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Introduction

The concept of fractional di�erential calculus has a long history. One may wonder what
meaning may be ascribed to the derivative of a fractional order, that is dny

dxn , where n is a
fraction. In fact L'Hopital himself considered this very possibility in a correspondence
with Leibniz, In 1695, L'Hopital wrote to Leibniz to ask, "What if n be 1

2
?" From this

question, the study of fractional calculus was born. Leibniz responded to the question,
"d

1
2x will be equal to x

√
dx : x. This is an apparent paradox from which, one day,

useful consequences will be drawn."

Many known mathematicians contributed to this theory over the years. Thus, 30
September 1695 is the exact date of birth of the "fractional calculus"! Therefore,
the fractional calculus it its origin in the works by Leibnitz, L'Hopital (1695), Bernoulli
(1697), Euler (1730), and Lagrange (1772). Some years later, Laplace (1812), Fourier
(1822), Abel (1823), Liouville (1832), Riemann (1847), Grünwald (1867), Letnikov
(1868), Nekrasov (1888), Hadamard (1892), Heaviside (1892), Hardy (1915), Weyl
(1917), Riesz (1922), P. Levy(1923), Davis (1924), Kober (1940), Zygmund (1945),
Kuttner (1953), J. L. Lions (1959), and Liverman (1964)... have developed the basic
concept of fractional calculus.

In June 1974, Ross has organized the "First Conference on Fractional Calculus and
its Applications" at the University of New Haven, and edited its proceedings [126];
Thereafter, Spanier published the �rst monograph devoted to "Fractional Calculus"
in 1974 [117]. The integrals and derivatives of non-integer order, and the fractional
integrodi�erential equations have found many applications in recent studies in the-
oretical physics, mechanics and applied mathematics. There exists the remarkably
comprehensive encyclopedic-type monograph by Samko, Kilbas and Marichev which
was published in Russian in 1987 and in English in 1993 [130]. (for more details see
[109]) The works devoted substantially to fractional di�erential equations are: the book
of Miller and Ross (1993) [112], of Podlubny (1999) [121], by Kilbas et al. (2006) [96],
by Diethelm (2010) [65], by Ortigueira (2011) [119], by Abbas et al. (2012) [1], and by
Baleanu et al. (2012) [30].

In recent years, there has been a signi�cant development in the theory of fractional
di�erential equations. It is caused by its applications in the modeling of many phe-
nomena in various �elds of science and engineering such as acoustic, control theory,
chaos and fractals, signal processing, porous media, electrochemistry, viscoelasticity,
rheology, polymer physics, optics, economics, astrophysics, chaotic dynamics, statis-
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tical physics, thermodynamics, proteins, biosciences, bioengineering, etc. Fractional
derivatives provide an excellent instrument for the description of memory and heredi-
tary properties of various materials and processes. See for example [31, 32, 83, 85, 109,
120, 129, 133].

Fractional calculus is a generalization of di�erentiation and integration to arbitrary
order (non-integer) fundamental operator Dα

a+ where α, a,∈ R. Several approaches
to fractional derivatives exist: Riemann-Liouville (RL),Caputo, Hadamard, Grunwald-
Letnikov (GL) and Weyl etc.

In recent times, a new fractional di�erential operator having a kernel with exponen-
tial decay has been introduced by Caputo and Fabrizio [58]. This approach of fractional
derivative is known as the Caputo-Fabrizio operator which has attracted many research
scholars due to the fact that it has a non-singular kernel. Several mathematicians were
recently busy in development of Caputo-Fabrizio fractional di�erential equations, see;
[36, 63, 75, 76, 77, 108, 131, 139], and the references therein. In this thesis, we use

the Caputo-Hadamard and Caputo-Fabrizio derivatives .

Fractional di�erential equations with nonlocal conditions have been discussed in
[10, 15, 60, 68, 80, 115, 116] and references therein. Nonlocal conditions were initiated
by Byszewski [56] when he proved the existence and uniqueness of mild and classical
solutions of nonlocal Cauchy problems (C.P. for short). As remarked by Byszewski
[54, 55], the nonlocal condition can be more useful than the standard initial condition
to describe some physical phenomena.

Implicit di�erential equations involving the regularized fractional derivative were
analyzed by many authors, in the last year; see for instance [13] and the references
therein.

There are two measures which are the most important ones. The Kuratowski mea-
sure of noncompactness α(B) of a bounded set B in a metric space is de�ned as
in�mum of numbers r > 0 such that B can be covered with a �nite number of sets of
diameter smaller than r. The Hausdorf measure of noncompactness χ(B) de�ned as
in�mum of numbers r > 0 such that B can be covered with a �nite number of balls
of radii smaller than r. Several authors have studied the measures of noncompactness
in Banach spaces. See, for example, the books such as [19, 25, 33] and the articles
[21, 34, 35, 42, 48, 51, 86, 113],and references therein.

Recently, considerable attention has been given to the existence of solutions of
boundary value problem and boundary conditions for implicit fractional di�erential
equations and integral equations with Caputo fractional derivative. See for example
[12, 16, 17, 18, 28, 43, 44, 45, 48, 87, 94, 101, 102, 103, 105, 132, 145], and references
therein.

In the theory of ordinary di�erential equations, of partial di�erential equations, and
in the theory of ordinary di�erential equations in a Banach space there are several types
of data dependence . On the other hand, in the theory of functional equations there are
some special kind of data dependence: Ulam-Hyers, Ulam-Hyers-Rassias, Ulam-Hyers-
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Bourgin, Aoki-Rassias [127].
The stability problem of functional equations originated from a question of Ulam

[134, 135] concerning the stability of group homomorphisms: "Under what conditions
does there exist an additive mapping near an approximately additive mapping ?" Hyers
[88] gave a �rst a�rmative partial answer to the question of Ulam for Banach spaces.
Hyers Theorem was generalized by Aoki [24] for additive mappings and by T.M. Rassias
[125] for linear mappings by considering an unbounded Cauchy di�erence. A general-
ization of the T.M. Rassias theorem was obtained by Gavruta [71].

After, many interesting results of the generalized Hyers-Ulam stability to a number
of functional equations have been investigated by a number of mathematicians; see
[4, 22, 40, 89, 90, 91, 92, 93, 98, 136, 137, 138] and the books [61, 123, 124] and
references therein.

We have organized this thesis as follows:
Chapter 1.
This chapter consists of three Sections.
In Section one, we present "A brief visit to the history of the Fractional Calcu-

lus", and in Section two, we present some "Applications of Fractional calculus".
Finally, in the last Section, we recall some preliminary : some basic concepts, and
useful famous theorems and results (notations, de�nitions, lemmas and �xed point

theorems) which are used throughout this thesis.

Chapter 2

In the �rst section; we discuss and establish the existence,the uniqueness of solutions
for a class of boundary value problem of Caputo-Hadamard fractional derivative.

Next, we will give existence and uniqueness results for the following problem of frac-
tional di�erential equations:

(HcDα
1 u)(t) = f(t, u(t)), t ∈ I := [1, T ],{
a1u(1)− b1u

′(1) = d1u(ξ1),

a2u(T ) + b2u
′(T ) = d2u(ξ2),

where α ∈ (1, 2], T > 1, a1, b1, d1, a2, b2, d2 ∈ R, ξ1, ξ2 ∈ (1, T ), f : I × Rm →
Rm, m ∈ N∗ is a given continuous function, and HcDα

1 is the Caputo�Hadamard
fractional derivative of order α.
Finally, an example will be included to illustrate our main results.

In the second section; two results for a class of boundary value problem for im-
plicit fractional di�erential equations in Banach spaces with Caputo-Hadamard frac-
tional derivative are discussed. The argument are based on Banach's �xed point theorem
and Nonlinear alternative of Leray-Schauder type.
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We establish existence and uniqueness results of the following problem of implicit
fractional di�erential equation :

(HcDα
1 u)(t) = f(t, u(t), (HcDα

1 u)(t)), t ∈ I := [1, T ],{
a1u(1)− b1u

′(1) = d1u(ξ1),

a2u(T ) + b2u
′(T ) = d2u(ξ2),

where α ∈ (1, 2], T > 1, a1, b1, d1, a2, b2, d2 ∈ R, ξ1, ξ2 ∈ (1, T ), f : I × Rm × Rm →
Rm, m ∈ N∗ is a given continuous function, and HcDα

1 is the Caputo-Hadamard frac-
tional derivative of order α.

At last and as application, an example is included.

Chapter 3

We establish the existence and the stability results for a class of multipoint boundary
conditions problem of fractional di�erential equations.
Here three results are discussed and based on the methode associated with the tech-
nique of the measure of non-compactness and the �xed point theorems of Mönch and
Darbo.

In section 3.2; we discuss the existence, uniqueness and stability results to the
following problem of fractional di�erential equations:

(HcDα
1 u)(t) = f(t, u(t)), t ∈ I := [1, T ],{
a1u(1)− b1u

′(1) = d1u(ξ1),

a2u(T ) + b2u
′(T ) = d2u(ξ2),

where T > 1, a1, b1, d1, a2, b2, d2 ∈ R, ξ1, ξ2 ∈ (1, T ), f : I × E → E is a given
continuous function, (E, ∥ · ∥) is a real or complex Banach space, and HcDα

1 is the
Caputo�Hadamard fractional derivative of order α ∈ (1, 2].

In section 3.3, we present an example to show the applicability of our results.
Chapter 4

We establish some existence of solutions for a class of Caputo-Fabrizio fractional dif-
ferential equations in fréchet spaces. Some applications are made of a generalization of
the classical Darbo �xed point theorem for Fréchet spaces associate with the concept
of measure of noncompactness.

In section 4.2, we are concerned with the existence results for the fractional
di�erential equation

(CFDr
0u)(t) = f(t, u(t)); t ∈ R+ := [0,∞),

10



with the following initial condition

u(0) = u0 ∈ E,

where T > 0, (E, ∥·∥) is a (real or complex) Banach space, r ∈ (0, 1), f : R+×E → E
is a given function, and CFDr

0 is the Caputo�Fabrizio fractional derivative of order
r ∈ (0, 1).

Next, we discuss the existence of solutions for the fractional di�erential equation

(CFDr
0u)(t) = f(t, u(t)); t ∈ R+ := [0,∞),

with the following nonlocal condition

u(0) +Q(u) = u0,

where u0 ∈ E, Q : C(R+, E) → E is a given function.
The last section; illustrates our results with some examples.
Chapter 5

We discuss the existence and the attractivity of solutions for a class of Caputo-Fabrizio
fractional di�erential equation.

In section 5.2, we investigate the existence and the attractivity of solutions for
the following class of Caputo-Fabrizio fractional di�erential equation

(CFDr
0u)(t) = f(t, u(t)); t ∈ R+,

with the initial condition
u(0) = u0 ∈ R,

where f : R+×R → R is a given continuous function, and CFDr
0 is the Caputo�Fabrizio

fractional derivative of order r ∈ (0, 1). Our results are based on Schauder's �xed point
theorem. Next we prove that all solutions are uniformly locally attractive.
Finally, we present an example to show the applicability of our results.
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Chapter 1

Basic Ingredients

1.1 A brief visit to the history of the Fractional Cal-
culus

In 1695, in a letter to the French mathematician L`Hospital, Leibniz raised the fol-
lowing question: "Can the meaning of derivatives with integer order be generalized
to derivatives with non-integer orders?" L`Hospital was somewhat curious about that
question and replied by another question to Leibniz : "What if the order will be 1

2
?"

Leibnitz in a letter dated September 30, replied: "It will lead to a paradox, from which
one day useful consequences will be drawn." Many known mathematicians contributed
to this theory over the years. Thus, September 30, 1695 is the exact date of birth of
the "fractional calculus"! Therefore, the fractional calculus it its origin in the works
by Leibnitz, L'Hopital (1695), Bernoulli (1697), Euler (1730), and Lagrange (1772).
Some years later, Laplace (1812), Fourier (1822), Abel (1823), Liouville (1832), Rie-
mann (1847), Grünwald (1867), Letnikov (1868), Nekrasov (1888), Hadamard (1892),
Heaviside (1892), Hardy (1915), Weyl (1917), Riesz (1922), P. Levy (1923), Davis
(1924), Kober (1940), Zygmund (1945), Kuttner (1953), J. L. Lions (1959), and Liv-
erman (1964)... have developed the basic concept of fractional calculus.

In 1783, Leonhard Euler made his �rst comments on fractional order derivative.
He worked on progressions of numbers and introduced �rst time the generalization
of factorials to Gamma function. A little more than �fty year after the death of
Leibniz, Lagrange, in 1772, indirectly contributed to the development of exponents law
for di�erential operators of integer order, which can be transferred to arbitrary order
under certain conditions. In 1812, Laplace has provided the �rst detailed de�nition
for fractional derivative. Laplace states that fractional derivative can be de�ned for
functions with representation by an integral, in modern notation it can be written as∫
y(t)t−xdt. Few years after, Lacroix worked on generalizing the integer order derivative

of function y(t) = tm to fractional order, where m is some natural number. In modern

13



notations, integer order nth derivative derived by Lacroix can be given as

dny

dtn
=

m!

(m− n)!
tm−n =

Γ(m+ 1)

Γ(m− n+ 1)
tm−n, m > n

where, Γ is the Euler's Gamma function.
Thus, replacing n with 1

2
and letting m = 1, one obtains the derivative or order 1

2

of the function t
d

1
2y

dt
1
2

=
Γ(2)

Γ(3
2
)
t
1
2 =

2√
π

√
t

Euler's Gamma function (or Euler's integral of the second kind) has the same
importance in the fractional-order calculus and it is basically given by integral

Γ(z) =

∫ ∞

0

tz−1e−tdt.

The exponential provides the convergence of this integral in ∞, the convergence at zero
obviously occurs for all complex z from the right half of the complex plane (Re(z) > 0).

