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Notations

N Set of positive natural numbers.
(Ω,F ,P) Probability space.
E Expectation with respect to P.
E = {1, . . . , s} Finite state space.
ME Set of real matrix on E× E.

ME(N) Matrix-valued functions defined on N,
with values in ME.

Z := (Zk)k∈N Semi-Markov chain (SMC).
(J, S) := (Jn, Sn)n∈N Markov renewal chain (MRC).
J := (Jn)n∈N Visited states, embedded Markov chain (EMC).
S := (Sn)n∈N Jump times.
L := (Ln)n∈N Sojourn times.
M Fixed censoring time.
N(M) Number of jumps of Z in the time interval [1,M ].

Ni(M) Number of visits to state i of the EMC,
up to time M.

Nij(M) Number of transitions from state i to state j
of the EMC, up to time M.

Nij(k,M) Number of transitions from state i to state j of the EMC,
up to time M, with sojourn time in state i equal to k.

p := (pij)i,j∈E Transition matrix of the EMC J.
q := (qij(k))i,j∈E,k∈N Semi-Markov kernel.
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Notation 7

Q := (Qij(k))i,j∈E,k∈N Cumulated semi-Markov kernel.
f := (fij(k))i,j∈E,k∈N Conditional sojourn time distribution

in state i, before visiting state j.
F := (Fij(k))i,j∈E,k∈N Conditional cumulative sojourn time distribution

in state i, before visiting state j.
h := (hi(k))i∈E,k∈N Sojourn time distribution in state i.
H := (Hi(k))i∈E,k∈N Cumulative distribution of sojourn time in state i.
H := (H i(k))i∈E,k∈N Survival function in state i.
µij Mean first passage time from state i to state j,

for semi Markov process Z.
µ∗ij Mean first passage time from state i to state j,

for embedded Markov chain J.
ν = (ν(j)j∈E) Stationary distribution of the EMC J.
α = (αi)i∈E Initial distribution of semi-Markov process Z.
A ∗B Discrete-time matrix convolution product of A, B.
A(n) n-fold convolution of A ∈ME(N).

X := (Xn)n∈N Unobserved MC (hidden).
Y := (Yn)n∈N Observable process.
bj(k)1≤i≤N,1≤k≤M The emission probability between state sj

and observation rk.
A Transition probability matrix in HMM or HSMM.
B Emission probability matrix in HMM or HSMM.
λ The parameters of HMM or HSMM.
Pλ The probability given a model λ.
γn(in) Forward variable.
βn(in) Backward variable.
ρn(in) The highest probability along a path (viterbi variable).
φn(in) The argument which maximize ρn(in).
ξn(in, in+1) The probability of being in state sin

at time n and state sin+1 at time n+ 1.
ωn(in) The probability of being in state sin at time n.
U := (Un)n∈N Backward-recurrence times of the SMC Z.
(Z, Y ) := (Zn, Yn)n∈N Hidden semi-Markov chain (Z hidden component).
π := (πj)j∈E Limit distribution of semi-Markov chain Z.



Notation 8

A = {1, . . . , d} Finite state space of chain Y.
R := (Ri,a)i∈E,a∈A Conditional distribution of Y, given

{Zn = i}, for (Z, Y ) hidden chain SM1-M0.
a.s−→ Almost sure convergence (strong consistency).
P−→ Convergence in probability.
D−→ Convergence in distribution.
δij Symbole of Kronecker.
1IA Indicatrice function of A.
N (0, σ2) Standard normal random variable

(mean µ = 0 ,variance σ2).

DTMP Discrete-time Markov process.
MC Markov chain.
SMC Semi-Markov Chain.
RC Renewal Chain.
EMC Embedded Markov Chain.
MLE Maximum-Likelihood Estimator.
SLLN Strong Law of Large Numbers.
CLT Central Limit Theorem.

r.v random variable.
RP Renewal Process.
HMM Hidden Markov Model.
HSMM Hidden Semi-Markov Model.



Introduction

In various sectors, such as nuclear and power plants, communication networks,
biological systems, software reliability, DNA analysis, insurance and finance, earth-
quake modeling, etc., the systems are becoming more and more complex. In recent
years, there has been growing interest in evaluating the performance of systems.
The evolution of a system is modeled by a stochastic process. Among the models
which are widely used as a standard tool to describe the evolution of a system, we
have the Markov and the semi-Markov models. Markov defined a way to represent
real-world stochastic systems and processes that encode dependencies and reach a
steady-state over time.

One of the reasons for applying Markov process theory in various fields is that
the Markovian hypothesis is very intuitive: if we know the past and present of a
system, then the future development of the system is only determined by its present
state. So, the history of the system does not play a role in its future development.
We also call this the memoryless property. However, the Markov property has its
limitations. It enforces restrictions on the distribution of the sojourn time in a state,
which is exponentially distribution (continuous case) or geometrically distribution
(discrete case). This is a disadvantage when we apply Markov processes in real-life
applications.

Therefore, we can introduce the semi-Markov process. This process allows us to
have arbitrary distributed sojourn time in any state and still provides the Markov
property, but in a more flexible way. The memoryless property does not act on the
calendar time in this case, but on the sojourn time in the state.

The semi Markov processes are often used during the functioning of the system
for which the semi Markov model is built, but it is not always possible to get all the
information contained in the status codes when changing its states, instead only we
can get is the signal (symbols) in which block of system elements the state changed
(failure, renewal, etc.,). In this case, the states of the semi Markov model can be
considered hidden (unobservable), and so we called it hidden semi Markov model
(HSMM).

9



Introduction 10

A hidden semi Markov model (HSMM) is traditionally defined by allowing the
underlying process to be a semi Markov chain. Each state has a variable duration,
which is associated with the number of observations being produced while in the
state. This makes it suitable for use in a wider range of applications.

The first approach to hidden semi Markov model was proposed by Ferguson [15],
which is partially included in the survey paper by Rabiner [26]. This approach
is called the explicit duration HMM in contrast to the implicit duration of the
HMM. It assumes that the state duration is generally distributed depending on the
current state of the underlying semi Markov process. It also assumes the conditional
independence of outputs.

As Ferguson [15] pointed out, an HSMM can be realized in the HMM framework
in which both the state and its sojourn time since entering the state are taken as a
complex HMM state. This idea was exploited in 1991 by a 2 vector HMM [17] and a
duration dependent state transition model [29]. Since then, similar approaches were
proposed in many applications. These approaches, however, have the common prob-
lem of computational complexity in some applications. A more efficient algorithm
was proposed in 2003 by Yu and Kobayashi [30], in which the forward-backward
variables are defined using the notion of a state together with its remaining sojourn
(or residual life) time. This makes the algorithm practical in many applications.

The HSMM has been successfully applied in many areas. The most successful
application is in speech recognition [15]. The first application of HSMM in this
area was made by Ferguson. Since then, there have been more than one hundred
such papers published in the literature. It is the application of HSMM in speech
recognition that enriches the theory of HSMM and develops many algorithms for
HSMM. Since the beginning of 1990’s, the HSMM started being applied in many
other areas such as printed text recognition [1] or handwritten word recognition [19],
recognition of human genes in DNA [18], language identification [23], etc.

This master memory falls into three chapters.
In chapter 1, we combined the two models Markov and semi Markov model.

We give some background and some basic concepts, properties, and theorems on ho-
mogeneous Markov chains with a discrete set of states (our work concern only with
the case of finite set state). For semi Markov chain, We give its basic probabilistic
properties and we present their empirical estimators for the main characteristics ac-
companied with their asymptotic properties (the strong consistency, the asymptotic
normality).

In chapter 2, we consider the Markov chain and the semi Markov chain as an
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unobserved processes in discrete time, and their observation sequence produced by
the hidden states, to describe another model called the hidden Markov model and
the hidden semi Markov model, then we continue by giving the definition of this
two models and we present the basic problems of the hidden Markov, then we give
the algorithms that can solve them consists of the Forward and Backward algorithm
and the viterbi algorithm and the Baum-Welch algorithm (EM algorithm), and we
finish by giving the maximum likelihood estimation of hidden semi Markov model,
and their asymptotic properties (the strong consistency, the asymptotic normality).

In chapter 3, we present the R packages SMM, HMM, hsmm used for the
simulation and non parametric estimation of discrete-time respectively of the semi
Markov models, hidden Markov, and Hidden semi-Markov models, and we give a
detailed description of each packages with some examples.



Chapter 1

Markov and semi Markov model

1.1 Introduction and preliminaries

Andrei Markov didn’t agree with Pavel Nekrasov, when he said independence be-
tween variables was necessary for theWeak Law of Large Numbers to be applied.
The Weak Law of Large Numbers states something like this:

(When you collect independent samples, as the number of samples
gets bigger, the mean of those samples converges to the true mean of

the population.(

But Markov believed independence was not a necessary condition for the mean
to converge. So he set out to define how the average of the outcomes from a pro-
cess involving dependent random variables could converge over time. Thanks to
this intellectual disagreement, Markov created a way to describe how random, also
called stochastic systems or processes evolve over time. The system is modeled as
a sequence of states and, as time goes by, it moves in between states with a spe-
cific probability. Since the states are connected, they form a chain. Following the
academic tradition of naming discoveries and new methods after the people that
developed or discovered them, this way of modeling the world is called a Markov
Chain. What’s particular about Markov chains is that, as you move along the chain,
the state where you are at any given time matters. The transitions between states
are conditioned, or dependent, on the state you are in before the transition occurs,
that’s what is named as the Markov property. Putting all of these characteristics
together, Markov was able to prove that, as long as you can reach all states in the
chain, the probability of moving to a particular state will converge to a single steady
value in the long run.

12

https://en.wikipedia.org/wiki/Law_of_large_numbers#Weak_law


1.1 Introduction and preliminaries 13

The Markov property imposes restrictions on the distribution of the sojourn time
in the state, and for that we define the semi Markov model which allows us to have
arbitrary distributed sojourn time in any state. The semi-Markov models are more
general than Markov models because they are not limited by the Markov assump-
tion, they were introduced by Levy [21] and Smith [27] in 1950s and are applied in
queuing theory and reliability theory.

Definition 1.1.1. (Probability measures)
It all begins with a probability measure P. You should think of a probability

measure P, on a set Ω as a function assigning a number P(A) ∈ [0, 1] to subsets
A ⊂ Ω. If you are familiar with measure theory you may correctly insist that a
probability measure only assigns a probability to subsets ⊂ F in a σ-algebra F on Ω1

but this point of view is not crucial for the story to come. Subsets of Ω are referred
to as events.

By definition a probability measure must have total mass equal to one and it must
be additive over countable classes of disjoint sets, i.e.

P(
∞⋃
n=1

An) =
∞∑
n=1

P(An)

provided that Ai
⋂
Aj = ∅,i 6= j.

For two events A,B with P(B) > 0 we define the elementary conditional prob-
ability of A given B (notation: P(A | B)) as

P(A | B) =
P(A

⋂
B)

P(B)

.

Definition 1.1.2. (Random variables)
When we refer to a random experiment we want to emphasize that we are in a

situation where we are unable to predict the outcome with certainty. There might be
several reasons that we do not know the exact result of an experiment: the outcome
may be affected by circumstances that we are unable to control or we may simply not
have complete information allowing us to determine the result of the experiment.

1A σ-algebra on Ω is a class F of subsets of Ω such that,

• Ω ∈ F

• Ac ∈ F if A ∈ F

•
⋃∞

n=1An ∈ F if A1, A2, . . . ,∈ F
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The concept of a random variable or stochastic variable is used for a math-
ematical model of a random experiment. Formally, a random variable,"X", is a
function and we reflect the randomness by saying that the argument ω ∈ Ω of the
function is chosen according to some probability distribution, P. The outcome of
the experiment is denoted by X(ω). Two different ω’s will potentially give different
results of the experiment reflecting the non-deterministic nature of the experiment.

A random variable may be defined (more formally) as a measurable map

X : (Ω,F) −→ (E,G)

where F ,G are classes of subset satisfying the conditions of a σ-algebra. For a
subset A ⊂ E (with A ⊂ G ) the probability that the random experiment gives a
value in the set A is computed as

P(X ∈ A) ≡ P({ω ∈ Ω | X(ω) ∈ A})

. This defines a probability on E which we will call the distribution of random
variable X.

Definition 1.1.3. (Stochastic processes)
A stochastic process is a family of random variables indexed by a set I, {X(t), t ∈

I} defined on (Ω,F ,P) with values in E. For every t ∈ I, X(t) is a random variable
X(t) : Ω → E, whose value for the outcome ω ∈ Ω is noted X(t, ω). If instead of t
we fix an ω ∈ Ω, we obtain the function X(., ω) : I → E which is called a trajectory
or a path-function or a sample function of the process.

The set E is called the state space of the stochastic process X = (X(t), t ∈ I).
The stochastic process may be denoted by Xt instead of X(t) (respectively, Xn if
I = N (discrete time random process)).

Consider a finite set E = {1, . . . , s}. We denote byME the set of real matrices
on E×E and byME(N) the set of matrix valued functions defined on N, with values
inME.

1.1.1 Preliminaries

In this sequel we introduce some notations and theorems which will be useful later.

Theorem 1.1.1. (Strong Law of Large Numbers)[22]
Let (X1, X2, . . .) is an infinite sequence of i.i.d. Lebesgue integrable random vari-

ables with expected value E[X1] = E[X2] = . . ., then we have
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1

n

n∑
i=1

Xi
a.s−→

n→∞
E[X1].

Theorem 1.1.2. (Glivenko-Cantelli theorem) [11]

Let Fn(x) = 1
n

n∑
k=1

1{Xk≤x} be the empirical distribution function of the i.i.d.

random sample X1, . . . , Xn. Denote by F the common distribution function of Xi ,
i = 1, . . . , n. Thus

sup
x∈R
|Fn(x)− F (x)| a.s−→

n→∞
0.

Theorem 1.1.3. [16]
Let (Yn)n∈N be a sequence of random variables and (Nn)n∈N a positive integer-

valued stochastic process. Suppose that

Yn
a.s−→

n→∞
Y and Nn

a.s−→
n→∞

∞.

Then,
YNn

a.s−→
n→∞

Y.

Definition 1.1.4. (Martingale)
Let F = (Fn, n ≥ 0) be a family of sub-σ-algebras of F such that Fn ⊂ Fm,

when n < m. We say that F is a filtration of F . A real-valued F-adapted stochastic
process Xn is (Fn-measurable for n ≥ 0) called martingale with respect to a filtration
F if, for every n = 0, 1, . . .

1. E|Xn| <∞ ; and

2. E[Xn+1|Fn] = Xn (a.s).

Theorem 1.1.4. (CLT for martingales)[9]
Let (Xn)n∈N? be a martingale with respect to the filtration F = (Fn)n∈N and

define the process Yn = Xn − Xn−1, n ∈ N? (with Y1 := X1), called a difference
martingale. If

1. 1
n

n∑
k=1

E[Y 2
k |Fk−1]

P−→
n→∞

σ2 > 0;

2. 1
n

n∑
k=1

E[Y 2
k 1{|Yk|>ε

√
n}] −→

n→∞
0, For all ε > 0,



1.2 Discrete-time Markov model 16

then
Xn

n

a.s−→
n→∞

0,

and
1√
n
Xn =

1√
n

n∑
k=1

Yk
D−→

n→∞
N (0, σ2).

Theorem 1.1.5. (Anscombe’s theorem)[10]
Let (Yn)n∈N be a sequence of random variables and (Nn)n∈N a positive integer-

valued stochastic process. Suppose that

1√
n

n∑
m=1

Ym
D−→

n→∞
N (0, σ2) and Nn/n

P−→
n→∞

θ,

where θ is a constant, 0 < θ <∞. Then,

1√
Nn

Nn∑
m=1

Ym
D−→

n→∞
N (0, σ2).

1.2 Discrete-time Markov model

In this section we are only going to deal with a very simple class of mathematical
models for random events namely the class of Markov chains on a finite state space
(The state space is the set of possible values for the observations).

Definition 1.2.1. (Discrete-time Markov chain)
Let (Jn)n≥0 be a stochastic process defined on a probability space (Ω,F ,P), with

values in a finite set E = {1, 2, . . . , s}.

1. A stochastic process (Jn)n≥0 is called discrete time Markov process or Markov
chain with state space E if, for any n ∈ N and any state sequence i0, i1, . . . , in−1, i, j
∈ E,

P(Jn+1 = j︸ ︷︷ ︸
Future

| J0 = i0, J1 = i1, . . . , Jn−1 = in−1, Jn = i︸ ︷︷ ︸
Past and present

) = P(Jn+1 = j︸ ︷︷ ︸
Future

|Jn = i︸ ︷︷ ︸
Present

).

