.1.2. In the classical stochastic optimal control, there exists two important and
famous principals; stochastic maximum principal (SMP, for short) and dynamic programming
principal. By the first one, for a stochastic optimal control problem, one can derives necessary
conditions for optimality. Any optimal control with its corresponding optimal state have to
solve a system consists of a forward stochastic differential equation and the adjoint equation1

associated with a condition of optimization of a function called the Hamiltonian, such system is
called the Hamiltonian system. Many research have been done on this principle e.g. [42, 43].
Equivalently important, the dynamic programming principle [9, 10] has been initiated by Richard

Bellman and co-workers in 1950. The basic idea of this principle is to consider a family of
control problems at different initial states and times. The infinitesimal version of the dynamic
programming principle is the well-known Hamilton-Jacobi-Bellman(HJB) equations which
are second-order, possibly degenerate elliptic, fully nonlinear partial differential equations in
the value function(i.e. under a suitable condition, its solution is the value function itself). In
general, the HJB equations are of the following form:

∂v

∂t
(t, x) +H(t, x,Dxv(t, x), D2

xv(t, x)) = 0,

where the function H is called the Hamiltonian which should taking its maximum(minimum)
to obtain the optimal control. Its study has been the interest of many authors especially the
existence of its solution which has been studied well by many authors among them [21, 19].

3.1.2 Controlled forward-backward stochastic differential equation

In stochastic optimal control, for a given dynamical system, the system states can be modeled
by a controlled SDE, a controlled BSDE as well as a controlled FBSDE in which the control
problem is described as follow:
Let U be a compact metric space. Let t ∈ [0, T ] where T > 0 is a finite horizon. Let
(Ω, F , P, (Ft)) be a filtered probability space which satisfies the usual conditions. Let B be

1adjoint equation: is a linear backward stochastic differential equation.
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a d-dimensional Brownian motion with respect to the filtration (Ft)(not necessary Brownian
filtration).

Decoupled controlled FBSDE:
Let the deterministic functions b, σ, f and φ be defined as follow:

b : Rd ×U 7−→ Rd,

σ : Rd ×U 7−→ Rd×d,

f : Rd ×R×Rd ×U 7−→ R,

φ : Rd 7−→ R.

So, the control problem is presented as follow:

dXu
s = b(Xu

s , us)ds+ σ(Xu
s , us)dBs,

dY u
s = −f(X ,u

s , Y u
s , Z

u
s , us)ds+ Zus dBs + dMu

s ,

〈Mu, B〉s = 0,

Xu
t = x, Y u

T = φ(Xu
T ), Mu

t = 0.

(3.2)

The existence of an optimal control for the decoupled FBSDE has been established by Buck-
dahn et al. [17] where, in order to get the existence of a relaxed optimal control they used
the associated Hamilton-Jacoi-Belman equation(see next section) to construct a sequence of
optimal feedback controls then, they analyze to the limit and use the result of [28] and they use
the Filippov convexity condition to get the existence of a strict optimal control this last step
was also used by [5] in which using the Jakubowsky S-topology and compactness method the
authors shown directly the existence of a relaxed control and thus they established the existence
of an optimal control by different methods.

Coupled controlled FBSDE: Let the deterministic functions b, σ, f and φ be defined as
follow:

b : Rd ×R×Rd ×U 7−→ Rd,

σ : Rd ×R×U 7−→ Rd×d,

f : Rd ×R×Rd ×U 7−→ R,

φ : Rd 7−→ R.

The control problem is presented as follow:
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dXu
s = b(Xu

s , Y
u
s , Z

u
s , us)ds+ σ(Xu

s , Y
u
s , us)dBs,

dY u
s = −f(Xu

s , Y
u
s , Z

u
s , us)ds+ Zt,x;u

s dBs + dMu
s ,

〈Mu, B〉s = 0,

Xu
t = x, Y u

T = φ(Xt,x;u
T ), Mu

t = 0,

(3.3)

where, in both cases, Xu, Y u, Zu are (Ft)-adapted square integrable processes and Mu is an
(Ft)-adapted square integrable martingale which is orthogonal to B, and the control variable u
is an Ft adapted process with values in a given compact metric space U.
The cost functional is defined by:

J(u) := Y u
t , for u ∈ U (3.4)

which will be optimize by a supremum, essential sup, infrumum or essential inf. If an Ft-adapted
control û minimize (3.4) i.e.:

Y û
t = essinf {Y u

t , u ∈ U(t)} ,

then, û is called an optimal control.
The coupled case issue, exploiting the result of [17] and [5] to the more general case(coupled)

Bahlali et al.[55] proved the existence of an optimal control for degenerate FBSDE. In fact, they
consider that the coefficients satisfying the G-monotony condition given in[84] to guarantee the
existence of a unique solution to the coupled system states, also they was obligated to transform
coefficient of the hessian uniformly elliptic by adding a strictly positive number because of
the degeneracy of the diffusion unlike the non-degenerate case where Kebiri et al. [6] was not
obligated to add it which does not affect any change on the system (reverse of the generate
case) where the prove differ from of the degenerate case, it is in some sense like [17, 5] for more
details see [6].

3.2 Stochastic optimal control under G-framework

It is worthy to mention that the issue of randomness and ambiguity of the real word as
well as the inability of the classical stochastic optimal control to consider a model uncertainty
necessitate the study of the stochastic optimal control on nonlinear ( i. e. the systems states are
perturbed by a G-Brownian motion) and developed it as the classical one. Thus, for economic
perspectives Fei & Fei [37] set up an optimality principle of stochastic control issue and
investigate an optimal consumption and portfolio decision with a volatility ambiguity. Sun et
al.[90] argued the stochastic maximum principle for processes driven by G-Brownian motion
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either Hu & Ji [45] generalized the dynamic programming obtained by Peng [76] to make it
suitable for the G-framework.
Let consider the following FBSDE system



dXt,x;u
s = b(s,Xt,x;u

s ;us)ds+ σ(s,Xt,x;u
s ;us)dWs + h(s,Xt,x;u

s ;us)d〈W 〉s,

Y t,x;u
s = Φ(Xu

T ) +
∫ T
t f(s,Xt,x;u

s , Y t,x;u
s , Zt,x;u

s ;us)ds+
∫ T
t g(s,Xt,x;u

s , Y t,x;u
s , Zt,x;u

s ;us)d〈W 〉s

−
∫ T
t Zt,x;u

s dWs − (M t,x;u
T −M t,x;u

t ), s ∈ [t, T ],

Xt,x;u
t = x, Mu

t = 0.

(3.5)

The above G-SDE and G-BSDE in (3.5) have a unique solution Xt,x;u
t and (Y t,x;u

t , Zt,x;u
t )

respectively as it is shown in (1.5) and (1.7) respectively. Then the forward G-SDE in (3.5)
govern the state equation of the stochastic optimal control where its value function is :
For a given x ∈ Rn, the problem is to minimize the cost function

J(t, x;u) := max
P∈P

E [Φ1(s, x(s);u(s))ds+ Φ(x(T ))]

= Ê [Φ1(s, x(s);u(s))ds+ Φ(x(T ))] ,

where u denote the control process.
The value function for a given x ∈ Rn is defined by:

v(t, x) := inf
u∈U[t,T ]

J(t, x;u) = inf
u∈U[t,T ]

Ê [Φ1(s, x(s);u(s))ds+ Φ(x(T ))] , for x ∈ Rn. (3.6)

Now, we take an overview on the dynamic programming and the related HJB. For more details
on this subject see [48] and [49].

Dynamic programming principle

For a given initial data (t, x), and on the time horizon [0, t+ δ], defining:

G
t,x;u
s,t+s(η) := Ŷ t,x;u

s ,

where, δ is positive number in [0, T − t], η ∈ L1
G(R) and Ŷ t,x;u

s is the solution of the following
G-BSDE

Ŷ t,x;u
s = η +

∫ T
s f(r,Xt,x;u

r , Ŷ t,x;u
r , Ẑt,x;u

r , ur)dr

+
∫ T
s g(r,Xt,x;u

r , Ŷ t,x;u
r , Ẑt,x;u

r , ur)d〈W 〉r −
∫ T
s Zt,x;u

r dWr − (M̂ t,x;u
T − M̂ t,x;u

s ),
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and Xt,x;u
s is the solution of the forward G-SDE of (3.5). In the case where Y t,x;u

s is the solution
of the backward G-SDE in (3.5), we have

G
t,x,u
s,T (Φ(Xu

T )) = G
t,x;u
s,t+δ(Y t+ δt,x;u).

A generalization of the well-known dynamic programming principle is given via the following
theorem.

Theorem 3.1. [48] For any δ ∈ [0, T − t], we have

V (t, x) = sup
u(.)∈U

G
t,x;u
t,t+δ(u(t, δ,Xt,x;u

t+δ )).

Now, we define G : Sd → R by

G(A) :=
1

2
Ê(〈AB1, B1〉) (3.7)

and for (t, x, v, p, A, u) ∈ [0, T ]×Rn ×R×Rn × Sn × U , let set:

Fij(t, x, v, p, A, u) = 〈Aσ(t, x), σ(t, x)〉+ 2〈p, hδij(t, x;u)〉

+2gij(t, x, v, 〈σ(t, x;u), p〉, u);

the function H(t, x, v, p, A, u) by

H(t, x, v, p, A, u) = G(F ((t, x, v, p, A, u)) + 〈b(t, x, v), p〉+ fδ(t, x, V, ∂xV, ∂
2
xxV, v),

and the Hamilton-Jacobi-Belman equation is the following second order partial differential
equation: ∂V (t, x) + inf

v∈U
H(t, x, v, p, A, u) = 0

V (T, x) = Φ(x), x ∈ Rn.
(3.8)

The relationship between the above PDE and the value function (3.6) is given by the following
theorem

Theorem 3.2. [48] The value function V defined by (3.6) is the unique viscosity solution of
the second-order partial differential equation (3.8).

Maximum principle in the G-framework

Let the control process u(t) : [0, T ]× Ω→ U , where U ∈ R is a given compact convex set. On
a G-expectation space (Ω,H, Ê), let B = (B1

t , B
2
t , . . . , B

d
t )Tt≥0 be d-dimensional G-Brownian
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motion. Let consider the following controlled system:

dXt = b(t,Xt, ut)dt+
d∑
j=1

σj(t,Xt, ut)dB
j
t +

d∑
i,j=1

hij(t,Xt, ut)d〈Bi, Bj〉t,

Yt = f(t,Xt, Yt, Zt, ut)dt+

d∑
i,j=1

gij(t,Xt, Yt, Zt, ut)d〈Bi, Bj〉t

−ZtdBt − dMt, t ∈ [0, T ],

X0 = x, YT = Φ(Xu
T ).

(3.9)

The problem is to find an optimal control û(.) ∈ U [0, T ], such that

J(û(.)) = inf
u∈U [0,T ]

J(u(.)),

where the cost functional J is defined as follow

J(u(.)) := Ê[

∫ T

0
η(t,Xt, Yt, Zt, ut)dt+ γ(XT ) + l(Y0)].

Under suitable conditions on the deterministic functions b, hij , σj , f, gij , η, γ and l, we have

〈Hu(t, X̂t, Ŷt, Ẑt, ût, pt, qt), u− û〉+G(F (t, X̂t, Ŷt, Ẑt, ût, pt, qt, ξt)) ≥ 0, ∀u ∈ U t ∈ [0, T ],

where

H(t, X̂t, Ŷt, Ẑt, ût, pt, qt) = 〈p, b(t, x;u)〉+ 〈q, f(t, x, y, z, u)〉+ η(t, x, y, z, u),

and, F = (Fij)1≤i,j≤d;

Fij(t, x, y, z, u, p, q, ξ) = 〈ξi, σju(t, x, û)(u− û)〉

+〈p, hiju (t, x, û)(u− û)〉+ 〈p, hjiu (t, x, û)(u− û)〉

+〈q, giju (t, x, û)(u− û)〉+ 〈q, gjiu (t, x, û)(u− û)〉

ξ = (ξ1, ξ2, . . . , ξd), and (X̂t, Ŷt, Ẑt) represents the corresponding optimal trajectory and pt, qt
are the solutions of the adjoint equations. For more details, we refer to [89].

3.2.1 G-Relaxed stochastic optimal control

It is worthy to mention that the famous Chattering Lemma has been extended to the following
lemma which implies that each control in the class of relaxed controls R can be approximated
with a sequence of strict controls from the set of strict controls constituted of FP -adapted
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processes u taking values in the set U that is denoted U [0, T ]. The set U [0, T ] embeds to R
through the mapping

ϕ : u ∈ U [0, T ] 7→ ϕ(u)(dt, dα) = δutdt ∈ R. (3.10)

Lemma 3.2.1. Let (U, d) be a compact separable metric space. Let (µt)t be an FP -progressively
measurable process with values in P(U). Then there exists a sequence (un)n≥0 of FP -progressively
measurable processes with values in U such that the sequence of random measures δun(dα)dt

converges in the sense of stable convergence (thus, weakly) to µt(dα)dt) quasi-surely.

Proof. Given the FP -progressively measurable relaxed control µ, the detailed pathwise construc-
tion of the approximating sequence (δun(dα)dt)n≥0 of µt(dα)dt in [29] (Theorem 2.2) extends
easily to make the strict controls (un)nF

P -progressively measurable.

Remark 3.2.1. Note that (U, d) is a separable metric space and we denote the space of
probability measures on the set U endowed with its Borel σ-algebra B(U) by P(U). The class
M([0, T ]× U) of relaxed controls is considered as a subset of the set M([0, T ]× U) of Radon
measures ν(dt, dα) on [0, T ]× U equipped with the topology of stable convergence2. of measures,
whose projections on [0, T ] coincide with the Lebesgue measure dt, moreover, whose projection
on U coincide with some probability measure µt(dα) ∈ P(U), it mean that ν(dα, dt) := µt(dα)dt.
for fixed continuous t, φ(t,∆), the coarsest topology which makes the function

q 7→
∫ T

0

∫
U
φ(t, α)q(dt, dα) for all bounded measurable functions φ(t, α)

continuous is the topology of stable convergence of measures.

Now, on (Ω, Lip(ΩT ), Ê), let
dXµ

s =
∫
U b(s,X

µ
s , α)µs(dα)ds+ σ(s,Xµ

s )dBs +
∫
U h(s,Xµ

s , α)µs(dα)d〈B〉s,

Xµ
0 = x,

(3.11)

where
b : [0, T ]×Rd × U → Rd, σ, h : [0, T ]×Rd → Rd×d

are deterministic functions, the problem is to minimize the following cost function

J(µ) = Ê(

∫ T

0

∫
U
f(s,Xµ

s , α)µs(dα)ds+ l(Xµ
t )), (3.12)

where
f : [0, T ]×Rd × U → R, l : Rd → R

2topology of stable convergence (weak topology) is is the coarsest topology for which all mappings:
Q 7→ EP(.) are continuous. For more details on this topology see Jacod & Mémin [53].
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are also deterministic functions. In view of (2.17) J(µ) = J(δu) when µ = δu, u ∈ U([0, T ]) and
the process Xδu := Xµ, solves

dXu
s = b(s,Xu

s , us)ds+ σ(s,Xu
s )dBs + h(s,Xu

s , ut)d〈B〉s,

Xu
0 = x.

(3.13)

Furthermore, the following assumptions hold

(A.1) The functions b, h and σ are continuous and bounded. Moreover, they are Lipschitz
continuous with respect to the space variable uniformly in (t, u).

(A.2) The functions f and l are continuous and bounded.

