REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE « Dr. TAHAR MOULAY » DE SAIDA

FACULTE DES SCIENCES

DEPARTEMENT DE PHYSIQUE

Présenté en vue de l'obtention du diplôme de

MASTER Spécialité : PHYSIQUE

Option : Physique des rayonnements

Par

MIMOUNI Oussama

Sur le thème

Molécule ¹²CH₄ : Prédiction des niveaux d'énergie Et des fréquences de la bande pentade-Gs

Soutenu le : 23 /06/2022 devant le jury composé de :

Mr. EL-KEURTI Mohammed	Pr.	Université Dr. Tahar Moulay de Saida	Président
Mr. KAAROUR Abdelkrim	MCA	Université Dr. Tahar Moulay de Saida	Encadreur
Mr. MESKINE Mohamed	Pr.	Université Dr. Tahar Moulay de Saida	Co-encadreur
Mlle. SAADAOUI Fatiha	MCA	Université Dr. Tahar Moulay de Saida	Examinateur

Année Universitaire 2021 - 2022

Dédicaces

Je dédie ce travail à mes parents qui m'ont chaleureusement supporté et encourage tout au long de mon parcours ; ma mère et mon

père. À mes frères. À tous mes amis ainsi que la famille «Mimouni».

À toute la promotion « 2021-2022 »

Mimouni Oussama

Remerciements

Je remercie dieu le tout puissant de m'avoir donné la santé et la volonté d'entamer et de terminer ce mémoire.

Je tiens à remercier mon encadreur le Docteur Abdelkrim KAAROUR et mon Co-encadreur le Professeur Mohamed MESKINE pour leur aide, assistance et conseils.

J'adresse mes sincères remerciements à monsieur le président de jury et les membres de jury d'avoir porté intérêt à mon travail et accepté de le juger.

Je voudrais présenter un grand merci à nos chers professeurs pour leur aide et leur disponibilité permanente.

Enfin, je tiens à exprimer mes remerciements à tous ceux qui ont participé de près ou de loin à la réalisation de ce projet

Sommaire

Dédicaces Remerciements Liste des figures Liste des tableaux Introduction générale Références bibliographiques

Chapitre I : Symétrie Moléculaire et Théorie des groupes

I-1- Symétrie moléculaire :	6
I-1-1- Définitions :	6
I-1-2- Opération et éléments de symétrie moléculaires :	6
I-1-3-Eléments de symétrie des molécules :	7
I-2- Théorie des groupes :	
I-2-1- Définition :	
I-2-2- Structure de groupe :	
I-2-3- Nomenclature et procédure d'identification des groupes de symétrie :	
I-2-4- Les groupes de tétraèdre XY 4:	
I-3- Représentation d'un groupe et notions des caractères :	14
I-3-1- Caractères de la représentation :	
I-3-2- Représentation dans l'espace fonctionnelle :	
I-3-3- Représentations réductibles et irréductibles :	
I-3-4- Représentation Matriciel des opérations de symétrie dans l'espace physique :	
I-3-5- Détermination des caractères :	
I-3-6- Les modes normaux de vibration des molécules tétraédriques :	
I-3-7- table de caractère : Références bibliographiques	

Chapitre II : Formalisme tensoriel tétraédrique

II-1-Introduction :	
II-2-Hamiltonien de vibration-rotation d'une molécule :	
II-2-1-Hamiltonien d'une molécule isolé :	
II-2-2-Approximation de Born-Oppenheimer :	
II-2-3-Propriété générale de L'Hamiltonien :	
II-2-4-L'énergie à l'approximation zéro : II-2-4-1-Hamiltonien vibrationnel : II-2-4-2-Hamiltonien rotationnel :	29
II-3-Développement complet de l'Hamiltoniens des molécules tétraédrique XY ₄ :	
II-3-1-Opérateurs rotationnels :	
II-3-2-Opérateurs vibrationnels :	
II-3-3-Opérateurs rovibrationnels : Références bibliographiques	

Chapitre III : Méthode d'analyse et Programme utililés

III-1-Méthodes numériques utilisées dans les analyses des données expérimentales :	
III-1-1-Ajustement des paramètres de l'Hamiltonien par la méthode des moindres carrés itérativ	<i>yes</i> :
III-2-Programmes utilisées :	
III-2-1-Installation de XTDS et explication des instructions :	
Références bibliographiques	
Chapitre IV: Prédiction des niveaux d'énergie et de fréquences de la bande pentad-Gs de la molécule ¹² CH ⁴	
IV-1-Introduction :	
IV-2-Paramètres de l'Hamiltonien utilisés dans nos calculs :	
IV-3-Calcul du spectre IR de la bande pentad-Gs de la molécule ¹² CH ₄ :	
Références bibliographiques	
Conclusion	

Liste des figures

Figure 1 : la molécule CH₄.

Figure (I-1) : Effet de l'opération sur modèle carré.

Figure (I-2) : La rotation de 180° d'une molécule d'eau autour d'un axe la laisse inchangée, ainsi que la réflexion au travers de deux plans miroirs.

Figure (I-3) : Exemples de molécules possédant un ou plusieurs axes de symétrie C_n .

Figure (I-4) : Effet de l'opération de symétrie plan.

Figure (I-5) : Axe S_4 de L'allène et décomposition de l'opération S_4 .

Figure (I-6) : Procédure dichotomique d'identification du groupe de symétrie d'une molécule.

A chaque question (?) la réponse « oui » correspond à une flèche bleue, la réponse « non » à une flèche rouge pointillée.

Figure (I-7) : Molécule tétraédrique.

Figure (I-8) : Configuration d'équilibre de la molécule XY₄.

Figure (I-9) : la table de caractère.

Figure (III-1) : première fenêtre de l'exécution de XTDS

Figure (III-2) : deuxième fenêtre de l'exécution de XTDS

Figure (III-3) : troisième fenêtre de l'exécution de XTDS

Figure (III-4) : quatrième fenêtre de l'exécution de XTDS

Figure (IV-1) : comparaison entre les grandeurs microscopiques et macroscopiques

Figure (IV-2) : diagramme énergétique de la bande pentade-GS de la molécule ¹²CH₄

Figure (IV-3) : Spectre complet des transitions rovibrationnelles de la bande pentede-Gs de la molécule ¹²CH₄

Figure (IV-4) : Spectre des transitions rovibrationnelles de la bande pentede-Gs de la molécule ¹²CH₄ dans la région [2750-3000] cm⁻¹

Figure (IV-5) : Spectre des transitions rovibrationnelles de la bande pentede-Gs de la molécule ¹²CH₄ dans la région [3050-3250] cm⁻¹

Liste des tableaux

Tableau (I-1) : La symétrie d'une molécule est déterminée par la totalité des opérations de symétrie qu'elle possède.

Tableau (I-2-3) groupe ponctuel moléculaire

Tableau (I-4) : les relations permettant le calcul de χ_R .

Tableau (I-5) : table de caractère de la molécule ¹²CH₄.

Tableau (I-6) : les caractères χ_{vib} pour les symétries du groupe tétraédrique

Tableau (I-7) : les modes de vibrations.

Tableau (IV-1) : Paramètres de l'Hamiltonien relatif à la bande pentade-GS de la molécule ¹²CH₄

Tableau (IV-2) : Prédiction du spectre calculé des transitions rovibrationnelles de la bande pentede-GS de la molécule ¹²CH₄

Introduction générale

La spectroscopie est l'analyse du rayonnement électromagnétique émis, absorbé ou diffusé par la matière, par lesquelles des molécules effectuent une transition d'un état quantique à un autre. Elle permet d'expliquer des phénomènes qui nous entourent et elle est un outil fondamental pour la caractérisation des substances inconnues dans un état liquide, solide ou gazeux du fait de l'interaction des rayonnements électromagnétiques avec la matière.

La spectroscopie est utilisée dans de nombreux domaines : astronomie, biophysique, chimie, physique atomique, physique nucléaire, physique du solide, etc.

La spectroscopie infrarouge est une des techniques employée pour l'identification des composés organiques et inorganiques ou pour déterminer la composition d'un échantillon et de déterminer la nature des liaisons chimiques présentes dans une molécule à partir de leurs propriétés vibrationnelles(en complément d'autres méthodes, la RMN et la spectrométrie de masse).

Elle est basée sur l'interaction du rayonnement infrarouge avec les molécules en excitantes leur modes de vibration (déformation, élongation) spécifiques de liaisons chimiques. Les fréquences des modes vibrationnels dépendent de la forme des surfaces d'énergie potentielle, les masses atomiques et du couplage vibronique associé.

Pour comprendre les propriétés d'un système physique, il est essentiel de connaître ses états propres. De ce point de vue, la spectroscopie constitue un instrument expérimental irremplaçable, car elle fournit :

- Les énergies associées aux transitions entre ces états.
- La possibilité de ces transitions sous l'effet d'une radiation électromagnétique (donc des renseignements sur les fonctions propres).
- Les intensités associées à ces transitions.

La partie infrarouge du spectre électromagnétique est divisée en trois régions : le proche, le moyen et le lointain infrarouges, nommés en relation avec le spectre visible. L'infrarouge lointain, allant approximativement de 400 à 10 cm-1 (1000–25 µm, en pratique gamme 1000–30 µm), mitoyen de la région micro-onde, a une énergie faible et peut être utilisé pour la spectroscopie rotationnelle. Le rayonnement infrarouge moyen, allant approximativement de 400 à 400 cm-1 (25–2,5 µm, en pratique gamme 30–1,4 µm) peut être utilisé pour étudier les vibrations fondamentales et la structure rovibrationnelle associée. Le proche infrarouge, plus énergétique, allant approximativement de 14000 à 4 000 cm-1 $(2,5-0,7 \mu m, en pratique gamme 1,4-0,8 \mu m)$ peut exciter les vibrations harmoniques.

Le Laboratoire de Physique de l'Université de Bourgogne travaille depuis longtemps sur la spectroscopie des molécules toupies sphériques (groupes T_d [1] et O_h [2]). Les études de spectres menées à Dijon utilisent la théorie des groupes et le calcul algébrique tensoriel. Des logiciels informatiques *TDS* (Top Data System) ont été mis au point pour étudier les spectres de molécules de symétrie T_d (STDS [3]), *Oh* (HTDS [4]). Ces outils informatiques sont utilisés pour le calcul des spectres à haute résolution et l'ajustement des paramètres du modèle.

Les travaux consacrés à l'étude des spectres de vibration - rotation des molécules (toupie sphérique) de type XY_4 ou XY_6 font appel à des méthodes spécifiques caractérisées principalement par une utilisation très large de la théorie des groupes et des techniques tensorielles associées.

Historiquement, Shaffer, Nielson et Thomas (1939) **[5]** ont considéré en détail l'Hamiltonien de vibration rotation des molécules tétraédriques XY4. Au second ordre d'approximation, à la même époque, Jahn (1938) **[6]** interprète la structure fine des niveaux d'énergie de la bande fondamentale v4.

Toute fois, les travaux utilisés sont ceux de Hecht en (1960) **[7]** et Moret Bailly (1961) **[8]** construisent les fonctions d'ondes et les opérateurs de l'Hamiltonien sous forme de tenseurs sphériques irréductibles en employant la théorie des groupes. Ainsi Hecht (1960) **[9]** étend le développement jusqu'au troisième ordre et considère en détail les termes vibrationnels anharmoniques.

Moret Bailly (1960) **[10]** et grâce à la théorie des tenseurs sphériques adaptée à la symétrie cubique développe un Hamiltonien transformé formel quasi diagonal jusqu'au quatrième ordre.

Dorney et Watson [11] étudient ensuite (en 1972) l'Hamiltonien effectif relatif aux niveaux de base tandis que Kirschner et al [12], Ozier [13], Hilico et Champion et al [14] développent des formalismes s'appliquant aux états excités.

Introduction générale

Tous les travaux antérieurs ont contribués et ont conduis ensuite J. P. Champion **[15]** a proposé une méthode générale systématique de construction des opérateurs de l'Hamiltonien (formalisme tétraédrique).

Avec le même principe de construction des opérateurs tensoriels que celui de J. P. Champion, M. Loete (1984) **[16]** propose un développement formel du moment dipolaire des molécules tétraédrique.

Dans cette étude où nous nous sommes proposé d'étudier les fréquences du spectre infrarouge de la molécule ${}^{12}CH_4$

Le **méthane** est une molécule de formule brute CH_4 est un exemple parfait d'un tétraèdre. Les opération de symétrie appartiennent au groupe ponctuel T_d

Le **méthane** est un hydrocarbure de la famille des alcanes de formule brute CH₄. C'est un gaz que l'on trouve à l'état naturel et qui est produit par des organismes vivants. Produit par ces organismes au cours des temps géologiques, il constitue l'essentiel du gaz naturel qui est exploité comme combustible fossile, Sa masse moléculaire est de 16,0425 g·mol-1 (C : 74,87%, H 25,13%)

Figure 1 : la molécule CH₄

Introduction générale

Dans le premier chapitre, et vu l'importance des notions de base de la spectroscopie moléculaire, nous avons tenu à rappeler les notions fondamentales de la théorie des représentations utilisée dans notre modèle théorique, pour déterminer la symétrie des modes de vibration et les niveaux d'énergie rovibrationnels des molécules tétraédriques.

Le deuxième chapitre sera consacré au formalisme tensoriel adapté aux molécules tétraédriques XY4.

La méthode d'analyse utilisée dans l'ajustement des paramètres de l'Hamiltonien ainsi que les logiciels utilisés dans les calculs seront donnés dans un troisième chapitre.

Nous allons présenter et discuter les résultats obtenus lors de cette étude dans un dernier chapitre, et on terminera par une conclusion.

- [1] J-P. Champion, G. Pierre, F. Michelot, and J. Moret Bailly. Can. J. Phys, 55. 512. (1977). https://doi.org/10.1139/p77-070
- [2] N. Cheblal, M. Loete, and V. Boudon . J. Mol. Spectrosc, Volume 197, Issue 2. P: 222–231, (1999). https://doi.org/10.1006/jmsp.1999.7902
- [3] Ch. Wenger and J.-P. Champion, J. Quant. Spectrosc. Radiat. Transfer, Volume 59, Issues 3–5, p: 471-480 (1998).

https://doi.org/10.1016/S0022-4073(97)00106-4

- [4] S. R. McDowell, L.J. Leon, Radziemski, H. Flicker, H. W. Galbraith, R. C. Kennedy, N. G. Nereson, B. J. Krohn, J. P. Aldridge, and J. D. King, J. Chem. Phys. 69, 1513 (1978). https://doi.org/10.1063/1.436778
- [5] Wave H. Shaffer, Harald H. Nielsen, and L. H. Thomas. Phys. Rev. 56, 895. (November 1939). <u>https://doi.org/10.1103/PhysRev.56.895</u>
- [6] H.A. Jahn, Proc. R. Soc, A168, 469. (1938). https://doi.org/10.1098/rspa.1938.0187
- [7] K. T. Hecht, J. Mol. Spectrosc, Volume 5, Issues 1–6, Pages 355-389, (1961). <u>https://doi.org/10.1016/0022-2852(61)90102-3</u>
- [8] J. Moret-Bailly, Cah. Phys. 15 -237. (1961).
- [9] K. T. Hecht, J. Mol. Spectrosc, Volume 5, Issues 1–6, Pages 390-404. (1961). <u>https://doi.org/10.1016/0022-2852(61)90103-5</u>
- [10] J. Moret Bailly, Thèse d'état, Université de Bourgogne, Dijon, France, (1961).
- [11] A. J. Dorney, J. Watson . J. Mol. Spectrosc. Volume 42, Issue 1, Pages 135-148. (April 1972). https://doi.org/10.1016/0022-2852(72)90150-6
- [12] S. M. Kirschner, J. K. G. Watson, J. Mol. Spectrosc. Volume 47, Issue 2, Pages 234-242, (August 1973).
- https://doi.org/10.1016/0022-2852(73)90007-6
- [13] Irving Ozier. J. Mol. Spectrosc. Volume 53, Issue 3, Pages 336-345. (December 1974).
 https://doi.org/10.1016/0022-2852(74)90070-8
- [14] J. C. Hilico, J. P. Champion, G. Pierre. J. Mol. Spectrosc. Volume 60, Issues 1–3, 30, Pages 422-425. (March 1976). <u>https://doi.org/10.1016/0022-2852(76)90147-8</u>
- [15] J. P. Champion, Thèse d'état, Université de Bourgogne, Dijon, France, (1978).
- [16] M. Loete, Thèse d'état, Université de Bourgogne, Dijon, France, (1961).

Chapitre I Symétrie Moléculaire et Théorie des groupes

I-1- Symétrie moléculaire :

I-1-1- Définitions :

L'étude des symétries d'une molécule est fondée sur l'étude de son infrastructure géométrique constituée par les noyaux de ses atomes (atomes supposés occuper des positions fixes dons l'espace). La molécule peut contenir des noyaux identiques et occupants, dans l'infrastructure, des positions équivalentes du point de vue physique. Dans la théorie de la symétrie moléculaire, Nous considérerons, parmi les permutations de noyaux identiques et physiquement équivalents, les permutations obtenues par des rotations de l'infrastructure considérée comme un solide indéformable, on par des symétries par rapport à un plan (on obtient alors l'image dans un miroir de l'infrastructure), on encore par des combinaisons de ces deux types de transformation.

I-1-2- Opération et éléments de symétrie moléculaires :

La symétrie d'une molécule est déterminée par la totalité des opérations de symétrie qu'elle possède. Toute opération de symétrie a pour but de placer un modèle, dans une position équivalente, C'est-à-dire que chaque point du modèle dans la position finale coïncide avec un point équivalent dans la position initiale ; Deux positions équivalentes ne peuvent être discernées à première vue : elles ne sont discernables que si les points caractéristiques du modèle sont repérés.

Soit par exemple un modèle carré représenté sur la figure (I -1)

Figure (I-1) : Effet de l'opération sur modèle carré.

Symétrie : Un objet possède une symétrie, si en lui appliquant une transformation (une opération de symétrie), l'objet ne peut pas être distingué de sa géométrie de départ.

Opérations de symétrie : Une opération de symétrie est un mouvement d'objet tel qu'après

exécution de ce mouvement chaque point de l'objet coïncide avec un point équivalent de l'objet dans sa position initial. Par exemple si nous prenons une molécule d'eau et que nous la tournons de 180° selon un axe traversant l'atome d'oxygène, elle sera inchangée. De même elle sera inchangée par réflexion au travers de deux plans miroirs [1].

Exemple:

Figure (I-2) : La rotation de 180° d'une molécule d'eau autour d'un axe la laisse inchangée, ainsi que la réflexion au travers de deux plans miroirs.

Chaque opération de symétrie possède un **élément de symétrie**, qui sera un axe un plan ou un point suivant l'opération effectuée. L'élément de symétrie est constitué des points qui restent en place au cours de l'opération. Pour une rotation, par exemple, la ligne de points qui restent en place constitue l'axe de symétrie. Pour une réflexion ces points constituent un plan de symétrie.

I-1-3-Eléments de symétrie des molécules :

Ils sont de quatre types :

*Axe de symétrie d'ordre n (symbole C_n). Il définit une opération de rotation de $2\pi/n$ autour de cet axe. La molécule H₂O présente un axe C₂, NH₃ un axe C₃, C₆H₆un axe C₆ (Fig I-3)

Figure (I-3) : Exemples de molécules possédant un ou plusieurs axes de symétrie C_n . L'axe d'ordre le plus élevé d'une molécule est l'axe principal.

*Plan de symétrie. Il définit une opération de symétrie plane ou réflexion.

On note σ_h un plan de symétrie « horizontal », perpendiculaire à l'axe principal, σ_v ou σ_d un plan de symétrie « vertical », contenant l'axe principal. Pour reprendre les exemples de la (Fig I-3), on constate que H₂O présente deux plans σ_v , NH₃ en présente trois.

Figure (I-4) : Effet de l'opération de symétrie plan.

*Axe de symétrie impropre ou axe de symétrie alterné noté S_n , il définit une opération de rotation C_n suivie d'une réflexion par rapport à un plan σ_h . L'allène (Fig I-5) présente un axe S_4 . L'hydrogène en rouge se transforme en l'hydrogène en violet par la suite des opérations rotation de $2\pi/4$ autour de S_4 symétrie par rapport au plan σ_h .

Figure (I-5) : Axe S_4 de L'allène et décomposition de l'opération S_4 .

***Centre de symétrie** ou centre d'inversion, Il est noté **i**. Si un centre d'inversion est présent au point O, l'opération transforme M en M' tel que $\overrightarrow{OM'} = \overrightarrow{-OM}$ [2].