(1.1)
the equality (1.1) is called Markov property.

2. If, additionally, the probability P(Jn+1 = j|Jn = i) does not depend on n,
(Jn)n≥0 is said to be homogeneous with respect to time.
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Definition 1.2.2. (Transition Matrix)
The function (i, j) → pij := P(Jn+1 = j|Jn = i) is called transition function of

the chain. For any i, j ∈ E and n ≥ 0, the transition function satisfies the following
properties :

1. pij ≥ 0, for any i, j ∈ E,

2.
∑
j∈E

pij = 1, for any i ∈ E,

3.
∑
k∈E

pikpkj = P(Jn+2 = j|Jn = i) = p
(2)
ij ,

4.
∑
k∈E

p
(n)
ik p

(m)
kj = p

(n+m)
ij , for any i, j ∈ E and n,m ≥ 0.

as we are consider only with finite state space Markov chains, we can represent the
transition function by a squared matrix (transition matrix p ∈ME):

p = (pij)i,j∈E =

p11 · · · p1s
...

...
ps1 · · · pss


In order to define a Markov chain (Jn)n≥0 we need:

1. transition function (matrix) p = (pij)i,j∈E.

2. α = (α1, . . . , αs), the initial distribution of the chain, that is the distribution
of J0, αi = P(J0 = i) for any state i ∈ E.

Proposition 1.2.1. Let (Jn)n∈N be a Markov chain of transition function p and
initial distribution α. For any n ≥ 1, k ≥ 0, and any states i0, i1, . . . , in, i, j ∈ E,
we have:

1.

P(Jk+1 = i1, . . . , Jk+n−1 = in−1, Jk+n = in | Jk = i0) = pi0i1 . . . pin−1in (1.2)

2.

P(J0 = i0, J1 = i1, . . . , Jn−1 = in−1, Jn = in) = αi0pi0i1 . . . pin−1in . (1.3)
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Proof.

1. We put Aj = {Jk+j = ij} for all j ∈ 0, . . . , n we have:

P(An∩. . .∩A1 | A0) = P(An | An−1∩. . .∩A0)P(An−1 | An−2∩. . .∩A0) . . .P(A1 | A0).

Since (Jn)n is an homogenous Markov chain, then P(Aj | Aj−1 ∩ . . . ∩ A0) =

pij−1,ij = p(ij−1, ij) for all j ∈ 1, . . . , n, which proves the proposition.

2. With the use of the above result and putting k=0:

P(Jn = in, Jn−1 = in−1, . . . , J0 = i0) = P(Jn = in, Jn−1 = in−1, . . . , J1 = i1|J0 = i0)

× P(J0 = i0)

= P(J0 = i0)p(i0, i1) . . .p(in−1, in).

Suppose that for all n ∈ N and for all i0, . . . , in ∈ E,

P(Jn = in, Jn−1 = in−1, . . . , J0 = i0) > 0,

P(Jn+1 = in+1|Jn = in, . . . , J0 = i0) =
P(Jn+1 = in+1, Jn = in, . . . , J0 = i0)

P(Jn = in, Jn−1 = in−1, . . . , J0 = i0)

= p(in, in+1).

Proposition 1.2.2. [4]
Let (Jn)n≥0 be a Markov chain of transition matrix p.

1. The sojourn time of the chain in a state i ∈ E is a geometric random variable
on N∗ of parameter 1− pii.

2. The probability that the chain enters state j when it leaves state i is pij
1−pii (for

pii 6= 1), which means that state i is non absorbing.

Definition 1.2.3. (Stationary distribution)
A probability distribution ν on E is said to be stationary or invariant for the

Markov chain (Jn)n≥0 if, for any j ∈ E∑
j∈E

ν(i)pij = ν(j),

or, in matrix form,
νp = ν,

where ν = (ν(1), . . . , ν(s)) is a row vector.
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1.2.1 State classification

We present in this section some classical ways to characterize a state or an entire
Markov chain.

Definition 1.2.4. (Accessible state) We say that state j is accessible from state
i, written as i → j if p(n)ij > 0. We assume that every state is accessible from itself
since p(0)ii = 1.

Definition 1.2.5. (Communicate state) Two states i and j are said to commu-
nicate, written as i↔ j if they are accessible from each other. In other words,

i↔ j means i→ j and j → i.

Definition 1.2.6. (Irreducible Markov chain) A Markov chain is said to be
irreducible if all states communicate with each other.

Definition 1.2.7. (Recurrent state) A state is said to be recurrent if, any time
that we leave that state, we will return to that state in the future with probability
one. On the other hand, if the probability of returning is less than one, the state is
called transient. Here, we provide a formal definition:

For any state i, we define

Gii = P(Jn = i, for some n ≥ 1|J0 = i).

State i is recurrent if Gii = 1, and it is transient if Gii < 1.

Definition 1.2.8. (Periodic, aperiodic state) A state i ∈ E is said to be periodic
of period d > 1, or d-periodic, if d is equal to the greatest common divisor of all n
such that P(Jn+1 = i|J1 = i) > 0. If d = 1, then the state i is said to be aperiodic.

Definition 1.2.9. (Ergodic state) An aperiodic recurrent state is called ergodic.
An irreducible Markov chain with one state ergodic (and then all states ergodic) is
called ergodic.

Proposition 1.2.3. [4](Ergodic theorem for Markov chains).
For an ergodic Markov chain we have

pnij −→
n→∞

ν(j),

for any i, j ∈ E.
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1.3 Discrete-time semi Markov model

A semi-Markov chain can be analyzed through the so-called embedded renewal
chains. That means that by taking into account only some particular aspects of
the evolution of a SMC (successive visits of a specific state, for instance), we obtain
a renewal chain. Due to this property, results on RCs will be of great help when
investigating the behavior of SMCs. In order to define SMM we need to define in
first:

Definition 1.3.1. (Discrete-Time Renewal Processes) Roughly speaking, a re-
newal process (RP) (Sn)n∈N represents the successive instants when a specific (fixed
but random) event occurs. The term renewal comes from the assumption that when
this event occurs, the process starts anew (this is a regeneration point of time). For
this reason, that specific event will be called a renewal and (Sn)n∈N will be called
a renewal process. Since we will be concerned only with discrete-time renewal pro-
cesses, we will generally use the term renewal chain (RC). For a renewal process we
have:

Sn = X0 +X1 + . . .+Xn,

if for a certain n ∈ N we have Xn = ∞, then Sn = Sn+1 = . . . = ∞. Note that
we have S0 ≤ S1 ≤ . . ., where equality holds only for infinite Sn. The sequence
(Xn)n∈N∗ is called a waiting time sequence and Xn is the nth waiting time. The
sequence (Sn)n∈N is called an arrival time sequence and Sn is the nth arrival time.
Note that the fundamental fact that the chain starts anew each time a renewal occurs
means that (Xn)n∈N∗ is a sequence of i.i.d. random variables (in the simplest case,
we suppose X0 = S0 = 0).

1.3.1 Markov renewal chains

Let us consider:

• E the state space. We suppose E to be finite, with | E |= s.

• The stochastic process J = (Jn)n≥0 with state space E for the system state at
the nth jump.

• The stochastic process S = (Sn)n≥0 with state space N for the nth jump. We
suppose S0 = 0 and 0 < S1 < S2 < . . . < Sn < Sn+1 < . . .

• The stochastic process L = (Ln)n≥0 with state space N? for the sojourn time
Ln in state Jn−1 before the nth jump. Thus, Ln = Sn − Sn−1, for all n ∈ N?.
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Definition 1.3.2. (Discrete-time semi-Markov kernel)
A matrix-valued function q = (qij(k)) ∈ ME(N) is said to be a discrete time

semi-Markov kernel if it satisfies the following three properties:

• 0 ≤ qij(k), i, j ∈ E, k ∈ N,

• qij(0) = 0, i, j ∈ E,

•
∞∑
k=0

∑
j∈E

qij(k) = 1, i ∈ E.

Definition 1.3.3. (Markov renewal chain)
The stochastic process (J, S) = (Jn, Sn)n∈N is said to be a Markov renewal chain

(MRC) if for all n ∈ N, for all i, j ∈ E and for all k ∈ N it almost surely satisfies:

P(Jn+1 = j, Sn+1 − Sn = k|J0, . . . , Jn;S0, . . . , Sn) = P(Jn+1 = j, Sn+1 − Sn = k|Jn).

(1.4)

Moreover, if equation (1.4) is independent of n, (J, S) is said to be homogeneous,
with discrete time semi-Markov kernel q = (qij(k); i, j ∈ E, k ∈ N) defined by:

qij(k) = P(Jn+1 = j, Ln+1 = k|Jn = i), k > 0, and qij(0) = 0.

If (J,S) is a (homogeneous) Markov renewal chain, we can easily see that (Jn)n∈N

is a (homogeneous) Markov chain, called the embedded Markov chain (EMC) asso-
ciated to the MRC (J,S). we denote by P = (pij)i,j∈E ∈ ME the transition matrix
of (Jn). Note also that, for any i, j ∈ E, pij can be expressed in terms of the semi
Markov kernel:

pij =
∞∑
k=0

qij(k).

Let us introduce the cumulated semi-Markov kernel
Q = (Q(k), k ∈ N) ∈ME(N) defined, for all i, j ∈ E and for all k ∈ N, by

Qij(k) = P(Jn+1 = j, Ln+1 ≤ k|Jn = i) =
k∑
l=0

qij(l).

1.3.2 Definition of semi-Markov chains and sojourn time dis-
tributions

Definition 1.3.4. (Discrete-time semi-Markov chain)
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Let (J, S) be a Markov renewal chain. The chain Z = (Zk)k∈N is said to be a
semi-Markov chain associated to the MRC (J, S) if

Zk := JN(k), k ∈ N,

where
N(k) := max{n ≥ 0, Sn ≤ k},

is the discrete-time counting process of the number of jumps in [1, k] ⊂ N.
Thus Zk gives the system state at time k. We have also Jn = ZSn and Sn =

min{k > Sn−1|Zk 6= Zk−1}, n ∈ N.

Let the row vector α = (α1, . . . , αs) denote the initial distribution of the semi
Markov chain Z = (Zk)k∈N i.e αi := P(Z0 = i) = P(J0 = i), i ∈ E.

Figure 1.1: Sample path of a semi-Markov chain.

When investigating the evolution of a Markov renewal chain we are interested
in two types of holding time distributions: the sojourn time distributions in a given
state and the conditional distributions depending on the next state to be visited.

Definition 1.3.5. (Conditional distributions of sojourn times)
For all i, j ∈ E, let us define:

• fij(.), the conditional distribution of sojourn time in state i before going to
state j:

fij(k) := P(Ln+1 = k|Jn = i, Jn+1 = j), ∀k ∈ N.
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• Fij(.), the conditional cumulative distribution of Ln+1, n ∈ N:

Fij(k) := P(Ln+1 ≤ k|Jn = i, Jn+1 = j) =
k∑
l=0

fij(l), ∀k ∈ N.

Obviously, for all i, j ∈ E and for all k ∈ N, we have:

fij(k) = qij(k)/pij if pij 6= 0. (1.5)

and, by convention, we put fij(k) = 1I{k=∞} if pij = 0.

Definition 1.3.6. (Sojourn time distributions in a given state)
For all i ∈ E, let us define:

• hi(.), the sojourn time distribution in state i:

hi(k) := P(Ln+1 = k|Jn = i) =
∑
j∈E

qij(k),∀k ∈ N.

• Hi(.), the sojourn time cumulative distribution function in state i:

Hi(k) := P(Ln+1 ≤ k|Jn = i) =
k∑
l=1

hi(l),∀k ∈ N.

• H i(.), the survival function of sojourn time in state i:

H i(k) := P(Ln+1 > k|Jn = i) = 1−
∑
j∈E

k∑
n=1

qij(n),∀k ∈ N.

As we saw in equation 1.5 the semi-Markov kernel introduced in Definition 1.3.3

verifies the relation:
for all i, j ∈ E and k ∈ N, we have qij(k) = pijfij(k), such that pij 6= 0.

The following assumptions concerning the semi Markov chain will be needed in
the rest of this work.

A1 The SMC is irreducible.

A2 The mean sojourn times are finite, i.e.
∑
k=0

khi(k) <∞ for any state i ∈ E.

A3 The Markov renewal process (Jn, Sn)n∈N is aperiodic.
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1.4 Elements of statistical estimation

Let us consider a sample path of the DTMRP (Jn, Sn)n∈N, censored at time
M ∈ N (LN(M)+1 is above uM but it is unknown by how much), that is, a sequence
of successively visited states and sojourn times:

H(M) := (J0, L1, . . . , JN(M)−1, LN(M), JN(M), uM),

where N(M) is the number of jumps of the process in [1,M ] ⊂ N and
uM := M − SN(M) is the censored sojourn time in the last visited state JN(M).

1.4.1 Empirical estimators

Taking a sample path H(M) of a DTMRP, for all i, j ∈ E and
k ∈ N, k ≤ M , we define the empirical estimators of the transition matrix of the
embedded Markov chain pij, of the conditional sojourn time fij(k) and of the discrete
semi-Markov kernel qij(k) by

p̂ij(M) :=
Nij(M)

Ni(M)
, f̂ij(k,M) :=

Nij(k,M)

Nij(M)
, q̂ij(k,M) :=

Nij(k,M)

Ni(M)
. (1.6)

where Nij(k,M), Ni(M) and Nij(M) are given by

• Ni(M) :=

N(M)∑
n=1

1I{Jn=i} : the number of visits to state i, up to time M ;

• Nij(M) :=

N(M)∑
n=1

1I{Jn−1=i,Jn=j} : the number of transitions from i to j, up to

time M ;

• Nij(k,M) :=

N(M)∑
n=1

1I{Jn−1=i,Jn=j,Ln=k} : the number of transitions from i to

j, up to time M , with sojourn time in state i equal to k, 1 ≤ k ≤M .

If Ni(M) = 0 we set p̂ij(M) = 0 and q̂ij(k,M) = 0 for any k ∈ N, and if Nij(M) = 0

we set f̂ij(k,M) = 0 for any k ∈ N.

The likelihood function corresponding to the history H(M) is

L(M) = αJ0

N(M)∏
k=1

pJk−1JkfJk−1Jk(Lk)HJN(M)
(uM),
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where HJN(M)
is the survival function in state i and αi is the initial distribution of

state i.

Lemma 1.4.1.1. [4]
For a semi-Markov chain Z = (Zn)n∈N we have

uM/M
a.s−→

M→∞
0.

The previous lemma tells us that, for large M , uM does not add significant
information to the likelihood function. For these reason, we will neglect the term
HJN(M)

(uM) in the expression of the likelihood function L(M). On the other side,
the sample path H(M) of the MRC (Jn, Sn)n∈N contains only one observation of
the initial distribution α of (Jn)n∈N, so the information on αJ0 does not increase
withM . As we are interested in large-sample estimation of semi-Markov chains, the
term αJ0 will be equally neglected in the expression of the likelihood function (see
Billingsley, 1961a, page 4, for a similar discussion about Markov chain estimation).

For this reasons, instead of maximizing L(M) we will maximize the approached
likelihood function defined by

L1(M) =

N(M)∏
k=1

pJk−1JkfJk−1Jk(Lk). (1.7)

And we will call the obtained estimators "approached maximum-likelihood estima-
tors."

Proposition 1.1. [4]
For a sample path of a DTMRP (Jn, Sn)n∈N, of arbitrarily fixed length M ∈ N,

the empirical estimators p̂ij(M), f̂ij(k,M) and q̂ij(k,M), proposed in equation (1.6),
are approached non-parametric maximum likelihood estimators i.e. they maximize
the approached likelihood function L1, given in equation (1.7).

Proof. We consider the approached likelihood function L1(M) given by equation
(1.7). Using the equality

s∑
j=1

pij = 1, i ∈ E. (1.8)

the approached log-likelihood function can be written in the form:

log(L1(M)) =
M∑
k=1

s∑
i,j=1

[Nij(M) log(pij) +Nij(k,M) log(fij(k)) + λi(1−
s∑
j=1

pij)], (1.9)
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where the Lagrange multipliers λi are arbitrarily chosen constants.
In order to obtain the approached MLE of pij, we maximize equation (1.9) with
respect to pij, and get pij = Nij(M)/λi. Equation (1.8) becomes

1 =
s∑
j=1

pij =
s∑
j=1

Nij(M)

λi
=
Ni(M)

λi
.

