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Introduction

Self-similar stochastic processes, that are processes whose distributions are invariant

under suitable scaling, can be used as mathematical models of various physical phenom-

ena. These processes have been used for modeling in hydrology, biophysics, geophysics,

telecommunication, turbulence, cognition, and finance. Typically, these self-similar pro-

cesses exhibit long-range dependence, that is to say, their autocorrelations decay slower

than exponentially.

The family of fractional Brownian motions is among the most studied self-similar

stochastic processes. There are at least two reasons why fractional Brownian motions are

of interest. First, these processes are self-similar, have stationary increments, and exhibit

long-range dependence for 1/2 < H < 1. These properties make them very attractive

for practical modeling and applications. The second reason is the fact that they are

Gaussian processes which make some mathematical models using fractional noise feasible

for analysis.

However, In some practical applications the stochastic processes show Non-Gaussian

properties, these processes have received considerable attention recently because of their

importance in many diverse fields like structural engineering [12](the accurate representa-

tion of material, geometric properties, soil properties, wind, wave and earthquake loads)

and in Finance [4][14] ( Markets dynamics, Option pricing with Non-Gaussian returns,

Portfolio Allocation, Risk management) and also since the non-Gaussian data with fractal

features have been observed empirically. Domanski[9] has shown from the data of some

physical systems that the Gaussian assumption is not always appropriate. In such cases,

it does not seem reasonable to use a Gaussian process like fractional Brownian motion as

a model for these physical phenomena and to use other type of processes like the Hermite

processes as an example. The Hermite processes of order k is an H-sssi process with

0 < H < 1, which is represented with the aid of a multiple stochastic integral called the

6
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Wiener-Itô integral. For k = 1 the Hermite process is nothing else then the fractional

Brownian motion with Hurst parameter H ∈ (0, 1). For k = 2 the Hermite process is

not Gaussian and it is known as the Rosenblatt process. In our case the Rosenblatt pro-

cess can provide a useful alternative. A Rosenblatt process with the Hurst parameter

1/2 < H < 1, denoted here as ZH , can arise as a non-Gaussian limit of suitably nor-

malized sums of long-range dependent random variables in a non-central limit theorem.

Unlike the family of fractional Brownian motions, the family of Rosenblatt processes is

not Gaussian.

The Rosneblatt process is not a semi-martingale. So, we cannot apply the classical

stochastic calculus developed by Itô, since Itô calculus is used just for the semi-martingale

cases. Different approaches have been proposed in order to build an integral with respect

to it. The most important contributions which are:

1. Pathwise calculus: the stochastic integral is defined pathwise with Rieman-Stieltjes

methods i.e. path by path integration. Since the Rosenblatt process has an Hölder

continuous paths, this approach can be applied naturally on it. For more details

consult Ciprian A. Tudor in 2006 [27].

2. Malliavin calculus: also known as the stochastic calculus of variation . This is the

base of the modern approach to the Skorohod integral with respect to the Rosenblatt

process. This calculus has been introduced also by Ciprian A. Tudor in 2006 [27]

and in 2020 by Petr Coupek , Tyrone E. Duncana, Bozenna Pasik-Duncan [5].

3. A white noise approach: this approach defines a stochastic calculus with re-

spect to the Rosenblatt process by means of white noise distribution theory. The

Rosenblatt process is not diffrentiable but by using this approach we can define its

derivative . This approach was introduced by Benjamin Arras in 2015 [1].

The study of stochastic differential equations driven by the Rosenblatt process with

arbitrary Hurst parameter H ∈ (1
2
, 1) is very limited. There are few works in the literature

done concerning SDE’s with respect to the Rosenblatt process. In this work, we are

interested with the dissipative systems driven by the Rosenbaltt process.

This thesis is divided into three chapters. In Chapter one, we cover some background

and preliminaries about the Rosenblatt process providing its definitions, properties and
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representations. In chapter two, we cover the stochastic calculus with respect to Rosen-

blatt processes, we introduce the Wiener integration with respect to the Rosenblatt pro-

cess, then we investigate the different stochastic integration approaches and construct the

different Itô formula for each approach. Finally we investigate the existence of the local

time and we give its representation. In chapter three, we introduce a dissipative system

driven by the Rosenblatt process and we investigate the existence and the uniqueness of

the solution, then we give an application which is a mathematical model in neuro-biology

(A network model for a neuronal cell).



Chapter 1

Generalities on the Rosenblatt

processes

1.1 Basic notions

Definition 1.1.1. Let X = {Xt,Ft, t ≥ 0} be an integrable process, then X is a:

i) Martingale if and only if E(Xt|Fs) = Xs a.s. for 0 ≤ s ≤ t <∞.

ii) Supermartingale if and only if E(Xt|Fs) ≤ Xs a.s. for 0 ≤ s ≤ t <∞.

iii) Submartingale if and only if E(Xt|Fs) ≥ Xs a.s. for 0 ≤ s ≤ t <∞.

Definition 1.1.2. M = {Mt,Ft, t ≥ 0} is a local martingale if and only if there exists

a sequence of stopping times Tn tending to infinity, such that MTnare martingales for all

n. The space of local martingales is denotes Mloc, and the subspace of continuous local

martingales is denotesMc
loc.

Definition 1.1.3. A = (At)t≥0 is a finite variation process if it is an adapted continuous

process whose trajectories is almost certainly have a finite variation with A0 = 0.

Definition 1.1.4. X = (Xt, t ≥ 0) is a continuous Semi-martingale if

Xt = X0 +Mt + At, (1.1)

with M is local martingale and A is a finite variation process and M0 = A0.

9
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Remark 1.1.1. If X is continuous Semi-martingale and M0 = A0, so the decomposition

(1.1) is unique.

Lemme 1.1. (Kolmogorov’s continuity criterion)[3]

Consider a stochastic process (Xt)t∈T where T ⊂ R is a compact set. Suppose that

there exist constants p, C > 0 and β > 1 such that for every t, s ∈ T :

E|Xt −Xs|p ≤ C|t− s|β, (1.2)

then X has a continuous modification Y. Moreover for every 0 < γ < β−1
p

E
(

sup
s,t∈T ;s 6=t

|Xt − Ys|
|t− s|γ

)p
<∞.

In particular X admits a modification which is Hölder continuous of any order α ∈

(0, β−1
p

).

1.2 Hermite processes

Definition 1.2.1. The Hermite process (Xk
H(t))t∈R of order k ≥ 1, k ∈ Z with Hurst

parameter H ∈ (0, 1) is defined by a multiple Wiener-Itô integral of order k with respect

to the standard Brownian motion (B(y))y∈R

Xk
H(t) = c(H, k)

∫
Rk

(∫ t

0

k∏
i=1

(s− yi)
−( 1

2
+ 1−H

K
)

+ )ds

)
dB(y1)...dB(yk), (1.3)

with y+ = max(y, 0), and the constant c(H, k) to make sure that V ar(XH
1 ) = 1.

Remark 1.2.1. If k = 2, we get a Rosenblatt process (Defined below).

Remark 1.2.2. If k > 1, the process Xk
H(t) is not Gaussian.

1.2.1 Some properties of the Hermite processes

1. Xk
H(t) is H self-similar, so that ∀c > 0

Xk
H(ct)

d
= cHXk

H(t), (1.4)
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with stationary increments and finite moments.

Proof. Let c > 0, we have:

Xk
H(ct) = c(H, k)

∫
Rk

(∫ ct

0

(
k∏
i=1

(s− yi)
−( 1

2
+ 1−H

k
)

+ )ds

)
dB(y1)...dB(yk)

= c× c(H, k)

∫
Rk

(∫ t

0

(
k∏
i=1

(cs− yi)
−( 1

2
+ 1−H

k
)

+ )ds

)
dB(y1)...dB(yk)

= c× c(H, k)

∫
Rk

(∫ t

0

(
k∏
i=1

(cs− cyi)
−( 1

2
+ 1−H

k
)

+ )ds

)
dB(cy1)...dB(cyk)

= c× c−k( 1
2

+ 1−H
k

)c(H, k)

∫
Rk

(∫ t

0

(
k∏
i=1

(s− yi)
−( 1

2
+ 1−H

k
)

+ )ds

)
dB(cy1)...dB(cyk)

= c× c−k( 1
2

+ 1−H
k

)c
k
2 c(H, k)

∫
Rk

(∫ t

0

(
k∏
i=1

(s− yi)
−( 1

2
+ 1−H

k
)

+ )ds

)
dB(y1)...dB(yk)

d
= cHXk

H(t).

2. The Hermite processes have a null expectation with moments

E(|Xk
H(t)|)p = tpHE(|Xk

H(1)|)p p > 1. (1.5)

Proof. The Hermite processes, as we already motioned, is H self-similar process with

stationary increments. By that we get:

E(|Xk
H(t)|)p = E(|tHXk

H(1)|)p

= tpHE(|Xk
H(1)|)p.

3. The covariance of the Hermite processes is

RH(t, s) =
1

2
(t2H + s2H − |t− s|2H). (1.6)

Proof. For all t, s ∈ R+ and H ∈ (0, 1), by using Itô theorem and funbini we have:
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RH(t, s) = E(Xk
H(t)Xk

H(s))

= 2c(H, k)2

∫
Rk

(∫ t

0

∫ s

0

k∏
i=1

(u− yi)
−( 1

2
+ 1−H

k
)

+ (v − yi)
−( 1

2
+ 1−H

k
)

+ dudv

)
dy1...dyk

= 2c(H, k)2

∫ t

0

∫ s

0

(∫
Rk

k∏
i=1

(u− yi)
−( 1

2
+ 1−H

k
)

+ (v − yi)
−( 1

2
+ 1−H

k
)

+ dy1...dyk

)
dudv

= 2c(H, k)2

∫ t

0

∫ s

0

[∫
R
(u− y)

−( 1
2

+ 1−H
k

)
+ (v − y)

−( 1
2

+ 1−H
k

)
+ dy

]k
dudv,

let the beta function be

β(p, q) =

∫ 1

0

zp−1(1− z)q−1dz =
Γ(p)Γ(q)

Γ(p+ q)
, (p, q > 0), (1.7)

by using the identity

∫
R
(u− y)a−1

+ (v − y)a−1
+ dy = β(a, 2a− 1)|u− v|2a−1, (1.8)

we have

RH(t, s) = 2c(H, k)2β
(

1
2
− 1−H

k
, 2H−2

k

)k ∫ t

0

∫ s

0

(|u− v|
2H−2
k )kdvdu

= 2c(H, k)2
β(1

2
− 1−H

k
, 2H−2

k
)k

H(2H − 1)

1

2
(t2H + s2H − |t− s|2H),

by choosing

c(H, k)2 =

(
β(1

2
− 1−H

k
, 2H−2

k
)k

2H(2H − 1)

)−1

,

in order to have E(Xk
H(t))2 = 1. So by that we get:

RH(t, s) =
1

2
(t2H + s2H − |t− s|2H).

4. The Hermite process has Hölder continuous paths of order 0 < δ < H.
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Proof. The previous property follows from Kolmogorov’s continuity criterion and

the fact that for any p > 0

E(|Xk
H(t)−Xk

H(s)|p) = E(|Xk
H(t− s)|)p

= E(|(t− s)HXk
H(1)|)p

= E(|Xk
H(1)|)p|t− s|pH .

1.3 Rosenblatt process

Definition 1.3.1. The Rosenblatt process is a Hermite process with k = 2 and Hurst

index H ∈ (1
2
, 1), represented as follows:

ZH(t) = c(H, 2)

∫
R2

(∫ t

0

(s− y1)
H
2
−1

+ (s− y2)
H
2
−1

+ ds

)
dB(y1)dB(y2), (1.9)

with x+ = max(0, x) and (B(y), y ∈ R) is a standard Brownian motion on R.

The constant of normalizing c(H, 2) is chosen to ensure that E(ZH(1)2) = 1, by

c(H, 2) =

(
β(H

2
, 1−H)2

2H(2H − 1)

)− 1
2

. (1.10)

1.3.1 Representations of the Rosenblatt process

The Rosenblatt process has other representations which are the spectral representation

and the finite time interval representation.

The Spectral representation of the Rosenblatt process

Definition 1.3.2. The spectral representation of the Rosenblatt process is

ZH(t) = A2(H)

∫
R2

exp(it(y1 + y2))− 1

i(y1 + y2)

1

|yH/21 y
H/2
2 |

dB(y1)dB(y2), (1.11)
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where

A2(H) =

(
H(2H − 1)

2[2Γ(1−H) sin(Hπ/2)]2

)1/2

, (1.12)

to ensure that E(Z(1)2) = 1.

The finite time interval representation of the Rosenblatt process

Definition 1.3.3. The corresponding representation of the Rosenblatt process is

ZH(t)
d
= A3(H)

∫
[0,t]2

(∫ t

x1∨x2

∂K
H+1

2

∂u
(u, x1)

∂K
H+1

2

∂u
(u, x2)du

)
dB(x1)dB(x2), (1.13)

with

A3(H) =
1

H + 1

(
2(2H − 1)

H

) 1
2

, (1.14)

and K is the self-similar kernel which is defined by: ∀x ∈ [0, t]

KH0(t, x) = C2(H0)x
1
2
−H0

∫ t

x

(u− x)H0− 3
2uH0− 1

2du x ∈ [0, t]

= C2(H0)x
1
2
−H0

∫ t

0

(u− x)
H0− 3

2
+ uH0− 1

2du x ∈ [0, t],

(1.15)

where

C2(H0) =

(
β(2− 2H0, H0 − 1

2
)

H0(2H0 − 1)

)− 1
2

, (1.16)

and with

H0 =
H + 1

2
. (1.17)

1.3.2 Some proprieties on the Rosenblatt process

In this subsection, we will prove some bacis properties on the rosenblatt process but before

we start, we shall intoduce the kernel of the rosenblatt process and give its properties .
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Some proprieties on the kernel of the Rosenblatt process

Proposition 1.3.1. The kernel of the Rosenblatt process defined previously verifies the

following properties:

1. K is a self-similar kernel such that for any a > 0:

KH0(at, ax) = aH0− 1
2KH0(t, x), (1.18)

∂KH0(au, ax)

∂u
= aH0− 1

2
∂KH0(u, x)

∂u
. (1.19)

Proof. Let a > 0, we get:

KH0(at, ax) = C2(H0)(ax)
1
2
−H0

∫ at

ax

(u− x)
3
2uH0− 1

2du

= a
1
2
−H0C2(H0)(x)

1
2
−H0

∫ at

ax

(u− x)H0− 3
2uH0− 1

2du

= a
1
2
−H0C2(H0)(x)

1
2
−H0

∫ t

x

(au− ax)H0− 3
2 (au)H0− 1

2dau

= a
1
2
−H0aH0− 3

2aH0− 1
2aC2(H0)(x)

1
2
−H0

∫ t

x

(u− x)H0− 3
2 (u)H0− 1

2du

= aH0− 1
2KH0(t, x)

= a
H
2
−1KH(t, x).

2. The kernel K verifies:∫ u∧v

0

∂KH0

∂u
(u, x)

∂KH0

∂v
(v, x)dx = H0(2H0 − 1)|u− v|2H0−2. (1.20)

Proof. In this proof we will use

KH0(t, x) = C2(H0)x
1
2
−H0

∫ t

x

(u− x)H0− 3
2uH0− 1

2du,

and its partial derivative is
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∂KH0(u, x)

∂u
= C2(H0)

(x
t

) 1
2
−H0

(u− x)
H0− 3

2
+ ,

by that we get:∫ u∧v

0

∂KH0

∂u
(u, x)

∂KH0

∂v
(v, x)dx = C2(H0)2

∫ u∧v

0

(x
u

) 1
2
−H0

(u− x)
3
2
−H0

+

(x
v

) 1
2
−H0

(v − x)
3
2
−H0

+ dx

= C2(H0)2β(2− 2H0, H0 − 1
2
)|u− v|2H0−2

= H0(2H0 − 1)|u− v|2H0−2.

3. For any u, v > 0 we have the next relation:

|u− v|2H0−2 =
(uv)H0− 1

2

β(2− 2H0, H0 − 1
2
)

∫ u∧v

0

(u− x)
H0− 3

2
+ (v − x)

H0− 3
2

+ x1−2H0du. (1.21)

Proof. This relation is a direct consequence of the previous property of the kernel

K by making the change of variable x = u−z2
1−z , z 6= 1 we get:

H0(2H0 − 1)|u− v|2H0−2 = C2(H0)2

∫ u∧v

0

(x
u

) 1
2
−H0

(u− x)
H0− 3

2
+

(x
v

) 1
2
−H0

(v − x)
H0− 3

2
+ du

|u− v|2H0−2 = C2(H0)2

H0(2H0−1)

∫ u∧v

0

(x
u

)
1
2
−H0

(u− x)
H0− 3

2
+

(x
v

) 1
2
−H0

(v − x)
H0− 3

2
+ du

= 1
β(2−2H0,H0− 1

2
)

∫ u∧v

0

(x
u

) 1
2
−H0

(u− x)
H0− 3

2
+

(x
v

) 1
2
−H0

(v − x)
H0− 3

2
+ du

= 1
β(2−2H0,H0− 1

2
)

∫ u∧v

0

(
u−z2
1−z

u

) 1
2
−H0

(u− x)
H0− 3

2
+

(
u−z2
1−z

v

) 1
2
−H0

(v − x)
H0− 3

2
+ du

= (uv)
1
2−H0

β(2−2H0,H0− 1
2

)

∫ u∧v

0

(
u− z2

1− z

) 1
2
−H0

(u− x)
H0− 3

2
+

(
u− z2

1− z

) 1
2
−H0

(v − x)
H0− 3

2
+ du

= (uv)
1
2−H0

β(2−2H0,H0− 1
2

)

∫ u∧v

0

(u− x)
H0− 3

2
+ (v − x)

H0− 3
2

+ (x)1−2H0du.
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Basic proprerties of the Rosenblatt process

Proposition 1.3.2. Let ZH be the Rosenblatt process of the Hurst parameter H ∈ (1
2
, 1).