The following theorem establish the existence of an optimal control i.e. there exists a minimizer
for the problem (3.12)

Theorem 3.3. [86] We have
inf

u∈U[0,T ]
J(u) = inf

µ∈R
J(µ). (3.14)

Moreover, there exists a relaxed control µ̂ ∈ R such that

J(µ̂) = inf
µ∈R

J(µ). (3.15)

Recall that
J(µ) = sup

P∈P
JP(µ), (3.16)

where the relaxed performance functional associated to each P ∈ P is given by

JP(µ) = EP(

∫ T

0

∫
U
f(s,Xµ

s , α)µs(dα)ds+ l(Xµ
t )). (3.17)

3.3 On the existence of an optimal control to decou-
pled forward-backward stochastic differential equa-
tions in the G-framework

3.3.1 Presentation of the problem and hypothesis

Let ΩT = C0([t, T ],R) be the space of real-valued continuous functions on [t, T ], where T > 0.
(Ω,H, Ê) be a sub-linear expectation space and U be a compact metric space. For any initial
condition (t, x) ∈ [0, T ]×Rn and any admissible control u := (us, s ∈ [t, T ]) ∈ U(t), we set the
deterministic functions b, σ, h, f, g and Φ as follow:

b : [0, T ]×Rn × U → Rn; h : [0, T ]×Rn × U → Rn, σ : [0, T ]×Rn → Rn×d;
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f : [0, T ]×Rn ×R×Rd × U → R; g : [0, T ]×Rn ×R×Rd × U → R,

Φ : Rn → R.

Then, consider the following controlled decoupled G-FBSDE system:

dXu
s = b(s,Xu

s , us)ds+ σ(s,Xu
s )dWs + h(s,Xu

s , us)d〈W 〉s,

dY u
s = −f(s,Xu

s , Y
u
s , Z

u
s , us)ds− g(s,Xu

s , Y
u
s , Z

u
s , us)d〈W 〉s + Zus dWs + dMu

s , s ∈ [t, T ],

Xu
t = x, Y u

T = Φ(Xu
T ),Mu

t = 0,

(3.18)
where s ∈ [t, T ] and 〈W 〉 denotes the quadratic variation of the 1-dimensional G-Brownian
motion W = (Ws)s≥0, and (Xu, Y u, Zu,Mu) denotes the solution of the G-FBSDE, with Mu

is a decreasing G-martingale, and Xu ∈ M 2
G([0, T ]) and (Y u, Zu,Mu) ∈ S2

G(0, T ).
Let consider the following 0:

Hypothesis(H)

(H1)
The functions b, h, σ, f and g ∈ M2

G([0, T ];Rn) for each (x, y, z) ∈ Rn × R × Rd, and Φ(x) ∈
LβG(ΩT ), with β > 1.

(H2)

a) For every fixed (x, υ) ∈ Rn × U(t), b(·, x, υ), hij(·, x, υ), and σj(·, x) are continuous in t;

b) b, hij , σj are given functions satisfying b(., x, υ), hij(., x, υ), σj(., x) ∈M2
G([0, T ],Rn);

c) There exists a constant L > 0 For each s ∈ [t, T ], for each fixed control u ∈ U(s), x, x′ ∈ Rn,
for φ = b, hij : ∣∣φ(s, x;u)− φ(s, x′, u)

∣∣ ≤ L ∣∣x− x′∣∣ .
We suppose also that σj is Lipschitz in x.

(H3)

a) There exists some β > 2 such that for any y, z, u, we have f(·, ·, y, z, u), gij(·, ·, y, z, u)

∈Mβ
G([0, T ],Rn).

b) There exists some L > 0, for s ∈ [t, T ], for each fixed control u ∈ U(s), y, y′ ∈ R, z, z′ ∈ Rd,
such that

|f(t, x, y, z, u)−f(t, x, y′, z′, u)|+
d∑

i,j=1

|gij(t, x, y, z, u)−gij(t, x, y′, z′, u)| ≤ L(|y−y′|+|z−z′|).
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c) f(·, x, y, z, u), g(·, x, y, z, u) are continuous in s ∈ [t, T ], for every fixed (x, y, z, u)

d) There exist a constant L > 0, for s ∈ [t, T ], u ∈ U(s), for x ∈ Rn, y, y′ ∈ R, z, z′ ∈ Rd, we
have

|Φ(x)− Φ(x′)| ≤ L(|x− x′|),

| f(t, x, y, z, u)− f(t, x, y′, z′, u) | +|g(t, x, y, z, u)− g(t, x, y′, z′, u)| ≤ L(|y − y′|+ |z − z′|).

(H4) The functions b, σ, h, f, g,Φ are bounded.

For every fixed initial time s ∈ [t, T ], and initial state x ∈ Rn, and for every fixed con-
trol u ∈ U(s). Under hypothesis (H1), the forward stochastic differential equation in (3.18) has
a unique solution Xt,x;u, see [82]. Moreover, under hypothesis (H4) the backward stochastic
differential equation of (3.18) has a unique solution noted by: Y t,x;u, Zt,x;u,M t,x;u, see [46].
Now, for all (s, x) ∈ [t, T ]×Rn and u ∈ U(s), consider the first component of the solution of
the backward stochastic differential equation in (3.18). Since Y t,x;u

s is deterministic function of
(s, x), see [47], let defined the value function as follow:

V (s, x) = essinf
u∈U(s)

J(s, x;u).

We have also that V (s, x) is the unique viscosity solution of the following G-PDE:
∂tV (s, x) + inf

u∈U(t)
H(D2

xV,DxV, V, x, s, u) = 0,

v(T, x) = Φ(x),

(3.19)

where

H(D2
xV,DxV, V, x, s, u) = G(H(D2

xV,DxV, V, x, s, u)) + 〈b(s, x;u), DxV 〉

+ f(s, x, V, 〈σ1(s, x), DxV, u〉, . . . , 〈σd(s, x), DxV 〉, u),

and

Hij(D
2
xV,DxV, V, x, s, u) =〈D2

xV σi(s, x), σj(s, x)〉+ 2〈DxV, hij(s, x;u)〉

+ 2gij(s, x, V, 〈σ1(s, x), DxV 〉, . . . , 〈σd(s, x), DxV 〉, u).

3.3.2 The approximative Hamilton-Jacobi-Bellman equation

In this section, we aim to determine explicitly an optimal feedback control process from a
sequence of stochastic control problems which his value functions converge to that of our problem.
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The coefficients of our original control problem are not smooth enough to get a smooth solution;
we replace the coefficients by their mollification.
Let define the mollification of a given function as follow:

Definition 3.3.1. For any integer m ≥ 1, we consider ϕ : Rm→ R verified some properties
(i) ϕ be a non-negative smooth function.
(ii) supp(ϕ) ⊂ BRm(0, 1) (the support of ϕ included in the unit ball of Rm).

(iii)

∫
Rm

ϕ (ξ) dξ = 1.

We can define for any Lipschitz function l : Rm → R :

lδ (ξ) = δ−m
∫
Rm

l
(
ξ − ξ′

)
ϕ
(
δ−1ξ

′
)
dξ
′
, ξ ∈ Rm, δ > 0.

It is called the mollification of l.

Properties 3.4. The mollification function verifies the following properties
(i) |lδ (ξ)− l (ξ)| ≤ Clδ
(ii) |lδ (ξ)− lδ′ (ξ)| ≤ Cl|δ − δ′|,
(iii) |lδ (ξ)− lδ (ξ′)| ≤ Cl|ξ − ξ′|,
for all ξ, ξ′ ∈ Rm, δ, δ′ > 0,

where Cl denotes the Lipschitz constant of l independently of δ.

Proof.

|lδ(ξ)− lδ(ξ′)| = δ−m
∫
Rm
|l(ξ − x)ϕ(δ−1x)− l(ξ′ − x)ϕ(δ−1x)|dx

≤ δ−m
∫
Rm

ϕ(δ−1x)Cl|ξ − ξ
′ |dx

≤ δ−mCl|ξ − ξ
′ |
∫
Rm

ϕ(δ−1x)dx

we pose M = δ−1x, then

dM = δ−mdx

dx = δmdM

Finally,

|lδ(ξ)− lδ(ξ′)| ≤ Cl|ξ − ξ
′ |
∫
Rm

ϕ(M)dM

≤ Cl|ξ − ξ′|

Then |lδ (ξ)− lδ (ξ′)| ≤ Cl|ξ − ξ′|, .
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Definition 3.3.2. For each δ ∈ (0, 1], we denote by bδ, σδ, fδ and Φδ the mollification of the
functions b, σ, f and Φ, respectively, introduced in Section (3.3.1), with l = b (., v) , σ (., v) ,

f (., v) or Φ (.) .

Now, let (H) hold, and δ ∈ (0, 1] be an arbitrarily fixed number. We define the function F δ by:

F δij(t, x, V, ∂xV, ∂
2
xxV, v) = 〈∂2

xxV σ
δ
i (t, x), σδj (t, x)〉+ 2〈∂xV, hδij(t, x, V, v)〉

+2gδij(t, x, V, 〈σδ1(t, x), DxV 〉 . . . 〈σδd(t, x), DxV 〉);

and the function Hδ(t, x, V, ∂xV, ∂
2
xxV, u) by

Hδ(t, x, V, ∂xV, ∂
2
xxV, v) = Gδ(F δ(t, x, V, ∂xV, ∂

2
xxV, v))+〈bδ(t, x, v), ∂xV 〉+fδ(t, x, V, ∂xV, ∂2

xxV, v),

and consider the Hamilton-Jacobi-Bellman equation∂V
δ(t, x) + inf

v∈U
Hδ(t, x, V δ, ∂xV

δ, ∂2
xxV

δ, v) = 0

V δ(T, x) = Φδ(x), x ∈ Rn.
(3.20)

Since Hδ is smooth function and Gδ is uniformly elliptic, then, the unique bounded continuous
viscosity solution V δ of the equation (3.20) according to the regularity result of Krylov [62]
becomes a classical C1+ l

2
,2+l([0, T ]×Rn) solution. The regularity of V δ and the compactness

of the control state space U allow to find a measurable function vδ : [t, T ]×Rn 7→ U such that
for all (s, x) ∈ (t, T ]×Rn,

Hδ(x, (V, ∂xV, ∂
2
xxV )(s, x), vδ) = inf

v∈U
Hδ(x, (V δ, ∂xV

δ, ∂2
xxV

δ)(s, x), v) (3.21)

Lemma 3.3.1. Assume that the assumptions in (H) are satisfied, then :

Jδ(uδ) = V δ(t, x) = essinf
u∈U(t)

Jδ(u).

Moreover, uδs := vδs(s,X
δ
s ), s ∈ [t, T ] is an admissible control.

Proof. Let (s, x) ∈ [t, T ]×Rn a fixed arbitrary initial datum and for δ ∈ (0, 1], let V δ be the
solution of (3.20) and the function vδ defined by (3.21), let consider the following G-SDEdXδ

s = bδ(s,X
δ
s , v

δ(s,Xδ
s ))ds+ σδ(s,X

u
s )dWs + hδ(s,X

δ
s , v

δ((s,Xδ
s )))d〈W 〉s, s ∈ [0, t]

Xδ
t = x.

(3.22)
Since bδ, hδ are bounded measurable functions in (t;x) and σδ is Lipschitz in x, and since∫ T

t
Ê(|φ(t, ., .)|2)dt <∞, for φ = b and h respectively. Then, according to Faizoellah (Theorem
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1 page 695) [33] there exists a unique solution Xδ
t ∈M2

G([0, T ];Rn).
We define Y δ and Zδ by

Y δ
s = V δ(s,Xδ

s ), and Zδs = ∇xV δ(s,Xδ
s )σδ(s,X

δ
s ). (3.23)

Applying G-Itô’s formula to V δ(s,Xδ
s ), we have

V δ(s,Xδ
T )− V δ(s,Xδ

t ) =

∫ T

t
∂xV

δ(s,Xδ
s )σδ(s,X

δ
s )dWs

+

∫ T

t
∂xV

δ(s,Xδ
s bδ(s,X

δ
s , v

δ(s,Xδ
s ))ds

+

∫ T

t
[∂xV

δ(s,Xδ
s )hδ(s,X

δ
sv

δ(s,Xδ
s )), vδ((s,Xδ

s ))

+
1

2
∂2
xxV

δ(s,Xδ
s )σδ(s,X

δ
s )]d〈W 〉s,

combined this formula with the HJB equation (3.20), we obtain that (Xδ
s , Y

δ
s , Z

δ
s , v

δ
s) satisfies

the following equation:

dXδ,u
s = bδ(s,X

δ,u
s , uδs)ds+ σδ(s,X

δ,u
s )dWs + hδ(s,X

δ,u
s , uδs)d〈W 〉s,

dY δ,u
s = −fδ(s,Xδ,u

s , Y δ,u
s , Zδ,us , vδ(s,Xδ

s ))ds− gδ(s,Xδ,u
s , Y δ,u

s , Zδ,us )d〈W 〉s + Zδ,us dWs + dMu
s

Xδ,u
t = x, Y δ,u

T = Φδ(X
δ,u
T ),Mu

t = 0.

(3.24)
By [46] the backward equation of (3.24) has a unique solution (Y δ, Zδ) ∈ S2

G(0, T )×H2
G(0, T ),

therefore (Xδ, Y δ, Zδ) = (Xδ,t,x;uδ , Y δ,t,x;uδ , Zδ,t,x;uδ).
In particular Y δ,t,x;uδ = Y δ = V δ(t, x).

According to Faizallah [33], Xδ′,t′,x′;uδ is the solution of the following forward stochastic
differential equation

dXδ′
s = bδ′(s,X

δ′,t′,x′;uδ , vδ
′
(s,Xδ′,t′,x′;uδ))ds+ σδ′(s,X

δ′,t′,x′;uδ)dWs

+hδ′(s,X
δ′,t′,x′;uδ , vδ

′
(s,Xδ′,t′,x′;uδ))d〈W 〉s, s ∈ [0, t]

Xδ′
t′ = x′.

We extend this solution to the whole interval [t, T ], by putting Xδ′,x′;uδ
s = x′ for s < t. We

apply G-Itô’s formula to V δ′∂V
δ′(t′, x) + inf

u∈U
Hδ′(t′, x, V δ′ , ∂xV

δ′ , ∂2
xxV

δ′ , u) = 0

V δ′(T, x) = Φδ′(x), x ∈ Rn.
(3.25)
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H
δ′(t, x, V δ′ , ∂xV

δ′ , ∂2
xxV

δ′ , vδ) = inf
v∈U

Hδ′(t, x, V δ′ , ∂xV
δ′ , ∂2

xxV
δ′ , v).

V δ′(T, x) = Φδ′(x), x ∈ Rn.
(3.26)

we get

V δ′(s,Xδ′,x′;uδ

T )− V δ′(s,Xδ′,x′;uδ) =

∫ T

t
∂xV

δ′(s,Xδ′,x′;uδ
s )σδ′(s,X

δ′,x′;uδ
s )dWs

+

∫ T

t
∂xV

δ′(s,Xδ,x′;uδ
s )bδ′(s,X

δ′,x′;uδ
s , vδ

′
(s,Xδ′,x′;uδ

s ))ds

+

∫ T

t
[∂xV

δ′(s,Xδ′,x′;uδ
s )hδ′(s,X

δ′,x′;uδ
s , vδ

′
((s,Xδ′,x′;uδ

s )))

+1
2∂

2
xxV

δ′(s,Xδ′,x′;uδ
s )σδ′(s,X

δ′,x′;uδ
s )]d〈W 〉s

Since,
Y δ′,t′,x′ := V δ′(s,Xδ′,x′;uδ

s )

Zδ
′,t′,x′ := σδ′(s,X

δ′,x′;uδ
s )∇xV δ′(s,Xδ′,x′;uδ

s ).

and,

dY δ′,t′,x′ = −f̃δ′,t′,x′ds− gδ(s,Xδ′,t′,x′ , Y δ′,t′,x′ , Zδ
′,t′,x′)d〈W 〉s + Zδ

′,t′,x′
s dWs + dMs

Y δ′,t′,x′

T = Φδ′(X
δ′,t′,u
T ).