Finally, we infer that the values λi which maximize equation (1.9) with respect
to pij are given by λi = Ni(M) and we obtain

p̂ij(M) :=
Nij(M)

Ni(M)
.

The expression of f̂ij(k,M) can be obtained by the same method. Indeed, using the
equality

∞∑
k=1

fij(k) = 1 (1.10)

we write the approached log-likelihood function in the form:

log(L1(M)) =
M∑
k=1

s∑
i,j=1

[Nij(M) log(pij) +Nij(k,M) log(fij(k)) + λij(1−
∞∑
k=1

fij(k))],

(1.11)

where λij are arbitrarily chosen constants. Maximizing (1.11) with respect to fij(k)

we obtain f̂ij(k,M) := Nij(k,M)/λij.
From Equation (1.10) we obtain λij(M) = Nij(M). Thus

f̂ij(k,M) := Nij(k,M)/Nij(M).
In an analogous way we can prove that the expression of the approached MLE

of the kernel qij(k) is given by equation (1.6). 2

Lemma 1.4.1. [4] For a MRC that satisfies Assumptions A1 and A2, we have:

1. lim
M→∞

SM =∞ a.s;

2. lim
M→∞

N(M) =∞ a.s.

Lemma 1.4.2. [4] For the DTMRP (Jn, Sn)n∈N. We have

Ni(M)
M

a.s−→
M→∞

1
µii
,
Nij(M)

M

a.s−→
M→∞

pij
µii

, N(M)
M

a.s−→
M→∞

1
ν(l)µll

.

where µii is the mean recurrence time of state i for the semi-Markov process (Zn)n∈N,
(ν(l); l ∈ E) the stationary distribution and l is an arbitrary fixed state.
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1.5 Asymptotic properties of the estimators

In this section, we study the asymptotic properties (consistency and asymptotic
normality) of the proposed estimators p̂ij(M), f̂ij(k,M) and q̂ij(k,M).

1.5.1 Strong consistency

Corollary 1.5.1. [4] For any i, j ∈ E, under A1, we have

p̂ij(M) =
Nij(M)

Ni(M)

a.s−→
M→∞

pij.

For i, j ∈ E two fixed states, let us also define the empirical estimator of the condi-
tional cumulative distribution of (Ln)n∈N∗

F̂ij(k,M) :=
k∑
l=0

f̂ij(l,M) =
k∑
l=0

Nij(l,M)

Nij(M)
. (1.12)

The following result concerns the convergence of f̂ij(k,M) and F̂ij(k,M).

Proposition 1.2. [4] For any fixed arbitrary states i, j ∈ E, the empirical estima-
tors f̂ij(k,M) and F̂ij(k,M) proposed in equations (1.6) and (1.12), are uniformly
strongly consistent, i.e.

1. max
i,j∈E

max
0≤k≤M

|F̂ij(k,M) − Fij(k)| a.s.−−−−→
M−→∞

0.

2. max
i,j∈E

max
0≤k≤M

|f̂ij(k,M) − fij(k)| a.s.−−−−→
M−→∞

0.

Proof. We first prove the strong consistency of the estimators using the SLLN
theorem 1.1.1 . Second, we show the uniform consistency, i.e., that the convergence
does not depend on the chosen k, 0 ≤ k ≤ M . This second part is done by means
of the Glivenko-Cantelli theorem 1.1.2.

Obviously, the strong consistency can be directly obtained using Glivenko-Cantelli
theorem 1.1.2. Anyway, we prefer to derive separately the consistency result because
it is easy and constructive.

Let us denote by {n1, n2, . . . , nNij(M)} the transition times from state i to state
j, up to time M. Note that we have

F̂ij(k,M) =
1

Nij(M)

Nij(M)∑
l=1

1I{Lnl
≤k},
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and

f̂ij(k,M) =
1

Nij(M)

Nij(M)∑
l=1

1I{Lnl
=k}.

For any l ∈ {1, 2, . . . , Nij(M)} we have

E[1I{Lnl
≤k}] = P(Lnl

≤ k) = Fij(k),

and
E[1I{Lnl

=k}] = P(Lnl
= k) = fij(k).

Since Nij(M)
a.s−→

M→∞
∞, applying the SLLN theorem 1.1.1 to the sequences of

i.i.d. random variables {1I{Lnl
≤k}}l∈{1,2,...,Nij(M)} and {1I{Lnl

=k}}l∈{1,2,...,Nij(M)}, and
using Theorem 1.1.3, we get

F̂ij(k,M) =
1

Nij(M)

Nij(M)∑
l=1

1I{Lnl
≤k}

a.s−→
M→∞

E[1I{Lnl
≤k}] = Fij(k),

and

f̂ij(k,M) =
1

Nij(M)

Nij(M)∑
l=1

1I{Lnl
=k}

a.s−→
M→∞

E[1I{Lnl
=k}] = fij(k).

In order to obtain uniform consistency, from the Glivenko-Cantelli theorem 1.1.2,
we have

max
0≤k≤m

| 1
m

m∑
l=1

1I{Lnl
≤k} − Fij(k)| a.s−→

M→∞
0.

Let us define ξm := max
0≤k≤m

| 1
m

m∑
l=1

1I{Lnl
≤k} − Fij(k)|. The previous convergence tells

us that ξm
a.s−→

m→∞
0. As N(M)

a.s−→
M→∞

∞ (1.4.1) applying Theorem 1.1.3 we obtain

ξN(M)
a.s−→

M→∞
0 which reads

max
0≤k≤M

|F̂ij(k,M)− Fij(k)| a.s−→
M→∞

0.

As the state space E is finite, we take the maximum with respect to i, j ∈ E and
the desired result for F̂ij(k,M) follows.

Concerning the uniform consistency of f̂ij(k,M), note that we have

max
i,j∈E

max
0≤k≤M

|f̂ij(k,M)− fij(k)| = max
i,j∈E

max
0≤k≤M

|F̂ij(k,M)−F̂ij(k−1,M)−Fij(k)+Fij(k−1)|

≤ max
i,j∈E

max
0≤k≤M

|F̂ij(k,M)− Fij(k)|+ max
i,j∈E

max
0≤k≤M

|F̂ij(k − 1,M)− Fij(k − 1)|

and the result follows from the uniform strong consistency of F̂ij(k,M).2
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Proposition 1.3. [4] The empirical estimator of the semi-Markov kernel proposed
in equation (1.6) is uniformly strongly consistent, i.e.

max
i,j∈E

max
0≤k≤M

|q̂ij(k,M) − qij(k)| a.s.−−−−→
M−→∞

0.

Proof. Firstly, from Corollary 1.5.1, we immediately obtain the almost sure
convergence of p̂ij(M). The uniform strong consistency of q̂ij(k,M) follows from
the consistency of the estimators p̂ij(M), f̂ij(k,M) (Proposition 1.1) and from the
following inequality

max
i,j∈E

max
0≤k≤M

|q̂ij(k,M) − qij(k)| = max
i,j∈E

max
0≤k≤M

|p̂ij(M)f̂ij(k,M)− p̂ij(M)fij(k)

+p̂ij(M)fij(k)− pijfij(k)|
≤ max

i,j∈E
p̂ij(M) max

i,j∈E
max

0≤k≤M
|f̂ij(k,M) − fij(k)|

+ max
i,j∈E

max
0≤k≤M

fij(k) max
i,j∈E
|p̂ij(M) − pij|

≤ max
i,j∈E
|p̂ij(M) − pij|+ max

i,j∈E
max

0≤k≤M
|f̂ij(k,M) − fij(k)|.

The conclusion follows from the consistency of p̂ij(M) and f̂ij(k,M). 2

1.5.2 Asymptotic normality

We present further theorem CLT for additive functionals of Markov renewal
chains. Let f be a real function defined on E×E×N. Define, for each M ∈ N, the
functional Wf (M) as

Wf (M) :=

N(M)∑
n=1

f(Jn−1, Jn, Ln),

or, equivalently,

Wf (M) :=
s∑

i,j=1

Nij(M)∑
n=1

f(i, j, Lijn),

where Lijn is the nth sojourn time of the chain in state i, before going to state j.
Set

Aij :=
∞∑
x=1

f(i, j, x)qij(x), Ai :=
s∑
j=1

Aij,

Bij :=
∞∑
x=1

f 2(i, j, x)qij(x), Bi :=
s∑
j=1

Bij,
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if the sums exist. Define

ri :=
s∑
j=1

Aj
µ∗ii
µ∗jj

, mf :=
ri
µii

σ2
i := −r2i +

s∑
j=1

Bj
µ∗ii
µ∗jj

+ 2
s∑
r=1

∑
l 6=i

∑
k 6=i

ArlAkµ
∗
ii

µ∗li + µ∗ik − µ∗lk
µ∗rrµ

∗
kk

, Bf :=
σ2
i

µii

Where µ∗ii is the mean recurrence time of state i for the Markov chain (Jn)n≥0.

Theorem 1.5.1. (Central Limit Theorem) [24]
For an aperiodic Markov renewal chain that satisfies Assumptions A1 and A2

we have √
M

[
Wf (M)

M
−mf

]
D−→

M→∞
N (0, Bf ).

Theorem 1.5.2. [4] For i, j ∈ E, and k ∈ N,√
M [q̂ij(k,M)− qij(k)] converges in distribution, asM →∞, to a zero mean normal

random variable with variance µiiqij(k)[1− qij(k)].

Proof. We present two different proofs of the theorem. The first one is based
on the CLT for Markov renewal chains (Theorem 1.5.1). The second one relies on
the Lindeberg-Lévy CLT for martingales (Theorem 1.1.4).

Method 1.

√
M [q̂ij(k,M)− qij(k)] =

M

Ni(M)

1√
M

N(M)∑
n=1

[1I{Jn=j,Ln=k} − qij(k)]1I{Jn−1=i}

=

N(M)∑
n=1

f(Jn−1, Jn, Ln).

Let us consider the function

f(m, l, u) := 1I{m=i,l=j,u=k} − qij(k)1I{m=i}.

Using the notation from the Pyke and Schaufele’s CLT, we have

Wf (M) =

N(M)∑
n=1

f(Jn−1, Jn, Ln) =

N(M)∑
n=1

[1I{Jn=j,Ln=k} − qij(k)]1I{Jn−1=i}.

In order to apply Pyke and Schaufeles’central limit theorem for Markov renewal
processes (Theorem 1.5.1), we need to compute Aml, Am, Bml, Bm,mf and Bf for
m, l ∈ E.
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Aml :=
∞∑
u=1

f(m, l, u)qml(u),

:=
∞∑
u=1

1{m=i,l=j,u=k}qml(u)−
∞∑
u=1

1{m=i}qij(k)qml(u)

:= δmiδlj

∞∑
u=1

1{u=k}qij(u)− δmiqij(k)
∞∑
u=1

qil(u) = qij(k)δmi(δlj − pil)

Am :=
s∑
l=1

Aml = qij(k)δmi[
s∑
l=1

δlj −
s∑
l=1

pil] = 0.

Bml :=
∞∑
u=1

f 2(m, l, u)qml(u)

:=
∞∑
u=1

1I{m=i,l=j,u=k}qml(u) +
∞∑
u=1

1I{m=i}q
2
ij(k)qml(u)

−2
∞∑
u=1

1I{m=i,l=j,u=k}qij(k)qml(u)

:= qij(k)δmiδlj + q2ij(k)δmipil − 2q2ij(k)δmiδlj

Bm :=
s∑
l=1

Bml = δmiqij(k)[1− qij(k)].

Finally, we obtain

ri :=
s∑

m=1

Am
µ∗ii
µ∗mm

= 0, mf :=
ri
µii

= 0,

σ2
i :=

s∑
m=1

Bm
µ∗ii
µ∗mm

= qij(k)[1− qij(k)], Bf :=
σ2
i

µii
=
qij(k)[1− qij(k)]

µii
.

Since Ni(M)/M
a.s−→

M→∞
1/µii (see Lemma 1.4.2), we conclude as follows:

√
M [q̂ij(k,M)− qij(k)]

D−→
M→∞

N (0, µiiqij(k)[1− qij(k)]).

Method 2.
For i, j ∈ E arbitrarily fixed states and k ∈ N arbitrarily fixed positive integer,

we write the random variable
√
M [q̂ij(k,M)− qij(k)] as

√
M [q̂ij(k,M)− qij(k)] =

M

Ni(M)

1√
M

N(M)∑
n=1

[
1I{Jn=j,Ln=k} − qij(k)

]
1I{Jn−1=i}.
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Let Fn be the σ-algebra defined by Fn := σ(Jl, Ll; l ≤ n), n ≥ 0, and let Yn be the
random variable

Yn = 1I{Jn−1=i,Jn=j,Ln=k} − qij(k)1I{Jn−1=i}.

Obviously, Yn is Fn-measurable and Fn ⊆ Fn+1, for all n ∈ N. Moreover, we have

E(Yn | Fn−1) = P(Jn−1 = i, Jn = j, Ln = k | Fn−1)− qij(k)P(Jn−1 = i | Fn−1)
= 1I{Jn−1=i}P(Jn = j, Ln = k | Jn−1 = i)− qij(k)1I{Jn−1=i}

= 0.

Therefore, (Yn)n∈N is an Fn-martingale difference and (
n∑
l=1

Yl)l∈N is an Fn-martingale.

Note also that, as Yl is bounded for all l ∈ N, we have

1√
n

n∑
l=1

E(Y 2
l 1I{|Yl|>ε

√
n}) −→

n→∞
0.

For any ε > 0. Using the CLT for martingales (Theorem 1.1.4) we obtain

1√
n

n∑
l=1

Yl
D−→

n→∞
N (0, σ2), (1.13)

where σ2 > 0 is given by

σ2 = lim
n→∞

1√
n

n∑
l=1

E(Y 2
l | Fl−1) > 0.

As N(M)/M
a.s−→

M→∞
1/ν(l)µll applying Anscombe’s theorem (Theorem 1.1.5) we

obtain
1√
N(M)

N(M)∑
l=1

Yl
D−→

M→∞
N (0, σ2). (1.14)

To obtain σ2, we need to compute Y 2
l and E(Y 2

l | Fl−1). First,

Y 2
l = 1I{Jl−1=i,Jl=j,Ll=k} + (qij(k))21I{Jl−1=i} − 2qij(k)1I{Jl−1=i,Jl=j,Ll=k}.

Second,

E(Y 2
l | Fl−1) = 1I{Jl−1=i}P(Jl = j, Ll = k | Jl−1 = i)

+(qij(k))21I{Jl−1=i} − 21I{Jl−1=i}qij(k)P(Jl = j, Ll = k | Jl−1 = i)

= 1I{Jl−1=i}qij(k) + (qij(k))21I{Jl−1=i} − 2(qij(k))21I{Jl−1=i}

= 1I{Jl−1=i}qij(k)[1− qij(k)].
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Thus, σ2 given by

σ2 = lim
n→∞

(
1√
n

n∑
l=1

1I{Jl−1=i})qij(k)[1− qij(k)] = ν(i)qij(k)[1− qij(k)],

where ν is the stationary distribution of the embedded Markov chain (Jn)n∈N. The
random variable of interest

√
M [q̂ij(k,M) − qij(k)] can be written as

√
M [q̂ij(k,M) − qij(k)] =

M

Ni(M)

1√
M

√
N(M)

1√
N(M)

N(M)∑
l=1

Yl

=
M

Ni(M)

√
N(M)

M

1√
N(M)

N(M)∑
l=1

Yl.

Note that we have

Ni(M)

M

a.s−→
M→∞

1

µii
,

N(M)

M

a.s−→
M→∞

1

ν(i)µii
.

Using these results and convergence (1.14), we obtain that√
M [q̂ij(k,M) − qij(k)] converges in distribution, as M tends to infinity, to a zero-

mean normal random variable, of variance

σ2
q (i, j, k) = (µii

√
1/µiiν(i))2ν(i)qij(k)[1− qij(k)]

= µiiqij(k)[1− qij(k)],

which is the desired result. 2



Chapter 2

Hidden Markov and semi Markov
models

2.1 Introduction

Many of the most powerful sequence analysis methods are now based on principles
of probabilistic modeling, such as Hidden Markov Models (HMMs) and Hidden Semi
Markov Models (HSMMs).