This function is generalization of a factorial in the following form:

Γ(n) = (n− 1)!.

Other generalizations for values in the left half of the complex plane can be obtained
in following way. If we substitute e−t by the well-known limit

e−t = lim
n→∞

(
1− t

n

)n

and then use n-times integration by parts, we obtain the following limit de�nition of
the Gamma function

Γ(z) = lim
n→∞

n!nz

z(z + 1) . . . (z + n)
.

Therefore, historically the �rst discussion of a derivative of fractional order appeared
in a calculus written by Lacroix in 1819.
It was Liouville who engaged in the �rst major study of fractional calculus. Liouville's
�rst de�nition of a derivative of arbitrary order ν involved an in�nite series. Here, the
series must be convergent for some ν. Liouville's second de�nition succeeded in giving
a fractional derivative of x−a whenever both x and are positive. Based on the de�nite
integral related to Euler's gamma integral, the integral formula can be calculated for
x−a. Note that in the integral ∫ ∞

0

ua−1e−xudu,

if we change the variables t = xu, then∫ ∞

0

ua−1e−xudu =

∫ (
t

x

)a−1

e−t 1

x
dt =

1

xa

∫ ∞

0

ta−1e−tdt.
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Thus, ∫ ∞

0

ua−1e−xudu =
1

xa

∫ ∞

0

ta−1e−tdt.

From the Gamma function, we obtain the integral formula

x−a =
1

Γ(a)

∫ ∞

0

ua−1e−xudu.

Consequently, by assuming that dν

dxν e
ax = aνeax, for any ν > 0, then

dν

dxν
x−a =

Γ(a+ ν)

Γ(a)
x−a−ν = (−1)ν

Γ(a+ ν)

Γ(a)
x−a−ν

In 1884 Laurent published what is now recognized as the de�nitive paper on the foun-
dations of fractional calculus. Using Cauchy's integral formula for complex valued
analytical functions and a simple change of notation to employ a positive ν rather
than a negative ν will now yield Laurent's de�nition of integration of arbitrary order

x0D
α
xh(x) =

1

Γ(ν)

∫ x

x0

(x− t)ν−1h(t)dts.

The Riemann-Liouville di�erential operator of fractional calculus of order α de-
�ned as

(Dα
a+f)(t) :=


1

Γ(n− α)

(
d

dt

)n ∫ t

a

(t− s)n−α−1f(s)ds if n− 1 < α < n,(
d

dt

)n

f(t), if α = n,

where α, a, t ∈ R, t > a, n = [α] + 1; [α] denotes the integer part of the real number α,
and Γ is the Gamma function.

The Grünwald-Letnikov di�erential operator of fractional calculus of order α
de�ned as

(Dα
a+f)(t) := lim

h→0
h−α

[ t−a
h

]∑
j=0

(−1)j(αj )f(t− jh).

Binomial coe�cients with alternating signs for positive value of n are de�ned as

(nj ) =
n(n− 1)(n− 2) · · · (n− j + 1)

j!
=

n!

j!(n− j)!
.

For binomial coe�cients calculation we can use the relation between Euler's Gamma
function and factorial, de�ned as

(αj ) =
α!

j!(α− j)!
=

Γ(α)

Γ(j + 1)Γ(α− j + 1)
.
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The Grünwald-Letnikov de�nition of di�er-integral starts from classical de�nitions
of derivatives and integrals based on in�nitesimal division and limit. The disadvantages
of this approach are its technical di�culty of the computations and the proofs and large
restrictions on functions. (see [146])

The Caputo (1967) di�erential operator of fractional calculus of order α de�ned
as

(cDα
a+f)(t) :=


1

Γ(n− α)

∫ t

a

(t− s)n−α−1f (n)(s)ds if n− 1 < α < n,(
d

dt

)n

f(t), if α = n,

where α, a, t ∈ R, t > a, n = [α] + 1. This operator is introduced in 1967 by the Italian
Caputo.

This consideration is based on the fact that for a wide class of functions, the three
best known de�nitions ((GL), (RL), and Caputo) are equivalent under some conditions.
(see ([84]))

Unfortunately, fractional calculus still lacks a geometric interpretation of integra-
tion or di�erentiation of arbitrary order.

We refer readers, for example, to the books such as [1, 30, 85, 96, 104, 112, 117,
121, 130] and the articles [8, 11, 12, 26, 27, 38, 39, 43, 45, 46, 47, 48, 97, 132], and
references therein.
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1.2 Applications of Fractional calculus

The concept of fractional calculus has great potential to change the way we see, model
and analyze the systems. It provides good opportunity to scientists and engineers
for revisiting the origins. The theoretical and practical interests of using fractional
order operators are increasing. The application domain of fractional calculus is ranging
from accurate modeling of the microbiological processes to the analysis of astronomical
images.
Next, we will present a brief survey of applications of fractional calculus in science and
engineering.

The Tautochrone Problem (Historical Example):
This example was studied, for the �rst time, by Abel in the early 19th century. It
was one of the basic problems where the framework of the fractional calculus was used
although it is not essentially necessary.

Signal and Image Processing:
In the last decade, the use of fractional calculus in signal processing has tremendously
increased. In signal processing, the fractional operators are used in the design of dif-
ferentiator and integrator of fractional order, fractional order di�erentiator FIR (�nite
impulse response), IIR type digital fractional order di�erentiator (in�nite impulse
response), a new IIR (in�nite impulse response)-type digital fractional order di�eren-
tiator (DFOD) and for modeling the speech signal. The fractional calculus allows the
edge detection, enhances the quality of images, with interesting possibilities in various
image enhancement applications such as image restoration image denoising and the
texture enhancement. He is used, in particularly, in satellite image classi�cation, and
astronomical image processing.

Electromagnetic Theory:
The use of fractional calculus in electromagnetic theory has emerged in the last two
decades. In 1998, Engheta [69] introduced the concept of fractional curl operators and
this concept is extended by Naqvi and Abbas [114]. Engheta's work gave birth to the
new�eld of research in Electromagnetics, namely, "Fractional Paradigms in Electro-
magnetic Theory". Nowadays fractional calculus is widely used in Electromagnetics to
explore new results; for example, Faryad and Naqvi [70] have used fractional calculus
for the analysis of a Rectangular Waveguide.

Control Engineering:
In industrial environments, robots have to execute their tasks quickly and precisely,
minimizing production time, and the robustness of control systems is becoming im-
perative these days. This requires �exible robots working in large workspaces, which
means that they are in�uenced by nonlinear and fractional order dynamic e�ects.

Biological Population Model

The problems of the di�usion of biological populations occur nonlinearly and the frac-
tional order di�erential equations appear more and more frequently in di�erent research
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areas.

Reaction-Di�usion Equations

Fractional equations can be used to describe some physical phenomenon more accu-
rately than the classical integer order di�erential equation. The reaction-di�usion
equations play an important role in dynamical systems of mathematics, physics, chem-
istry, bioinformatics, �nance, and other research areas. There has been a wide variety of
analytical and numerical methods proposed for fractional equations ([107, 144]), for ex-
ample, �nite di�erence method ([59]), �nite element method, Adomian decomposition
method ([122]), and spectral technique ([106]). Interest in fractional reaction-di�usion
equations has increased.
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1.3 Fractional Calculus Theory

In this section; de�nitions and some auxiliary results are given regarding the main
objects of the monograph: some notations and de�nitions of fractional calculus theory,
some de�nitions and properteis of the measure of non-compactness , some �xed point
theorems.

Consider the complete metric space C(I) := C(I,Rm) of continuous functions from
I into Rm equipped with the usual metric

d(u, v) := max
t∈I

∥u(t)− v(t)∥,

where ∥.∥ is a suitable norm on Rm. Notice that C(I) is a Banach space with the
supremum(uniform) norm

∥u∥∞ := sup
t∈I

∥u(t)∥.

As usual, AC(I) denotes the space of absolutely continuous functions from I into Rm,
and L1(I) denotes the space measurable functions v : I → Rm which are Lebesgue
integrable with the norm

∥v∥1 =
∫
I

∥v(t)∥dt.

For any n ∈ N∗, we denote by ACn(I) the space de�ned by

ACn(I) := {w : I → Rm :
dn

dtn
w(t) ∈ AC(I)}.

Let

δ = t
d

dt
, q > 0, n = [q] + 1,

where [q] is the integer part of q. De�ne the space

ACn
δ := {u : I → Rm : δn−1[u(t)] ∈ AC(I)}.

Let X := C(R+) be the Fréchet space of all continuous functions v from R+ into
E, equipped with the family of seminorms

∥v∥n = sup
t∈[0,n]

∥v(t)∥; n ∈ N,

and the distance

d(u, v) =
∞∑
n=0

2−n ∥u− v∥n
1 + ∥u− v∥n

; u, v ∈ X.

De�nition 1. A nonempty subset B ⊂ X is said to be bounded if

sup
v∈B

∥v∥n <∞; for n ∈ N.
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Let us recall some de�nitions and properties of fractional integration and di�eren-
tiation.

De�nition 2. [96, 121]. The fractional (arbitrary) order integral of the function f ∈
L1([0, T ],R) of order α ∈ R+ is de�ned by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the gamma function.

Theorem 3. [96] For any f ∈ C([a, b],R) the Riemann-Liouville fractional integral
satis�es

IαIβf(t) = IβIαf(t) = Iα+βf(t),

for α, β > 0.

De�nition 4. [97]. For a function f given on the interval [0, T ], the Caputo fractional-
order derivative of order α of h, is de�ned by

(cDαf)(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 5. [112] Let α ≥ 0 and n = [α] + 1. Then

Iα(cDαf(t)) = f(t)−
n−1∑
k=0

fk(0)

k!
tk.

Remark 6. ([112])The Caputo derivative of a constant is equal to zero.

We need the following auxiliary lemmas.

Lemma 7. ([145]) Let α > 0. Then the di�erential equation

cDαf(t) = 0

has solutions f(t) = c0 + c1t + c2t
2 + · · · + cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n − 1,
n = [α] + 1.

Lemma 8. [145] Let α > 0. Then

IαcDαf(t) = f(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.
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Lemma 9. ([65], Lemma 3.11) Let α > 0, α /∈ N and m = [α]. Moreover assume that
f ∈ Cm[a, b]. Then

cDα
a f ∈ C[a, b],

and
cDα

a f(a) = 0.

Theorem 10. ([96], Theorem 2.2) Let α ≥ 0 and let n such that n = [Re(α)] + 1 for
α /∈ N and n = α for α ∈ N. Also let y(x) ∈ Cn[a, b]. Then the Caputo fractional
derivatives cDα

a+y(x) and cDα
b−y(x) are continuous on [a, b] : cDα

a+y(x) ∈ C[a, b] and
cDα

b−y(x) ∈ C[a, b].

De�nition 11. [96] (Hadamard fractional integral) The Hadamard fractional integral
of order q > 0 for a function u ∈ L1(I), is de�ned as

(HIq1u)(x) =
1

Γ(q)

∫ x

1

(
ln
x

s

)q−1 u(s)

s
ds,

provided the integral exists.

Example 12. Let 0 < q < 1. Then

HIq1 ln t =
1

Γ(2 + q)
(ln t)1+q; for a.e. t ∈ [1, e].

De�nition 13. [96] (Hadamard fractional derivative) The Hadamard fractional deriva-
tive of order q > 0 applied to the function u ∈ ACn

δ (I) is de�ned as

(HDq
1u)(x) = δn(HIn−q

1 u)(x).

In particular, if q ∈ (0, 1], then

(HDq
1u)(x) = δ(HI1−q

1 u)(x).

Example 14. Let 0 < q < 1. Then

HDq
1 ln t =

1

Γ(2− q)
(ln t)1−q; for a.e. t ∈ [1, e].

It has been proved (see e.g. Kilbas [[95], Theorem 4.8]) that in the space L1(I), the
Hadamard fractional derivative is the left-inverse operator to the Hadamard fractional
integral, i.e.

(HDq
1)(

HIq1w)(x) = w(x).

From Theorem 2.3 of [96], we have

(HIq1)(
HDq

1w)(x) = w(x)− (HI1−q
1 w)(1)

Γ(q)
(lnx)q−1.

Analogous to the Hadamard fractional operator, the Caputo�Hadamard fractional
derivative is de�ned in the following way:
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De�nition 15. (Caputo�Hadamard fractional derivative) The Caputo�Hadamard frac-
tional derivative of order q > 0 of the function u ∈ ACn

δ is de�ned as

(HCDq
1u)(x) = (HIn−q

1 δnu)(x).

In particular, if q ∈ (0, 1], then

(HCDq
1u)(x) = (HI1−q

1 δu)(x).

De�nition 16. [58, 108] The Caputo-Fabrizio fractional integral of order 0 < r < 1
for a function h ∈ L1(I) is de�ned by

CF Irh(τ) =
2(1− r)

M(r)(2− r)
h(τ) +

2r

M(r)(2− r)

∫ τ

0

h(x)dx, τ ≥ 0

where M(r) is normalization constant depending on r.

De�nition 17. [58, 108] The Caputo-Fabrizio fractional derivative for a function h ∈
C1(I) of order 0 < r < 1, is de�ned by

CFDrh(τ) =
(2− r)M(r)

2(1− r)

∫ τ

0

exp

(
− r

1− r
(τ − x)

)
h′(x)dx; τ ∈ I.

Note that (CFDr)(h) = 0 if and only if h is a constant function.

We state the following generalization of Gronwall 's lemma for singular kernels.

Lemma 18. [142] Let v : [0, T ] → [0,+∞) be a real function and w(·) is a nonnegative,
locally integrable function on [0, T ]. Assume that there are constants a > 0 and 0 <
α < 1 such that

v(t) ≤ w(t) + a

∫ t

0

(t− s)−αv(s)ds,

Then, there exists a constant K = K(α) such that

v(t) ≤ w(t) +Ka

∫ t

0

(t− s)−αw(s)ds, for every t ∈ [0, T ].