Elément de symmetries	Opération
Axe de rotation, Cn	Rotation d'un angle de $2\pi/n$ par rapport à l'axe de rotation Cn
Axe de rotation impropre, Sn	Rotation de 2π/n puis réflexion par rapport au plan perpendiculaire à l'axe Cn
Plan vertical, σv	Réflexion / plan
Plan horizontal, σh	Réflexion / plan
Centre diversion, I	Inversion
Aucun, E	Ne rien faire à la molécule

Tableau (I-1) : La symétrie d'une molécule est déterminée par la totalité des opérations desymétrie qu'elle possède.

I-2- Théorie des groupes :

I-2-1- Définition :

La théorie des groupes est une discipline mathématique, c'est la partie de l'algèbre général qui étudie les groupes des structures algébriques.

La théorie des groupes est très utilisée en chimie :

- elle permet de simplifier l'écriture de l'Hamiltonien d'une molécule en exploitant ses symétries.

- elle permet de calculer les orbitales moléculaires comme somme d'orbitales atomiques.

- en spectroscopie vibrationnelle, elle permet de prédire le type de déformation que peut subir une molécule et selon la symétrie de sa déformation elle permet de prévoir si une transition peut être visible dans les spectres IR et/ou Raman.

La théorie des groupes est également très utilisée en physique théorique.

La théorie des groupes nous donne une méthode systématique pour décrire la symétrie moléculaire et pour analyser ses conséquences. Elle fournit à l'expérimentateur un outil pour interpréter et expliquer ses résultats. [3].

I-2-2- Structure de groupe :

L'ensemble des *g* opérations correspondant aux éléments de symétrie d'une molécule constitue un groupe de symétrie d'ordre g. De manière générale, un groupe est un ensemble dont les éléments satisfont aux axiomes de structure suivants.

Il existe une loi de composition interne (ici le produit des opérations) qui associe à deux éléments A et B un troisième élément C = A.B appartenant au groupe. Cette loi est associative :

A. B.
$$C = A. (B.C) = (A.B.).C$$

> Il existe un élément neutre E appartenant au groupe tel que, quel que soit A :

$$E.A = A.E = A$$

Tout élément A possède un symétrique ou inverse A⁻¹ appartenant au groupe tel que :

$$A.A^{-1} = A^{-1}.A = E$$

Un groupe peut être (ou non) commutatif (on dit aussi abélien) si :

$$A.B = B.A$$

Groupe	Axe et plan de symétrie
Cs	Plan de symétrie
Сі	Centre de symétrie
Cn	Axe de symétrie d'ordre n
S _{2n}	Axe de symétrie impropre d'ordre 2n
S _{2n}	Axe de symétrie d'ordre n + plan horizontal
C _{nh}	Axe de symétrie d'ordre n + n plans verticaux

Cnv	Axe de symétrie d'ordre n + n axes horizontaux d'ordre 2
Dn	Axe de symétrie d'ordre n + n axes horizontaux d'ordre 2 + un plan
	horizontal+ n plans verticaux contenant les axes d'ordre 2
D _{nh}	Axe de symétrie d'ordre n + n axes horizontaux d'ordre 2 + n plans
	verticaux bissecteurs des angles formés par les axes horizontaux d'ordre
	2
Ta	Tétraèdre
Oh	Octaèdre ou cube

Tableau (I-2-3) groupe ponctuel moléculaire [1].

I-2-3- Nomenclature et procédure d'identification des groupes de symétrie :

Nous nous limitons ici aux principaux groupes rencontrés en chimie. La procédure d'identification du groupe de symétrie d'une molécule est résumée dans la (Fig I-6). On regarde tout d'abord s'il existe un axe de symétrie :

- si « non », mais qu'il existe un plan, on a le groupe C_s . S'il n'y a pas de plan, mais un centre, on a le groupe C_i . S'il n'y a ni plan ni centre, il n'y aucun élément de symétrie à proprement parler, à part l'axe C_1 qui équivaut à l'identité E : c'est le groupe C_1 .

- si « oui », on repère l'axe principal d'ordre *n*, puis on recherche si *n* axes C_2 perpendiculaires à Cn sont présents. Si « non », on a les groupes C_{nh} , C_{nv} ou C_n , selon qu'il existe respectivement un plan σ_h , *n* plans σ_v , ni l'un ni l'autre. En présence de *n* axes C_2 on a les groupes D_{nh} , D_{nv} ou D_n selon les conditions précédentes.

Figure (I-6) : Procédure dichotomique d'identification du groupe de symétrie d'une molécule. A chaque question (?) la réponse « oui » correspond à une flèche bleue, la réponse « non » à une flèche rouge pointillée.

Il existe en outre des groupes de haute symétrie qui sont aisément reconnaissables.

- Le groupe du tétraèdre T_d : C'est le groupe ponctuel qui appartiennent toutes les molécules tétraédriques régulières, comme la molécule ¹²CH₄, le silane SiH₄ et CD₄.

Le groupe ponctuel T_d contient quatre axes C_3 , trois axes C_2 et six plan σ_d . Il contient aussi les éléments engendrés par ceux-ci [4].

- Le groupe de l'octaèdre O_h : c'est le groupe de l'octaèdre régulier qui dérive du groupe O en lui ajoutant un centre d'inversion donc : O + I $\rightarrow O_h$ Ex : SF₆, SeF₆.

I-2-4- Les groupes de tétraèdre XY4:

Une molécule tétraédrique est une molécule qui est constituée d'un atome central X, et d'un groupe de 4 atomes de Y (Fig I-7).

Figure (I-7) : Molécule tétraédrique

Une molécule XY₄ contient 5 noyaux, donc 15 degrés de liberté dont 3 relatifs à la translation, 3 relatifs à la rotation et 9 relatifs à la vibration. Les 9 coordonnées normales sans dimensions $q_{s\sigma}$ qui les décrivent respectivement par : q_1 , (q_{21}, q_{22}) , (q_{3x}, q_{3y}, q_{3z}) et (q_{4x}, q_{4y}, q_{4z}) associées aux molécules XY4 correspondent à 4 modes normaux de vibration L'utilisation de la théorie des groupes donne quatre vibrations normales pour les molécules tétraédriques XY4 :

 \mathcal{V}_1 vibration complètement symétrique non dégénérée de symétrie A₁, active en Raman.

 \mathcal{V}_2 vibration doublement dégénérée de symétrie E, active en Raman.

 V_3 et V_4 vibration triplement dégénérée de symétrie F₂. active en I.R et en Raman.

Figure (I-8) : Configuration d'équilibre de la molécule XY₄.

Coordonnées des atomes $Y : Y_1 (a, a, a) ; Y_2 (-a, -a, a) ; Y_3 (a, -a, -a) ; Y_4 (-a, a, -a)$

I-3- Représentation d'un groupe et notions des caractères :

I-3-1- Caractères de la représentation :

La trace des représentations Γ est appelée le caractère de la représentation lors de symétrie .Nous allons voir par la suite que ces caractères sont souvent plus pratiques que les représentations elles-mêmes .les caractères ont les propriétés suivantes

Le caractère d'une opération de symétrie est invariant lors d'une transformation de similarité. Les opérations de symétrie qui appartiennent à la même classe ont le même caractère dans une représentation.

I-3-2- Représentation dans l'espace fonctionnelle :

Considérons un groupe de symétrie **G** quelconque contient g éléments de symétrie et k classe ($k \le g$). L'opération de symétrie R peut être considéré comme un opérateur O_R transforme tout vecteur f de n'importe quel espace fonctionnel F à un vecteur f' de ce même espace ($O_R f = f$ '). Supposons qu'une base de l'espace fonctionnel ($f_1,...,$). On peut décrire l'effet de O_R sur tout vecteur de base :

$$O_R f_k = \sum_{i=1}^n [D(R)] j k f_j \tag{I.1}$$

Avec : **k**=1..., n

Les coefficients [D(R)]jk peuvent s'écrire suivant une matrice carrée à n ligne et n colonne. Le nombre [D(R)]jk est l'élément appartenant à la J^{éme} ligne et la K^{éme} colonne, On dit que :

- L'ensemble des matrices de tous les éléments du groupe G que c'est une représentation du groupe G.

- Les fonctions $f_1, \ldots f_n$, constituent **la base** de la représentation.
- Le nombre n de ces fonctions est la dimension de la représentation. [5].

La relation entre les bases est : (Bases f et g)

$$D^{(g)}(R) = AD^{(f)}(R)A^{-1}$$
(I.2)

Tel que : A c'est une matrice de passage.

I-3-3- Représentations réductibles et irréductibles :

Une représentation *R* est dite réductible si elle peut être mise sous une forme diagonale par blocs à l'aide du changement de base approprié :

$$SR(a)S^{-1} = \begin{pmatrix} R^{(1)}(a) & 0\\ 0 & R^{(2)}(a) \end{pmatrix} \qquad \forall a \in G$$
 (I.3)

où $R^{(1)}(a)$ et $R^{(2)}(a)$ sont des matrices. Ces matrices forment des représentations indépendantes $R^{(1)}$ et $R^{(2)}$, au sens que les éléments du module associés à chacune de ces deux représentations ne se mélangent pas sous l'action du groupe.

On dit aussi que la représentation réductible R est la somme directe de deux représentations de dimensions moindres:

$$R = R^{(1)} \bigoplus R^{(2)} \tag{I.4}$$

Le module V est donc séparable en deux sous-modules $V^{(1)}$ et $V^{(2)}$ qui sont séparément invariants sous l'action du groupe G.

Une représentation qui ne peut être décomposée comme un somme directe est qualifiée d'irréductible. Chacune des sous-représentations $R^{(1)}$ et $R^{(2)}$ peut à son tour être réductible, jusqu'à ce qu'une décomposition en fonction de représentations irréductibles soit atteinte :

$$R = R^{(1)} \bigoplus R^{(2)} \bigoplus \dots \bigoplus R^{(N)}$$
(I.5)

Le problème principal de la théorie des représentations est de cataloguer toutes les représentations irréductibles possibles, sachant que les représentations générales ne sont que des sommes directes des représentations irréductibles.

I-3-4- Représentation Matriciel des opérations de symétrie dans l'espace physique :

Il s'agit d'établir les matrices correspondantes aux différentes opérations des groupes ponctuels de symétrie. Ces matrices et les coordonnées de point M on peut trouver les coordonnées de point M' qui se transforme par une opération de symétrie.

On choisit une base (o. \vec{e}_1 , \vec{e}_2 , \vec{e}_3) ou l'origine o est choisi invariant pour toutes les symétries de la molécule. [6].

Si:

$\mathbf{R}\vec{e}_1 = \mathbf{r}_{11}\vec{e}_1 + \mathbf{r}_{21}\vec{e}_2 + \mathbf{r}_{31}\vec{e}_3$

La symétrie R est représentée par la matrice

$$R = \begin{pmatrix} r_{11} & r_{21} & r_{31} \\ r_{12} & r_{22} & r_{32} \\ r_{13} & r_{23} & r_{33} \end{pmatrix}$$
(I.6)

(I.7)

a)Matrice associée à l'opération identité E :

$$(\mathbf{R}\vec{e}_{1}, \mathbf{R}\vec{e}_{2}, \mathbf{R}\vec{e}_{3}) = (\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}) \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \end{pmatrix}$$

$$(E) = \begin{pmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{pmatrix}$$

La matrice (E) est la matrice identité de IR³. Elle est liée à la base choisie.

NB : la somme des éléments diagonaux est égale à la dimension de la matrice :

Σ Éléments diagonaux = dimension de la matrice..

b) Rotation d'un angle α autour d'un axe e_3 : C(α)

Tous les vecteurs de vecteurs déplacés se décomposent comme suit :

$$C(\alpha) (\vec{e}e_1) = \cos \alpha (\vec{e}_1) + \sin \alpha (\vec{e}_2) + 0 (\vec{e}_3)$$
$$C(\alpha) (\vec{e}_2) = -\sin \alpha (\vec{e}_1) + \cos \alpha (\vec{e}_2) + 0 (\vec{e}_3)$$
$$C(\alpha) (\vec{e}_3) = 0(\vec{e}_1) + 0 (\vec{e}_2) + 1 (\vec{e}_3)$$

D'où la matrice suivante :

$$(C(\alpha) \ (\vec{e}_1), \ C(\alpha) \ (\vec{e}_2), \ C(\alpha) \ (\vec{e}_3)) = (\vec{e}_1, \ \vec{e}_2, \ \vec{e}_3) \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}.$$

$$C(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(I.8)

 Σ Éléments diagonaux = χ = 2 cos α + 1.

c)Rotation impropre S (α): S (α) = σ_h C(α)

La réflexion qui suit la rotation $C(\alpha)$ conduit à la matrice :

$$S(\alpha) = \begin{pmatrix} \cos \alpha & -\sin \alpha & 0\\ \sin \alpha & \cos \alpha & 0\\ 0 & 0 & -1 \end{pmatrix}$$

d) Matrice associée à une symétrie par rapport à un plan

Le plan choisit est σv qui contient e_3 . Par la suite σv fait un angle β avec e_3 . ($\hat{\sigma}, e_3$) = β

$$\sigma_{v}(e_{1}) = \cos 2\beta (e_{1}) + \sin 2\beta (e_{2}) + 0 (e_{3})$$

$$\sigma_{v}(e_{2}) = \sin 2\beta (e_{1}) - \cos 2(e_{2}) + 0 (e_{3})$$

$$\sigma_{v} (e_{3}) = 0 (e_{1}) + 0 (e_{2}) + 1(e_{3})$$

$$\sigma_{v} = \begin{pmatrix} \cos 2\beta & \sin 2\beta & 0\\ \sin 2\beta & -\cos 2\beta & 0\\ 0 & 0 & 1 \end{pmatrix}$$
(I.9)

e) Symétrie par rapport à σ_h :

Si le plan contient e_1 et e_2 telle que σ_h est identifié à ce plan, les vecteurs e_1 et demeurent inchangés alors que e_3 change de sens

$$\sigma_h = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}$$
(I.10)

I-3-5- Détermination des caractères :

La somme des éléments diagonaux de la matrice représentant l'élément g du groupe est son caractère Noté $\chi(g)$ ils sont très importantes pour calculer la contribution au caractère.

Le caractère d'une symétrie R vérifie :

$$\chi_0(R) = n_r \chi_R \tag{I.11}$$

 n_r : Le nombre des noyaux que R laisse dans leurs positions initiales.

Le caractère de R dans Γ_r est

$$\begin{cases} \chi(R) = 1 + 2\cos(\sigma) & \text{Pour } R = C(\sigma). \\ X(R) = -1 + 2\cos(\sigma) & \text{Pour } R = S(\sigma). \end{cases}$$
(I.12)

Les caractère des $S(\sigma)$ dans Γ_t et Γ_r sont opposée alors

$$\chi_t(S(\sigma)) = -\chi_r(S(\sigma)) \tag{I.13}$$

On définit
$$\Gamma_{tr}$$
 par : $\Gamma_{tr} = \Gamma_t + \Gamma_r$ (I.14)

D'après les équations (I.7) et (I.8) le caractère χ_{tr} dans Γ_{tr} est :

$$\begin{cases} \chi_{tr}(R) = 2\chi_R & \text{Pour } R = C(\alpha). \\ \chi_{tr}(R) = 0 & \text{Pour } R = S(\alpha) \end{cases}$$
(I.15)

Le caractère de la représentation réductible vibrationnelle χ_{vib} de R dans Γ_{vib} est :

$$\chi_{\rm vib} = \chi_0(R) - \chi_{tr}(R) \tag{I.16}$$

A partir de deux équation (I.6) et (I.9) on peut écrire l'équation (I.10) sous la forme :

$$\begin{cases} \chi_{\text{vib}} = (n_{\text{r}} - 2)\chi_{\text{R}} & \text{Si R} = C(\alpha). \\ \chi_{\text{vib}} = n_{\text{r}}\chi_{\text{R}} & \text{Si R} = S(\alpha). \end{cases}$$
(I.17)

Symétrie R	Ε	C (α)	σ	S (α)	i	
Caractère $\chi_{\rm R}$	3	$1+2\cos\alpha$	1	$-1+2\cos \alpha$	-3	

Tableau (I-4) : les relations permettant le calcul de χ_R .

Théorème N1:

Le groupe **G** possède exactement k représentations irréductibles $\Gamma_1, \Gamma_2, \ldots, \Gamma_K$. Dont les dimensions : $k_1, k_2...k_k$

Satisfont la relation :

$$k_1^2 + k_2^2 + \dots k_k^k = g (I.18)$$

-Notion des représentations irréductible (R.I) [Symboles de Mulliken]

*les R.I unidimensionnelles : A ou B

*les R.I bidimensionnelles : E

*les R.I tridimensionnelles : T (ou F pour les spectroscopies)

Théorème N2:

Le caractère d'une R.R est l'ensemble des traces des matrices représentent cette R.R, et il satisfait à la relation :

$$\sum_{i=1}^{k} g_{i} \chi_{i}^{*(\mu)} \chi_{i}^{(\nu)} = g \delta_{\mu\nu}$$
 (I.19)

 $\chi_{i}^{*(\mu)}$: Le complexe conjugué de $\chi_{i}^{(\mu)}$

K : Le nombre des représentations irréductibles (classes d'éléments).

g_i : Le nombre d'éléments de symétrie de classe K_i

 $\chi_i^{(\nu)}$: Le caractère d'un élément de symétrie appartenant à la classe K_i

g : Le nombre d'éléments de symétrie de représentation réductible (R.R).

 $\delta_{\mu\nu}$: Le symbole de Kronecker.

Théorème N3:

Loi de la décomposition de la représentation réductible à représentation irréductible.

$$\Gamma_{\rm R} = \sum_{\rm i}^{\rm k} a_{\rm u} \, \Gamma_{\rm I} \tag{I.20}$$

Le nombre de fois ou Γ^u appariait dans réduction de Γ et :

$$a_{u} = \frac{1}{g} \sum_{i=1}^{k} g_{i} k \chi_{i}^{*(u)} \chi_{i}^{\Gamma}$$
 (I.21)

g : est l'ordre du groupe.

 g_i : Est le nombre d'éléments (l'ordre) de la 2ième classe d'opérations. $\chi_i^{*(u)}$: est le caractère de la matrice des opérateurs de cette classe K dans la RI. χ_i^{Γ} : est le caractère de la matrice du ou des opérateur(s) de cette classe k dans la RR.

I-3-6- Les modes normaux de vibration des molécules tétraédriques :

Un mode de vibration d'une molécule est un mouvement pour lequel tous les atomes de la molécule vibrent en phase, à la même fréquence mais dans des directions ou avec des amplitudes différentes. Ce n'est pas toujours facile de reconnaître dans un mouvement désordonné les modes de vibration qui le composent mais on peut toujours le décomposer dans les modes de vibration de la molécule (formant ainsi une combinaison linéaire des modes). Il est donc important de connaître ces modes. Chaque atome d'une molécule a 3degrés de liberté ; il y a donc 3N degrés de liberté dans une molécule formée de N atomes. Mais comme parmi ces 3N degrés il y en a 3 pour la translation globale de la molécule et3 pour la rotation, il n'en reste que 3N-6 pour les mouvements relatifs des atomes formant ce que l'on appelle les modes de vibration de la molécule. Il faut toutefois ajouter que pour une molécule linéaire, il n'y a que 3N-5 modes de vibration puisque il n'y a pas de degré de liberté associé à la rotation de la molécule autour de son axe principal (il n'y a pas de moment d'inertie autour de cet axe).

```
En résumé : 3N - 6 degrés de liberté pour une molécule non linéaire.
3N - 5 degrés de liberté pour une molécule linéaire.
```

I-3-7- table de caractère :

Pour chaque groupe de symétrie, on peut dresser un tableau appelé table des caractères.Ce tableau est constitué par des lignes et des colonnes.

 ✓ dans la première ligne, on écrit le nom du groupe, les différentes classes de symétrie de ce groupe puis les bases des représentations couramment utilisées.

✓ dans les lignes suivantes, on écrit les représentations irréductibles et les caractères correspondants

Figure (I-9) : la table de caractère.

- La molécule tétraédrique qui nous intéresse dans ce travail est ¹²CH₄.

Elle appartient au groupe de symétrie tétraédrique T_d dont les résultats les plus importants sont :

T_d	E	$8C_3$	$3C_2$	6S4	$6\sigma_d$
A_{I}	1	1	1	1	1
A_2	1	1	1	-1	-1
Ε	2	-1	2	0	0
F_1	3	0	-1	1	-1
F_2	3	0	-1	-1	1

Tableau (I-5) : table de caractère de la molécule ¹²CH₄.

-A₁, A₂ Représentation à une dimension.

-E Représentation à deux dimensions.