The basic idea of a hidden model is the following: we observe the evolution
in time of a certain phenomenon (observed process), but we are interested in the
evolution of another phenomenon, which we are not able to observe (hidden process).
The two processes are related in the sense that the state occupied by the observed
process depends on the state that the hidden process is in. To get one of the most
intuitive and general examples of a hidden model, one can think the observed process
as a received signal and the hidden process as the emitted signal.
Since being introduced by Baum and Petrie (1966) [5], the HMMs have become very
popular in a wide range of applications like biology [12][14], speech recognition [26],
image processing, and text recognition.

The main drawback of hidden Markov models comes from the Markov property,
which requires that the sojourn time in a state be geometrically distributed. This
makes the hidden Markov models too restrictive from a practical point of view. In
order to solve this kind of problem in the field of speech recognition, Ferguson (1980)
[15] proposed a model that allows arbitrary sojourn time distributions for the hidden
process. This is called a hidden semi-Markov model, which is extended from hidden
Markov models.

Combining the flexibility of the semi-Markov processes with the proved advan-

34
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tages of HMMs, we obtain HSMMs, which are a powerful tool for applications and
offer a rich statistical framework.

2.2 Hidden Markov model

Example 1. Let us consider the scenario below where the weather (the hidden vari-
able), can be hot, mild or cold and the observed variables are the type of clothing
worn. The arrows represent transitions from a hidden state to another hidden state
or from a hidden state to an observed variable. Notice that, true to the Markov as-
sumption, each state only depends on the previous state and not on any other prior
states.

Figure 2.1: Example of Hidden Markov model.
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The following tables represent the initial, transition, emission probabilities:

Generally, the term "states" are used to refer to the hidden states and "observa-
tions" are used to refer to the observed states.

Once we know the joint probability of a sequence of hidden states, we determine
the best possible sequence i.e. the sequence with the highest probability and choose
that sequence as the best sequence of hidden states.

In order to compute the joint probability of a sequence of hidden states, we need
to assemble three types of information:

1. Transition probability -the probability of transitioning to a new state condi-
tioned on a present state.

2. Emission probability -the probability of transitioning to an observed condi-
tioned on a hidden state.

3. Initial state probability -the initial probability of transitioning to a hidden
state. This can also be looked at as the prior probability.

The above information can be computed directly from our training data. In the
case of our weather example in Figure 2.1, our training data would consist of the
hidden state and observations for a number of days. We could build our matrices of:
transitions, emission and initial state probabilities directly from this training data.

The example tables show a set of possible values that could be derived for the
weather/clothing scenario.

Remark 2.2.1. In our work, we only consider the case when the observations were
represented as discrete symbols chosen from a finite set E, and therefore we could
use a discrete probability density within each state as this model.
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To define an HMM, we need some elements:

• The number of the hidden states is N. We denote these states by N : {s1, s2, . . . , sN}.

• The number of the observable states is M. We denote them by M : {r1, r2, . . . , rM}.

• (Xn : n = 0, 1, . . .) is an unobserved Markov chain with transition probability
matrix A := (pij)1≤i,j≤N , and an initial state distribution α = (αi).

• For a finite observation sequence (Yn : n = 0, 1, . . . , T ), where T is any fixed
number, we have a fundamental assumption connecting the hidden state se-
quence (Xn : n = 0, 1, . . . , T ) and the observation sequence, that is statistical
independence of observations (Yn : n = 0, 1, . . . , T ). If we formulate this as-
sumption mathematically, we have

P(Y0 = rj0 , Y1 = rj1 , . . . , YT = rjT |X0 = si0 , X1 = si1 , . . . , XT = siT )

=
T∏
n=0

P(Yn = rjn|Xn = sin). (2.1)

where 1 ≤ i0, i1, . . . , iT ≤ N, 1 ≤ j0, j1, . . . , jT ≤ M. To simplify the notation,
we denote the event sequence (si0 , si1 , . . . , siT ) by sT0 , (ri0 , ri1 , . . . , riT ) by rT0 ,
and denote (X0, X1, . . . , XT ) by XT

0 , (Y0, Y1, . . . , YT ) by YT
0 . Then, we put

bj(k) = P(Yn = rk|Xn = sj), 1 ≤ j ≤ N, 1 ≤ k ≤M, t = 0, 1, 2, . . .

We may rewrite the formula 2.1 by

P(YT
0 = rT0 |XT

0 = sT0 ) =
T∏
n=0

bin(jn) (2.2)

By the knowledge of Markov chain, we know P(XT
0 = sT0 ), the probability of

the state sequence sT0 ,

P(XT
0 = sT0 ) = P(X0 = si0 , X1 = si1 , . . . , XT = siT )

= αi0pi0i1 . . . piT−1iT

=
T∏
n=0

pin−1in ,

where pi−1i0 = αi0 . Hence, the joint probability of sT0 and rT0 is

P(XT
0 = sT0 ,Y

T
0 = rT0 ) = P(YT

0 = rT0 |XT
0 = sT0 ).P(XT

0 = sT0 )

=
T∏
n=0

[bin(jn)pin−1in ]. (2.3)
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The transition probability matrix A, the initial state distribution α and the matrix
B = [bj(k)], 1 ≤ j ≤ N, 1 ≤ k ≤M , define a hidden Markov model completely.

Therefore we can use a compact notation λ = (A,B, α) to denote a hidden
Markov model with discrete probability distribution. We may think of λ as a pa-
rameter of the hidden Markov model. We denote the probability given a model λ
by Pλ later.

So far, we know a hidden Markov model has several components. It has a set of
states s1, s2, . . . , sN , a set of output symbols r1, r2, . . . , rM , a set of transitions which
have associated with them a probability and an output symbol, and a starting state.
When a transition is taken, it produces an output symbol. The complicating factor
is that the output symbol given is not necessarily unique to that transition, and
thus it is difficult to determine which transition was the one actually taken and this
is why they are termed "hidden".

Lemma 2.2.1.

Pλ(Y
T
0 = rT0 ) =

∑
1≤i0,i1,...,iT≤N

T∏
n=0

pin−1inbin(jn).

Proof. We want to compute Pλ(YT
0 = rT0 ), the probability of the observation

sequence given the model λ. From time 0 to time T, we consider every possible
hidden state sequence sT0 . Then the probability of rT0 is obtained by summing the
joint probability over rT0 and all possible sT0 , that is

Pλ(Y
T
0 = rT0 )

=
∑

all possible sT0

Pλ(X
T
0 = sT0 ,Y

T
0 = rT0 )

=
∑

1≤i0,i1,...,iT≤N

T∏
n=0

[pin−1inbin(jn)].

Lemma 2.2.1 gives us a method to compute the probability of a sequence of observa-
tions rT0 . But unfortunately, this calculation is computationally unfeasible. Because
this formula involves on the order of (T + 1) ·N (T+1) calculations. We are going to
introduce some more efficient methods in the next section.

We can understand Lemma 2.2.1 from another point of view. A hidden Markov
model consists of a set of hidden states s1, s2, . . . , sN connected by directed edges.
Each state assigns probabilities to the characters of the alphabet used in the observ-
able sequence and to the edges leaving the state.
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A path in an HMM, si0 , si1 , . . . , siT , is a sequence of states such that there is an
edge from each state in the path to the next state in the path. And the probability
of this path is the product of the probabilities of the edges traversed, that is P (XT

0 =

sT0 ).
Each path through the HMM gives a probability distribution for each position

in a string of the same length, based on the probabilities for the characters in the
corresponding states. The probability of the observable sequence given a particular
path is the product of the probabilities of the characters, that is

P(YT
0 = rT0 |XT

0 = sT0 ) =
T∏
n=0

bin(jn).

The probability of any sequence of characters is the sum, over all paths whose length
is the same as the sequence, of the probability of the path times the probability of
the sequence given the path, that is the result of Lemma 2.2.1, as it shown in Figure
2.2 .

Figure 2.2: Paths of an HMM.

A Hidden Markov Model has a very similar property as a Markov process, that
is given the values of Xn, the values of Ys, s ≥ n, do not depend on the values of
Xu, u < n. The probability of any particular future observation of the model when
its present hidden state is known exactly, is not altered by additional knowledge
concerning its past hidden behavior. In formal terms, we have Lemma 2.2.2.

Lemma 2.2.2.

Pλ(Yu = rju|Xn
0 = sn0) = Pλ(Yu = rju|Xn = sin), u ≥ n.
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Proof. Firstly, we prove this result is true when u = n.

Pλ(Yn = rjn|Xn
0 = sn0) =

∑
0≤j0,...,jn−1≤M

Pλ(Y
n
0 = rn0 |Xn

0 = sn0)

=
∑

0≤j0,...,jn−1≤M

Pλ(Y
n−1
0 = rn−10 |Xn−1

0 = sn−10 ) · Pλ(Yn = rjn |Xn = sin)

= 1 · Pλ(Yn = rjn|Xn = sin)

= Pλ(Yn = rjn|Xn = sin)

Specially, if we have q ≤ n, we will have

Pλ(Yn = rjn|Xn
q = snq) =

∑
0≤jq ,...,jn−1≤M

Pλ(Y
n
q = rnq|Xn

q = snq)

=
∑

0≤jq ,...,jn−1≤M

Pλ(Y
n−1
q = rn−1q |Xn−1

q = sn−1q ) · Pλ(Yn = rjn |Xn = sin)

= 1 · Pλ(Yn = rjn|Xn = sin)

= Pλ(Yn = rjn|Xn = sin)

Then, we prove it is also true when u > n.

Pλ(Yu = rju|Xn
0 = sn0)

=
∑

0≤j0,...,ju−1≤M

Pλ(Y
u
0 = ru0 |Xn

0 = sn0)

=
∑

0≤j0,...,ju−1≤M

∑
0≤in+1,...,iu≤N

Pλ(Y
u
0 = ru0 ,X

u
n+1 = sun+1)|Xn

0 = sn0)

=
∑

0≤j0,...,ju−1≤M

∑
0≤in+1,...,iu≤N

Pλ(Y
u
0 = ru0 |Xu

0 = su0) · Pλ(Xu
n+1 = sun+1|Xn = sin)

=
∑

0≤j0,...,ju−1≤M

∑
0≤in+1,...,iu≤N

Pλ(Y
u−1
0 = ru−10 |Xu−1

0 = su−10 ) · Pλ(Yu = rju|Xu = siu)

·Pλ(Xu
n+1 = sun+1|Xn = sin)

=
∑

0≤in+1,...,iu≤N

Pλ(Yu = rju|Xu = siu) · Pλ(Xu
n+1 = sun+1|Xn = sin)

= Pλ(Yu = rju|Xn = sin)

Lemma 2.2.2 will be widely used in next section to help solve the basic problems of
HMM.
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Remark 2.2.2. (Yn, n ≥ 0) are not independent.

Proof.
We take T = 1. From Lemma 2.2.1, we have

Pλ(Y
1
0 = r10) =

N∑
i0,i1=1

bi0(j0)bi1(j1)αi0pi0i1 .

But Pλ(Y0 = rj0) =
N∑
i0=1

bi0(j0)αi0 , and

Pλ(Y1 = rj1) =
N∑
i1

Pλ(Y1 = rj1|X1 = si1)Pλ(X1 = si1)

=
N∑
i1

bi1(j1)[
N∑
i0

pi0i1αi0 ] =
N∑

i0,i1=1

bi1(j1)pi0i1αi0 .

Hence Pλ(Y1
0 = r10) 6= Pλ(Y0 = rj0) · Pλ(Y1 = rj1). Therefore, the sequence (Yn, n ≥

0) are not independent. Actually, it is very natural to be understood. Because
for each Yn, it is generated by the corresponding Xn, and the hidden sequence
(Xn, n = 0, 1, . . .) are not independent.

There is a very easy example. We take N = M and bi(j) = δij. Then Yn is a
Markov chain.

2.2.1 Three basic problems of HMM and their solutions

Once we have an HMM, there are three problems of interest.

1.The Evaluation Problem

Given a hidden Markov model λ and a sequence of observations YT
0 = rT0 what is

the probability that the observations are generated by the model, i.e. Pλ(Y
T
0 =

rT0 ). We can also view the problem as how well a given model matches a given
observation sequence. By the second viewpoint, if we have several competing models,
the solution to the evaluation problem will give us a best model which best matches
the observation sequence.

The most straightforward way of doing this is using Lemma 2.2.1. But it involves
a lot of calculations. The more efficient methods are called the forward procedure
and the backward procedure [26]. We will introduce these two procedures first, then
reveal the mathematical idea inside them.
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Definition 2.2.1. (The Forward Procedure)
Fix rn0 and consider the forward variable γn(in) defined as

γn(in) = Pλ(Y
n
0 = rn0 , Xn = sin), n = 0, 1, . . . , T, 1 ≤ in ≤ N.

that is the probability of the partial observation sequence, rj0 , rj1 , . . . , rjn(until time
n) and at time n the hidden state is sin. So for the forward variable γn(in), we only
consider those paths which end at the state sin at the time n. We can solve for γn(in)

inductively, as follows:

1. Initialization: For n = 0,

γ0(i0) = αi0bi0(j0), 1 ≤ i0 ≤ N.

2. Induction (n = 0, 1, . . . , T − 1):

γn+1(in+1)

= Pλ(Y
n+1
0 = rn+1

0 , Xn+1 = sin+1)

=
∑

0≤i0,...,in≤N

Pλ(Y
n+1
0 = rn+1

0 ,Xn+1
0 = sn+1

0 )

=
∑

0≤i0,...,in≤N

Pλ(Y
n+1
0 = rn+1

0 |Xn+1
0 = sn+1

0 ) · Pλ(Xn+1
0 = sn+1

0 )

=
∑

0≤i0,...,in≤N

Pλ(Y
n
0 = rn0 |Xn

0 = sn0) · Pλ(Yn+1 = rjn+1|Xn+1 = sin+1)

·Pλ(Xn+1 = sin+1|Xn
0 = rn0) · Pλ(Xn

0 = rn0)

= [
∑

0≤i0,...,in≤N

Pλ(Y
n
0 = rn0 ,X

n
0 = sn0) · Pλ(Xn+1 = sin+1 |Xn = sin)]

·Pλ(Yn+1 = rjn+1|Xn+1 = sin+1)

= [
∑

0≤in≤N

Pλ(Y
n
0 = rn0 , Xn = sin) · Pλ(Xn+1 = sin+1|Xn = sin)]

·Pλ(Yn+1 = rjn+1|Xn+1 = sin+1)

= [
N∑

in=1

γn(in)pinin+1 ]bin+1(jn+1)

3. Termination:

Pλ(Y
T
0 = rT0 ) =

N∑
iT=1

Pλ(Y
T
0 = rT0 , XT = siT )

=
N∑

iT=1

γT (iT )
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If we examine the computation involved in the calculation of γn(in), we see that it
requires on the order of N2 · (T + 1) calculations, rather than (T + 1) · N (T+1) as
required by the direct calculation. Hence, the forward probability calculation is more
efficient than the direct calculation.

In similar, we have another method for the evaluation problem. It is called back-
ward procedure.

Definition 2.2.2. (The Backward Procedure)
We consider a backward variable βn(in) defined as,

βn(in) = Pλ(Y
T
n+1 = rTn+1|Xn = sin) 0 ≤ n ≤ T − 1, 1 ≤ in ≤ N.

That is the probability of the partial observation sequence from time n+1 to the end,
given the hidden state is sin at time n. Again we can solve for βn(in) inductively, as
follows:

1. Initialization:

To make this procedure work for (n = T − 1), we arbitrarily define βT (iT ) to
be 1 in the initialization step (1).

βT (iT ) = 1.

2. Induction (n = 0, 1, . . . , T − 1):

βn(in)

= Pλ(Y
T
n+1 = rTn+1|Xn = sin)

=
N∑

in+1=1

Pλ(Y
T
n+1 = rTn+1, Xn+1 = sin+1|Xn = sin)

=
N∑

in+1=1

Pλ(Y
T
n+1 = rTn+1|Xn+1 = sin+1 , Xn = sin) · Pλ(Xn+1 = sin+1|Xn = sin)

=
N∑

in+1=1

Pλ(Y
T
n+1 = rTn+1|Xn+1 = sin+1) · Pλ(Xn+1 = sin+1 |Xn = sin)

=
N∑

in+1=1

∑
1≤in+2,...,iT≤N

Pλ(Y
T
n+1 = rTn+1|XT

n+1 = sTn+1) · Pλ(XT
n+2 = sTn+2|Xn+1 = sin+1)

·Pλ(Xn+1 = sin+1|Xn = sin)
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=
N∑

in+1=1

Pλ(Yn+1 = rjn+1|Xn+1 = sin+1) · Pλ(Xn+1 = sin+1|Xn = sin)

·[
∑

1≤in+2,...,iT≤N

Pλ(Y
T
n+2 = rTn+2|XT

n+1 = sTn+1)Pλ(X
T
n+2 = sTn+2|Xn+1 = sin+1)]

=
N∑

in+1=1

Pλ(Yn+1 = rjn+1|Xn+1 = sin+1) · Pλ(YT
n+2 = rTn+2|Xn+1 = sin+1)

·Pλ(Xn+1 = sin+1|Xn = sin)

=
N∑

in+1=1

pinin+1bin+1(jn+1)βn+1(in+1).