Bainov and Hristova [29] introduced the following integral inequality of Gronwall
type for piecewise continuous functions which can be used in the sequel.

Lemma 19. Let for t ≥ t0 ≥ 0 the following inequality hold

x(t) ≤ a(t) +

∫ t

t0

g(t, s)x(s)ds+
∑

t0<tk<t

βk(t)x(tk),

where βk(t)(k ∈ N) are nondecreasing functions for t ≥ t0, a ∈ PC([t0,∞),R+), a
is nondecreasing and g(t, s) is a continuous nonnegative function for t, s ≥ t0 and
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nondecreasing with respect to t for any �xed s ≥ t0. Then, for t ≥ t0, the following
inequality is valid:

x(t) ≤ a(t)
∏

t0<tk<t

(1 + βk(t))exp

(∫ t

t0

g(t, s)ds

)
.

Theorem 20. [82](theorem of Ascoli-Arzela) Let A ⊂ C(J,R), A is relatively compact
(i.e A is compact) if:

1. A is uniformly bounded i.e, there exists M > 0 such that

|f(x)| < M for every f ∈ A and x ∈ J.

2. A is equicontinuous i.e, for every ϵ > 0, there exists δ > 0 such that for each
x, x ∈ J, |x− x| ≤ δ implies |f(x)− f(x)| ≤ ϵ, for every f ∈ A.
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1.3.1 Some de�nitions and properties of the measure of non-

compactness

In this section we de�ne the Kuratowski (1896-1980) and Hausdorf measures of non-
compactness (MNC for short) and give their basic properties.

De�nition 21. [99] Let (X, d) be a complete metric space and B the family of bounded
subsets of X. For every B ∈ B we de�ne the Kuratowski measure of non-compactness
α(B) of the set B as the in�mum of the numbers d such that B admits a �nite covering
by sets of diameter smaller than d.

Remark 22. The diameter of a set B is the number sup{d(x, y) : x ∈ B, y ∈ B}
denoted by diam(B), with diam(∅) = 0.
It is clear that 0 ≤ α(B) ≤ diam(B) < +∞ for each nonempty bounded subset B of X
and that diam(B) = 0 if and only if B is an empty set or consists of exactly one point.

De�nition 23. [33] Let E be a Banach space and ΩE the bounded subsets of E. The
Kuratowski measure of noncompactness is the map α : ΩE → [0,∞] de�ned by

α(B) = inf{ϵ > 0 : B ⊆ ∪n
i=1Bi and diam(Bi) ≤ ϵ}; here B ∈ ΩE,

where
diam(Bi) = sup{||x− y|| : x, y ∈ Bi}.

The Kuratowski measure of noncompactness satis�es the following properties:

Lemma 24. ([19, 33, 34, 99]) Let A and B bounded sets.

(a) α(B) = 0 ⇔ B is compact (B is relatively compact), where B denotes the closure
of B.

(b) nonsingularity : α is equal to zero on every one element-set.

(c) If B is a �nite set, then α(B) = 0.

(d) α(B) = α(B) = α(convB), where convB is the convex hull of B.

(e) monotonicity : A ⊂ B ⇒ α(A) ≤ α(B).

(f) algebraic semi-additivity : α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B}.

(g) semi-homogencity : α(λB) = |λ|α(B); λ ∈ R, where λ(B) = {λx : x ∈ B}.

(h) semi-additivity : α(A
⋃
B) = max{α(A), α(B)}.

(i) α(A
⋂
B) = min{α(A), α(B)}.
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(j) invariance under translations : α(B + x0) = α(B) for any x0 ∈ E.

Remark 25. The a-measure of noncompactness was introduced by Kuratowski in order
to generalize the Cantor intersection theorem

Theorem 26. [99] Let (X, d) be a complete metric space and {Bn} be a decreasing
sequence of nonempty, closed and bounded subsets of X and limn→∞ α(Bn) = 0. Then
the intersection B∞ of all Bn is nonempty and compact.

In [86], Horvath has proved the following generalization of the Kuratowski theorem:

Theorem 27. [99] Let (X, d) be a complete metric space and {Bi}i∈I be a family of
nonempty of closed and bounded subsets of X having the �nite intersection property.
If infi∈I α(Bi) = 0 then the intersection B∞ of all Bi is nonempty and compact.

Lemma 28. [81] If V ⊂ C(J,E) is a bounded and equicontinuous set, then

(i) the function t→ α(V (t)) is continuous on J , and

αc(V ) = sup
0≤t≤T

α(V (t)).

(ii) α

(∫ T

0

x(s)ds : x ∈ V

)
≤

∫ T

0

α(V (s))ds,

where

V (s) = {x(s) : x ∈ V }, s ∈ J.

In the de�nition of the Kuratowski measure we can consider balls instead of arbi-
trary sets. In this way we get the de�nition of the Hausdor� measure:

De�nition 29. ([99]) The Hausdor� measure of non-compactness χ(B) of the set B
is the in�mum of the numbers r such that B admits a �nite covering by balls of radius
smaller than r.

Theorem 30. ([99]) Let B(0, 1) be the unit ball in a Banach space X. Then

α(B(0, 1)) = χ(B(0, 1)) = 0

if X is �nite dimensional, and α(B(0, 1)) = 2, χ(B(0, 1)) = 1 otherwise.

Theorem 31. ([99]) Let S(0, 1) be the unit sphere in a Banach space X. Then
α(S(0, 1)) = χ(S(0, 1)) = 0 if X is �nite dimensional, and α(S(0, 1)) = 2, χ(S(0, 1)) =
1 otherwise.
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Theorem 32. ([99]) The Kuratowski and Hausdor� MNCs are related by the inequal-
ities

χ(B) ≤ α(B) ≤ 2χ(B).

In the class of all in�nite dimensional Banach spaces these inequalities are the best
possible.

Example 33. Let l∞ be the space of all real bounded sequences with the supremum
norm, and let A be a bounded set in l∞. Then α(A) = 2χ(A).

For further facts concerning measures of non-compactness and their properties we
refer to [19, 25, 33, 34, 99] and the references therein.

We recall the following de�nition of the notion of a sequence of measures of non-
compactness [66, 67].

De�nition 34. Let MF be the family of all nonempty and bounded subsets of a Fréchet
space F. A family of functions {µn}n∈N where µn : MF → [0,∞) is said to be a family
of measures of non-compactness in the real Fréchet space F if it satis�es the following
conditions for all B,B1, B2 ∈ MF :

(a) {µn}n∈N is full, that is: µn(B) = 0 for n ∈ N if and only if B is precompact,

(b) µn(B1) ≤ µn(B2) for B1 ⊂ B2 and n ∈ N,

(c) µn(ConvB) = µn(B) for n ∈ N,

(d) If {Bi}i=1,··· is a sequence of closed sets from MF such that Bi+1 ⊂ Bi; i = 1, · · ·
and if lim

i→∞
µn(Bi) = 0, for each n ∈ N, then the intersection set B∞ := ∩∞

i=1Bi is

nonempty.
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Some Properties:

(e) We call the family of measures of non-compactness {µn}n∈N to be homogeneous
if µn(λB) = |λ|µn(B); for λ ∈ R and n ∈ N.

(f) If the family {µn}n∈N satis�ed the condition µn(B1 ∪B2) ≤ µn(B1) +µn(B2), for
n ∈ N, it is called subadditive.

(g) It is sublinear if both conditions (e) and (f) hold.

(h) We say that the family of measures {µn}n∈N has the maximum property if

µn(B1 ∪B2) = max{µn(B1), µn(B2)},

(i) The family of measures of non-compactness {µn}n∈N is said to be regular if if the
conditions (a), (g) and (h) hold; (full sublinear and has maximum property).

Example 35. [66, 118] For B ∈ MX , x ∈ B, n ∈ N and ϵ > 0, let us denote by
ωn(x, ϵ) the modulus of continuity of the function x on the interval [0, n]; that is,

ωn(x, ϵ) = sup{∥x(t)− x(s)∥ : t, s ∈ [0, n], |t− s| ≤ ϵ}.

Further, let us put
ωn(B, ϵ) = sup{ωn(x, ϵ) : x ∈ B},

ωn
0 (B) = lim

ϵ→0+
ωn(B, ϵ),

ᾱn(B) = sup
t∈[0,n]

α(B(t)) := sup
t∈[0,n]

α({x(t) : x ∈ B}),

and
βn(B) = ωn

0 (B) + ᾱn(B).

The family of mappings {βn}n∈N where βn : MX → [0,∞), satis�es the conditions
(a)-(d) fom De�nition 34.

Lemma 36. [52] If Y is a bounded subset of a Fréchet space F, then for each ϵ > 0,
there is a sequence {yk}∞k=1 ⊂ Y such that

µn(Y ) ≤ 2µn({yk}∞k=1) + ϵ; for n ∈ N.

Lemma 37. [113] If {uk}∞k=1 ⊂ L1([0, n]) is uniformly integrable, then µn({uk}∞k=1) is
measurable for n ∈ N∗, and

µn

({∫ t

1

uk(s)ds

}∞

k=1

)
≤ 2

∫ t

1

µn({uk(s)}∞k=1)ds,

for each t ∈ [0, n].
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De�nition 38. Let Ω be a nonempty subset of a Fréchet space F, and let A : Ω → F
be a continuous operator which transforms bounded subsets of onto bounded ones. One
says that A satis�es the Darbo condition with constants (kn)n∈N with respect to a family
of measures of non-compactness {µn}n∈N, if

µn(A(B)) ≤ knµn(B)

for each bounded set B ⊂ Ω and n ∈ N.
If kn < 1; n ∈ N then A is called a contraction with respect to {µn}n∈N.

1.3.2 Some �xed point theorems

Theorem 39 (Banach's �xed point theorem (1922) [79]). Let C be a non-empty closed
subset of a Banach space X, then any contraction mapping T of C into itself has a
unique �xed point.

Theorem 40 (Schauder �xed point theorem [25]). Let X be a Banach space, D be a
bounded closed convex subset of X and T : D → D be a compact and continuous map.
Then T has at least one �xed point in D.

Theorem 41 (Nonlinear alternative of Leray-Schauder type [79]). Let X be a Banach
space and C a nonempty convex subset of X. Let U a nonempty open subset of C with
0 ∈ U and T : U → C continuous and compact operator.
Then,
(a) either T has �xed points,
(b) or there exist u ∈ ∂U and λ ∈ [0, 1] with u = λT (u).

Theorem 42 (Darbo's Fixed Point Theorem [33, 79]). Let X be a Banach space and C
be a bounded, closed, convex and nonempty subset of X. Suppose a continuous mapping
N : C → C is such that for all closed subsets D of C,

α(T (D)) ≤ kα(D), (1.1)

where 0 ≤ k < 1, and α is the Kuratowski measure of noncompactness. Then T has a
�xed point in C.

Remark 43. Mappings satisfying the Darbo-condition (1.1) have subsequently been
called k-set contractions.

Theorem 44 (Mönch's Fixed Point Theorem [14, 113]). Let D be a bounded, closed
and convex subset of a Banach space such that 0 ∈ D, and let N be a continuous
mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0 (1.2)

holds for every subset V of D, then N has a �xed point.
Here α is the Kuratowski measure of noncompactness.
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The following generalization of the classical Darbo �xed point theorem for Fréchet
spaces.

Theorem 45. [66, 67] Let Ω be a nonempty, bounded, closed, and convex subset of
a Fréchet space F and let V : Ω → Ω be a continuous mapping. Suppose that V is a
contraction with respect to a family of measures of noncompactness {µn}n∈N. Then V
has at least one �xed point in the set Ω.

For more details see [14, 23, 78, 79, 99, 143]
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Chapter 2

Caputo-Hadamard Fractional

Di�erential Equation

In this chapter, we will give existence and uniqueness results for a class of bound-
ary value problem of fractional di�erential equations in banach spaces with Caputo-
Hadamard fractional derivative.

2.1 Caputo-Hadamard Fractional Di�erential Equa-
tions

2.1.1 Introduction and Motivations

The purpose of this section, is to establish existence and uniqueness of solutions for
the following class of Caputo-Hadamard fractional di�erential equation

(HcDα
1 u)(t) = f(t, u(t)), t ∈ I := [1, T ], (2.1){
a1u(1)− b1u

′(1) = d1u(ξ1),

a2u(T ) + b2u
′(T ) = d2u(ξ2),

(2.2)

where α ∈ (1, 2], T > 1, a1, b1, d1, a2, b2, d2 ∈ R, ξ1, ξ2 ∈ (1, T ), f : I × Rm →
Rm, m ∈ N∗ is a given continuous function, and HcDα

1 is the Caputo�Hadamard frac-
tional derivative of order α.

In [3], S. Abbas et al. studied the existence of solutions for the following problem
of Caputo-Hadamard fractional di�erential equations of the form{

(HcDr
1u)(t) = f(t, u(t)), t ∈ I := [1, T ],

u(t)|t=1 = ϕ,
(2.3)
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where r ∈ (0, 1), T > 1, ϕ ∈ E, f : I × E → E is a given continuous function, E
is a real(or complex) Banach space with a norm ∥ · ∥, HcDr

1 is the Caputo-Hadamard
fractional derivative of order r.

They next discussed the existence of solutions for the following problem of Caputo-
Hadamard partial fractional di�erential equation of the form

(HcDr
σu)(t, x) = f(t, x, u(t, x)), (t, x) ∈ J := [1, T ]× [1, b],

u(t, 1) = ϕ(t); t ∈ [1, T ],

u(1, x) = ψ(x); x ∈ [1, b],

(2.4)

where r = (r1, r2) ∈ (0, 1] × (0, 1], T, b > 1, σ = (1, 1), f : J × E → E is a given
continuous function, ϕ : [1, T ] → E and ψ : [1, b] → E are given absolutely continuous
functions with ϕ(1) = ψ(1), and HcDr

1 is the Caputo-Hadamard partial fractional
derivative of order r.