-F₁, F₂ Représentation à trois dimensions.

Les symétries de T_d laissent toutes le noyau de carbone invariant mais déplacent un nombre variable de protons de leur position d'équilibre. Les classes de T_d sont : E pour lequel $n_r = 5$; les rotations C₃ autour des diagonales du cube qui ne laissent qu'un proton H en sa position initiale et pour lesquelles $n_r = 2$; les rotations C'₂ autour des axe d'ordre 2 qui déplacement tous les protons H en et pour lesquelles $n_r = 1$; les rotations impropre S_4 autour des mêmes axes pour lesquelles $n_r = 1$; les symétries σ_h par rapport aux plans contenant deux liaisons **CH** qui laissent deux protons invariants et pour lesquelles $n_r = 3$.

Les neuf coordonnées de vibration correspondent à quatre fréquences fondamentales différents : Une fréquence non dégénérée de type A₁, une fréquence doublement dégénérée de type E, et deux fréquence trois fois t dégénérée avec la même de type de symétrie F_2 . [7]

T_d	E	$8C_3$	$3C_2$	$6S_{4}$	$6\sigma_d$
n_R	5	2	1	1	3
χ_R	3	0	-1	-1	1
Xvib	9	0	1	-1	3

En résume les n_r et χ_{vib} dans le tableau suivant :

Tableau (I-6) : les caractères χ_{vib} pour les symétries du groupe tétraédrique

Exemple : réduction de la représentation de t_d de ¹²CH₄

D'après la formule de réduction (I.21) on a :

$$a (A_1) = \frac{1}{24} (1 \times 9 \times 1 + 8 \times 0 \times 1 + 3 \times 1 \times 1 + 6 \times -1 \times 1 + 6 \times 3 \times 1) = 1$$

$$a (A_2) = \frac{1}{24} (1 \times 9 \times 1 + 8 \times 0 \times 1 + 3 \times 1 \times 1 + 6 \times -1 \times 1 + 6 \times 3 \times -1) = 0$$

$$a(E) = \frac{1}{24} (1 \times 9 \times 2 + 8 \times 0 \times -1 + 3 \times 1 \times 2 + 6 \times -1 \times 0 + 6 \times 3 \times 0) = 1$$

$$a (F_1) = \frac{1}{24} (1 \times 9 \times 3 + 8 \times 0 \times 0 + 3 \times 1 \times -1 + 6 \times -1 \times 1 + 6 \times 3 \times -1) = 0$$

$$a (F_2) = \frac{1}{24} (1 \times 9 \times 3 + 8 \times 0 \times 0 + 3 \times 1 \times -1 + 6 \times -1 \times -1 + 6 \times 3 \times 1) = 2$$

$\Gamma vib = A_1 \oplus E \oplus 2F_2$

Les molécules de XY₄ possèdent quatre modes normaux de vibrations :

- A₁ une fréquence non dégénérée v₁
- E une fréquence doublement dégénérée v₂
- F₂ deux fréquences trois fois dégénérée v₃ et v₄

A chaque mode de vibration est associée une représentation irréductible du groupe T_d . On a :

La vibration v_1 de symétrie A₁ : (q_1)

La vibration v_2 de symétrie E : (q₂₁, q₂₂)

La vibration v_3 de symétrie F₂ :(q₃₁, q₃₂, q₃₃)

La vibration v_4 de symétrie F_2 : (q_{41} , q_{42} , q_{43}) [8]

Les fréquences fondamentales sont approximativement liées entre eux par la relation suivante :

$$v_1(A_1) \approx v_3(F_2) \approx 2v_2(A_1) \approx 2v_4(F_2)$$

Ce qui conduit à une structure de poliades bien définie, avec chaque poliade P_n défini par le nombre entier n en tant que :

$$n = 2(v_1 + v_3) + v_2 + v_4$$

Où le $v_i = 0, 1, 2...$ (i = 1 à 4) sont les nombres quantiques vibrationnels. Po est l'état fondamental (GS) .Chaque ensemble (v_1, v_2, v_3, v_4) définit un niveau de vibration. En raison de la dégénérescence de trois des vibrations normales, chaque niveau vibrationnel contient un certain nombre de sous-niveaux vibrationnels, dont les symétries sont calculées au moyen des méthodes de la théorie des groupes [9].

Ainsi:

- Le niveau de base où tous les Vi sont nuls, est noté GS (Ground State) ou P₀
- La diade (v₂, v₄) sera notée P₁
- La pentade $(2v_4, v_2+v_4, v_1, 2v_2, v_3)$ sera notée P₂
- L'octade $(3v_4, v_2+2v_4, v_1+v_4, v_3+v_4, 2v_2+v_4, v_1+v_2, v_2+v_3, 3v_2)$ sera notée P₃

Pour construire l'Hamiltonien rovibrationnel des molécules tétraédriques, on fait intervenir le groupe complet des rotations O(3) et les coefficients de couplages de la chaîne de groupe O(3) $\supset T_d$ [10].

mode de	V 1	V 2	V 3	V 4
vibration				
Symétrie	A_1	E	F_1	F ₂

Tableau (I-7) : les modes de vibrations.

[1] D. S. Scholland, «La symétrie moléculaire » ; collection ''Enseignement de chimie'' GOULLIER VILARS.

[2] Patrick CHAQUIN Cours d'atomistique, liaison chimique et spectroscopie Physique et Chimie-chapitre 5Université Pierre et Marie Curie

[3] Pr : Claude A. Daul : Pérolles.

.

[4] LIVRE de Spectroscopie j.Michael Hollas.

[5] Mémoire BOUGARA Samira UNIVERSITE « Dr. TAHAR MOULAY » DE SAIDA 2020 / 2021

[6] Pr TROKOUREY, Laboratoire de Chimie Physique, UFR SSMT, UFHB

[7] Introduction à la théorie des groupes et a ses applications a la chimie DS.SCHONLANDE -la symétrie moléculaire.

[8] DETERMINATION DES PARAMETRES DE L'HAMILTONIEN DES MOLECULES TETRAEDRIQUES. KAAROUR A., OUARDI O. et HAMADA H.

[9] G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra, vol. II, Van Nostrand, Toronto, 1945.

[10] J.-P Champion, Can.phys.55, 1802-1828(1977)

II-1-Introduction :

Lors de ce chapitre nous allons présenter le développement de H'amiltonien de la Molécule tétraédrique XY₄ **[1]**. Et aussi le formalisme qui possède un caractère tout à fait général puisqu'il utilise un schéma de couplage dans le groupe de recouvrement de la molécule. Il présente ainsi l'avantage d'être applicable à toutes les bandes quel que soit la symétrie des sous-niveaux vibrationnels impliqués. L'expression des éléments matriciels est relativement complexe. Ce formalisme est donc adapté au calcule sur ordinateur **[2]**

II-2-Hamiltonien de vibration-rotation d'une molécule :

II-2-1-Hamiltonien d'une molécule isolé :

Soit un système moléculaire isolé comportant N noyaux et n électron. On considéré l'équation de Schrödinger comme un point de départ de toutes les études de système donc :

$$H\Psi = E\Psi \tag{II.1}$$

Et H si l'hamiltonien total de système qui présent physiquement l'énergie cinétique de toutes les particules (électron, noyau) et l'interaction entre elles.

$$H=T_e + T_N + V_{eN} + V_{NN} + V_{ee}$$
(II.2)

T_e: L'énergie cinétique des électrons.

$$T_{e} = -\frac{\hbar^{2}}{2m_{e}} \sum_{i} \nabla_{i}^{2} (r_{i}) \qquad \text{ou} \qquad m_{e} : \text{la masse d'électron} \qquad (\text{II.3})$$

T_n: L'énergie cinétique des noyaux.

$$\Gamma_{n} = -\sum_{i} \frac{\hbar^{2}}{2M_{i}} \nabla_{i}^{2}(R_{i}) \qquad \text{ou Mi : la masse de noyau} \qquad (II.4)$$

V_{ee} : L'énergie coulombienne d'interaction électron-électron

$$V_{ee} = \frac{1}{8\pi\varepsilon_0} \sum_{i,j} \frac{e^2}{|r_i - r_j|}$$
(II.5)

V_{nn}: L'énergie coulombienne d'interaction noyaux-noyaux

$$V_{nn} = \frac{1}{8\pi\varepsilon_0} \sum_{k,l} \frac{e^2 Z_k Z_l}{|R_k - R_l|}$$
(II.6)

Ven: L'énergie coulombienne d'interaction

électron-noyaux

$$V_{en} = \frac{1}{4\pi\varepsilon_0} \sum_{i,k} \frac{-e^2 Z_k}{|R_i - r_k|}$$
(II.7)

Avec :

k, l : les noyaux

i, j : les électrons

Il est bien connu, que l'hamiltonien total de la molécule décrivant toutes les interactions entre les noyaux et les électrons est infinie. Le problème de la solution de l'équation de Schrödinger avec cet hamiltonien est pratiquement impossible. De ce fait, il existe différentes

approches ayant pour simplifier cet hamiltonien. Une des approches est basée sur l'approximation de Born-Oppenheimer [3]

II-2-2-Approximation de Born-Oppenheimer :

Cette approximation dépend de la séparation du mouvement des électrons des noyaux, qui prend en compte la grande différence entre la masse des électrons et les masses des noyaux, où la masse électronique est bien inférieure à la masse du noyau, tandis que la vitesse électronique est beaucoup plus grande que la vitesse du noyau ^[3]. Du nucléaire électron, et la réaction nucléique est prise entre eux, c'est-à-dire, V_{NN} =cte, T_{NN} =0, ce qui signifie que l'hamiltonien total de système est composé de l'hamiltonien électronique et hamiltonien nucléaire comme :

$$H=T_e + V_{en} + V_{nn} + V_{ee}$$
(II.8)

On définit alors un hamiltonien électronique :

$$H_{el} = T_e + V_{eN} + V_{ee} \tag{II.9}$$

Donc l'équation sa devient :

$$H = H_{\acute{e}l\acute{e}} + V_{NN} \tag{II.10}$$

Le terme V_{ee} est très difficile à calculer. Nous allons appliquer une approximation visant à négliger ce terme en considérant que les électrons sont indépendants les uns des autres, ce qui revient à négliger ce terme dans le traitement. On peut alors définir un Hamiltonien électronique approché :

$$H_{el, approche} = H_{el}(1) + H_{el}(2) + \dots + H_{el}(n)$$
 (II.11)

Le corolaire de cette approximation est alors que la fonction d'onde totale peut être considérée comme le produit des solutions mono-électronique de cette équation. On écrit :

$$\Psi_{\text{total}} = \Psi(1). \ \Psi(2) \dots \Psi(n) \tag{II.12}$$

II-2-3-Propriété générale de L'Hamiltonien :

L'Hamiltonien de vibration-rotation doit être :

- Hermétique
- Invariant dans un renversement du temps
- Totalement symétrique dans le groupe de recouvrement de la molécule

II-2-4-L'énergie à l'approximation zéro :

A cette l'approximation le mouvement de rotation et de la vibration sont indépendant de celui, donc l'hamiltonien de rotation vibration s'écrire sous la forme suivante :

$$H_0 = H_v + H_r \tag{II.13}$$

H_v: L'Hamiltonien de vibration

H_r: L'Hamiltonien de rotation

II-2-4-1-Hamiltonien vibrationnel :

L'Hamiltonien de vibration est une somme d'Hamiltonien relatifs à des oscillateurs harmoniques indépendants

$$H_{v} = \frac{\hbar}{2} \sqrt{\lambda_{S}} \left(\frac{p_{S\sigma}^{2}}{\hbar^{2}} + q_{S\sigma}^{2} \right)$$
(II.14)

Où:

 $p_{s\sigma}$ et $q_{s\sigma}$ sont respectivement la coordonnée normale et son moment conjugué

S : désigne le mode normale de vibration

 λ_s : coefficient lié aux fréquences propres de vibration des oscillateurs

 σ : différencié les composantes de cette vibration dans le cas où elle est dégénérée [4].

$$E_{v} = \sum_{S} \left(\nu_{S} + \frac{g_{s}}{2} \right) \omega s \tag{II.15}$$

avec:

 ω_s : le nombre d'onde de l'oscillateur s

 v_s : le nombre quantique principal de vibration un entier ≥ 0

gs: les dimensions (dégénérescence) de l'oscillateurs

II-2-4-2-Hamiltonien rotationnel :

L'Hamiltonien de rotation Hr est celui du rotateur rigide s'écrit :

$$H_{\rm r} = \frac{1}{2} \sum \frac{J_{\alpha\alpha}^2}{I_{\alpha\alpha}^2} \tag{II.16}$$

 J_{α} : représente les composantes du moment angulaire de rotation (totale)

 $I_{\alpha\alpha}^2$: Les moments principaux d'inertie de la molécule à l'équilibre l'énergie rotationnelle pour une molécule toupie sphérique.

$$E_r = B_e J(J+1)$$
(II.17)

Ou B_e = $\frac{\hbar}{8\pi^2 C I_{\alpha\alpha}^e}$ est la constante d'inertie de la molécule à l'équilibre

J : désigne le nombre quantique principal de rotation associé à la longueur du moment angulaire total.

II-3-Développement complet de l'Hamiltoniens des molécules tétraédrique XY₄:

II-3-1-Opérateurs rotationnels :

Les opérateurs rotationnels sont construits à partir de l'opérateur tensoriel élémentaire A ^(lg) de composantes ($2P_x / h$, $2P_y / h$, $2P_z / h$). Morlet Bailly et sous la forme tensorielle dans (O3) a exprimé les opérateurs rotationnels $R^{\Omega(k_g, n\Gamma)}$ qui représentent des tenseurs sphériques

irréductibles de rang k sous forme d'un polynôme homogène par rapport à (P_x, P_y, P_z) tel que [5] :

$$R^{\Omega(k_g,n\Gamma)} = \underbrace{\left[A^{(lg)} \otimes A^{(lg)} \otimes \dots \dots A^{(lg)}\right]}_{\Omega \text{ opérateurs}} (k_g,n\Gamma)$$
(II.18)

Où le rang k prend les valeurs :

$$k = \Omega, \Omega - 2, \dots \dots \dots \dots \dots , 1 \text{ ou } 0 \tag{II.19}$$

 $R^{\Omega(k_g,n\Gamma)}$: est un polynôme homogène de degré Ω par rapport aux composantes P_x , P_y , P_z , (il représente un tenseur sphérique irréductible de rang k).

g : qui indique la parité des opérateurs rotationnels dans le groupe O(3), sera omis par la suite.

 Γ : désigne la symétrie des représentations

n : distingue les représentations de même symétrie.

II-3-2-Opérateurs vibrationnels :

Pour défini l'opérateur vibrationnel, il faut tout d'abord coupler tous les opérateurs de créations entre eux pour former un tenseur de symétrie Γ_1 ; puis tous les opérateurs d'annihilations entre eux pour former un autre tenseur de symétrie Γ_2 .

Les deux tenseurs ainsi obtenus sont coupler pour former l'opérateur vibrationnel final donné par :

$${}^{\varepsilon}V_{\{n_{s}\}\{m_{s}\}}^{\alpha_{1}\Gamma_{1}\alpha_{2}\Gamma_{2}(\Gamma)} = \frac{1}{N}e^{i\Phi} \otimes \left(A_{\{n_{s}\}\{m_{s}\}}^{\alpha_{1}\Gamma_{1}\alpha_{2}\Gamma_{2}(\Gamma)} + \varepsilon(-1)^{\Gamma_{1}+\Gamma_{2}+\Gamma} \otimes B_{\{n_{s}\}\{m_{s}\}}^{\alpha_{2}\Gamma_{2}\alpha_{1}\Gamma_{1}(\Gamma)}\right)$$
(II.20)

Telle que :

$$\varepsilon = \begin{cases} -1 & \text{si cet opérateur est un polynôme impair} \\ +1 & \text{si cet opérateur est un polynôme pair} \end{cases}$$
(II.21)

N : facteur de normalisation

$$e^{i\Phi} = \begin{cases} +1 \quad pour \quad \varepsilon = 1\\ -i \quad pour \quad \varepsilon = -1 \end{cases}$$
(II.22)

$$-(-1)^{\Gamma} = \begin{cases} +1 & si \quad \Gamma = A_1, E \text{ ou } F_2 \\ -1 & si \quad \Gamma = A_2, E \text{ ou } F_{21} \end{cases}$$
(II.23)

Les étapes suivies dans la construction des opérateurs vibrationnels est comme suivant : [6-7]

• En couplant n_s opérateurs de créations $a_s^{+(C)}$:

$$a_{s}^{+(C)} = \frac{1}{2} (q_{s\sigma} - iq_{s\sigma})^{(C)}$$
(II.24)

$$\underbrace{\left(a_{s}^{+(C)}\otimes a_{s}^{+(C)}\otimes \dots \dots a_{s}^{+(C)}\right)^{\alpha_{1}\Gamma_{1}}}_{n_{s} \text{ opérateurs}} = a_{\{n_{s}\}}^{+(\alpha_{1}\Gamma_{1})}$$
(II.25)

Avec :

 α_1 : Distingue les tenseurs de même symétrie et précise les couplages intermédiaires.

C : Symétrie dans T_d de l'oscillateur S.

 σ : Distingue les composantes des représentations associées.

Tel que :

$$\begin{cases}
C = A_1 \quad pour \quad S = 1 \\
C = E \quad pour \quad S = 2 \\
C = F_2 \quad pour \quad S = 3 \quad ou \quad 4 \quad et \quad \sigma = 1, 2, 3
\end{cases}$$
(II.26)

S : peuvent être les mêmes ou différents.

 $\{n_s\}$: la suite des nombres S.

• En couplant m_s opérateurs d'annihilations $a_{s\sigma}^{(C)}$:

$$a_{s}^{(C)} = \frac{\sqrt{2}}{2} (q_{s\sigma} - iq_{s\sigma})^{(C)}$$
(II.27)

$$\underbrace{\left(a_{s}^{(C)}\otimes a_{s}^{(C)}\otimes \dots \dots a_{s}^{(C)}\right)^{\alpha_{2}\Gamma_{2}}}_{m_{s} \text{ opérateurs}} = a_{\{m_{s}\}}^{+(\alpha_{2}\Gamma_{2})}$$
(II.28)

• En couplant les deux tenseurs obtenus pour construire deux opérateurs vibrationnels :

$$A_{\{n_{s}\}\{m_{s}\}}^{\Gamma_{1}\Gamma_{2}(\Gamma)} = \left(a_{\{n_{s}\}}^{+(\alpha_{1}\Gamma_{1})} \otimes a_{\{m_{s}\}}^{(\alpha_{2}\Gamma_{2})}\right)^{(\Gamma)}$$
(II.29)

$$B_{\{m_s\}\{n_s\}}^{\Gamma_2\Gamma_1(\Gamma)} = \left(a_{\{m_s\}}^{(\alpha_2\Gamma_2)} \otimes a_{\{n_s\}}^{+(\alpha_1\Gamma_1)}\right)^{(\Gamma)}$$
(II.30)

$$\Delta(\Gamma_1 \Gamma_2 \Gamma) = 0 \tag{II.31}$$

II-3-3-Opérateurs rovibrationnels :

L'Hamiltonien d'une molécule quelconque est totalement symétrique dans le groupe de recouvrement de la molécule. En particulier, l'Hamiltonien rovibrationnel des molécules toupie sphérique XY₄ sont totalement sphérique dans le groupe T_d . Ils doivent également vérifiée les propriétés d'hermicité et d'invariance dans un renversement du temps suivant le formalisme développé dans ce travail.

Leur forme générale est suivante [8] :

$$T_{\{n_s\}\{m_s\}}^{\mathfrak{Q}(k_g,n\Gamma)\Gamma_1\Gamma_2} = \left(R^{\mathfrak{Q}(k_g,n\Gamma)} \otimes (-1)^{K} \varepsilon V_{\{n_s\}\{m_s\}}^{\Gamma_1\Gamma_2\Gamma}\right)^{(A_l)}$$
(II.32)

Le degré de ces opérateurs est :

$$d_{RV} = \Omega + \sum_{S} (n_{S} + m_{S}) \tag{II.33}$$

A partir des opérateurs définis dans les paragraphes précédents, en peut construire l'hamiltonien rovibrationnel complet sous la forme :

$$H = \sum_{\substack{\text{tous les}\\\text{indices}}} t_{\{n_s\}\{m_s\}}^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2} \otimes T_{\{n_s\}\{m_s\}}^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2}$$
(II.34)

Dans cette équation, $t_{\{n_s\}\{m_s\}}^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2}$ sont les paramètres de l'hamiltonien et les $T_{\{n_s\}\{m_s\}}^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2}$ sont les opérateurs rovibrationnels définis comme étant :

$$T^{\Omega(k,n\Gamma)\Gamma_{1}\Gamma_{2}}_{\{n_{s}\}\{m_{s}\}} = B\left(R^{\Omega(k_{g},n\Gamma)} \otimes {}^{\varepsilon}V^{\Gamma_{1}\Gamma_{2}\Gamma}_{\{n_{s}\}\{m_{s}\}}\right)$$
(II.35)

Où B : est donné par [9] :

$$B = \left\{ \begin{array}{c} \sqrt{\Gamma_1} \left(\frac{-\sqrt{3}}{4}\right)^{\frac{\Omega}{2}} pour\left(k, n\Gamma\right) = (0, nA_l) \\ 1 \quad pour\left(k, n\Gamma\right) \neq (0, nA_l) \end{array} \right\}$$
(II.36)

[1] mémoire belgour yamina 2017/2018.

