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Notations

r.r.v. real random variable.
f.r.v. functional random variable.
i.i.d. independent and identically distributed.
PCA Principal Components Analysis.
NPFDA NonParametric Functional Data Analysis.
CDF Cumulative Distribution Function.
NWE Nadaraya-Watson Estimator.
LLE Local Linear Estimator.
LCE Local Constant Estimator.
N Set of positive natural numbers.
R Set of real numbers.
F Semi-metric space.
d(·, ·) Semi-metric on F.

(Ω,F ,P) Probability space.
X Functional random variable, (f.r.v.)
Xi, i = 1, . . . , n Sample of f.r.v.
x Observations of f.r.v.
Y Real random variable, r.r.v.
E(X) Mathematical expectation of the random variable X.
V ar(X) Variance of the random variable X.
E(Y |X) Conditional expectation of Y given X.
V ar(Y |X) Conditional variance of Y given X.
Cov(X, Y ) Covariance between random variables X and Y .
B(x, h) Ball of center x and radius h in the space (F, d).
φx(h) Probability measure or concentration probability.
F x(y) Conditional distribution of r.r.v. Y given f.r.v Xi = x.
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a.co−→ Almost complete convergence.
P−→ Convergence in probability.
D−→ Convergence in distribution.
Oa.co. rate of almost complete convergence.
Op rate of convergence in probability.
:= Definition of a quantity.
C and C ′ Real positive constants.
11{} Indicator function.
t Transpose symbol.
N (0, σ2) Standard normal random variable ( mean µ = 0 , variance σ2).
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Chapter 1

Basic concepts in functional statistics

1 Functional Data

Functional data analysis has recently become an important tool in statistical re-
search. it should be noted that classical statistics treats realizations of real random
variables or random vectors for some random phenomena. However, there exists a
data that emerge in continuous form (curves, surfaces, etc.) which can be considered

as discretized functions (functions observed on a fairly fine discretization scale), so, it
is obviously that infinite dimensional data are the so called functional data. This area
of modern statistics has attracted the attention of many authors. From a historical
point of view, the first work in this field dates back to Deville [16], Besse and Ramsay

[5], Besse [6], where they approached factor analysis in functional cases, in particu-

lar principal component analysis of curves. More later, Ramsay and Silverman [36]
treated these functional data also with factor analysis for regression models. Besse
and Cardot [7] showed that functional regression is well fitted and more efficient than
a vector approach. From a practical perspective, functional data is found in many
applications. Among the most famous, we can cite: Müller et al. [27] on biological

data, Chiou et al. [12] on demographic data.
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1.1 Generation of functional data

In practice, the functional expression of the observed curves is unknown and we
only have access to discrete observations measured at specific time.
we generated the functional covariate X on the interval [0, π] (see figure 1.1 ) by the
following process:

Xi(τ) = cos((Ai − 1) + πτ)− sin(0.8(Bi − 2)πτ), for i = 1, 2, . . . , 100.

where τ the discretization grid of 100 points in the interval [0, π], Ai are independent

and identically distributed (i.i.d.) and following the normal distribution N(1, 0.01),
while the random variables Bi are generated from a uniform distribution on the

interval [3
2
, π] (Bi ∼ U([3

2
, π])). All the curves Xi’s are generated from 100 equidistant

values in [0, π].
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Figure 1.1: A sample of 100 curves

1.2 Some examples of applications in functional data

• In biology: An individual’s (or a plant’s) growth curve over time. The heights
of girls and boys, between 1 and 18 years, are included in the growth data of
the package fda, as an example. Figure (1.2) depicts the related curves for 39
boys and 54 girls.
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• In Chemometric Data: The original data come from a quality control prob-
lem in the food industry and can be found at http://lib.stat.cmu.edu/

datasets/tecator. Note that they were first studied by [BT92] using a neu-
ral networks approach. This dataset concerns a sample of finely chopped meat.
(1.3) displays some units among the original spectrometric data.
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Figure 1.2: Growth charts of 39 boys and 54 girls, with age from 1 to 18.

 http://lib.stat.cmu.edu/datasets/tecator
 http://lib.stat.cmu.edu/datasets/tecator
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Figure 1.3: Spectrometric curves obtained from 150 pieces of meat.

2 Small ball probabilities and semimetrics

The curse of dimensionality is a well-known phenomenon in nonparametric regres-
sion on multivariate variable. In multivariate nonparametric regression, convergence

rates (for the dispersion part) are expressed in terms of smoothing parameter hdn.
In the functional case we adopt more general concentration notions called small ball
probabilities to express our asymptotic results in function of these quantitities. Small
ball probabilities are defined by:

φx(h) = P (d(X, x) ≤ h).