(3.27)
where

f̃δ′,t′,x′ = Gδ
′
(F δ

′
(t, x, V δ′ , ∂xV

δ′ , ∂2
xxV

δ′ , u)) + 〈bδ′(t, x, V δ′ , u), ∂xV
δ′〉

and from the HJB equation (3.25) with the classical solution V δ′ we observe that

f̃δ′,t′,x′ ≤ fδ′,t′,x′(s,X ′us , Y ′us , Z ′us , uδs),

so, by the comparison theorem( Theorem 3.6 page 1183) [47], we have

Y δ′,x′ ≤ Y δ′,x′;uδ

Lemma 3.3.2. Assume that assumptions in (H) hold, then there exists a non-negative constant
C̄, only depending on the Lipshitz constants of the coefficients and the time T, such that:

|V δ′
s − V δ

s |2 ≤ C̄|δ′ − δ|2. (3.28)

Proof. We start this proof by some notations. Let

Xδ,t,x;uδ = X, Y δ,t,x;uδ = Y, Zδ,t,x;uδ = Z,
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and
Xδ′,t,x;uδ

′
= X ′, Y δ′,t,x;uδ

′
= Y ′, Zδ

′,t,x;uδ
′

= Z ′.

Applying Itô’s formula to |Y ′s − Ys|2, then

|Y ′s − Ys|2 +

∫ T

t
|Z ′s − Zs|2d〈W 〉s =−(

∫ T

t
2|Y ′s − Ys||Z ′s − Zs|dWs +

∫ T

t
|Y ′s − Ys|2dMs)

+

∫ T

t
2|Y ′s − Ys|(fδ(s,Xs, Ys, Zs, u

δ)− fδ′(s,X ′s, Y ′s , Z ′s, uδ
′
))ds

+

∫ T

t
2|Y ′s − Ys|(gδ(s,Xs, Ys)− gδ′(s,X ′s, Y ′s ))d〈W 〉s

+|ϕδ(X ′T )− ϕδ′(XT )|2.

Let Js =

∫ T

t
2|Y ′s − Ys||Z ′s − Zs|dWs +

∫ T

t
|Y ′s − Ys|2dMs; then,

|Y ′s − Ys|2 + Js = |ϕδ(X ′T )− ϕδ′(XT )|2

+

∫ T

t
2|Y ′s − Ys|(fδ(s,Xs, Ys, Zs, u

δ)− fδ′(s,X ′s, Y ′s , Z ′s, uδ
′
))ds

+

∫ T

t
2|Y ′s − Ys|(gδ(s,Xs, Ys)− gδ′(s,X ′s, Y ′s ))d〈W 〉s,

according to [46] the process Js is a G-martingale, Then

Ê(|Y ′s − Ys|2)≤ Ê(|ϕδ′(X ′T )− ϕδ(XT )|2)

+Ê(

∫ T

t
2|Y ′s − Ys|(fδ(s,Xs, Ys, Zs, u

δ)− fδ′(s,X ′s, Y ′s , Z ′s, uδ
′
))ds)

+Ê(

∫ T

t
2|Y ′s − Ys|(gδ(s,Xs, Ys)− gδ′(s,X ′s, Y ′s ))d〈W 〉s).

By young ’s inequality, we have

Ê(|Y ′s − Ys|2)≤ Ê(|ϕδ′(X ′T )− ϕδ(X ′T ) + ϕδ(X
′
T )− ϕδ(XT )|2)

+Ê(

∫ T

t

1

ε
|Y ′s − Ys|2 + ε|fδ(s,Xs, Ys, Zs, u

δ)− fδ′(s,X ′s, Y ′s , Z ′s, uδ
′
)|2ds)

+Ê(

∫ T

t

1

ε1
|Y ′s − Ys|2 + ε1|gδ(s,Xs, Ys)− gδ′(s,X ′s, Y ′s )|2d〈W 〉s).

Using the BDG inequality under G-expectation [85](Lemma 2.18) with p = 1, it yelds
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Ê(|Y ′s − Ys|2)≤ 2Ê(|ϕδ′(X ′T )− ϕδ(X ′T )|2) + 2Ê(|ϕδ(X ′T )− ϕδ(XT )|2)

+1
ε

∫ T

t
Ê(|Y ′s − Ys|2) + εÊ(

∫ T

t
|fδ(s,Xs, Ys, Zs, u

δ)− fδ′(s,X ′s, Y ′s , Z ′s, uδ
′
)|2ds)

+ l+l̄
4ε1

∫ T

t
Ê(|Y ′s − Ys|2)ds+

ε1(l + l̄)

4
Ê(

∫ T

t
|gδ(s,Xs, Ys)− gδ′(s,X ′s, Y ′s )|2ds);

Ê(|Y ′s − Ys|2)≤ 2Ê(|ϕδ′(X ′T )− ϕδ(X ′T )|2) + 2Ê(|ϕδ(X ′T )− ϕδ(XT )|2)

+1
ε

∫ T

t
Ê(|Y ′s − Ys|2)ds+ εÊ(

∫ T

t
|fδ(s,Xs, Ys, Zs, u

δ)− fδ(s,X ′s, Y ′s , Z ′s, uδ)

+fδ(s,X
′
s, Y

′
s , Z

′
s, u

δ)− fδ′(s,X ′s, Y ′s , Z ′s, uδ)

+fδ′(s,X
′
s, Y

′
s , Z

′
s, u

δ)− fδ′(s,X ′s, Y ′s , Z ′s, uδ
′
)|2ds)

+ l+l̄
4ε1

∫ T

t
Ê(|Y ′s − Ys|2)ds+

ε1(l + l̄)

4
Ê(

∫ T

0
|gδ(s,Xs, Ys)− gδ′(s,X ′s, Y ′s )|2ds).

Using the fact the function f is K-Lipshitz, bounded by bf and by the properties of the mollifier
function, we have:

Ê(|Y ′s − Ys|2)≤ 2k2|δ′ − δ|2 + 2k2Ê(|X ′T −XT |2)

+1
ε

∫ T

t
Ê(|Y ′s − Ys|2)ds+ 6k2εÊ(

∫ T

t
|(|Xs −X ′s|2 + |Ys − Y ′s |2 + |Zs − Z ′s|2)ds)

+2k2(T − t)ε|δ′ − δ|2 + 2k2(T − t)εbf

+ l+l̄
4ε1

∫ T

t
Ê(|Y ′s − Ys|2)ds+

ε1(l + l̄)

4
Ê(

∫ T

t
|gδ(s,Xs, Ys)− gδ′(s,Xs, Ys)|2ds)

+ ε1(l+l̄)
4 Ê(

∫ T

t
|gδ′(s,Xs, Ys)− gδ′(s,X ′s, Y ′s )|2ds);

so, we obtain
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Ê(|Y ′s − Ys|2)≤ 2k2|δ′ − δ|2 + 2k2Ê(|X ′T −XT |2)

+1
ε

∫ T

t
Ê(|Y ′s − Ys|2)ds+ 6k2εÊ(

∫ T

t
|Xs −X ′s|2 + |Ys − Y ′s |2 + |Zs − Z ′s|2ds)

+2k2(T − t)ε|δ′ − δ|2 + 2k2(T − t)εbf

+ l+l̄
4ε1

∫ T

t
Ê(|Y ′s − Ys|2)ds+ (T − t)ε1(l + l̄)k2

4
|δ − δ′|2

+2k2ε1(l+l̄)
4 Ê(

∫ T

t
|Xs −X ′s|2 + |Ys − Y ′s |2ds);

Ê(|Y ′s − Ys|2)≤
(

2k2 + 6k2(T − t)ε+ (T − t)2ε1(l+l̄)k2

4

)
|δ′ − δ|2 + 2k2Ê(|X ′T −XT |2)

+
(

1
ε + 2k2ε+ l+l̄

4ε1
+ 2k2ε1(l+l̄)

4

)∫ T

t
Ê(|Y ′s − Ys|2)ds+ 2k2(T − t)εbf

+6k2εÊ(

∫ T

t
|Zs − Z ′s|2ds) + (6k2ε+

2k2ε1(l + l̄)

4
)Ê(

∫ T

0
|Xs −X ′s|2ds).

(3.29)

On the other hand we have:

Xt −X ′t =

∫ t

0
(bδ(s,Xs, u

δ)− bδ′(s,X ′s, uδ
′
))ds+

∫ t

0
(σδ(s,Xs)− σδ′(s,X ′s))dWs

+

∫ t

0
(hδ(s,Xs, u

δ)− hδ′(s,X ′s, uδ
′
))d〈W 〉s.

We apply Itô’s formula to |Xs − X ′s|2, Here Xt and X ′t have the same initial conditions, so
|X0 −X ′0| = 0, then

|Xt −X ′t|2 =

∫ t

0
2|Xs −X ′s|(bδ(s,Xs, u

δ)− bδ′(s,X ′s, uδ
′
))ds

+

∫ t

0
2|Xs −X ′s|(σδ(s,Xs)− σδ′(s,X ′s))dWs

+

∫ t

0
2|Xs −X ′s|(hδ(s,Xs, u

δ)− hδ′(s,X ′s, uδ
′
)) + (σδ(s,Xs)− σδ′(s,X ′s))2d〈W 〉s.

By Young ’s inequality and simple calculations , we have for some positive constant ε1, ε2, ε3

|Xt −X ′t|2 ≤
∫ t

0

(
1

ε1
|Xs −X ′s|2 + ε1|bδ(s,Xs, u

δ)− bδ′(s,X ′s, uδ
′
)|2
)
ds

+

∫ t

0
2|Xs −X ′s|(σδ(s,Xs)− σδ′(s,X ′s))dWs

+

∫ t

0
ε2|Xs −X ′s|2 + |hδ(s,Xs, u

δ)− hδ′(s,X ′s, uδ
′
)|2 + (σδ(s,Xs)− σδ′(s,X ′s))2d〈W 〉s.
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Since,

Ê(

∫ t

0
ε3|Xs −X ′s|2 +

1

ε3
|σδ(s,Xs)− σδ′(s,X ′s)|2dWs) = 0,

we get

Ê(|Xt −X ′t|2)≤ Ê
(∫ t

0

(
1

ε1
|Xs −X ′s|2 + ε1|bδ(s,Xs, u

δ)− bδ′(s,X ′s, uδ
′
)|2
)
ds

)
+Ê(

∫ t

0

1

ε2
|Xs −X ′s|2 + ε2(|hδ(s,Xs, u

δ)− hδ′(s,X ′s, uδ
′
)|2

+(σδ(s,Xs)− σδ′(s,X ′s))2)d〈W 〉s).

Using the BDG inequality under G-framework [85], for p = 1, we obtain

Ê(|Xt −X ′t|2)≤ ( 1
ε1

+ (l̄+l)
4ε2

)

∫ t

0
Ê(|Xs −X ′s|2) + ε1Ê(

∫ T

t
|bδ(s,Xs, u

δ)− bδ′(s,X ′s, uδ
′
)|2ds)

+ (l̄+l)ε2
4 Ê(

∫ t

0
|hδ(s,Xs, u

δ)− hδ′(s,X ′s, uδ
′
)|2ds)

+ (l̄+l)ε2
4 Ê(

∫ t

0
|σδ(s,Xs)− σδ′(s,X ′s)|2ds);

therefore,

Ê(|Xt −X ′t|2)≤ ( 1
ε1

+ (l̄+l)
4ε2

)

∫ t

0
Ê(|Xs −X ′s|2)ds

+ε1Ê(

∫ t

0
|bδ(s,Xs, u

δ)− bδ′(s,Xs, u
δ)|2ds

+

∫ t

0
|bδ′(s,Xs, u

δ)− bδ′(s,X ′s, uδ
′
)|2ds)

+ (l̄+l)ε2
4 Ê(

∫ t

0
|hδ(s,Xs, u

δ)− hδ(s,X ′s,δ
′
)|2ds)

+ (l̄+l)ε2
4 Ê(

∫ t

0
|hδ(s,X ′s, uδ

′
)− hδ′(s,X ′s, uδ

′
)|2ds)

+ (l̄+l)ε2
4 Ê(

∫ t

0
|σδ(s,Xs)− σδ(s,X ′s)|2ds)

+ (l̄+l)ε2
4 Ê(

∫ t

0
|σδ(s,X ′s)− σδ′(s,X ′s)|2ds);
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Ê(|Xt −X ′t|2)≤ ( 1
ε1

+ (l̄+l)
4ε2

)

∫ t

0
Ê(|Xs −X ′s|2)ds

+ε1(tk2|δ − δ′|2 + 2k2

∫ t

0
|Xs −X ′s|2ds)

+4(l̄+l)k2ε2
4 (

∫ t

0
Ê(|Xs −X ′s|2)ds+

2(l̄ + l)ε2t

4
b2h

+ (l̄+l)k2ε2
4

∫ t

0
Ê(|Xs −X ′s|2)ds+

(l̄ + l)ε2t

4
b2σ;

Ê(|Xt −X ′t|2)≤ C1

∫ t

0
Ê(|Xs −X ′s|2)ds

+ε1tk
2|δ − δ′|2 + bhσε2t.

Let

bhσ = (
2(l̄ + l)b2h

4
+

(l̄ + l)

4
b2σ);

C1 = (
1

ε1
+

(l̄ + l)

ε2
+

(l̄ + l)k2

ε24
+ ε1k

2 +
(l̄ + l)k2

ε34
).

We choose ε1 and ε2 small as follow

ε1 ≤
k2

bhσ
,

so,
bhσε2t ≤ ε1tk

2|δ − δ′|2.

Then,

Ê(|Xt −X ′t|2)≤ C1

∫ t

0
Ê(|Xs −X ′s|2)ds+ 3ε1tk

2|δ − δ′|2.

We applied the Gronwall inequality we obtain:

Ê(|Xt −X ′t|2)≤ eC1t(3ε1tk
2|δ − δ′|2). (3.30)

By the same steps done above, we get

Ê(|XT −X ′T |2)≤ eC′1T (3ε′1Tk
2|δ − δ′|2). (3.31)
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By applying Itô’s formula to |Y ′s − Ys|2, we extract the following inequality

Ê(

∫ T

t
|Z ′s − Zs|2d〈W 〉s)≤

(
2k2 + 6k2(T − t)ρ+ (T − t)2ρ1(l+l̄)k2

4

)
|δ′ − δ|2 + 2k2Ê(|X ′T −XT |2)

+(1
ρ + 2k2ρ+ l+l̄

4ρ1
+ k2ρ1(l+l̄)

4 )

∫ T

t
Ê(|Y ′s − Ys|2)ds+ 2k2(T − t)ρbf

+2k2ρÊ(

∫ T

0
|Zs − Z ′s|2ds) + (2k2ρ+

k2ρ1(l + l̄)

4
)Ê(

∫ T

0
|Xs −X ′s|2ds).