[2] C.Pierre ,G.Pierre,J.P champion laboratoire de spectronomie moléculaire Dijon .france 1980

[3] Laboratoire Interdiciplinaire Carnot de Bourgogne, UMR 5209 CNRS–Université de Bourgogne9 Av. A. Savary, BP 47 870 – 21078 Dijon Cedex –France

[4] L. Xiao-Juan, W. Zhi-Jian, H. Xian-Feng, X. Hong-Ping, J. Meng, Chem. Phys.Lett. 416 (2005) 7.

[5] J. Moret-Bailly, Cah. Phys. 15 -237. (1961)

[6] M. Loete. Can. J. Phys, 61(8): 1242-1259. (1983). <u>https://doi.org/10.1139/p83-158</u>

[7] M. Meskine, Thèse de DOCTORAT, Université e SAIDA, Janvier (2015).

[8] J-P. Champion, G. Pierre, F. Michelot, and J. Moret Bailly. Can. J. Phys, 55
 512, (1977). <u>https://doi.org/10.1139/p77-070</u>

[9] A. Mourbat, M. Loete, J. Mol. Spectrosc. Volume 189, Issue 1, Pages 16-28. (May 1998). https://doi.org/10.1006/jmsp.1997.7484

Chapitre III Méthode d'analyse et Programmes utilisés

III-1-Méthodes numériques utilisées dans les analyses des données

expérimentales :

Dans ce chapitre, nous allons décrire les méthodes d'analyses utilisées dans la détermination des paramètres de l'Hamiltonien et ceux du moment dipolaire. Et c'est ces paramètres qui seront utilisés dans notre travail, pour toute prédiction de spectres.

III-1-1-Ajustement des paramètres de l'Hamiltonien par la méthode des

moindres carrés itératives :

Le principe général de cette méthode est de choisir le jeu de paramètres d'hamiltonien que l'on définira, de telle sorte qu'il minimise la somme des carrés de la différence entre les valeurs prédites par le modèle et les valeurs observées. Cette méthode est décrite dans ce paragraphe.

Soit une grandeur Y mesurée n fois dont les valeurs calculées s'écrivent en fonction de P paramètres t_i (j = 1, ... p) de la fonction suivante

$$y_i^c = \sum_{j=1}^p t_j x_{ij}$$
 (*i* = 1,...., n) (III.1)

Où x_{ij} sont des constants théoriques connues et t_j sont les paramètres à déterminer. Si ces grandeurs physiques sont observées $(y_1^0, ..., y_n^0)$, on peut toujours écrire

$$y_i^0 = y_i^c + \epsilon_i \qquad \qquad i = 1, \dots, n \qquad (III.2)$$

Où ϵ_i représentent les résidus.

Soient e_i et β_i les meilleurs estimateurs de ϵ_i et t_j respectivement.

Pour ajuster les paramètres β_j par la méthode des moindres carrés, on résout le système :

$$\begin{cases} y_i^0 = \sum \beta_j x_{ij} + e_i \\ \sum_{i=1}^n e_i^2 & minimum \end{cases}$$
(III. 3)

 $\sum e_i^2$ dépend des p paramètres de β_i , sa différentielle totale s'écrit :

$$d\left(\sum_{i=1}^{n} e_{i}^{2}\right) = \sum_{i=1}^{p} \frac{\partial(\sum_{i=1}^{n} e_{i}^{2})}{\partial\beta_{l}} d\beta_{l}$$
(III. 4)

 $\sum_{i=1}^{n} e_i^2$ est extremum si sa différentielle totale est nulle, c'est-à-dire si

$$\frac{\partial \sum_{i}^{2} e}{\partial \beta_{l}} \quad \forall \quad l = 1 \dots p$$
(III.5)
$$\frac{\partial (\sum e_{i}^{2})}{\partial \beta_{l}} = \frac{\partial}{\partial \beta_{l}} \sum_{i=1}^{n} \left(y_{i}^{0} - \sum_{j=1}^{p} \beta_{j} x_{ij} \right)^{2}$$
$$= \sum_{i=1}^{n} (-2x_{il}) \left(y_{i}^{0} - \sum_{j=1}^{p} \beta_{j} x_{ij} \right)$$
$$= -2 \left[\sum_{i=1}^{n} x_{il} y_{i}^{0} - \sum_{i,j}^{n,p} x_{il} x_{ij} \beta_{j} \right] = 0$$

Et l'équation (III.5) devient :

$$\sum_{i=1}^{n} y_{i}^{0} x_{il} = \sum_{i,j}^{n,p} x_{il} x_{ij} \beta_{j} \qquad \forall \ l = 1 \dots \dots p \qquad (III.6)$$

Sous forme matricielle :

$$[x]^{t}(y^{0}) = [x]^{t}[x](\beta)$$
(III.7)

D'où, la matrice des paramètres :

$$(\beta) = ([x]^t [x])^{-1} [x]^t (y^0)$$
(III.8)

[x] est la matrice des x_{ij} n lignes p colonnes

 (y^0) est la matrice-colonne des observées (à n lignes)

 (β) est la matrice-colonne des paramètres (à p lignes)

La condition (III.5) n'est qu'une condition d'extremum, mais on montre qu'elle donne uniquement des minimums de $\sum_{i=1}^{n} e_i^2$

III-2-Programmes utilisées :

III-2-1-Installation de XTDS et explication des instructions :

Nous avons téléchargé **XTDS**, ensemble de logiciels développés au niveau de laboratoire de physique l'université de bourgogne. Ce groupe de logiciels, qui utilise la programmation **Java** pour son exécution, permet de faire toutes sortes d'études spectroscopiques concernant les molécules tétraédriques T_d .

Il permet entre autre de :

- analyser les fréquences d'un spectre infrarouge ou Raman
- analyser les intensités de spectre.
- faire, des prédictions de spectre et dessiner ainsi :
 - le spectre (raies en traits).
 - La simulation du spectre (avec les formes de raies)
 - Le diagramme énergétique.

Après son téléchargement, et puisque cet ensemble de logiciels est à interface **Java**, il faut tout d'abord, et à partir du site :

http://java.sun.com/j2se/1.4.2/downlod.html

télécharger et installer tous les logiciels concernant l'exécution des interfaces Java.

L'installation de **XTDS** sous linux ou sous Windows doit être faite exactement comme s'est indiqué dans le fichier (Readme.txt).

Quand on exécute **XTDS**, la première fenêtre qui apparaît est celle donnée en image 1, où il faut tout d'abord se positionner à "**Create à Jobs**", ce qui permet à l'utilisateur de choisir :

- quel package l'utilisateur veut utiliser STDS, HTDS, ...
- quelle est la molécule à étudier.
- Quel travail, on veut exécuter.

Velcome Create a job Rum a job Visualize results Create a molecule	
Choose a Package :	
STDS v	
Choose the type of file to create :	
○ Parameter File Creation Job	
🔾 Level Job	
© Spectrum Job	
○ Simulation Job	
⊖ HT JOD	
V ARI JUU	

Figure (III-1) : première fenêtre de l'exécution de XTDS

Notons que dans notre étude, et puisqu'il s'agit d'une molécule **XY**₄, il faut choisir le package **STDS** (Spherical Top Data Software) et par exemple pour calculer le spectre de la molécule on choisir (Spectrum. Job) (voir image 2).

Une fois on a remplis, tout ce qu'il y'a dans "**Create à Jobs**" nous pouvons par exemple calculer une simulation de spectre (image 2) où l'utilisateur doit introduire les informations suivantes :

- 1- molécule à étudier.
- 2- J_{max}.
- 3- Caractéristique du niveau inférieur et supérieur (codées)
- 4- l'ordre de développement de l'hamiltonien.
- 5- le type de transition.
- 6- F_{max} (fréquence maximale en cm⁻¹).
- 7- F_{min} (fréquence minimale en cm⁻¹).
- 8- température de vibration.
- 9- Température de rotation.

10-seuil d'intensité.

11-l'ordre de développement de tenseur de polarisabilité.

Managing vTD	Links								_	a x
File Help	5 JODS	2								с л
Welcome Cre	ate a	a job Run a job Visualize result	s Create a molecule							
Spectrum Job Ci	reatio	on for STDS								
BASICS										
		Molecule 12CH4	•	Jmax 2	20 💌					
) HITRAN outp	out	Molecule ID 0	-	Isotop. ID	0 🗸		SPINX 0.0	-		
Parameter Fi	ile	C:\Users\osama\Desktop\travaile de	e memoire\parametre\para							
Polyad Scheme		[P]n = 2	▼ 'v1+	1	▼ *v2 +	2	▼ *V3 +	1	▼ *v4	
Lower Polyad	_									
Polyad Number	0									•
Quanta Limit	vi <=	=	0	•	0	•	0	•	0	•
Devel. Order					PO D 6					•
Upper Polyad										
Polyad Number	2									•
Quanta Limit	vi <=	=	2	•	2	•	2	•	2	•
Devel. Order		PO D 6		•	P1D 6		•	P2 D 5		•
TRANSITION MO	OMEN	T								
Trans	. dip	▼ Polar.	FMIN	2300	FMAX 3400		TVIB 300	TROT 300	RINMI 0.00000	0001
	⊖ f	ípvib	🔾 abund		🔾 unit	🔾 MHz	◯ GHz			
Devel. Order					D 3					•
PO N1 D6 0	0000)								^
P1 N2 D6 0)100	0001								
PZ N5 D5 1	.000	0 0010 0200 0101 0002								×
					Reset All Save					

Figure (III-2) : deuxième fenêtre de l'exécution de XTDS

Notons que, en ce qui concerne notre travail, et après avoir choisi la valeur du nombre quantique rotationnel J_{max} on choisit :

- niveau inférieur où tous les v_s sont nuls (v1 ; v2 ; v3 ; v4) = (0 ; 0 ; 0 ; 0).
- niveau supérieur
- l'ordre de développement de l'hamiltonien
- le type de transition de notre molécule est de type Infrarouge
- la fréquence minimale
- la fréquence maximale
- la température de vibration.
- la température de rotation.
- seuil d'intensité.

- l'ordre de développement de tenseur moment dipolaire.

👙 Managing xTDS jobs		-	٥	Х
File Help				
Welcome Create a job Run a job Visualize results Create a molecule				
	1. Choose à job			
	Choose a job			
	2. Choose a directory where to run the job			
	Choose a directory			
	3. Run the job			
	Run the job			

Figure (III-3) : troisième fenêtre de l'exécution de XTDS

Notons que tous ce qu'on vient d'expliquer permettent seulement de créer le job voulu, et une fois ceci est fait on peut le faire tourner et obtenir les résultats voulus.

Ainsi, et sur la base de l'exemple donné ci-dessus (job=Spectrum), et en lançant ce job par l'intermédiaire de "**Run à Jobs**" (image 3), on obtient des fichiers suivants :

- spectr.t
- spectr.xy
- énergie.

Une fois, les jobs fabriqués et exécutes on peut visualiser les résultats sous formes de graphismes et de valeurs numériques et ceci en cliquant sur ''**Visualize results**''

Ainsi on peut rècaputiler les deux dernières étapes en :

Run à jobs : (voir image 3) cette partie de logiciel permet de lancer les jobs après avoir créé le fichier de travail (fichier d'entré) (job-spe-) son exécution permet d'obtenir :

- spectr.t : qui contient toutes les informations sur la molécule (l'intensité de la raie la plus intense, l'intensité de la raie la moins intense, la fréquence minimale du spectre, la fréquence maximale du spectre, l'intensité sommée sur toutes les raies, le nombre des transitions relatif à chaque valeur J_{max}) ainsi que le spectre complet.
- **spectr.xy** : qui permet de tracer le graphe.

Visualize results : cette partie de logiciel permet de tracer le graphe à partir des fichiers de sorties (spectr.xy) (voir image 4).

Figure (III-4) : quatrième fenêtre de l'exécution de XTDS

Pour expliquer brièvement, la façon de faire tourner ces jobs, on s'est basé sur le job (spectrum.job), notons qu'il existe dans **XTDS** d'autres jobs qui sont :

 Simulation.jobs : permet à partir d'un spectre (spectr.xy), déjà obtenu par l'exécution du précèdent job, de dessiner le spectre complet avec les formes de raies. Donc ce qui sous-entend qu'on doit entrer dans ce job les données suivants :

- J _{max} .	-température.
- le type de transition.	-seuil d'intensité.
- fréquence maximale.	-pression.
- fréquence minimale.	-la résolution.

- **Fit-jobs** : ce job permet et à partir d'un fichier contenant les attributions de déterminer les paramètres de l'analyse en question.

Le fichier des attribués doit être fabriqué, par **SPVIEW** qui sera explique en détail par la suite.

L'ensemble de ces jobs sont basés sur les modèles de **Champion** [1-2] et **Loete** [3] et utilisent des programmes qui peuvent être résumes comme l'indique la paragraphe suivant.

- [1] J-P. Champion, G. Pierre, F. Michelot, and J. Moret Bailly. Can. J. Phys, 55. 512. (1977). https://doi.org/10.1139/p77-070
- [2] J. P. Champion, Thèse d'état, Université de Bourgogne, Dijon, France, (1978).
- [3] M. Loete, Thèse d'état, Université de Bourgogne, Dijon, France, (1961).

IV-1-Introduction :

Le spectre infrarouge relatif aux différentes bandes des molécules XY₄ est généralement enregistré à l'aide du spectromètre à transformer de fourrier. Après préparation

de l'échantillon, il est soumis à une irradiation lumineuse polychromatique. Les échanges d'énergie entre les molécules de l'échantillon et le champ électromagnétique se feront non seulement en quanta mais aussi si les deux phénomènes sont en résonance.

Macroscopiquement chaque raie absorbée a une fréquence et une intensité, qui se traduit, microscopiquement par une transition entre un niveau d'énergie inférieur vers un niveau d'énergie supérieure. Cette transition n'est possible que si les règles de sélection rovibrationnelles sont satisfaites.

Les règles de sélection rotationnelle $\Delta J = -1,0,+1$

Les règles de sélection vibrationnelles $A_1 \leftrightarrow A_2$, $E \leftrightarrow E$, $F_1 \leftrightarrow F_2$

IV-2-Paramètres de l'Hamiltonien utilisés dans nos calculs :

Les neufs coordonnés de vibrations correspondent à quatre fréquences fondamentales différentes de la molécule ${}^{12}CH_4$: un mode de vibration non dégénéré de type A₁, un mode de vibration doublement dégénérée de type E et deux modes de vibration trois dégénérée avec le même type de symétrie F₂. Ces quatre fréquences sont :

v1 (A1) (modes d'étirement (stretching), oscillateur non dégénéré)

v₂ (E) (modes de flexion (bending), oscillateur doublement dégénéré)

v₃ (F₂) (modes d'étirement (stretching), oscillateur triplement dégénéré)

v4 (F2) (modes de flexion (bending), oscillateur triplement dégénéré)

Les fréquences fondamentales sont approximativement liées entre elles par la relation suivante :

$$v_1(A_1) \approx v_3(F_2) \approx 2v_2(A_1) \approx 2v_4(F_2)$$

Cette relation conduit à une structure de polyades bien définie, chaque polyde p_n défini par le nombre entier n donnée par la relation suivante :

$$n = 2(v_1 + v_3) + v_2 + v_4$$

Où $v_i = 0,1,2 \dots (i = 1 à 4)$ sont les nombre quantiques vibrationnels.

Chaque ensemble (v_1, v_2, v_3, v_4) définit un niveau de vibration. En raison de la dégénérescence des trios vibration normales, chaque niveau vibrationnel contient un certain

nombre de sous-niveaux vibrationnels, dont les symétries sont calculées au moyen des méthodes de la théorie des groupes [1-2-3-4-5]

Ainsi :

- \blacktriangleright Le niveau de base où tous les v_i sont nuls, est noté GS (Ground State) ou P₀
- $\blacktriangleright \qquad \text{La diade } (v_2, v_4) \text{ sera notée } P_1$
- $\blacktriangleright \qquad \text{La pentade } (2v_4, v_2+v_4, v_1, 2v_2, v_3) \text{ sera notée } P_2$
- $\blacktriangleright L'octade (3v_4, v_2+2v_4, v_1+v_4, v_3+v_4, 2v_2+v_4, v_1+v_2, v_2+v_3, 3v_2) \text{ sera notée } P_3$

La bande (v_3 , v_1 , $2v_2$, $2v_4$, v_2+v_4)-GS est l'ensemble des transitions rovibrationnelles entre le niveau inférieure GS (0, 0, 0, 0) et le niveau (1, 2, 1, 2).

Pour calculer les fréquences du spectre infrarouge GS-pentad de la molécule ¹²CH₄, on a utilisé les paramètres de l'Hamiltonien.

L'Hamiltonien est développé à l'ordre :

- \blacktriangleright Six pour le niveau de base GS poliade P₀
- \succ Six pour la diade poliade P₁
- \triangleright Cinq pour la pentade poliade P₂

Les 300 paramètres qui construisent l'Hamiltonien sont donnés dans le tableau (**IV-1**) se répartissent comme suit :

- Dix (10) paramètres relatif au niveau de base GS
- Quinze (15) paramètres relatif v₂ (diade)
- > Vingt (20) paramètres relatif v_2 et v_4 (diade)
- Vingt-sept (27) paramètres relatif v₄ (diade)
- > Quatre (4) paramètres relatif v_1 (pentade)
- Six (6) paramètres relatif v_1 et v_3 (pentade)
- Sept (7) paramètres relatif v_1 et $2v_2$ (pentade)
- > Huit (8) paramètres relatif v_1 et $v_{2+}v_4$ (pentade)
- > Onze (11) paramètres relatif v_1 et $2v_4$ (pentade)
- Dix-sept (17) paramètres relatif v₃ (pentade)
- > Douze (12) paramètres relatif v_3 et $2v_2$ (pentade)
- Vingt-sept (27) paramètres relatif v_3 et v_2+v_4 (pentade)
- > Vingt-sept (27) paramètres relatif v_3 et $2v_4$ (pentade)
- Sept (7) paramètres relatif $2v_2$ (pentade)
- > Quinze (15) paramètres relatif $2v_2$ et v_2+v_4 (pentade)
- > Quinze (15) paramètres relatif $2v_2$ et $2v_4$ (pentade)
- > Vingt et un (21) paramètres relatif v_2+v_4 (pentade)

- > Trente (30) paramètres relatif v_2+v_4 et $2v_4$ (pentade)
- Vingt et un (21) paramètres relatif 2v₄ (pentade)

On donne dans le tableau suivant les caractéristiques rovibrationnelles de niveau supérieur et inférieur.