Consider the semimetric d. The choice of the d has a direct influence on the topology
and consequently on small ball probabilities. The diversity of semimetrics allows us
to find a topology that gives a relevant notion of proximity between curves in various
situations.
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Now, we cite some examples of semimetrics used in functional statistics:

• The Semimetric used is the standard L2 metric dL2 defined for all curves xi and
xj as:

dL
2

(xi, xj) =

√∫
(xi(t)− xj(t))2dt

This definition is the natural functional extension of the vectorial L2 metric.
In that case, dL2 is a metric because it satisfies the indistinguishability axiom

(dL
2

(xi, xj) = 0 ⇔ xi = xj). d
L2 uses the whole information contained in the

curves and hence it may suffer from the curse of dimensionality.

• The Semimetric dFPCA is based on a functional principal components analysis.
This pseudometric is defined for all curves xi and xj as:

dFPCAq (xi, xj) =

√√√√ q∑
k=1

(∫
|xi(t)− xj(t)| vk(t)dt

)2

.

with v1, v2, . . . are the associated eigenfunctions of the covariance operator
Γx(t, t

′) = E [x̄(t)x̄(t′)] , with the decreasing eigenvalues µ1 ≥ µ2 ≥ . . . where
x̄ stands for the centered version of x. q is the usual FPCA parameter which
controls the dimension of the decomposition.

• The semi-metric of the functional index model: for a functional variable x be-
longs to a Hilbert space H equipped with an inner product 〈·, ·〉. We define the
functional index model semi-metric by:

∀x, y, θ ∈ H , dθ (x, y) = |〈x− y, θ〉| .

We could estimate θ̂ by the cross-validation type techniques, which gives us the
"best" prediction.
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3 Some tools of probability

The main goal of this section is to provide inequalities and classical tools in non-
parametric statistics that facilitate the theorems proofs of the following chapter.

3.1 Modes of convergence

3.1.1 Almost complete convergence

Definition 3.1.1. [19]

We say that (Xn)n∈N converges almost completely to some r.r.v. X, if and only

∀ε > 0,
∑
n∈N

P [|Xn −X| > ε] <∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by

lim
n→∞

Xn = X, a.co. or Xn
a.co.−→
n→∞

X

Definition 3.1.2. [19]

We say that the rate of almost complete convergence of (Xn)n∈N to X is of order un
if and only if

∃ε0 > 0,
∑
n∈N

P [|Xn −X| > ε0un] <∞,

and we write
Xn −X = Oa.co.(un).

3.1.2 Convergence in probability

Definition 3.1.3. Let (Xn)n∈N be a sequence of real random variables defined on the

same probability space (Ω,F,P). We say that Xn converges to X in probability if

∀ε > 0, lim
n→∞

(P [|Xn −X| ≥ ε]) = 0.

Sometimes we note: lim
n→∞

Xn = X, p. or Xn
p−→

n→∞
X.
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Proposition 3.1. [19]

i) If Xn
a.co.−→
n→∞

X and Yn
a.co.−→
n→∞

Y, where X and Y are two deterministic real

random variables. We have:

1. Xn + Yn
a.co.−→
n→∞

X + Y ;

2. XnYn
a.co.−→
n→∞

XY ;

3.
1

Xn

a.co.−→
n→∞

1

X
as long as X 6= 0.

ii) If lim
n→∞

un = 0, Tn − T = Oa.co(un), and Sn − S = Oa.co(un), we have:

1. (Tn + Sn)− (T + S) = Oa.co(un);

2. TnSn − TS = Oa.co(un);

3.
1

Tn
− 1

T
= Oa.co(un) as long as T 6= 0.

iii) If lim
n→∞

un = 0, Sn = Oa.co(un), and Xn
a.co.−→
n→∞

lX , where lX is a determin-

istic real number. We have:

1. SnXn = Oa.co(un);

2.
Sn
Xn

= Oa.co(un) as long as X 6= 0.

Theorem 3.1.1. (Slutsky)[23]

Let (Xn)n∈N and (Yn)n∈N be two sequences of random variables defined on a probability

space (Ω;A;P) and X a random variable.
If Xn converge in law to X, and if Yn converges in probability to a constant c then

1- Xn + Yn
D−→

n→∞
X + c

2- Xn × Yn
D−→

n→∞
X × c
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3-
Xn

Yn

D−→
n→∞

X

c
, with c 6= 0.