3. Termination:
Pλ(Y

T
0 = rT0 )

=
N∑
i0=1

Pλ(Y
T
0 = rT0 , X0 = si0)

=
N∑
i0=1

Pλ(Y
T
0 = rT0 |X0 = si0) · Pλ(X0 = si0)

=
N∑
i0=1

Pλ(Y
T
1 = rT1 |X0 = si0) · Pλ(Y0 = rj0|X0 = si0) · Pλ(X0 = si0)

=
N∑
i0=1

β0(i0)bi0(j0)αi0

The backward procedure requires on the order of N2 · (T + 1) calculations, as
many as the forward procedure.

Summary of the evaluation problem.

We have introduced how to evaluate the probability that the observation sequence
YT

0 = rT0 is generated by using either the forward procedure or the backward pro-
cedure. They are more efficient than the method given in Lemma 2.2.1.

In fact, these two procedures are nothing but changing multiple sum, that is
Lemma 2.2.1, to repeated sum. For example, in the forward procedure, we use the
identity ∑

1≤i0,...,iT≤N

∗ =
N∑

iT=1

. . .
N∑
i0=1

∗,
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and for the backward procedure, we reverse the order of summation, that is∑
1≤i0,...,iT≤N

∗ =
N∑
i0=1

. . .

N∑
iT=1

∗.

From this point of view, it is obvious that other procedures are possible. For ex-
ample, we can do the summation from the two ends to the middle at the same
time.

2.The Decoding problem

Given a model λ and a sequence of observations YT
0 = rT0 , what is the most

likely state sequence in the model that produced the observation? That is, we
want to find a hidden state sequence XT

0 = sT0 , to maximize the probability,
Pλ(X

T
0 = sT0 |YT

0 = rT0 ), for any possible sequences sT0 . This is equivalent to max-
imize Pλ(XT

0 = sT0 ,Y
T
0 = rT0 ), because the probability of rT0 given a model λ,

Pλ(Y
T
0 = rT0 ) is fixed. A technique for finding this state sequence exists, based on

dynamic programming methods, and is called the Viterbi algorithm [26].

Definition 2.2.3. (Viterbi algorithm)
Fixing sin, we consider a variable ρn(in) defined as

ρn(in) = max
1≤i0,i1,...,in−1≤N

Pλ(X
n−1
0 = sn−10 , Xn = sin ,Y

n
0 = rn0).

Hence, ρn(in) is the highest probability along a path, which accounts for the first n
observations and ends in state sin at time n.

By induction we have,
ρn+1(in+1)

= max
1≤i0,i1,...,in≤N

Pλ
(
X0

n = s0
n, Xn+1 = sin+1 ,Y0

n+1 = r0
n+1
)

= max
1≤i0,i1,...,in≤N

Pλ
(
Y0

n+1 = r0
n+1 | X0

n+1 = s0
n+1
)
· Pλ

(
X0

n+1 = s0
n+1
)

= max
1≤i0,i1,...,in≤N

Pλ
(
Yn+1 = rjn+1 | Xn+1 = sin+1

)
· Pλ (Y0

n = r0
n | X0

n = s0
n)

· Pλ
(
Xn+1 = sin+1 | X0

n = sn0
)
· Pλ (X0

n = s0
n)

= max
1≤i0,i1,...,in≤N

Pλ
(
Yn+1 = rjn+1 | Xn+1 = sin+1

)
· Pλ (Y0

n = r0
n,X0

n = s0
n)

· Pλ
(
Xn+1 = sin+1 | Xn = sin

)
=

[
max

1≤in≤N
max

1≤i0,...,in−1≤N
Pλ (Yn

0 = rn0 ,X0
n = s0

n) · Pλ
(
Xn+1 = sin+1 | Xn = sin

)]
· Pλ

(
Yn+1 = rjn+1 | Xn+1 = sin+1

)
=

[
max

1≤in≤N
ρn (in) pinin+1

]
bin+1 (jn+1)
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To find the hidden state sequence, we need to keep track of the argument which
maximize ρn(in), for every n and in, and they will be noted by an array φn(in).

1. Initialization:
ρ0(i0) = αi0bi0(j0), 1 ≤ i0 ≤ N.

2. Induction (n = 1, . . . , T ):

ρn(in) = max
1≤in−1≤N

[ρn−1(in−1)pin−1in ]bin(jn),

φn(in) = arg max
1≤in−1≤N

[ρn−1(in−1)pin−1in ].

3. Termination:

ρ∗ = max
1≤iT≤N

[ρT (iT )],

φ∗ = arg max
1≤iT≤N

[ρT (iT )].

Finally, we will have the state sequence iT = φ∗ and in = φn+1(in+1), n = T −1, T −
2, . . . , 0.

The Viterbi algorithm is very similar as the forward procedure that we have
introduced in the above section. In the forward procedure, we define γn(in), while
here we use ρn(in). The only difference between them is that we change summation
to maximum. But the general ideas are same. We change multiple summation to
repeated summation and multiple maximum to repeated maximum.

From this point of view, it is very natural to think how to use the idea that we
have used in the backward procedure to solve the decoding problem.

3.The Learning problem

Given a model λ and a sequence of observations YT
0 = rT0 , how should we adjust

the model parameters (A,B, α) in order to maximize Pλ(YT
0 = rT0 )? We face an

optimization problem with restrictions. This probability Pλ(YT
0 = rT0 ) is a function

of the variables αi, pij, bj(k). Also we may view the probability Pλ(Y
T
0 = rT0 ) as

the likelihood function of λ, considered as a function of λ for fixed rT0 . Thus, for
each rT0 , Pλ(YT

0 = rT0 ) gives the probability of observing rT0 . We use the method of
maximum likelihood, try to find that the value of λ, that is "most likely" to have
produced the sequence rT0 . Lemma 2.2.1.

The problem we need to solve is:

max
λ

Pλ(Y
T
0 = rT0 ) = max

λ

∑
1≤i0,i1,...,iT≤N

T∏
n=0

pin−1inbin(jn),
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To solve this problem, we need to use some results that Leonard E. Baum
and George R proved in 1968 [6]. We introduce an algorithm to solve our prob-
lem. That is, the Baum-Welch algorithm: The Baum-Welch algorithm finds a
local maximum for λ∗ = arg maxλ Pλ(Y

T
0 = rT0 ) (i.e. the HMM parameters λ that

maximize the probability of observation).
We can now calculate the temporary variables, according to Bayes theorem.

From the definition of the forward and backward variables, we can write

ωn(in) = Pλ(Xn = sin | YT
0 = rT0 ) =

Pλ(Xn = sin ,Y
T
0 = rT0 )

Pλ(YT
0 = rT0 )

=
γn(in)βn(in)∑N

in+1
γn+1(in+1)βn+1(in+1)

.

which is the probability of being in state sin at time n, given the observation
sequence and the model λ.

We define ξn(in, in+1) the probability of being in state sin at time n and state
sin+1 at time n+1, given the model λ and the observation sequence

ξn(in, in+1) = Pλ(Xn = sin , Xn+1 = sin+1 |YT
0 = rT0 )

=
Pλ(Xn = sin , Xn+1 = sin+1 ,Y

T
0 = rT0 )

Pλ(YT
0 = rT0 )

=
γn(in)pinin+1bin+1(jn+1)βn+1(in+1)∑N

in=1

∑N
in+1=1 γn(in)pinin+1bin+1(jn+1)βn+1(in+1)

.

The denominators of ωn(in) and ξn(in, in+1) are the same, they represent the
probability of making the observation Y given λ.
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The parameters of the hidden Markov model λ can now be updated:

αi = expected frequency (number of times) in state si at time 0

= ω0(i).

pij =
expected number of transitions fromsi to sj
expected number of transitions fromsi

=

T−1∑
n=0

ξn(i, j)

T−1∑
n=0

ωn(i)

.

bj(k) =
expected number of times in state sj and observation is rk

expected number of times in state sj

=

T−1∑
n=0

1I{Yn=rk}ωn(j)

T−1∑
n=0

ωn(j)

.

Therefore, we obtain a new model λ̄ = (Ā,B, ᾱ). Based on the above procedure,
if we iteratively use λ̄ in place of λ and repeat the calculation, we can improve the
probability of YT

0 = rT0 , until some limiting point is reached.

2.3 Hidden semi-Markov model

2.3.1 General structure of HSMM

The HSMMs capacity extends beyond that of the HMM. It allows for every hidden
state to be a semi-Markov chain while also introducing the concept of state duration.
This means that, unlike in HMM where a state can emit one observation per state,
a state in HSMM can emit a sequence of characters. The length of the observation
sequence for each state is determined by the duration variable (sojourn times) of
each state. Consequently, in addition to the standard notation of a HMM, a state
duration variable is added for the HSMM. This is an integer variable and takes the
value from the set d = {1, 2, . . . , D}, where D is the maximum duration allowed for
a single state.

Below is a figure depicting the general HSMM structure. The initial state and
its duration are selected according to the initial transition probabilities. In this
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case, the first state produces two observations hence the duration equals two and
transitions into the second state. The second state then produces an observation
sequence length of four. This can be seen for the remaining states till time (T).

Figure 2.3: General model of HSMM

Before giving any formal definition of the hidden semi-Markov model, let us first
see a concrete application in genetics

Example 2. (CpG islands in a DNA sequence).
Consider a DNA sequence, that is, a sequence of the four nucleotides A, C, G,

and T, i.e., an element of the space {A,C,G, T}N,

{T AGT GGAAC GAC C GGAT C C . . .}.

It is known that the presence of the pairs C-G is relatively rare in the genome.
Nevertheless, there are some regions within a DNA sequence where the frequency
of C-G pairs, as well as the frequency of nucleotides C and G themselves, is more
important. It has been proved that these regions, called CpG islands, play a key role
in the coding mechanism, so finding them is of great importance in genetic research.
Several mathematical models have been proposed for detecting CpG islands [14]. We
will present in the sequel the use of the hidden Markov model for detection of CpG
islands and we will also see why we think that it is more natural to use a hidden semi-
Markov model instead. Suppose that the DNA sequence is modeled by a sequence of
conditionally independent random variables Y, with state space D = {A,C,G, T}.
Suppose also that the possible presence of a CpG island is modeled by a Markov
chain Z with state space E = {0, 1}. Having (y0, . . . , yM) a truncated sample path of
Y, we set Zn = 1 if yn is a nucleotide inside a CpG island and Zn = 0 otherwise :
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• Y : TAGTGGAATG︸ ︷︷ ︸CGACG︸ ︷︷ ︸ . . .− DNA sequence

• Z : 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1. . .− CpG islands indicators.

Suppose that (Zn)n∈N is a Markov chain and that the observed nucleotides Yn are
generated according to the corresponding Zn. This is a typical example of a hidden
Markov model. From a practical point of view, the main drawback of this type of
approach is that we suppose that the length of windows of 0s and 1s follows geometric
distributions since we impose a Markovian evolution on process Z. For this reason it
is more natural to let Z be a semi-Markov chain, allowing a more realistic behavior
of the model, as the length of windows of 0s and 1s can follow any probability distri-
bution on N, instead of a geometric one in the Markov case. In this way, we obtain
what is called a hidden semi-Markov model. Obviously, the HMM is a particular
case of the HSMM.

Example 3. (Hidden Markov chains for detecting an unfair die).
Consider two dice, a fair one and an unfair one. When rolling the unfair die,

there is a 1/2 probability of getting a 6 and a 1/10 probability of getting 1,2,3,4, or
5. After rolling the fair die, the probability that the next game will be done with the
unfair die is 1/10. On the other hand, after rolling the unfair die, the probability
that the next game will be done with the fair die is 1/2.

Let Z0, Z1, . . . be the random variable sequence of successively used dice, with
value 0 for the fair die and 1 for unfair one. Consider also Y0, Y1, . . . the random
variable sequence, with values in {1, 2, 3, 4, 5, 6} representing the successive values
of the rolled dice. In practical terms, only sequence Y is observed, whereas chain Z
is "hidden" (unobserved, unknown). The couple (Z, Y ) is a hidden Markov chain,
that is, Z is an unobserved ergodic Markov chain and Y is a sequence of conditional
independent random variables, in the sense that the distribution of Yn depends only
on Zn, n ∈ N.
Let us compute:

1. The probability P(Yn = i|Z0 = 1), 1 ≤ i ≤ 6,

2. The limit limn→∞ P(Yn = i|Z0 = 1),1 ≤ i ≤ 6.

Set E = {0, 1} for the state space of the Markov chain Z and note that its associated
transition matrix is

P =

(
9/10 1/10

1/2 1/2

)
,
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the conditional distributions of Yn, given the state of Zn, n ∈ N, are as follows:

P(Yn = i|Zn = 1) = 1/10, for all i = 1, . . . , 5,

P(Yn = 6|Zn = 1) = 1/2,

P(Yn = i|Zn = 0) = 1/6, for all i = 1, . . . , 6.

Let us now compute the probabilities of interest.

1. We have

P(Yn = i|Z0 = 1) =
∑
l∈E

P(Yn = i, Zn = l|Z0 = 1)

=
∑
l∈E

P(Yn = i|Zn = l, Z0 = 1)P(Zn = l|Z0 = 1)

=
∑
l∈E

P(Yn = i|Zn = l)pn1l,

where pn1l is the element (1, l) of pn, the n-fold matrix product of p. Using
the previous computations, given a state i and a positive integer n, one can
immediately obtain the values of P(Yn = i|Z0 = 1).

2. To obtain the limit limn→∞ P(Yn = i|Z0 = 1),1 ≤ i ≤ 6, we start with the
relation obtained above,

P(Yn = i|Z0 = 1) =
∑
l∈E

P(Yn = i|Zn = l)pn1l.

First, note that the probabilities P(Yn = i|Zn = l) do not depend on n ∈ N,
so the limit as n tends to infinity concerns only pn1l. Second, from Proposition
1.2.3 we know that

lim
n→∞

pn1l = ν(l)

where ν = (ν(0) ν(1)) is the stationary (invariant) distribution of the Markov
chain (Zn)n∈N. We compute the stationary distribution ν by solving the system
ν p = ν, with the additional condition ν(0) + ν(1) = 1, and we get ν(0) =

5/6, ν(1) = 1/6. Consequently, we obtain

lim
n→∞

P(Yn = i|Z0 = 1)

= P(Yn = i|Zn = 0)ν(0) + P(Yn = i|Zn = 1)ν(1)

Finally, for i = 1, . . . , 5, we get

lim
n→∞

P(Yn = i|Z0 = 1) =
1

6
× 5

6
+

1

10
× 1

6
=

7

45
,
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whereas for i = 6 the limit is

lim
n→∞

P(Yn = 6|Z0 = 1) =
1

6
× 5

6
+

1

2
× 1

6
=

2

9

.

Let us now formally define a hidden semi-Markov model. We will take into
account two different types of such models, the so-called hidden SM-M0 model and
the hidden SM-Mk, k ≥ 1 model. Let Z = (Zn)n∈N be a semi-Markov chain with
finite state space E = {1, . . . , s} and Y = (YN)n∈N be a stationary sequence of
random variables with finite state space A = {1, . . . , d}, i.e., for any n ∈ N, a ∈ A,
and i ∈ E we have that P(Yn = a|Zn = i) is independent of n.

Before giving the definitions, let us introduce some notation.
Notation. Let l, k ∈ N be two nonnegative integers such that l ≤ k, and let

al, . . . , ak ∈ A. We will denote by Yk
l the vector Yk

l = (Yl, . . . , Yk) and we will write
{Yk

l = akl } for the event {Yl = al, . . . , Yk = ak}. When all these states represent the
same state, say a ∈ A, we simply denote by {Yk

l = a} the event {Yl = a, . . . , Yk = a}.
We also denote by {Yk

l = ·} the event {Yk
l = ·} = {Yl = ·, . . . , Yk = ·}. We gave all

this notation in terms of chain Y, but it can be obviously used for chain Z.