Then:

1. The Rosenblatt process ZH(t) is H-self-similar with 1/2 < H < 1, so that ∀C > 0:

ZH(Ct)
d
= CHZH(t). (1.22)

Proof. This proof depends on the self similarity of the kernel that we have already

proved in property one of the proposition 1, by using (1.19):

ZH(Ct) =

∫
[0,Ct]2

(∫ Ct

x1∨x2

∂K
H+1

2

∂u
(u, x1)

∂K
H+1

2

∂u
(u, x2)du

)
dB(x1)dB(x2)

=

∫
[0,Ct]2

(∫ t

x1
C
∨x2
C

∂K
H+1

2

∂u
(Cu, x1)

∂K
H+1

2

∂u
(Cu, x2)Cdu

)
dB(x1)dB(x2)

=

∫
[0,t]2

(∫ t

x1∨x2

∂K
H+1

2

∂u
(Cu,Cx1)

∂K
H+1

2

∂u
(Cu,Cx2)Cdu

)
dB(Cx1)dB(Cx2),

and let us not forget that we have B(Cx) = C
1
2B(x). So we get finally that:

ZH(Ct) = CHZH(t).

2. The Rosenblatt process has zero mean with covariance:

RH(t, s) =
1

2
(t2H + s2H − |t− s|2H). (1.23)

Proof. In this proof we need to use (1.21):

= E(ZH(t)ZH(s))

= 2A(H0)2

∫ t∧s

0

∫ t∧s

0

[∫ t

x1∨x2

∂K
H+1

2

∂u
(u, x1)

∂K
H+1

2

∂u
(u, x2)du

]
[∫ s

x1∨x2

∂K
H+1

2

∂v
(v, x1)

∂K
H+1

2

∂v
(v, x2)du

]
dx1dx2

= 2A(H0)2

∫ t

0

∫ s

0

[∫ u∧v

0

∂K
H+1

2

∂u
(u, x)

∂K
H+1

2

∂v
(v, x)dx

]2

dudv

= 2A(H0)2[H0(2H0 − 1)]2
∫ t

0

∫ s

0

|u− v|2H−2dvdu

= RH(t, s).
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3. The Rosenblatt process ZH(t) has a zero quadratic variation .

Proof. By fixing t > 0, let
a
n = {0 = tn0 < tn1 < ... < tnN = t} a sequence of

subdivisions of [0,t] of lags tends to 0, which means supi(tni − tni−1) −→n−→+∞ 0 so:

= lim
n−→∞

N∑
i=1

(ZH(tni )− ZH(tni−1))2

= lim
n−→∞

N∑
i=1

((tni )HZH(1)− (tni−1)HZH(1))2

= lim
n−→∞

N∑
i=1

(ZH(1))2((tni )H − (tni−1)H)2

= lim
n−→∞

(ZH(1))2

N∑
i=1

((tni )H − (tni−1)H)2

= (ZH(1))2 lim
n−→∞

N∑
i=1

((tni )H − (tni−1)H)((tni )H − (tni−1)H)

= (ZH(1))2 lim
n−→∞

N∑
i=1

((tni )H − (tni−1)H)((tni )H − (tni−1)H)

≤ (ZH(1))2 lim
n−→∞

∆n

−→
n−→+∞

0.

4. The Rosenblatt process (ZH(t), t > 0) has Hölder continuous paths of order γ, with

0 < γ < H .

Proof. This folows from the Kolmogorov’s continuity criterion, and the fact that for

any γ > 0, we have:

E(|ZH(t)− ZH(s)|)γ = E(|ZH(1)|γ)|t− s|γH . (1.24)

The previous result is a direct consequence of the stationary of increments and the

self-similarity of the process, and we have already did this proof for the Hermite

processes (property4 ).

5. The Rosenblatt process is not differentiated in mean square for all t ∈ [0,∞[ and

H ∈ (1
2
, 1) since:
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lim
t−→0

E
(
ZH(t)

t

)2

=∞. (1.25)

Proof. For t ∈ R+, we have

lim
t−→0

E
(
ZH(t)− ZH(0)

t− 0

)2

= lim
t−→0

E
(
ZH(t)

t

)2

= lim
t−→0

E
(
(t)−2ZH(t)2

)
= lim

t−→0
E
(
(t)2H−2ZH(1)2

)
= lim

t−→0
(t)2H−2E

(
ZH(1)2

)
= lim

t−→0
(t)2H−2

= lim
t−→0

(t)2H−2

= lim
t−→0

1

(t)2−2H

= ∞.

Long and Short-Range Dependence.

The notion of long range dependence has, clearly, something to do with memory in a

stochastic process. Memory is, by definition, somemthing that lasts. The Modern real

world can’t be modeliezid by a markovienne model it requires process with long range

of memory , processes with long-range dependence have many applications, such as in

telecommunication, specially in Internet traffic problems. Basically, the notion of long-

range dependence is that the variance of the sum of stationary sequence grows non-linearly

with respect to n.

Definition 1.3.4. A stationary sequence (Xn)n∈N exhibits a long-range dependence if

ρ(n) = cov(Xn, Xk+n) satisfies:

lim
n−→∞

ρ(n)

cn−α
= 1, (1.26)

for α ∈ (0, 1) and some constant c.
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Remark 1.3.1. If a stationary sequence (Xn)n∈N is long-range dependent, then the de-

pendence between Xk and Xk+n decays slowly as n tends to infinity and
∞∑
n=1

ρ(n) =∞.

Proposition 1.3.3. The Rosenblatt process has stationary increments such that (ZH(t+

s) − ZH(s), t ≥ 0) does not depend on s ≥ 0, and with long-range dependence such that

∀n ∈ N:
∞∑
n=0

E(Xk+nXk) =∞, (1.27)

with

Xk+n = Zk+n − Zk+n−1 and Xk = Zk − Zk−1, (1.28)

and the covariance

E(Xk+nXk) =
1

2
{|n+ 1|2 − 2|n|2H + |n− 1|2H} ∼ H(2H − 1)n2H−2 n −→∞. (1.29)

Proof. In this proof we have two parts:

Part.1 The Rosenblatt process has stationary increments such that ∀h > 0, we have
E((ZH

t+h − ZH
h )(ZH

s+h − ZH
h )) = E(ZH

t+hZ
H
s+h)− E(ZH

t+hZ
H
h )− E(ZH

s+hZ
H
h ) + E(ZH

h )2

= 1
2
[((t+ h)2H + (s+ h)2H − |t− s|2H)

−((t− h)2H + h2H − t2H)− ((s+ h)2H + h2H − s2H) + 2h2H ]

= 1
2
(t2H + s2H − |t− s|2H)

= E(ZH
t Z

H
s ).

Therefore the Rosenblatt has a stationary increments.

Part.2 Before we prove the long-range dependency property we will provide a proof

of the formula (1.29):

E(Xk+nXk) = E((Zk+n − Zk+n−1)(Zk − Zk−1))

= E(Z1(Zn+1 − Zn))

= RH(1, n+ 1)−RH(1, n)

= 1
2
{|n+ 1|2H − 2|n|2H + |n− 1|2H},

for n 6= 0:

= 1
2
n2H−2( n2

n2H (n+ 1)2H + 1
n2H (n− 1)2H − 2)

= 1
2
n2H−2(n2(n+1

n
)2H + (n−1

n
)2H − 2)

= 1
2
n2H−2(n2(1 +

1

n
)2H + (1− 1

n
)2H − 2)︸ ︷︷ ︸

−→2H(2H−1),as n−→∞

= 1
2
n2H−22H(2H − 1),
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by using the previous result, it follows that

ρ(n) > 0 and
∞∑
n

|ρH(n)| =∞.

Therefore, long-range dependency property is verified by the Rosenblatt process since

H > 1
2
.

Lack of Semi-martingale Property

The Rosenblatt process is not a semi-martingale but in this subsection, we will show that

it can be approximated by a sequence of semi-martingales (since H > 1
2
, by a sequence of

bounded variation processes).

Proposition 1.3.4. The sequence of semi-martingales Zε
H(t) is defined by replacingK

H+1
2 (u, x)

in (1.13) by K
H+1

2 (u+ ε, x) to get:

Zε
H(t) =d A3(H)

∫
[0,t]2

(∫ t

x1∨x2

∂K
H+1

2

∂u
(u+ ε, x1)

∂K
H+1

2

∂u
(u+ ε, x2)du

)
dB(x1)dB(x2),

(1.30)

by that, the Rosenblatt process can be approximated by that sequence of semi-martingales

.

Proof. In this proof we have two parts:

Part.1. In this part, we prove that Zε
H(t) is a semi-martingale ∀ε > 0. The basic

observation is that, if one interchanges formally the stochastic and Lebesque integrals in

(1.13), one gets

Z(t)′ =′
∫ t

0

(∫ u

0

∫ u

0

∂KH′

∂u
(u, y1)

∂KH′

∂u
(u, y2) dB (y1) dB (y2)

)
du,

but the above expression cannot hold because the kernel ∂KH′

∂u
(u, y1) ∂KH′

∂u
(u, y2) does not

belong to L2 ([0, T ]2) since the partial derivative ∂KH′

∂u
(u, y1) behaves on the diagonal as

(u− y1)
H−2

2 . Let us define, for every ε > 0,

Zε
H(t) =d A3(H)

∫
[0,t]2

(∫ t

x1∨x2

∂K
H+1

2

∂u
(u+ ε, x1)

∂K
H+1

2

∂u
(u+ ε, x2)du

)
dB(x1)dB(x2)

= A3(H)

∫ t

x1∨x2

(∫
[0,u]2

∂K
H+1

2

∂u
(u+ ε, x1)

∂K
H+1

2

∂u
(u+ ε, x2)dB(x1)dB(x2)

)
du

=

∫ t

0

Hε(u)du,



1.3.3 On the Rosenblatt distribution 22

we have that Hε is L2[0, T ] adapted (Hε ∈ L2[0, T ] × Ω), which makes Zε
H(t) a semi-

martingale.

Part.2. In this part we prove that ∀t ∈ [0, T ], ZH(t) −→ Zε
H(t) in L2(Ω):

Zε
H(t)− ZH(t) =

∫ t

0

∫ t

0

(∫ t

x1∨x2

∂K
H+1

2

∂u
(u+ ε, x1)

∂K
H+1

2

∂u
(u+ ε, x2)

−∂K
H+1

2

∂u
(u, x2)

∂K
H+1

2

∂u
(u, x1)dudB(x1)dB(x2),

and

E(Zε
H(t)− ZH(t))2 =

∫ t

0

∫ t

0

∫ t

x1∨x2

∫ t

x1∨x2(
∂K

H+1
2

∂u
(u+ ε, x1)∂K

H+1
2

∂u
(u+ ε, x2)− ∂K

H+1
2

∂u
(u, x1)∂K

H+1
2

∂u
(u, x2)

)
dvdu(

∂K
H+1

2

∂v
(v + ε, x1)∂K

H+1
2

∂v
(v + ε, x2)− ∂K

H+1
2

∂v
(v, x1)∂K

H+1
2

∂v
(v, x2)

)
dx1dx2,

we can now see that the previous quantity converge to zero when ε converge to 0,

which makes E(Zε
H(t)− ZH(t))2 tend to 0, so by that we are sure that in L2[0, T ]:

Zε
H(t) −→

ε−→0

ZH(t).

1.3.3 On the Rosenblatt distribution

The Rosenblatt distribution is the simplest non-Gaussian distribution which arises in a

non-central limit theorem involving long range dependent random variables .

Definition 1.3.5. The Rosenblatt distribution is the law of the Rosenblatt process at time

1 with the characteristic function:

φ(θ) = exp

(
1

2

∞∑
k=2

(2iθσ(D))k

k
ck

)
, (1.31)

where

ck =

∫ 1

0

...

∫ 1

0

|x1 − x2|−D|x2 − x3|−D...|xk − xk−1|−D|x1 − xk|−Ddx1...dxk, (1.32)

and by Cauchy-Schwartz,
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ck ≤
(∫ 1

0

∫ 1

0

|x1 − x2|−2Ddx1dx2

) k
2

=

(
1

(1− 2D)(1−D)

) k
2

=

(
1

2σ(D)

) k
2

, (1.33)

which ensures that the series (1.31) converges around the origin.

Here, σ(D) is a normalizing constant so that ∀D ∈]0, 1
2
[ is given by:

σ(D) =

[
1

2
(1− 2D)(1−D)

] 1
2

, (1.34)

and

H = 1−D. (1.35)

Proof. Before we start the proof, we shall begin by motivating the Rosenblatt distribution

using Rosenblatt’s famous counter-example.

Counter-example

Consider a stationary Gaussian sequence Xi, i = 1, 2, ... which has a covariance struc-

ture of the form E(X0XK) ∼ k−D as k −→ ∞ with 0 < D < 1/2. Using the transforma-

tion

Yi = X2
i − 1,

one can define a sequence of normalized sums

Zn =
σ(D)

n1−D

N∑
i=1

Yi. (1.36)

The sequence Zn tends in distribution to a non-Gaussian limit Z(1) as n −→∞ with

mean 0 and variance 1 [28]. This limiting distribution has been named the Rosenblatt

distribution . Now we need to define the characteristic function of Zn.

Let dn = n1−D and let Rn denote the covariance matrix of the Gaussian vector

(X1, ..., Xn). Each component has mean 0 and unit variance. Let x′ = (x1, ..., xn) denote

the row vector and |.| a determinant. Then the characteristic function of Zn is
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E(exp(iθZn)) =

∫
Rn

exp{iθσd−1
n

n∑
j=1

(x2
j − 1)} 1√

2π|Rn|
e−

1
2
x′R−1

n dnx

= exp{−iθσd−1
n n} 1√

2π|Rn|

∫
Rn

exp{−1

2
x′[R−1

n − 2iθσd−1
n I]x}dnx

= exp{−iθd−1
n n}|Rn|−

1
2 |R−1

n − 2iθσd−1
n I|− 1

2

= exp{−iθσd−1
n n}|I − 2iθσd−1

n Rn|−
1
2

= exp{1
2

n∑
j=1

[−2iθσd−1
n − ln(1− 2iθσd−1

n λj,n)]}

= exp{1
2
[−2iθσd−1

n n−
n∑
j=1

ln(1− 2iθσd−1
n λj,n)]},

where the λj,n, j = 1, ..., n denote the eigenvalues of Rn. let Tr(a) denote the trace of

a. Expanding the logarithm, we get

ln(1− 2iθσd−1
n λj.n) = −

∞∑
k=1

(2iθσd−1
n λj,n)k

k
,

and

−
n∑
j=1

ln(1− 2iθσd−1
n λj.n) = 2iθσd−1

n

n∑
j=1

λj.n +
n∑
j=1

∞∑
k=2

(2iθσd−1
n λj.n)k

k
.

Since Rn has 1 in its diagonals,
n∑
j=1

λj.n = n and thus

E(eiθZn) = exp

{
1

2

∞∑
k=2

(2iθσ)k

k
d−kn

n∑
j=1

λkn.j

}
,

where

d−kn

n∑
j=1

λkn.j = d−kn Tr(Rk
n),

= d−kn

n∑
i1,i2....,ik=1

r(|i1 − i2|)r(|i2 − i3|)....r(|ik−1 − ik|)r(|ik − i1|) −→ ck.

As n −→∞, the previous expansion converges absolutely for |θ| < ε, ε small enough.

By this we have been proved the formula (1.32) and (1.31).

Remark 1.3.2. The distribution Z(1) can be given in terms of a weighted sum of chi-

squared distributions, for k ≥ 2

Z(1)
d
=
∞∑
i=1

λn(ε2
n − 1), (1.37)
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where εn i.i.d ∼ N(0, 1) and

∞∑
i=1

λkn = σk(D)ck,

because they have the same characteristic function, and since it converge in L2,

∞∑
i=1

var[λn(ε2
n − 1)] = E[(ε2

1 − 1)2]
∞∑
i=1

λ2
n

= 2
∞∑
i=1

λ2
n <∞,

in fact
∞∑
i=1

λ2
n =

1

2
by (1.32) and (1.34). The weights λn are given as the eigenvalues

of an integral operator which we will discuss in more detail in definition 1.3.7 .

The behavior of the Rosenblatt distribution with respect to D

The characteristic function of Z(1) is distinguished by a parameter D such that D ∈]0, 1
2

[.

So let’s consider the extremes when D −→ 0+ and D −→ 1
2

−.

1. When D −→ 0+, ck −→ 1 for all k, σ(D) −→ 1√
2
and thus for θ small enough, the

characteristic function approaches to the characteristic function of 1√
2
(ε2−1) where

ε is N(0, 1).

Proof. Let us denote the characteristic function when D −→ 0+ by:

φ(θ) = exp

(
1

2

∞∑
k=2

(
√

2iθ)k

k

)
= exp

(
1

2
(log(1−

√
2iθ)−

√
2iθ)

)
=

(
1

1−
√

2iθ

) 1
2

exp

(
−iθ√

2

)
,

which is the the characteristic function of 1√
2
(ε2 − 1).

Hence when D = 0, the Rosenblatt distribution is simply a chi-squared distribution

standardized to have mean 0 and variance 1.

2. When D −→ 1
2

−, the limit is N(0, 1). This is expected since the scaling term in

(1.36) approaches
√
n.
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The cumulants of the Rosenblatt distribution

The cumulants κk of the Rosenblatt distribution are given by κ1 = 0 and

κk = 2k−1(k − 1)!(σ(D))kck, (1.38)

where the ck are given by the multiple integrals (1.32). In order to compute any

cumulant, it is necessary to compute the multiple integrals ck.