État vibratoire supérieur

#			ν_1	ν_2	ν_3	$ u_4 $	$C_{\mathbf{v}}$	
	1	[[1(0,0A1)*	0(0,0A1)*	0(0,0A1)]A1*	0(0,0A1)]	A1	>
	2	[[0(0,0A1)*	0(0,0A1)*	1(1,0F2)]F2*	0(0,0A1)]	F2	>
	3	[[0(0,0A1)*	2(0,0A1)*	0(0,0A1)]A1*	0(0,0A1)]	A1	>
	4	[[0(0,0A1)*	2(2,0E)*	0(0,0A1)]E *	0(0,0A1)]	Е	>
	5	[[0(0,0A1)*	1(1,0E)*	0(0,0A1)]E *	1(1,0F2)]	F1	>
	6	[[0(0,0A1)*	1(1,0E)*	0(0,0A1)]E *	1(1,0F2)]	F2	>
	7	[[0(0,0A1)*	0(0,0A1)*	0(0,0A1)]A1*	2(0,0A1)]	A1	>
	8	[[0(0,0A1)*	0(0,0A1)*	0(0,0A1)]A1*	2(2,0E)]	Е	>
	9	[[0(0,0A1)*	0(0,0A1)*	0(0,0A1)]A1*	2(2,0F2)]	F2	>

État vibratoire inférieur

#			ν_1	ν_2	ν_3	$ u_4 $	C_v	
	1]][0(0,0A1)*	0(0,0A1)*	0(0,0A1)]A1*	0(0,0A1)]	A1	>

Les valeurs de paramètres utilisé dans le développement de l'Hamiltonien de la bande pentad-GS sont reportés dans le tableau **IV-1** ci-dessous :

 i	Ω(k, nΓ)	$n_s\Gamma_1$	$m_s\Gamma_2$	Г	Hmn	Frdm	Value / cm ⁻¹	St. Dev. / cm ⁻¹
 1	2(0,0A1)	0000A1	0000A1	A1	2	40	0.52410423534E+01	0.1392342E-05
2	4(0,0A1)	0000A1	0000A1	A1	4	23	-0.11099742399E-03	0.1152670E-07
3	4(4,0A1)	0000A1	0000A1	A1	4	57	-0.30360707464E-05	0.3705274E-10
4	6(0,0A1)	0000A1	0000A1	A1	6	19	0.62877370157E-08	0.3807410E-10
5	6(4,0A1)	0000A1	0000A1	A1	6	26	-0.16779084057E-09	0.1488901E-12
6	6(6,0A1)	0000A1	0000A1	A1	6	141	-0.61621986102E-10	0.2892898E-13
7	8(0,0A1)	0000A1	0000A1	A1	8	35	-0.43121128046E-12	0.4246290E-13
8	8(4,0A1)	0000A1	0000A1	A1	8	42	-0.85096696592E-14	0.1486607E-15
9	8(6,0A1)	0000A1	0000A1	A1	8	135	-0.61701414043E-14	0.4516236E-16

Les paramètres de la pentade sont donnés dans le tableau (IV-1)

10	8(8,0A1)	0000A1	0000A1	A1	8	356	-0.49923180465E-15	0.1426116E-16
11	0(0,0A1)	0100E	0100E	A1	20	166	0.15333326697E+04	0.3016118E-04
12	2(0,0A1)	0100E	0100E	A1	22	0	-0.25641442276E-02	0.1883805E-03
13	2(2,0E)	0100E	0100E	E	22	0	-0.28214801386E-01	0.1663812E-03
14	3(3,0A2)	0100E	0100E	A2	23	1	-0.30125298436E-03	0.2550171E-05
15	4(0,0A1)	0100E	0100E	A1	24	2	-0.80815452374E-05	0.8771806E-07
16	4(2,0E)	0100E	0100E	E	24	0	0.0000000000E+00	0.0000000E+00
17	4(4,0A1)	0100E	0100E	A1	24	3	0.16264891500E-05	0.3167770E-07
18	4(4,0E)	0100E	0100E	E	24	3	-0.22887350450E-05	0.5908733E-07
19	5(3,0A2)	0100E	0100E	A2	25	6	-0.31590360501E-07	0.6865730E-09
20	6(0,0A1)	0100E	0100E	A1	26	4	-0.76988848534E-08	0.1273688E-09
21	6(2,0E)	0100E	0100E	E	26	6	-0.57884349078E-09	0.3234111E-10
22	6(4,0A1)	0100E	0100E	A1	26	11	-0.23613507333E-10	0.1640842E-10
23	6(4,0E)	0100E	0100E	E	26	11	-0.71809666667E-09	0.2832544E-10
24	6(6,0A1)	0100E	0100E	A1	26	18	-0.85279856780E-10	0.1303157E-10
25	6(6,0E)	0100E	0100E	E	26	23	-0.25717056079E-09	0.1963196E-10
26	1(1,0F1)	0100E	0001F2	F1	21	0	-0.94463758656E+01	0.9874576E-02
27	2(2,0F2)	0100E	0001F2	F2	22	0	-0.31748348705E-01	0.2266112E-03
28	3(1,0F1)	0100E	0001F2	F1	23	1	0.12721520919E-03	0.3388754E-05
29	3(3,0F1)	0100E	0001F2	F1	23	1	0.47244993330E-03	0.3482285E-05
30	3(3,0F2)	0100E	0001F2	F2	23	1	0.34622102048E-03	0.3453094E-05
31	4(2,0F2)	0100E	0001F2	F2	24	2	-0.46826072472E-05	0.6305755E-07
32	4(4,0F1)	0100E	0001F2	F1	24	6	0.52099952787E-06	0.7060428E-07
33	4(4,0F2)	0100E	0001F2	F2	24	4	0.12186309369E-05	0.4991124E-07
34	5(1,0F1)	0100E	0001F2	F1	25	2	-0.47014269674E-07	0.1343086E-08
35	5(3,0F1)	0100E	0001F2	F1	25	4	0.35199944360E-07	0.1417630E-08
36	5(3,0F2)	0100E	0001F2	F2	25	5	0.96820932887E-07	0.1749793E-08
37	5(5,0F1)	0100E	0001F2	F1	25	8	-0.12422752061E-07	0.1076300E-08
38	5(5,1F1)	0100E	0001F2	F1	25	8	-0.43616232640E-08	0.1174479E-08
39	5(5,0F2)	0100E	0001F2	F2	25	0	0.0000000000E+00	0.000000E+00
40	6(2,0F2)	0100E	0001F2	F2	26	5	0.22541582064E-09	0.2768420E-10
41	6(4,0F1)	0100E	0001F2	F1	26	18	0.47627392550E-09	0.3448547E-10
42	6(4,0F2)	0100E	0001F2	F2	26	11	0.53828113900E-09	0.2844059E-10
43	6(6,0F1)	0100E	0001F2	F1	26	21	-0.41737204093E-09	0.3371290E-10
44	6(6,0F2)	0100E	0001F2	F2	26	28	-0.28008984878E-09	0.1787385E-10
45	6(6,1F2)	0100E	0001F2	F2	26	23	-0.25235120349E-09	0.1470616E-10
46	0(0,0A1)	0001F2	0001F2	A1	20	136	0.13107613492E+04	0.2668964E-04
47	1(1,0F1)	0001F2	0001F2	F1	21	1	0.10350204491E+02	0.1977805E-03
48	2(0,0A1)	0001F2	0001F2	A1	22	0	-0.38975232977E-02	0.1255616E-03
49	2(2,0E)	0001F2	0001F2	E	22	0	-0.55078869861E-02	0.1882888E-03
50	2(2,0F2)	0001F2	0001F2	F2	22	0	-0.31037547661E-01	0.1440783E-03
51	3(1,0F1)	0001F2	0001F2	F1	23	0	0.68499905203E-03	0.3695716E-05
52	3(3,0F1)	0001F2	0001F2	F1	23	1	0.37024326523E-03	0.3494441E-05
53	4(0,0A1)	0001F2	0001F2	A1	24	1	0.26721834959E-05	0.5829348E-07
54	4(2,0E)	0001F2	0001F2	E	24	1	0.22368281757E-05	0.6609901E-07
55	4(2,0F2)	0001F2	0001F2	F2	24	1	-0.64988450127E-05	0.6585368E-07

56	4(4,0A1)	0001F2	0001F2	A1	24	2	-0.16439807092E-05	0.2841132E-07	
57	4(4,0E)	0001F2	0001F2	E	24	1	-0.40775889295E-05	0.7588864E-07	
58	4(4,0F2)	0001F2	0001F2	F2	24	3	-0.17838634629E-05	0.6062112E-07	
59	5(1,0F1)	0001F2	0001F2	F1	25	2	0.70548039211E-07	0.1204522E-08	
60	5(3,0F1)	0001F2	0001F2	F1	25	4	0.64512008089E-08	0.1317983E-08	
61	5(5,0F1)	0001F2	0001F2	F1	25	4	-0.33251770557E-07	0.1129730E-08	
62	5(5,1F1)	0001F2	0001F2	F1	25	5	0.24190480137E-08	0.1318415E-08	
63	6(0,0A1)	0001F2	0001F2	A1	26	3	0.54731699380E-08	0.8542777E-10	
64	6(2,0E)	0001F2	0001F2	Е	26	4	-0.17543726832E-08	0.4092783E-10	
65	6(2,0F2)	0001F2	0001F2	F2	26	4	0.21506832502E-09	0.3304129E-10	
66	6(4,0A1)	0001F2	0001F2	A1	26	5	-0.10034460742E-09	0.1396788E-10	
67	6(4,0E)	0001F2	0001F2	E	26	5	0.75941082280E-09	0.5322516E-10	
68	6(4,0F2)	0001F2	0001F2	F2	26	6	-0.53928954425E-09	0.5067217E-10	
69	6(6,0A1)	0001F2	0001F2	A1	26	12	0.64041385286E-10	0.1134252E-10	
70	6(6,0E)	0001F2	0001F2	E	26	10	-0.81450401225E-10	0.2983391E-10	
71	6(6,0F2)	0001F2	0001F2	F2	26	14	0.17802634912E-10	0.3947382E-10	
72	6(6,1F2)	0001F2	0001F2	F2	26	12	-0.60856448591E-09	0.2243849E-10	
73	0(0,0A1)	1000A1	1000A1	A1	20	0	0.29065271991E+04	0.8510334E+00	
74	2(0,0A1)	1000A1	1000A1	A1	22	1	-0.30683940002E-01	0.5170634E-03	
75	4(0,0A1)	1000A1	1000A1	A1	24	9	0.53832405718E-05	0.1866040E-06	
76	4(4,0A1)	1000A1	1000A1	A1	24	27	-0.10033289554E-05	0.3494538E-07	
77	2(2,0F2)	1000A1	0010F2	F2	22	0	-0.26628847181E-01	0.7142037E-03	
78	3(3,0F2)	1000A1	0010F2	F2	23	2	-0.16555544199E-03	0.1157744E-04	
79	4(2,0F2)	1000A1	0010F2	F2	24	5	-0.11969999529E-05	0.1566764E-06	
80	4(4,0F2)	1000A1	0010F2	F2	24	15	-0.28078803672E-05	0.1627394E-06	
81	5(3,0F2)	1000A1	0010F2	F2	25	14	-0.89654964651E-08	0.4746979E-08	
82	5(5,0F2)	1000A1	0010F2	F2	25	23	0.21790565787E-07	0.2945248E-08	
83	0(0,0A1)	1000A1	0200A1	A1	30	0	-0.25682290418E+02	0.6123302E+00	
84	2(0,0A1)	1000A1	0200A1	A1	32	1	-0.59338174977E-01	0.6444007E-03	
85	4(0,0A1)	1000A1	0200A1	A1	34	10	0.14261630638E-04	0.2691031E-06	
86	4(4,0A1)	1000A1	0200A1	A1	34	34	-0.14693845343E-05	0.4340484E-07	
87	2(2,0E)	1000A1	0200E	Е	32	2	-0.22622924052E-01	0.3385347E-03	
88	4(2,0E)	1000A1	0200E	Е	34	21	-0.19673209596E-05	0.7158801E-07	
89	4(4,0E)	1000A1	0200E	Е	34	22	-0.14362915301E-05	0.8680167E-07	
90	1(1,0F1)	1000A1	0101F1	F1	31	0	-0.19196563316E+00	0.4357998E-01	
91	3(1,0F1)	1000A1	0101F1	F1	33	2	-0.28461775970E-03	0.6673463E-05	
92	3(3,0F1)	1000A1	0101F1	F1	33	4	-0.36370781299E-03	0.5650439E-05	
93	4(4,0F1)	1000A1	0101F1	F1	34	15	0.98983111313E-06	0.8591665E-07	
94	2(2,0F2)	1000A1	0101F2	F2	32	1	-0.20948504713E-01	0.6247715E-03	
95	3(3,0F2)	1000A1	0101F2	F2	33	4	0.15075724276E-03	0.7005400E-05	
96	4(2,0F2)	1000A1	0101F2	F2	34	5	-0.86010263681E-05	0.1366793E-06	
97	4(4,0F2)	1000A1	0101F2	F2	34	14	0.49226789519E-05	0.1074700E-06	
98	0(0,0A1)	1000A1	0002A1	A1	30	0	-0.66295240160E+02	0.1630028E+01	
99	2(0,0A1)	1000A1	0002A1	A1	32	1	0.52497031679E-01	0.6550808E-03	
100	4(0,0A1)	1000A1	0002A1	A1	34	8	0.14032964793E-05	0.2970389E-06	
101	4(4,0A1)	1000A1	0002A1	A1	34	25	-0.10705276967E-05	0.4738210E-07	

_									
	102	2(2,0E)	1000A1	0002E	E	32	2	-0.33594346203E-01	0.4462703E-03
	103	4(2,0E)	1000A1	0002E	E	34	18	0.12862048052E-05	0.9211252E-07
	104	4(4,0E)	1000A1	0002E	E	34	24	-0.23177333746E-05	0.1074046E-06
	105	2(2,0F2)	1000A1	0002F2	F2	32	1	0.17895691843E-01	0.7045204E-03
	106	3(3,0F2)	1000A1	0002F2	F2	33	5	-0.12741946964E-03	0.8463266E-05
	107	4(2,0F2)	1000A1	0002F2	F2	34	10	-0.58753380950E-05	0.1442317E-06
	108	4(4,0F2)	1000A1	0002F2	F2	34	28	-0.37821992165E-05	0.9671625E-07
	109	0(0,0A1)	0010F2	0010F2	A1	20	0	0.30068650500E+04	0.2208320E+00
	110	1(1,0F1)	0010F2	0010F2	F1	21	0	-0.34690483389E+00	0.2136073E-01
	111	2(0,0A1)	0010F2	0010F2	A1	22	1	-0.43318409376E-01	0.1559789E-03
	112	2(2,0E)	0010F2	0010F2	E	22	0	0.10867291460E-01	0.1944207E-03
	113	2(2,0F2)	0010F2	0010F2	F2	22	0	0.22565225618E-03	0.2868433E-03
	114	3(1,0F1)	0010F2	0010F2	F1	23	1	-0.34253832359E-04	0.4508598E-05
	115	3(3,0F1)	0010F2	0010F2	F1	23	0	0.16545812691E-04	0.3953338E-05
	116	4(0,0A1)	0010F2	0010F2	A1	24	5	-0.13351993099E-05	0.6250151E-07
	117	4(2,0E)	0010F2	0010F2	E	24	1	0.12521337464E-05	0.4992178E-07
	118	4(2,0F2)	0010F2	0010F2	F2	24	1	-0.83687478601E-06	0.5563039E-07
	119	4(4,0A1)	0010F2	0010F2	A1	24	1	0.15827634055E-06	0.2087568E-07
	120	4(4,0E)	0010F2	0010F2	E	24	1	-0.79034781314E-06	0.7117151E-07
	121	4(4,0F2)	0010F2	0010F2	F2	24	1	0.11636734555E-05	0.8812040E-07
	122	5(1,0F1)	0010F2	0010F2	F1	25	6	-0.14191181663E-08	0.1169186E-08
	123	5(3,0F1)	0010F2	0010F2	F1	25	3	-0.17641090178E-07	0.8316038E-09
	124	5(5,0F1)	0010F2	0010F2	F1	25	3	-0.16801607570E-07	0.9772901E-09
	125	5(5,1F1)	0010F2	0010F2	F1	25	2	-0.66641161143E-08	0.1268895E-08
	126	2(2,0F2)	0010F2	0200A1	F2	32	0	0.21727906793E-02	0.4721558E-03
	127	3(3,0F2)	0010F2	0200A1	F2	33	3	0.16230142791E-03	0.5374018E-05
	128	4(2,0F2)	0010F2	0200A1	F2	34	5	-0.94916447438E-06	0.1293062E-06
	129	4(4,0F2)	0010F2	0200A1	F2	34	12	0.43601520636E-05	0.9236845E-07
	130	1(1,0F1)	0010F2	0200E	F1	31	0	-0.34800098387E+00	0.2016404E-01
	131	2(2,0F2)	0010F2	0200E	F2	32	0	-0.16657625543E-01	0.3208510E-03
	132	3(1,0F1)	0010F2	0200E	F1	33	0	0.29929570988E-04	0.5723463E-05
	133	3(3,0F1)	0010F2	0200E	F1	33	1	-0.25190487595E-03	0.4775214E-05
	134	3(3,0F2)	0010F2	0200E	F2	33	1	0.33206651947E-03	0.5200238E-05
	135	4(2,0F2)	0010F2	0200E	F2	34	2	0.13995002619E-05	0.9648994E-07
	136	4(4,0F1)	0010F2	0200E	F1	34	3	0.21455881324E-05	0.9933933E-07
	137	4(4,0F2)	0010F2	0200E	F2	34	2	0.35598638781E-06	0.7869454E-07
	138	1(1,0F1)	0010F2	0101F1	F1	31	0	0.21996557156E+01	0.2944935E-01
	139	2(2,0E)	0010F2	0101F1	E	32	1	-0.17080812298E-01	0.2772532E-03
	140	2(2,0F2)	0010F2	0101F1	F2	32	0	-0.26588788356E-01	0.5048696E-03
	141	3(1,0F1)	0010F2	0101F1	F1	33	2	0.18084248657E-03	0.7648422E-05
	142	3(3,0A2)	0010F2	0101F1	A2	33	1	0.64458963479E-04	0.4140500E-05
	143	3(3,0F1)	0010F2	0101F1	F1	33	5	-0.25919881415E-03	0.5827863E-05
	144	3(3,0F2)	0010F2	0101F1	F2	33	4	-0.16399710341E-04	0.6106745E-05
	145	4(2,0E)	0010F2	0101F1	E	34	11	0.10441381268E-05	0.9218104E-07
	146	4(2,0F2)	0010F2	0101F1	F2	34	4	-0.22785197021E-05	0.1503169E-06
	147	4(4,0E)	0010F2	0101F1	Е	34	3	0.71440957813E-06	0.9979606E-07

148	4(4,0F1)	0010F2	0101F1	F1	34	5	-0.12851430613E-05	0.1226032E-06
149	4(4,0F2)	0010F2	0101F1	F2	34	7	-0.20220832852E-05	0.1085724E-06
150	0(0,0A1)	0010F2	0101F2	A1	30	0	-0.46658664868E+02	0.3975348E+00
151	1(1,0F1)	0010F2	0101F2	F1	31	0	-0.39680435527E+01	0.3043361E-01
152	2(0,0A1)	0010F2	0101F2	A1	32	0	-0.31767457709E-02	0.2568195E-03
153	2(2,0E)	0010F2	0101F2	E	32	0	0.18693338170E-01	0.2889971E-03
154	2(2,0F2)	0010F2	0101F2	F2	32	0	0.23981742739E-01	0.4507974E-03
155	3(1,0F1)	0010F2	0101F2	F1	33	1	-0.46297514196E-03	0.7225172E-05
156	3(3,0F1)	0010F2	0101F2	F1	33	0	0.26544884846E-03	0.4808259E-05
157	3(3,0F2)	0010F2	0101F2	F2	33	2	0.17076031813E-03	0.8497804E-05
158	4(0,0A1)	0010F2	0101F2	A1	34	3	0.27603549544E-05	0.1581619E-06
159	4(2,0E)	0010F2	0101F2	E	34	1	0.22937469967E-05	0.9610229E-07
160	4(2,0F2)	0010F2	0101F2	F2	34	1	0.92179370467E-05	0.1166281E-06
161	4(4,0A1)	0010F2	0101F2	A1	34	1	-0.63936860794E-06	0.4630841E-07
162	4(4,0E)	0010F2	0101F2	E	34	1	0.64021949261E-06	0.8868820E-07
163	4(4,0F1)	0010F2	0101F2	F1	34	8	0.24077709817E-05	0.1172779E-06
164	4(4,0F2)	0010F2	0101F2	F2	34	1	-0.13332969803E-05	0.1068769E-06
165	2(2,0F2)	0010F2	0002A1	F2	32	1	-0.47891404469E-01	0.7385280E-03
166	3(3,0F2)	0010F2	0002A1	F2	33	6	0.99660895241E-04	0.8209587E-05
167	4(2,0F2)	0010F2	0002A1	F2	34	10	0.78930729769E-06	0.1774464E-06
168	4(4,0F2)	0010F2	0002A1	F2	34	30	-0.18918529127E-05	0.1413722E-06
169	1(1,0F1)	0010F2	0002E	F1	31	0	-0.77243632284E+00	0.2504812E-01
170	2(2,0F2)	0010F2	0002E	F2	32	0	0.16262857064E-01	0.5613669E-03
171	3(1,0F1)	0010F2	0002E	F1	33	3	-0.47097106452E-03	0.6828332E-05
172	3(3,0F1)	0010F2	0002E	F1	33	2	-0.18042342174E-03	0.6965252E-05
173	3(3,0F2)	0010F2	0002E	F2	33	3	-0.20203035906E-03	0.6650122E-05
174	4(2,0F2)	0010F2	0002E	F2	34	7	0.59577059048E-05	0.1648142E-06
175	4(4,0F1)	0010F2	0002E	F1	34	14	-0.52083670867E-06	0.1610217E-06
176	4(4,0F2)	0010F2	0002E	F2	34	8	-0.22146396497E-05	0.1298226E-06
177	0(0,0A1)	0010F2	0002F2	A1	30	0	0.73956064299E+01	0.7400767E+00
178	1(1,0F1)	0010F2	0002F2	F1	31	0	-0.16014844569E+00	0.4745928E-01
179	2(0,0A1)	0010F2	0002F2	A1	32	1	-0.18755481506E-01	0.3010297E-03
180	2(2,0E)	0010F2	0002F2	E	32	1	-0.25305501786E-01	0.3471570E-03
181	2(2,0F2)	0010F2	0002F2	F2	32	1	0.36132652782E-01	0.5438906E-03
182	3(1,0F1)	0010F2	0002F2	F1	33	3	0.11467692738E-04	0.7834988E-05
183	3(3,0F1)	0010F2	0002F2	F1	33	2	-0.19792343309E-03	0.6870787E-05
184	3(3,0F2)	0010F2	0002F2	F2	33	3	-0.27116513389E-03	0.9574843E-05
185	4(0,0A1)	0010F2	0002F2	A1	34	9	-0.37234275240E-05	0.1676686E-06
186	4(2,0E)	0010F2	0002F2	E	34	11	-0.44691452941E-05	0.1018274E-06
187	4(2,0F2)	0010F2	0002F2	F2	34	13	-0.31867073085E-05	0.1292856E-06
188	4(4,0A1)	0010F2	0002F2	A1	34	11	-0.72077310774E-06	0.4687531E-07
189	4(4,0E)	0010F2	0002F2	E	34	19	-0.11169837255E-05	0.9279602E-07
190	4(4,0F1)	0010F2	0002F2	F1	34	10	0.24900181903E-05	0.1183807E-06
191	4(4,0F2)	0010F2	0002F2	F2	34	17	0.19557034466E-06	0.1259907E-06
192	0(0,0A1)	0200A1	0200A1	A1	40	0	-0.72299070069E+01	0.2082839E+00
193	2(0,0A1)	0200A1	0200A1	A1	42	1	0.59638839918E-02	0.4673091E-03