Example 4. (Hidden semi-Markov chains for detecting an unfair die.)
Let us consider the problem of an unfair die detection presented in Example 3 and
see how we can propose a hidden semi-Markov modeling instead of a hidden Markov
one.

As before, we have two dice, an unfair one and a fair one. When rolling the
unfair die, there is a 1/2 probability of getting a 6 and a 1/10 probability of getting
1, 2, 3, 4, or 5. After rolling the fair die n times, the probability that the next roll
will be done with the unfair die is f(n), where f = (f(n))n∈N∗. is a distribution on
N∗. On the other hand, after rolling the unfair die n times, the probability that the
next roll will be done with the fair die is g(n), where g = (g(n))n∈N∗. is a distribution
on N∗.

Let Z0, Z1, . . . be the random sequence of successively used dice, with value 0
for the fair die and 1 for the fake die. Consider also Y0, Y1, . . . the random vari-
able sequence, with values in {1, 2, 3, 4, 5, 6} representing the successive values of the
rolled dice. The couple (Z, Y ) = (Zn, Yn)n∈N is a hidden semi- Markov chain of type
SM-M0.

Definition 2.3.1. (Hidden semi-Markov chain of type SM-M0)
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1. Let Y = (Yn)n∈N be conditionally independent random variables, given a sam-
ple path of the SMC Z, i.e., for all a ∈ A, i ∈ E, n ∈ N∗, the following relation
holds true:

P(Yn = a|Yn−1
0 = ·, Zn = i,Zn−1

0 = ·) = P(Yn = a|Zn = i). (2.4)

The chain (Z, Y ) = (Zn, Yn)n∈N is called a hidden semi-Markov chain of type
SM-M0, where the index 0 stands for the order of Y regarded as a conditional
Markov chain.

2. For (Z,Y) a hidden semi-Markov chain of type SM-M0, let us define R =

(Ri,a, i ∈ E, a ∈ A) ∈ME×A as the conditional distribution of chain Y

Ri,a = P(Yn = a|Zn = i), (2.5)

called the emission probability matrix.

Definition 2.3.2. (Hidden semi-Markov chain of type SM-Mk)

1. Let Y = (Yn)n∈N be a homogeneous Markov chain of order k, k ≥ 1, conditioned
on the SMC Z, i.e., for all a0, . . . , ak ∈ A, i ∈ E, n ∈ N∗, the following relation
holds true:

P(Yn+1 = ak|Yn
n−k+1 = ak−1

0 ,Yn−k
0 = ·, Zn+1 = i,Zn

0 = ·)
= P(Yn+1 = ak|Yn

n−k+1 = ak−1
0 , Zn+1 = i) (2.6)

The chain (Z, Y ) = (Zn, Yn)n∈N is called a hidden semi-Markov chain of type
SM-Mk, where the index k stands for the order of the conditional Markov chain
Y.

2. For (Z, Y ) a hidden semi-Markov chain of type SM-Mk, let us define R =

(Ri,a0,...,ak , i ∈ E, a0, . . . , ak ∈ A) ∈ ME×A×...×A as the transition matrix of the
conditional Markov chain Y

Ri,a0,...,ak = P(Yn+1 = ak|Yn
n−k+1 = ak−1

0 , Zn+1 = i), (2.7)

called the emission probability matrix of the conditional Markov chain Y.

2.3.2 Estimation of a Hidden Semi-Markov Model

Let (Z, Y ) = (Zn, Yn)n∈N be a hidden SM-M0 chain with finite state space E × A.
We suppose that the semi-Markov chain Z is not directly observed and that the
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observations are described by the sequence of conditionally independent random
variables Y = (Yn)n∈N. Starting from a sample path y = yM

0 = (y0, . . . , yM) of
observations, we want to estimate the characteristics of the underlying semi-Markov
chain, as well as the conditional distribution of Y = (Yn)n∈N. All the results are
obtained under Assumption A1 of Chapter 1, that the SMC (Zn)n∈N is irreducible.

2.3.3 Consistency of Maximum-Likelihood Estimator

Let U = (Un)n∈N be the backward-recurrence times of the semi-Markov chain
(Zn)n∈N, that is,

Un = n− SN(n) (2.8)

One can check that the chain (Z,U) = (Zn, Un)n∈N is a Markov chain with state
space E× N. Let us denote by p̃ = (p(i,t1)(j,t2))i,j∈E,t1,t2∈N its transition matrix. We
can easily prove the following result, which gives the transition matrix p̃ in terms
of the semi-Markov kernel q.

Proposition 2.1. For all i, j ∈ E, t1, t2 ∈ N, the transition probabilities of the
Markov chain (Z,U) are given by:

p(i,t1)(j,t2) =


qij(t1 + 1)/Hi(t1), if i 6= j and t2 = 0,

Hi(t1 + 1)/Hi(t1), if i = j and t2 − t1 = 1,

0, otherwise.
(2.9)

where Hi(·) is the survival function of sojourn time in state i (final Equation in
definition 1.3.6).

Proposition 2.2. (Stationary distribution of the MC (Z,U)).
Consider an aperiodic MRC (Jn, Sn) that satisfies Assumptions A1 and A2. Then

the stationary probability distribution π̃ = (πi,u)i∈E,u∈N of the Markov chain (Z,U) is
given by

πi,u =
1−Hi(u)

µii
. (2.10)

We shall consider that the conditional distributions of sojourn times, fij(·), i, j ∈
E, i 6= j, have the same bounded support, supp fij(·) = D = {1, . . . , ñ} for all
i, j ∈ E, i 6= j.

We suppose that the Markov chain (Zn, Un)n∈N has the finite state space E×D

and the transition matrix p̃ = (p(i,t1)(j,t2))i,j∈E,t1,t2∈D. All the work in the rest of this
chapter will be done under the assumption:

A4 The conditional sojourn time distributions have finite support D.
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Taking into account the conditional independence, Relation 2.4, for all a ∈ A,
j ∈ E, and t ∈ D, we have

Ri,a = P(Yn = a|Zn = i) = P(Yn = a|Zn = i, Un = t). (2.11)

Consequently, starting from the initial hidden semi-Markov chain (Zn, Yn)n∈N, we
have an associated hidden Markov chain ((Z,U), Y ) = ((Zn, Un), Yn)n∈N, with (Zn, Un)n∈N

a Markov chain and (Yn)n∈N a sequence of conditionally independent random vari-
ables. This new hidden Markov model is defined by:

• The transition matrix p̃ = (p(i,t1)(j,t2))i,j∈E,t1,t2∈D of the Markov chain (Z,U), with
p(i,t1)(j,t2) given by Equation 2.9,

• The conditional distribution R of the sequence Y, given by Equation 2.11,

• The initial distribution of the hidden Markov chain ((Z,U), Y ).

We consider that the HSMM is stationary. Consequently, we will not take into
account the initial distribution in the parameter space.

In order to obtain the parameter space of the hidden Markov model, note first
that

• qij(t1 + 1) = 0 for t1 + 1 > ñ,

• Hi(t1 + 1) =
∞∑

k=t1+2

∑
j∈E

qij(k) = 0 for t1 + 2 > ñ.

Thus, for all i, j ∈ E, t1, t2 ∈ N, the transition probabilities of the Markov chain
(Z,U) given in Proposition 2.9 can be written for our model as follows:

p(i,t1)(j,t2) =


qij(t1 + 1)/Hi(t1), if i 6= j, t2 = 0, and 0 ≤ t1 ≤ ñ− 1,

Hi(t1 + 1)/Hi(t1), if i = j t2 − t1 = 1, and 0 ≤ t1 ≤ ñ− 2,

0, otherwise.
(2.12)

We denote the parameter θ by:

θ = (θ1, θ2) = (θ1, . . . , θb) = ((p(i,t1)(j,t2))i,j,t1,t2 , (Ria)i,a).

Note that in the description of the parameter θ in terms of p(i,t1)(j,t2) and Ria we
consider only the non identically zero parameters, and all the dependent parameters
have been removed, as described above. When we will need to consider also the de-
pendent parameters Ri,d, i ∈ E, (as in Theorem 2.5) we will denote the entire matrix
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of the conditional distribution of Y by (Ria)i∈E,a∈A instead of (Ria)i,a. Let us also
denote by θ0 = (θ01, θ

0
2) = ((p0(i,t1)(j,t2))i,j,t1,t2 , (R

0
ia)i,a) the true value of the parameter.

For (Y0, . . . , YM) a sample path of observations, the likelihood function for an ob-
servation of the hidden Markov chain ((Z,U), Y ) is given by

pθ(Y
n
0 ) =

∑
zM0 ,uM0

πz0,u0

M∏
k=1

p(zk−1,uk−1)(zk,uk)

M∏
k=0

Rzk,Yk . (2.13)

As all the chains are assumed to be stationary, we consider that the time scale
of all the processes is Z instead of N, so we shall work with (Z,U) = (Zn, Un)n∈Z

and Y = (Yn)n∈Z instead of (Z,U) = (Zn, Un)n∈N and Y = (Yn)n∈N.
We have the consistency of the MLE of θ01 = (p0(i,t1)(j,t2))i,j,t1,t2 and θ02 = (R0

ia)i,a,
denoted by θ̂1(M) = (p̂(i,t1)(j,t2)(M))i,j,t1,t2 and θ̂2(M) = (R̂ia(M))i,a. Let us define
this theorem,

Theorem 2.1. [4] Under assumptions A1 and A4, given a sample of observations
YM

0 , the maximum-likelihood estimator θ̂(M) of θ0 is consistent as M tends to in-
finity.

The following two theorems use these results in order to prove the consistency
of the maximum-likelihood estimators of the true value of the semi-Markov kernel
(q0ij(k))i,j∈E,i 6=j,k∈D and of the true value of the transition matrix of the embedded
Markov chain (p0i,j)i,j∈E,i 6=j.

Theorem 2.2. [4] Under assumptions A1 and A4, given a sample of observations
Y M
0 , the maximum-likelihood estimator (q̂ij(k,M))i,j∈E,i 6=j,k∈D of (q0ij(k))i,j∈E,i 6=j,k∈D

is strongly consistent as M tends to infinity.

Theorem 2.3. [4] Under Assumptions A1 and A4, given a sample of observations
Y M
0 , the maximum-likelihood estimator (p̂i,j(M))i,j∈E,i 6=j of

(
p0i,j
)
i,j∈E,i 6=j is strongly

consistent as M tends to infinity.

2.3.4 Asymptotic Normality of Maximum-Likelihood Esti-
mator

For (Y0, . . . , Yn) a sample path of observations we denote by σY n
0

(θ0) =−Eθ◦
(

∂2 log p(Y n
0 )

∂θu∂θv

∣∣∣∣
θ=θ◦

)
u,v

the Fisher information matrix computed in θ0, where pθ (Y n
0 ) is the associated like-

lihood function given in equation 2.13.
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Let

σ
(
θ0
)

=
(
σu,v

(
θ0
))
u,v

= −Eθ◦
(
∂2 logPθ (Y0 | Y−1, Y−2, . . .)

∂θu∂θv

∣∣∣∣
θ=θ◦

)
u,v

be the asymptotic Fisher information matrix computed in θ0 ([5],[13]).
From Theorem 3 of Douc (2005) we know that σ (θ0) is nonsingular if and only

if there exists an integer n ∈ N such that σY n
0

(θ0) is nonsingular. Consequently, all
our work will be done under the following assumption.

A5 There exists an integer n ∈ N such that the matrix σY0n (θ0) is nonsingular.

Theorem 2.4. [4] Under Assumptions A1, A4, and A5, the random vector

√
M
[
θ̂(M)− θ0

]
=
√
M

[(
(p̂(i,t1)(j,t2)(M)

)
i,j,t1,t2

,
(
R̂ia(M)

)
i,a

)
−
((
p0(i,t1)(j,t2)

)
i,j,t1,t2

,
(
R0
ia

)
i,a

)]
is asymptotically normal, asM →∞, with zero mean and covariance matrix σ (θ0)

−1

From this theorem we immediately obtain the asymptotic normality of the condi-
tioned transition matrix R of chain Y .

Theorem 2.5. [4] Under Assumptions A1, A4, and A5, the random vector

√
M

[(
R̂ia(M)

)
i∈E,a∈A

−
(
R0
ia

)
i∈E,a∈A

]
is asymptotically normal, as M →∞.

The following result concerns the asymptotic normality of the semi-Markov kernel
estimator.

Theorem 2.6. [4] Under Assumptions A1, A4, and A5, the random vector
√
M
[
(q̂ij(k,M))i,j∈E,i 6=j,k∈D −

(
q0ij(k)

)
i,j∈E,i 6=j,k∈D

]
(2.14)

is asymptotically normal, as M →∞.



Chapter 3

R packages for analyzing SMM,
HMM, HSMM

3.1 Introduction

R is a programming language and software environment for statistical computing
and graphics supported by the R Foundation for Statistical Computing. R is an
integrated suite of software facilities for data manipulation, calculation and graphical
display.

The R language was designed in the 1980s and has been in widespread use in the
statistical community since. The RStudio is an integrated development environment
for R. It includes a console, syntax-highlighting editor that supports direct code exe-
cution, as well as tools for plotting, history, debugging and workspace management.
In this chapter will depends on this programming language, and we will present some
R packages which can be used in our work, we talk about (SMM,HMM,hsmm)
packages, respectively used for simulation and estimation of the semi Markov mod-
els, hidden Markov, and Hidden semi-Markov models.

3.2 Package SMM

In this section we will present the R package (SMM) which is developed by Vlad and
al. This package performs parametric and non-parametric estimation and simulation
for a Markovien process and multi-state discrete-time semi-Markov processes. For
the parametric estimation, several discrete distributions are considered for the so-
journ times (Uniform, Geometric, Poisson, Discrete Weibull and Negative Binomial).
The non-parametric estimation concerns the sojourn time distributions, where no

58
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assumptions are done on the shape of distributions. Moreover, the estimation can
be done on the basis of one or several sample paths, with or without censoring at
the beginning or at the end of the sample paths. Estimation and simulation of
discrete-time k-th order Markov chains are also considered.

Remark 3.2.1. ◦ All along this section we assume that the MRC or SMC are ho-
mogeneous with respect to the time.

The SMM R package is mainly devoted to the simulation and estimation of
discrete-time semi-Markov models in different cases by the two following functions:

• simulSM : for the simulation of sequences from a semi-Markov model.

• estimSM : for the estimation of model parameters.

The SMM R package is also devoted to the simulation and estimation of discrete-
time Markov models by the two following functions :

• simulMk : for the simulation of sequences from a kth order Markov model.

• estimMk : for the estimation of the parameters of the model.

3.2.1 Simulation of semi-Markov models

Parametric simulation: according to classical distributions

Parameters : This simulation is carried out by the function simulSM(). The
different parameters of the function are :

• E : Vector of state space of length S.

• NbSeq : Number of simulated sequences.

• lengthSeq : Vector containing the lengths of each simulated sequence.

• init : Vector of initial distribution of length S.

• Ptrans : Matrix of transition probabilities of the embedded Markov chain
J = (Jm)m of size S × S.

• distr : Sojourn time distributions :

- is a matrix of distributions of size S × S.
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where the distributions to be used can be one of "uniform", "geom", "pois",
"weibull" or "nbinom".

• param : Parameters of sojourn time distributions :

- is an array of parameters of size S × S × 2

• File.out : Name of fasta file for saving the sequences, if File.out = NULL,
no file is created. A fasta file is a simple text file containing sequences only
described by one description line beginning by a ” > ”.

Example 5. The R commands below generate a sequences of size 1000, with the
finite state space E = {a, c, g, t}, where the sojourn times depend on the current
state and on the next state.