The first two can be computed directly:

c2 =

∫ 1

0

∫ 1

0

|x1 − x2|−2Ddx1dx2

= 2

∫ 1

0

∫ x2

0

(x1 − x2)−2Ddx1dx2

=
1

(1− 2D)(1−D)
,

c3 =

∫ 1

0

∫ 1

0

∫ 1

0

|x1 − x2|−D|x2 − x3|−D|x3 − x1|−Ddx1dx2dx3

= 3

∫ 1

0

x−3D
3

∫ x3

0

∫ x3

0

|x1

x3

− x2

x3

|−D
(

1− x1

x3

)−D (
1− x2

x3

)−D
dx1dx2dx3

= 3

(∫ 1

0

x−3D+2
3 dx3

)(∫ 1

0

∫ 1

0

|u1 − u2|−D(1− u2)−D(1− u1)−Ddu1du2

)
= 2

1−D

∫ 1

0

ω−D2

∫ ω2

0

(ω2 − ω1)−Dω−D1 dω1dω2

= 2
1−D

(∫ 1

0

ω−3D+1
2 dω2

)(∫ 1

0

ν−D(1− ν)−Ddν

)
= 2

(1−D)(2−3D)
β(1−D, 1−D),

where β is the beta function that we motioned previously (1.7), and by using the

following variable changes u1 = x1/x3, u2 = x2/x3, w1 = 1−u1, w2 = 1−u2 and v = w1/w2.

ck could not be found for k ≥ 4 which means we must be computed numerically; so

for this reason, we will use the next definition as a sophisticated method for computing

ck.

Definition 1.3.6. Let L2[0, 1] denote the Hilbert space of all real-valued measurable func-

tions f(x), 0 < x < 1, such that ‖f‖2 = (

∫ 1

0

f(x)2dx)
1
2 < ∞ with the inner product

〈f, g〉 ≡
∫ 1

0

f(x)g(x)dx. For 0 < D < 1
2
, we define the integral operator KD : L2[0, 1] −→

L2[0, 1] as

〈KD, f〉(x) =

∫ 1

0

|x− u|−Df(u)du.
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Finally, we define the sequence of functions Gk,D ∈ L2[0, 1], k ≥ 1, recursively as

follows:

G1,D(x) =
(1− x)−D√

1−D
; Gk,D = 〈KD, Gk−1,D〉(x), k ≥ 2.

As we already mentioned, by using this definition we can for sure calculate ck for

k ≥ 4, such that ∀µ, ν be any two positive integers such that µ+ ν = k. Then

ck = 〈Gµ,D, Gν,D〉. (1.39)

Proof. Let ν, µ be a positive integer and by using the circular symmetry of the integrand

in ck, if we take xk as the largest of the xi, i = 1, 2, ..., and then factor an xk out of all

the terms, we can rewrite ck as

ck = k

∫ 1

0

x−kDk

∫
(0,xk)k−1

(
1− x1

xk

)−D
|x1

xk
−x2

xk
|−D...×|xk−2

xk
−xk−1

xk
|−D

(
1− xk−1

xk

)−D
dx1..dxk,

with the change of variables ui = xi/xk, i = 1, 2, ..., k − 1, one of the k integrals can be

separated out, and we obtain

ck = k

(∫ 1

0

x
−kD+(k−1)
k dxk

)(∫
(0,1)k−1

(1− u1)−D|u1 − u2|−D.|uk−1 − uk−2|−D(1− uk−1)−D

du1...duk−1)

= 1
1−D

(∫
(0,1)k−1

(1− u1)−D|u1 − u2|−D..|uk−1 − uk−2|−D(1− uk−1)−Ddu1..duk−1

)
=

∫
(0,1)k−1

G1,D(u1)G1,D(uk−1) |u1 − u2|−D..|uk−1 − uk−2|−D︸ ︷︷ ︸
k−2 terms

du1..duk−1

=

∫
(0,1)k−3

[∫ 1

0

G1,D(u1)|u1 − u2|−Ddu1

]
[|u3 − u2|−D...|uk−2 − uk−3|−D]

×
[∫ 1

0

G1,D(uk−1)|uk−1 − uk−2|−Dduk−1

]
du3..duk−2

=

∫
(0,1)k−3

G2,D(u2) |u3 − u2|−D...|uk−2 − uk−3|−D︸ ︷︷ ︸
k−4 terms

G2,D(uk−2)du2..duk−2

.

.

=

∫ 1

0

Gµ,D(uµ)Gν,D(uk−ν)duµ

= 〈Gµ,D, Gν,D〉.

By that we finish our proof.

Remark 1.3.3. To minimize the number of integrals one needs to compute, it makes

sense to choose µ = ν = k
2
if k is even, and µ = k+1

2
and ν = k−1

2
if k is odd.
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Thorin class

We next define the Thorin class of probability distributions on R. Originally this class

was studied by Thorin (1977a,b) and the Thorin class on R+, denoted by T (R+), is the

smallest class of distributions on R+ that contains all gamma distributions and is closed

under convolution and weak convergence. A probability distribution in T (R+) is called

generalized gamma convolution .

The main goal of this part is to derive new results related to the Rosenblatt dis-

tribution. For example, we show that a random variable that follows the Rosenblatt

distribution can be represented in law as a Wiener integral with respect to some Levy

process. We also obtain new properties of the density of the Rosenblatt distribution.

Definition 1.3.7. For every t ≥ 0, At define an integral operator by:

Ath(x) = C(D)

∫ +∞

−∞

eit(y1−y2) − 1

i(y1 − y2)
|y|D−1h(y)dy , h ∈ HD, (1.40)

where

HD = {h : h is a complex valued function on R, h(x) = h(x) =

∫
R

h(x)2|x|D−1dx <∞},

which is a self-adjoint Hilbert Schmidt operator and all eigenvalues λn(t), n = 1, 2, ..., are

real and satisfy
∞∑
n=1

λ2
n <∞.

Theorem 1.3.1. For every t1, ..., td ≥ 0,

(ZD(t1), ..., ZD(td))
d
=

(
∞∑
n=1

λn(t1)(ε2
n − 1), ..,

∞∑
n=1

λn(td)(ε
2
n − 1)

)
,

where {εn} are i.i.d N(0, 1) random variables.

Proof. Before we start the proof, we need to give other representation in density for

the Rosenblatt process.

Let consider the Rosenblatt process defined as follows:

ZD(t) = c(D, 2)

∫
R2

∫ t

0

(s− y1)
−(D+1

2
)

+ (s− y2)
−(D+1

2
)

+ ds)dB(y1)dB(y2).

Let

ft(y1, y2) = c(D, 2)

∫ t

0

(s− y1)
−(D+1

2
)

+ (s− y2)
(D+1

2
)

+ ds.



1.3.3 On the Rosenblatt distribution 29

Then

ZD(t) =

∫
R2

ft(s1, s2)dB(y1)dB(y2).

By using definition (1.3.2), we can give this following representation:

ZD(t) =d

∫
R2

eit(y1+y2) − 1

i(y1 + y2)
|y1|

D−1
2 |y2|

D−1
2 dB(y1)dB(y2), (1.41)

where
∫
R2 is the integral over R2 except the hyper planes y1 6= ±y2.

Let α1, ..., α1 ∈ R. It is sufficient to show that

α1ZD(t1) + ..+ αdZD(td)
d
= α1

∞∑
n=1

λ2
n(t1)(ε2

n − 1)(t) + ....+ αd

∞∑
n=1

λ2
n(td)(ε

2
n − 1).

But, by (1.41), we have

α1ZD(t) + ..+ αdZD(td)

d
==d

∫
R2

(
α1
eit1(y1+y2) − 1

i(y1 + y2)
|y1|

D−1
2 |y2|

D−1
2 + ....+ αd

eitd(y1+y2) − 1

i(y1 + y2)
|y1|

D−1
2 |y2|

D−1
2

)
dB(y1)dB(y2),

(1.42)

=

∫
R2

Ht1,...td(y1, y2))B(dy1)B(dy2),

where Ht1,...,td(y1, y2) = Ht1,...,td(y2, y1) = Ht1,...,td(−y1,−y2), y1, y2 ∈ R, and

∫
R2

|Ht1,...,td|2dy1dy2 <∞.

By Proposition 2 of Dobrushin and Major (1979) (See [21] ), we see that (1.42) can

be represented in law as
∞∑
n=1

λn(t1, .., td)(ε
2
n − 1),

where λn(t1, .., tn) are the eigenvalues of the integral operator

At1,..,tdh(x) = C(D)

∫ +∞

−∞

(
α1
eit1(x+y) − 1

i(x+ y)
+ ....+ αd

eitd(x+y) − 1

i(x+ y)

)
|y|D−1h(y)dy, h ∈ HD.

On the other hand, it is clear that the eigenvalues of At1,..,,...,td are α1λn(t1) + ... +

αdλn(td). This concludes the statement of the theorem.

Theorem 1.3.2. For every t1, ..., td ≥ 0, the law of (ZD(t1), ..., ZD(td)) belongs to T (Rd).
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Proof. by using the previous theorem we get

(ZD(t1), ..., ZD(td)) =d

∞∑
n=1

λn(t1)(ε2
n − 1), ..,

∞∑
n=1

λn(td)(ε
2
n − 1)

=
∞∑
n=1

(λn(t1)....λn(td))(ε
2
n − 1),

where (λn(t1)....λn(td))(ε
2
n − 1), n = 1, 2, ..., are the elementary gamma random vari-

ables in Rd. Since they are independent, by the properties of the class T (Rd) that the

class is closed under convolution and weak convergence, we see, by the definition of T (Rd)

, that (ZD(t1), ..., ZD(td)) belongs to T (Rd) . This completes the proof.



Chapter 2

Stochastic Calculus on the Rosenblatt

processes

2.1 Stochastic Integration with respect to the Rosen-

blatt process

2.1.1 Wiener Integration for the Rosenblatt process

In the previous Section, we have seen that the Rosenblatt process is not a semi-

martingale. But the classical stochastic integration namely the Itô calculus, is valid

to semi-martingales as an integrator. Therefore, we cannot apply directly this type of

calculus. Moreover, the Lebesgue-Stieltjes integration cannot be used since the paths of

the Rosenblatt have unbounded variation as we mentioned previously, so we need to build

other types of integrals.

In general, these generalized methods are essentially of two types: the first is the

pathwise type calculus and (here we included the rough path analysis ([29]) and the

stochastic calculus via regularization [11]) and the second type is Malliavin calculus and

the Skorohod integration theory ([8]). In general the pathwise type calculus is connected

to the trajectorial regularity and/or to the covariance structure of the integrator process,

the Malliavin calculus instead is very related to the Gaussian character of the driven

process. One of the methods developed to deal with the stochastic integral with respect

to the Rosenblatt process is the white noise distribution theory by Hida and al.[26] ,

this approach succeed to define the derivative of the Rosenblatt process denoted by the

31
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Rosenblatt noise dissipate the fact that it is not differentiated and also to define the

Rodenblatt noise integral as a result.

Riemann-Stieltjes Integral

In order to understand the notion of the stochastic-integration, it’s very useful to un-

derstand the Riemann-Stieltjes integral, so let us recall the basic Riemann integral first.

Definition 2.1.1. Let f : R → R be continuous. We define the Riemann integral over

[a, b] ⊂ R by ∫ b

a

f(t)dt = lim
‖∆n‖→0

n∑
i=1

f(τi)(ti − ti−1),

where ∆n = {t0, t1, ..., tn} is a partition of [a, b] such that a = t0 < t1 < ... < tn−1 < tn = b,

‖∆n‖ = max1≤i≤n(ti − ti−1) and τi is an evaluation point in the interval [ti−1, ti].

Definition 2.1.2. The p-variation of a function f : [a, b]→ R is defined as

n∑
i=1

(f(tnk)− f(tnk−1))p,

where a = tn0 < ... < tnn = b is a partition of the interval with lags tends to 0 as n→∞.

Definition 2.1.3. A function of bounded variation is a function g : [a, b]→ R such that

∀t > 0,

sup
π∈P

np∑
i=1

|g(ti)− g(ti−1)| <∞,

where the supremum is taken over the set P = {π = {t0, ..., tnp}, π is a partition of [a, b]}.

Definition 2.1.4. Let f : [a, b] → R continuous and g : [a, b] → R be a function of

bounded variation. We define the Riemann-Stieltjes integral as follows:∫ b

a

f(t)dg(t) = lim
‖∆n‖→0

n∑
i=1

f(τi)(g(ti)− g(ti−1)),

where ∆n = {t0, t1, ..., tn} is a partition of [a, b] such that a = t0 < t1 < ... < tn−1 < tn = b,

‖∆n‖ = max
1≤i≤n

(ti − ti−1) and τi is an evaluation point in the interval [ti−1, ti].

Remark 2.1.1. Note that if g(t) = t then the Riemann-Stieltjes integral is the Riemann

integral.
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Proposition 2.1.1. [16] If f is continuous and g ∈ C 1, then∫ b

a

f(t)dg(t) =

∫ b

a

f(t)g′(t)dt,

and if f, g have bounded variations then∫ b

a

f(t)dg(t) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(t)df(t). (2.1)

Wiener Integral

The Wiener integral is basically an integration of a deterministic function with respect

to a Gaussian stochastic process. It is a generalization of the Riemann-Stieltjes integral

theory. Now Let us define the integral :

I(f) =

∫ b

a

f(t)dZt. (2.2)

Since (2.1) defines a Riemann-Stieltjes integral, we can apply the integration by parts

formula to get :

∫ b

a

f(t)dZt = f(b)Zb − f(a)Za −
∫ b

a

Ztdf(t), (2.3)

but this is not valid since the Rosenblatt process has unbounded variation, so the integral

(2.2) is not well defined as a Riemann-Stieltjes integral in this case. Therefore, we need

new approaches to define it.

Integrands as step functions

Let us denote by E the set of step functions. For f ∈ E, i.e. f =
n∑
i=1

ai1]ti+1,ti], we define

the Wiener Integral as follows :

Definition 2.1.5. We naturally define the Wiener integral of f with respect to Z(t) as :∫ T

0

f(u)dZ(t) =
n−1∑
i=0

ai(Zti+1
− Zti) =

∫ T

0

∫ T

0

I(f)(y1, y2)dB(y1)dB(y2), (2.4)

where

f(t) =
n−1∑
i=0

ai1]ti,ti+1](t), ti ∈ [0, T ], (2.5)

and

I(f)(y1, y2) = A3(H)

∫ T

y1∨y2
f(u)

∂K
H+1

2

∂u
(u, y1)

∂K
H+1

2

∂u
(u, y2)du. (2.6)



2.1.1 Wiener Integration for the Rosenblatt process 34

General integrands

Definition 2.1.6. Let us denote H the space of functions such that

‖f‖2
H = 2

∫ T

0

∫ T

0

I(f)(y1, y2)2dy1dy2 <∞, (2.7)

and it holds that

‖f‖2
H = H(2H − 1)

∫ T

0

∫ T

0

f(u)f(v)|u− v|2H−2dudv. (2.8)

Theorem 2.1.1. [27] The mapping

f −→
∫ T

0

f(u)dZ(u), (2.9)

defines an isometry from the space of step functions E to L2(Ω)[see [27]], it can also

be expend to an isometry from H to L2(Ω) by continuity, since E is dense in H.

Proposition 2.1.2. [18]

1. The space H may not contain just functions but also distributions; it is therefore

more practical to define the subspaces ofH that are sets of functions. Such a subspace

is

|H| = {f : R −→ R|
∫
R

∫
R
|f(u)‖f(v)‖u− v|2H−2dudv <∞}. (2.10)

The space |H| is a strict subset of H and we have

L2(R) ∩ L1(R) ⊂ L
1
H (R) ⊂ |H| ⊂ H. (2.11)

2. The space |H| is not complete with respect to this norm ‖.‖H but it is a Banach

space with respect to the norm

‖f‖2
|H| =

∫
R

∫
R
|f(u)‖f(v)‖u− v|2H−2dudv <∞. (2.12)

3. The spectral domain included in H is defined by

f
H = {f ∈ L2(R)|

∫
R
|

f

f(x)|2|x|−2H+1dx <∞}, (2.13)

where
f
f denotes the Fourier transform of f . We have again

f
H as a strict subspace

of H and the inclusion

L2(R) ∩ L1(R) ⊂ L
1
H (R) ⊂

f
H ⊂ H, (2.14)
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and we define

‖f‖2
f
H

=

∫
R
|

f

f(x)|2|x|−2H+1dx. (2.15)

Proposition 2.1.3. [27] Let g, f ∈ H. Then, the Wiener integrals
∫ T

0
f(u)dZ(u) and∫ T

0
g(u)dZ(u) are not necessarily independent when the functions f and g are orthogonal

in H; they are independent if and only if

〈f(.)
∂KH0

∂u
(., y1), g(.)

∂KH0

∂u
(., y2)〉H′ = 0, (y1, y2) ∈ [0, T ]2, (2.16)

where H′ is the space analogous to H corresponding to the Hurst parameter H ′ = H+1
2

.

Corollary 2.1.1. [27] The construction of Wiener integrals with respect to the Rosenblatt

process allows to consider associated Ornstein-Uhlenbeck processes which are the solutions

of the equation

Xt = ξ − λ
∫ t

0

Xsds+ σZ(t), t ≥ 0,

where σ, λ > 0 and the initial condition ξ is a random variable in L0(Ω) has an unique

solution that can be represented as

Xξ
t = e−λt

(
ξ + σ

∫ t

0

e−λudZ(u)

)
, t ≥ 0,

where the stochastic integral above exists in the Wiener sense. When the initial condition

is ξ = σ

∫ 0

−∞
eλudZ(u), the solution of can be written as

Xt = σ

∫ t

−∞
e−λ(t−u)dZ(u),

and it is called the stationary Rosenblatt Ornstein-Uhlenbeck process.