In [74]; the authors used the technique of measure of weak noncompactness combine
with the �xed point theorem to discuss the existence theorem of weak solutions for a
class of nonlinear fractional integrodi�erential equations of the form

(cDα
0+u)(t) = f(t, x(t), T (x)(t), (Sx)(t)); t ∈ [0, 1], α ∈ (1, 2],{

a1x(0)− b1x
′
(0) = d1x(ξ1),

a2x(1) + b2x
′
(1) = d2x(ξ2),

(2.5)

where T and S are two operators de�ned by
(Tu)(t) =

∫ t

0

k1(t, s)g(s, u(s))ds,

(Su)(t) =

∫ a

0

k2(t, s)h(s, u(s))ds,

E is a nonre�exive Banach space.
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2.1.2 Existence of solutions

Consider the complete metric space C(I) := C(I,Rm) of continuous functions from I
into Rm equipped with the usual metric

d(u, v) := max
t∈I

∥u(t)− v(t)∥,

where ∥ · ∥ is a suitable norm on Rm.

Notice that C(I) is a Banach space with the supremum (uniform) norm

∥u∥∞ := sup
t∈I

∥u(t)∥.

By BV (I,R), we denote the space of real bounded variation functions with its
classical norm ∥ · ∥BV .

Let us de�ning what we mean by a solution of problem (2.1)-(2.2).

De�nition 46. By a solution of the problem (2.1)-(2.2) we mean a continuous function
u that satis�es the equation (2.1) on I and the conditions (2.2).

For the existence of solutions for the problem (2.1)-(2.2); we need the following
auxiliary lemma:

Lemma 47. Let h ∈ C and α ∈ (1, 2]. Then the unique solution of the problem
(HcDα

1 u)(t) = h(t), t ∈ I,

a1u(1)− b1u
′(1) = d1u(ξ1),

a2u(T ) + b2u
′(T ) = d2u(ξ2),

is given by

u(t) =

∫ T

1

G(t, s)h(s)ds,

where G is the Green function with G(t, s) given by(
ln t

s

)α−1

sΓ(α)

+
b1 + d1 ln ξ1

∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]

−
d1

(
ln ξ1

s

)α−1

s∆Γ(α)

[
a2 lnT +

b2
T

− d2 ln ξ2

]
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+
d1 ln t

(
ln ξ1

s

)α−1

s∆Γ(α)
[a2 − d2]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]
for s ≤ ξ1 and s ≤ t,

b1 + d1 ln ξ1
∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]

−
d1

(
ln ξ1

s

)α−1

s∆Γ(α)

[
a2 lnT +

b2
T

− d2 ln ξ2

]
+
d1 ln t

(
ln ξ1

s

)α−1

s∆Γ(α)
[a2 − d2]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]
for s ≤ ξ1 and t ≤ s,(

ln t
s

)α−1

sΓ(α)

+
b1 + d1 ln ξ1

∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]
for ξ1 ≤ s ≤ ξ2 and s ≤ t,

b1 + d1 ln ξ1
∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]
for ξ1 ≤ s ≤ ξ2 and t ≤ s,

+
b1 + d1 ln ξ1

∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]
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for ξ2 ≤ s ≤ t, and (
ln t

s

)α−1

sΓ(α)

b1 + d1 ln ξ1
∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

for ξ2 ≤ s and t ≤ s,

b1 + d1 ln ξ1
∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

where

∆ = (d1 − a1){a2 lnT +
b2
T

− d2 ln ξ2} − (a2 − d2)(b1 + d1 ln ξ1) ̸= 0.

Proof.

By Lemma 59, solving the linear fractional di�erential equation

(HcDα
1 u)(t) = h(t),

we obtain
u(t) = (HIα1 u)(t) + c1 + c2 ln t. (2.6)

On the other hand, by the relation

Dβ
1 I

α
1 u(t) = Iα−β

1 u(t),

we get

u′(t) =
1

Γ(α− 1)

∫ t

1

(
ln
t

s

)α−2

h(s)
s.
s
+
c2
t
.

From the boundary conditions, we have

(d1 − a1)c1 + (b1 + d1 ln ξ1)c2 = a1αh(1)− b1α− 1h(1)− d1αh(ξ1)

and
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(a2 − d2)c1 + a2 lnT +
b2
T

− d2 ln ξ2c2 = d2αh(ξ2) − a2αh(T ) − b2α− 1h(T ).

Thus, we get

c1 =
b1 + d1 ln ξ1

∆
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a2
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1

(
ln
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1

(
ln
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and

c2 =
d1
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1
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ln
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− d1 − a1
∆
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a2
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1
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]
.

Substituting the values of c1 and c2 in 2.6, we get

u(t) =
1

Γ(α)

∫ t

1

(
ln
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)α−1
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s
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+
b1 + d1 ln ξ1

∆

[
a2

∫ T

1

(
ln
T

s

)α−1
h(s)

sΓ(α)
s.

+ b2

∫ T

1

(
ln
T

s

)α−2
h(s)

sΓ(α− 1)
s. − d2

∫ ξ2

1

(
ln
ξ2
s

)α−1
h(s)

sΓ(α)
s.

]
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1
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ln
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1

(
ln
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s.

− (d1 − a1) ln t

∆
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1

(
ln
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1

(
ln
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1

(
ln
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]

=

∫ T

1

G(t, s)h(s)s..
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Remark 48. Notice that the function G(·, ·) is not continuous over [1, T ] × [1, T ],
however the function t 7→

∫ t

1
G(t, s)ds is continuous on [1, T ]. Set

G∗ = sup
t∈[1,T ]

∫ t

1

|G(t, s)|ds.

De�nition 49. ([128]) A nondecreasing function ϕ : R+ → R+ is called a comparison
function if it satis�es one of the following conditions:

(1) For any t > 0 we have

lim
n→∞

ϕ(n)(t) = 0,

where ϕ(n) denotes the n-th iteration of ϕ.

(2) The function ϕ is right-continuous and satis�es

∀t > 0 : ϕ(t) < t.

Remark 50. The choice ϕ(t) = kt with 0 < k < 1 gives the classical Banach contrac-
tion mapping principle.

De�nition 51. [20] Let (M,d) be a metric space. A map T : M → M is said to be
Lipschitzian if there exists a constant k > 0 (called Lipschitz constant) such that

d(T (x), T (y)) ≤ kd(x, y); for all x, y ∈M.

A Lipschitzian mapping with a Lipschitz constant k < 1 is called a contraction.

For our purpose we will need the following �xed point theorem:

Theorem 52. [53, 110] Let (X, d) be a complete metric space and T : X → X be a
mapping such that

d(T (x), T (y)) ≤ ϕ(d(x, y)),

where ϕ is a comparison function. Then T has a unique �xed point in X.

The following hypotheses will be used in the sequel.

(H1) The function f satis�es the generalized Lipschitz condition:

∥f(t, u)− f(t, v)∥ ≤ 1

G∗ϕ(∥u− v∥),

for t ∈ I and u, v ∈ Rm, where ϕ is a comparison function.
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(H2) There exist functions p, q ∈ C(I, [0,∞)) such that

∥f(t, u)∥ ≤ p(t) + q(t)∥u∥, for each t ∈ I and u ∈ Rm.

Set
p∗ = sup

t∈I
p(t), q∗ = sup

t∈I
q(t).

First, we prove an existence and uniqueness result for the problem (2.1)- (2.2).

Theorem 53. Assume that the hypothesis (H1) holds. Then there exists a unique
solution of problem (2.1)- (2.2) on I.

Proof. By using Lemma 59, we transform the problem (2.1)- (2.2) into a �xed
point problem.

Consider the operator N : C(I) → C(I) de�ned by

(Nu)(t) =

∫ T

1

G(t, s)f(s, u(s))ds; t ∈ I. (2.7)

For each u, v ∈ C(I) and t ∈ I, we have

∥(Nu)(t)− (Nv)(t)∥ = ∥
∫ T

1
G(t, s)[f(s, u(s))− f(s, v(s))]ds∥

≤
∫ T

1
∥G(t, s)[f(s, u(s))− f(s, v(s))]∥ds

≤
∫ T

1
|G(t, s)|∥[f(s, u(s))− f(s, v(s))]∥ds

≤ ϕ(∥u(s)− v(s)∥)
≤ ϕ(d(u, v)).

.

Thus, we get
d(N(u), N(v)) ≤ ϕ(d(u, v)).

Consequently, from Theorem 52, the operator N has a unique �xed point, which is the
unique solution of our problem (2.1)-(2.2) on I.

Now, we prove an existence result by using Schauder �xed point theorem.

Theorem 54. Assume that the hypothesis (H2) holds. If

G∗q∗ < 1,

then the problem (2.1)- (2.2) has at least one solution de�ned on I.

Proof. Let N be the operator de�ned in (2.7). Set

R ≥ G∗p∗

1−G∗q∗
,
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and consider the closed and convex ball BR = {u ∈ C(I) : ∥u∥∞ ≤ R}.

Let u ∈ BR. Then, for each t ∈ I, we have

∥(Nu)(t)∥ ≤
∫ T

1
∥G(t, s)∥∥f(s, u(s)∥ds

≤
∫ T

1
|G(t, s)|∥f(s, u(s)∥ds

≤
∫ T

1
|G(t, s)|(p(s) + q(s)∥u(s)∥)ds

≤ G∗(p∗ +Rq∗).

.

Thus
∥N(u)∥∞ ≤ R.

Hence N maps the ball BR into BR. We shall show that the operator N : BR → BR

satis�es the assumptions of Schauder's �xed point theorem. The proof will be given in
several steps.

Step1: N is continuous.
Let {un} be a sequence such that un → u in BR. Then, for each t ∈ I, we have

∥(Nun)(t)− (Nu)(t)∥ ≤
∫ T

1
∥G(t, s)[f(s, un(s))− f(s, u(s))]∥ds

≤
∫ T

1
|G(t, s)|∥f(s, un(s))− f(s, u(s))∥ds.

Since un → u as n → ∞ and f is continuous, then by the Lebesgue dominated
convergence theorem;

∥N(un)−N(u)∥∞ → 0 as n→ ∞.

Step2: N(BR) is bounded. This is clear since N : BR → BR and BR is bounded.

Step3: N maps bounded sets into equicontinuous sets in BR.
Let t1, t2 ∈ I, such that t1 < t2 and let u ∈ BR. Then, we have

∥(Nu)(t1)− (Nu)(t2)∥ ≤
∫ T

1
|G(t1, s)−G(t2, s)|∥f(s, u(s))∥ds

≤ (p∗ +Rq∗)
∫ T

1
|G(t1, s)−G(t2, s)|ds.

As t1 → t2, from Remark 2.1.3, the right-hand side of the above inequality tends to
zero. As a consequence of steps 1 to 3, together with the Arzelá�Ascoli theorem, we
can conclude that N : BR → BR is continuous and compact. From an application
of Theorem 40, we deduce that N has a �xed point u which is a solution of problem
(2.1)-(2.2).
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2.1.3 An Example

As application of our results, we consider the following class of Caputo�Hadamard
fractional di�erential equation of the form

(HcD
3
2
1 u)(t) =

ce−2t−1

1 + e2t|u(t)|
; t ∈ [1, e], (2.8)

with the four-point boundary conditions{
u(1)− cu′(1) = u(3

2
),

u(e) + 2u′(e) = u(2),
(2.9)

where c > 0. Set f : [1, e]× R → R with

f(t, u) =
ce−2t−1

1 + e2t|u|
; t ∈ [1, e].

It is clear that f is continuous, and satis�es the hypothesis (H1) with

ϕ(x) = ce−1G∗x; x > 0,

and a good choice of the constant c; like c < e
G∗ . Hence by Theorem 53, the problem

(2.8)-(2.13) has a unique solution de�ned on [1, e].
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2.2 Implicit Caputo-Hadamard Fractional Di�eren-
tial Equations

2.2.1 Introduction and motivations

In this section, we discuss the existence and uniqueness of solutions for the following
class of Caputo-Hadamard fractional di�erential equation

(HcDα
1 u)(t) = f(t, u(t), (HcDα

1 u)(t)), t ∈ I := [1, T ], (2.10){
a1u(1)− b1u

′(1) = d1u(ξ1),

a2u(T ) + b2u
′(T ) = d2u(ξ2),

(2.11)

where α ∈ (1, 2], T > 1, a1, b1, d1, a2, b2, d2 ∈ R, ξ1, ξ2 ∈ (1, T ), f : I × Rm × Rm →
Rm, m ∈ N∗ is a given continuous function, and HcDα

1 is the Caputo�Hadamard
fractional derivative of order α.

In [50]; the authors established the existence, uniqueness and stability results of
solutions for the following initial value problem for imlicit fractional order di�erential
equations {

HDαy(t) = f(t, y(t),H Dαy(t)), t ∈ J, 0 < α ≤ 1,

y(1) = y1,

where HDα is the Hadamard fractional derivative, f : J×R×R → R is a given function
space, y1 ∈ R and J = [1, T ], T > 1.

In [41]; the following classes of boundary value problems for the existence and
stability of solutions for implicit fractional di�erential equations with Caputo fractional
derivative:{

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J := [0, T ], T > 0, 0 < α ≤ 1,

αy(0) + by(T ) = c,

where cDα is the fractional derivative of Caputo, f : J × R × R → R a continuous
function, and a,b,c are real constants with a+ b ̸= 0, and{

cDαy(t) = f(t, y(t),cDαy(t)), t ∈ J := [0, T ], T > 0, 0 < α ≤ 1,

y(0) + g(y) = y0,

where g : C([0, T ],R) → R a continuous function and y0 a real constant; are stud-
ied. This type of non-local Cauchy problem was introduced by Byszewski[57]. The
author observed that the non-local condition is more appropriate that the non-local
condition(initial) to describe correctly some physics phenomenons[57] and proved the
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existence and the uniqueness of weak solutions and also classical solutions for this type
of problems. We take an example of non-local conditions as follows:

g(y) =

p∑
i=1

ciy(ti)

where ci, i = 1...p are constants and 0 < t1 < ... < tp ≤ T.