3.2 Some useful inequalities

Corollary 3.1. [19]

i) If ∀m ≥ 2,∃Cm > 0, E |Zm
1 | ≤ Cma

2(m−1), we have:

∀ε ≥ 0,P

(∣∣∣∣∣
n∑
i=1

Zi

∣∣∣∣∣ > εn

)
≤ 2 exp

{
− ε2n

2a2 (1 + ε)

}
.

ii) Assume that the i.i.d real random variables depend on n (i, e Zi = Zi,n ).

If ∀m ≥ 2,∃Cm > 0, E |Zm
1 | ≤ Cma

2(m−1)
n and if un = n−1a2

n log n verifies
lim
n→∞

un = 0, we have:

1

n

n∑
i=1

Zi = Oa.co. (
√
un) .

Theorem 3.2.1. (Jensen) [32]
Let X be a real random variable and ϕ a convex function. So

ϕ(E(X)) ≤ E(ϕ(X)).

Theorem 3.2.2. (Markov) [21]
Let X be a real random variable. Then for all a > 0 :

P(|X| > a) <
E(|X|)
a

.

Theorem 3.2.3. (Bienaymé-Tchebychev) [8]
Let X be a real random variable. Then for all a > 0 :

P(|X − E(X)| > a) <
V ar(X)

a2
.
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Theorem 3.2.4. (Hölder’s inequality)[1]

Let X and Y be two random variables such that X ∈ Lp(Ω;A;P) and Y ∈ Lq(Ω;A;P)

with
1

r
=

1

p
+

1

q
and p ≥ 1, q ≥ 1, then:

E(|XY |
1
r ) ≤ E(|X|p)

1
pE(|Y |q)

1
q .

If p = 2 and q = 2, we get the Cauchy-Schwarz inequality.

3.3 Central limit theorem

Lindeberg’s Theorem:[13]

Let (Ω,F ,P) be a probability space, and Xk : Ω→ R, k ∈ N be independent ran-

dom variables defined on that space. Assume that the expected values E [Xk] = µk,

Var [Xk] = σ2
k exist and are finite, let S2

n =
n∑
i=1

σ2
i , If the sequence of independent

random variables Xk satisfies Lindeberg’s condition:

If, for all ε > 0, lim
n→+∞

1

S2
n

n∑
i=1

E[(Xi − µi)21|Xi−µi|>εSn ] = 0,

then the central limit theorem holds, i.e. the random variables Zn =
1

Sn

n∑
i=1

(Xi−µi),

converge in distribution to a standard normal random variable N (0, 1).

3.4 Landau’s notations

oP (1) ("small oh-P-one") is short notation for a sequence of random vectors that

converges to zero in probability. The expression OP (1) ("big ohP-one") denotes a
bounded sequence in probability. More generally, for a given sequence of random
variables Rn, we have,

1- Xn = o(Rn) means Xn = YnRn and Yn −→
n→∞

0;

2- Xn = O(Rn) means Xn < CRn, C is a constant;
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3- Xn = oP (Rn) means Xn = YnRn and Yn
p−→

n→∞
0;

4- Xn = OP (Rn) means Xn = YnRn and Yn = OP (1).

This expresses that the sequence Xn converges in probability to zero or is bounded in
probability at the "rate" Rn. For deterministic sequences (Xn)n and Rn, the stochastic
"oh" symbols reduce to the usual o and O from calculus.
There are many rules of calculus with o and O symbols, which we apply without
comment, (for more details see [37]) . For instance

1- oP (1) + oP (1) = oP (1).

2- oP (1) + OP (1) = OP (1).

3- OP (1)oP (1) = oP (1).

4- (1 + oP (1))−1 = OP (1).

4 Outline of the manuscript

This manuscript is organized in three chapters as follows:
We started with an introductory chapter, which is divided into three parts. In the
first one, we focused on the basics of nonparametric statistics for functional data,
this part was followed by some application examples in order to clarify the simulation
of functional data using some R software codes and are packages to generate the
functional data. Finally, this introduction ends with mathematical tools such as the
inequalities and techniques utilized in proving the theorems.
In the second chapter, we presented a brief historical on the local linear method in

the functional case. Moreover, we considered a sequence of independent and identically
distributed observations to construct an estimator, by the local linear method, of
the conditional distribution function. Then we studied, under certain conditions, the
almost complete convergence of this estimator by specifying its convergence rate,
beside that, we considered the same type of independency of observations as in the
previous case, and then, we established under more conditions, the limit law of local
linear estimator of the conditional distribution function.
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The illustration of the proposed method via real data set and simulation with
comparative study between the local linear and constant local method are analyzed
in Chapter 3.