194	2(2,0E)	0200A1	0200E	E	42	1	0.47799669669E-02	0.2013871E-03	-
195	0(0,0A1)	0200E	0200E	A1	40	0	-0.20347846908E+01	0.5931272E-01	
196	5 2(0,0A1)	0200E	0200E	A1	42	0	0.56975966934E-02	0.3426513E-03	
197	2(2,0E)	0200E	0200E	Е	42	1	0.14789619001E-02	0.2887415E-03	
198	3 (3,0A2)	0200E	0200E	A2	43	3	-0.17187550381E-03	0.3834073E-05	
199) 1(1,0F1)	0200A1	0101F1	F1	41	0	0.50195495389E+00	0.3851952E-01	
200) 3(1,0F1)	0200A1	0101F1	F1	43	3	-0.28453194767E-03	0.6928350E-05	
201	. 3(3,0F1)	0200A1	0101F1	F1	43	7	-0.80216542235E-05	0.4682166E-05	
202	2(2,0F2)	0200A1	0101F2	F2	42	1	0.16340307590E-01	0.3786595E-03	
203	3 (3,0F2)	0200A1	0101F2	F2	43	4	0.20287428601E-03	0.6896623E-05	
204	1(1,0F1)	0200E	0101F1	F1	41	0	-0.50594914774E+00	0.2667426E-01	
205	2(2,0F2)	0200E	0101F1	F2	42	2	-0.18344876215E-01	0.2692108E-03	
206	5 3(1,0F1)	0200E	0101F1	F1	43	3	0.34460711787E-03	0.5778372E-05	
207	3(3,0F1)	0200E	0101F1	F1	43	6	0.28361796919E-04	0.5416880E-05	
208	3 3(3,0F2)	0200E	0101F1	F2	43	5	0.13247419903E-03	0.6327432E-05	
209	0 1(1,0F1)	0200E	0101F2	F1	41	0	0.48234859215E+00	0.1439690E-01	
210	2(2,0F2)	0200E	0101F2	F2	42	0	0.73092503899E-02	0.3941418E-03	
211	. 3(1,0F1)	0200E	0101F2	F1	43	2	-0.21510771013E-03	0.4076071E-05	
212	3(3,0F1)	0200E	0101F2	F1	43	2	-0.17128032401E-03	0.4040347E-05	
213	3 (3,0F2)	0200E	0101F2	F2	43	2	0.14335046740E-03	0.5120475E-05	
214	0(0,0A1)	0200A1	0002A1	A1	40	0	-0.85214909013E+01	0.1885099E+01	
215	5 2(0,0A1)	0200A1	0002A1	A1	42	1	-0.18059072721E-01	0.6609488E-03	
216	5 2(2,0E)	0200A1	0002E	Е	42	3	0.45248180421E-02	0.3307345E-03	
217	2(2,0F2)	0200A1	0002F2	F2	42	3	0.48811826370E-02	0.5592655E-03	
218	3 3(3,0F2)	0200A1	0002F2	F2	43	10	-0.49780966241E-04	0.7921561E-05	
219	2(2,0E)	0200E	0002A1	Е	42	3	-0.53364018296E-03	0.4580103E-03	
220	0 0(0,0A1)	0200E	0002E	A1	40	0	0.14985846363E+02	0.8698376E+00	
221	2(0,0A1)	0200E	0002E	A1	42	2	0.19185740033E-01	0.3348623E-03	
222	2(2,0E)	0200E	0002E	Е	42	3	0.23228373909E-02	0.2969627E-03	
223	3(3,0A2)	0200E	0002E	A2	43	10	-0.30477571548E-04	0.3664578E-05	
224	1(1,0F1)	0200E	0002F2	F1	41	0	0.64562772602E+00	0.3658052E-01	
225	2(2,0F2)	0200E	0002F2	F2	42	2	-0.13581973228E-01	0.5728514E-03	
226	5 3(1,0F1)	0200E	0002F2	F1	43	7	0.57531806277E-03	0.6046434E-05	
227	3(3,0F1)	0200E	0002F2	F1	43	11	0.56095469414E-04	0.5867497E-05	
228	3 3(3,0F2)	0200E	0002F2	F2	43	17	-0.19465141890E-03	0.5553131E-05	
229	0(0,0A1)	0101F1	0101F1	A1	40	198	0.19804747710E+01	0.1052638E-03	
230) 1(1,0F1)	0101F1	0101F1	F1	41	8	-0.87114715364E-01	0.8466332E-03	
231	2(0,0A1)	0101F1	0101F1	A1	42	1	-0.85897119000E-02	0.3006464E-03	
232	2(2,0E)	0101F1	0101F1	Е	42	1	0.29200618169E-02	0.3876622E-03	
233	2(2,0F2)	0101F1	0101F1	F2	42	1	0.30989508524E-01	0.6346328E-03	
234	3(1,0F1)	0101F1	0101F1	F1	43	3	0.27355961943E-03	0.6680408E-05	
235	3(3,0F1)	0101F1	0101F1	F1	43	4	0.53404650125E-03	0.7947539E-05	
236	5 1(1,0F1)	0101F1	0101F2	F1	41	0	0.32847010665E+00	0.1360547E-01	
237	2(2,0E)	0101F1	0101F2	Е	42	2	-0.30075750301E-02	0.1658427E-03	
238	8 2(2,0F2)	0101F1	0101F2	F2	42	1	-0.39948803098E-02	0.3079798E-03	
239) 3(1,0F1)	0101F1	0101F2	F1	43	1	0.94406078368E-04	0.5693892E-05	

_	240	3(3,0A2)	0101F1	0101F2	A2	43	2	-0.12970290399E-03	0.2913305E-05
	241	3(3,0F1)	0101F1	0101F2	F1	43	5	-0.16350011748E-03	0.4488321E-05
	242	3(3,0F2)	0101F1	0101F2	F2	43	4	-0.18538411051E-03	0.4932316E-05
	243	0(0,0A1)	0101F2	0101F2	A1	40	0	-0.42425814378E+01	0.2437549E+00
	244	1(1,0F1)	0101F2	0101F2	F1	41	0	0.27306164972E+01	0.4862734E-01
	245	2(0,0A1)	0101F2	0101F2	A1	42	1	0.12224450048E-01	0.2934551E-03
	246	2(2,0E)	0101F2	0101F2	E	42	0	0.95652828063E-02	0.2901369E-03
	247	2(2,0F2)	0101F2	0101F2	F2	42	0	-0.25415843655E-01	0.4078794E-03
	248	3(1,0F1)	0101F2	0101F2	F1	43	2	-0.74532308550E-04	0.8897745E-05
	249	3(3,0F1)	0101F2	0101F2	F1	43	1	-0.24276708216E-03	0.8726546E-05
	250	1(1,0F1)	0101F1	0002A1	F1	41	0	-0.10190377626E+01	0.4915325E-01
	251	3(1,0F1)	0101F1	0002A1	F1	43	2	-0.24534137739E-03	0.7393302E-05
	252	3(3,0F1)	0101F1	0002A1	F1	43	4	-0.62439800367E-04	0.5610980E-05
	253	1(1,0F1)	0101F1	0002E	F1	41	0	0.10521528914E+00	0.2092119E-01
	254	2(2,0F2)	0101F1	0002E	F2	42	3	0.80895857948E-02	0.3060998E-03
	255	3(1,0F1)	0101F1	0002E	F1	43	3	0.19989676779E-03	0.4925684E-05
	256	3(3,0F1)	0101F1	0002E	F1	43	5	0.64910956725E-04	0.5912597E-05
	257	3(3,0F2)	0101F1	0002E	F2	43	5	0.42369630866E-04	0.6251492E-05
	258	1(1,0F1)	0101F1	0002F2	F1	41	1	-0.22652894133E+00	0.1956322E-01
	259	2(2,0E)	0101F1	0002F2	E	42	2	0.30007572248E-02	0.2661042E-03
	260	2(2,0F2)	0101F1	0002F2	F2	42	1	0.36788686455E-02	0.3860568E-03
	261	3(1,0F1)	0101F1	0002F2	F1	43	3	-0.11628590742E-03	0.5793782E-05
	262	3(3,0A2)	0101F1	0002F2	A2	43	4	0.11758598644E-04	0.3518324E-05
	263	3(3,0F1)	0101F1	0002F2	F1	43	5	-0.83105950853E-04	0.6032265E-05
	264	3(3,0F2)	0101F1	0002F2	F2	43	5	-0.29853356664E-03	0.6498934E-05
	265	2(2,0F2)	0101F2	0002A1	F2	42	1	-0.20337655882E-01	0.4685171E-03
	266	3(3,0F2)	0101F2	0002A1	F2	43	5	0.18240083507E-03	0.6342010E-05
	267	1(1,0F1)	0101F2	0002E	F1	41	0	0.98821772966E+00	0.3072360E-01
	268	2(2,0F2)	0101F2	0002E	F2	42	1	-0.11318205154E-02	0.3509436E-03
	269	3(1,0F1)	0101F2	0002E	F1	43	4	0.35369997247E-03	0.6025190E-05
	270	3(3,0F1)	0101F2	0002E	F1	43	6	-0.10510272903E-04	0.5360335E-05
	271	3(3,0F2)	0101F2	0002E	F2	43	7	0.65309322214E-04	0.5759120E-05
	272	0(0,0A1)	0101F2	0002F2	A1	40	0	-0.26366019464E+02	0.4482858E+00
	273	1(1,0F1)	0101F2	0002F2	F1	41	0	-0.19935924777E+00	0.2295210E-01
	274	2(0,0A1)	0101F2	0002F2	A1	42	1	0.11379636688E-01	0.2499295E-03
	275	2(2,0E)	0101F2	0002F2	E	42	1	0.13111209237E-01	0.3271759E-03
	276	2(2,0F2)	0101F2	0002F2	F2	42	2	-0.74619682029E-02	0.3319278E-03
	277	3(1,0F1)	0101F2	0002F2	F1	43	3	-0.10244362035E-03	0.4930030E-05
	278	3(3,0F1)	0101F2	0002F2	F1	43	5	0.45941759332E-04	0.4523860E-05
	279	3(3,0F2)	0101F2	0002F2	F2	43	4	-0.77636149528E-04	0.5890055E-05
	280	0(0,0A1)	0002A1	0002A1	A1	40	0	-0.20314375068E+02	0.7349115E+00
	281	2(0,0A1)	0002A1	0002A1	A1	42	0	0.14342700777E-01	0.5902820E-03
	282	2(2,0E)	0002A1	0002E	E	42	1	-0.24359268002E-02	0.2276882E-03
	283	2(2,0F2)	0002A1	0002F2	F2	42	1	-0.29408542567E-02	0.2505419E-03
	284	3(3,0F2)	0002A1	0002F2	F2	43	2	0.68831925878E-04	0.8686433E-05
	285	0(0,0A1)	0002E	0002E	A1	40	0	0.36054343938E+01	0.5931592E-01

286	2(0,0A1)	0002E	0002E	A1	42	0	-0.20473998956E-01	0.4913656E-03	
287	2(2,0E)	0002E	0002E	Е	42	1	-0.19558211423E-02	0.3896635E-03	
288	3(3,0A2)	0002E	0002E	A2	43	3	0.13415382088E-03	0.3494909E-05	
289	1(1,0F1)	0002E	0002F2	F1	41	1	0.52274520373E-01	0.3319470E-02	
290	2(2,0F2)	0002E	0002F2	F2	42	1	0.15333529106E-01	0.3125241E-03	
291	3(1,0F1)	0002E	0002F2	F1	43	3	0.11893138386E-04	0.2147293E-05	
292	3(3,0F1)	0002E	0002F2	F1	43	0	0.0000000000E+00	0.000000E+00	
293	3(3,0F2)	0002E	0002F2	F2	43	3	-0.77975103769E-04	0.3596173E-05	
294	0(0,0A1)	0002F2	0002F2	A1	40	0	-0.41703527784E+01	0.1097000E+00	
295	1(1,0F1)	0002F2	0002F2	F1	41	0	-0.17572784265E+01	0.4400856E-01	
296	2(0,0A1)	0002F2	0002F2	A1	42	0	0.40538635740E-02	0.3098987E-03	
297	2(2,0E)	0002F2	0002F2	Е	42	1	-0.13872664062E-01	0.4617662E-03	
298	2(2,0F2)	0002F2	0002F2	F2	42	1	0.24812757081E-01	0.4293021E-03	
299	3(1,0F1)	0002F2	0002F2	F1	43	2	-0.32913568742E-03	0.7250226E-05	
300	3(3,0F1)	0002F2	0002F2	F1	43	2	0.70315538959E-04	0.7166753E-05	

Tableau (IV-1) : Paramètres de l'Hamiltonien relatif à la bande pentade-GS de la molécule ¹²CH₄

Les différentes colonnes du tableau (IV-1) représentent :

- La première colonne (i) permet de différencier et d'indicer les paramètres t, c'est-àdire chaque ensemble i = {Ω, k, n, Γ, Γ₁, Γ₂, n_s, m_s} est représenté par une valeur de i, ceci est utile dans la programmation.
- La deuxième colonne représente les différentes caractéristique rovibrationnelles
 Ω(k,nΓ) permettent la construction des opérateurs vibrationnels
- La troisième colonne représente les caractéristique rovibrationnelles qui permettent la construction des opérateurs rovibrationnells
- La quatrième colonne représente les valeurs en cm⁻¹ des paramètres t de l'Hamiltonien déterminés avec 1296 donnes expérimentales
- La cinquième colonne donne les précisions aves lesquels sont déteminés ces paramètres.
- Les niveaux inférieurs et supérieurs obéissent aux règles de séléction rovibrationnelles (rotationnelles ΔJ= -1, 0, +1 (vibrationnelles E↔E, F1↔F2, A1↔A2)), qui permettent de calculer les fréquences du spectre.

IV-3-Calcul du spectre IR de la bande pentad-Gs de la molécule ¹²CH₄:

Pour mieux comprendre la relation entre les valeurs microscopique (\mathbf{E}_i et \mathbf{E}_f) et les valeurs macroscopiques (spectre, v_{if} , S_{if}), nous allons illustré sur la figure (**IV-1**)

Figure (IV-1) : comparaison entre les grandeurs microscopiques et macroscopiques

Avec ces paramètre, on 'a calculé le spectre complet, et ceci pour $J_{max} = 20$ et pour un seuil $10^{-8} cm^{-2}$. atm^{-1} . Tout en respectant les règles en sélection ; ces fréquences sont répartie en 3 branches :

Si $\Delta J = J_{sup} - J_{inf.} = -1$ Ia branche est PSi $\Delta J = J_{sup} - J_{inf} = 0$ Ia branche est QSi $\Delta J = J_{sup} - J_{inf} = +1$ Ia branche est R

Nous donnons les caractéristiques de trois fréquences appartenant aux trois branches différentes :

-Une fréquence appartenant à la branche R vérifiant la règle de sélection rotationnelle

 ΔJ =+1 v=2607.441933 cm⁻¹ , S_{if} = 6.07E-08 cm⁻¹ atm⁻² J=1 R F1

- Une fréquence appartenant à la branche P vérifiant la règle de sélection vibrationnel

 ΔJ = -1 v= 2987.215874 cm⁻¹, S_{if}=4.50E-03 cm⁻¹ atm⁻² J=3 P F2 - Une fréquence appartenant à la branche Q vérifiant la règle de sélection rovibrationnelles

 $\Delta J=0$ v= 2618.270311cm⁻¹ S_{if}= 2.03E-02cm⁻¹ atm⁻² J=3 Q A2

Avec 17485 données inclus dans le logiciel STDS_ils ont pu déterminés les 300 paramètres rentrant dans le développement de l'hamiltonien, avec ces valeurs on a pu calcule le spectre complet de la molécule ¹²CH₄ pour la bande pentade –GS

Ceci pour un seuil d'intensité $S_{if} = 10^{-8} \text{ atm}^{-1} \text{cm}^{-2}$ et les températures de vibration et de rotation sont $T_{vib} = 300 \text{ k}$ et $T_{rot} = 300 \text{ k}$.