2.1.2 Pathwise stochastic calculus

The Rosenblatt process with H > 1
2
; as we have already mentioned; has zero quadratic

variation and regular paths (Hölder continuous paths)[See property 3 and 4 ]. The pathwise

calculus can be naturally applied to our process to construct stochastic integrals with respect

to it. Here we choose to use the approach of Russo and Vallois.

Definition 2.1.7. Let (Xt)t≥0 and (Yt)t≥0 be continuous processes. We introduce, for

every t :
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I−(ε, Y, dX) =

∫ t

0

Ys
Xε+s −Xs

ε
ds, I+(ε, Y, dX) =

∫ t

0

Ys
Xs −X(s−ε)+

ε
ds, (2.17)

I0(ε, Y, dX) =

∫ t

0

Ys
Xs+ε −X(s−ε)+

2ε
ds, (2.18)

and

Cε(X, Y )(t) =

∫ t

0

(Xs+ε −X(s−ε)+)(Ys+ε − Y(s−ε)+)

ε
ds. (2.19)

.

Now we are ready to give the forward, backward and symmetric integrals of Y with

respect to X, it is given by :∫ t

0

Y d−X = lim
ε−→0+

I−(ε, Y, dX),

∫ t

0

Y d+X = lim
ε−→0+

I+(ε, Y, dX). (2.20)

∫ t

0

Y d0X = lim
ε−→0+

I0(ε, Y, dX). (2.21)

The covariation of X and Y is defined as

[X, Y ]t = ucp lim
ε−→0+

Cε(X, Y )(t).

If X = Y we denote [X,X] = [X] and when [X] exists then X is said to be a finite

quadratic variation process. When [X] = 0, then X is called a zero quadratic variation

process.

The Rosenblatt process is clearly a zero quadratic variation process since

ECε(Z,Z)(t) = E
∫ t

0

1

ε
(Zs+ε − Zs)2ds = tε2H−1 →

ε−→0
0.

Therefore the stochastic calculus via regularization can be directly applied to it.

Theorem 2.1.2. [27] For every f ∈ C 2(R), the integrals

∫ t

0

f
′
(Z)d−Z,

∫ t

0

f
′
(Z)d+Z and

∫ t

0

f
′
(Z)d0Z, (2.22)

exist and they are equal and we have the Itô formula

f(Zt) = f(Z0) +

∫ t

0

f
′
(Z)d0Z. (2.23)
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Corollary 2.1.2. [27] An immediate consequence of the existence of the quadratic varia-

tion of the Rosenblatt process is the existence and uniqueness of the solution of a Stratonovich

stochastic differential equation driven by Z. Concretely, if σ : R −→ R and b : [0, T ] ×

R −→ R satisfy some regularity assumptions and V is a locally bounded variation process

with X(0) = G where G is an arbitrary random variable, then the equation

dX(t) = σ(X(t))d◦Z(t) + b(t,X(t))dV (t),

has an unique solution.

The first and second-order fractional integral

Definition 2.1.8. The first-order fractional integral is defined by :

Iα+(f)(x) =
1

Γ(α)

∫ x

−∞
f(u)(x− u)α−1du, (2.24)

and

Iα−(f)(x) =
1

Γ(α)

∫ ∞
x

f(u)(u− x)α−1du, (2.25)

where α ∈ (0, 1) and 1 ≤ p < 1
α
.

The second-order fractional integral is defined by :

(Iα1,α2
+,+ f)(x1, x2)

Def
=

1

Γ(α1)Γ(α2)

∫ x1

−∞

∫ x2

−∞
f(u, v)(x1 − u)α1−1(x2 − v)α2−1dudv, (2.26)

with f : R2 −→ R and αi ∈ (0, 1), i = 1, 2, ... , and we can define also

(Iα1,α2
−,tr f)(x1, x2)

Def
=

1

Γ(α1)Γ(α2)

∫ ∞
x1∨x2

f(u)(u− x1)α1−1(u− x2)α2−1du, (2.27)

for f : R −→ R. The operator I
H
2
,H
2

−,tr plays the role of the transfer operator in the following

definition of the Skorokhod integral with respect to a Rosenblatt process.

2.1.3 Skorohod integral with respect to the Rosenblatt process

The Skorohod integral is stochastic integral, introduced for the first time by A. Skorohod

in 1975, may be regarded as an extension of the Itô integral to integrands that are not

necessarily F-adapted.

This part will be dedicated to define an integral with respect to (Zt)t∈[0,t] in the

divergence sense and to build generalized Skorohod integrals with respect to processes which
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are not a Gaussian process or a semi-martingales process. But before we start let use

mention some basic elements of the Malliavin calculus with respect to a Wiener process

(Wt)t∈[0,t].

Definition 2.1.9. We denote S by the class of smooth random variables of the form

F = f(Wt1 .....Wtn), t1, ..., tn ∈ [0, t], (2.28)

where f ∈ C∞b (Rn).

If F is of the form (2.28) , we have

DtF =
n∑
i=1

∂f

∂xi
(Wt1 .....Wtn)1[0,ti](t), t ∈ [0, T ], (2.29)

will be it’s Malliavin derivative, with the operator D as an unbounded closable operator

which can be extended to the closure of S (denoted Dk,p, k ≥ 1 integer, p ≥ 2) with respect

to the norm

‖F‖pk,p = E|F |p +
k∑
j=1

E‖D(j)F‖p
L2([0,T ])j

, F ∈ S, k ≥ 1, p ≥ 2, (2.30)

where the j-th derivative D(j) is defined by iteration.

Definition 2.1.10. The Skorohod integral δ is the adjoint of D and its domain is

Dom(δ) = {u ∈ L2[0, T ]× Ω/|E
∫ T

0

usDsFds| ≤ C‖F‖2}, (2.31)

with D and δ satisfing the duality relationship

E(Fδ(u)) = E
∫ T

0

DsFusds, F ∈ S, u ∈ Dom(δ), (2.32)

with

δ(u) =

∫ T

0

usδWs. (2.33)

We denote Lk,p = Lp([0, T ]× Ω;Dk,p) and Lk,p ⊂ Dom(δ).

Definition 2.1.11. For F ∈ D1,2 and u ∈ L1,2, the integration by parts formula is defined

by

Fδ(u) = δ(Fu) +

∫ T

0

DsFus. (2.34)
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Definition 2.1.12. Let consider the a square integrable stochastic process (gs)s∈[0,T ], we

define its Skorohod integral with respect to Z by:∫ T

0

gsdZ(s) =

∫ T

0

∫ T

0

(∫ T

y1∨y2
g(u)

∂KH
′

∂u
(u, y1)

∂KH
′

∂u
(u, y2)du

)
dB(y1)dB(y1)

=

∫ T

0

∫ T

0

I(g)(y1, y2)dB(y1)dB(y2),

the process g is Skorohod integrable with respect to Z if the process I(g) ∈ Dom(δ(2)),

where δ(2) is the double Skorohod integral with respect to the Brownian motion B.

Remark 2.1.2. The Skorohod integral coincide with the Wiener integral if the integrand

g is a deterministic function in H.

Lemme 2.1. If g ∈ L2(Ω;H) such that g ∈ L2,2 and

E
∫ T

0

∫ T

0

‖Dx1,x2g‖2
Hdx1dx2 <∞. (2.35)

Then g is Skorohod integrable with respect to Z and

E|
∫ T

0

gsdZ(s)|2 ≤ c.

[
E‖g‖2

H + E
∫ T

0

∫ T

0

‖Dx1,x2g‖2
Hdx1dx2

]
. (2.36)

Before we prove this lemma, we shall introduce "Meyer’s inequality" for the double

Skorohod integral.

Lemme 2.2. [6] One can deduce the following estimations for the Lp norm of the gener-

alized multiple integral:

E
(∣∣δku∣∣p) ≤Cp,k{(E ∫

Tk
u2

tµ
k(dt)

)p/2
+E

(∣∣∣∣∫
Tk

∫
Tk

(
Dkut

)2

s
µk(dt)µk(ds)

∣∣∣∣p/2
)}

,

for all 1 < p < ∞, and for any process u ∈ L2
(
T k × Ω

)
such that ut ∈ Dom(Dk) for

every t and
(
Dkµt

)
s
belongs to L2

(
T k × T k × Ω

)
.

Proof. This lemma guaranties the convergence the Skorohod integrability, and to prove
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it we need to use the equality of meyer for the double Skorohod integral and we obtain :

E|
∫ T

0

gsdZ(s)|2 ≤ c.

[
E
∫ T

0

∫ T

0

I(g)(y1, y2)2dy1dy2

]
+c

[
E
∫ T

0

∫ T

0

∫ T

0

∫ T

0

(Dx1,x2I(g)(y1, y2))2dx1dx2dy1dy2

]
= c.

[
E
(
H(2H − 1)

∫ T

0

∫ T

0

g(u)g(v)|u− v|2H−2dudv

)]
+ c.

[
E
(∫ T

0

∫ T

0

(∫ T

0

∫ T

0

Dx1,x2g(u)Dx1,x2g(v)|u− v|2H−2dvdu

)
dx1dx2

)]
= c.

[
E‖g‖2

H + E
∫ T

0

∫ T

0

‖Dx1,x2g‖2
Hdx1dx2

]
.

Corollary 2.1.3. The process g is Skorohod integrable with respect to Z and verifies

E|
∫ T

0

gsdZ(s)|2 ≤ c.‖g‖2, (2.37)

where

‖g‖2 =

[
E‖g‖2

|H| + E
∫ T

0

∫ T

0

‖Dx1,x2g‖2
|H|dx1dx2

]
, (2.38)

if g ∈ L2(Ω; |H|) such that g ∈ L2,2 and

E
∫ T

0

∫ T

0

‖Dx1,x2g‖2
|H|dx1dx2 <∞. (2.39)

Example Here we try to give an example of the previous corollary. Let us consider

a Skorohod integral of the Rosenblatt process with respect to itself ; by that we get

E|
∫ T

0

ZtδZt|2 ≤ c.

∫ T

0

∫ T

0

R(u, v)|u− v|2H−2dudv.

Proof. In this proof we will treat the formula (2.36), so we will compute the two terms of

its right side. From what we have seen previously, we can see clearly that :

E‖Z‖2
H = c.

∫ T

0

∫ T

0

R(u, v)|u− v|2H−2dudv,

then for the next term we have, ∀x1, x2 ∈ [0, T ],

Dx1,x2Z(u) = 2A3(H)1[0,u]2(x1, x2)

∫ u

x1∨x2

∂K
H+1

2

∂u
(u, x1)

∂K
H+1

2

∂u
(u, x2)du,

then we have
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E
∫ T

0

∫ T

0

‖Dx1,x2g‖2
|H|dx1dx2 =

∫ T

0

∫ T

0

∫ T

x1∨x2

∫ T

x1∨x2
|u− v|2H−2dudv

‖
∫ u

x1∨x2

∂K
H+1

2

∂u′
(u′, x1)

∂K
H+1

2

∂u′
(u′, x2)

∫ v

x1∨x2

∂K
H+1

2

∂v′
(v′, x1)

∂K
H+1

2

∂v′
(v′, x2)‖du′dv′dx1dx2

=

∫ T

0

∫ T

0

|u− v|2H−2

∫ u

0

∫ v

0

(∫ u′∧v′

0

∂K
H+1

2

∂u′
(u′, x1)

∂K
H+1

2

∂v′
(v′, x1)dx1

)2

dudv

= c.

∫ T

0

∫ T

0

R(u, v)|u− v|2H−2dudv.

Definition 2.1.13. Let H ∈ (1
2
, 1), and let M ⊆ R be an interval. Define

ΛZH (M)
Def
= {g : R −→ L2(Ω) such that I

H
2
,H
2

−,tr (1Mg) ∈ Dom(δ2)}.

We say that the stochastic process g is Skorokhod integrable with respect to the Rosen-

blatt process ZH on M if g ∈ ΛZH (M). As g as an integrand, the Skorokhod integral is

defined by ∫
M

gsδZH(s)
Def
= cZH(δ2 ◦ I

H
2
,H
2

−,tr )(1Mg). (2.40)

Lemme 2.3. [5] Let H ∈ (1
2
, 1). The linear operator I

H
2
,H
2

−,tr is bounded from L
1
H (R) to

L2(R2).

The following lemma provides a mapping property of the Skorokhod integral with re-

spect to a Rosenblatt process. It ensures that stochastic processes from the space L
1
H (M ;D2,2)

are Skorokhod integrable with respect to the Rosenblatt process ZH and the stochastic in-

tegral is a square-integrable random variable.

Lemme 2.4. [5] Let H ∈ (1
2
, 1) andM ⊆ R be an interval. The linear operator

∫
M

(..)δZH

is bounded from L
1
H (M ;Dk,p) to Dk−2,p for every integer k ≥ 2 and every p such that

1 ≤ pH <∞.

The following theorem relates the Skorokhod integrals with respect to the fractional

Brownian motion BH and the Rosenblatt process ZH to the fractional stochastic derivatives

∇H− 1
2 and ∇H

2
,H
2 , respectively.

Theorem 2.1.3. [5] Let H ∈ (1
2
, 1) and M is a subset of R.
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1. If g ∈ L 1
H (M ;D2,2), then for all G ∈ D2,2we have :

E
[
G

∫
M

guδZH(u)

]
= cZH

∫
M

E
[
(∇

H
2
,H
2 G)(u, u)gu

]
du. (2.41)

2. If g ∈ L 1
H (M ;D1,2) with G ∈ D1,2, then we have :

E
[
G

∫
M

guδBH(u)

]
= cBH

∫
M

E
[
(∇H− 1

2G)(u)gu

]
du, (2.42)

with

∇α,α Def
= Iα,α+,+ ◦D2 and ∇α Def

= Iα+ ◦D.

The following two theorems can be used to compute the first and second-order frac-

tional stochastic derivatives of the Skorokhod integral with respect to a Rosenblatt process.

Theorem 2.1.4. [5] Let g ∈ L
1
H ([0, T ],D3,2). The following equality is satisfied for all

x ∈ R:

∇H
2

(∫ T

0

gsδZH

)
(x) =

∫ T

0

(∇
H
2 gs)(x)δZH

+ 2cB,ZH

β(H
2
, 1−H)

Γ(H
2

)2

∫ T

0

gs|s− x|H−1δB
H
2

+ 1
2 .

(2.43)

Theorem 2.1.5. [5] Let g ∈ L
1
H ([0, T ],D4,2). The following equality is satisfied for all

x, y ∈ R:

∇
H
2
,H
2

(∫ T

0

gsδZH

)
(x, y) =

∫ T

0

(∇
H
2
,H
2 gs)(x, y)δZH + 2cB,ZH

β(H
2
, 1−H)

Γ(H
2

)2(∫ T

0

(∇
H
2 gs)(x)|s− y|H−1δB

H
2

+ 1
2 +

∫ T

0

(∇
H
2 gs)(y)|s− x|H−1δB

H
2

+ 1
2

)
+2cZH

β(H
2
, 1−H)2

Γ(H
2

)4

∫ T

0

gs|s− x|H−1|s− y|H−1ds.

2.1.4 The relation between the pathwise and the Skorohod inte-

grals

In this subsection we will cite an important relation between the pathwise and the Sko-

rohod integrals given by Tudor in [27]. This plays a major role in the construction of the

Itô formula for the functionals of the Rosenblatt process.
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Definition 2.1.14. We say that a stochastic process g ∈ L1,2 admits a trace of order 1 if

1

ε

∫ T

0

∫ T

0

Dαgsδ(fd+ε(., α)− fs(., α))dαds, (2.44)

converges in probability as ε −→ 0. The limit will be denoted by Tr(1)(D(1)g).

We say that a stochastic process g ∈ L2,2 admits a trace of order 2 if

1

ε

∫ T

0

∫ T

0

∫ T

0

D
(2)
α,βgsδ(fd+ε(β, α)− fs(β, α))dβdαds, (2.45)

converges in probability as ε −→ 0. The limit will be denoted by Tr(2)(D(2)g).

Theorem 2.1.6. [27] Let g ∈ L2,2 such that

E‖g‖2
|H| + E

∫ T

0

∫ T

0

‖Dx1,x2g‖2
|H|dx1dx2 <∞. (2.46)

Assuming that the process g has trace of order 1 and 2. Then

∫ T

0

gsd
−Z(s) =

∫ T

0

gsδZ(s) + 2Tr(1)(D(1)g)− Tr(2)(D(2)g). (2.47)

2.1.5 A white noise approach

In this subsection we will define a stochastic integral with respect to the Rosenblatt

process using white noise distribution theory, which leads to an Itô formula for a certain

class of functionals of this process. Before we start let us introduce the tools from the

white noise distribution theory needed in order to define a stochastic calculus with respect

to the Rosenblatt process. For a good introduction to the theory of white noise, we refer

the reader to the book of Kuo [13].

Definition 2.1.15. Let Φ ∈ (S)∗. For every function ξ ∈ S(R), we define the S-transform

of Φ by:

S(Φ)(ξ) = 〈〈Φ; e<;ξ>〉〉,

where e<;ξ> = e<;ξ>−
‖ξ‖2

L2(R)
2 =

∞∑
n=0

In(ξ⊗n)

n!
∈ (S) and ⊗ is defined below .

Remark 2.1.3.

1. (S) is the stochastic space of test functions and its dual is the space of generalized

functions (S)∗ or Hida distributions, and 〈〈.〉〉 denote the duality bracket between

elements of (S) and (S)∗, which reduces to the classical inner product on (L2) for

two elements in (L2).
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2. The space S(R) is a Schwartz space and its dual S ′(R) the space of tempered distri-

butions.

3. (S) ⊂ L2(Ω,G,P) ⊂ (S)∗ .