2.2.2 Existence of solutions

Consider the complete metric space C(I) := C(I,Rm) of continuous functions from I
into Rm equipped with the usual metric

d(u, v) := max
t∈I

∥u(t)− v(t)∥,

where ∥ · ∥ is a suitable norm on Rm. Notice that C(I) is a Banach space with the
supremum (uniform) norm

∥u∥∞ := sup
t∈I

∥u(t)∥.

Let us de�ning what we mean by a solution of problem (2.10)-(2.11).

De�nition 55. By a solution of the problem (2.10)-(2.11) we mean a continuous
function u that satis�es the equation (2.10) on I and the conditions (2.11).

For the existence of solutions for the problem (2.10)-(2.11); we need the Lemma 59.

The following hypotheses will be used in the sequel.

(H1) The function f satis�es the generalized Lipschitz condition:

∥f(t, u1, v1)− f(t, u2, v2)∥ ≤ 1

G∗ϕ1(∥u1 − u2∥) + ϕ2(∥v1 − v2∥),

for t ∈ I and u1, u2, v1, v2 ∈ Rm, where ϕ1 and ϕ2 are comparison functions.

(H2) There exist functions p, q, r ∈ C(I, [0,∞))with r(t) < 1 such that

(1 + ∥u∥)∥f(t, u, v)∥ ≤ p(t) + q(t)∥u∥+ r(t)∥v∥, for each t ∈ I and u, v ∈ Rm.

Set
p∗ = sup

t∈I
p(t), q∗ = sup

t∈I
q(t), r∗ = sup

t∈I
r(t).

First, we prove an existence and uniqueness result for the problem (2.10)- (2.11).

Theorem 56. Assume that the hypothesis (H1) holds. Then there exists a unique
solution of problem (2.10)- (2.11) on I.
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Proof. By using of Lemma 59, we transform the problem (2.10)- (2.11) into a �xed
point problem. Consider the operator N : C(I) → C(I) de�ned by

(Nu)(t) =

∫ T

1

G(t, s)g(s)ds; t ∈ I, (2.12)

where g ∈ C(I) such that

g(t) = f(t, u(t), g(t)), or g(t) = f

(
t,

∫ T

1

G(t, s)g(s)ds, g(s)

)
.

Let u, v ∈ C(I). Then, for t ∈ I, we have

∥(Nu)(t)− (Nv)(t)∥ ≤
∫ T

1
∥G(t, s)(g(s)− h(s))∥ds,

where g, h ∈ C(I) such that

g(t) = f(t, u(t), g(t)), and h(t) = f(t, u(t), h(t)).

From (H2), we get

∥g(t)− h(t)∥ ≤ 1

G∗ϕ1(∥u(t)− v(t∥) + ϕ2(∥g(t)− h(t∥).

Thus

∥g(t)− h(t)∥ ≤ 1

G∗ (Id− ϕ2)
−1ϕ1(∥u(t)− v(t∥),

where Id is the identity function. Set ϕ := (Id− ϕ2)
−1ϕ1. We obtain

∥(Nu)(t)− (Nv)(t)∥ ≤ ϕ(∥u(t)− v(t)∥)
≤ ϕ(d(u, v)).

.

Hence, we get
d(N(u), N(v)) ≤ ϕ(d(u, v)).

Consequently, from Theorem 52, the operator N has a unique �xed point, which is the
unique solution of our problem (2.10)-(2.11) on I.
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Now, we prove an existence result by Nonlinear alternative of Leray-Schauder type.

Theorem 57. Assume that the hypothesis (H2) holds. Then the problem (2.10)- (2.11)
has at least one solution de�ned on I.

Proof. Let N be the operator de�ned in (2.12). Set

R ≥ G∗(p∗ + q∗)

1− r∗
,

and consider the closed and convex ball BR = {u ∈ C(I) : ∥u∥∞ ≤ R}.
Let u ∈ BR. Then, for each t ∈ I, we have

∥(Nu)(t)∥ ≤
∫ T

1

∥G(t, s)g(s)∥ds,

where g ∈ C(I) such that
g(t) = f(t, u(t), g(t)).

By (H2), for each t ∈ I we have

∥g(t)∥ ≤ p(t) + q(t) + r(t)∥g(t)∥
≤ p∗ + q∗ + r∗∥g(t)∥
≤ p∗ + q∗ + r∗∥g(t)∥.

This gives

∥g(t)∥ ≤ p∗ + q∗

1− r∗
.

Thus

∥N(u)∥∞ ≤ G∗(p∗ + q∗)

1− r∗
.

So,
∥N(u)∥∞ ≤ R.

Hence N maps the ball BR into BR.
We shall show that the operator N : BR → BR is continuous and compact.

The proof will be given in several steps.

Step1: N is continuous.
Let {un}n∈N be a sequence such that un → u in BR. Then, for each t ∈ I, we have

∥(Nun)(t)− (Nu)(t)∥ ≤
∫ T

1
∥G(t, s)(gn(s)− g(s))∥ds,

where gn, g ∈ C(I) such that

gn(t) = f(t, un(t), gn(t)),
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and
g(t) = f(t, u(t), g(t)).

Since un → u as n→ ∞ and f is continuous function, we get

gn(t) → g(t) as n→ ∞, for each t ∈ I.

Hence
∥N(un)−N(u)∥∞ ≤ G∗∥gn − g∥∞ → 0 as n→ ∞.

Step2: N(BR) is bounded. This is clear since N : BR ⊂ BR and BR is bounded.

Step3: N maps bounded sets into equicontinuous sets in BR.
Let t1, t2 ∈ I, such that t1 < t2 and let u ∈ BR. Then, we have

∥(Nu)(t1)− (Nu)(t2)∥ ≤
∫ T

1
|G(t1, s)−G(t2, s)|∥g(s)∥ds

≤ p∗+q∗

1−r∗

∫ T

1
|G(t1, s)−G(t2, s)|ds.

.

As t1 → t2, from Remark 2.1.3, the right-hand side of the above inequality tends to
zero. As a consequence of steps 1 to 3, together with the Arzelá-Ascoli theorem, we
can conclude that N : BR → BR is continuous and completely continuous.

Step4: A priori bounds.
We now show there exist an open set U ⊆ C(I) with u ̸= λN(u), for λ ∈ (0, 1) and
u ∈ ∂U. Let u ∈ C(I) and u = λN(u) for some 0 < λ < 1.
Thus for each t ∈ I, we have

u(t) = λ

∫ T

1

G(t, s)g(s)ds.

This implies by (H2), for each t ∈ I, we get ∥u∥ ≤ R.
Set

U = {u ∈ C(I) : ∥u∥∞ < R + 1}.

By our choice of U , there is no u ∈ ∂U such that u = λN(u), for λ ∈ (0, 1).
As a consequence of Theorem 41, we deduce that N has a �xed point u in U which is
a solution of problem (2.10)- (2.11).
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2.2.3 Example

Consider the following problem of implicit Caputo-Hadamard fractional di�erential
equations 

(HcD
3
2
1 u)(t) = f(t, u(t), (HcD

3
2
1 u)(t)); t ∈ [1, e],

u(1)− u′(1) = d1u(u(
3
2
)),

u(e) + 2u′(e) = d2u(2),

(2.13)

where

f(t, u(t), (HcD
3
2
1 u)(t)) =

t2

1 + ∥u(t)∥E + ∥HcD
3
2
1 u(t)∥E

(
e−7 +

1

et+5

)
u(t); t ∈ [0, 1].

The hypothesis (H1) is satis�ed with ϕ1(t) = ϕ2(t) = t2
(
e−7 + 1

et+5

)
t. In addition, with

good choice of the constants di; i = 1, 2, we can conclude that our problem (2.13) has
a unique solution de�ned on [1, e].
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Chapter 3

Existence and Ulam Stabilities

In this chapter, we discuss the existence, uniqueness and the stability results for a
class of multipoint boundary conditions problem of fractional di�erential equations in
banach spaces with Caputo-Hadamard fractional derivative.

3.1 Introduction and motivations

In this section; we discuss the existence of solutions and the stability for the Caputo-
Hadamard fractional di�erential equation

(HcDα
1 u)(t) = f(t, u(t)), t ∈ I := [1, T ], (3.1)

with the boundary conditions{
a1u(1)− b1u

′(1) = d1u(ξ1),

a2u(T ) + b2u
′(T ) = d2u(ξ2),

(3.2)

where T > 1, a1, b1, d1, a2, b2, d2 ∈ R, ξ1, ξ2 ∈ (1, T ), f : I × E → E is a given
continuous function, (E, ∥ · ∥) is a real or complex Banach space, and HcDα

1 is the
Caputo�Hadamard fractional derivative of order α ∈ (1, 2].

In [7], S. Abbas et al. studied the existence and the Ulam stability of solutions for the
following problem of Hilfer-Hadamard fractional di�erential equations of the form{

(HDα,β
1 u)(t) = f(t, u(t)), t ∈ I

(HI1−γ
1 u)(t)|t=1 = ϕ,

(3.3)

where α ∈ (0, 1), β ∈ [0, 1], γ = α+ β − αβ, T > 1, ϕ ∈ R, f : J × R → R is a given
function, HI1−γ

1 is the left-sided mixed Hadamard integral of order 1 − γ, and HDα,β
1

is the Hilfer-Hadamard fractional derivative of order α and type β.
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3.2 Existence and Ulam Stability Results

Consider the Banach space C(I) := C(I, E) of continuous functions from I into E
equipped with the usual supremum (uniform) norm

∥u∥∞ := sup
t∈I

∥u(t)∥.

As usual, AC(I) denotes the space of absolutely continuous functions from I into
E, and L1(I) denotes the space measurable functions v : I → E which are Bochner
integrable with the norm

∥v∥1 =
∫
I

∥v(t)∥dt.

For any n ∈ N∗, we denote by ACn(I) the space de�ned by

ACn(I) := {w : I → E :
dn

dtn
w(t) ∈ AC(I)}.

Let

δ = t
d

dt
, q > 0, n = [q] + 1,

where [q] is the integer part of q. De�ne the space

ACn
δ := {u : I → E : δn−1[u(t)] ∈ AC(I)}.

Let us de�ning what we mean by a solution of problem (3.1)-(3.2).

De�nition 58. By a solution of the problem (3.1)-(3.2) we mean a continuous function
u that satis�es the equation (3.1) on I and the conditions (3.2).

For the existence of solutions for the problem (3.1)-(3.2), we need the auxiliary
lemma:

Lemma 59. Let h ∈ C and α ∈ (1, 2]. Then the unique solution of the problem
(HcDα

1 u)(t) = h(t), t ∈ I,

a1u(1)− b1u
′(1) = d1u(ξ1),

a2u(T ) + b2u
′(T ) = d2u(ξ2),

is given by

u(t) =

∫ T

1

G(t, s)h(s)ds,
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where G is the Green function with G(t, s) given by(
ln t

s

)α−1

sΓ(α)

+
b1 + d1 ln ξ1

∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]

−
d1

(
ln ξ1

s

)α−1

s∆Γ(α)

[
a2 lnT +

b2
T

− d2 ln ξ2

]
+
d1 ln t

(
ln ξ1

s

)α−1

s∆Γ(α)
[a2 − d2]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]
for s ≤ ξ1 and s ≤ t,

b1 + d1 ln ξ1
∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]

−
d1

(
ln ξ1

s

)α−1

s∆Γ(α)

[
a2 lnT +

b2
T

− d2 ln ξ2

]
+
d1 ln t

(
ln ξ1

s

)α−1

s∆Γ(α)
[a2 − d2]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]
for s ≤ ξ1 and t ≤ s,(

ln t
s

)α−1

sΓ(α)

+
b1 + d1 ln ξ1

∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]
for ξ1 ≤ s ≤ ξ2 and s ≤ t,

b1 + d1 ln ξ1
∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]
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− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)
−
d2

(
ln ξ2

s

)α−1

Γ(α)

]

for ξ1 ≤ s ≤ ξ2 and t ≤ s,

+
b1 + d1 ln ξ1

∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

for ξ2 ≤ s ≤ t, and (
ln t

s

)α−1

sΓ(α)

b1 + d1 ln ξ1
∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

for ξ2 ≤ s and t ≤ s,

b1 + d1 ln ξ1
∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

− (d1 − a1) ln t

s∆

[
a2

(
ln T

s

)α−1

Γ(α)
+
b2
(
ln T

s

)α−2

Γ(α− 1)

]

where

∆ = (d1 − a1){a2 lnT +
b2
T

− d2 ln ξ2} − (a2 − d2)(b1 + d1 ln ξ1) ̸= 0.

Now, we consider the Ulam stability for the problem (3.1)-(3.2). Let ϵ > 0 and
Φ : I → R+ be a continuous function. We consider the following inequalities

∥(HcDα
1 u)(t)− f(t, u(t))∥ ≤ ϵ; t ∈ I. (3.4)

∥(HcDα
1 u)(t)− f(t, u(t))∥ ≤ Φ(t); t ∈ I (3.5)

∥(HcDα
1 u)(t)− f(t, u(t))∥ ≤ ϵΦ(t); t ∈ I (3.6)

50



De�nition 60. [2] The problem(3.1)-(3.2) is Ulam-Hyers stable if there exists a real
number cf > 0 such that for each ϵ > 0 and for each solution u ∈ C(I) of the inequality
(3.4), there exists a solution v ∈ C(I) of (3.1)-(3.2) with

∥u(t)− v(t)∥ ≤ ϵcf ; t ∈ I.