Le spectre calculé est constitué de 23196 transitions

- → La Première transition a le nombre d'onde $\nu = 2300.089511 \text{ cm}^{-1}$ et d'intensité S_{if} = 1.72 10⁻⁰⁷ atm⁻¹.cm⁻² appartenant à la branche P et de symétrie F1
- > La transitions la plus intense $v = 3067.300363 \text{ cm}^{-1}$ et d'intensité $S_{if} = 5.16 \text{ atm}^{-1} \text{ cm}^{-2}$ appartenant à la branche R et de symétrie A1
- La dernière transition v = 3367.619756cm⁻¹ et d'intensité
 S_{if} = 1.31 10⁻⁰⁹ atm⁻¹ cm⁻² appartenant à la branche R et de symétrie F2

On donne dans le tableau suivant un extrait du spectre calculé

$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Color.779309 C.33E-03 P I FI I D D FZ I P D <thd< th=""> D D D</thd<>
2003.79309 2352.79309 P I F I F I F I F I F I F I F I F I F I F I <thi< th=""> I</thi<>
213.233.04,0 1.41.5C.01 P 1 F 1 1 100% 0 F2 2 0 52.8 10.481.641 0.141986E-01 2623.2557.3 1.09E-02 R 0 A1 1 1 100% 1 A2 2 97% 0.00000 0.829481E-02 2847.718380 8.00E-02 R 0 A1 1 1 100% 1 A2 2 6 91% 0.00000 0.829481E-02 2847.718380 8.00E-02 R 0 A1 1 1 100% 1 E 1 9 97% 0.00000 0.829481E-02 2838.646494 4.46E-03 P 2 E 1 1 100% 1 E 2 6 80% 31.442100 0.142674E-01 285.70739 3.69E-03 P 2 F2 1 1 100% 1 F1 2 9 76% 31.442366 0.214011E-01
3003.01534 4.15201 P 1 1 1 100% 0 P 2 53 104801 0.141966E-01 2632.955743 1.09E-02 R 0 A1 1 1 100% 1 A2 1 9 97% 1000000 0.829481E-02 2847.718380 8.00E-02 R 0 A1 1 1 100% 1 A2 2 6 91% 0.000000 0.829481E-02 288.646494 4.46E-03 P 2 E 1 1 100% 1 A2 3 2 94% 0.000000 0.829481E-02 288.646494 4.46E-03 P 2 E 1 1 100% 1 E 1 9 95% 31.442100 0.142674E-01 288.750739 3.69E-03 P 2 FZ 1 1 100% 1 F1 7 96% 31.442366 0.214011E-01 285.750739 3.69E-03 P 2 FZ 1 1 100% 1 F1
2352-357-43 1.50-02 R 0 A1 1 1 100% 1 A2 1 9 5/7.6 5/7.6 000000 0.822481E-02 2847.713880 8.00E-02 R 0 A1 1 1 100% 1 A2 2 6 91% 0.000000 0.822481E-02 2258.646494 4.46E-03 P 2 E 1 100% 1 E 1 9 94% 0.000000 0.822481E-02 2803.215143 2.27E-02 P 2 E 1 1 100% 1 E 3 5 86% 31.442100 0.142674E-01 2825.750739 3.69E-03 P 2 E 1 1 100% 1 E 4 2 93% 31.442100 0.142674E-01 285.5439659 2.36E-07 P 2 F2 1 1 100% 1 F1 7 96% 31.442366 0.214011E-01 285.07844 5.03E-03 P 2 F2 1 1 1
2447.16360 3.06022 R 0 A1 1 1 100% 1 A2 2 6 515 000000 0.8294816-02 3028.752436 2.23E+00 R 0 A1 1 1 100% 1 E 1 9 99% 31.42100 0.142674E-01 2803.215143 2.27E+02 P 2 E 1 100% 1 E 1 5 86% 31.42100 0.142674E-01 2805.570739 3.69E+03 P 2 E 1 1 10% 1 E 4 2 93% 31.442100 0.142674E-01 285.570739 3.69E+03 P 2 E 1 1 10% 1 F1 1 7 96% 31.442100 0.142674E-01 285.570784 5.03E+03 P 2 F2 1 1 100% 1 F1 3 8 76% 31.442366 0.214011E-01 285.541867 3.79E+02 P 2 F2 1 1 100%
3028.75/436 2.32F-00 R 0 A.1 1 1 100% 1 R2 3 2 94% 0.000000 0.829481=02 2588.664694 4.46E-03 P 2 E 1 1 100% 1 E 1 9 94% 31.442100 0.142674E-01 2803.215143 2.27E-02 P 2 E 1 1 100% 1 E 3 5 86% 31.442100 0.142674E-01 2825.750739 3.69E-03 P 2 F2 1 1 100% 1 E 4 2 93% 31.442100 0.142674E-01 2999.60563 7.40E-01 P 2 F2 1 1 100% 1 F1 1 7 96% 31.442100 0.142674E-01 2585.69659 2.36E-07 P 2 F2 1 1 100% 1 F1 5 9 76% 31.442366 0.214011E-01 2680.5247469 3.79E-02 P 2 F2 1
258.844444 4.46-03 P 2 E 1 1 100% 1 E 1 9 99% 31.442100 0.142674E-01 2803.215143 2.27E-02 P 2 E 1 1 100% 1 E 2 6 80% 31.442100 0.142674E-01 2823.750739 3.69E-03 P 2 E 1 1 100% 1 E 3 5 86% 31.442100 0.142674E-01 299.960563 7.40E-01 P 2 F2 1 1 100% 1 F1 1 7 96% 31.442100 0.142674E-01 2565.899659 2.36E-07 P 2 F2 1 1 100% 1 F1 3 8 76% 31.442366 0.214011E-01 2680.247469 3.79E-02 P 2 F2 1 1 100% 1 F1 5 96% 31.442366 0.214011E-01 2881.7000 1.48E-03 P 2 F2 1 1 100%
2803.715143 2.27E-0.2 P 2 E 1 1 100% 1 E 2 6 80% 31.442100 0.142674E-01 2825.750739 3.69E-0.3 P 2 E 1 1 100% 1 E 3 5 86% 31.442100 0.142674E-01 2999.060563 7.40E-01 P 2 F 1 1 100% 1 F1 1 7 96% 31.442100 0.142674E-01 2565.899659 2.36E-07 P 2 F2 1 1 100% 1 F1 2 9 76% 31.442366 0.214011E-01 2680.07844 5.03E-03 P 2 F2 1 1 100% 1 F1 3 8 76% 31.442366 0.214011E-01 2805.74769 3.79E-02 P 2 F2 1 1 100% 1 F1 5 56% 31.442366 0.214011E-01 2881.70080 1.48E-03 P 2 F2 1 1 <td< td=""></td<>
2825, 50739 3.69E-03 P 2 E 1 100% 1 E 3 5 86% 31.442100 0.142674E-01 2999060563 7.40E-01 P 2 E 1 100% 1 E 4 2 93% 31.442100 0.142674E-01 2565.899659 2.36E-07 P 2 F2 1 1 100% 1 F1 7 96% 31.442366 0.214011E-01 2582.007844 5.03E-03 P 2 F2 1 1 100% 1 F1 3 8 76% 31.442366 0.214011E-01 2605.247669 3.79E-02 P 2 F2 1 1 100% 1 F1 5 5 96% 31.442366 0.214011E-01 2825.541887 3.82E-08 P 2 F2 1 1 100% 1 F1 6 1 93% 31.442366 0.214011E-01 2938.934178 1.11E+00 P 2 F2 1 1 100% 1
2999.060563 7.40E-01 P 2 E 1 1 100% 1 E 4 2 93% 31.422100 0.142E74E-01 2565.899659 2.36E-07 P 2 F2 1 1 100% 1 F1 1 7 96% 31.442366 0.214011E-01 2582.007844 5.03E-03 P 2 F2 1 1 100% 1 F1 2 9 76% 31.442366 0.214011E-01 2605.247669 3.79E-02 P 2 F2 1 1 100% 1 F1 5 5 96% 31.442366 0.214011E-01 2828.170080 1.48E-03 P 2 F2 1 1 100% 1 F1 6 1 93% 31.442366 0.214011E-01 2895.541887 3.82E-08 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 3043.028095 4.13E-06 P 2 F2 1
2565.899659 2.36E-07 P 2 F2 1 1 100% 1 F1 1 7 96% 31.442366 0.214011E-01 2582.007844 5.03E-03 P 2 F2 1 1 100% 1 F1 2 9 76% 31.442366 0.214011E-01 260.165419 1.64E-03 P 2 F2 1 1 100% 1 F1 3 8 76% 31.442366 0.214011E-01 2805.247469 3.79E-02 P 2 F2 1 1 100% 1 F1 4 6 89% 31.442366 0.214011E-01 2828.170080 1.48E-03 P 2 F2 1 1 100% 1 F1 7 2 93% 31.442366 0.214011E-01 298.954178 1.11E+00 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 3044.565173 6.91E-04 P 2 F2 1
2582.007844 5.03E-03 P 2 F2 1 1 100% 1 F1 2 9 76% 31.442366 0.214011E-01 2610.165419 1.64E-03 P 2 F2 1 1 100% 1 F1 3 8 76% 31.442366 0.214011E-01 2805.247469 3.79E-02 P 2 F2 1 1 100% 1 F1 4 6 89% 31.442366 0.214011E-01 2828.170080 1.48E-03 P 2 F2 1 1 100% 1 F1 6 1 93% 31.442366 0.214011E-01 2895.541887 3.82E-08 P 2 F2 1 1 100% 1 F1 6 1 93% 31.442366 0.214011E-01 298.994178 1.11E+00 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 3043.028095 4.13E-06 P 2 F2 1
2610.165419 1.64E-03 P 2 F2 1 1 100% 1 F1 3 8 76% 31.442366 0.214011E-01 2805.247469 3.79E-02 P 2 F2 1 1 100% 1 F1 4 6 89% 31.442366 0.214011E-01 2828.170080 1.48E-03 P 2 F2 1 1 100% 1 F1 5 5 96% 31.442366 0.214011E-01 2895.541887 3.82E-08 P 2 F2 1 1 100% 1 F1 6 1 93% 31.442366 0.214011E-01 2998.994178 1.11E+00 P 2 F2 1 1 100% 1 F1 9 4 99% 31.442366 0.214011E-01 3043.028095 4.13E-06 P 2 F2 1 1 100% 1 F1 9 4 99% 31.442366 0.214011E-01 3044.565173 6.91E-04 P 2 F2 1
2805.247469 3.79E-02 P 2 F2 1 1 100% 1 F1 4 6 89% 31.442366 0.214011E-01 2828.170080 1.48E-03 P 2 F2 1 1 100% 1 F1 5 5 96% 31.442366 0.214011E-01 2895.541887 3.82E-08 P 2 F2 1 1 100% 1 F1 6 1 93% 31.442366 0.214011E-01 2998.994178 1.11E+00 P 2 F2 1 1 100% 1 F1 7 2 93% 31.442366 0.214011E-01 3043.028095 4.13E-06 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 3043.028095 4.13E-06 P 2 F2 1 1 100% 1 F2 8 69% 10.481641 0.141986E-01 2614.019919 4.56E-03 Q 1 F1 1 100%
2828.170080 1.48E-03 P 2 F2 1 1 100% 1 F1 5 5 96% 31.442366 0.214011E-01 2895.541887 3.82E-08 P 2 F2 1 1 100% 1 F1 6 1 93% 31.442366 0.214011E-01 2998.994178 1.11E+00 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 3043.028095 4.13E-06 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 3043.028095 4.13E-06 P 2 F2 1 1 100% 1 F1 9 64 99% 31.442366 0.214011E-01 3044.565173 6.91E-04 P 2 F2 1 F2 1 9 68% 10.481641 0.141986E-01 2628.722547 2.04E-03 Q 1 F1 1 100% 1 F2
2895.541887 3.82E-08 P 2 F2 1 100% 1 F1 6 1 93% 31.442366 0.214011E-01 2998.994178 1.11E+00 P 2 F2 1 100% 1 F1 7 2 93% 31.442366 0.214011E-01 3043.028095 4.13E-06 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 3044.565173 6.91E-04 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 2614.019919 4.56E-03 Q 1 F1 1 100% 1 F2 2 8 69% 10.481641 0.141986E-01 2628.722547 2.04E-03 Q 1 F1 1 1 100% 1 F2 3 6 81% 10.481641 0.141986E-01 2831.919421 3.93E-02 Q 1 F1 1 1 100% 1
2998.994178 1.11E+00 P 2 F2 1 1 100% 1 F1 7 2 93% 31.442366 0.214011E-01 3043.028095 4.13E-06 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 3044.565173 6.91E-04 P 2 F2 1 1 100% 1 F1 9 68% 10.481641 0.141986E-01 2614.019919 4.56E-03 Q 1 F1 1 100% 1 F2 1 9 68% 10.481641 0.141986E-01 2628.722547 2.04E-03 Q 1 F1 1 100% 1 F2 3 6 81% 10.481641 0.141986E-01 2831.919421 3.93E-02 Q 1 F1 1 100% 1 F2 4 5 87% 10.481641 0.141986E-01 2845.33008 5.58E-03 Q 1 F1 1 100% 1 F2 5
3043.028095 4.13E-06 P 2 F2 1 1 100% 1 F1 8 3 97% 31.442366 0.214011E-01 3044.565173 6.91E-04 P 2 F2 1 1 100% 1 F1 9 4 99% 31.442366 0.214011E-01 2614.019919 4.56E-03 Q 1 F1 1 10% 1 F2 1 9 68% 10.481641 0.141986E-01 2628.722547 2.04E-03 Q 1 F1 1 10% 1 F2 3 6 81% 10.481641 0.141986E-01 2831.919421 3.93E-02 Q 1 F1 1 10% 1 F2 3 6 81% 10.481641 0.141986E-01 2845.333008 5.58E-03 Q 1 F1 1 10% 1 F2 4 5 87% 10.481641 0.141986E-01 3065.500922 2.42E-04 Q 1 F1 1 10% 2 A1 1
3044.565173 6.91E-04 P 2 F2 1 1 100% 1 F1 9 4 99% 31.442366 0.214011E-01 2614.019919 4.56E-03 Q 1 F1 1 100% 1 F2 1 9 68% 10.481641 0.141986E-01 2628.722547 2.04E-03 Q 1 F1 1 100% 1 F2 2 8 69% 10.481641 0.141986E-01 2831.919421 3.93E-02 Q 1 F1 1 100% 1 F2 3 6 81% 10.481641 0.141986E-01 2845.333008 5.58E-03 Q 1 F1 1 100% 1 F2 5 87% 10.481641 0.141986E-01 3018.824607 1.26E+00 Q 1 F1 1 100% 1 F2 5 2 94% 10.481641 0.141986E-01 3065.500922 2.42E-04 Q 1 F1 1 100% 2 A1 1 9 68%
2614.019919 4.56E-03 Q 1 F1 1 100% 1 F2 1 9 68% 10.481641 0.141986E-01 2628.722547 2.04E-03 Q 1 F1 1 100% 1 F2 2 8 69% 10.481641 0.141986E-01 2831.919421 3.93E-02 Q 1 F1 1 100% 1 F2 3 6 81% 10.481641 0.141986E-01 2845.333008 5.58E-03 Q 1 F1 1 100% 1 F2 4 5 87% 10.481641 0.141986E-01 3018.824607 1.26E+00 Q 1 F1 1 100% 1 F2 5 2 94% 10.481641 0.141986E-01 3065.500922 2.42E-04 Q 1 F1 1 100% 1 F2 6 4 100% 10.481641 0.141986E-01 2609.257069 5.59E-03 P 3 A2 1 100% 2 A1 2 8 69% </td
2628.722547 2.04E-03 Q 1 F1 1 100% 1 F2 2 8 69% 10.481641 0.141986E-01 2831.919421 3.93E-02 Q 1 F1 1 100% 1 F2 3 6 81% 10.481641 0.141986E-01 2845.333008 5.58E-03 Q 1 F1 1 1 100% 1 F2 4 5 87% 10.481641 0.141986E-01 3018.824607 1.26E+00 Q 1 F1 1 1 100% 1 F2 5 87% 10.481641 0.141986E-01 3065.500922 2.42E-04 Q 1 F1 1 100% 1 F2 6 4 100% 10.481641 0.141986E-01 2557.081113 1.11E-02 P 3 A2 1 1 100% 2 A1 1 9 68% 62.878129 0.429472E-01 2609.257069 5.59E-03 P 3 A2 1 1 100% 2 A1
2831.919421 3.93E-02 Q 1 F1 1 100% 1 F2 3 6 81% 10.481641 0.141986E-01 2845.333008 5.58E-03 Q 1 F1 1 100% 1 F2 4 5 87% 10.481641 0.141986E-01 3018.824607 1.26E+00 Q 1 F1 1 1 100% 1 F2 5 2 94% 10.481641 0.141986E-01 3065.500922 2.42E-04 Q 1 F1 1 100% 1 F2 6 4 100% 10.481641 0.141986E-01 2557.081113 1.11E-02 P 3 A2 1 100% 2 A1 1 9 68% 62.878129 0.429472E-01 2609.257069 5.59E-03 P 3 A2 1 1 100% 2 A1 3 6 92% 62.878129 0.429472E-01 2792.251878 9.20E-02 P 3 A2 1 1 100% 2 A1
2845.333008 5.58E-03 Q 1 F1 1 100% 1 F2 4 5 87% 10.481641 0.141986E-01 3018.824607 1.26E+00 Q 1 F1 1 1 100% 1 F2 5 2 94% 10.481641 0.141986E-01 3065.500922 2.42E-04 Q 1 F1 1 1 100% 1 F2 6 4 100% 10.481641 0.141986E-01 2557.081113 1.11E-02 P 3 A2 1 1 100% 2 A1 1 9 68% 62.878129 0.429472E-01 2609.257069 5.59E-03 P 3 A2 1 1 100% 2 A1 2 8 69% 62.878129 0.429472E-01 2792.251878 9.20E-02 P 3 A2 1 1 100% 2 A1 3 6 92% 62.878129 0.429472E-01 2988.795442 2.62E+00 P 3 A2 1 1
3018.824607 1.26E+00 Q 1 F1 1 100% 1 F2 5 2 94% 10.481641 0.141986E-01 3065.500922 2.42E-04 Q 1 F1 1 100% 1 F2 6 4 100% 10.481641 0.141986E-01 2557.081113 1.11E-02 P 3 A2 1 1 100% 2 A1 1 9 68% 62.878129 0.429472E-01 2609.257069 5.59E-03 P 3 A2 1 1 100% 2 A1 2 8 69% 62.878129 0.429472E-01 2792.251878 9.20E-02 P 3 A2 1 1 100% 2 A1 3 6 92% 62.878129 0.429472E-01 2988.795442 2.62E+00 P 3 A2 1 1 100% 2 A1 4 2 93% 62.878129 0.429472E-01 3034.777673 6.50E-03 P 3 A2 1 100% 2
3065.500922 2.42E-04 Q 1 F1 1 100% 1 F2 6 4 100% 10.481641 0.141986E-01 2557.081113 1.11E-02 P 3 A2 1 1 100% 2 A1 1 9 68% 62.878129 0.429472E-01 2609.257069 5.59E-03 P 3 A2 1 1 100% 2 A1 2 8 69% 62.878129 0.429472E-01 2792.251878 9.20E-02 P 3 A2 1 1 100% 2 A1 3 6 92% 62.878129 0.429472E-01 2988.795442 2.62E+00 P 3 A2 1 1 100% 2 A1 4 2 93% 62.878129 0.429472E-01 3034.777673 6.50E-03 P 3 A2 1 1 100% 2 A1 5 4 99% 62.878129 0.429472E-01 3034.777673 6.50E-03 P 3 A2 1 1
2557.081113 1.11E-02 P 3 A2 1 1 100% 2 A1 1 9 68% 62.878129 0.429472E-01 2609.257069 5.59E-03 P 3 A2 1 1 100% 2 A1 2 8 69% 62.878129 0.429472E-01 2792.251878 9.20E-02 P 3 A2 1 1 100% 2 A1 3 6 92% 62.878129 0.429472E-01 2988.795442 2.62E+00 P 3 A2 1 1 100% 2 A1 4 2 93% 62.878129 0.429472E-01 3034.777673 6.50E-03 P 3 A2 1 1 100% 2 A1 5 4 99% 62.878129 0.429472E-01 3034.777673 6.50E-03 P 3 A2 1 1 100% 2 A1 5 4 99% 62.878129 0.429472E-01
2609.257069 5.59E-03 P 3 A2 1 1 100% 2 A1 2 8 69% 62.878129 0.429472E-01 2792.251878 9.20E-02 P 3 A2 1 1 100% 2 A1 3 6 92% 62.878129 0.429472E-01 2988.795442 2.62E+00 P 3 A2 1 1 100% 2 A1 4 2 93% 62.878129 0.429472E-01 3034.777673 6.50E-03 P 3 A2 1 1 100% 2 A1 5 4 99% 62.878129 0.429472E-01
2792.251878 9.20E-02 P 3 A2 1 1 100% 2 A1 3 6 92% 62.878129 0.429472E-01 2988.795442 2.62E+00 P 3 A2 1 1 100% 2 A1 4 2 93% 62.878129 0.429472E-01 3034.777673 6.50E-03 P 3 A2 1 1 100% 2 A1 5 4 99% 62.878129 0.429472E-01
2988.795442 2.62E+00 P 3 A2 1 1 100% 2 A1 4 2 93% 62.878129 0.429472E-01 3034.777673 6.50E-03 P 3 A2 1 1 100% 2 A1 5 4 99% 62.878129 0.429472E-01
3034.777673 6.50E-03 P 3 A2 1 1 100% 2 A1 5 4 99% 62.878129 0.429472E-01
2586.487373 6.55E-07 Q 2 E 1 1 100% 2 E 1 7 95% 31.442100 0.142674E-01
2604.339425 3.78E-03 Q 2 E 1 1 100% 2 E 2 9 57% 31.442100 0.142674E-01
2637.900602 2.86E-03 Q 2 E 1 1 100% 2 E 3 8 58% 31.442100 0.142674E-01
2830.158795 3.82E-02 Q 2 E 1 1 100% 2 E 4 6 78% 31.442100 0.142674E-01
2850.826356 6.66E-03 Q 2 E 1 1 100% 2 E 5 5 83% 31.442100 0.142674E-01
2916.542051 3.59E-07 Q 2 E 1 1 100% 2 E 6 1 93% 31.442100 0.142674E-01
3018.591456 1.27E+00 Q 2 E 1 1 100% 2 E 7 2 93% 31.442100 0.142674E-01
3064.540718 1.16E-04 O 2 E 1 1 100% 2 E 8 3 89% 31.442100 0.142674E-01
3066.470292 1.26E-03 O 2 E 1 1 100% 2 F 9 4 91% 31.442100 0.142674F-01
2593.242489 5.93E-04 O 2 E2 1 1 100% 2 E1 1 9 70% 31.442366 0.214011E-01
2614 778842 7 31E-03 0 2 E2 1 1 100% 2 E1 2 9 91% 31 442366 0 214011E-01
Chapitre IV : Prédiction des niveaux d'énergie et des fréquences de la bande pentade-GS de la molécule ¹²CH₄