Theorem 2.1.7. [1]

1. The S-transform is injective. If ∀ξ ∈ S(R), S(Φ)(ξ) = S(Ψ)(ξ) then Φ = Ψ ∈ (S)∗.

2. For Φ,Ψ ∈ (S)∗ there is a unique element Φ � Ψ ∈ (S)∗ such that for all ξ ∈

S(R), S(Ψ)(ξ)S(Φ)(ξ) = S(Ψ � Φ)(ξ). It is called the Wick product of Φ and Ψ.

3. . Let Φn ∈ (S)∗ and Fn = S(Φn). Then Φn converges strongly in (S)∗ if and only if

the following conditions are satisfied:

(a) lim
n−→∞

Fn(ξ) exists for each ξ ∈ S(R).

(b) There exist strictly positive constants K, a and p independent of n such that:

∀n ∈ N,∀ξ ∈ S(R)|Fn(ξ)| ≤ Ke
(a‖Apξ‖2

L2(R)
)
.

Definition 2.1.16. The trace operator τ is the element of Ŝ ′ (R2) and is uniquely defined

by

∀ψ, φ ∈ S(R) < τ ;φ⊗ ψ >=< φ;ψ > .

Definition 2.1.17. The Wick tensors of any elements ω ∈ S ′(R) are defined by:

ω⊗n =

[n2 ]∑
k=0

Cn
2k(2k − 1)!!(−1)kω⊗(n−2k)⊗̂τ⊗k,

where Cn
2k = n!

(2k)!(n−2k)!
, (2k − 1)!! = (2k − 1)(2k − 3)....3.1 and ⊗̂ is the symmetric

tensor product .

Definition 2.1.18. Let y ∈ S ′(R) and Φ ∈ (S). The operator Dy is continuous from (S)

into itself and we have:

∀ω ∈ S ′(R) Dy(Φ)(ω) =
∞∑
n=1

n < ω⊗n−1; y ⊗1 φn >,

where we denote by ⊗1 the contraction of order 1.

Definition 2.1.19. Let y ∈ S ′(R) and Ψ ∈ (S)∗. The adjoint operator D∗y is continuous

from (S)∗ into itself and we have:

∀ξ ∈ S(R) S(D∗y(Ψ))(ξ) =< y; ξ > S(Ψ)(ξ) = S(I1(y) �Ψ)(ξ),
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where I1 = (y) is a generalized Wiener- Itô integral in (S)∗. Moreover, we have the

following generalized Wiener- Itô decomposition for D∗y(Ψ):

D∗y(Ψ)(.) =
∞∑
n=0

< .⊗n+1; y⊗̂ψn > .

Definition 2.1.20.

1. Let I ⊂ R be an interval. A mapping X : I −→ (S)∗ is called a stochastic distribution

process.

2. A stochastic distribution process X is said to be differentiable; lim
h−→0

Xt+h −Xt

h
exists

in (S)∗.

Theorem 2.1.8. [1] The Rosenblatt process is (S)∗ differentiable, and its derivative, the

Rosenblatt noise, admits the following generalized double Wiener- Itô integral representa-

tion (as an element of (S)∗):

∀t > 0 ŻH
t = c(H, 2)I2

(
δ⊗2
t ◦ (I

H
2

+ )⊗2
)
, (2.48)

and its S-transform is equal to:

∀ξ ∈ S(R) S(ŻH
t )(ξ) = c(H, 2)(I

H
2

+ (ξ)(t))2, (2.49)

and we have

∀ξ ∈ S(R) S(ZH
t )(ξ) = c(H, 2)

∫ t

0

(I
H
2

+ (ξ)(t))2ds. (2.50)

Definition 2.1.21. Let k ≥ 2. For any t > 0, we define the following sequence of

stochastic processes (belonging to the second Wiener chaos):

XH,k
t =

∫
R

∫
R
...((fHt ⊗1 f

H
t )⊗1 f

H
t )...⊗1 f

H
t )(x1, x2)dBx1dBx2︸ ︷︷ ︸

k−1×⊗1

. (2.51)

Where

f
H(x1,x_2)
t = c(H, 2)

∫ t

0

(s− x1)
H
2
−1

+ (s− x2)
H
2
−1

+

Γ(H
2

)Γ(H
2

)
ds.

Moreover, the S-transform of this process is given by:

∀ξ ∈ S(R) S(XH,k
t )(ξ) = c(H, 2)

√
H(2H − 1)k−1

2

∫ t

0

∫ t

0

I
H
2

+ (ξ)(s)I
H
2

+ (ξ)(r)Kk−2
t (s, r)dsdr.

(2.52)
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Theorem 2.1.9. [1] For any k ≥ 2, the process (XH,K
t , t > 0) is (S)∗ differentiable and

its derivative, ẊH,K
t , is uniquely defined by the following S-transform:

∀ξ ∈ S(R) S(ẊH,K
t )(ξ) = c(H, 2)

√
H(2H − 1)k−1

2

[
(H(k − 1) + 1)tH(k−1)

∫ 1

0

∫ 1

0

I
H
2

+ (ξ)(tu)I
H
2

+ (ξ)(tv)Kk−2
1 (u, v)dudv

+ tH(k−1)+1

∫ 1

0

∫ 1

0

d

dt

[
I
H
2

+ (ξ)(tu)I
H
2

+ (ξ)(tv)
]
Kk−2

1 (u, v)dudv].

(2.53)

Definition 2.1.22. A stochastic distribution process X : I −→ (S)∗ is integrable if:

1. ∀ξ ∈ S(R), S(X)(ξ) is measurable on I.

2. ∀ξ ∈ S(R), S(X)(ξ) ∈ L1(I).

3.
∫
I
S(Xt)(ξ)dt is the S-transform of a certain Hida distribution.

Theorem 2.1.10. [1] Let X : I −→ (S)∗ be a stochastic distribution process satisfying:

1. ∀ξ ∈ S(R), S(X)(ξ) is measurable on I.

2. There is a p ∈ N, a strictly positive constant a and a non-negative function L ∈ L1(I)

such that:

∀ξ ∈ S(R) |S(Xt)(ξ)| ≤ L(t)ea‖A
pξ‖22 ,

Then X is (S)∗-integrable.

Definition 2.1.23. Let {φt; t ∈ I} be a (S)∗ stochastic process satisfying the assumptions

of the previous theorem. Then φt�ŻH
t is (S)∗ integrable over I and we define the Rosenblatt

noise integral of {ψt} by:

∫
I

φtdZ
H
t =

∫
I

φt � ŻH
t dt. (2.54)

Moreover, we have the following representation

∫
I

φtdZ
H
t =

∫
I

(
D∗√

c(H,2)δt◦I
H
2

+

)2

(φt)dt. (2.55)
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2.1.6 The relation between the white noise and the Skorohod

approach

We have introduced two definitions of the stochastic integral with respect to the Rosen-

blatt process. The fisrt one is a pathwise integral using the method of russo-vallois and the

second one is a Skorohod integral using elements of the Malliavin calculus and we gave

the relation between them . Now we will show that the Skorohod integral coincides with

the Rosenblatt noise integral using the finite interval representation.

Definition 2.1.24. The Rosenblatt process (ZH
t )t∈R is equal in distribution to the process

(Y H
t )t∈[0,T ] defined by

∀t ∈ [0, T ] Y H
t = c(H, 2)

∫
[0,t]2

∫ t

0

2∏
j=1

(
s

xj

)H
2

(s− xj)
H
2
−1

+ dsdBx1dBx2.

Theorem 2.1.11. [1] The process (Y H
t ) is (S)∗ -differentiable and the S-trasnform of its

derivative is equal to:

∀ξ ∈ S(R), ∀t ∈ [0, T ] S(Ẏ H
t )(ξ) = c(H, 2)

(∫ t

0

ξ(x)

(
t

x

)H
2

(t− x)
H
2
−1

+ dx

)2

. (2.56)

Theorem 2.1.12. [1] Let (φt; t ∈ [0, T ]) be an (S)∗ stochastic process satisfying the

assumptions of Theorem 3.9. Then, φt � Ẏ H
t is (S)∗ integrable over [0, T ] and :

∫
[0,T ]2

φtdY
H
t =

∫
[0,T ]2

φt � Ẏ H
t dt. (2.57)

Proposition 2.1.4. [1] Let (φt; t ∈ [0;T ]) be a stochastic process such that φ ∈ L2(Ω;H)∩

L2([0, T ];D2,2) verifies

E
[∫ T

0

∫ T

0

‖D2
s1,s2

φ‖2
Hds1ds2

]
<∞,

Then, (φt) is Skorohod integrable and (S)∗-integrable with respect to the Rosenblatt process,

(Y H
t )t∈[0;T ], and we have:

∫ T

0

φtδY
H
t =

∫ T

0

φt � Ẏ H
t dt. (2.58)

In order to introduce the Itô formula for functional of the Rosenblatt process, we

need to define one of the most known hermite processes which is the fractional Brownian

motion.
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Definition 2.1.25. Let H ∈ (1/2, 1). The fractional Brownian motion (BH
t )t∈R of the

Hurst parameter H is defined by

BH
t

Def
= CB

H

∫
R

(∫ t

0

(u− y)
H− 3

2
+ du

)
dBy, t ∈ R

where CB
H is a normalizing constant such that E(BH

1 )2 = 1.

Remark 2.1.4. The normalizing constant is defined by

CB
H =

√
H(2H − 1)

β(2− 2H,H − 1
2
)
.

It will be also convenient to denote

cBH = CB
HΓ

(
H − 1

2

)
and cZH = c(H, 2)Γ

(
H

2

)2

,

and

cB,ZH

Def
=

cZH
cBH

2
, 1
2

=

√
(2H − 1)Γ(1− H

2
)Γ(H

2
)

(H + 1)Γ(1−H)
.

2.2 Itô formula for functionals of Skorokhod integrals

with respect to the Rosenblatt process

Since the Itô formula for functionals of Skorokhod integrals with respect to the frac-

tional Brownian motion is well-known, functionals of the Skorokhod integral with respect

to a Rosenblatt process are considered. Moreover, in this case, it is possible to formulate

sufficient conditions for the Itô formula in terms of the integrand rather than in terms of

the integral.

Proposition 2.2.1. [5] Let f be a function in C 3(R) such that for all c ≥ 0 and α ≥ 0

we have

|f ′′′(x)| ≤ c(1 + |x|α), x ∈ R.

Let the stochastic process (ψs)s∈[0,T ] which satisfies the following assumptions :

1. The process ψ is in L∞([0, T ];D4,p) for some

p > max{ 2

(2H − 1)
, 8(α + 1)}.
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2. For almost every r, v ∈ [0, T ], the following equalities are satisfied

lim
ε↓0

ess sup
u∈(v,v+ε)

‖(∇
H
2 ψr)(u)− (∇

H
2 ψr)(v)‖D3,8 = 0,

lim
ε↓0

ess sup
u∈(v,v+ε)

‖(∇
H
2
,H
2 ψr)(u, u)− (∇

H
2
,H
2 ψr)(v, v)‖D2,8 = 0,

lim
ε↓0

ess sup
u∈(v,v+ε)

‖(∇
H
2
,H
2 ψr)(r, u)− (∇

H
2
,H
2 ψr)(r, v)‖D2,8 = 0.

3. There exist functions p1 ∈ L
6

1+H [0, T ], p2 ∈ L
1
H [0, T ], p3 ∈ L

1
H [0, T ] such that for

almost every r ∈ [0, T ], the estimates

‖(∇H
2 ψr)(v)‖D3,8 ≤ p1(r),

‖(∇H
2
,H
2 ψr)(v, v)‖D2,8 ≤ p2(r),

‖(∇H
2
,H
2 ψr)(r, v)‖D2,8 ≤ p3(r),

are satisfied for almost every v ∈ [0, T ].

Define the process (Rt)t∈[0,T ] by

Rt
Def
=

∫ t

0

ψrδZ
H
r . (2.59)

Then the following equality is satisfied for every t ∈ [0, T ] almost surely

f(RH
t )− f(0) =

∫ t

0

f
′
(RH

s )ψsδZ
H
r

+ 2cB,ZH

∫ t

0

f
′′
(RH

s )(∇
H
2 RH

s )(s)ψsδB
H
2

+ 1
2

+ cZH

∫ t

0

(
f
′′
(RH

s )(∇
H
2
,H
2 RH

s )(s, s) + f
′′′

(RH
s )[(∇

H
2 RH

s )(s)]2
)
ψsds.

(2.60)

The following corollary is a direct consequence of the previous proposition. It provides

an Itô-type formula for functionals of Wiener integrals with respect to the Rosenblatt

process, i.e. when the integrand is deterministic.

Corollary 2.2.1. [5] Let f ∈ C 3(R) such that its third derivative has at most polynomial

growth and let (ψt)t∈[0,T ] be a bounded deterministic function. Let (Zt)t∈[0,T ] be the integral
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process defined by (2.59). Then the formula

f(RH
t ) = f(0) +

∫ t

0

f
′
(RH

t )ψsδR
H
s

+ H(2H − 1)

∫ t

0

f
′′
(Rs)ψs

∫ s

0

ψr(s− r)2H−2drds

+ c1(H)

∫ t

0

f
′′
(RH

s )ψs

(∫ s

0

ψr(s− r)H−1δB
H
2
, 1
2

)
δB

H
2

+ 1
2

+ (
√

2H(2H − 1))3

∫ t

0

f
′′′

(RH
s )ψs

∫ s

0

ψu(s− u)H−1

∫ u

0

ψv(s− v)H−1(u− v)H−1dvduds

+ c2(H)

∫ t

0

f
′′′

(RH
s )ψs

(∫ s

0

ψu(s− u)H−1

(∫ u

0

ψv(s− v)H−1δB
H
2

+ 1
2

)
δB

H
2

+ 1
2

)
ds,

is satisfied almost surely for every t ∈ [0, T ] with the constants

c1(H)
Def
=

4(2H − 1)

H + 1
, c2(H)

Def
=

8(2H − 1)

H + 1

√
H(2H − 1)

2
.

Next, we will introduce two corollaries considered as an applications of the previ-

ous obtained Itô formula. In the first corollary, we will use the Itô-type formula in the

proposition 2.2.1 to compute the second moment of the stochastic integral with respect to

a Rosenblatt process and in the second, we will give an estimation for higher absolute

moments of the stochastic integral with respect to the Rosenblatt process.

Corollary 2.2.2. Let ψ be a stochastic process which satisfies the the first and the third

assumption (1-3 ) of the proposition 2.2.1 and RH
t is defined in (2.59). Then we have

E(Rt)
2 = H(2H − 1)

∫ t

0

∫ t

0

E[ψrψs]|s− r|2H−2drds

+2H(2H − 1)c3(H)

∫ t

0

∫ t

0

E
[
∇

H
2 ψr(s)∇

H
2 ψs(r)

]
|s− r|H−1drds

+1
2
H(2H − 1)c3(H)2

∫ t

0

∫ t

0

E
[
∇

H
2
,H
2 ψr(s, s)∇

H
2
,H
2 ψs(r, r)

]
drds,

(2.61)

with the constant c3(H) as given by

c3(H)
Def
=

Γ(H
2

)Γ(1− H
2

)

Γ(1−H)
.

Proof. In this proof we will need to use the previous definition (proposition 2.2.1) and by

taking the function f(x) = x2, we have

E(R2
t ) = 2cZHE

∫ t

0

[
(∇

H
2
,H
2 Rs)(s)ψs

]
ds,
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since the stochastic integral has a zero mean. Now we will use theorem 2.1.5 to have

the following

E
[
(∇H

2
,H
2 Rs)(s)ψs

]
= E

[
ψs

(∫ s

0

(∇
H
2
,H
2 ψr)(s)δZ

H
r

)]

+
4cB,ZH B(H

2
, 1−H)

Γ(H
2

)2
E
[
ψs

(∫ s

0

(∇
H
2 ψr)(s)(s− r)H−1δB

H
2

+ 1
2

r

)]

+
2cZHB(H

2
, 1−H)2

Γ(H
2

)4

∫ s

0

E[ψrψs](s− r)2H−2dr.

By using 1 of the theorem 2.1.3 we get

E
[
ψs

(∫ s

0

(∇
H
2
,H
2 ψr)(s, s)δZ

H
r

)]
= cZH

∫ s

0

E
[
(∇

H
2
,H
2 ψs)(r, r)(∇

H
2
,H
2 ψr)(s, s)

]
dr,

and by 2 of the same theorem, it follows that

E
[
ψs

(∫ s

0

(∇
H
2 ψr)(s)(s− r)H−1δB

H
2

+ 1
2

r

)]
= cBH

2
+ 1

2

∫ s

0

E
[
(∇

H
2 ψs)(r)(∇

H
2 ψr)(s)

]
(s−r)H−1dr,

which is satisfied for every s ∈ [0, t].

Remark 2.2.1. The formula (2.61) holds under weaker assumptions: it is sufficient if the

integrand ψ belongs to the space L
1
H (0, T ;D4,2). This follows because the duality formula

from Lemma 4 can be used instead of the Itô formula; in which case the assumptions (1)

- (3) are not needed.

Corollary 2.2.3. Let q ≥ 3 and let ψ be a stochastic process that satisfies the first and

the second condition of proposition 2.2.1 with α = q − 2. Let (Rt)t∈[0,T ] be the stochastic

process defined by (2.59). Then the estimate

‖Rt‖3
Lq(Ω) ≤ 3(q − 1)cZH

∫ t

0

‖ψs
(
|Rs|(∇

H
2
,H
2 Rs)(s, s) + sgn(Rs)(q − 2)

[
(∇

H
2 Rs)(s)

]2
)
‖
L
q
3 (Ω)

ds,

(2.62)

is satisfied for every t ∈ [0, T ].