1 # s t a t e space
2 E = c ( "a" , "c" , "g" , " t " )
3 S = l e n g t h (E)
4 # sequence s i z e s
5 l e n g t hSe q = c (1000)
6 # cr ea t i on o f t he i n i t i a l d i s t r i b u t i o n
7 v e c t . i n i t = c (1 / 4 ,1 / 4 ,1 / 4 ,1 / 4)
8 # cr ea t i on o f t r a n s i t i o n matr ix
9 Pi j = matr ix ( c

( 0 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 2 , 0 , 0 . 5 , 0 . 2 , 0 . 5 , 0 . 3 , 0 , 0 . 4 , 0 . 3 , 0 . 5 , 0 . 2 , 0 ) ,
10 nco l=4)
11 # cr ea t i on o f t he d i s t r i b u t i o n matr ix
12 d i s t r . matr ix = matr ix ( c ( " dw e i b u l l " , " po i s " , "geom" , "nbinom" , "geom" ,

"nbinom" , " po i s " , " dw e i b u l l " , " po i s " , " po i s " , " dw e i b u l l " , "geom" ,
" po i s " , "geom" , "geom" , "nbinom" ) , nrow = S , nco l = S , byrow = TRUE
)

13 # cr ea t i on o f an array con t a in in g the parameters
14 param1 . matr ix = matr ix ( c ( 0 . 6 , 2 , 0 . 4 , 4 , 0 . 7 , 2 , 5 , 0 . 6 ,
15 2 , 3 , 0 . 6 , 0 . 6 , 4 , 0 . 3 , 0 . 4 , 4 ) , nrow = S , nco l = S , byrow = TRUE)
16 param2 . matr ix = matr ix ( c ( 0 . 8 , 0 , 0 , 2 , 0 , 5 , 0 , 0 . 8 ,
17 0 , 0 , 0 . 8 , 0 , 4 , 0 , 0 , 4 ) , nrow = S , nco l = S , byrow = TRUE)
18 param . array = array ( c ( param1 . matrix , param2 . matr ix ) , c (S , S , 2 ) )
19 # fo r the r e p r o d u c i b i l i t y o f t he r e s u l t s
20 s e t . seed (1)
21 # s imu l a t i on o f t he sequence
22 seq = simulSM(E = E, NbSeq = 1 , l e n g t hSe q = leng thSeq , i n i t = v e c t .

i n i t ,
23 Ptrans = Pij , d i s t r = d i s t r . matrix , param = param . array ,
24 F i l e . out = " seq . t x t " )
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Note that the parameters of the distributions are given in the following way: for
example, f13(·) is Geometric distribution with parameter 0.4, while f14(·) is Nega-
tive Binomial with parameters 4 and 2. In other words, the parameters of f13(·) are
given in the vector param.array [1, 3, ] that is equal to (0.4, 0) and the parameters of
f14(·) are given in the vector param.array [1, 4, ] that is equal to (4, 2), that means
that if a distribution has only 1 parameter, the corresponding vector of parameters
will have 0 on the second position.

Values : The function simulSM() returns a list of simulated sequences. These
sequences can be saved in a fasta file by using the parameter File.out.

1 > seq
2 [ [ 1 ] ]
3 [ 1 ] "g" "g" "g" "g" "c" "c" "c" "a" "a" "a" "c" "c" "c" "g"
4 [ 1 5 ] "g" "c" "c" "c" "c" "c" "g" "g" "g" "a" "a" "a" "a" "a"

Non-parametric simulation: according to distributions given by the user

Now we will consider the simulation according to distributions given by the user.
Parameters : This simulation is carried out by the function simulSM(). The
different parameters of this function are denoted in the previous subsection (E,
NbSeq, lengthSeq, init, Ptrans, File.out) 3.2.1, but we will show the difference
between the parameters here:
distr : Sojourn time distributions:

• laws : Sojourn time distributions introduced by the user:

- is an array of size S × S ×Kmax.

where Kmax is the maximum length for the sojourn times.

Example 6. The R commands below generate three sequences of size 1000, 10000
and 2000 respectively with the finite state space E = {a, c, g, t}.

1 ## s t a t e space
2 E = c ( "a" , "c" , "g" , " t " )
3 S = l e n g t h (E)
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4 ## sequence s i z e s
5 l e n g t hSeq3 = c (1000 , 10000 , 2000)
6 ## cr ea t i on o f t h e i n i t i a l d i s t r i b u t i o n
7 v e c t . i n i t = c (1 / 4 ,1 / 4 ,1 / 4 ,1 / 4)
8 ## cr ea t i on o f t r a n s i t i o n matr ix
9 Pi j = matr ix ( c

( 0 , 0 . 2 , 0 . 3 , 0 . 4 , 0 . 2 , 0 , 0 . 5 , 0 . 2 , 0 . 5 , 0 . 3 , 0 , 0 . 4 , 0 . 3 , 0 . 5 , 0 . 2 , 0 ) ,
10 nco l=4)
11 ## cr ea t i on o f a matr ix cor re spond ing to the c o n d i t i o n a l
12 ## sojourn time d i s t r i b u t i o n s
13 Kmax = 6
14 param1 . matr ix = matr ix ( c ( 0 . 2 , 0 . 1 , 0 . 3 , 0 . 2 , 0 . 2 , 0 , 0 . 4 , 0 . 2 , 0 . 1 ,
15 0 , 0 . 2 , 0 . 1 , 0 . 5 , 0 . 3 , 0 . 1 5 , 0 . 0 5 , 0 , 0 ,
16 0 . 3 , 0 . 2 , 0 . 1 , 0 . 2 , 0 . 2 , 0 ) ,
17 nrow = S , nco l = Kmax, byrow = TRUE)
18 param2 . matr ix = matr ix ( c ( 0 . 2 , 0 . 1 , 0 . 3 , 0 . 2 , 0 . 2 , 0 , 0 . 4 , 0 . 2 , 0 . 1 ,
19 0 , 0 . 2 , 0 . 1 , 0 . 5 , 0 . 3 , 0 . 1 5 , 0 . 0 5 , 0 , 0 ,
20 0 . 3 , 0 . 2 , 0 . 1 , 0 . 2 , 0 . 2 , 0 ) ,
21 nrow = S , nco l = Kmax, byrow = TRUE)
22 param . array = array ( c ( param1 . matrix , param2 . matr ix ) , c (S , S ,Kmax) )
23 ## s imu l a t i on o f 3 sequences w i t hou t c enso r ing
24 seqNP3_no = simulSM(E = E, NbSeq = 3 , l e n g t hS e q = leng thSeq3 , i n i t =

v e c t . i n i t , Ptrans = Pij , l aws =param . array , F i l e . out = "seqNP3_no .
t x t " )

25 ## fo r the r e p r o d u c i b i l i t y o f t he r e s u l t s
26 seqNP3_no = read . f a s t a ( "seqNP3_no . t x t " )
27 seqNP3_no [ [ 1 ] ] [ 1 : 1 5 ]

Values : The function simulSM() returns a list of simulated sequences. These
sequences can be saved in a fasta file by using the parameter File.out.

1 > seqNP3_no [ [ 1 ] ] [ 1 : 1 5 ]
2 [ 1 ] "c" "c" "g" "g" "g" "g" "g" "g" "c" "c" "c" "a" "a" "a" "a"
3

3.2.2 Estimation of semi-Markov models

In this subsection we explain and illustrate the estimation of a semi-Markov model
in the non-parametric cases.
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Non-parametric estimation of semi-Markov models

Parameters : The estimation is carried out by the function estimSM() and several
parameters must be given.

• file : Path of the fasta file which contains the sequences from which to esti-
mate.

• seq : List of the sequence(s) from which to estimate.

• E : Vector of state space of length S.

• TypeSojournTime : Type of sojourn time, always equal to "NP" for the
non-parametric estimation.

Note that the sequences from which we estimate can be given either as an R list
(seq argument) or as a file in fasta format (file argument). The parameter distr is
always equal to "NP".

Example 7.
1 # data
2 seqNP3_no = read . f a s t a ( "seqNP3_no . t x t " )
3 E = c ( "a" , "c" , "g" , " t " )
4 # es t ima t i on o f s imu l a t ed sequences
5 estSeqNP3= estimSM( seq = seqNP3_no , E = E, d i s t r = "NP" , cens . end =

0 , cens . beg = 0)

Values : The function estimSM() returns a list containing :

• init : Vector of size S with estimated initial probabilities of the semi-Markov
chain.

1 > estSeqNP3
2 $ i n i t
3 [ 1 ] 0 .22222222 0.27777778 0.05555556 0.44444444
4

• Ptrans : Matrix of size S × S with estimated transition probabilities of the
embedded Markov chain J = (Jm)m.
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1 $Ptrans
2 [ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
3 [ 1 , ] 0 .0000000 0.1991347 0.4944780 0.3063873
4 [ 2 , ] 0 .1973830 0.0000000 0.3046130 0.4980040
5 [ 3 , ] 0 .3071290 0.4945768 0.0000000 0.1982942
6 [ 4 , ] 0 .3957529 0.2074217 0.3968254 0.0000000
7

8

• laws : Array of size S×S×Kmax with estimated values of the sojourn time
distributions.

1 estSeqNP3$ laws [ , , 1 : 2 ]
2 , , 1
3

4 [ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
5 [ 1 , ] 0 .0000000 0.5288736 0.5081741 0.5930881
6 [ 2 , ] 0 .6584270 0.0000000 0.6665453 0.4061456
7 [ 3 , ] 0 .6679746 0.4676664 0.0000000 0.6624591
8 [ 4 , ] 0 .2414634 0.6302999 0.6821622 0.0000000
9

10 , , 2
11

12 [ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
13 [ 1 , ] 0 .00000000 0.17324185 0.27630670 0.1553326
14 [ 2 , ] 0 .07415730 0.00000000 0.09683291 0.3326653
15 [ 3 , ] 0 .05523695 0.26579194 0.00000000 0.1136045
16 [ 4 , ] 0 .50081301 0.06153051 0.10162162 0.0000000
17

18

• q : Array of size S × S ×Kmax with estimated semi-Markov kernel.

1 estSeqNP3$q [ , , 1 ]
2 $q
3 , , 1
4

5 [ , 1 ] [ , 2 ] [ , 3 ] [ , 4 ]
6 [ 1 , ] 0 .00000000 0.1053171 0.2512809 0.1817147
7 [ 2 , ] 0 .12996230 0.0000000 0.2030384 0.2022621
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8 [ 3 , ] 0 .20515435 0.2312969 0.0000000 0.1313618
9 [ 4 , ] 0 .09555985 0.1307379 0.2706993 0.0000000

10

3.3 Package HMM

The HMM package is a compact package designed for fitting an HMM for a single
observation sequence. Here some functions which we can apply for simulating and
estimating an HMM:

• initHMM: Initialization of HMMs.

This function initializes a general discrete time and discrete space Hidden
Markov Model (HMM). A HMM consists of an alphabet of states and emission
symbols. A HMM assumes that the states are hidden from the observer, while
only the emissions of the states are observable. The HMM is designed to make
inference on the states through the observation of emissions. The stochastic of
the HMM is fully described by the initial starting probabilities of the states,
the transition probabilities between states and the emission probabilities of
the states.

Usage.

1 initHMM( States , Symbols , s ta r tProbs=NULL, transProbs=NULL,
emiss ionProbs=NULL)

The parameters of the function.

States : Vector with the names of the states.
Symbols : Vector with the names of the symbols.
startProbs : Vector with the starting probabilities

of the states. The entries must sum to 1.
transProbs : Stochastic matrix containing the transition

probabilities between the states. transProbs is a
(number of states)×(number of states).

emissionProbs : Stochastic matrix containing the emission
probabilities of the states. emissionProbs is a
(number of observation)×(number of observation).
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Example 8.
1 # I n i t i a l i z e HMM:
2 initHMM( c ( "X" , "Y" ) , c ( "a" , "b" ) , c ( . 3 , . 7 ) , matr ix ( c ( . 9 , . 1 , . 1 , . 9 )

,2) ,
3 matr ix ( c ( . 3 , . 7 , . 7 , . 3 ) ,2) )

The function return this parameters, we can see the result:

1 $ Sta t e s
2 [ 1 ] "X" "Y"
3

4 $Symbols
5 [ 1 ] "a" "b"
6

7 $ s ta r tProbs
8 X Y
9 0 .3 0 .7

10

11 $ transProbs
12 to
13 from X Y
14 X 0.9 0 .1
15 Y 0.1 0 .9
16

17 $ emiss ionProbs
18 symbols
19 s t a t e s a b
20 X 0.3 0 .7
21 Y 0.7 0 .3

• simHMM: Simulate states and observations for a Hidden Markov Model.
Usage.

1 simHMM(hmm, length )

The parameters of the function.

hmm : A Hidden Markov Model.
length : The length of the simulated sequence

of observations and states.
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Return Value :
The function simHMM returns a path of states and associated observations
:

states : The path of states.
observations : The sequence of observations.

Example 9.
1 # I n i t i a l i s e HMM
2 hmm = initHMM( c ( "X" , "Y" ) , c ( "a" , "b" , "c" ) )
3 # Simula te from the HMM
4 simHMM(hmm,100)

as result we have:

1 > simHMM(hmm, 100)
2 $ s t a t e s
3 [ 1 ] "X" "X" "Y" "Y" "Y" "Y" "X" "X" "X" "X" "Y" "X" "Y" "Y"
4 [ 1 5 ] "X" "X" "X" "X" "X" "X" "X" "Y" "Y" "X" "X" "X" "Y" "X"
5 . .
6 . .
7 [ 9 9 ] "X" "X"
8

9 $ obse rvat i on
10 [ 1 ] "b" "b" "c" "c" "c" "c" "a" "b" "a" "b" "b" "b" "c" "c"
11 [ 1 5 ] "a" "b" "b" "b" "a" "b" "a" "a" "c" "a" "a" "c" "b" "a"
12 . .
13 . .
14 [ 9 9 ] "a" "b"

• forward : Computes the forward probabilities.
The forward probability for state s up to observation at time n is defined as
the probability of observing the sequence of observations r1, . . . , rn and that
the state at time n is s.
Usage.

1 forward (hmm, obse rvat i on )
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The parameters of the function.

hmm : A Hidden Markov Model.
observation : A sequence of observations.

Return Value :
forward : A matrix containing the forward probabilities. The probabilities
are given on a logarithmic scale (natural logarithm). The first dimension refers
to the state and the second dimension to time.

Example 10.
1 # I n i t i a l i z e HMM
2 hmm = initHMM( c ( "A" , "B" ) , c ( "L" , "R" ) , t ransProbs=matr ix ( c

( . 8 , . 2 , . 2 , . 8 ) ,2) ,
3 emiss ionProbs=matr ix ( c ( . 6 , . 4 , . 4 , . 6 ) ,2) )
4 p r i n t (hmm)
5 # Sequence o f o b s e r v a t i o n s
6 o b s e r v a t i o n s = c ( "L" , "L" , "R" , "R" )
7 # Ca l cu l a t e forward p r o b a b i l i t i e s
8 l o gFo rwa r dP r o b a b i l i t i e s = forward (hmm, o b s e r v a t i o n s )
9 p r i n t ( exp ( l o gFo rwa r dP r o b a b i l i t i e s ) )

we see the result:

1 > pr in t ( exp ( l ogForwardProbab i l i t i e s ) )
2 index
3 s t a t e s 1 2 3 4
4 A 0.3 0 .168 0 .0608 0.024448
5 B 0.2 0 .088 0 .0624 0.037248
6

• backward : Computes the backward probabilities.
The backward probability for state s and observation at time n is defined as
the probability of observing the sequence of observations rn+1, . . . , rT under
the condition that the state at time n is s.
Usage.
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1 backward (hmm, obse rvat i on )

Return Value :
backward : A matrix containing the backward probabilities. The probabili-
ties are given on a logarithmic scale (natural logarithm). The first dimension
refers to the state and the second dimension to time.

Example 11.
1 # I n i t i a l i z e HMM
2 hmm = initHMM( c ( "A" , "B" ) , c ( "L" , "R" ) , t ransProbs=matr ix ( c

( . 8 , . 2 , . 2 , . 8 ) ,2) ,
3 emiss ionProbs=matr ix ( c ( . 6 , . 4 , . 4 , . 6 ) ,2) )
4 p r i n t (hmm)
5 # Sequence o f o b s e r v a t i o n s
6 o b s e r v a t i o n s = c ( "L" , "L" , "R" , "R" )
7 # Ca l cu l a t e backward p r o b a b i l i t i e s
8 l o gBa c kwa r dP r o b a b i l i t i e s = backward (hmm, o b s e r v a t i o n s )
9 p r i n t ( exp ( l o gBa c kwa r dP r o b a b i l i t i e s ) )

we see the result:

1 > pr in t ( exp ( l ogBackwardProbab i l i t i e s ) )
2 index
3 s t a t e s 1 2 3 4
4 A 0.12416 0 .208 0 .44 1
5 B 0.12224 0 .304 0 .56 1

• viterbi : Computes the most probable path of states for a sequence of observa-
tions for a given Hidden Markov Model.

Usage.