Using the fact that

Ê(|
∫ T

t
ξdWs|2) = Ê(

∫ T

t
|ξ|2d〈W 〉s)

and the BDG inequality under G-expectation [85](Lemma2. 19) for p = 2, we get

Ê(

∫ T

0
|Z ′s − Zs|2ds)≤ 1

lc2

(
2k2 + 2k2(T − t)ρ+ (T − t)ρ1(l+l̄)k2

4

)
|δ′ − δ|2 + 2k2

lc2
Ê(|X ′T −XT |2)

+2k2

lc2
(1
ρ + 2k2ρ+ l+l̄

4ρ1
+ k2ρ1(l+l̄)

4 )

∫ T

0
Ê(|Y ′s − Ys|2)ds+

2k2

lc2
(T − t)ρbf

+2k2

lc2
ρÊ(

∫ T

0
|Zs − Z ′s|2ds) +

1

lc2
(2k2ρ+

k2ρ1(l + l̄)

4
)Ê(

∫ T

0
|Xs −X ′s|2ds).

We choose

ρ ≤ inf(
lc2

8k2
,
2k2 + 2k2

2k2bf
);

which implies

(1− 2k2

lc2
)Ê(

∫ T

0
|Z ′s − Zs|2ds)≤ C5|δ′ − δ|2 + 2k2

lc2
Ê(|X ′T −XT |2)

+Cy

∫ T

0
Ê(|Y ′s − Ys|2)ds+

2k2

lc2
(T − t)ρbf

+CxÊ(

∫ T

0
|Xs −X ′s|2ds).

Let

C5 =
1

lc2
(2k2 + 2k2(T − t)ρ+ (T − t)ρ1(l + l̄)k2

4
),

Cy =
2k2

lc2
(
1

ρ
+ 2k2ρ+

l + l̄

4ρ1
+
k2ρ1(l + l̄)

4
),

Cz = (1− 2k2

lc2
) =

3

4
,

Cx =
1

lc2
(2k2ρ+

k2ρ1(l + l̄)

4
),
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2k2

lc2
(T − t)ρbf ≤ C5|δ′ − δ|2;

so,

Ê(

∫ T

0
|Z ′s − Zs|2ds)≤ 2C5

Cz
|δ′ − δ|2 + 2Czk2

lc2
Ê(|X ′T −XT |2)

+
Cy
Cz

∫ T

0
Ê(|Y ′s − Ys|2)ds+

Cx
Cz
Ê(

∫ T

0
|Xs −X ′s|2ds).

(3.32)

By replacing (3.32) in (3.29) and choosing

ρ ≤ inf(
lc2

8k2
,
2k2 + 2k2

2k2bf
),

and let:

C̄1 = (2(2k2 + 2k2(T − t)ε+ (T − t)3ε1(l + l̄)k2

4
) + 6k2ε+

2C5

Cz
,

C̄2 = (
1

ε
+ 6k2ε+

l + l̄

4ε1
+

3k2ε1(l + l̄)

4
) +

Cy2k
2ε

Cz
,

C̄3 = (2k2ε+
3k2ε1(l + l̄)

4
) +

Cx2k2ε

Cz
.

So,

Ê(|Y ′s − Ys|2)≤ C̄1|δ′ − δ|2 + (2k2 + 24Czk2k2ε
lc2

)Ê(|X ′T −XT |2)

+C̄2

∫ T

0
Ê(|Y ′s − Ys|2)ds+ C̄3Ê(

∫ T

0
|Xs −X ′s|2ds),

(3.33)

we replace (3.30) and (3.31) in the inequality (3.33), we get

Ê(|Y ′s − Ys|2)≤ C̄1|δ′ − δ|2 + (2k2 + 24Czk2k2ε
lc2

)eC
′
1T (3ε′1Tk

2|δ − δ′|2)

+C̄2

∫ T

0
Ê(|Y ′s − Ys|2)ds+ C̄3e

C1t(3ε1tk
2|δ − δ′|2),

(3.34)

Ê(|Y ′s − Ys|2)≤
(
C̄1 + (2k2 + 24Czk2k2ε

lc2
)eC

′
1T (3ε′1Tk

2) + C̄3e
C1t(3ε1tk

2)
)
|δ − δ′|2

+C̄2

∫ T

0
Ê(|Y ′s − Ys|2)ds,

(3.35)

Let

C̄ =

(
C̄1 + (2k2 +

24Czk
2k2ε

lc2
)eC

′
1T (3ε′1Tk

2) + C̄3e
C1t(3ε1tk

2)

)
.

By the Gronwall ’s inequality we get

Ê(|Y ′s − Ys|2)≤ C̄eC̄2T |δ′ − δ|2. (3.36)
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Lemma 3.3.3. If fδ, bδ,Φδ, σδ, hδ and gδ are bounded C∞ functions for every order the deriva-
tives are bounded, then∂V

δ(s, x) + inf
u∈U

H̄δ(x, (V δ, ∂xV
δ, ∂2

xxV
δ)(s, x), vδ(s, x)) = 0 (s, x) ∈ [t, T ]×Rn

V δ(T, x) = Φ(x), x ∈ Rn.
(3.37)

admits a unique solution V δ ∈ C1,2
b ([t, T ]×Rn), and

∇xV δ and ∇2
xxV

δ are bounded on [t, T ]×Rn. (3.38)

Moreover, there exists a constant C̄ only depending on T and constants Γ̄ and κ̄ only depending
on K and T , such that

sup
(s,x)∈[t,T ]×Rn

|V δ(s, x)| ≤ C̄ (3.39)

sup
(s,x)∈[t,T ]×Rn

|∇xV δ(t, x)| ≤ κ̄ (3.40)

∀(s, s′) ∈ [t, T ]2 |V δ(s′, x)− V δ(s, x)| ≤ κ̄|s′ − s|
1
2 (3.41)

Proof. Since G satisfying the uniformly elliptic condition, then the unique bounded continuous
viscosity solution V δ of the equation (3.37) is smooth with regularity C1,2([t, T ]×Rn), in this
case we can apply the regularity results by Krylov [62](Theorems 6.4.3 and 6.4.4 in [62]). So V δ

satisfies (3.38).
Let define for every (t;x) ∈ ([t, T ]×Rn)

B(t, x) = bδ(s,X
δ,t,x;uδ , vδ

′
(s,Xδ′,t′,x′;uδ)),

Ξ(t, x) = σδ(s,X
δ,t,x;uδ)),

Θ(t, x) = hδ′(s,X
δ′,t′,x′;uδ , vδ

′
(s,Xδ′,t′,x′;uδ)).

For every t ∈ [0;T ], the SDE

Xt,x,δ
s = x+

∫ t

0
B(r,Xt,x,δ

r )dr +

∫ t

0
Ξ(r,Xt,x,δ

r )dWr +

∫ t

0
Θ((r,Xt,x,δ

r )d〈W 〉r,

has a unique solution. We define Y t,x,δ and Zt,x,δ, ∀t ≤ s ≤ T

Y δ
s = V δ(s,Xδ

s ), and Zδs = ∇xV δ(s,Xδ
s )σδ(s,X

δ
s ).

Thus, by applying Itô’s formula to the function (t, x)→ V δ(t, x) which satisfies the following
system
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∂V δ(t, x) + H̄δ(t, x, V δ, ∂xV

δ, ∂2
xxV

δ, u) = 0

V δ(T, x) = Φδ(x), x ∈ Rn,

We see that ∀t ≤ s ≤ T

Y t,x,δ
t = Φδ(Xt,x,δ

T )−
∫ T

t
fδ(s,X

t,x,δ
s , Y t,x,δ

s , Zt,x,δs , vδs)ds

−
∫ T

t
gδ(s,X

t,x,δ
s , Y t,x,δ

s , Zt,x,δs )d〈W δ〉s +

∫ T

t
Zt,x,δs dW δ

s − (MT −Mt).

(3.42)

Subsequently, the process (Xt,x,δ
s , Y t,x,δ

s , Zt,x,δs ) is the solution of the G-FBSDE associated to the
coefficients Φδ, bδ, σδ, hδ, fδ, gδ and to the initial condition (t, x). Now, we apply Itô’s formula
to the function (t, x)→ |y|2, where y = Y t,x,δ

s , for t ≤ s ≤ T and x ∈ Rn.

J ′s = +

∫ T

t
2|Ys||Zs|dWs +

∫ T

t
|ys|2dMs.

|Ys|2 +

∫ T

t
|Zs|2d〈W 〉s + J ′s = |ϕδ(XT )|2 +

∫ T

t
2|Ys|fδ(s,Xs, Ys, Zs, u

δ)ds

+

∫ T

t
2|Ys|(gδ(s,Xs, Ys))d〈W 〉s,

|Yt|2 + J ′s ≤ |ϕδ(XT )|2 +

∫ T

t
2|Ys|fδ(s,Xs, Ys, Zs, u

δ)ds

+

∫ T

t
2|Ys|(gδ(s,Xs, Ys))d〈W 〉s,

if we take the G-expectation of the both sides, we get

Ê( sup
s∈[t,T ]

|Ys|2)≤ Ê( sup
s∈[t,T ]

{|ϕδ(XT )|2 +

∫ T

t
2|Ys|fδ(s,Xs, Ys, Zs, u

δ)ds

+

∫ T

t
2|Ys|(gδ(s,Xs, Ys))d〈W 〉s}).

We apply young and BDG (Lemma 2.19 in [85]) inequalities, we get

Ê( sup
s∈[t,T ]

|Ys|2)≤ Ê(C2
ϕ + sup

s∈[t,T ]
{
∫ T

t
ε|Ys|2 +

1

ε
|fδ(s,Xs, Ys, Zs, u

δ)|2ds})

+C2 l̄Ê( sup
s∈[t,T ]

{
∫ T

t
ε1|Ys|2 +

1

ε1
|gδ(s,Xs, Ys)|2ds});
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Ê( sup
s∈[t,T ]

|Ys|2)≤ C2
ϕ + (T − t)εÊ( sup

s∈[t,T ]
|Ys|2) +

(T − t)C2
f

ε

+C2 l̄(T − t)ε1Ê( sup
s∈[t,T ]

|Ys|2) +
C2 l̄C

2
g (T − t)
ε1

.

We choose ε = 1
8(T−t) and ε1 = 1

8C2 l̄(T−t)
, then

Ê( sup
s∈[t,T ]

|Ys|2)≤ 4C2
ϕ

3 +
32(T−t)2C2

f

3 +
32C2

2 l̄
2C2

g (T−t)2

3 , (3.43)

we conclude that there exist a constant C̄, depending only on Cϕ, Cf , Cg and T , such that (3.39)
is satisfied.
Based on the priori estimate of the supremum norm of

(
|∇xV (t, x)|2

)
result of Ladyzhenskaya

and al. (see Theorem 6.1 chapter VII in [63]), we can estimate this quantity on every compact
of [0, T ] ×Rn, moreover, we can extend this result to the cylinder [0, T ] × {x ∈ Rn, |x| ≤ n}
and [0, T ] × {x ∈ Rn, |x| ≤ n + 1}. The quantity sup

[0,T ]×{x∈Rn,|x|≤n}
|∇xV (t, x)|2 is estimated in

terms of C̄, k and d. The distance between {x ∈ Rn, |x| ≤ n} and {x ∈ Rn, |x| ≤ n+ 1} being
equal to 1. There exist a constant Γ̄ depending only on k and T such that

∀(t, x) ∈ [0, T ]×Rn, |V δ
x (t, x)| ≤ Γ̄.

It is easy to check that there exist a constant κ such that (see (3.3.2))

Ê(|Xs −Xr|2) ≤ κ̄(s− r);

Ê( sup
s∈[r,s]

|Y t,x,δ
s − Y t,x,δ

r |2) ≤ κ̄(s− r)2.

(3.44)

Hence, using the fact that Y δ,s,x
r = V (r,Xδ,s

r ), we obtain

Ê(|V δ(s, x)− V δ(r, x)|2)≤ 2Ê(|V δ(s, x)− Y δ,s,x
r |2) + 2Ê(|Y δ,s,x

r − V δ(s, x)|2)

≤ 2κ̄(s− r) + 2κÊ(|Xs −Xr|2)

≤ 2κ̄(s− r) + 2κ̄(s− r), modifying κ̄

≤ 4κ̄(s− r).

Then, (3.41) is proved.

To be more precise, let do some simple checking
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Simple verification of (3.44)

Let t ≤ r ≤ s ≤ T

Y t,x,δ
s − Y t,x,δ

r =−(

∫ T

s
fδ(u,X

t,x,δ
u , Y t,x,δ

u , Zt,x,δu , vδu)du−
∫ T

t
fδ(u,X

t,x,δ
u , Y t,x,δ

s , Zt,x,δu , vδu)du)

−(

∫ T

s
gδ(u,X

t,x,δ
u , Y t,x,δ

u , Zt,x,δu )d〈W 〉u −
∫ T

t
gδ(u,X

t,x,δ
u , Y t,x,δ

u , Zt,x,δu )d〈W 〉u)

+(

∫ T

s
Zt,x,δu dWu −

∫ T

t
Zt,x,δs dWu)− ((MT −Ms)− (MT −Mr)),

Y t,x,δ
r − Y t,x,δ

s =−
∫ s

r
fδ(u,X

t,x,δ
u , Y t,x,δ

u , Zt,x,δu , vδu)du

−
∫ s

r
gδ(u,X

t,x,δ
u , Y t,x,δ

u , Zt,x,δu )d〈W 〉u

+

∫ s

r
Zt,x,δu dWu + (Ms −Mr),

this looks like (3.42), then, we use the result obtain in (3.43), so

Ê( sup
s∈[t,T ]

|Y t,x,δ
s − Y t,x,δ

r |2)≤ 32(s−r)2C2
f

3 +
32C2

2 l̄
2C2

g (s−r)2

3 .

Then

Ê( sup
s∈[r,s]

|Y t,x,δ
s − Y t,x,δ

r |2)≤ κ̄(s− r)2. (3.45)

At the other hand, we have

Ê(|Y t,x,δ
r − V (r, x)|2) = Ê(V (r,Xt,x,δ

r )− V (r, x))

≤ κ̄Ê(|Xt,x,δ
r − x|2)

≤ κ̄Ê(|Xt,x,δ
r −Xt,x,δ

s |2).

For Xs −Xr, we have

Xs −Xr =

∫ s

r
(bδ(u,Xu)du+

∫ s

r
σδ(u,Xu)dWu

+

∫ s

r
hδ(u,Xu)d〈W 〉u.

Using the fact that b, σ, h are bounded, the BDG inequalities gives

Ê(| Xs −Xr |2)≤ 2(s− r)2C2
b + 2C2 l̄(s− r)C2

σ

+ (l+l̄)2

8 (s− r)2C2
h.
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Then,

Ê(| Xs −Xr |2)≤ κ̄(s− r).

Since,

|V δ′(t′, x′)− V δ(t, x)| ≤ |V δ′(t′, x′)− V δ(t′, x′)|+ |V δ(t′, x′)− V δ(s, x)|, (3.46)

then, (3.40) and (3.41) implies that

|V δ′(t′, x′)− V δ(t, x)| ≤ κ̄|t− t′|
1
2 + Γ|x− x′|, (3.47)

Using (3.28), and we modify the constants if necessary we get

|V δ′(t′, x′)− V δ(t, x)| ≤ C
(
|t− t′|

1
2 + |x− x′|+ |δ − δ′|

)
, (3.48)

As V δ is bounded in (t, x), we conclude that it converges (as δ → 0) to a function V̄ , moreover
the Hamiltonian Hδ converges to H because of the stability of the viscosity solution, in fact V̄
is also solution of (3.20). The uniqueness of the solution of equation (3.20) shows that V̄ = V .
This prove that

V δ′ → V as δ′ → 0.

Then,
|V δ(t, x)− V | ≤ Cδ, for all δ ∈ [0, 1) and (t, x) ∈ [0, T ]×Rn.