De�nition 61. [2] The problem (3.1)-(3.2) is generalized Ulam-Hyers stable if there
exists cf ∈ C(R+,R+) with cf (0) = 0 such that for each ϵ > 0 and for each solution
u ∈ C(I) of the inequality (3.4), there exists a solution v ∈ C(I) of (3.1)-(3.2) with

∥u(t)− v(t)∥ ≤ cf (ϵ); t ∈ I.

De�nition 62. [2] The problem (3.1)-(3.2) is Ulam-Hyers-Rassias stable with respect
to ϕ if there exists a real number cf,ϕ > 0 such that for each ϵ > 0 and for each solution
u ∈ C(I) of the inequality (3.6), there exists a solution v ∈ C(I) of (3.1)-(3.2) with

∥u(t)− v(t)∥ ≤ ϵcf,ϕϕ(t); t ∈ I.

De�nition 63. [2] The problem (3.1)-(3.2) is generalized Ulam-Hyers-Rassias stable
with respect to ϕ if there exists a real number cf,ϕ > 0 such that for each solution
u ∈ C(I) of the inequality (3.5), there exists a solution v ∈ C(I) of (3.1)-(3.2) with

∥u(t)− v(t)∥ ≤ cf,ϕϕ(t); t ∈ I.

Remark 64. A function u ∈ C is a solution of the inequality (3.4) if and only if there
exist a function g ∈ C (which depend on u) such that

∥g(t)∥E ≤ ϵ,

(HcDα
1 u)(t) = f(t, u(t)) + g(t); for t ∈ I.

Lemma 65. If u ∈ C is a solution of the inequality (3.4) then u is a solution of the
following integral inequality

∥u(t)−
∫ T

1

G(t, s)f(s, u(s))ds∥ ≤ ϵG∗; if t ∈ I. (3.7)

Proof.

By Remark 64, for t ∈ I, we have

(HcDα
1 u)(t) = f(t, u(t)) + g(t).

Then, for t ∈ I, we get

u(t) =

∫ T

1

G(t, s)(f(s, u(s)) + g(s))ds.
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Thus, for t ∈ I we obtain

∥u(t)−
∫ T

1
G(t, s)f(s, u(s))ds∥ =

∥∥∥∫ T

1
G(t, s)g(s)ds

∥∥∥
≤

∫ T

1
|G(t, s)| ∥g(s)∥ ds

≤ ϵG∗.

Hence, we obtain (3.7).

The following hypotheses will be used in the sequel.

(H1) The function t 7→ f(t, u) is measurable on I for each u ∈ E, and the function
u 7→ f(t, u) is continuous on E for a.e.t ∈ I,

(H2) There exists a continuous function p ∈ C(I, [0,∞)) such that

∥f(t, u)∥ ≤ p(t)(1 + ∥u∥)

for a.e. t ∈ I and u ∈ E,

(H3) For each bounded set B ⊂ E and for each t ∈ I; we have

α(f(t, B)) ≤ p(t)α(B).

Set p∗ = sup
t∈I

p(t).

Now,we prove an existence result for the problem (3.1)-(3.2) based on concept of mea-
sures of non-compactness and Darbo's �xed point theorem.

Theorem 66. Assume that the hypotheses (H1)− (H3) hold. If

L := p∗G∗ < 1, (3.8)

then the problem (3.1)-(3.2) has at least one solution de�ned on I.

Proof.

By using Lemma 59, we transform the problem (3.1)-(3.2) into �xed point problem.
Consider the operator N : C(I) → C(I) de�ned by

(Nu)(t) =

∫ T

1

G(t, s)f(s, u(s))ds t ∈ I. (3.9)
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Set

R =
L

1− L
,

and consider the closed and convex ball

BR := {w ∈ C : ∥w∥∞ ≤ R}.

Let u ∈ BR. Then, for each t ∈ I, we have

∥(Nu)(t)∥ ≤
∫ T

1
|G(t, s)|∥f(s, u(s))∥ds

≤
∫ T

1
|G(t, s)|(p(s)(1 + ∥u(s)∥))ds

≤ p∗G∗(1 +R)
:= L(1 +R).

Thus
∥N(u)∥∞ ≤ R.

Hence N(BR) ⊂ BR. we shall show that the operator N : BR → BR satis�es the as-
sumptions of Darbo's �xed point theorem.

The proof will be given in several steps.

Step 1. N is continuous and bounded.
Let {un}n∈N be a sequence such that un → u in BR ⊂ C(I, E). Then, for each t ∈ I
we have

∥(Nun)(t)− (Nu)(t)∥ ≤
∫ T

1
∥G(t, s)[f(s, un(s))− f(s, u(s))]∥ ds

≤
∫ T

1
|G(t, s)| ∥f(s, un(s))− f(s, u(s))∥ ds.

Since un → u as n → ∞, and f is continuous then by the Lebesgue dominated
convergence theorem;

∥N(un)−N(u)∥∞ → 0 as n→ ∞.

Hence, N is continuous. Since N : BR → BR and BR is bounded, then N(BR) is
bounded

Step 2. N maps bounded sets into equicontinuous sets in BR.
Let t1, t2 ∈ I,such that t1 < t2 and let u ∈ BR. Thus, we have

∥(Nu)(t2)− (Nu)(t1)∥ ≤
∫ T

1
|G(t2, s)−G(t1, s)|∥f(s, u(s))∥ds

≤ p∗(1 +R)
∫ T

1
|G(t2, s)−G(t1, s)|ds.

As t1 → t2 and G is continuous function; the right-hand side of the above inequality
tends to zero.
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Step 3. The operator N : BR → BR is a strict set contraction.
Let V ⊂ BR and t ∈ I; then we have

α((NV )(t)) = α({(Ny)(t), y ∈ V })
≤ {

∫ T

1
|G(t, s)|α(f(s, y(s)))ds : y ∈ V }.

By (H3) and lemma (28), for each s ∈ I,

{
∫ T

1
|G(t, s)|α(f(s, y(s)))ds : y ∈ V } ≤ {

∫ T

1
|G(t, s)|p(s)α(y(s))ds : y ∈ V }

≤ p∗{
∫ T

1
|G(t, s)|α(y(s))ds : y ∈ V }

≤ p∗αc(V )
∫ T

1
|G(t, s)|ds

≤ p∗G∗αc(V ).

Therefore
αc(NV ) ≤ p∗G∗αc(V ).

So, by (3.8) the operator N is a set contraction. As a consequence of theorem 42,
we deduce that N has a �xed point that is a solution of the problem (3.1)-(3.2).

Our next existence result for the problem (3.1)-(3.2) is based on Mönch's �xed point
theorem.

Theorem 67. Assume that (H1)−(H3), and the condition (3.8) hold. Then the problem
(3.1)-(3.2) has at least one solution.

Proof. Consider the operator N de�ned in (3.9). We know from theorem 66 that
N : BR → BR is continuous and bounded. We need to prove that the implication

V = convN(V ), orV = N(V ) ∪ 0 ⇒ α(V ) = 0

holds for every subset V of BR.

Let V be a subset of BR such that V ⊂ N(V ) ∪ {0}. The set V is bounded and
equicontinuous and therefore the function t → v(t) = α(V (t)) is continuous on I. By
(H3) and the properties of the measure α, for each t ∈ I we have

v(t) ≤ α((NV )(t) ∪ 0)
≤ α((NV )(t))
≤ α{(Ny)(t) : y ∈ V }
≤ p∗

∫ T

1
|G(t, s)|α({y(s) : y ∈ V })ds

≤ p∗
∫ T

1
|G(t, s)|v(s)ds.

Thus,
∥v∥∞ ≤ p∗G∗∥v∥∞

From (3.8), we get ∥v∥∞ = 0, that is v(t) = α(V (t)) = 0, for each t ∈ I, and then
V (t) is relatively compact in E. In view of the Arzelà-Ascoli theorem, V is relatively
compact in BR. Applying now Theorem 44 , we conclude that N has a �xed point
which is a solution of the problem (3.1)-(3.2).
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Now, we are concerned with the generalized Ulam-Hyers-Rassias stability of our
problem (3.1)-(3.2).

The following hypothesis will be used in the sequel.

(H4) There exists lf ∈ C(I, [0,∞)) such that

(1 + ∥u− u∥)∥f(t, u)− f(t, u)∥ ≤ lf (t)ϕ(t)∥u− u∥,

for each t ∈ I and each u, u ∈ E.

(H5) Φ ∈ L1(I, [0,∞)) and there exists λΦ > 0 such that, for each t ∈ I we have∫ T

1

|G(t, s)|Φ(s)ds ≤ λΦΦ(t).

Remark 68. From (H4), for each u ∈ E and t ∈ I, we have that

∥f(t, u)∥ ≤ ∥f(t, 0)∥+ lf (t)Φ(t)∥u∥.

So, (H4) implies (H2), with p∗ = max{l∗f , f ∗Φ∗}, where l∗f = sup
t∈I

lf (t)ϕ(t), Φ∗ =

sup
t∈I

Φ(t), and f ∗ = sup
t∈I

|f(t, 0)|.

Theorem 69. Assume that the hypotheses (H1), (H3)− (H5) and the condition

G∗max{l∗ff, f ∗} < 1, (3.10)

hold. Then the problem (3.1)-(3.2) has a solution on I and it is generalized Ulam-
Hyers-Rassias stable.

Proof. Let u be a solution of the inequality (3.5), and let us assume that v is a
solution of problem (3.1)-(3.2). Then; we have

v(t) =

∫ T

1

G(t, s)f(s, v(s))ds; t ∈ I.

By di�erential inequality (3.5), for each t ∈ I, we have

∥u(t)−
∫ T

1

G(t, s)f(s, u(s))ds∥ ≤
∫ T

1

|G(t, s)|Φ(s)ds

Thus, by (H5) for each t ∈ I, we get

∥u(t)−
∫ T

1

G(t, s)f(s, u(s))ds∥ ≤ λΦΦ(t).
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Hence for each t ∈ I, it follows that

∥u(t)− v(t)∥ ≤ ∥u(t)−
∫ T

1
G(t, s)f(s, u(s))ds∥

+
∫ T

1
|G(t, s)|∥f(s, u(s))− f(s, v(s))∥ds

≤ λΦΦ(t) + l∗f
∫ T

1
|G(t, s)|Φ(s) ∥u(s)−v(s)∥

1+∥u(s)−v(s)∥ds

≤ λΦΦ(t) + l∗f
∫ T

1
|G(t, s)|Φ(s)ds

≤ λΦΦ(t) + l∗fλΦΦ(t)
≤ (1 + l∗f )λΦΦ(t)
:= cf,ϕϕ(t).

Thus
∥u(t)− v(t)∥ ≤ cf,ϕϕ(t).

Hence, the problem (3.1)-(3.2) is generalized-Ulam-Hyers-Rassias stable.
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3.3 Example

Let

l1 =

{
u = (u1, u2, . . . , um, . . .),

∞∑
m=1

|um| <∞

}
be the Banach space with the norm

∥u∥E =
∞∑

m=1

|um|.

We consider the following Caputo-Hadamard fractional di�erential equation

(HcD
3
2
1 un)(t) = fn(t, u(t)); if t ∈ I := [1, e], (3.11)

with the boundary conditions{
u(1)− u′(1) = d1u(u(

3
2
)),

u(e) + 2u′(e) = d2u(2),
(3.12)

where

fn(t, u(t)) =
t−2e−t−5(2−n + un(t))

1 + ∥u(t)∥l1
; t ∈ [1, e],

with f = (f1, f2, . . . , fn, . . .), and u = (u1, u2, . . . , un, . . .).
For each t ∈ [1, e], we have

∥f(t, u(t))∥l1 =
∞∑
n=1

|fn(s, un(s))|

≤ e−6(1 + ∥u∥l1).

The hypothesis (H2) is satis�ed with p∗ ≤ e−6. In addition, with good choice of the
constants di; i = 1, 2, a simple computation show that all conditions of Theorem 66 are
satis�ed. Hence, the problem (3.11)-(3.12) has at least one solution de�ned on [1, e].

Also; the hypotheses (H5) and (H4) are satis�ed with lf = e−6, Φ(t) =
t

|G(t, s)|
,

λϕ = |G(t,s)|(e2−1)
t

, and for each t ∈ [1, e]; we get∫ e

1

|G(t, s)|ϕ(t)dt = 1

2
(e2 − 1) ≤ e2 − 1 = λϕϕ(t).

Consequently Theorem 69 implies that the problem (3.11)-(3.12) is generalized-Ulam-
Hyers-Rassias stable.
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Chapter 4

Caputo-Fabrizio fractional di�erential

equations

In this chapter, we establish the existence and uniqueness results with initial and
nonlocal conditions problem of fractional di�erential equations in fréchet spaces with
Caputo-Fabrizio fractional derivative.

4.1 Introduction and Motivation

The purpose of this section; is to establish existence of solutions for the following
Caputo-Fabrizio fractional di�erential equation

(CFDr
0u)(t) = f(t, u(t)); t ∈ R+ := [0,∞), (4.1)

with the following initial condition

u(0) = u0 ∈ E, (4.2)

where (E, ∥ · ∥) is a (real or complex) Banach space, r ∈ (0, 1), f : R+ × E → E
is a given function, and CFDr

0 is the Caputo�Fabrizio fractional derivative of order
r ∈ (0, 1).

Next, we discuss the existence of solutions for the fractional di�erential equation
(4.1), with the following nonlocal condition

u(0) +Q(u) = u0, (4.3)

where u0 ∈ E, Q : C(R+, E) → E is a given function.

In [58]; the authors presented a new de�nition of fractional derivative with a smooth
kernel which takes on two di�erent representation for the temporal and spatial variable.
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The �rst works on the time variables; thus it is suitable to use Laplace transform.
The second de�nition is related to the spatial variables, by a non-local fractional deriva-
tive, for which it is more convenient to work with the Fourier transform. The interest
for this new approach with a regular kernel was born from the prospect that there
is a class of non-local systems, which have the ability to describe the material het-
erogeneities and the �uctuations of di�rent scales, which cannot be well described by
classical local theories or by fractional models with singular kernel.