Proof. Initially, we assume that q > 3. Using proposition 2.2.1 with f(x) = |x|q (f is C 3
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since q > 3), it follows that

|Rt|q =

∫ t

0

q |Rs|q−1sgn(Rs)ψsδR
H
s

+ 2cB,ZH

∫ t

0

q(q − 1)|Rs|q−2(∇
H
2 Rs)ψsδB

H
2

+ 1
2

+ cRH

∫ t

0

ψsq(q − 1)|Rs|q−2(∇
H
2
,H
2 Rs(s, s))ds

+cRH

∫ t

0

ψsq(q − 1)(q − 2)|Rs|q−3sgn(Rs)
[
(∇

H
2 Rs)(s)

]2

ds,

(2.63)

where sgn denotes the sign function. Taking the expectation of both sides of (2.63), it

follows that

E|Rt|q = q(q−1)cZH

∫ t

0

E
[
|Rs|q−3ψs

(
|Rs|(∇

H
2
,H
2 Rs)(s, s) + (q − 2)sgn(Rs)[(∇

H
2 Rs)(s)]

2
)]
ds,

because the stochastic integrals have zero expectation. Thus, Hölder inequality yields

E|Rt|q ≤ q(q − 1)cZH

∫ t

0

(E|Rt|q)
q−3
q ‖ψs

(
|Rs|(∇

H
2
,H
2 Zs)(s, s) + (q − 2)sgn(Rs)[(∇

H
2 Rs)(s)]

2
)
‖
L
q
3 (Ω)

ds.

The desired inequality is proved by using Bihariâs inequality, see [10], Theorem 3, p. 135],

which gives

E|Rt|q ≤
(

3
q
(q − 1)cZH

∫ t

0

‖ψs
(
|Rs|(∇

H
2
,H
2 Rs)(s, s) + (q − 2)sgn(Rs)[(∇

H
2 Rs)(s)]

2
)
‖
L
q
3 (Ω)

ds

) q
3

.

For the case q = 3, proposition 2.2.1 cannot be used directly, since the function f(x) = |x|3

does not belong to C 3(R). Instead, for ε > 0, consider the function

fε(x)
Def
= (x2 + ε2)

3
2 , x ∈ R.

The function fε is a smooth approximation of f(x) = |x|3 with a bounded third derivative.

Hence, by proposition 2.2.1 it follows that Efε(Zt) satisfies the formula

Efε(Rt) = ε3 + cZH

∫ t

0

E
[
ψs

(
f
′′

ε (Rs)(∇
H
2
,H
2 Rs)(s, s) + f

′′′

ε (Rs)[(∇
H
2 Rs)(s)]

2
)]
ds, (2.64)

similarly as in the case q > 3. Since

lim
ε↓0

f
′′′

ε (x) = 6|x| and lim
ε↓0

f
′′′

ε (x) = 6sgn(x),

taking the limit ε ↓ 0 in equality (2.64) and using Lebesgueâs dominated convergence

theorem to interchange the limit, the integrals yields

E|Rt|3 = 6cZH

∫ t

0

E
[
ψs

(
|Rs|(∇

H
2
,H
2 Rs)(s, s) + sgn(Rs)[(∇

H
2 Rs)(s)]

2
)]
ds,

which concludes the proof.
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2.3 Itô formula for the Rosenblatt process

The Itô formula for the Rosenblatt process has been studied by several authors starting by

[Ciprian A. Tudor] in 2006 [27] and ending with [Petr Coupek , Tyrone E. Duncana, ,

Bozenna Pasik-Duncana ] in 2020 [5]; all the pre-mentioned authors introduced the Itô

formula using different approaches and conditions .

In this section we will introduce two versions of the Itô formula using the skorohod

approach then we will generate the Itô formula using the white noise approach introduced

by Benjamin Arras in 2015[1].

2.3.1 Itô formula in the Skorohod sense

We study the Itô formula for the Rosenblatt process in the divergence sense, We will

deduce the Skorohod Itô formula by using the pathwise Itô formula.

Theorem 2.3.1. [27] Recall that for any function f ∈ C 2(R).

f(ZH
t ) = f(0) +

∫ t

0

f ′(ZH
s )d−ZH

s

= f(0) +

∫ t

0

f ′(ZH
s )δZH

s + 2Tr(1)(D(1)f ′(ZH
s ))− Tr(2)(D(2)f ′′(ZH

s)).

Remark 2.3.1. We are actually able to prove Skorohod Itô formula only in two particular

cases: when f(x) = x2 and for f(x) = x3, since the two trace term exists and is proved

only in the previous two particular cases . For more details [see [27]].

For the sake of completeness, it is noted that from proposition 2.2.1, the Itô formula

for functionals of the Rosenblatt process itself can be obtained. It is only required that f

be C 3 and to set ψ ≡ 1 .

Theorem 2.3.2. [5] Let f ∈ C 3 be such that its third derivative has at most a polynomial

growth. Then the equality:
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f(ZH
t ) = f(0) +

∫ t

0

f
′
(ZH

t )δZH
t

+ H

∫ t

0

f
′′
(ZH

t )s2H−1ds

+ c1(H)

∫ t

0

f
′′
(ZH

t )

(∫ t

0

(s− u)H−1δB
H
2

+ 1
2

u

)
δB

H
2

+ 1
2

s

+ H
2
κ3(ZH

1 )

∫ t

0

f
′′′

(ZH
s )s3H−1ds

+ c2(H)

∫ t

0

f
′′′

(ZH
s )

(∫ s

0

(s− u)H−1

(∫ u

0

(s− v)H−1δB
H
2

+ 1
2

u

)
δB

H
2

+ 1
2

u

)
ds,

is satisfied for t ∈ [0, T ] almost surely with

κ3(ZH
1 ) =

4
√

2H(2H − 1)3

3H − 1
β(H,H),

where β is the beta function.

2.3.2 Itô formula using the white noise approach

In this subsection, we will derive an Itô formula for a certain class of functionals of the

Rosenblatt process, in the framework of white noise distribution theory. Firstly we will

start by getting an Itô formula for x2 and x3 like what tuder did but in the (S)∗ sense,

then we identify the class of functionals for which this Itô formula is true.

Theorem 2.3.3. [1] Let (a, b) > 0 such that a < b. Then in (S)∗ :

(ZH
b )2 − (ZH

a )2 = 2

∫ b

a

ZH
s dZ

H
s + b2H − a2H + 4

∫ b

a

dXH,2
s ,

and

(ZH
b )3 − (ZH

a )3 = 3

∫ b

a

(ZH
s )2dZH

s + 6H

∫ b

a

s2H−1ZH
s ds+ 12

∫ b

a

ZH
s dX

H,2
s

+ κ3(ZH
1 )(b3H − a3H) + 24

∫ b

a

dXH,3
s .

Theorem 2.3.4. [1] Let (a, b) ∈ R∗+ such that a ≤ b < ∞. Let F be an entire analytic

function of the complex variable verifying:

∃N ∈ N,∃C > 0,∀z ∈ C |F (z)| ≤ C(1 + |z|)Ne
1√
2bH
|=(z)|

.

Then, we have in (S)∗:
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F (ZH
b )− F (ZH

a ) =

∫ b

a

F (1)(ZH
t ) � ŻH

t dt

+
∞∑
k=2

(
Hκk(Z

H
1 )

∫ b

a

tHk−1

(k − 1)!
F (k)(ZH

t )dt+ 2k
∫ b

a

F (k)(ZH
t ) �

.

XH,k
t dt

)
.

Remark 2.3.2.

1. The Itô formula from the previous theorem holds for an infinitely differentiable func-

tion as condition.

2. The non-zero cumulants of the Rosenblatt distribution seem to be the ones responsible

for this result.

2.4 Local times and their properties for the Rosenblattt

process

Itô lemma is one of the most important and useful results in the theory of stochas-

tic calculus, which differs from the classical deterministic formulas by the presence of a

quadratic variation term. One drawback which can limit the applicability of Itô lemma

in some situations, is that it only applies for twice continuously differentiable functions.

However, the quadratic variation term can alternatively be expressed using local times,

which relaxes the differentiability requirement.

In this section, we will prove the existence of the local time for the Rosenblatt process

and more than that we will give it’s representation and some of it’s properties .

Definition 2.4.1. Let f : R −→ R be a deterministic function, the occupations measure

is defined by

ν(A,B) = µ(B ∩ f−1(A)), (2.65)

where A ⊂ R and B ⊂ R+ are Borel sets and µ is the Lebesgue measure on R+.

Then, when ν(., B) is absolutely continuous with respect to µ, the occupation density

(or local time) is given by the Radon-Nikodym derivative:

L(x,B) =
dν

dµ
(x,B). (2.66)
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For a fixed trajectory of a process, the Fourier transform

F (u) =

∫
R
eiuxL(t, x)dx, (2.67)

of L(t, x) with respect to the variable x can be represented with the help of the local

time as follows:

F (ξ) =

∫ t

0

eiξZs . (2.68)

Then the local time can be represented via the inverse Fourier transform of this function,

that is,

L(t, x) =
1

2π

∫
R

∫ t

0

eiξ(Zs−x)dsdξ. (2.69)

Proposition 2.4.1. [17] The function f has an occupation density L(x,B) for x ∈ R, B ∈

B([u, U ]) which is square integrable in x for every fixed B if

∫
R
|
∫ U

u

e(iξf(t))dt|2dξ <∞, (2.70)

and more than that , in this case, the occupation density can be represented as

L(x,B) =
1

2π

∫
R

∫
B

e(iξ(x−f(t))dξds. (2.71)

The deterministic function f(t) can be chosen to be the single path of a stochastic

process (Xt)t≥0. To make sure that the existence and the square integrability of L(x,B),

it is enough to show that :

E
[∫

R
|
∫ U

u

eiξXtdt|2dξ
]
<∞. (2.72)

If the process is Gaussian its enough to make sure that :

∫
R

∫ U

u

∫ U

u

E
[
eiξ(Xt−Xs)dt

]
dsdtdξ <∞, (2.73)

then one can evaluate E [exp (iξ (Xs −Xt))] explicitly to establish (2.73). It leads to the

well-known Gaussian criterion:

Proposition 2.4.2. [17] Let X be a centered Gaussian stochastic process, X has an

occupation density L = L(x,B, ω) which, for B fixed, is Pa.s. square integrable in x if

∫
[u,U ]2

∆(s, t)−
1
2dsdt <∞, (2.74)
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where ∆(s, t) = E[(Xs −Xt)
2].

In our case, the Rosenblatt process is not Gaussian, so we can’t apply the previous

proposition and we need other analysis to prove the existence of the local time, which we

have done in the next theorem.

Theorem 2.4.1. The Rosenblatt process has the square integrable local time in each finite

interval [0, T].

Proof. In this proof, we will verify the expression (2.73) for [u, U ] = [0, T ]. By using the

self-similarity and the homogeneous increments of the process we have

E
[
eiξ(Z

H
t −ZHs )

]
= E

[
eiξZ

H
|t−s|

]
= E

[
eiξZ

H
1 |t−s|H

]
.

In addition, Z1 = I2(φ), where

φ(x, y) = φH(x, y) = c(H, 2)

∫ 1

0

fH(s, x, y)ds,

and

fH(s, x, y) = (t− x)
H
2
−1

+ (t− y)
H
2
−1

+ .

By the fact that we got this bound

|E
[
eiαI2(f)

]
| =

(∏
m≥1

(1 + 4α2λ2
k,f )

)− 1
4

≤

(
1 + 4α2

∑
k≥1

λ2
k,f + 16α4

∑
j<k

λ2
j,fλ

2
k,f + 64α6

∑
j<k<l

λ2
j,fλ

2
k,fλ

2
l,f

)− 1
4

,

(2.75)

where λk,f , k ≥ 1, be the eigenvalues of the operator Af which defined by (1.40) we get :

E
[
eiξZ

H
1 |t−s|H

]
= E

[
eiξI2(φ)|t−s|H

]
≤ (1 + 64ξ6|t− s|6Hλ2

1,φλ
2
2,φλ

2
3,φ)−

1
4 .

Below we prove that rkAφ > 2, whence λ = λ2
1,φλ

2
3,φλ

2
3,φ > 0 (recall that the eigen

numbers λ, φ are ordered according to their absolute values).

Then we get∫
R

∫ T

0

∫ T

0

E
[
eiξ(Z

H
t −ZHs )

]
dsdtdξ ≤

∫ T

0

∫ T

0

∫
R
(1 + 64λξ6|t− s|6H)−

1
4dξdsdt

=

∫ T

0

∫ T

0

1

2
|t− s|−H

∫
R
(1 + λz6)−

1
4dzdsdt <∞,
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and this is what was to be proved.

Proof of the inequality rk Aφ > 2. Assume that rk Aφ ≤ 2. Let f1(x) = 1[0,1](x),

f2(x) = 1[0,2/3](x), and f3(x) = 1[1/3,1](x). Since rk Aφ ≤ 2, there exist numbers α1, α2, and

α3, not all being zero, such that α1Aφf1+α2Aφf2+α3Aφf3 = 0. Let f = α1f1+α2f2+α3f3.

Then

0 = (Aφf, f) = c(H, 2)

∫
R2

∫ 1

0

(s− x)
H
2
−1

+ (s− y)
H
2
−1

+ f(x)f(y)dsdxdy

= c(H, 2)

∫ 1

0

(∫
R
(s− x)

H
2
−1

+ f(x)dx

)2

ds,

whence a(s) =

∫
R
(s − x)

H
2
−1

+ f(x)dx = 0 for almost all x ∈ [0, 1] (in fact, for all

x ∈ [0, 1], since a is continuous as a linear combination of continuous functions). For

s ∈ [0, 1
3
], we have a(s) = 2(α1+α2)s

H
2

H
, whence α1 + α2 = 0. If s ∈ (1

3
, 2

3
), then(according

to what we proved above) a(s) =
2α3(s− 1

3
)
H
2

H
, whence α3 = 0. Finally, a(s) =

2α1(s− 2
3

)
H
2

H
for

s ∈ [2
3
, 1], whence α1 = α2 = 0.

Remark 2.4.1. The bound (2.75) is so important such that the existence of the local

time of the Rosenblatt depend on it as we saw in the previous proof. That bound is direct

consequence of the remark (1.3.2) since the Rosenblatt process can be approximated by

(1.37), and for more details see [24].

The following proposition is the key for the next lemmas and theorems on the local

time of the Rosenblatt process.

Proposition 2.4.3. [17] Let n ∈ N and 0 ≤ η < 1−H
2H

. Then, for any times 0 ≤ u < U ,

the Rosenblatt process satisfies∫
[u,U ]n

∫
Rn

n∏
j=1

|ξj|η|Eexp

(
i

n∑
j=1

ξjZtj

)
|dξdt ≤ Cnn2nH(1+η)(U − u)(1−H(1+η))n, (2.76)

where the constant C > 0 depends only on H and η. This proposition can be applied to

obtain the next Hölder condition on L(x,B) .

Theorem 2.4.2. [17] Let (Zt)t≥0 be a Rosenblatt process with H ∈ (1
2
, 1). The local time

(x, t) −→ L(x, [0, t]) is almost surely jointly continuous and has finite moments. For a

finite closed interval I ⊂ (0,∞), let L∗(I) = sup
x∈R

L(x, I). There exist constants C1 and C2

such that, almost surely,

lim sup
r−→0

L∗([s− r, s+ r])

r1−H(log log r−1)2H
≤ C1, (2.77)
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or any s ∈ I and

lim sup
r−→0

sup
s∈I

L∗([s− r, s+ r])

r1−H(log r−1)2H
≤ C1. (2.78)

In particular, the local time L(x, I) is well defined for any fixed x and interval I ⊂ (0,∞).

Corollary 2.4.1. [17] For any finite closed interval I ⊂ (0,∞) there exists constants C1

and C2, independent of x and t, such that for almost surely, for every t ∈ I and every

x ∈ R

lim sup
r−→0

L(x, [t− r, t+ r])

r1−H(log log r−1)2H
≤ C1, (2.79)

or any x ∈ R and

lim sup
r−→0

sup
t∈I

L(x, [t− r, t+ r])

r1−H(log r−1)2H
≤ C1. (2.80)

The next result is on the behavior of the trajectories of Z.

Corollary 2.4.2. [17] Let I ⊂ (0,∞) be a finite closed interval. There exists a constant

C > 0 such that for every s ∈ I we have, almost surely,

lim inf
r−→0

sup
s−r<t<s+r

|Zt − Zs|
rH(log log r−1)−2H

≥ C, (2.81)

and

lim inf
r−→0

inf
t∈I

sup
s−r<t<s+r

|Zt − Zs|
rH(log log r−1)−2H

≥ C. (2.82)

In particular, Z is almost surely nowhere differentiable.

2.4.1 Joint continuity of the local times and moment estimates

Definition 2.4.2. the local time L(x, t) := L(x, [0, t]) for the Rosenblatt process Z exists

and admits the representation

L(x, t) =
1

2π

∫
R

∫ t

0

eiξ(x−Zs)dsdξ. (2.83)

Theorem 2.4.3. [17] The local time L(x, t) is Hölder-continuous both in time and space,

such that for every 0 ≤ s < t and x ∈ R,

E|L(x, t)− L(x, s)|n ≤ cnnn2H |t− s|(1−H)n. (2.84)

Moreover, for any 0 ≤ γ < 1−H
2H

and y ∈ R, we have
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|E(L(x+ y, [s, t])− L(x, [s, t]))n| ≤ cnnn2H(1+)|t− s|(1−H−γH)n|y|γn. (2.85)

In both inequalities the constant c depends only on γ and H.

Corollary 2.4.3. [17] The local time L(x, t) is jointly Hölder continuous in t and x for

Almost surely. This corollary is a modification of the previous Theorem, where we will

shift the process in the x-direction by the value Za, such that for all s < t and a > 0 satisfy

a ≤ s or a ≤ t. Then

E|L(x+ Za, t)− L(x+ Za, s)|n ≤ cnnn2H |t− s|(1−H)n. (2.86)

Moreover, for any 0 ≤ γ < H−1−1
2

,

|E(L(x+ y + Za, [s, t])− L(x+ Za, [s, t]))
n| ≤ cnnn2H(1+)|t− s|(1−H−γH)n|y|γn. (2.87)

In both cases the constant c > 0 depends only on γ and H.