3.3.3 Convergence of the approximating control problems

In this section, we show that the approximated problem (3.20) converge to the value function
of our original problem, and show that the optimal control of our original stochastic optimal
control is the limit of the sequence of the optimal control of the approximated systems. the
result is given in the next theorem

Theorem 3.5. Assume that the assumptions (H) are satisfied. Let (t, x) ∈ [0, T ] × Rn and
(δn)n∈N be a sequence of positive real numbers which tends to 0. Then, there exists a process
(X̄, Ȳ , Z̄, M̄) ∈ M 2

G([0, T ])×S2
G(0, T ) , with M̄ is a decreasing martingale and an admissible

control ū ∈ U(t), such that:

1. There is a subsequence of (Xδn , Y δn)n∈N which converges in distribution to (X̄, Ȳ ),

2. (X̄, Ȳ , Z̄, M̄) is a solution of the following system
dX̄s = b(s, X̄s, ūs)ds+ σ(s, X̄s)dW̄s + h(s, X̄s, us)d〈W 〉s,

dȲs = −f(s, X̄s, Ȳs, Z̄s, ūs)ds− g(s, X̄s, Ȳs, Z̄s)d〈W 〉s + Z̄sdWs + dM̄s,

X̄t = x ȲT = ξ = Φ(X̄T ) , M̄t = 0

(3.49)
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3. For every (t, x) ∈ [0, T ]×Rn, it holds that

Ȳt = V (t, x) = essinf
u∈R(t)

J(t, x;u) ,

i.e. the relaxed control ū ∈ R is optimal for our original SOC problem (3.49).

In order to prove this theorem, we need the following lemma:

Lemma 3.3.4. For all n ∈ N. There exists a constant L such that

Ê

(
sup
s∈[t,T ]

|Xδn
s −Xn

s |2
)
≤ Lδ2

n (3.50)

Ê

(
sup
s∈[t,T ]

|Y δn
s − Y n

s |2
)
≤ Lδ2

n (3.51)

Proof. Let the sequence of processes (Xn
s , Y

n
s ) satisfy the following controlled G-FBSDE

dXn
s = b(s,Xn

s , Y
n
s , u

δn
s )ds+ σ(s,Xn

s )dWs + h(s,Xn
s , Y

n
s , u

δn
s )d〈W 〉s,

dY n
s = −f(s,Xn

s , Y
n
s , w

δnσ(Xn
s ), uδns )ds− g(s,Xn

s , Y
n
s , w

δnσ(Xn
s ))d〈W 〉s

+wδns σ(Xδn
s )dWs + dMn

s ,

Xn
t = x Y n

t = V δn(t, x) , Mn
t = 0.

(3.52)

Where, wδn = ∇xV δn(t,Xδn
t ). Consider now the subsequence (Xδn

s , Y
δn
s ) satisfied the following

controlled system

dXδn
s = bδn(s,Xδn

s , Y
δn
s , uδns )ds+ σδn(s,Xδn

s )dWs + hδn(s,Xδn
s , Y

δn
s , wδns )d〈W 〉s,

dY δn
s = −fδn(s,Xδn

s , Y
δn
s , uδns σδn(Xδn

s ), uδns )ds− gδn(s,Xδn
s , Y

δn
s , wδns σδn(Xδn

s ))d〈W 〉s
+wδns σδn(Xδn

s )dWs + dM δn
s ,

Xδn
t = x Y δn

t = V δn(t, x) , M δn
t = 0

(3.53)
We apply the Itô’s formula to |Xδn

s −Xn
s |2, we get

|Xn
t −X

δn
t |2 =

∫ t

0
2|Xn

t −Xδn
s |(b(s,Xn

s , Y
n
s , u

δn
s )− bδn(s,Xδn

s , Y
δn
s , uδns ))ds

+

∫ t

0
2|Xn

t −Xδn
s |(σ(s,Xn

s )− σδn(s,Xδn
s ))dWs

+

∫ t

0
2|Xn

t +Xδn
s |(h(s,Xn

s , Y
n
s , u

δn
s )− hδn(s,Xδn

s , Ys, u
δn
s ))

+(σ(s,Xn
s )− σδn(s,Xδn

s ))2d〈W 〉s
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Ê(|Xn
t −Xδn

t |2) = Ê(

∫ t

0
2|Xn

t −Xδn
s |(b(s,Xn

s , Y
n
s , u

δn
s )− bδn(s,Xδn

s , Y
δn
s , uδns ))ds)

+Ê(

∫ t

0
2|Xn

t −Xδn
s (|σ(s,Xn

s )− (σδn(s,Xδn
s ))dWs))

+Ê(

∫ t

0
2|Xn

t −Xδn
s |(h(s,Xn

s , u
δn
s )− hδn(s,Xδn

s , u
δn
s ))

+(σ(s,Xn
s )− σδn(s,Xδn

s , u
δn
s ))2d〈W 〉s).

By the BDG inequalities (Lemma 2.18 [85]) and Proposition 2.6 [46], for p = 1, we get

Ê(|Xn
t −Xδn

t |2)≤ Ê(

∫ t

0
2|Xn

t −X
δn
t |(b(s,Xn

s , u
δn
s )− bδn(s,Xδn

s , u
δn
s ))ds)

+ (l+l̄)
4 Ê(

∫ t

0
2|Xn

t −X
δn
t |h(s,Xn

s , u
δn
s )− (hδn(s,Xδn

s , u
δn
s ))

+(σ(s,Xn
s )− σδn(s,Xδn

s ))ds).

By Young ’s inequality, we get

Ê(|Xn
t −X

δn
t |2)≤ Ê(

∫ t

0

1

ε
|Xn

t −X
δn
t |2 + ε|b(s,Xn

s , u
δn
s )− bδn(s,Xδn

s , u
δn
s )|2ds)

+ (l+l̄)
4 Ê(

∫ t

0

1

ε1
|Xn

t −X
δn
t |2 + 2ε1|h(s,Xn

s , u
δn
s )− hδn(s,Xδn

s , u
δn
s )|2

+2ε1|σ(s,Xn
s )− σδn(s,Xδn

s )|2ds),

which also gives

Ê(|Xn
t −Xδn

t |2)≤ Ê(

∫ t

0

1

ε
|Xn

t −Xδn
t |2 + ε|b(s,Xn

s , u
δn
s )− bδn(s,Xδn

s , u
δn
s )|2ds)

+ (l+l̄)
4 Ê(

∫ t

0

1

ε1
|Xn

t −X
δn
t |2 + 2ε1|h(s,Xn

s , u
δn
s )− hδn(s,Xδn

s , u
δn
s )|2

+2ε1|σ(s,Xn
s )− σδn(s,Xδn

s )|2ds);

Consequently,

Ê(|Xn
t −X

δn
t |2)≤ (1

ε + (l+l̄)
4ε1

)

∫ t

0
Ê(|Xn

t −X
δn
t |2)ds

+εÊ(

∫ t

0
|b(s,Xn

s , u
δn
s )− bδn(s,Xδn

s , u
δn
s )|2ds)

+ ε1(l+l̄)
2 Ê(

∫ t

0
|h(s,Xn

s , u
δn
s )− hδn(s,Xδn

s , u
δn
s )|2ds)

(l+l̄)ε1
2 Ê(

∫ t

0
(σ(s,Xn

s )− σδn(s,Xδn
s ))2ds).
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We have

Ê(

∫ t

0
|b(s,Xn

s , u
δn
s )− bδn(s,Xδn

s , u
δn
s )|2ds)≤ 2Ê(

∫ t

0
|b(s,Xn

s , u
δn
s )− bδn(s,Xn

s , u
δn
s )|2ds)

+2Ê(

∫ t

0
|bδn(s,Xn

s , u
δn
s )− bδn(s,Xδn

s , u
δn
s )|2ds);

by the property of the mollification, we have

Ê(

∫ t

0
|b(s,Xn

s , u
δn
s )− bδn(s,Xδn

s , u
δn
s )|2ds)≤ 2Tk2

δδ
2
n + 4k2Ê(

∫ T

0
|Xn

s −Xδn
s |2ds),

and

Ê(

∫ T

0
|h(s,Xn

s , u
δn
s )− hδn(s,Xδn

s , u
δn
s )|2ds)≤ 2Ê(

∫ T

0
|h(s,Xn

s , u
δn
s )− hδn(s,Xn

s u
δn
s )|2ds)

+2Ê(

∫ T

0
|hδn(s,Xn

s , u
δn
s )− hδn(s,Xδn

s , u
δn
s )|2ds),

also by the same technique

Ê(

∫ t

0
|h(s,Xn

s , u
δn
s )− hδn(s,Xδn

s , u
δn
s )|2ds)≤ 2Tk2

δδ
2
n + 2k2Ê(

∫ T

0
|Xn

s −Xδn
s |2ds).

By the same way,

Ê(

∫ T

0
|σ(s,Xn

s )− σδn(s,Xδn
s )|2ds)≤ 2Ê(

∫ T

0
|σ(s,Xn

s )− σδn(s,Xn
s )|2ds)

+2Ê(

∫ T

0
|σδn(s,Xn

s )− σδn(s,Xδn
s )ds).

Ê(

∫ t

0
|σ(s,Xn

s )− σδn(s,Xδn
s )|2ds)≤ 2Tk2

δδ
2
n + 2k2Ê(

∫ T

0
|Xn

s −Xδn
s |2ds).

Therefore,

Ê(|Xn
t −X

δn
t |2)≤ (1

ε + (l+l̄)
4ε1

)

∫ t

0
Ê(|Xn

t −Xδn
t |2)ds

+ε2Tk2
δδ

2
n + 2k2εÊ(

∫ T

0
|Xn

s −Xδn
s |2ds)

+ε1(l + l̄)Tk2
δδ

2
n

+ε1(l + l̄)k2Ê(

∫ T

0
|Xn

s −Xδn
s |2ds)

+ε1(l + l̄)Tk2
δδ

2
n

+ε1(l + l̄)k2Ê(

∫ T

0
|Xn

s −Xδn
s |2ds).



3.3.3 Convergence of the approximating control problems 74

By Gronwall ’s lemma, there exists a constant K independent of δn such that

Ê(|Xn
t −X

δn
t |2)≤ Kδ2

n.
(3.54)

Now, for the estimation of the solution of the G-BSDE, we apply Itô’s formula to

|Y n
s − Y δn

s |2

let

Js =

∫ T

t
2|Y n

s − Ys||wδnσ(Xn
s )− wδnσ(Xδn

s )|dWs +

∫ T

t
|Y n
s − Ys|2dMs

so,

|Y n
s − Y δn

s |2 + Js ≤ |ϕ(Xn
T )− ϕδn(Xδn

T )|2

+

∫ T

t
2|Y n

s − Y δn
s |(f(s,Xn

s , Y
n
s , w

δnσ(Xn
s ), uδns )− fδn(s,Xδn

s , Y
δn
s , uδns σδn(Xδn

s ), uδns ))ds

+

∫ T

t
2|Y n

s − Y δn
s |(g(s,Xn

s , Y
n
s , w

δnσ(Xn
s ))− gδn(s,Xδn

s , Y
δn
s , wδns σδn(Xδn

s )))d〈W 〉s,

where M = Mn −M δn . By taking the G-expectation of the both sides of the above equation,
we get

Ê(|Y n
s − Y δn

s |2 + Js)≤ Ê(|ϕ(Xn
T )− ϕδn(Xδn

T )|2)

+Ê(

∫ T

t
2|Y n

s − Y δn
s |(f(s,Xn

s , Y
n
s , w

δnσ(Xn
s ), uδns )

−fδn(s,Xδn
s , Y

δn
s , uδns σδn(Xδn

s ), uδns ))ds)

+Ê(

∫ T

t
2|Y n

s − Y δn
s |(g(s,Xn

s , Y
n
s , w

δnσ(Xn
s ))

−gδn(s,Xδn
s , Y

δn
s , wδns σδn(Xδn

s )))d〈W 〉s).

By the BDG inequalities in Lemma 2.18 [85] and Proposition 2.6 [46], for p = 1, we obtain

Ê(|Y n
s − Y δn

s |2)≤ Ê(|ϕ(Xn
T )− ϕδn(Xδn

T )|2)

+Ê(

∫ T

t
2|Y n

s − Y δn
s |(f(s,Xn

s , Y
n
s , w

δnσ(Xn
s ), uδns )− fδn(s,Xδn

s , Y
δn
s , uδns σδn(Xδn

s ), uδns ))ds)

+ (l+l̄)
4 Ê(

∫ T

t
2|Y n

s − Y δn
s |(g(s,Xn

s , Y
n
s , w

δnσ(Xn
s ))− gδn(s,Xδn

s , Y
δn
s , wδns σδn(Xδn

s )))ds),

By Young ’s inequality
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Ê(|Y n
s − Y δn

s |2)≤ Ê(|ϕ(Xn
T )− ϕδn(Xδn

T )|2) + (1
ε + (l+l̄)

4ε1
)Ê(

∫ T

t
|Y n
s − Y δn

s |2ds)

+εÊ(

∫ T

t
|f(s,Xn

s , Y
n
s , w

δnσ(Xn
s ), uδns )− fδn(s,Xδn

s , Y
δn
s , uδns σδn(Xδn

s ), uδns )|2ds)

+ (l+l̄)
4ε1

Ê(

∫ T

t
|g(s,Xn

s , Y
n
s , w

δnσ(Xn
s ))− gδn(s,Xδn

s , Y
δn
s , wδns σδn(Xδn

s ))|2ds),

we omit the variables by the following notation:

f − fδn = f(s,Xn
s , Y

n
s , w

δnσ(Xn
s ), uδns )− fδn(s,Xδn

s , Y
δn
s , uδns σδn(Xδn

s ), uδns ),

then

Ê(

∫ T

t
|f − fδn |2ds)≤ 2Ê(

∫ T

t
|f(s,Xn

s , Y
n
s , w

δnσ(Xn
s ), uδns )− fδn(s,Xn

s , Y
n
s , w

δnσ(Xn
s ), uδns )|2ds)

+2Ê(

∫ T

t
|fδn(s,Xn

s , Y
n
s , w

δnσ(Xn
s ), uδns )− fδn(s,Xδn

s , Y
δn
s , wδns σδn(Xδn

s ), uδns )|2ds).

Ê(

∫ T

t
|f − fδn |2ds)≤ 2(T − t)k2

δδ
2
n

+6kÊ(

∫ T

t
(|Xn

s −Xδn
s |2 + |Y n

s − Y δn
s |2 + |wδnσ(Xn

s )− wδns σδn(Xδn
s )|2)ds).

also we note,

g − gδn = g(s,Xn
s , Y

n
s , w

δnσ(Xn
s ))− gδn(s,Xδn

s , Y
δn
s , wδns σδn(Xδn

s ))

so,

Ê(

∫ T

t
|g − gδn |2ds)≤ 2kÊ(

∫ T

t
|g(s,Xn

s , Y
n
s , w

δnσ(Xn
s ))− gδn(s,Xn

s , Y
n
s , w

δnσ(Xn
s ))|2ds)

+2kÊ(

∫ T

t
|gδn(s,Xn

s , Y
n
s , w

δnσ(Xn
s ))− gδn(s,Xδn

s , Y
δn
s , wδns σδn(Xδn

s ))|2ds)

then,

Ê(

∫ T

t
|g − gδn |2ds)≤ 2(T − t)k2

δδ
2
n

+6kÊ(

∫ T

t
(|Xn

s −Xδn
s |2 + |Y n

s − Y δn
s |2 + |wδnσ(Xn

s )− wδns σδn(Xδn
s )|2)ds).