4.2 Existence of solution

Let C be the Banach space of all continuous functions v from I := [0, T ]; T > 0 into
E with the supremum (uniform) norm

∥v∥∞ := sup
t∈I

∥v(t)∥.

By L1(I), we denote the space of Bochner-integrable functions v : I → E with the
norm

∥v∥1 =
∫ T

0

∥v(t)∥dt.

Let X := C(R+) be the Fréchet space of all continuous functions v from R+ into
E, equipped with the family of seminorms

∥v∥n = sup
t∈[0,n]

∥v(t)∥; n ∈ N,

and the distance

d(u, v) =
∞∑
n=0

2−n ∥u− v∥n
1 + ∥u− v∥n

; u, v ∈ X.

4.2.1 The Initial Value Problem

Let us de�ning what we mean by a solution of problem (4.1)-(4.2)

De�nition 70. By a solution of the problem (4.1)-(4.2) we mean a continuous function
u ∈ X that satis�es the integral equation

u(t) = cr + arf(t, u(t)) + br

∫ t

0

f(s, u(s))ds,

where cr = u0 − arf(0, u0).
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For the existence of solutions for the problem (4.1)-(4.2); we need the following
auxiliary lemma:

Lemma 71. Let h ∈ L1(I). A function u ∈ C is a solution of problem{
(CFDr

0u)(t) = h(t), t ∈ I,
u(0) = u0,

(4.4)

if and only if u satis�es the following integral equation

u(t) = cr + arh(t) + br

∫ t

0

h(s)ds, (4.5)

where

ar =
2(1− r)

(2− r)M(r)
, br =

2r

(2− r)M(r)
, cr = u0 − arh(0).

Proof. Suppose that u satis�es (4.4). From Proposition 1 in [108]; the equation

(CFDr
0u)(t) = h(t),

implies that

u(t)− u(0) = ar(h(t)− h(0)) + br

∫ t

0

h(s)ds.

Thus from the initial condition u(0) = u0, we obtain

u(t) = u0 − arh(0) + arh(t) + br

∫ t

0

h(s)ds.

Hence we get (4.5).
Conversely, if u satis�es (4.5), then (CFDr

0u)(t) = h(t); for t ∈ I, and u(0) = u0.
Let us introduce the following hypotheses.

(H1) The function t 7→ f(t, u) is measurable on R+ for each u ∈ E, and the function
u 7→ f(t, u) is continuous on E for a.e. t ∈ R+.

(H2) There exists a continuous function p : R+ → R+ such that

∥f(t, u)∥ ≤ p(t)(1 + ∥u∥), for a.e. t ∈ R+, and each u ∈ E.

(H3) For each bounded set B ⊂ E and for each t ∈ R+, we have

µ(f(t, B)) ≤ p(t)µ(B),

where µ is a measure of non-compactness on the Banach space E.
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(H4) The function Q : C(R+, E) → E is continuous, and there exists a constant q∗ > 0,
such that

∥Q(u)∥ ≤ q∗(1 + ∥u∥); for each u ∈ C(R+, E).

Moreover, for each bounded set B1 ⊂ X, we have

µ(Q(B1)) ≤ q∗ sup
t∈In

µ(B1(t)),

where B1(t) = {u(t) : u ∈ B1}; t ∈ In; n ∈ N.

For n ∈ N, let
p∗n = sup

t∈[0,n]
p(t),

and de�ne on X := C(R+, E) the family of measure of non-compactness by

µn(D) = ωn
0 (D) + sup

t∈[0,n]
µ(D(t)),

where D(t) = {v(t) ∈ E : v ∈ D}; t ∈ [0, n].

Theorem 72. Assume that the hypotheses (H1)− (H3) hold.
If

ln := p∗n(2ar + 4nbr) < 1;

for each n ∈ N∗, then the problem (4.1)-(4.2) has at least one solution.

Proof. Consider the operator N : X → X de�ned by:

(Nu)(t) = cr + arf(t, u(t)) + br

∫ t

0

f(s, u(s))ds. (4.6)

Clearly, the �xed points of the operator N are solution of the problem (4.1)-(4.2).

For any n ∈ N∗, we set

Rn ≥ ∥cr∥+ p∗n(ar + nbr)

1− p∗n(ar + nbr)
,

and we consider the ball

BRn := B(0, Rn) = {w ∈ X : ∥w∥n ≤ Rn}.

For any n ∈ N∗, and each u ∈ BRn and t ∈ [0, n] we have

|(Nu)(t)| ≤ ∥cr∥+ ar∥f(t, u(t))∥+ br

∫ t

0

∥f(s, u(s))∥ds
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≤ ∥cr∥+ arp(t)(1 + ∥u(t)∥) + br

∫ t

0

p(s)(1 + ∥u(s)∥)ds

≤ ∥cr∥+ arp
∗
n(1 +Rn) + brp

∗
n(1 +Rn)

∫ t

0

ds

≤ ∥cr∥+ p∗n(ar + nbr)(1 +Rn)

≤ Rn.

Thus
∥N(u)∥n ≤ Rn. (4.7)

This proves that N transforms the ball BRn into itself. We shall show that the operator
N : BRn → BRn satis�es all the assumptions of Theorem 45.

The proof will be given in two steps.

Step 1. N(BRn) is bounded and N : BRn → BRn is continuous.
Since N(BRn) ⊂ BRn and BRn is bounded, then N(BRn) is bounded.
Let {uk}k∈N be a sequence such that uk → u in BRn . Then, for each t ∈ [0, n], we have

∥(Nuk)(t)−(Nu)(t)∥ ≤ ar∥f(t, uk(t))−f(t, u(t))∥)+br
∫ t

0

∥f(s, uk(s))−f(s, u(s))∥ds.

Since uk → u as k → ∞, the Lebesgue dominated convergence theorem implies that

∥N(uk)−N(u)∥n → 0 as k → ∞.

Step 2. For each bounded equicontinuous subsetD of BRn , µn(N(D)) ≤ ℓnµn(D).
From Lemmas 36 and 37, for any D ⊂ BRn and any ϵ > 0, there exists a sequence
{uk}∞k=0 ⊂ D, such that for all t ∈ [0, n], we have

µ((ND)(t)) = µ

({
cr + arf(t, u(t)) + br

∫ t

0

f(s, u(s))ds; u ∈ D

})
≤ 2µ ({arf(t, uk(t))}∞k=1) + 2µ

({
br

∫ t

0

f(s, uk(s))ds

}∞

k=1

)
+ ϵ

≤ 2arµ ({f(t, uk(t))}∞k=1) + 4br

∫ t

0

µ ({f(s, uk(s))}∞k=1) ds+ ϵ

≤ 2arp(t)µ ({uk(t)}∞k=1) + 4br

∫ t

0

p(s)µ ({uk(s)}∞k=1) ds+ ϵ

≤ 2arp
∗
nµn(D) + 4nbrp

∗
nµn(D) + ϵ

= (2ar + 4nbr)p
∗
n µn(D) + ϵ.

Since ϵ > 0 is arbitrary, then

µ((ND)(t)) ≤ p∗n(2ar + 4nbr) µn(D).
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Thus
µn(N(D)) ≤ p∗n(2ar + 4nbr) µn(D).

As a consequence of steps 1 and 2 together with Theorem 45, we can conclude that
N has at least one �xed point in BRn which is a solution of problem (4.1)-(4.2).

4.2.2 The Problem with Nonlocal Condition

Now, we are concerned with the existence results of the problem (4.1)-(4.3).

De�nition 73. By a solution of the problem (4.1)-(4.3) we mean a continuous function
u ∈ X that satis�es the integral equation

u(t) = cr −Q(u) + arf(t, u(t)) + br

∫ t

0

f(s, u(s))ds,

where cr = u0 − arf(0, u0).

Now, we shall prove the following theorem concerning the existence of solutions of
problem (4.1)-(4.3).

Theorem 74. Assume that the hypotheses (H1)− (H4) hold.
If

λn := 2q∗ + p∗n(2ar + 4nbr) < 1,

for each n ∈ N∗, then the problem (4.1)-(4.3) has at least one solution.

Proof. Consider the operator G : X → X de�ned by:

(Gu)(t) = cr −Q(u) + arf(t, u(t)) + br

∫ t

0

f(s, u(s))ds. (4.8)

Clearly, the �xed points of the operator G are solution of the problem (4.1)-(4.3).

For any n ∈ N∗, we set

ρn ≥ ∥cr∥+ q∗ + p∗n(ar + nbr)

1− q∗ − p∗n(ar + nbr)
,

and we consider the ball

Bρn := B(0, ρn) = {w ∈ X : ∥w∥n ≤ ρn}.

For any n ∈ N∗, and each u ∈ Bρn and t ∈ [0, n] we have

∥(Gu)(t)∥ ≤ ∥cr∥+ ∥Q(u)∥+ ar∥f(t, u(t))∥+ br

∫ t

0

∥f(s, u(s))∥ds
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≤ ∥cr∥+ q∗(1 + ∥u∥) + arp(t)(1 + ∥u(t)∥) + br

∫ t

0

p(s)(1 + ∥u(s)∥)ds

≤ ∥cr∥+ q∗(1 + ρn) + arp
∗
n(1 + ρn) + brp

∗
n(1 + ρn)

∫ t

0

ds

≤ ∥cr∥+ q∗(1 + ρn) + p∗n(ar + nbr)(1 + ρn)

≤ ρn.

Thus
∥G(u)∥n ≤ ρn. (4.9)

This proves that G transforms the ball BRn into itself. As in the proof of Theorem
72, we can show that the operator G : Bρn → Bρn satis�es all the assumptions of
Theorem 45. Indeed; G(Bρn) is bounded, and we can easily prove that G : Bρn → Bρn

is continuous. Next, from Lemmas 36 and 37, for any D ⊂ Bρn and any ϵ > 0, there
exists a sequence {uk}∞k=0 ⊂ D, such that for all t ∈ [0, n], we have

µ((GD)(t)) = µ

({
cr −Q(u) + arf(t, u(t)) + br

∫ t

0

f(s, u(s))ds; u ∈ D

})
≤ 2µ ({Q(u) + arf(t, uk(t))}∞k=1)

+2µ

({
br

∫ t

0

f(s, uk(s))ds

}∞

k=1

)
+ ϵ

≤ 2µ ({Q(uk)}∞k=1) + 2arµ ({f(t, uk(t))}∞k=1)

+4br

∫ t

0

µ ({f(s, uk(s))}∞k=1) ds+ ϵ

≤ 2q∗mu ({uk(t)}∞k=1) + 2arp(t)µ ({uk(t)}∞k=1)

+4br

∫ t

0

p(s)µ ({uk(s)}∞k=1) ds+ ϵ

≤ 2q∗µn(D) + 2arp
∗
nµn(D) + 4nbrp

∗
nµn(D) + ϵ

= [2q∗ + p∗n(2ar + 4nbr)]µn(D) + ϵ.

Since ϵ > 0 is arbitrary, then

µ((GD)(t)) ≤ [2q∗ + p∗n(2ar + 4nbr)]µn(D).

Thus
µn(G(D)) ≤ [2q∗ + p∗n(2ar + 4nbr)]µn(D).

Hence, from Theorem 45, we can conclude that G has at least one �xed point in
Bρn which is a solution of problem(4.1)-(4.3).
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4.3 Examples

Let

l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
k=1

|uk| <∞

}
be the Banach space with the norm

∥u∥ =
∞∑
k=1

|uk|,

and C(R+, l
1) be the Fréchet space of all continuous functions v from R+ into l1,

equipped with the family of seminorms

∥v∥n = sup
t∈[0,n]

∥v(t)∥; n ∈ N.

Example 1. Consider the following problem of Caputo-Fabrizio fractional di�er-
ential equations{

(CFD
1
2
0 uk)(t) = fk(t, u(t)); t ∈ R+,

u(0) = (1, 2−1, 2−2, . . . , 2−n, · · · ); t ∈ R+, k = 1, 2, · · · ,
(4.10)

where 
fk(t, u) =

(2−k + uk(t)) sin t

64(a 1
2
+ 2nb 1

2
)(1 +

√
t)
; t ∈ (0,+∞), u ∈ l1,

fk(0, u) = 0; u ∈ l1,

for each t ∈ [0, n]; n ∈ N, with

f = (f1, f2, . . . , fk, . . .), and u = (u1, u2, . . . , uk, . . .).

The hypothesis (H2) is satis�ed with
p(t) =

| sin t|
64(a 1

2
+ 2nb 1

2
)(1 +

√
t)
; t ∈ (0,+∞),

p(0) = 0.

So; for any n ∈ N, we have p∗n = 1
64(a 1

2
+2nb 1

2
)
, and

ℓn := p∗n(2ar + 4nbr) =
1

64(a 1
2
+ 2nb 1

2
)
(2a 1

2
+ 4nb 1

2
) =

1

32
< 1.

Simple computations show that all conditions of Theorem 72 are satis�ed. Conse-
quently, the problem (4.10) has at least one solution de�ned on R+.
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Example 2. Consider now the following problem of Caputo-Fabrizio fractional
di�erential equations{

(CFD
1
2
0 uk)(t) = fk(t, u(t)); t ∈ R+,

u(0) +Q(u) = (1, 2−1, 2−2, . . . , 2−n, · · · ); t ∈ R+, k = 1, 2, · · · ,
(4.11)

where Q = (Q1, Q2, . . . , Qk, . . .), Q : C(R+, l
1) → l1, and

Qk(u) =
2−k + uk

64
; k = 1, 2, · · · .

In addition to hypotheses (H1)− (H3), the hypothesis (H4) is satis�es with q
∗ = 1

64
.

Also we have

λn := 2q∗n + p∗n(2ar + 4nbr) =
1

32
+

1

64(a 1
2
+ 2nb 1

2
)
(2a 1

2
+ 4nb 1

2
) =

1

16
< 1.