Chapter 2

Nonparametric functional modeling
for the study of asymptotic properties

In this chapter we will present in details, the obtained results in non-parametric
statistics in case of functional data using the local linear method. We focus on the
estimation of the conditional distribution function of a real random variable Y con-
ditioned by a functional random variable X (valued in an infinite dimensional space).

1 A brief history of the local linear method in the
infinite dimension

Local linear modeling is an alternative statistical approach to kernel estimation,
which has many advantages over the latter. In particular, the biggest advantage of
the local linear method over the kernel method (local constant) is the reduction of
the bias of the estimator and non-adaptation of the boundary effects spcially in finite
dimension. Moreover, the kernel method can be treated as a particular case of the local
linear method. Historically, Baìllo and Grané [3] first proposed a local linear estimator
of the regression operator when the explanatory variable takes values in a Hilbert
space. However, as Barrientos-Marin et al. [4] pointed, the estimator is a bit difficult
in computation although it has a better performance than the kernel estimator. When
the explanatory variable takes values in a semi-metric space, Barrientos-Marin et al.
[4] proposed another alternative version of the local linear estimator of the regression
operator in the i.i.d. setting, which was called locally modelled regression estimator.
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They found that the estimator made its computation easy and fast while keeping
good performance. After that, this method has been used to estimate the conditional
density, the conditional distribution and the conditional mode, we mention some
recent works. ( Bouanani et al. [10], Rahmani and Bouanani [35])

2 Construction of the local linear estimation of the
conditional distribution for functional data

Let (Xi, Yi)1≤i≤n be a sequence of independent and identically distributed (i.i.d.)

random vectors that we assume to be drawn from the pair (X, Y ) where the random

variable (r.v.) X belongs to a semi-metric space F equipped with a semi metric d (in

most practical applications F is a Banach space) and Y is a real-valued r.v. For a

fixed x ∈ F, we denote the conditional cumulative distribution function (CDF) of Yi
given Xi = x, by:

for all y ∈ R, F x(y) = P(Yi ≤ y | Xi = x).

We are implicitly supposing that there exists a regular version of this conditional
probability. Recall that if d is a metric, existence is insured under general separability
conditions. However, as far as we know, for semi-metric space this is still a field of
probabilistic researches.
We focus on the estimation of the conditional distribution (CDF) of Y given X = x

via the local linear method. For this purpose, it is well known that the main idea, in
the local linear smoothing, is based on the fact that the function F x(y) admits a linear

approximation in the neighborhood of the conditioning point and that the (CDF) can

be expressed as a regression model with the response variable H(h−1
H (· − Yi)), where

H is cumulative distribution function and (hH = hH,n) is a sequence of positive real
numbers. This consideration is steered by the following fact:

E[H(h−1
H (y − Yi))|Xi = x]→ F x(y) as hH → 0

The approximation of F x can be expressed, for any z in the neighborhood of x by:

F z(y) = F x(y)︸ ︷︷ ︸
a

+F ′x(y)︸ ︷︷ ︸
b

β(z, x) + o(β(z, x))
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In our setting, the local linear estimator denoted by F̂ x(y) is defined as the first

component of the pair (â, b̂), obtained by the following minimization problem:

(â, b̂1) = arg min
(a,b)∈R2

n∑
i=1

(
H(h−1

H (y − Yi))− a− bβ(Xi, x)
)2
K(h−1

K δ(x,Xi)), (2.1)

where the locating functions δ(·, ·) and β(·, ·) are defining on F× F into R such that

| δ(., .) |= d(., .), and β refers to the local behaviour of our model. K is a kernel,

H is a distribution function and hK = hK , n (resp. hH = hH , n) are the smoothing
parameters with respect to the kernels K and H.
The solution of this minimization in problem 2.1 can be derived by using a matrix
notations, from which it is defined by:

â = F̂ x(y) =t e1((tQβKQβ)−1)tQβKH, (2.2)

tQβ is the matrix defined by:

tQβ =

[
1 · · · 1

β(X1, x) · · · β(Xn, x)

]
,

H =t [ H(h−1
H (y − Y1)), . . . , H(h−1

H (y − Yn))]

and

K =


(K(h−1

k δ(X1, x)) 0 · · · 0

0 (K(h−1
k δ(X2, x)) · · · 0

...
... . . . 0

0 0 · · · (K(h−1
k δ(Xn, x))