Hence,
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Ê(|Y n
s − Y δn

s |2)≤ (1
ε + (l+l̄)

4ε1
)Ê(

∫ T

t
|Y n
s − Y δn

s |2ds) + ε2(T − t)k2
δδ

2
n +

(T − t)k2
δ (l + l̄)

2ε1
δ2
n

+6kεÊ(

∫ T

t
(|Xn

s −Xδn
s |2 + |Y n

s − Y δn
s |2 + |wδnσ(Xn

s )− wδns σδn(Xδn
s )|2)ds)

+3k(l+l̄)
2ε1

Ê(

∫ T

t
(|Xn

s −Xδn
s |2 + |Y n

s − Y δn
s |2 + |wδnσ(Xn

s )− wδns σδn(Xδn
s )|2)ds),

Ê(|Y n
s − Y δn

s |2)≤ (1
ε + (l+l̄)

4ε1
+ 3k(l+l̄)

2ε1
+ 6kε)Ê(

∫ T

t
|Y n
s − Y δn

s |2ds)

+ε2(T − t)k2
δδ

2
n +

(T−t)k2
δ(l+l̄)

2ε1
δ2
n

+(6kε+ 3k(l+l̄)
2ε1

)Ê(

∫ T

t
|Xn

s −Xδn
s |2ds)

+(6kε+ 3k(l+l̄)
2ε1

)Ê(

∫ T

t
|wδnσ(Xn

s )− wδns σδn(Xδn
s )|2ds),

Ê(|Y n
s − Y δn

s |2)≤ (1
ε + (l+l̄)

4ε1
+ 3k(l+l̄)

2ε1
+ 6kε)Ê(

∫ T

t
|Y n
s − Y δn

s |2ds)

+ε2(T − t)k2
δδ

2
n +

(T−t)k2
δ(l+l̄)

2ε1
δ2
n

+(6kε+ 3k(l+l̄)
2ε1

)Ê(

∫ T

t
|Xn

s −Xδn
s |2ds)

+(6kε+ 3k(l+l̄)
2ε1

)Ê(

∫ T

t
|wδns |2|σ(Xn

s )− σδn(Xδn
s )|2ds),

using the fact that

Ê(

∫ t

0
|σ(s,Xn

s )− σδn(s,Xδn
s )|2ds)≤ 2Tk2

δδ
2
n + 2k2Ê(

∫ T

0
|Xn

s −Xδn
s |2ds)

and wδn is bounded, we have:

Ê(|Y n
s − Y δn

s |2)≤ (1
ε + (l+l̄)

4ε1
+ 3k(l+l̄)

2ε1
+ 6kε)Ê(

∫ T

t
|Y n
s − Y δn

s |2ds)

+ε2(T − t)k2
δδ

2
n +

(T−t)k2
δ(l+l̄)

2ε1
δ2
n + +(6kε+ 3k(l+l̄)

2ε1
)C2

w2Tk2
δδ

2
n

+(6kε+ 3k(l+l̄)
2ε1

+ 2k2(6kε+ 3k(l+l̄)
2ε1

)C2
w)Ê(

∫ T

t
|Xn

s −Xδn
s |2ds).

Moreover, we already have proved (3.54). So,

Ê(|Y n
s − Y δn

s |2)≤ eC1(T−t)Cδ2
n.

(3.55)
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Let C1 = ((1
ε + (l+l̄)

4ε1
+ 3k(l+l̄)

2ε1
+ 6kε) + 6kε+ 3k(l+l̄)

2ε1
+ 2k2(6kε+ 3k(l+l̄)

2ε1
)C2

w)eatb

C = kea(T−t)(ε2(T − t)k2
δ ) +

(T − t)k2
δ (l + l̄)

2ε1
+ (6kε+

3k(l + l̄)

2ε1
)C2

w2Tk2
δ .

Then,

Ê(|Xn
t −X

δn
t |2)≤ eat(K + beC1(T−t)C)δ2

n.
(3.56)

Now, let prove the main result, Theorem (3.5))

Proof. We aim to prove that the limit of the sequence (Xδn , Y δn) coincide with that of the
auxiliary sequence of forward SDE for which we can extract a subsequence whose solutions
converge in law to (X̄, Ȳ ) associated to a control that is optimal for our control problem in
order to prove the existence of subsequence.
For n ∈ N, we define the sequence of auxiliary processes (Xn

s , Y
n
s ) as the unique solution of the

following controlled forward system:

dXn
s = b(s,Xn

s , u
δn
s )ds+ σ(s,Xn

s )dWs + h(s,Xn
s , u

δn
s )d〈W 〉s,

dY n
s = −f(s,Xn

s , Y
n
s , w

δnσ(Xn
s ), uδns )ds− g(s,Xn

s , Y
n
s , w

δnσ(Xn
s ))d〈W 〉s

+wδns σ(Xn
s )dWs + θnd〈B〉s − 2G(θn)ds,

Xn
t = x Y n

t = V δn(t, x)

(3.57)

where θn is a stochastic process, uδns := vδn(s,Xδn
s ) and wns = ∇xV δn(s,Xδn

s ).
With θn = 0, the process (Xδn

s , Y
δn
s ) is a solution of the following controlled forward system:

dXδn
s = bδn(s,Xδn

s , u
δn
s )ds+ σδn(s,Xδn

s )dWs + hδn(s,Xδn
s , w

δn
s )d〈W 〉s,

dY δn
s = −fδn(s,Xδn

s , Y
δn
s , uδns σδn(Xδn

s ), uδns )ds− g(s,Xδn
s , Y

δn
s , wδns σδn(Xδn

s ))d〈W 〉s
+wδns σδn(Xδn

s )dWs,

Xδn
t = x Y δn

t = V δn(t, x)

(3.58)
From (3.23), we have, for t ≤ s ≤ T ,

Y δn
s = V δn(s,Xδn) and uδns = vδn(t,Xδn

s ).

Since (s, x) 7→ V δn(s, x) is a C1,2 function and satisfies equation (3.37) with δ = δn, so, using
G-Itô’s formula we get for t ≤ s ≤ T

Y δn
s = φδn(Xδn

T ) +

∫ T

t
fδn(s,Xδn

s , Y
δn
s , uδns σδn(Xδn

s ), uδns )ds

+

∫ T

t
g(s,Xδn

s , Y
δn
s , wδns σδn(Xδn

s ))d〈W 〉s −
∫ T

t
wδns σδn(Xδn

s )dWs

(3.59)
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If we put

χns :=


Xn
s

Y n
s

 , rns := (wns σn(Xn
s ), 0, uδns ), W :=


W

W

 , and d〈W〉 :=


d〈W 〉

d〈W 〉


then the system (3.57) becomes:

dχns = β(χns , r
n
s )ds+ Π(χns , r

n
s )d〈W〉s + Σ(χns , r

n
s )dWs, s ∈ [t, T ],

χnt =

 x

V δn(t, x)

 ,
(3.60)

where,

β(χns , r
n
s ) =


b(s,Xn

s , u
δn
s )

−f(s,Xn
s , Y

n
s , w

δnσ(Xn
s ), uδns )− 2G(θn)

 ,

Π(χns , r
n
s ) =


h(s,Xn

s , u
δn
s )

−g(s,Xn
s , Y

n
s , w

δnσ(Xn
s )) + θn

 , and Σ(χns , r
n
s ) =


σ(s,Xn

s )

wδns σ(Xn
s )


From (3.3.3), we have wns = ∇xV δn(s,Xδn

s ) is uniformly bounded. Then, we can interpret
(rns , s ∈ [t, T ]) as a control with values in the compact set

A := U× B̄C(0)× [0,K].

The next step is to take n→ +∞, for this, let’s consider the random measure:

qn(ω, ds, da) = δrns (ω)(da)ds, (s, a) ∈ [0, T ]×A,ω ∈ Ω.

We identify the control process rn with the measure qn, this end show us that the control rn is in
the set of relaxed controls, i.e. we consider rn as random variable with values in the space V of
all Borel measures qn on [0, T ]×U× B̄C(0)× [0,K], whose projection qn(·×U× B̄C(0)× [0,K])

coincides with the Lebesgue measure.
From the boundedness of our coefficients and by the compactness of V with respect to the
topology induced by the weak convergence of measures, we get the tightness of the laws of
(χn, qn) on this space, and then, from this and the use of the G-Chattering Lemma [86] we can
extract a subsequence that converges in law on this space to (χ, r̄), where r̄ with values in R,
which satisfies
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dχs = β(χ, r̄s)ds+ Π(χs, r̄s)d〈W〉s + Σ(χs, r̄s)dWs, s ∈ [t, T ],

χt =

 x

V δn(t, x)

 .
(3.61)

Replacing Σ,
∏

and β by their definition and setting

χ :=


X̄

Ȳ

 ,W :=


W

W

 , and d〈W〉 :=


d〈W 〉

d〈W 〉


and r̄ := (w̄, θ̄, ū), the system (3.61) can be rewritten as follows:

dX̄s = b(s, X̄s, ūs)ds+ σ(s, X̄s)dWs + h(s, X̄s, ūs)d〈W 〉s,

dȲs = −f(s, X̄s, Ȳs, Z̄s, ūs)ds− g(s, X̄s, Ȳs, Z̄s)d〈W 〉s + Z̄sdWs + θ̄sd〈B〉s − 2G(θ̄s)ds,

X̄t = x Ȳt = V (t, x)

(3.62)
We put

M̄s :=

∫ s

t
θ̄rd〈B〉r − 2

∫ s

t
G(θ̄r)dr,

(M̄s)s∈[t,T ] is a decreasing G-martingale, and this prove 1.
Lemma (3.3.4) shows that if the sequence (Xn, Y n)n∈N converges in law, the same holds true
for (Xδn , Y δn)n∈N, and the limits have the same distribution. Further, we deduce from ((3.50),
(3.51)) and Proposition (3.3.3), that Ȳs = V (s, X̄s) for each s ∈ [t, T ] quasi-surely. In particular,
YT = Φ(XT ) q.s.. So, assertion 2 of the theorem is proved.
We have already seen that Ȳs = V (s, X̄s) for all s ∈ [t, T ] q.s.. On the other hand, it is
well known that, for the unique bounded viscosity solution V of the Hamilton-Jacobi-Bellman
equation (3.19), we have

V (t, x) = essinf
u∈R

J(t, x;u), q.s.

This proves assertion 3 of the theorem.



Chapter 4

Model Reduction And Uncertainty
Quantification Of Multiscale Under
G-Expectation

This chapter is organized as follow: in the first section, the idea of using the G-Brownian
motion framework to the uncertainty quantification for multiscale systems is explained. Second
section records basic definitions and identities related to the stochastic representations of fully
nonlinear partial differential equations in terms of second-order BSDE that are used to carry
out the numerical simulations in Section (4.3). The key theoretical result of this chapter, the
convergence of the value function and its derivative, are formulated and proved in Section 3. To
illustrate the theoretical findings, we discuss two numerical examples with uncertain diffusions
in Section 4; a linear quadratic Gaussian regulator with uncertain diffusion and an uncontrolled
bilinear benchmark system from turbulence modeling.

4.1 Slow-fast system

Let x = (r, u) ∈ Rn = Rns × Rnf and ε > 0 be a small parameter. We consider slow-fast
multiscale SDE models of the form

dRεt =

(
f0(Rεt , U

ε
t ) +

1√
ε
f1(Rεt , U

ε
t )

)
dt+ α(Rεt , U

ε
t )dVt (4.1a)

dU εt =
1

ε
g(Rεt , U

ε
t ; θ)dt+

1√
ε
β(Rεt , U

ε
t ; θ)dWt , (4.1b)

where all coefficients are assumed to be such that the SDE has a unique strong solution for all
times. We call Rεt the resolved (slow) variable and U εt the unresolved (fast) variable that is not
fully accessible and depends on an unknown parameter θ ∈ Θ ⊂ Rp, where for convenience we
suppress the dependence on θ.
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The aim is to derive a closed equation for Rε for ε→ 0 that best approximates the resolved
process whenever ε is sufficiently small. Since the fast process depends on an unknown parameter,
the answer to the question what the best approximation is remaining ambiguous.

4.1.1 Goal-oriented uncertainty quantification

To illustrate the ambiguity in the reduced dynamics, let us consider the degenerate diffusion

dRt = (Rt − U3
t )dt , R0 = r (4.2a)

dUt =
1

ε
(Rεt − Ut)dt+

√
2θ

ε
dWt , U0 = u . (4.2b)

for θ ∈ [0, 1] where, for simplicity, we use the shorthand (R,U) = (Rε, U ε) ∈ R×R and suppress
the dependence on the small parameter ε.
When ε� 1, the fast dynamics becomes “slaved” by the slow dynamics and randomly fluctuates

around Rt. The unique limiting invariant measure of the fast variables conditionally on Rt = r

is given by µr = N (r, θ) when θ ∈ (0, 1], and singular, µr = δr for θ = 0. As ε→ 0 it follows
from the averaging principle (e.g. [39, Ch. 7]), that the slow process R = Rε converges pathwise
to a limit process that is the solution of the (here: deterministic) initial value problem

dr

dt
= F (r; θ) , r(0) = r , (4.3)

where
F (r, θ) = −r3 + r(1− 3θ) , θ ∈ [0, 1] . (4.4)

Figure (4.1) shows the vector field F (·, θ) for three different values of θ and illustrates that
the limit dynamics undergoes a supercritical pitchfork bifurcation at θ = 1/3 at which two
asymptotically stable fixed point and an unstable one collapse into one asymptotically stable one.
Note that F (r, ·) is continuous at θ = 0, nevertheless, depending on value of θ, the qualitative
properties of the limit dynamics change drastically as θ varies. It therefore makes sense to
modify the best approximation question slightly and instead ask for a worst-case scenario in
terms of the unknown parameter for a given quantity of interest (QoI).
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Figure 4.1: Limiting vector field F (·, θ) for θ ∈ {0, 1/3, 1}. The value θ = 1/3

(green dotted curve) corresponds to a supercritical pitchfork bifurcation of
the dynamics.

Let ϕ : C([0, T ])→ R be a suitable test function. The objects of interest are path functionals
of the form φε = ϕ(Rε), with Rε = (Rε,θt )t∈[0,T ]. To this end let r = (rθt )t∈[0,T ] denotes the
candidate limit process as ε→ 0 and denote φ = ϕ(r).
A worst-case scenario for the convergence of Rε to the limiting process r can be expressed by
the G-expectation using the representation formula (1.14):

Ê (|φε − φ|) = sup
θ∈Θ

Êθ (|φε − φ|) . (4.5)

For example, the worst-case approximation for the variance (or the second moment) may be
different from the approximation of the slow process itself, in that they correspond to different
values of the unknown parameter θ.
If the linear expectation on the right hand side of (4.5) converges for every fixed θ ∈ Θ, stability

results (e.g. [97, Thm. 3.1]) for G-BSDE imply that

lim
ε→0

Ê (|φε − φ|) = 0 . (4.6)

If φε is regarded as data, then the G-expectation defines some kind of tracking problem for
the limit dynamics, with θ playing the role of the control variable (There may be an additional
control variable in the equations though.). An equivalent statement is that the value function,
i.e. the unique viscosity solution of the underlying dynamic programming equation converges as
ε→ 0.
One of the messages of the previous considerations is that robust approximations of a multiscale

diffusion with parameter uncertainties may depend on the class of test functions ϕ via the
optimal parameter θ∗. In general, by the dynamic programming principle, θ∗ = θ∗(t) will be
time dependent or a feedback law, therefore the limit equations are not simply obtained by
setting θ equal to some appropriate value. They are moreover goal-oriented, in that they depend
on the QoI.
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4.2 Convergence of the quantity of interest

In this section we study the convergence of the slow component of a slow-fast system driven by
a G-Brownian motion. Specifically, we prove convergence of the corresponding value function
that is associated with the QoI. For the sake of simplicity, the proof will be given for a linear
controlled G-SDE only, but we stress that the proof carries over to the case of a nonlinear
G-SDE with or without control and under standard Lipschitz conditions, using essentially the
same techniques.