Simple computations show that all conditions of Theorem 74 are satis�ed. Conse-
quently, the problem (4.11) has at least one solution de�ned on R+.
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Chapter 5

Existence and Attractivity Results

In this chapter, we investigate the existence and attractivity results with initial condi-
tion problem of fractional di�erential equations with Caputo-Fabrizio fractional deriva-
tive.

5.1 Introduction and Motivation

The purpose of this section; is to investigate the existence and the attractivity of
solutions for the following class of Caputo�Fabrizio fractional di�erential equation

(CFDr
0u)(t) = f(t, u(t)); t ∈ R+ := [0,+∞), (5.1)

with the initial condition
u(0) = u0 ∈ R, (5.2)

where f : R+×R → R is a given continuous function, and CFDr
0 is the Caputo�Fabrizio

fractional derivative of order r ∈ (0, 1).

In [9], S. Abbas et al. studied the existence and the attractivity of solutions to
the following nonlinear fractional order Riemann-Liouville Volterra Stieltjes quadratic
partial integral equations of the form,

u(t, x) = f(t, x, u(t, x), u(α(t), x)) +
1

Γ(r1)Γ(r2)

∫ β(t)

0

∫ x

0

(β(t)− s)r1−1(x− y)r2−1

× h(t, x, s, y, u(s, y), u(γ(s), y))dydsg(t, s); (t, x) ∈ J := R+ × [a, b],

where b > 0, r1, r2 ∈ (0,∞), R+ = [0,∞), α, β, γ : R+ → R+, f : J×R×R → R,g :
R+ × R+ → R, h : J

′ × R× R → R are given continuous functions, limt→∞ α(t) = ∞,
J

′
= {(t, x, s, y) ∈ J2 : s ≤ t, y ≤ x}.

We use the Schauder �xed point theorem for the existence of solutions of the equation,
and we prove that all solutions are uniformly globally attractive.
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5.2 Existence and attractivity results

Let BC := BC(R+) be the Banach space of all bounded and continuous functions from
R+ into R, with the norm

∥v∥BC := sup
t∈R+

|v(t)|.

Let us de�ning what we mean by a solution of problem (5.1)-(5.2).

De�nition 75. By a solution of the problem (5.1)-(5.2) we mean a function u ∈ BC
that satis�es the condition u(0) = u0, and the equation (CFDr

0u)(t) = f(t, u(t)) on R+.

For the existence of solutions for the problem (5.1)-(5.2); we need the following
auxiliary lemma:

Lemma 76. [5, 37, 100] Let h ∈ L1(I). A function u ∈ C is a solution of problem{
(CFDr

0u)(t) = h(t), t ∈ I,
u(0) = u0,

(5.3)

if and only if u satis�es the following integral equation

u(t) = cr + arh(t) + br

∫ t

0

h(s)ds, (5.4)

where

ar =
2(1− r)

(2− r)M(r)
, br =

2r

(2− r)M(r)
, cr = u0 − arh(0).

As in the prove of the above Lemma, we can show the following one:

Lemma 77. A function u is a random solution of problem (5.1)-(5.2), if and only if
u satis�es the following integral equation

u(t) = cr + arf(t, u(t)) + br

∫ t

0

f(s, u(s))ds, (5.5)

where cr = u0 − arf(0, u(0)).

Let ∅ ≠ Ω ⊂ BC, and let Λ : Ω → Ω, and consider the solutions of equation

(Λu)(t) = u(t). (5.6)

We introduce the following concept of attractivity of solutions for equation (5.6).
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De�nition 78. A solutions of equation (5.6) are locally attractive if there exists a ball
B(u0, η) in the space BC such that, for arbitrary solutions v = v(t) and w = w(t) of
equations (5.6) belonging to B(u0, η) ∩ Ω, we have

lim
t→∞

(v(t)− w(t)) = 0. (5.7)

When the limit (5.7) is uniform with respect to B(u0, η)∩Ω, solutions of equation (5.6)
are said to be uniformly locally attractive (or equivalently that solutions of (5.6) are
locally asymptotically stable).

Lemma 79. ([62], p. 62). Let D ⊂ BC. Then D is relatively compact in BC if the
following conditions hold:
(a) D is uniformly bounded in BC,
(b) The functions belonging to D are almost equicontinuous on R+,
i.e. equicontinuous on every compact of R+,
(c) The functions from D are equiconvergent, that is, given ϵ > 0 there corresponds
T (ϵ) > 0 such that |u(t)− limt→∞ u(t)| < ϵ for any t ≥ T (ϵ) and u ∈ D.

The following hypotheses will be used in the sequel.

(H1) For any bounded set B ⊂ C, the set:

{t 7→ f(t, u(t)) : u ∈ B};

is equicontinuous in C.

(H2) There exists a continuous function p : R+ → R+ such that

|f(t, u)| ≤ p(t)

1 + |u|
, for t ∈ R+, and each u ∈ R.

Moreover, assume that

lim
t→∞

p(t) = 0 and lim
t→∞

∫ t

0

p(s)ds = 0.

Set

p∗ = sup
t∈R+

p(t) and p∗ = sup
t∈R+

∫ t

0

p(s)ds.

Now, we shall prove the following theorem concerning the existence and the attrac-
tivity of solutions of our problem (5.1)-(5.2).

Theorem 80. Assume that the hypotheses (H1) and (H2) hold. Then the problem
(5.1)-(5.2) has at least one solution de�ned on R+. Moreover, solutions of problem
(5.1)-(5.2) are uniformly locally attractive.
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Proof. Consider the operator N such that, for any u ∈ BC,

(Nu)(t) = cr + arf(t, u(t)) + br

∫ t

0

f(s, u(s))ds. (5.8)

The operator N maps BC into BC. Indeed the map N(u) is continuous on R+ for any
u ∈ BC, and for each t ∈ R+; we have

|(Nu)(t)| ⩽ |cr|+ ar|f(t, u(t))|+ br
∫ t

0
|f(s, u(s))|ds

⩽ |cr|+ arp(t) + br
∫ t

0
p(s)ds

⩽ |cr|+ arp
∗ + brp∗.

Thus
∥N(u)∥BC ⩽ |cr|+ arp

∗ + brp∗ := R. (5.9)

Hence, N(u) ∈ BC. This proves that the operator N maps BC into itself. Further-
more, N transforms the ball

BR := B(0, R) = {w ∈ BC : ∥w∥BC ⩽ R}

into itself.
We shall show that the operator N satis�es all the assumptions of Theorem 40.

The proof will be given in several steps.

Step 1. N is continuous.
Let {un}n∈N be a sequence such that un → u in BR.
Then, for each t ∈ R+, we have

|(Nun)(t)− (Nu)(t)| ⩽ ar|f(t, un(t))− f(t, u(t))|

+ br

∫ t

0

|f(s, un(s))− f(s, u(s))|ds. (5.10)

Case 1. If t ∈ [0, T ]; T > 0, then, since un → u as n → ∞ and f is continuous,
then by the Lebesgue dominated convergence theorem, equation (5.10) implies

∥N(un)−N(u)∥BC → 0 as n→ ∞.

Case 2. If t ∈ (T,∞); T > 0, then from our hypotheses and (5.10), we get

|(Nun)(t)− (Nu)(t)| ⩽ 2arp(t) + 2br

∫ t

0

p(s)ds. (5.11)

Since un → u as n→ ∞ and p(t) → 0 and

∫ t

0

p(s)ds→ 0 as t→ ∞, then (5.11) gives

∥N(un)−N(u)∥BC → 0 as n→ ∞.
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Step 2. N(BR) is uniformly bounded.
This is clear since N(BR) ⊂ BR and BR is bounded.

Step 3. N(BR) is equicontinuous on every compact subset [0, T ] of R+; T > 0.
Let t1, t2 ∈ [0, T ], t1 < t2 and let u ∈ BR. Thus we have

|(Nu)(t2)− (Nu)(t1)| ⩽ ar|f(t2, u(t2))− f(t1, u(t1))|

+ br{
∫ t2

0

|f(s, u(s))|ds−
∫ t1

0

|f(s, u(s))|ds}

⩽ ar|f(t2, u(t2))− f(t1, u(t1))|

+ br

∫ t2

t1

|f(s, u(s))|ds

⩽ ar|f(t2, u(t2))− f(t1, u(t1))|

+ br

∫ t2

t1

p(s)ds.

Thus, from the continuity of the function p and by letting p = sup
t∈[0,T ]

p(t); we get

|(Nu)(t2)− (Nu)(t1)| ⩽ ar|f(t2, u(t2))− f(t1, u(t1))|
+ brp(t2 − t1).

As t1 → t2 and the continuity of the function f ; the right hand side of the above
inequality tends to zero.

Step 4. N(BR) is equiconvergent.

Let t ∈ R+ and u ∈ BR, then we have

|(Nu)(t)| ⩽ |cr|+ ar|f(t, u(t))|+ br
∫ t

0
|f(s, u(s))|ds

⩽ |cr|+ arp(t) + br
∫ t

0
p(s)ds.

Since p(t) 7→ 0 and
∫ t

0
p(s) 7→ 0 as t 7→ ∞, then we get

|(Nu)(t)− (Nu)(∞)| 7→ 0 as t 7→ ∞.

As a consequence of steps 1 to 4 together with the Lemma 79, we can conclude that
N : BR → BR is continuous and compact. From an application of Theorem 40, we
deduce that N has a �xed point u which is a solution of the problem (5.1)-(5.2) on R+.

Step 5. The uniform local attractivity of solutions.

let us assume that u0 is a solution of problem (5.1)-(5.2) with the conditions of this
theorem.
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Taking u ∈ B(u0, R) with R := 2arp
∗ + 2brp∗; we have

|(Nu)(t)− u0(t)| = |(Nu)(t)− (Nu0)(t)|
⩽ ar|f(t, u(t))− f(t, u0(t))|+ br

∫ t

0
|f(s, u(s))− f(s, u0(s))|ds

⩽ 2arp(t) + 2br
∫ t

0
p(s)ds

⩽ 2arp
∗ + 2brp∗

:= R.

Thus, we get
∥N(u)− u0∥BC ⩽ R.

Hence, we obtain that N is a continuous function such that

N(B(u0, R)) ⊂ B(u0, R).

Moreover, if u is a solution of problem (5.1)-(5.2), then

|u(t)− u0(t)| = |(Nu)(t)− (Nu0(t))|
⩽ ar|f(t, u(t))− f(t, u0(t))|+ br

∫ t

0
|f(s, u(s)− f(s, u0(s))|ds.

Thus

|u(t)− u0(t)| ⩽ 2arp(t) + 2br

∫ t

0

p(s)ds. (5.12)

By using (5.12) and the fact that lim
t→∞

p(t) = 0 and lim
t→∞

∫ t

0

p(s)ds = 0, we deduce

that
lim
t→∞

|u(t)− u0(t)| = 0.

Consequently, all solutions of problem (5.1)-(5.2) are uniformly locally attractive.
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5.3 An Example

Consider the following problem of Caputo-Fabrizio fractional di�erential equations{
(CFD

1
2
0 u)(t) = f(t, u(t)); t ∈ R+

u(0) = 2,
(5.13)

where

f(t, u) =
(t− 1)e−t sin t

1 + t2 + |u|
; t ∈ R+, u ∈ R.

Clearly, the function f is continuous.

The hypothesis (H2) is satis�ed with

p(t) = |t− 1|e−t| sin t| ; t ∈ R+.

Also, for t > 1, we have

|(t− 1)e−t sin t| ≤ (t− 1)e−t → 0 as t→ ∞,

and ∫ t

0

p(s)ds ≤
∫ t

0

(s− 1)e−sds

= −te−t → 0 as t→ ∞.

All conditions of Theorem 80 are satis�ed. Hence, the problem (5.13) has at least one
solution de�ned on R+ ; and solutions of this problem are uniformly locally attractive.
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Conclusion and Perspectives

In this thesis; we have considered the following Caputo-Hadamard fractional de�eren-
tial equation

(HcDα
1 u)(t) = f(t, u(t)); t ∈ [1, T ],

and the implicit fractional di�erential equation

(HcDα
1 u)(t) = f(t, u(t), (HcDα

1 u)(t)); t ∈ [1, T ],

with Four-point boundary conditions.

After that, we have considered the following fractional di�erential equation

(CFDα
1 u)(t) = f(t, u(t)); t ∈ R+

Here CFDα
1 is the Caputo-Fabrizio fractional derivative.

We discussed and established the existence, the uniqueness and the attractivity of the
solution with initial condition and non-local condition.

A similar work will be there in; the existence and uniqueness of solutions and
Ulam-type stability and the attractivity of some classes of di�erential equations with
fractional derivatives of Caputo, Hadamard and Fabrizio in b-metric space.
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Bostn, Berlin, 1992.

[20] S. Almezel, Q.H. Ansari and M.A. Khamsi, Topics in Fixed Point Theory,
Springer-Verlag, New York, 2014.

[21] J.C. Alvàrez, Measure of noncompactness and �xed points of nonexpansive con-
densing mappings in locally convex spaces, Rev. Real. Acad. Cienc. Exact. Fis.
Natur. Madrid 79 (1985), 53-66.

[22] C. Alsina and R. Ger, On some inequalities and stability results related to the
exponential function. J. Inequal. Appl. 2, (1998), 373-380.

[23] J. Andres and L. Górniewicz, Topological Fixed Point Principles for Boundary
Value Problems, Kluwer Academin Publishers, Dordrecht (2003).

[24] T. Aoki, On the stability of the linear transformation in Banach spaces. J. Math.
Soc. Japan 2, (1950), 64-66.

80



[25] J.M. Ayerbe Toledano, T. Dominguez Benavides and G. Lopez Acedo, Measures
of Noncompactness in Metric Fixed Point Theory, Birkhäuser, Basel, 1997.
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