Corollary 2.4.4. [17] The moment bounds obtained above translate into the following

tail estimates:

1. For any finite closed interval I ⊂ (0,∞),

P(L(x, I) ≥ |I|1−Hu2H) ≤ C1e
−c1u, (2.88)

and

P(|L(x, I)− L(y, I)| ≥ |I|1−H−γH |x− y|γu2H(1+γ)) ≤ C2e
−c2u. (2.89)

2. For I = [a, a+ r] or I = [a− r, a], we have

P(L(x+ Za, I) ≥ r1−Hu2H) ≤ C1e
−c1u, (2.90)

and

P(|L(x+ Za, I)− L(y + Za, I)| ≥ r1−H−γH |x− y|γu2H(1+γ)) ≤ C2e
−c2u. (2.91)



Chapter 3

Stochastic differential equations driven

by the Rosenblatt process

3.1 Strongly continuous semi-groups and their genera-

tors

Definition 3.1.1. A map T (.) : R+ −→ B(X) is called a strongly continuous operator

semi-group or just C0-semi-group if it satisfies

1. T (0) = I and T (t+ s) = T (t)T (s) for all t, s ∈ R+ (the semi-group property),

2. for each x ∈ X the orbit T (.)x : R≥0 −→ X; t 7−→ T (t)x is continuous (the strong

continuity).

The generator A of T (.) which is an operator is given by

1. D(A) = {x ∈ X| lim
t−→0,t∈R∗

1

t
(T (t)x− x) exists},

2. Ax = lim
t−→0, t∈R∗

1

t
(T (t)x− x) for x ∈ D(A).

Remark 3.1.1.

1. X is non-zero complex Banach space and B(X) denote by the space of all bounded

linear maps T : X −→ X, where B(X,X) = B(X) .

2. I denote the identity operator.

61
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Remark 3.1.2.

1. Let A generate a C0-semi-group. Then its domain D(A) is a linear subspace and A

is a linear map.

2. Let T (.) : R+ −→ B(X) be a semi-group. Then we have

(a) T (t)T (s) = T (t+ s) = T (s+ t) = T (s)T (t).

(b) T (nt) = T (
n∑
j=1

t) =
n∏
j=1

T (t) = T (t)n.

Definition 3.1.2. Let A be a linear operator on X with domain D(A) and let x ∈ D(A).

A function u : R+ −→ X solves the homogeneous evolution equation (or Cauchy problem)

u
′
(t) = Au(t), t ≥ 0, u(0) = x, (3.1)

if u belongs to C 1(R+, X) and satisfies u(t) ∈ D(A) and (3.1) for all t ≥ 0.

Proposition 3.1.1. [23] Let A generate the C0-semi-group T (.) and x ∈ D(A). Then

T (t)x belongs to D(A) and T (.)x belongs to C 1(R+, X), and we have

d

dt
T (t)x = AT (t)(x) = T (t)Ax for all t ≥ 0.

Moreover, the function u = T (.)x is the only solution of (3.1).

Definition 3.1.3. The operator A is called closed if for every sequence (xn) in D(A)

possessing the limits

lim
n−→∞

xn = x lim
n−→∞

Axn = y,

we obtain

x ∈ D(A) and Ax = y.

Proposition 3.1.2. [23] We define the resolvent set of a closed operator A by

ρ(A) = {λ ∈ C|λI − A : D(A) −→ X is bijective}.

If λ ∈ ρ(A), we note R(λ,A) for (λI − A)−1 and call it resolvent. The spectrum of A is

the set

σ(A) = C \ ρ(A).

The point spectrum

σp(A) = {λ ∈ C|∃v ∈ D(A) \ {0} with Av = λv},

is a subset of σ(A) which can be empty if dimX =∞.
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Remark 3.1.3. For a linear operator A in X the following assertions hold.

1. The operator A is closed if and only if its graph Gr(A) = {(x,Ax)|x ∈ D(A)} is

closed in X × X (endowed with the product metric) and if and only if D(A) is a

Banach space with respect to the graph norm ‖.‖A.

2. If A is closed with D(A) = X, then A is continuous (closed graph theorem).

3. Let A be injective. Set D(A−1) = R(A) = {Ax|x ∈ D(A)}. Then A is closed if and

only if A−1 is closed.

Definition 3.1.4. Let ω ∈ R. A ω-contraction semi-group is a C0-semi-group T (.) sat-

isfying ‖T (t)‖ ≤ eωt for all t ≥ 0. Such a semi-group is also said to be quasi-contractive.

If ω = 0, we call T (.) a contraction semi-group.

3.2 Mild solution and extrapolation

Definition 3.2.1. Let A generate the C0-semi-group T (.), u0 ∈ X, and f ∈ C (J,X)

where J ⊆ R satisfy ∫ δ

0

‖f(s)‖ds <∞ for some δ ∈ J \ {0}.

The function u ∈ C(J
′
, X) given by

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds, t ∈ J ′

is called mild solution (on J ′ = J ∪ {0}) of the equation

u
′
(t) = Au(t) + f(t), t ∈ J, u(0) = u0. (3.2)

Definition 3.2.2. Let A be a closed operator, u0 ∈ X, 0 ∈ J , and f ∈ C (J,X). A

function u ∈ C (J,X) is called an integrated solution (on J) of (3.2) if the integral
∫ t

0

usds

belongs to D(A) and satisfies

u(t) = u0 + A

∫ t

0

u(s)ds+

∫ t

0

f(s)ds, (3.3)

for all t ∈ J .



3.3 Analytic semi-groups and sectorial operators 64

3.3 Analytic semi-groups and sectorial operators

Definition 3.3.1. Let φ ∈ (0, π]. We write Σφ = {λ ∈ C\{0}|| arg λ |< φ} for the open

sector with (half) opening angle φ. Observe that Σπ/2 = C+is the open right halfplane and

Σπ = C\R≤0 is the plane with cut R≤0. A closed operator A is called sectorial of type

(K,φ) if for some constants φ ∈ (0, π] and K > 0 the sector Σφ belongs to ρ(A) and the

resolvent satisfies the inequality

‖R(λ,A)‖ ≤ K

|λ|
for all λ ∈

∑
φ

, (3.4)

the supremum ϕ(A) = ϕ ∈ (0, π] of all such φ is called the angle of A.

Theorem 3.3.1. [23] Let A be sectorial of type (K,ϕ) with ϕ > π
2
, t > 0, θ0 ∈ (π

2
, φ),

θ ∈ [θ0, φ], r > 0 and Γ = Γ(r, θ) be defined below. Then the integral

etA = lim
R−→∞

1

2πi

∫
ΓR

etλR(λ,A)dλ, (3.5)

with

Γ1 = Γ1(r, θ) = {λ = γ1(s) = −se−iθ|s ∈ (−∞,−r]},

Γ2 = Γ2(r, θ) = {λ = γ2(s) = reiα|α ∈ (−θ, θ]},

Γ3 = Γ3(r, θ) = {λ = γ3(s) = seiθ|s ∈ (r,∞]},

Γ = Γ(r, θ) = Γ1 ∪ Γ2 ∪ Γ3 ΓR = Γ ∩B(0, R), 0 < r < R,

where γ : J ⊆ R −→ Y piecewise C 1 (Y in a Banach space).

Theorem 3.3.2. [23] Let A be sectorial of angle ϕ > π
2
. Define etA as in (3.5) for t > 0,

and set e0A = I. Then the following assertions hold.

1. etAesA = esAetA = e(t+s)A for all t, s ≥ 0.

2. The map t −→ etA belongs to C 1(R+,B(X)). Moreover, etAX ⊆ D(A),
d

dt
etA = AetA

and ‖AetA‖ ≤ C/t for a constant C > 0 and all t > 0. We also have AetAx = etAAx

for all x ∈ D(A) and t ≥ 0.

3. Let D(A) be dense. Then (etA)t≥0 is a C0-semi-group generated by A.
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Definition 3.3.2. A densely defined linear operator T from one topological vector space,

X, to another one, Y is a linear operator that is defined on a dense linear subspace

dom(T ) of X and takes values in Y , written T : dom(T ) ⊆ X → Y . Sometimes this

is abbreviated as T : X → Y when the context makes it clear that X might not be the

set-theoretic domain of T .

Definition 3.3.3. Let ϑ ∈ (0, π/2]. An analytic C0-semigroup on Σϑ is a family of

operators {T (z)|z ∈ Σϑ ∪ 0} such that

1. T (0) = I and T (w)T (z) = T (w + z for all z, w ∈ Σϑ.

2. The map T : Σϑ −→ B(X); z −→ T (z), is (complex) differentiable.

3. T (z)x −→ x in X as z −→ 0 in Σϑ′ for all x ∈ X and each ϑ′ ∈ (0, ϑ).

The generator of T (.) is defined as the generator of the C0-semigroup (T (t))t≥0, and

its angle ψ ∈ (0, π/2] is the supremum of possible ϑ. If ‖T (z)‖ is bounded for all z ∈ Σψ′

and each ψ′ ∈ (0, ψ), the analytic C0-semigroup is called bounded.

Theorem 3.3.3. [23] Let x ∈ X, b > 0, f ∈ C ([0, b], X) and A−ωI be densely defined

and sectorial of angle ϕ > π
2
for some ω ∈ R. We study the inhomogeneous evolution

equation

u
′
(t) = Au(t) + f(t), t ∈ [0, b] = J, u(0) = x. (3.6)

This equation has the mild solution

u(t) = T (t)x+

∫ t

0

T (t− s)f(s)ds = T (t)x+ v(t), t ∈ [0, b], (3.7)

where A generates the analytic C0-semi-group T (.).

Remark 3.3.1. If A generates an analytic semigroup, then the inhomogeneous problem

exhibits better regularity properties than in the general case. The mild solution is ’al-

most’ differentiable in X for continuous inhomogeneities f, and one needs very little extra

regularity of f to obtain the differentiability of the solution.

Theorem 3.3.4. [23] Let x ∈ X, b > 0, f ∈ C ([0, b], X), and A− ωI be densely defined

sectorial of angle ϕ > π
2
for some ω ∈ R. Then the mild solution u of (3.6) satisfies the

following assertions

1. We have u ∈ C β([ε, b], X) for all β ∈ (0, 1) and ε ∈ (0, b). If also x ∈ D(A), we can

even take ε = 0 here.
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2. If f ∈ C α([0, b], X) for some α ∈ (0, 1), then u solves (3.5) on (0, b]. If also x ∈

D(A), then u solves (3.6) on [0, b].

3.4 Dissipative operators

Definition 3.4.1. The duality set J(x) of a vector x ∈ X is defined by

J(x) = {x∗ ∈ X∗|〈x, x∗〉 = ‖x‖2, ‖x‖ = ‖x∗‖},

where 〈x, x∗〉 = x∗(x) for all x ∈ X and x∗ ∈ X∗.

Definition 3.4.2. A linear operator A is called dissipative if for each vector x ∈ D(A)

there is a functional x∗ ∈ J(x) such that Re〈Ax, x∗〉 ≤ 0. The operator A is called

accretive if −A is dissipative.

Proposition 3.4.1. [23] A linear operator A is dissipative if and only if it satisfies ‖λx−

Ax‖ ≥ λ‖x‖ for all λ > 0 and x ∈ D(A). If A generates a contraction semi-group, then

we have Re〈Ax, x∗〉 ≤ 0 for every x ∈ D(A) and all x∗ ∈ J(x).

Definition 3.4.3. Let X and Y Banach. We say that the linear operator A : D(A) ⊆

X −→ Y admits a closure if there’s a linear operator B : D(B) ⊆ X −→ Y such that

D(A) ⊆ D(B), B|D(A) = A and G(B) = G(A), where G(Z) is the graph of Z.

Proposition 3.4.2. [23] Let A be dissipative. The following assertions hold.

1. Let λ > 0. Then the operator λI − A is injective and for y ∈ R, (λI − A) =

(λI − A)(D(A)) we have ‖(λI − A)−1y‖ ≤ 1
λ
‖y‖.

2. Let λ0I − A be surjective for some λ0 > 0. Then A is closed, (0,∞) ⊆ ρ(A), and

‖R(λ,A)‖ ≤ 1
λ
for all λ > 0.

3. Let D(A) be dense in X. Then A is closable and A is also dissipative.

Theorem 3.4.1. [23] Let A be a linear and densely defined operator. The following

assertions hold.

1. Let A be dissipative and λ0 > 0 such that λ0I−A has dense range. Then Ā generates

a contraction semigroup.

2. Let A be dissipative and λ0 > 0 such that λ0I −A is surjective. Then A generates a

contraction semigroup.
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3. Let A generate a contraction semigroup. Then A is dissipative, C+ ⊆ ρ(A), and

‖R(λ,A)‖ ≤ 1/Re(λ) for λ ∈ C+.

One can replace ’contraction’ by ’ ω-contraction’ and A by A−ωI for ω ∈ R. Operators sat-

isfying the assumptions in assertion b) are called maximally dissipative or m-dissipative.

Now, we finely reached the main goal and objective of this work, which is the stochas-

tic analysis for certain classes of stochastic differential equations, namely the dissipative

systems.

3.5 Dissipative Stochastic Evolution Equations Driven

by the Rosenblatt process

Definition 3.5.1. The stochastic evolution equations driven by the Rosenblatt process

which is not Gaussian in the Hilbert space H is defined by the following equation

du(t) = [Au(t) + F (u(t))]dt+ dZ(t)

u(0) = u0,
(3.8)

where A and F satisfy some dissipativity condition on H and Z is a general H-valued

Rosenblatt process that satisfies some specific conditions on the covariance operator.

Assumption 1.1.

The operator A : D(A) ⊂ H −→ H is associated with a form (a,V) that is densely defined,

coercive and continuous; the operator A generates a strongly continuous, analytic semi-

group (S(t))t≥0 on the Hilbert space H that is uniformly exponentially stable: there exist

M ≥ 1 and ω > 0 such that ‖S(t)‖L(H) ≤Me−ωt for all t ≥ 0.

Assumption 1.2.

F is an m-dissipative mapping with V ⊂ D(F ) and F : V −→ H is continuous with

polynomial growth.

Let us introduce the class of noises that we are concerned with. We define the mean

of a H valued process (Zt)t∈[0,T ] by mZ : [0, T ] −→ H, mZ(t) = E(Zt) and the covariance

CZ : [0, T ]2 −→ L1(H) by

〈CZ(t, s)u, v〉H = E[〈Zt −mZ(t), v〉H〈Zs −mZ(s), u〉H],
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for every s, t ∈ [0, T ] and for every u, v ∈ H.

Let Q be a nuclear self-adjoint operator on H(i.e. Q ∈ L1(H) and Q = Q∗ > 0).

It is well-known that Q admits a sequence (λj)j≥1 of eigenvalues such that 0 < λj ↓ 0

and
∑
j≥1

λj < ∞. Moreover, the eigenvectors (ej)j≥1 of Q form an orthonormal basis of

H. Let (x(t))t∈[0,T ] be a centered square integrable one-dimensional process with a given

covariance R. We define its infinite dimensional counterpart by

Zt =
∞∑
j=1

√
λjxj(t)ej t ∈ [0, T ],

where xj are independent copies of x. It is trivial to see that the above series is convergent

in L2(Ω;H) for every fixed t ∈ [0, T ] and

E‖Zt‖2
H = (TrQ)R(t, t).

Remark 3.5.1. The process Zt is a H-valued centered process with covariance R(t, s)Q.

Assumption 1.3.

We will assume that the covariance of the process Zt satisfies the following condition

(s, t) −→ ∂2R

∂s∂t
∈ L1([0, T ]2). (3.9)

Assumption 1.4.

Let Zt be given in the form

Zt =
∑
j≥1

√
λjxj(t)ej,

where λj, ej and xj(t) have been defined above. Suppose that the covariance R of the

process (Zt)t∈[0,T ] satisfies the following condition:

| ∂
2R

∂s∂t
(s, t)| ≤ c1|t− s|2H−2 + g(s, t),

for every s, t ∈ [0, T ], where |g(s, t)| ≤ c2(st)β with β ∈ (−1, 0), H ∈ (1
2
, 1) and c1, c2 are

strictly positive constant.

Remark 3.5.2.

The previous assumptions on the operator A , F and the driven process are necessary

conditions in order to have a mild solution for the equation (3.8).
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3.5.1 The Stochastic Convolution Process

Definition 3.5.2. The stochastic convolution process is the weak solution of the linear

stochastic evolution equation

dY (t) = AY (t)dt+ dZ(t),

and it is given by

WA(t) =

∫ t

0

S(t− s)dZs. (3.10)

Proposition 3.5.1. [2] Assume that the covariance function R satisfies (3.9). Then, for

every t ∈ [0, T ], the stochastic convolution given by (3.10) exists in L2([0, T ];H) and it is

(Ft)t≥0 adapted.

Proposition 3.5.2. [2] Suppose that Zt satisfies Assumption 1.4 and fix α ∈ (0, H). Let

WA be given by (3.10). Then for every γ < α and ε < α− γ it holds that

WA ∈ C α−γ−ε([0, T ];D((−A)γ)).

In particular for any fixed t ∈ [0, T ] the random variable WA(t) belongs to D(−A)γ).

Proposition 3.5.3. [2] Fix α ∈ (0, H ∧ (β + 1)). Then the process WA(.) has α Hölder

continuous paths.