From Equation (2.2) and by some algebra, the quantity F̂ x(y) is explicitly defined by

F̂ x(y) =

n∑
i,i 6=j,j=1

WijHj

n∑
i,i 6=j,j=1

Wij

=

n∑
j=1

∆jKjHj

n∑
i,i 6=j,j=1

Wij

(2.3)

1b̂ = F̂ ′x(y) =t e2((
tQβKQβ)

−1)tQβKH where e2 =t (0, 1)
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where

Wij = βi (βi − βj)KiKj and ∆j = K−1
j

(
n∑
i=1

Wij

)
=

n∑
i=1

β2
iKi −

(
n∑
i=1

βiKi

)
βj,

with βi = β(Xi, x), Ki = K
(
h−1
K (δ(x,Xi))

)
and Hj = H

(
h−1
H (y − Yj)

)
.

3 Pointwise almost complete convergence

In this section, we establish the first asymptotic property which is the almost com-
plete convergence of our estimator in the case where the observations are independent
and identically distributed. This section is divided into three parts. For better read-
ability, we group together in the first part all the assumptions used to establish this
convergence. The second part is devoted to the main result of this chapter. The de-
tailed proof of this result is given in the last part.

3.1 Hypotheses and notations

We define φx(r1, r2) = P(r2 ≤ δ(x,X) ≤ r1), where r1 and r2 are two real numbers

and we denote the closed-ball in F of center x and radius r by B(x, r) := {x′ ∈ F :|
δ(x, x′) |≤ r}. We will denote by C and C ′ some strictly positive constants.

(H.1) On the small ball probabilities of the functional variable For any

h > 0, φx(h) := φx(−h, h) = P (X ∈ B(x, h)) > 0,
Note that this assumption is very classic in the FDA context. In particular,
we focus on the concentration function of the functional variable X in small
ball, which allows us to control the effect of the topological structure in the
asymptotic results (see [18]).

(H.2) On the regularity of the model

The estimation of FX is related to the regularity condition. It is worth noting
that the characterization of the functional space of our model is given by this
assumption and it is needed to evaluate the asymptotic bias term. This condition
is as follows:
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F x(y) satisfies that there exist some positive constants b1 and b2, such that:

| F x1(y1)− F x2(y2) |≤ Cx
(
δb1(x1, x2)+ | y1 − y2 |b2

)
.

(H.3) On the locating operators

for all z ∈ F, C | δ(x, z) |≤| β(x, z) |≤ C ′ | δ(x, z) |,

Assumption (H3) was introduced and commented for the first time in [4] and it
plays an important role in our methodology, especially when we calculate the
leading terms involved in our asymptotic result.

(H.4) On the kernels

(i) The kernel K is a bounded and positive function which is supported within

[−1, 1] and for which the first derivative K(1) satisfies: K(1) > 0,

K(1)(u) < 0, for u ∈ [−1, 1].

(ii) The kernel function H is a bounded and differentiable function, and such
that ∫

R
H(1)(z)dz = 1, and

∫
R
| z |b2 H(1)(z)dz <∞.

(H.5) On the smoothing parameter hK
The bandwidth satisfies the following conditions: there exists a positive integer
n0 such that,

− 1

φx(hK)

∫ 1

−1

φx(zhK , hK)
d

dz

(
z2K(z)

)
dz > C3 > 0 for n > n0.

lim
n→∞

nφx(hK) =∞ and lim
n→∞

log n

nφx(hK)
= 0,

and

hK

∫
B(x,hK)

β(u, x)dP (u) = o

(∫
B(x,hK)

β2(u, x) dP (u)

)
,

where P (u) is the cumulative distribution of X.
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3.2 Asymptotic property

Theorem 3.2.1. [15] Under assumptions (H.1)− (H.5), we obtain:

|F̂ x(y)− F x(y)| = O
(
hb1K + hb2H

)
+O

(√
log n

nφx(hK)

)
, a.co.

Before proving this result, it is necessary to present the following lemma, this lemma
plays a crucial role in the proof of Theorem 3.2.1.