Controlled linear-quadratic slow-fast system and related QoI

We consider the following controlled stochastic differential equation

dXε
s = (AεXε

s +Bεαs)ds+ CεdWs; Xε
t = x, (4.7)

with Xε
s = (Us, Rs) taking values in Rns × Rnf where ns + nf = n, and x = (r, u) denotes

the decomposition of the state vector x into slow (resolved) and fast (unresolved) components.
We will suppress the dependence of R and U on ε, until further notice. Here W = (Wt)t≥0 is
a standard Rm-valued Brownian motion on (Ω,F ,P) that is endowed with its own filtration
(Ft)t≥0, and α = (αt)t≥0 denotes an adapted control variable with values in Rk. Let

Aε =


A11 ε−1/2A12

ε−1/2A21 ε−1A22

 ∈ Rn×n,
with the natural partitioning into A11 ∈ Rns×ns , etc. where assume that the matrix A22 ∈
Rnf×nf is Hurwitz, i.e. all of its eigenvalues are lying in the open left half-plane. The control
and the noise coefficients are partitioned as follows:

Bε =


B1

ε−1/2B2

 ∈ Rn×k, Cε =


C1

ε−1/2C2

 ∈ Rn×m.
We assume that, for all ε > 0, the columns of Bε lie in the column space of the matrix Cε,
i.e. ran(Bε) ⊂ ran(Cε) or, equivalently, the column space of Bε is orthogonal to the kernel of
(Cε)T , so that the equation

Cεξ = Bεc (4.8)

has a (not necessarily unique) solution for every c ∈ Rk. We seek a control α that minimizes
the following quadratic cost functional

J(α; t, x) = Et,x
[

1

2

∫ τ

t
RTs Q0Rs + |αs|2ds+

1

2
RTτ Q1Rτ

]
, (4.9)
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where τ is a bounded stopping time given by τ = inf{s ∈ [t, T ] : Xt /∈ S} where S is a bounded
subset of Rns ×Rnf which contain the initial state x, and where Q0, Q1 ∈ Rns×ns are any given
symmetric positive semi-definite matrices. Note that even though the cost depends only on the
slow process, the expected cost depends on the initial conditions of both r and u. We call

q0 = rTQ0r , q1 = rTQ1r . (4.10)

The corresponding value function is our QoI, it is given by

V ε(t, x) = inf
α∈A

J(α; t, x). (4.11)

where A is the space of all admissible controls α, such that (4.7) has a unique strong solution.
(Likewise we may consider q0, q1 or J to be our quantities of interest.)
Assuming that all coefficients are known, the averaging principle for linear-quadratic control
systems of the form (4.7)–(4.9) implies that, under mild conditions on the system matrices, the
value function V ε converges uniformly on any compact subset of [0, T ]×Rn to a value function
v = v(t, r); see e.g. [57]. The latter is the value function of the following linear-quadratic
stochastic control problem: minimize the reduced cost functional

J̄(α; t, r) = Et,r
[

1

2

∫ τ

t
q0(R̄s) + |αs|2 ds+

1

2
q1(R̄τ )

]
, (4.12)

subject to
dR̄s = (ĀR̄s + B̄αs)ds+ C̄dWs, (4.13)

where the coefficients of the reduced system are given by

Ā = A11 −A12A
−1
22 A21 , B̄ = B1 −A12A

−1
22 B2 , C̄ = C1 −A12A

−1
22 C2 . (4.14)

Multiscale system with unknown diffusion coefficient

We suppose that the noise coefficients C1 and/or C2 are unknown. This situation is common
in many applications, since especially the diffusion coefficient of the unresolved variables is
difficult to estimate. Very often, however, an educated guess can be made as to which set or
interval the unknown coefficient lies in. Specifically, we suppose that (C1, C2)T ∈ AΘ

0,∞ which is
the collection of all Θ-valued adapted process on [0,∞) where Θ is a given bounded and closed
subset in R(ns+nf )×m.
Following the work by Denis and co-workers [25, 26] we exploit the link between theG−expectation
framework and diffusion controlled processes and define

DεW̃t =

∫ t

0
CdWs,

for each Cε ∈ AΘ
0,∞, such that

Cε = Dε


C1

C2

 , Dε =


Ins 0

0 ε−1/2Inf
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so that (W̃s)s≥0 is a d−dimensional G-Brownian motion. As the main result, we will show
below that the value function converges uniformly on any compact subset of [0, T ]×Rn. The
result does not rely on any compactness or periodicity assumptions of the fast variables with
unknown diffusion; the key idea is to recast the fully nonlinear dynamic programming (or:
G-Hamilton-Jacobi-Bellman) equation of the full G-stochastic optimal control problem as a
G-FBSDE and then study convergence to the limiting G-FBSDE, which implies convergence of
the corresponding dynamic programming equation.

Nonlinear dynamic programming equation

By the dynamic programming principle for controlled G-SDE [37], the G-Hamilton-Jacobi-
Bellman (G-HJB) equation associated with our uncertain stochastic control problem (4.7)–(4.9)
reads

− ∂vε

∂t
= inf

c
{G(DDT : ∇2vε) + 〈∇vε, Ax+Bc〉+

1

2
q0 +

1

2
|c|2)}, (4.15)

with terminal condition
vε(τ, ·) =

1

2
q1 . (4.16)

Note that we vε is different from the value function V ε in (4.11), since the diffusion coefficient
in (4.11) is assumed constant, whereas, here, it is part of the nonlinear generator that involves a
maximisation over the coefficient. Further note that we have dropped the ε in A = Aε, B = Bε

and D = Dε. We can get rid of the outer infimum since the diffusion part is independent of the
control variable, and

inf
c

{
〈∇V ε, Bεc〉+

1

2
|c|2
}

= −1

2
|c|2BBT ,

where |c2|BBT = 〈c,BBT c〉. This implies that (4.15) is equivalent to

∂v

∂t
+G(DDT : ∇2v) + 〈∇v,Ax〉 − 1

2
|c|2BBT +

1

2
q0 = 0 , (4.17)

with the associated G-FBSDE system given by

dXε
s =AXε

sds+DdW̃s , X
ε
t = x

Y ε
t =

1

2
q1(Rτ )− 1

2

∫ τ

t
q0(Rs) ds+

1

2

∫ τ

t
|BT (DT )]Zεs|2 ds

−
∫ τ

t
ZεsdW̃s − (Kτ −Kt)

(4.18)

Here
Y ε
s = vε(s,Xε

s) , Zεs = ∇vε(s,Xε
s) , t ≤ s ≤ τ , (4.19)

and ] denotes the Moore-Penrose pseudo inverse of a matrix. The process K is a decreasing
G-martingale with K0 = 0 that is a consequence of the G-martingale representation theorem
[80].
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Strong convergence of the quantity of interest

Since the G-FBSDE is decoupled and running and terminal cost q0, q1 depend only on the
resolved variables, we can infer the candidate for the limiting process:

dR̄s = (ĀR̄s + B̄αs) ds+ D̄ dW̃s (4.20)

with D̄ dW̃ given by

C̄dWs = (C1 −A12A
−1
22 C2)dWs

= C1dWs −A12A
−1
22 C2dWs

= dW̃s −A12A
−1
22 dW̃s

=: D̄ dW̃ .

in other words, D̄ = (Ins ,−A12A
−1
22 ). The associated limiting G-FBSDE reads

dR̄s =ĀR̄sds− D̄ dW̃s , R̄t = r

Ȳs =
1

2
q1(R̄τ )− 1

2

∫ τ

t
q0(R̄s) ds+

1

2

∫ τ

t
|B̄T (D̄T )]Z̄s|2ds

−
∫ τ

t
Z̄sdW̃s − (K̄τ − K̄t)

(4.21)

The corresponding limit G-HJB equation is then given by

∂v̄

∂t
+G(D̄D̄T : ∇2v̄) + 〈∇v̄, Ār〉 − 1

2
|∇v̄|2B̄B̄T +

1

2
q0 = 0. (4.22)

with the natural terminal condition
v̄(τ, ·) =

1

2
q1 . (4.23)

Theorem 4.1. Let vε be the classical solution of the dynamic programming equation 4.17 and
v̄ be the solution of 4.22, then, as ε→ 0

vε → v̄ , ∇vε → ∇v̄

where the convergence of vε is uniform on any compact subset of [0, T ]×Rns and pointwise for
∇vε for all (t, x) ∈ [0, T ]×Rns.

Proof. Subtracting the G-BSDE part of (4.21) from (4.18) yields

Y ε
t − Ȳt =

1

2
q1(Rτ )− 1

2
q1(R̄τ )− 1

2

∫ τ

t
q0(Rs) ds+

1

2

∫ τ

t
q0(R̄s) ds

+
1

2

∫ τ

t
|BT (DT )]Zεs|2ds−

1

2

∫ τ

t
|B̄T (D̄T )]Z̄s|2ds

−
∫ τ

t
ZεsdW̃s +

∫ τ

t
Z̄sdW̃s − (Kτ −Kt) + (K̄τ − K̄t)

(4.24)

Let γ > 0 be arbitrary. Defining yt = Y ε
t − Ȳt,Mt = Kt − K̄t, we can apply Itô’s formula to

|yt|2eγt for 0 ≤ t < τ ≤ T , which yields
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|yt|2eγt +

∫ τ

t
|Zεs − Z̄s|2d〈W̃ 〉s +

∫ τ

t
γ|ys|2eγsds

=

∣∣∣∣12q1(Rτ )− 1

2
q1(R̄τ )

∣∣∣∣2 eγτ − ∫ τ

t
yse

γs
(
q0(Rs)− q0(R̄s)

)
ds

+

∫ τ

t
yse

γs
(
|BT (DT )]Zεs|2 − |B̄T (D̄T )]Z̄s|2

)
ds− (M̄τ − M̄t),

(4.25)

where
M̄τ − M̄t = 2

∫ τ

t
yse

γsdMs + 2

∫ τ

t
yse

γs
2
(
Zεs − Z̄s

)
dW̃s .

It is convenient to write eγs on the right hand side as eγs/2eγs/2. Now dropping the quadratic
variation term on the left and using Young’s inequality (cf. Lemma 2.15) gives after rearranging
terms

|yt|2eγt+γ
∫ τ

t
|ys|2eγsds+ (M̄τ − M̄t) ≤

∣∣∣∣12q1(Rτ )− 1

2
q1(R̄τ )

∣∣∣∣2 eγτ
+

∫ τ

t

(
λ1

2
|ys|2eγs +

eγs

2λ1

(
q0(R̄s)− q0(Rs)

)2)
ds

+

∫ τ

t

(
λ2

2
|ys|2eγs +

eγs

2λ2

(
|BT (DT )]Zεs|2 − |B̄T (D̄T )]Z̄s|2

)2
)
ds,

(4.26)

where we have defined λ1, λ2 by γ = λ1/2 + λ2/2. As a consequence,

|yt|2eγt + (M̄τ − M̄t) ≤
∣∣∣∣12q1(Rτ )− 1

2
q1(R̄τ )

∣∣∣∣2 eγτ
+

∫ τ

t

eγs

2λ1

(
q0(R̄s)− q0(Rs)

)2
ds

+

∫ τ

t

eγs

2λ2

(
|BT (DT )]Zεs|2 − |B̄T (D̄T )]Z̄s|2

)2
ds.

(4.27)

Using the shorthands N = (B1, B2)T and ks =
(
NZεs +NZ̄s

)
, with(

(BT ((Dε)T )]Zεs)− (B̄T (DT )]Z̄s)
)

=
(
NZεs −NZ̄s

)
,

the pathwise convergence

E

[
sup
t∈[0,T ]

|Rt − R̄t|2
]

= O(ε)

as ε→ 0 for any fixed diffusion coefficient (e.g. [58, 59]), together with the stability result of
Zhang and Chen [97, Thm. 3.1], then implies that

|yt|2eγt + (M̄τ − M̄t) ≤
lε2eγτ

4
+

∫ τ

t

lε2eγs

2λ1
ds

+

∫ τ

t

|ks|2‖NNT ‖F
2λ2

|Zεs − Z̄s|2eγsds
(4.28)

for some generic constant l ∈ (0,∞) that may change from equation to equation. Taking the
supremum and the using the fact that M̄ is a symmetric G-martingale, it follows again by
Young’s inequality that
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Ê

(
sup
s∈[t,τ ]

|ys|2eγs
)
≤ lε2eγτ

4
+
lε2eγτ

2γλ1
+

l

2λ2
Ê
(∫ τ

t
|Zεs − Z̄s|2eγsds

)
. (4.29)

Now using (4.25) again, together with the BDG-type inequalities (2.13)–(2.14) for the quadratic
variation and Young’s inequality for the integrals involving yseγs on the right hand side, we
obtain after dropping the quadratic terms in y:

σ2Ê
(∫ τ

t
|Zεs − Z̄s|2eγsds

)
≤|lε|

2eγτ

4
+

∫ τ

t

|lε|2eγs

2α1
ds

+
(k1)2NNT

2α2
Ê
(∫ τ

t
|Zεs − Z̄s|2eγsds

)
.

(4.30)

where α1, α2 are defined by γ = α1/2 + α2/2. Hence

Ê
(∫ τ

t
|Zεs − Z̄s|2eγsds

)
≤|lε|

2eγτ

4σ2
+

∫ τ

t

|lε|2eγs

2α1σ2
ds

+
(k1)2NNT

2σ2α2
Ê
(∫ τ

t
|Zεs − Z̄s|2eγsds

)
,

(4.31)

which can be rearranged to give(
1− (k1)2NNT

2lσ2α2

)
Ê
(∫ τ

t
|Zεs − Z̄s|2eγsds

)
≤ |lε|

2eγτ

4lσ2
+
|l2ε|2(eγτ − eγt)

2γα1lσ2
. (4.32)

The last inequality can be combined with (4.29), so that we obtain

Ê

(
sup
s∈[t,τ ]

|ys|2eγs
)

+

(
1− (k1)2NNT

2lσ2α2
− (k1)2NNT

2λ2

)
Ê
(∫ τ

t
|Zεs − Z̄s|2eγsds

)
≤|lε|

2eγτ

4
+

∫ τ

t

|l2ε|2(eγτ − eγt)
2γλ1

+
|lε|2eγτ

4lσ2
+
|l2ε|2(eγτ − eγt)

2γα1lσ2
.

(4.33)

As a consequence,

‖Y ε − Ȳ ‖γ := Ê

(
sup
s∈[t,τ ]

|ys|2eγs
)
, ‖Zε − Z̄‖γ := Ê

(∫ τ

t
|Zεs − Z̄s|2eγsds

)
go to zeros as ε→ 0 at rate ε2. Since ‖ · ‖γ and ‖ · ‖γ=0 are equivalent, it follows that Y ε

t → Ȳt

uniformly for t ∈ [0, T ], and therefore, as ε→ 0,

vε(·, x) = Y ε → Ȳ = v̄(·, x)

uniformly on any compact subset of [0, T ]×Rns . Likewise,

∇vε(t, x) = Zεt → Z̄t = ∇v̄(t, x) , (t, x) ∈ [0, T ]×Rns

as ε→ 0, which implies the convergence of the optimal control in (4.7)–(4.9).