1 v i t e r b i (hmm, obse rvat i on )
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Return Value :
viterbiPath : A vector of strings, containing the most probable path of states.

Example 12.
1 # I n i t i a l i z e HMM
2 hmm = initHMM( c ( "A" , "B" ) , c ( "L" , "R" ) , t ransProbs=matr ix ( c

( . 6 , . 4 , . 4 , . 6 ) ,2) , emiss ionProbs=matr ix ( c ( . 6 , . 4 , . 4 , . 6 ) ,2) )
3 p r i n t (hmm)
4 # Sequence o f o b s e r v a t i o n s
5 o b s e r v a t i o n s = c ( "L" , "L" , "R" , "R" )
6 # Ca l cu l a t e V i t e r b i path
7 v i t e r b i = v i t e r b i (hmm, o b s e r v a t i o n s )
8 p r i n t ( v i t e r b i )

we see the result:

1 > pr in t ( v i t e r b i )
2 [ 1 ] "A" "A" "B" "B"

• baumWelch : Inferring the parameters of a Hidden Markov Model via the Baum-
Welch algorithm.
For an initial Hidden Markov Model (HMM) and a given sequence of obser-
vations, the Baum-Welch algorithm infers optimal parameters to the HMM.
Since the Baum-Welch algorithm is a variant of the Expectation-Maximization
algorithm (EM), the algorithm converges to a local solution which might not
be the global optimum.
Usage.

1 baumWelch(hmm, observat ion , maxIte rat ions =100 , d e l t a=1E−9,
pseudoCount=0)

The parameters of the function.
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hmm : A Hidden Markov Model.
observation : A sequence of observations.
maxIterations : The maximum number of iterations in

the Baum-Welch algorithm.
pseudoCount : Adding this amount of pseudo counts in

the estimation-step of the Baum-Welch algorithm.

Return Values :

hmm : The inferred HMM. The representation is
equivalent to the representation in initHMM.

Example 13.
1 # I n i t i a l i z e HMM\\
2 hmm = initHMM( c ( "A" , "B" ) , c ( "L" , "R" ) ,
3 t ransProbs=matr ix ( c ( . 9 , . 1 , . 1 , . 9 ) ,2) , emiss ionProbs=matr ix ( c

( . 5 , . 5 1 , . 5 , . 4 9 ) ,2) )
4 p r i n t (hmm)
5 # Sequence o f o b s e r v a t i o n
6 a = sample ( c ( rep ( "L" ,100) , rep ( "R" ,300) ) )
7 b = sample ( c ( rep ( "L" ,300) , rep ( "R" ,100) ) )
8 o b s e r v a t i o n = c (a , b )
9 # Baum−Welch

10 bw = baumWelch (hmm, ob s e r va t i on , 10 )
11 p r i n t ( bw$hmm)
12 > ob s e r v a t i o n
13 [ 1 ] "R" "R" "R" "L" "L" "R" "L" "R" "R" "L" "R" "R" "L" "L"
14 [ 1 5 ] "R" "R" "R" "R" "R" "R" "R" "R" "L" "R" "R" "R" "R" "R"
15 . . . . .
16 . . . . .
17 [ 7 8 5 ] "L" "L" "R" "L" "L" "L" "L" "L" "L" "L" "L" "L" "L" "R"
18 [ 7 9 9 ] "L" "L"
19 > pr i n t ( bw$hmm)
20 $ S t a t e s
21 [ 1 ] "A" "B"
22

23 $Symbols
24 [ 1 ] "L" "R"
25

26 $ s t a r tP r o b s
27 A B
28 0 .5 0 .5
29
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30 $ t ransProbs
31 t o
32 from A B
33 A 9.974891 e−01 0.002510914
34 B 5.337632 e−06 0.999994662
35

36 $ emiss ionProbs
37 symbo ls
38 s t a t e s L R
39 A 0.2500659 0.7499341
40 B 0.7486748 0.2513252

3.4 Package hsmm

The package hsmm provides tools for performing HSMM analysis, which are com-
monly required when working with this model. The main requirements are:

• the simulation of sequences of states and observations.

• the estimation of model parameters.

• the analysis of the underlying state sequence.

3.4.1 Simulation of observation and state sequences

To obtain a first understanding of the nature and properties of HSMMs, the sim-
ulation of sequences of states and observations is a helpful tool. For given model
specifications, this is carried out by the function hsmm.sim().

Usage.

1 hsmm. sim (n , od , rd , p i . par , tpm . par , od . par , rd . par , M = NA, seed = NULL
)

The parameters of the function.

• n : Positive integer containing the number of observations to simulate.

• od : Character containing the name of the conditional distribution of the
observations.
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• rd : Character containing the name of the runlength distribution (or sojourn
time distribution).

• pi.par : Vector of length J containing the values for the initial probabilities
of the semi-Markov chain.

• tpm.par : Matrix of dimension J×J containing the parameter values for the
transition probability matrix of the embedded Markov chain. The diagonal
entries must all be zero, absorbing states are not permitted.

• rd.par : List with the values for the parameters of the runlength distributions.

• od.par : List with the values for the parameters of the conditional observation
distributions.

• M : Positive integer containing the maximum runlength.

• seed : Seed for the random number generator (integer).

Example 14. The R commands given below generate a sequence of length n = 2000
from a HSMM with poisson observation distributions, Poisson (discrete distribution)
runlength distributions, and three hidden states.

1 ## Se t t i n g up the parameter v a l u e s :
2 # I n i t i a l p r o b a b i l i t i e s o f t he semi−Markov chain :
3 p ipar <− rep (1 / 3 , 3)
4 # Trans i t i on p r o b a b i l i t i e s :
5 # ( Note : For two s t a t e s , t h e matr ix degenera te s , t a k i n g 0 f o r the
6 # diagona l and 1 f o r t he o f f−d i a gona l e l ement s . )
7 tpmpar <− matr ix ( c (0 , 0 . 5 , 0 . 5 , 0 . 7 , 0 , 0 . 3 , 0 . 8 , 0 . 2 , 0) , 3 , byrow =

TRUE)
8 # sojourn time d i s t r i b u t i o n :
9 rdpar <− l i s t ( lambda = c (0 . 98 , 0 .99 , 1) )

10 # Observa t ion d i s t r i b u t i o n :
11 odpar <− l i s t ( lambda = c (0 . 5 , 0 . 6 , 0 . 8 ) )
12 # Invok ing the s imu l a t i on :
13 sim <− hsmm. sim (n = 2000 , od = " po i s " , rd = " po i s " ,
14 p i . par = pipar , tpm . par = tpmpar ,
15 rd . par = rdpar , od . par = odpar , seed = 3539)
16 # The f i r s t 15 s imu la t ed o b s e r v a t i o n s :
17 round ( sim$ obs [ 1 : 1 5 ] , 3)
18 # The f i r s t 15 s imu la t ed s t a t e s :
19 sim$ path [ 1 : 1 5 ]
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Return Value: The function hsmm.sim() returns a list containing the simulated
sequence of observations and the simulated state sequence. The simulated observa-
tions and states are accessed with

1 > round ( sim$obs [ 1 : 1 5 ] , 3)
2 [ 1 ] 0 0 0 0 0 0 0 2 2 1 0 2 1 1 0
3 > sim$path [ 1 : 1 5 ]
4 [ 1 ] 2 3 3 3 3 2 2 3 1 2 2 1 1 2 1

3.4.2 Maximum likelihood estimation of the model parame-
ters

The estimation is carried out by the function hsmm(). The arguments for this
function are similar to hsmm.sim() with the only difference being in the parame-
ter specification (i.e. the arguments ending on .par). In the case of hsmm(), the
arguments pi.par, tpm.par, rd.par, od.par specify the starting values for the
parameter estimation. The function hsmm fits a hidden semi-Markov model using
the EM algorithm for parameter estimation. The estimation algorithms are based
on the right-censored approach initially described in Guedon (2003).

Usage.

1 hsmm(x , od , od . par , rd , rd . par , p i . par , tpm . par , M = NA, Q.max ,
eps i l on , censor ing , prt , d e ta i l ed , r . lim , p . l og . l im , nu . l im )

The parameters of the function.

• x : The observations as a vector of length T.

• od : Character with the name of the conditional distribution of the observa-
tions. The following distributions are currently implemented :

"bern" = Bernoulli
"norm" = Normal
"pois" = Poisson
"t" = Student’s t
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• rd : Character with the name of the runlength distribution (or sojourn time,
dwell time distribution). The following distributions are currently imple-
mented :

"nonp" = Non-parametric
"geom" = Geometric

"nbinom" = Negative Binomial
"log" = Logarithmic
"pois" = Poisson

• pi.par : Vector of length J with the initial values for the initial probabilities
of the semi-Markov chain.

• tpm.par : Matrix of dimension J×J with the initial values for the transition
probability matrix of the embedded Markov chain. The diagonal entries must
all be zero, absorbing states are not permitted.

• rd.par : List with the initial values for the parameters of the runlength dis-
tributions.

• od.par : List with the initial values for the parameters of the conditional
observation distributions.

• M : Positive integer containing the maximum runlength.

• Q.max : Positive integer containing the maximum number of iterations.

• epsilon : Positive scalar giving the tolerance at which the relative change of
log-likelihood is considered close enough to zero to terminate the algorithm.

Example 15. The following example illustrates the usage of hsmm() for parameter
estimation.

1 # Simu la t ing o b s e r v a t i o n s :
2 p ipar <− rep (1 / 3 , 3)
3 tpmpar <− matr ix ( c (0 , 0 . 5 , 0 . 5 , 0 . 7 , 0 , 0 . 3 , 0 . 8 , 0 . 2 , 0) , 3 , byrow =

TRUE)
4 rdpar <− l i s t ( lambda = c (0 . 98 , 0 .99 , 1) )
5 odpar <− l i s t ( lambda = c (0 . 5 , 0 . 6 , 0 . 8 ) )
6 sim <− hsmm. sim (n = 2000 , od = " po i s " , rd = " p i o s " ,
7 p i . par = pipar , tpm . par = tpmpar ,
8 rd . par = rdpar , od . par = odpar , seed = 3539)
9 # Execut ing the EM a l go r i t hm :
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10 f i t <− hsmm( sim$obs , od = " po i s " , rd = " po i s " ,
11 p i . par = pipar , tpm . par = tpmpar ,
12 od . par = odpar , rd . par = rdpar )
13 # The log− l i k e l i h o o d :
14 f i t $ l o g l
15 # the e s t ima t ed parameters :
16 f i t $ para
17 # For comparison , t he e s t ima t ed parameters s e p a r a t e l y t o g e t h e r wi th

the t ru e parameter v a l u e s are g i v en be low .
18 # Trans i t i on p r o b a b i l i t y matr ix :
19 tpmpar
20 f i t $ para $tpm
21 # Observa t ion d i s t r i b u t i o n :
22 odpar
23 f i t $ para $od
24 # Runlength d i s t r i b u t i o n :
25 rdpar
26 f i t $ para $ rd

The function hsmm() returns a list containing the output. For example, the ob-
served data log likelihood is returned in the logl entry :

1 > # The log−l i k e l i h o o d :
2 > f i t $ l o g l
3 [ 1 ] −2085.732

The estimated parameters are given in the para entry, where each component (TPM,
runlength distribution and observation distribution) is given in a sub-list.

1 > f i t $para
2 $ p i
3 [ 1 ] 9 .999483 e−01 5.173197 e−05 2.331468 e−15
4

5 $tpm
6 [ , 1 ] [ , 2 ] [ , 3 ]
7 [ 1 , ] 0 .0000000 0.5015614 0.4984386
8 [ 2 , ] 0 .7103073 0.0000000 0.2896927
9 [ 3 , ] 0 .8012183 0.1987817 0.0000000

10

11 $ rd
12 $ rd$lambda
13 [ 1 ] 0 .9781819 0.9963024 0.9992340
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14

15

16 $od
17 $od$lambda
18 [ 1 ] 0 .4889226 0.5976942 0.8298671

For comparison, the estimated parameters separately together with the true param-
eter values:

1 > # Trans i t i on p r obab i l i t y matrix :
2 > tpmpar
3 [ , 1 ] [ , 2 ] [ , 3 ]
4 [ 1 , ] 0 . 0 0 . 5 0 . 5
5 [ 2 , ] 0 . 7 0 . 0 0 . 3
6 [ 3 , ] 0 . 8 0 . 2 0 . 0
7 > f i t $para$tpm
8 [ , 1 ] [ , 2 ] [ , 3 ]
9 [ 1 , ] 0 .0000000 0.5015614 0.4984386

10 [ 2 , ] 0 .7103073 0.0000000 0.2896927
11 [ 3 , ] 0 .8012183 0.1987817 0.0000000
12 > # Observat ion d i s t r i b u t i o n :
13 > odpar
14 $lambda
15 [ 1 ] 0 . 5 0 . 6 0 . 8
16

17 > f i t $para$od
18 $lambda
19 [ 1 ] 0 .4889226 0.5976942 0.8298671
20

21 > # Runlength d i s t r i b u t i o n :
22 > rdpar
23 $lambda
24 [ 1 ] 0 .98 0 .99 1 .00
25

26 > f i t $para$ rd
27 $lambda
28 [ 1 ] 0 .9781819 0.9963024 0.9992340
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3.4.3 Inference on the underlying state sequence

Inference on the hidden states for given observations and model specifications of a
hidden semi-Markov model. The function hsmm.viterbi() carries out the Viterbi
algorithm. It derives the most probable state sequence by a dynamic programming
technique. This procedure is often termed "global decoding". The arguments for
this function are similar to hsmm.sim() and hsmm.

Usage.

1 hsmm. v i t e r b i (x , od , rd , p i . par , tpm . par , od . par , rd . par , M = NA)

Example 16.
1 # Simu la t ing o b s e r v a t i o n s :
2 p ipar <− rep (1 / 3 , 3)
3 tpmpar <− matr ix ( c (0 , 0 . 5 , 0 . 5 , 0 . 7 , 0 , 0 . 3 , 0 . 8 , 0 . 2 , 0) , 3 , byrow =

TRUE)
4 rdpar <− l i s t ( lambda = c (0 . 98 , 0 .99 , 1) )
5 odpar <− l i s t ( lambda = c (0 . 5 , 0 . 6 , 0 . 8 ) )
6 sim <− hsmm. sim (n = 2000 , od = " po i s " , rd = " po i s " ,
7 p i . par = pipar , tpm . par = tpmpar ,
8 rd . par = rdpar , od . par = odpar , seed = 3539)
9 # Execut ing the V i t e r b i a l g o r i t hm :

10 f i t . v i <− hsmm. v i t e r b i ( sim$obs , od = " po i s " , rd = " po i s " ,
11 p i . par = pipar , tpm . par = tpmpar ,
12 od . par = odpar , rd . par = rdpar )
13 # The f i r s t 15 v a l u e s o f t he r e s u l t i n g path :
14 f i t . v i $ path [ 1 : 1 5 ]
15 # For comparison the r e a l / s imu la t ed path ( f i r s t 15 v a l u e s ) :
16 sim$ path [ 1 : 1 5 ]

The function return a vector of length T containing the most probable path of the
underlying states:

1 > f i t . v i $path [ 1 : 1 5 ]
2 [ 1 ] 1 1 1 2 2 1 1 3 3 1 1 3 3 3 1
3 > # For comparison the r e a l / s imulated path ( f i r s t 15 va lue s ) :
4 > sim$path [ 1 : 1 5 ]
5 [ 1 ] 2 3 3 3 3 2 2 3 1 2 2 1 1 2 1



Conclusion

In this work we have considered the popular hidden Markov model (HMM), and
as an extension a hidden semi-Markov model (HSMM) which allows the underlying
stochastic process to be a semi-Markov chain. Each state has variable duration and
a number of observations being produced while in the state. This makes it suitable
for use in a wider range of applications. Its forward-backward, viterbi and Baum-
welch algorithms can be used to estimate/update the model parameters, determine
smoothed probabilities, evaluate goodness of an observation sequence fitting to the
model, and find the best state sequence of the underlying stochastic process. For
HSMM model, the nonparametric maximum likelihood estimators for the charac-
teristics of such a model have nice asymptotic properties, namely consistency and
asymptotic normality. An R implementation of this models has been presented.

Since the HSMM was initially introduced in 1980 for machine recognition of
speech, it has been applied in thirty scientific and engineering areas, such as speech
recognition/synthesis, human activity recognition/prediction, handwriting recogni-
tion, functional MRI brain mapping, and network anomaly detection. There are
about three hundred papers published in the literature.
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