Lemma 3.2.1. (see [4])

(a) E
[
Ka

1

∣∣βb1∣∣] ≤ Chb
K
φx(hK), for all a > 0, b ≥ 0;

(b) E [K1β
2
1 ] > Ch2

K
φx(hK);

proof of (a) One starts by using the assumption (H.3), which implies

Ka
1 |β1|bh−bK

≤ CKa
1 |δ(X1, x)|bh−b

K

and because the kernel K is bounded, one gets

Ka
1 |β1|bh−bK

≤ C ′1B(x,hK)|δ(X1, x)|bh−b
K

and thus, we have

E
[
Ka

1 |β1|bh−bK

]
≤ C

∫
B(x,hK)

dPX(v)

E
[
Ka

1 |β1|b
]
≤ Chb

K
φx(hK)

which is the claimed result.

proof of (b)Under assumption (H.3), we have

E
[
K1β

2
1

]
> CE

[
δ2(X1, x)K1

]
.
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Moreover, it is clear that:

E
[
Ka

1 δ
b
1

]
= hb

K

1∫
−1

vbKa
1 (v)dP

δ(X1,x)/hK
X (v)

= hb
K

∫ 1

−1

Ka
1 (1)−

1∫
v

(
ubKa

1 (u)
)(1)

du

 dP δ(X1,x)/hK
X (v)

= hb
K

Ka
1 (1)φx(hK)−

1∫
−1

(
ubKa

1 (u)
)(1)

φx(−hK , uhK)du

(2.4)
Finally, under assumption (H.5), with a = 1 and b = 2 we get:

E
[
K1β

2
1

]
> Ch2

K
φx(hK),

which is the claimed result

3.3 proof of Theorem 3.2.1

The proof of this theorem is based on the following decomposition

F̂ x(y)− F x(y) =
1

F̂ x
D

{(
F̂ x
N(y)− E[F̂ x

N(y)]
)
−
(
F x(y)− E[F̂ x

N(y)]
)}

+
F x(y)

F̂ x
D

(
1− F̂ x

D

)
,

where

F̂ x
N(y) =

1

n(n− 1)E[W12]

n∑
i,i 6=j,j=1

WijH(h−1
H (y − Yj)),

and

F̂ x
D =

1

n(n− 1)E[W12]

n∑
i,i 6=j,j=1

Wij.

Thus, this theorem is a direct consequence of the following lemmas:
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Lemma 3.3.1. Under assumptions (H.1), (H.2), (H.4) and (H.5), we obtain:∣∣∣F x(y)− E[F̂ x
N(y)]

∣∣∣ = O
(
hb1K + hb2H

)
.

Lemma 3.3.2. Under the assumptions of Theorem 3.2.1, we get:

∣∣∣F̂ x
N(y)− E[F̂ x

N(y)]
∣∣∣ = O

(√
log n

nφx (hK)

)
, a.co

Lemma 3.3.3. Under assumptions (H.1), (H.3), (H.4) and (H.5), we have that:

i) 1− F̂ x
D = O

(√
log n

nφx(hK)

)
, a.co.

ii) ∃ δ > 0 such as
∞∑
n=1

P
(
F̂ x
D < δ

)
<∞.

3.3.1 Proof of lemma 3.3.1

Since the pairs (Xi, Yi) are identically distributed, then:

E[F̂ x
N(y)] =

1

E [W12]
E [W12 [E [H2 |X2 ]]]

Next, we use an integration by part to show that:

E [H2 |X2 ] = h−1
H

∫
R

H(1)
(
h−1
H (y − z)

)
FX (z) dz

Now, the change of variables t =
y − z
hH

allows us to write:

|E [H2 |X2 ]− F x (y)| ≤
∫
R

H(1) (t)
∣∣FX (y − thH)− F x (y)

∣∣ dt
Thus, from assumptions (H.2) and (H.4, ii) we get:

1B(x,hK)(X) |E [H2 |X2 ]− F x (y)| ≤
∫
R

H(1) (t)
(
hb1K + |t|b2hb2H

)
dt.
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Then,

|F x(y)− E[F̂ x
N(y)]| = O

(
hb1K + hb2H

)
.

2

3.3.2 Proof of lemma 3.3.2

F̂ x
N(y) = S1(S2S3 − S4S5). (2.5)

where

S1 =
n2h2

Kφx(hK)2

n(n− 1)E(w12)
, S2 =

1

n

n∑
j=1

KjHj

φx(hK)
, S3 =

1

n

n∑
i=1

Kiβ
2
i

h2
Kφx(hK)

,

S4 =
1

n

n∑
j=1

KjβjHj

hKφx(hK)
and S5 =

1

n

n∑
i=1

Kiβi
hKφx(hK)

which allows us to write

F̂ x
N(y)− E[F̂ x

N(y)] = S1[(S2S3 − S4S5)− E[S2S3 − S4S5]],

= S1[(S2S3 − E[S2S3])− (S4S5 − E[S4S5])].