Remark 4.2.1. The theorem also holds if the underlying G-SDE is nonlinear, as long as the
averaging principle applies (e.g. when the drift is uniformly Lipschitz).
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Remark 4.2.2. When B = D in (4.15) then the corresponding G-BSDE and the limit G-BSDE
can be simplified to

Y ε
t =

1

2
q1(Rτ )− 1

2

∫ τ

t
q0(Rs) ds+

1

2

∫ τ

t
|Zεs|2 ds−

∫ τ

t
ZεsdW̃s − (Kτ −Kt) (4.34)

and

Ȳs =
1

2
q1(R̄τ )− 1

2

∫ τ

t
q0(R̄s) ds+

1

2

∫ τ

t
|Z̄s|2ds−

∫ τ

t
Z̄sdW̃s − (K̄τ − K̄t) . (4.35)

4.3 Numerical illustration

In this section we present two numerical examples to verify that the value function of the original
system (4.17) converges to the solution of the reduced system (4.22) as ε→ 0. The corresponding
fully nonlinear HJB equations (4.17) and (4.22) are numerically solved by exploiting the link
between fully nonlinear PDE and second-order BSDE (2BSDE); see e.g. [18]. The numerical
algorithm for solving 2BSDE is based on the deep 2BSDE solver introduced by Beck et al. [7].

4.3.1 Linear quadratic Gaussian regulator

The first example is a 2-dimensional linear quadratic regulator problem given by the SDE

dXε
t = (AεXε

t +Bεuεt)dt+
√
σBεdWt, X

ε
0 = x0, (4.36)

with unknown diffusion coefficient σ ∈ [σ, σ] and the cost functional

J(u; t, x) =
1

2
E

[∫ T

t
((Xε

s)
TQ0X

ε
s + |uεs|2)ds+ (Xε

T )TQ1X
ε
T

]
. (4.37)

Here x = (r, u) ∈ R2 and the coefficients are given by

Aε =


−2 −1/ε

1/ε−2/ε2

 , Bε =


0.1

2/ε

 , Q0 = 0 , Q1 =


1

0

 ,

and we define the value function as vε(t, x) = infu J(u; t, x). The G-PDE corresponding to the
Gaussian regulator problem (4.37)–(4.36) is then given by

∂vε

∂t
+G(aε : ∇2vε) + 〈∇vε, Aεx〉 − 1

2
〈Bε, z〉2 = 0 , vε(T, x) = x2

1 (4.38)

where we have used the shorthand aε = σBε(Bε)T . Calling a = σB̄B̄T , the G-PDE of the
limiting value function v̄ = limε→0 v

ε then reads

∂v̄

∂t
+G(a : ∇2v̄) + 〈∇v̄, Āx̄〉 − 1

2
〈∇v̄, B̄〉2 = 0 , v̄(T, r) = r . (4.39)
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The function G : R→ R is defined by:

G(x) =
x

2


σ̄ ifx ≥ 0

σ ifx < 0 .

Numerical results

We consider the two value functions in the time interval [0, 0.1] with fixed initial condition
x = (r, u) = (1, 0.5). For the diffusion coefficient, we assume σ ∈ [0.8, 1]. The driver f of the
2BSDE corresponding to the G-PDE (4.38) of the original system is

f(t, x, y, z, S) = G(aε : S) +
1

2
〈Bε, z〉2 +

1

2
〈Aεx, z〉 ,

whereas the 2BSDE corresponding to the limiting G-PDE (4.39) has the driver

f̄(t, x, y, z, S̄) = G(a : S̄) +
1

2

〈
B̄, z

〉2
+

1

2

〈
Āx, z

〉
.

We compare vε(0, x) and v̄(0, r) and call

δv(ε) = |vε(0, x)− v̄(0, r)| ,

Denoting by uε and u the corresponding optimal controls for any given noise coefficient σ (that
can expressed in terms of the value function for fixed σ), we have

vε(0, x) = Ê
[∫ T

0
|uεs|2ds

]
, v̄(0, r) = Ê

[∫ T

0
|us|2ds

]
.

The simulation results are shown in the following table:

ε 0.3 0.2 0.1

δv 0.15 0.06 0.01

4.3.2 Triad system for climate prediction

We consider a stochastic climate model which can be represented as a bilinear system with
additive noise [71]

dXε(t) =
1

ε2
L(Xε(t))dt+

1

ε
B(Xε(t), Xε(t))dt+

1

ε
Σ dWt , Xε(0) = x, (4.40)
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where Xε(t) = (Rε1(t), Rε2(t), U ε(t)) ∈ R3 and

L(x) = −



0

0

u


, B(x, x) =



A1r2u

A2r1u

A3r1r2


, Σ =



0

0

λ


,

where 0 < ε� 1, and A1, A2, A3 are real numbers such that

A1 +A2 +A3 = 0 ,

and
λ ∈ [σ, σ]

is the unknown diffusion coefficient. Equation (4.40), which is a time rescaled version of
(4.1a)–(4.1b), is a simplified stochastic turbulence model that comprises triad wave interactions
between two climate variables r1, r2 and a single stochastic variable u.

-1.5 -1 -0.5 0 0.5 1 1.5
r
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Figure 4.2: Vector field f of the limit triad system for A1 = A2 = 1 and A3 = −2
and two different noise parameters λ.

The noise level λ cannot be accurately estimated, nevertheless it may have a huge impact on
the dynamics, even though there are no bifurcations for λ > 0. Equation (4.40) can thus be
considered an SDE driven by a G-Brownian motion. It is shown in [71] that, for any finite value
λ > 0, the first two components Rε = (Rε1, R

ε
2) converge strongly in Lp for p = 1, 2 and on any

bounded time interval [0, T ] to the solution of the nonlinear SDE with multiplicative noise

dR(t) = f(R(t))dt+ σ(R(t))dWt , R(0) = r, (4.41)
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where R(t) = (R1(t), R2(t)) and

f(r) =


A1r1(A3r

2
2 + λ2

2 A2)

A2r2(A3r
2
1 + λ2

2 A1)

 , σ(x) =
λ

γ


A1r2

A2r1

 .

The pathwise convergence Rε → R together with the stability result of Zhang and Chen [97,
Thm. 3.1] implies that

Ê( sup
t∈[0,T ]

|Rε(t)−R(t)|)→ 0 as ε→ 0

We can study the qualitative features of the triad system (4.40) in terms of the reduced model
(4.41). Using Itô’s formula, it readily follows that

I(r1, r2) = A1r
2
2 −A2r

2
1

is a conserved quantity for both the reduced and the original system. We consider the case
A1, A2 > 0 and A3 < 0, in which case the level sets of I are hyperbola, and the origin is an
unstable hyperbolic equilibrium. The rays that connect the origin with any of the four equilibria

r∗±,± =

(
±σ

√
A1

2|A3|
, ±σ

√
A2

2|A3|

)
, A1, A2 > 0 .

are (locally hyperbolically unstable) invariant sets. Figure 4.2 shows representative vector fields
f of the limit system for different noise coefficients λ = 1.0 and λ = 2.0, when A1 = A2 > 0. It
can be seen that the repulsive and attractive regions on the invariant diagonals change as the
coefficient λ varies.
For illustration, Figure 4.3 shows three representative samples of R(0.5) for A1 = 0.75, A2 = 0.25

and A3 = −1.0, with λ = 1.0, λ = 1.5 and λ = 1.0, all starting from the same initial value
R(0) = (1,−2). Note that the sample means over 100 independent realizations each depend on
λ in a non-trivial fashion.
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Figure 4.3: Independent realizations of the limit triad system for A1 = A2 = 1

and A3 = −2 and different noise parameters λ ∈ [1, 2] and fixed T = 0.5.
For every parameter value, we have generated 100 independent realizations,
all starting from the same initial value r = (1,−2). Note that the invari-
ant manifolds, to which the trajectories are confined, are independent of λ,
nevertheless the dynamics on the invariant manifolds are different.

Goal-oriented uncertainty quantification

We now compare the full triad system (4.40) and the limit system (4.41) for a specific quantity
of interest (QoI) using the G-BSDE framework. To this end, we consider the QoI mean

vε(t, x) = Et,x(Xε
1(T )) , v(t, r) = Et,r(R1(T )) (4.42)

as a function of the initial data (t, x) and (t, r) where x = (r, u) = (r1, r2, u) and T > 0 is
fixed. By definition, the two value functions vε and v solve the following nonlinear dynamic
programming (HJB-type) equations

∂vε

∂t
+G(aε : ∇2vε) + 〈∇vε, bε〉 = 0 , vε(T, x) = x1 (4.43)

and
∂v

∂t
+G(a : ∇2v + 〈∇v, f1〉) + 〈∇v, f2〉 = 0 , v(T, r) = r1 , (4.44)

with the shorthands

bε =
1

ε2
L+

1

ε
B , aε =

1

ε2
ΣΣT , a = σσT , f1 = λ2A1A2r , f2 = f − f1

2
.

The nonlinearity G in (4.43) and (4.44) is defined by

G(x) =
x

2


σ ifx ≥ 0

σ ifx < 0
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(We can think of G as the nonlinear generator of the parameter-dependent part of the corre-
sponding G-SDE.) We solve the fully nonlinear HJB equations by exploiting the aforementioned
relation to second-order BSDE (2BSDE) and using the deep learning approximation developed
by Beck et al. [7].

Numerical results

As a first example, we consider the triad system and its homogenisation limit, with the parameters
A1 = A2 = 1, A3 = −2 and λ ∈ [0.8, 1.2]. Setting T = 0.1 and x = (r, u) = (1,−2,−2)T

the 2BSDE solution for ε = 0.2 yields the numerical approximations vε(0, x) = 0.9291 and
v(0, r) = 0.9326, i.e.

|vε(0, x)− v(0, r)|
v(0, r)

= 0.0038

in agreement with the theoretical prediction. We repeated the 2BSDE simulation for the same
initial data and ε = 0.2, but with the different set of parameters A1 = 1, A2 = 2, A3 = −3,
λ ∈ [0.6, 1.2] and T = 0.5, and found vε(0, x) = 1.3202 and the limiting PDE v(0, r) = 1.3549,
i.e.

|vε(0, x)− v(0, r)|
v(0, r)

= 0.0256 .

It is illustrative to consider the parameter for which the maximum in the nonlinear part G of
the generator is attained. For example, for the original triad system,

G(aε : ∇2vε) = max
λ∈[σ,σ]

aε(λ) : ∇2vε =
1

ε2
max
λ∈[σ,σ]

λ
∂2vε

∂u2
, (4.45)

which is identically equal to σ if vε is strictly concave in its third argument, u, and equal to
σ if it is strictly convex in u. For a G-PDE of the form (4.43) that contains no running cost,
one can show that the value function is strictly convex or concave if the terminal condition
is strictly convex or concave (since the solution of the forward SDE is a strictly increasing
function of the initial value). In general, however, it is not the convexity that determines, for
which parameter value the maximum is attained, as the limit G-PDE (4.44) shows. In fact, the
optimal parameter will be a feedback function that depends on (t, x) or (t, r).
Figure 4.4 shows the maximiser in (4.45) as function of t for a fixed value of x. It can be seen
that the optimal parameter value is time-dependent, which underpins the fact that the optimal
parameter depends on the QoI (here also through the initial data) in a nontrivial way; cf. Figure
4.3.
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Figure 4.4: The plot shows the parameter σ∗ that maximises the nonlinear
part G of the generator in (4.45) for fixed initial condition over the noise
coefficient λ ∈ [1, 2].

As a final numerical test, we consider the triad system with A1 = 0.75, A2 = 0.25, A3 = −1

and λ ∈ [1, 2]. For T = 0.1 and ε = 0.2 we obtain vε(0, x) = 0.9752 and the limiting PDE
v(0, r) = 0.9601, i.e.

|vε(0, x)− v(0, r)|
v(0, r)

= 0.0157 .



Conclusion

In this thesis, an attractive and challenging problems have been solved in which our results are obtained
on a sub-linear expectation space where the systems are described by using the new developed process
the so called G-Brownian motion. Investigating the existent results in the classical situations and
exploiting the stochastic calculus related to the G-Brownian motion and its quadratic variation, we have
shown that:

• A coupled forward backward stochastic differential equation driven by G-Brownian motion under
suitable conditions has a unique solution where the non-linearity of the expectation and the
nature of the G-BM did not forbid us to use the Picard iterations in the development of the proof
as in the classical situation.

• An optimal control for decoupled forward backward stochastic differential equation driven by G-BM
exists. In fact, we are content only with the proof of a relaxed control because of the modernistic
of this framework which provide a lack of references and results that will developed in the near
future.

• The slow component of a slow-fast system driven by a G-Brownian motion converges i.e. we prove the
convergence of the corresponding value function that is associated with the QoI for a controlled
linear-quadratic slow-fast system. The theoretical result has been illustrated by two numerical
examples; linear quadratic Gaussian regulator and Goal-oriented uncertainty quantification.

The study done in this thesis can serve to develop, update and start new research on the G-framework
in which the uncertain situation and the real-world phenomena can be modeled more precisely.
In future, there exists many issues that we aim to deal with it, such as:

• Prove the existence of an optimal control for coupled G-FBSDE.

• The nonlinear generator of the underlying G-Brownian motion may not be unambiguously defined
then, this calls for a suitable regularization that is likely to have a Bayesian interpretation that
may open up new algorithmic possibilities to quantify the uncertainty in the reduced system.

• In finance, we can investigate our results to deal with many uncertainty issues (e.g. risk measure,
super-hedging, volatility uncertainty, . . . ).
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 "  التحكم الأمثل لنظام معادلات عشوائية مباشرة خلفية موجهة ب G- حركة براونية  "
 :الملخص 

 من حسكة بساوهية. -Gخلفية  موجهة ب -أهم أهداف هره الأطسوحة هو دزاسة وجود ثحكم أمثل لنظام معادلات عشوائية مباشسة

الخلفية -وجود حل وحيد لنظام المعادلات التفاضلية المقترهة المباشسة البرهان على ة أخسى ثم في صفحات هره الأطسوحةجه

 حسكة  -Gالموجهة ب 

بساوهية. وفي الأخير، ثمت دزاسة ثقليص النظم للمشاكل الخطية و الثنائية الخطية التربيعية للتحكم الأمثل ذات معاملات غير 

 مؤكدة.

 

 . حسكة بساوهية -G، خلفية-عشوائية مباشسة معادلاتالتحكم الأمثل،  :مفتاحية كلمات
 

 

« Contrôle optimal pour les équations différentielles stochastiques progressives-rétrogrades 
dirigées par un G-mouvement Brownien » 

Résumé : 

Le but principal de cette thèse est  la démonstration de l’existence d’un contrôle optimal pour un système 

d’équations progressives-rétrogrades découplées dirigées par un G-mouvement Brownien, D’autre part, 

dans cette thèse, on a établi l’existence d’une solution unique pour un système d’équations progressives-

rétrogrades couplées dirigées par un G- mouvement  Brownien.  La dernière partie de cette thèse est 

consacrée pour l’étude de la réduction de modèle du problème de contrôle stochastique optimal  linéaire et 

bilinéaire avec des paramètres incertains.  

Mots clés : contrôle optimal, équations différentielle stochastique progressive rétrograde,  G-mouvement 

Brownien 

 

« Optimal control for forward backward stochastic differential equation driven by G-

Brownian motion» 

Abstract : 

     The main objective of this dissertation is to study the existence of an optimal control whose dynamical 
system is described by decoupled forward-backward stochastic differential equations driven by a G-
Brownian motion. This dissertation established the existence of a unique solution to coupled forward-
backward stochastic differential equations driven by G-Brownian motion. The present dissertation also 
offers a study on model reduction of linear and bilinear quadratic stochastic control problems with 

parameter uncertainties. 

 

Key words : optimal control, FBSDEquations, G-Brownian motion 
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