3.5.2 Existence and Uniqueness of the Solution

Let L2
F(Ω; C ([0, T ];H)) denote the Banach space of all Ft-measurable, pathwise continuous

processes, taking values in H, endowed with the norm

‖X‖L2
F (Ω;C ([0,T ];H)) =

(
E sup
t∈[0,T ]

‖X(t)‖2
H

) 1
2

,

while L2
F(Ω;L2([0, T ];V)) denotes the Banach space of all mappings X : [0, T ] −→ V

such that X(t) is Ft-measurable, endowed with the norm

‖X‖L2
F (Ω;L2([0,T ];V)) =

(
E
∫ T

0

‖X(t)‖2
Vdt

) 1
2

.
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Theorem 3.5.1. [2] Let u0 ∈ D(F ) (resp. u0 ∈ H). Then there exists a unique mild

(resp. generalized) solution to the equation (3.8) which is an H-valued continuous and

adapted process

u ∈ L2
F(Ω; C ([0, T ];H)) ∩ L2

F(Ω;L2([0, T ];V)),

which depends continuously on the initial condition:

E|u(t;u0)− u(t;u1)|2H ≤ C|u0 − u1|2H. (3.11)

Definition 3.5.3. A process u ∈ L2
F(Ω; C ([0, T ];H)) ∩ L2

F(Ω;L2([0, T ];V)) is a solution

to equation 3.8 if it satisfies P-a.s. the integral equation

u(t) = S(t)u0 +

∫ t

0

S(t− s)F (u(s))ds+WA(t), t ∈ [0, T ]. (3.12)

The proof of this theorems is very classical. By setting y(t) = u(t) − WA(t), this

reduces to a problem interduced in the next definition. In order to prove the existence and

the uniqueness of the mild solution for equation(3.8) we will prove the existence and the

uniqueness of the mild solution for this problem. This strategy of proof was used in [7]

section 5.5.4 .

Definition 3.5.4. Let us consider the following evolution equation

y
′
(t) = Ay(t) + F (z(t) + y(t)) t ≥ 0

y(0) = u0,
(3.13)

where A and F satisfy the dissipativity condition on H stated in Assumptions 1.1 and

1.2 and z is a trajectory of the stochastic convolution process, which satisfies the regularity

conditions stated in Theorem (3.5.2)

z ∈ C α−γ−ε([0, T ];D(−A)γ).

Remark 3.5.3.

1. The key point in the following construction is the observation that V = D((−A)
1
2 ),

compare Remark 3.5.6 . Further, in this case we impose the following bound: 1
2
< H.

Therefore, we can and do assume that

z ∈ CH− 1
2
−ε([0, T ];D(−A)

1
2 ),

for arbitrary ε > 0.
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2. the assumption on F implies that F : V −→ H is continuous, hence the process

(F (z(t)))t∈[0,T ] is continuous and satisfies sup
t∈[0,T ]

‖F (z(t))‖H < +∞.

Definition 3.5.5.

1. The resolvent Jλ : X −→ X of a maximal monotone operator A is defined by Jλx =

xλ, where xλ is the unique solution to

0 ∈ J(xλx) + λAxλ.

2. The Yosida approximation Aλ : X −→ 2X
∗ is given by

Aλx =
1

λ
J(x− Jλx), λ > 0, x ∈ X

where X∗ is the dual space of Banach space X.

Definition 3.5.6. Let us consider the following approximation of the evolution equation

(3.13)

y
′
(t) = Ayα(t) + Fα(z(t) + yα(t)) t ≥ 0

y(0) = u0,
(3.14)

where Fα Yosida approximations of F . It is known that Fα are Lipschitz continuous,

dissipative mappings such that, for all u ∈ V, it holds F±(u) −→ F (u) in H, as α −→ 0.

Lemme 3.1. [15] Let T > 0 and g be a positive bounded measurable function on [0, T ].

Suppose that a ≥ 0, b ≥ 0 are constants, such that for all t ∈ [0;T ], we have

g(t) ≤ a+ b

∫ t

0

g(s)ds,

so we get g(t) ≤ a exp(bt) for all t ∈ [0, T ].

Lemme 3.2. Let x ∈ H. Then, for any α > 0 there exists a unique mild solution yα(t, x)

to equation (3.14) such that

yα ∈ C ([0, T ];H) ∩ L2([0, T ];V).

Proof. Since Fα are Lipschitz continuous, the existence of the solution to (3.14) is stan-

dard. It remains to prove the existence of an estimate that is uniform in α. By the
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assumptions on A there exists ω > 0 such that 〈Au, u〉 ≤ −ω‖u‖2
V, using the dissipativity

of F we have

1
2
‖yα(t)‖2

H = 1
2
‖u0‖2

H +

∫ t

0

〈Ayα(s), yα(s)〉Hds+

∫ t

0

〈Fα(z(s) + yα(s)), yα(s)〉Hds

≤ 1
2
‖u0‖2

H − ω
∫ t

0

‖yα(s)‖2
Vds+

∫ t

0

〈Fα(z(s)), yα(s)〉Hds

≤ 1
2
‖u0‖2

H − ω
∫ t

0

‖yα(s)‖2
Vds+ T sup

t∈[0,T ]

‖F (z(t))‖2
H +

∫ 1

0

‖yα(s)‖2
Hds,

which implies, by an application of Gornwall’s lemma, that

sup
t∈[0,T ]

(
1

2
‖yα(t)‖2

H + ω

∫ t

0

‖yα(s)‖2
Vds

)
≤ C(T, u0, z),

with the term on the right-hand side is independent of α.

Lemme 3.3. For every α > 0, u0, u1 ∈ H, it holds

sup
t∈[0,T ]

‖yu0α (t)− yu1α (t)‖2
H ≤ C‖u0 − u1‖2

H. (3.15)

Proof. Let us consider the difference yu0α (t)− yu1α (t), for x, x ∈ H:

d

dt
[yu0α (t)− yu1α (t)] = A[yu0α (t)− yu1α (t)] + [Fα(z(t) + yu0α (t))− Fα(z(t) + yu1α (t))],

hence

‖yu0α (t)− yu1α (t)‖2
H = ‖u0 − u1‖2

H + 2

∫ t

0

〈A(yu0α (s)− yu1α (s)), yu0α (s)− yu1α (s)〉ds

+ 2

∫ t

0

〈Fα(yu0α (s))− Fα(yu1α (s)), yu0α (s)− yu1α (s)〉ds,

and therefore

‖yu0α (t)− yu1α (t)‖2
H ≤ ‖u0 − u1‖2

H − 2ω

∫ t

0

‖yu0α (s)− yu1α (s)‖2
Hds.

Applying Gronwall’s lemma we obtain

‖yu0α (t)− yu1α (t)‖2
H ≤ e−2ωt‖u0 − u1‖2

H.
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Lemme 3.4. [2] The sequence (yα)α>0 is a Cauchy sequence in C ([0, T ];H)∩L2([0, T ];V).

Theorem 3.5.2. For any z ∈ C ([0, T ];V) there exists a unique solution (y(t))t∈[0,T ] to

equation (3.13)

y ∈ C ([0, T ];V) ∩ L2([0, T ];H),

and it depends continuously on the initial condition u0 ∈ H.

Proof. Since yα is a Cauchy sequence in C ([0, T ];H)∩L2([0, T ];V) it converges to a unique

function y in the same space; it remains to show that (y(t))t∈[0,T ] actually solves (3.13).

Also, the continuous dependence on the initial condition follows from the same property

proved for the approximating functions yα, since the estimate in (3.15) does not depend on

α and it is conserved at the limit. By the claimed convergence of yα, since Jα is a sequence

of continuous mapping that converges to the identity, it holds that Jα(yα(s)) −→ y(s) ∈ V

a.s. on [0, T ]. Therefore, by the continuity of F , it follows that

Fα(z(s) + yα(s)) −→ F (z(s) + y(s)) ∈ H a.s. on [0, T ].

Now we use Vitali’s theorem (the Uniform Integrability Convergence Theorem, compare

[[22], Theorem 9.1.6]), to conclude that∫ t

0

S(t− s)Fα(z(s) + yα(s))ds −→
∫ t

0

S(t− s)F (z(s) + y(s))ds.

3.5.3 A Network Model for a Neuronal Cell

In this part, we will introduce an application for what has been done in the previous

subsection, so this part is considered as an extension to the previous one. In 2009 S.

Bonaccorsi C. and A. Tudor in their paper [2] investigated a mathematical model of a

complete neuron which was subject to stochastic perturbations. Thier model was based

on the deterministic one for the whole neuronal network that has been recently introduced

in [25]. They treated the neuron as a simple graph with different kinds of (stochastic)

evolutions on the edges and with a dynamic Kirchhoff-type condition on the central node

(the soma) and schematized a neuron as a network by considering

1. a FitzHugh-Nagumo (nonlinear) system on the axon, coupled with

2. a (linear) Rall model for the dendritical tree, complemented with
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3. Kirchhoff-type rule in the soma .

The Wiener process was and is still the perfect idol used in neurobiological models due

to it important and significant properties, but it is considerable to apply different kinds of

noises: for example long-range dependence processes or self-similar processes, and this is

exactly what S. Bonaccorsi C. and A. Tudor did in their paper which we will introduce in

this subsection .

The Abstract Formulation

In the following, as long as we allow for variable coefficients in the diffusion operator,

we can let the edges of the neuronal network to be described by the interval [0, 1]. The

general form of the equation we are concerned with can be written as a system in the space

H = (L2(0, 1))2 × R× L2(0, 1) for the unknowns (u, ud, d, v):

∂

∂t
u(t, x) =

∂

∂x

(
c(x)

∂

∂x
u(t, x)

)
− p(x)u(t, x)− v(t, x) + θ(u(t, x)) +

∂

∂t
ξu(t, x)

∂

∂t
ud(t, x) = ∂

∂x

(
cd(x)

∂

∂x
ud(t, x)

)
− pd(x)ud(t, x) +

∂

∂t
ξd(t, x)

∂

∂t
d(t) = −γd(t)−

(
c(0)

∂

∂x
u(t, 0)− cd(1)

∂

∂x
ud(t, 1)

)
∂

∂t
v(t, x) = u(t, x)− εv(t, x) +

∂

∂t
ξv(t, x),

(3.16)

under the following continuity, boundary and initial conditions

d(t) = u(t, 0) = ud(t, 1), t ≥ 0
∂

∂x
u(t, 1) = 0,

∂

∂x
ud(t, 0) = 0, t ≥ 0

u(0, x) = u0(x), v(0, x) = v0(x), ud(0, x) = ud;0(x).

(3.17)

We will assume that the coefficient of the system (3.16) satisfy the following assumption

Assumption 1.5

1. The function θ : R −→ R satisfies some dissipativity conditions: there exists λ ≥ 0

such that for h(u) = −λu+ θ(u) it holds

[h(u)− h(v)](u− v) ≤ 0 ∀u, v ∈ R; |h(u)| ≤ c(1 + |u|2ρ+1) ρ ∈ N. (3.18)
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2. c, cd, p, pd ∈ C 1([0, 1]) are continuous, positive functions such that, for some C > 0

we have

C ≤ c(x), cd(x) ≤ 1

C
, C

′ ≤ p(x)− λ and pd(x) ≤ 1

C ′
.

3. γ > 0, ε > 0 are given constants.

Remark 3.5.4. The function θ : R −→ R, in the classical model of FitzHugh, is given by

θ(u) = u(1− u)(u− ξ) for some ξ ∈ (0, 1); it satisfies (3.18) with λ = 1
3
(ξ2 − ξ + 1).

The main goal is to write the equation (3.16) for this model, which satisfies the con-

ditions in the assumptions 1.5, in an abstract form in the Hilbert space H = (L2(0, 1))2×

R× L2(0, 1). We also introduce the Banach space Y = (C ([0, 1]))2 × R× L2(0, 1) that is

continuously (but not compactly) embedded in H. In order to solve the abstract problem

, we will establish the basic framework. To this aim, we need to prove that the linear

part of the system defines a linear, unbounded operator A that generates on X an analytic

semi-group. We shall also study the dissipativity of A and of the nonlinear term F.

On the domain

D(A) :=

 v := (u, v, d, ud)
> ∈ (L2(0, 1))

2 × R× L2(0, 1) s. th. u(0) = ud(1) = d,

u′(1) = 0, u′d(0) = 0, c(0)u′(0) + cd(1)u′d(1) = 0

 ,

(3.19)

with the operator A is defined by

Av :=


(cu′)′ − pu+ λu− v

(cdu
′
d)
′ − pdud

−γd− (c(0)u′(0)− cd(1)u′d(1))

u− εv

 . (3.20)

In order to treat the non-linearity in our system, we introduce the Nemitsky operator

Θ on L2(0, 1) such that Θ(u)(x) = h(u(x)) for all u ∈ C ([0, 1]) ⊂ L2(0, 1). Then we

define F on H by setting

F(v) = (Θ(u), 0, 0, 0)>,

on the domain

D(F) =
{

(u, v, d, ud)
> ∈ H : u ∈ C ([0, 1])

}
. (3.21)

Remark 3.5.5. In the above setting, the function F satisfies the conditions in Assumption

1.2 .
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Finally, setting Z(t) = (ξu(t), ξv(t), 0, ξd(t))>, we obtain that the initial value problem

associated with (3.16-3.17) can be equivalently formulated as an abstract stochastic Cauchy

problem

 dv(t) = [Av(t) + F(v(t))]dt+ dZ(t), t ≥ 0

v(0) = v0,
(3.22)

where the initial value is given by v0 = (u0, v0, u0(0), ud;0)> ∈ H.

Theorem 3.5.3. [2] The proposed model for a neuron cell, endowed with a stochastic

input that satisfies the conditions in Assumption 1.4, has a unique solution on the time

interval [0, T ], for arbitrary T > 0, which belongs to

L2
F(Ω; C ([0, T ];H)) ∩ L2

F(Ω;L2([0, T ];V)),

and depends continuously on the initial condition.

The Well-posedness of the Linear System

The first remark is that, neglecting the recovery variable v, the linear part of the system

for the unknown (u, ud, d) is a diffusion equation on a network with dynamical boundary

conditions:

∂

∂t
u(t, x) =

∂

∂x

(
∂

∂x
c(x)u(t, x)

)
− p(x)u(t, x) + λu(t, x)

∂

∂t
ud(t, x) =

∂

∂x

(
∂

∂x
cd(x)ud(t, x)

)
− pd(x)ud(t, x)

∂

∂t
d(t) = −γd(t)−

(
c(0)

∂

∂x
u(t, 0)− cd(1)

∂

∂x
ud(t, 1)

)
.

This kind of systems are already existed in the literature.So let us define X = (L2(0, 1))
2×

R and present the operator

A


u

ud

d

 =


(cu′)′ − pu+ λu

(cdu
′
d)
′ − pdud

−γ1d− (c(0)u′(0)− cd(1)u′d(1))

 ,

with coupled domain

D(A) =
{

(u, ud, d)> ∈
(
L2(0, 1)

)2 × C : u(0) = ud(1) = d
}
.

Then, by quoting for instance the papers [19],[20] , we can state the following result



3.5.3 A Network Model for a Neuronal Cell 77

Proposition 3.5.4. [2] The operator (A, D(A)) is self-adjoint and dissipative and it has

compact resolvent; by the spectral theorem, it generates a strongly continuous, analytic

and compact semi-group (S(t))t≥0 on the Hilbert space X .

Next, we will introduce the operator A on the space H = X × L2(0, 1). We can think

A as a matrix operator in the form

A =

 A −P1

P>1 −ε

 ,

where P1 is the immersion on the first coordinate of X : P1v = (v, 0, 0)>, while

P>1 (u, ud, v)> = u.

In order to prove the generation property of the operator A, we introduce the Hilbert

space

V :=

 v := (u, ud, d, v)> ∈ (H1(0, 1))
2 × R× L2(0, 1) s. th.

u(0) = ud(1) = d

 ,

and the sesquilinear form a : V× V→ R defined by

a
(
u(1), u(2)

)
:=

∫ 1

0

p(x)u(1)(x)u(2)(x) + c(x)
(
u(1)
)′

(x)(u(2))
′
(x)dx

+

∫ 1

0

pd(x)u
(1)
d (x)u

(2)
d (x) + cd(x)

(
u

(1)
d

)′
(x)
(
u

(2)
d

)′
(x)dx

+

∫ 1

0

u(1)(x)v(2)(x)− v(1)(x)u(2)(x) + εv(1)(x)v(2)(x)dx+ γd(1)d(2).

Proposition 3.5.5. [2] The operator A generates a strongly continuous, analytic semi-

group (S(t))t≥0 on the Hilbert space H that is uniformly exponentially stable: there exist

M ≥ 1 and ω > 0 such that ‖S(t)‖L(H) ≤Me−ωt for all t ≥ 0.

Notice that the operator A is not self-adjoint, as the corresponding form a is not

symmetric; also, since V is not compactly embedded in H, it is easily seen that the semi-

group generated by A is not compact hence it is not Hilbert-Schmidt. For our purposes,

they are of fundamental importance the following observations.

Remark 3.5.6. The form domain V is isometric to the fractional domain power D
(
(−A)1/2

)
.

Remark 3.5.7. The form a is real-valued and coercive, hence

〈−Au, u〉 = a(u, u) ≥ ω‖u‖2
V,

for some ω > 0.



Conclusion

The main objective of this memoir was to study a dissipative systems driven by the

Rosenblatt processes and to give certain conditions and assumptions to insure the existence

and uniqueness of the mild solution. In addition to that, we introduced an application; a

network model for a neuronal cell which is a mathematical model of a complete neuron

which can be modeled by the previous system.

As in many researches, difficulties was encountered especially in the stochastic dif-

ferential equations and application part. The work done in this part was very limited and

few authors had an interest with, due to the fact that the process is neither Gaussian nor

a semi-martingale. This fact makes it hard for the authors to investigate more and more

properties and application for this process.

As a perspective, we would be able to study dynamic systems defined by the backward

stochastic differential equations (BSDE’s) and the forward-backward stochastic differen-

tial equations (FBSDE’s), based on the work done on the levy processes as non-Gaussian

processes. In our knowledge and until this day, nothing has been done concerning the

stochastic differential equations driven by the Rosenblatt processes in the existing litera-

ture.
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