Moreover, we notice that:

S2S3 − E[S2S3] = (S2 − E[S2])(S3 − E[S3]) + (S3 − E[S3])E[S2]

+ (S2 − E[S2])E[S3] + E[S2]E[S3]− E[S2S3].

And similarly:

S4S5 − E[S4S5] = (S4 − E[S4])(S5 − E[S5]) + (S5 − E[S5])E[S4]

+ (S4 − E[S4])E[S5] + E[S4]E[S5]− E[S4S5].

So, the claimed result will be obtained as soon as the following assertions have been
checked:

S1 = O(1), E[Sl] = O(1) for l = 2, 3, 4, 5, (2.6)

Si − E[Si] = Op.co.

(√
log n

nφx(hK)

)
, for i = 2, 3, 4, 5, (2.7)
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Cov(S2, S3) = O

(√
log n

nφx(hK)

)
(2.8)

and

Cov(S4, S5) = O

(√
log n

nφx(hK)

)
. (2.9)

• Proof of the result(2.6):

◦ By applying lemma (3.2.1), we have

E[W12] = E[β2
1K1]E[K1] − (E[β1K1])2,

> Ch2
K(φ2

x(hK)).

We can deduce S1 = O(1).

◦ New, we show that E[Sl] = O(1) for l = 2, 3, 4, 5, we have:

E[Sl] = E

[
1

n

n∑
j=0

KjHj

φx(hK)

]
.

= φ−1
x (hK)E[K1H1],

= φ−1
x (hK)E[K1].

According to lemma (3.2.1), we have E[K1] ≤ Cφx(hK), which shows that E[S2] =

O(1).
By following the same reasoning, we can show that

E[S3] = h−2
K φ−1

x (hK)E[β2
1K1] = O(1),

E[S4] = h−1
K φ−1

x (hK)E[β1K1H1] = O(1),

E[S5] = h−1
K φ−1

x (hK)E[β1K1] = O(1).
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• Proof of the result(2.7): We have

Sl,k − E[Sl,k] =
1

n

n∑
i=1

Z l,k
i for l = 0, 1, 2 and k = 0, 1,

where Z l,k
i =

1

hlKφx(hK)

(
KiH

k
i β

l
i − E[KiH

k
i β

l
i]
)
.

From the expansion of Newton’s binomial, we have:

E[|Z l,k
i |m] = E

∣∣h−lmK φx(hK)−m
(
KiH

k
i β

l
i − E[KiH

k
i β

l
i]
)m∣∣ ,

= h−lmK φx(hK)−mE

∣∣∣∣∣
m∑
d=0

Cd
m

(
KiH

k
i β

l
i

)d (E[KiH
k
i β

l
i]
)m−d

(−1)m−d

∣∣∣∣∣ ,
≤ h−lmK φx(hK)−m

m∑
d=0

Cd
mE
∣∣KiH

k
i β

l
i

∣∣d ∣∣E[KiH
k
i β

l
i]
∣∣m−d ,

≤ h−lmK φx(hK)−m
m∑
d=0

Cd
mE
∣∣Kd

1β
ld
i E[Hdk

1 /X1]
∣∣ ∣∣E[K1β

l
1E[Hk

1 /X1]]
∣∣m−d ,

where Cd
m =

m!

d!(m− d)!
.

Using the proof of Lemma (3.3.1) and taking H by Hd, ∀ d ≤ m :

E[Hd
1/X1] =

∫
R

(Hd(t))(1)F x(y − hHt)dt.

Thus, according to the hypotheses (H.2) and (H.4), we obtain:

E[Hdk
1 /X1] = O(1), ∀ d ≤ m and k = 0, 1.

Then

E[|Z l,k
i |m] = O

(
h−lmK φx(hK)−m

m∑
d=0

E
[
Kd

1β
ld
1

] (
E[K1β

l
1]
)m−d)

.

= O

(
max

d∈{0,...,m}
φx(hK)−d+1

)
.

= O (φx(hK)−m+1) .
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for m = 2 we can write E
(
Z l,k2

i

)
≤ C

φx (hK)

Finally, it suffices to apply Corollary 3.1, we get:

P
(
|Sl,k − E[Sl,k]| > η

√
log n

nφx(hK)

)
= P

(
1

n

∣∣∣∣∣
n∑
i=0

Z l,k
i

∣∣∣∣∣ > η

√
log n

nφx(hK)

)
≤ 2 exp

(
−Cn η

2 log n

nφx(hK)
φx(hK)

)
≤ C ′n−Cη

2
.