2828.284449	4.43E-02	Q	2	F2	1	1	100%	2	F1	5	6	76%	31.442366	0.214011E-01
2849.332158	1.84E-02	Q	2	F2	1	1	100%	2	F1	6	5	68%	31.442366	0.214011E-01
2854.786281	2.28E-04	Q	2	F2	1	1	100%	2	F1	7	5	96%	31.442366	0.214011E-01
3018.650309	1.89E+00	Q	2	F2	1	1	100%	2	F1	8	2	93%	31.442366	0.214011E-01
3020.367127	5.48E-03	Q	2	F2	1	1	100%	2	F1	9	2	93%	31.442366	0.214011E-01
3066.261895	1.04E-03	Q	2	F2	1	1	100%	2	F1	10	4	99%	31.442366	0.214011E-01
2561.808053	6.36E-03	Ρ	3	F2	1	1	100%	2	F1	1	9	70%	62.876801	0.257685E-01
2583.344407	2.04E-03	Ρ	3	F2	1	1	100%	2	F1	2	9	91%	62.876801	0.257685E-01
2607.761528	1.68E-03	Ρ	3	F2	1	1	100%	2	F1	3	8	64%	62.876801	0.257685E-01
2788.608609	4.13E-02	Ρ	3	F2	1	1	100%	2	F1	4	6	76%	62.876801	0.257685E-01
2796.850013	9.42E-03	Ρ	3	F2	1	1	100%	2	F1	5	6	76%	62.876801	0.257685E-01
2817.897723	3.00E-03	Р	3	F2	1	1	100%	2	F1	6	5	68%	62.876801	0.257685E-01
2823.351846	1.87E-03	Р	3	F2	1	1	100%	2	F1	7	5	96%	62.876801	0.257685E-01
2987.215874	4.50E-03	Р	3	F2	1	1	100%	2	F1	8	2	93%	62.876801	0.257685E-01
2988.932691	1.57E+00	Р	3	F2	1	1	100%	2	F1	9	2	93%	62.876801	0.257685E-01
3034.827460	1.94E-03	Р	3	F2	1	1	100%	2	F1	10	4	99%	62.876801	0.257685E-01
2607.441933	6.07E-08	R	1	F1	1	1	100%	2	F2	1	7	95%	10.481641	0.141986E-01
2622.481542	1.69E-04	R	1	F1	1	1	100%	2	F2	2	9	86%	10.481641	0.141986E-01
2638.983359	4.64E-03	R	1	F1	1	1	100%	2	F2	3	9	59%	10.481641	0.141986E-01
2655.543356	4.90E-03	R	1	F1	1	1	100%	2	F2	4	9	51%	10.481641	0.141986E-01
2839.916665	1.68E-04	R	1	F1	1	1	100%	2	F2	5	6	76%	10.481641	0.141986E-01
2856.962906	4.42E-02	R	1	F1	1	1	100%	2	F2	6	6	55%	10.481641	0.141986E-01
2868.720546	3.27E-02	R	1	F1	1	1	100%	2	F2	7	5	55%	10.481641	0.141986E-01
2872.664901	8.41E-05	R	1	F1	1	1	100%	2	F2	8	5	85%	10.481641	0.141986E-01
2937.505173	3.60E-08	R	1	F1	1	1	100%	2	F2	9	1	93%	10.481641	0.141986E-01
3038.498685	2.15E+00	R	1	F1	1	1	100%	2	F2	10	2	94%	10.481641	0.141986E-01
3041.427726	2.50E-04	R	1	F1	1	1	100%	2	F2	11	2	93%	10.481641	0.141986E-01
3085.577741	3.55E-05	R	1	F1	1	1	100%	2	F2	12	3	92%	10.481641	0.141986E-01
3087.271092	6.08E-04	R	1	F1	1	1	100%	2	F2	13	4	94%	10.481641	0.141986E-01
2555.047835	9.01E-06	Р	3	F1	1	1	100%	2	F2	1	7	95%	62.875738	0.257686E-01
2570.087444	8.48E-03	Р	3	F1	1	1	100%	2	F2	2	9	86%	62.875738	0.257686E-01
2586.589261	1.32E-03	Р	3	F1	1	1	100%	2	F2	3	9	59%	62.875738	0.257686E-01
2603.149258	3.24E-04	Р	3	F1	1	1	100%	2	F2	4	9	51%	62.875738	0.257686E-01
2787.522567	4.55E-02	Р	3	F1	1	1	100%	2	F2	5	6	76%	62.875738	0.257686E-01
2804.568808	1.34E-03	Р	3	F1	1	1	100%	2	F2	6	6	55%	62.875738	0.257686E-01
2816.326449	1.06E-03	Р	3	F1	1	1	100%	2	F2	7	5	55%	62.875738	0.257686E-01
2820.270804	7.97E-03	Р	3	F1	1	1	100%	2	F2	8	5	85%	62.875738	0.257686E-01
2885.111075	8.71E-07	Р	3	F1	1	1	100%	2	F2	9	1	93%	62.875738	0.257686E-01
2986.104588	1.81E-04	Р	3	F1	1	1	100%	2	F2	10	2	94%	62.875738	0.257686E-01
2989.033629	1.57E+00	Р	3	F1	1	1	100%	2	F2	11	2	93%	62.875738	0.257686E-01
3033.183643	1.26E-05	Р	3	F1	1	1	100%	2	F2	12	3	92%	62.875738	0.257686E-01
3034.876994	3.77E-04	Р	3	F1	1	1	100%	2	F2	13	4	94%	62.875738	0.257686E-01
2618.270311	2.03E-02	Q	3	A2	1	1	100%	3	A1	1	9	98%	62.878129	0.429472E-01
2818.565794	7.69E-02	Q	3	A2	1	1	100%	3	A1	2	6	54%	62.878129	0.429472E-01
2853.937543	5.95E-02	Q	3	A2	1	1	100%	3	A1	3	5	58%	62.878129	0.429472E-01
3018.528801	3.81E+00	Q	3	A2	1	1	100%	3	A1	4	2	93%	62.878129	0.429472E-01

Chapitre IV : Prédiction des niveaux d'énergie et des fréquences de la bande pentade-GS de la molécule ¹²CH₄

2543.933396	2.19E-04	Р	4	A1	1	1	100%	3	A2	1	7	94%	104.772781	0.451664E-01
2557.411770	2.02E-02	Р	4	A1	1	1	100%	3	A2	2	9	99%	104.772781	0.451664E-01
2771.618091	8.31E-02	Р	4	A1	1	1	100%	3	A2	3	6	74%	104.772781	0.451664E-01
2813.361088	2.23E-02	Р	4	A1	1	1	100%	3	A2	4	5	78%	104.772781	0.451664E-01
2874.721148	1.11E-05	Р	4	A1	1	1	100%	3	A2	5	1	92%	104.772781	0.451664E-01
2979.011452	2.96E+00	Р	4	A1	1	1	100%	3	A2	6	2	92%	104.772781	0.451664E-01
3023.881777	1.98E-05	Р	4	A1	1	1	100%	3	A2	7	3	96%	104.772781	0.451664E-01
2618.734486	1.99E-04	R	2	Е	1	1	100%	3	Е	1	9	73%	31.442100	0.142674E-01
2651.813778	4.28E-03	R	2	Е	1	1	100%	3	Е	2	9	73%	31.442100	0.142674E-01
2675.295409	3.21E-03	R	2	Е	1	1	100%	3	Е	3	9	49%	31.442100	0.142674E-01
2845.978788	8.56E-04	R	2	Е	1	1	100%	3	Е	4	6	73%	31.442100	0.142674E-01
2865.933755	2.84E-02	R	2	Е	1	1	100%	3	Е	5	6	51%	31.442100	0.142674E-01
2885.099349	3.64E-02	R	2	Е	1	1	100%	3	Е	6	6	52%	31.442100	0.142674E-01
2890.412382	1.48E-04	R	2	Е	1	1	100%	3	Е	7	5	92%	31.442100	0.142674E-01
3048.169294	1.83E+00	R	2	Е	1	1	100%	3	Е	8	2	94%	31.442100	0.142674E-01
3052.182136	1.66E-03	R	2	Е	1	1	100%	3	Е	9	2	92%	31.442100	0.142674E-01
3098.782230	1.15E-03	R	2	Е	1	1	100%	3	Е	10	4	99%	31.442100	0.142674E-01
2545.400616	5.54E-03	Р	4	Е	1	1	100%	3	Е	1	9	73%	104.775969	0.180663E-01
2578.479908	1.75E-03	Р	4	Е	1	1	100%	3	Е	2	9	73%	104.775969	0.180663E-01
2601.961539	8.31E-04	Р	4	Е	1	1	100%	3	Е	3	9	49%	104.775969	0.180663E-01
2772.644919	3.20E-02	Ρ	4	Е	1	1	100%	3	Е	4	6	73%	104.775969	0.180663E-01
2792.599886	5.07E-03	Р	4	Е	1	1	100%	3	Е	5	6	51%	104.775969	0.180663E-01
2811.765479	1.69E-03	Ρ	4	Е	1	1	100%	3	Е	6	6	52%	104.775969	0.180663E-01
2817.078512	3.04E-03	Р	4	Е	1	1	100%	3	Е	7	5	92%	104.775969	0.180663E-01
2974.835424	1.06E-03	Р	4	Е	1	1	100%	3	Е	8	2	94%	104.775969	0.180663E-01
2978.848267	1.18E+00	Р	4	Е	1	1	100%	3	Е	9	2	92%	104.775969	0.180663E-01
3025.448360	1.81E-03	Р	4	Е	1	1	100%	3	Е	10	4	99%	104.775969	0.180663E-01
2609.766845	1.55E-05	R	2	F2	1	1	100%	3	F1	1	9	67%	31.442366	0.214011E-01
2617.344170	2.00E-07	R	2	F2	1	1	100%	3	F1	2	7	95%	31.442366	0.214011E-01
2635.303698	1.52E-03	R	2	F2	1	1	100%	3	F1	3	9	53%	31.442366	0.214011E-01
2651.032975	4.08E-03	R	2	F2	1	1	100%	3	F1	4	9	81%	31.442366	0.214011E-01
2674.156226	5.86E-03	R	2	F2	1	1	100%	3	F1	5	9	54%	31.442366	0.214011E-01
2680.583448	3.27E-05	R	2	F2	1	1	100%	3	F1	6	8	62%	31.442366	0.214011E-01
2847.190679	7.19E-04	R	2	F2	1	1	100%	3	F1	7	6	70%	31.442366	0.214011E-01
2857.112848	5.92E-04	R	2	F2	1	1	100%	3	F1	8	6	79%	31.442366	0.214011E-01
2867.110421	4.57E-02	R	2	F2	1	1	100%	3	F1	9	6	49%	31.442366	0.214011E-01
2884.906608	5.05E-02	R	2	F2	1	1	100%	3	F1	10	5	47%	31.442366	0.214011E-01
2885.599462	1.14E-03	R	2	F2	1	1	100%	3	F1	11	5	65%	31.442366	0.214011E-01
2948.028265	8.20E-07	R	2	F2	1	1	100%	3	F1	12	1	92%	31.442366	0.214011E-01
3048.153517	2.75E+00	R	2	F2	1	1	100%	3	F1	13	2	94%	31.442366	0.214011E-01
3049.793083	2.20E-03	R	2	F2	1	1	100%	3	F1	14	2	93%	31.442366	0.214011E-01
3051.988225	7.83E-04	R	2	F2	1	1	100%	3	F1	15	2	92%	31.442366	0.214011E-01
3096.622211	4.06E-04	R	2	F2	1	1	100%	3	F1	16	3	77%	31.442366	0.214011E-01
3098.681775	2.27E-04	R	2	F2	1	1	100%	3	F1	17	4	98%	31.442366	0.214011E-01

Tableau IV-2 : Prédiction du spectre calculé des transitions rovibrationnelles de la bande

pentede-GS de la molécule ¹²CH₄

Les différentes colonnes de ce tableau représentent :

- > *1^{ère} colonne* : La fréquence de transitions rovibrationnelles en cm⁻¹.
- 2ème colonne : L'intensité calculée pour chaque transition en atm⁻¹.cm⁻².
- *3^{ème} colonne* : La branche de raie spécifique à chaque transition.
- 4^{ème} colonne et 9^{ème} colonne : Le nombre quantique rotationnel de niveau vibrationnel inférieur et supérieur respectivement.
- 5^{ème} colonne et 10^{ème} colonne : La symétrie de niveau vibrationnel inférieur et supérieur respectivement.
- 6^{ème} colonne et 11^{ème} colonne : l'indice permettant la distinction entre deux niveau de même symétrie.
- 7^{ème} colonne et 12^{ème} colonne : l'indice de niveau vibrationnel inférieur et supérieur respectivement.
- 8^{ème} colonne et 13^{ème} colonne : pourcentage de vibration de niveau inférieur et supérieur respectivement.
- > 14^{ème} colonne : L'énergie de niveau inférieur.

Nous donnons le diagramme énergétique dans le graphe suivant ou nous représentons le nombre d'onde réduit en fonction du nombre rotionnel J .nous remarquons que les niveaux énergétique sont repartis en 5sous niveaux v_3 , v_1 , $2v_2$, $2v_4$, v_2+v_4

Chapitre IV : Prédiction des niveaux d'énergie et des fréquences de la bande pentade-GS de la molécule ¹²CH₄

Les nombre d'onde en (cm-1)

Avec le logiciel XTDS on a pu représenter le spectre complet de la molécule ¹²CH₄. Ce spectre s'étale de 2300 cm⁻¹ à 3400 cm⁻¹representé dans la figure suivante :

Intensité en cm⁻².atm⁻¹

Figure (IV-3) : Spectre complet des transitions rovibrationnelles de la bande pentede-Gs de la molécule ¹²CH₄

Chapitre IV : Prédiction des niveaux d'énergie et des fréquences de la bande pentade-GS de la molécule ¹²CH₄

On donne dans les deux figures suivants deux extrait du spectre représentant deux régions différentes l'une qui s'étale de 2750 cm⁻¹ à 3000 cm⁻¹ l'autre s'étale de 3050 cm⁻¹ à 3250 cm⁻¹

Figure (IV-4) : Spectre des transitions rovibrationnelles de la bande pentede-Gs de la molécule ¹²CH₄ dans la région [2750-3000]cm⁻¹

Figure (IV-5) : Spectre des transitions rovibrationnelles de la bande pentede-Gs de la molécule ¹²CH₄ dans la région [3050-3250] cm⁻¹

- [1] mémoire belgour yamina 2017/2018.
- [2] L. Xiao-Juan, W. Zhi-Jian, H. Xian-Feng, X. Hong-Ping, J. Meng, Chem. Phys.Lett. 416 (2005) 7.
- [3] J. Moret-Bailly, Cah. Phys. 15 -237. (1961)
- [4] M. Meskine, Thèse de DOCTORAT, Université e SAIDA, Janvier (2015).

[5] A. Mourbat, M. Loete, J. Mol. Spectrosc. Volume 189, Issue 1, Pages 16-28. (May 1998). <u>https://doi.org/10.1006/jmsp.1997.748</u>

Après avoir exposé toutes les formules permettant de construire les opérateurs Hamiltonien des molécules XY₄, nous pouvons calculé les positions des raies et les intensités rovibrationnelles de n'importe quel spectre de la molécule ¹²CH₄. Nous avons ensuite donné les méthodes d'analyses et les programmes utilisés au cours de notre étude sur la molécule ¹²CH₄.

Ainsi, et en utilisant XTDS et SPVIEW (ensembles de logiciels permettant de faire tous types de calculs, d'analyse et d'attributions pour les molécules XY₄) nous avons fait une prédiction.

Dans ce chapitre, on s'est penché sur l'étude de la poliade P₂ (v_3 , v_1 , $2v_2$, $2v_4$, v_2+v_4) qui s'étend de 2300 cm⁻¹ à 3400 cm⁻¹ et appelé la pentade.

L'ensemble de 300 paramètres utilisé dans le développement de l'Hamiltonien de la bande pentade P₂, en question à l'ordre 3 nous déterminerons le spectre rovibrationnel de cette bande. Ce spectre contient 23196 raies pour une valeur de $J_{max} = 20$.

La prédiction que nous avons faite sur le spectre de la pentade, permettra et facilitera toute prochaine étude et attributions sur les positions des raies et sur les intensité de la pentade de la molécule ¹²CH₄

Prédiction des niveaux d'énergie Et des fréquences de la bande pentad-Gs de la Molécule ¹²CH4

Résumé : La première étape de cette étude consiste à calculer le spectre complet des transitions rovibrationnelles de la bande pentad-Gs de la molécule ¹²CH₄, ou l'Hamiltonien des molécules tétraédriques est développé à l'ordre 3, 300 paramètres (dont 10 relatifs au niveau de base GS) interviennent dans le développement de l'Hamiltonien. L'ensemble des programmes XTDS et SPVIEW, développés à l'institut interdisciplinaire de Bourgogne (ICB Dijon France), sont utilisés dans toutes nos calculs de spectre. Le calcul du spectre infrarouge de la bande pentad (v₃, v₁, 2v₂, 2v₄, v₂+v₄)-Gs, dans la région (2300-3400cm⁻¹), se fait par l'utilisation de 300 paramètres, pour j_{max}=20.

Mots clé : ¹²CH₄, Spectre infrarouge à haute résolution, formalisme tétraédrique tensoriel, XTDS et SPVIEW.

Abstract : The first step of this study consists in calculating the complete spectrum of the rovibrational transitions of the pentad-Gs band of the ¹²CH₄ molecule, where the Hamiltonian of the tetrahedral molecules is expanded to order 3, 300 parameters (including 10 relating to the basic level GS) are involved in the development of the Hamiltonian. All of the XTDS and SPVIEW programs, developed at the Interdisciplinary Institute of Burgundy (ICB Dijon France), are used in all our spectrum calculations. The calculation of the infrared spectrum of the pentad band (v3, v1, 2v2, 2v4, v2+v4)-Gs, in the region (2300-3400cm⁻¹), is done by using 300 parameters, for $j_{max}=20$.

Keywords: 12CH4, High-resolution infrared spectrum, tensorial tetrahedral formalism, XTDS and SPVIEW.

الخلاصة: تتمثل الخطوة الأولى من هذه الدراسة في حساب الطيف الكامل للتحولات الاهتزازية لنطاق pentad-Gs للخريء 10 المتعلقة لجزيء 1²CH4، حيث يتم توسيع هاميلتوني للجزيئات الرباعية السطوح لترتيب 3، 300 معلم (بما في ذلك 10 المتعلقة بالمستوى الأساسي GS) في تطوير هاميلتوني. تستخدم جميع برامج XTDS و SPVIEW، التي تم تطويرها في معهد بور غندي متععد التخصصات (ICB Dijon France)، في جميع حسابات الطيف لدينا. يتم حساب طيف الأشعة تحت الحمراء للنطاق الخماسي 300، معلم (من من 300، معلم من معهد محميع برامج 300، معلم (ما في ذلك 10 المتعلقة بالمستوى الأساسي Gs) في تطوير هاميلتوني. تستخدم جميع برامج XTDS و SPVIEW، التي تم تطويرها في معهد بور غندي متععد التحصصات (ICB Dijon France)، في جميع حسابات الطيف لدينا. يتم حساب طيف الأشعة تحت الحمراء للنطاق الخماسي (300، ما مراب 200، ما مع ما منطقة (-300، ما من 300)، وي تصوير عامي معلم ، ورعندي متعلم الخليات (10 معلم 10 معلم)، وي المنطقة (-300)، ما منطقة (-300)، ما معلم الحمراء للنطاق الخماسي (300، ما مراب 200، ما مع ما منطقة (-300، ما معلم)، وي المع حسابات الطيف لدينا. يتم حساب طيف الأسعة تحت معلم المنطقة (-300)، ما معلم المنطقة (-300)، ما معلم 10 معلم 10 معلم)، وي معلم 10 معلم الخليات (-300)، ما منطقة (-300)، ما معلم 10 معلم 10 معلم)، وي معلم 100، معلم 100، معلم 100، ما منطقة (-300)، ما معلم 100، م

الكلمات الرئيسية: $^{12}CH_4$ ، طيف الأشعة تحت الحمراء عالي الدقة، الشكلية الرباعية السطوح الشدادية، XTDS وSPVIEW.