By choosing η such that Cη2 = 1 + α, we get:

P

(
|Sl,k − E[Sl,k]| > η

√
log n

nφx(hK)

)
≤ C ′n−1−α for l = 0, 1, 2 and k = 0, 1.

which gives the result.

Si − E[Si] = Op.co.

(√
log n

nφx(hK)

)
, for i = 2, 3, 4, 5.

• Proof of the results (2.8) et (2.9)

For the both equations we use the fact that the pairs (Xi, Yi) , i = 1, ..., n are identi-
cally distributed. Thus, we obtain:

Cov(S2, S3) =
1

nh2
Kφ

2
x (hK)

[
E[K2

1H1β
2
1 ]− E[K1H1]E[K1β

2
1 ]
]

and

Cov(S4, S5) =
1

nh2
Kφ

2
x (hK)

[
E[K2

1H1β
2
1 ]− E[K1H1β1]E[K1β1]

]
So, for the both results, we have to evaluate:

E[KiH
k
i β

l
i] for l = 0, 1, 2 and k = 0, 1

Once again, as H < 1 then for all l = 0, 1, 2 and k = 0, 1 we obtain:

E[KiH
k
i β

l
i] = O

(
E[Kiβ

l
i]
)
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and by Lemma 3.2.1, we obtain that:

E[KiH
k
i β

l
i] = O

(
hlKφx (hK)

)
which implies that:

Cov(T2, T3) = O

(
1

nφx (hK)

)
= o

(
log n

nφx (hK)

)
and

Cov(T4, T5) = O

(
1

nφx (hK)

)
= o

(
log n

nφx (hK)

)
2

3.3.3 Proof of lemma 3.3.3

proof of Eq (i))
The result of this part is established by following the same idea used in the proof of
the Lemma 3.3.2
Proof of Eq (ii)

We assume that δ = 1
2
, we have

{
F̂ x
D ≤

1

2

}
=⇒ |1 − F̂ x

D| ≥
1

2
.

Then,

P
{
F̂ x
D ≤

1

2

}
≤ P

{
|1− F̂ x

D| ≥
1

2

}
.

Therefore,

∞∑
n=1

P
{
|F̂ x
D| ≤

1

2

}
≤

∞∑
n=1

P
{
|1 − F̂ x

D| ≥
1

2

}
≤ ∞.

2
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4 Asymptotic normality of the nonparametric lo-
cal linear estimator of the conditional cumulative
distribution

In this section, we study the limit law of the local linear estimator of the conditional
distribution function, by specifying the explicit expression of the asymptotically dom-
inant terms of bias and variance. We gather all the assumptions used to establish our
asymptotic result. Then, we state the theorem with detailed proof.

4.1 Main results

In order to establish the asymptotic convergence of F̂ x(y) we need some notations
and assumption.

• Firstly, for l ∈ {0, 2},

ϕl(., y) =
∂lF ·(y)

∂yl
and ψl(s) = IE [ϕl(X, y)− ϕl(x, y)|β(X, x) = s] ,

• The quantities Mj and N(a, b), which will appear in the bias and variance
dominant terms:

Mj = Kj(1)−
∫ 1

−1

(Kj(u))(1)Ψx(u)du where j = 1, 2,

and for all a > 0 and b = 1, 2, N(a, b) = Ka(1)−
∫ 1

−1

(ubKa(u))(1)Ψx(u)(u)du.

• To simplify the proofs of our results let us note

F̂ x(y) =
F̂ x
N(y)

F̂ x
D

,

where

F̂ x
N(y) =

1

nIE(∆1K1)

n∑
j=1

∆jKjHj and F̂ x
D =

1

nIE(∆1K1)

n∑
j=1

∆jKj,
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We set the following hypotheses which will be needed to enounce our result

(M1) • The hypothesis (H.1) holds and there exists a function Ψx(·):

∀u ∈ [−1, 1], lim
h→0

φx(−h, uh)

φx(u)
= Ψx(u)

such that Ψx(·) intervenes in all our asymptotic results, it is particulary needed

for the calculation of E(Kj) with j = 1.2. We refer to [20], for some examples

of calculating Ψx(·).

(M2) • For any l ∈ {0, 2}, the quantities ψ(2)
l (0) exist, where F (k) denotes the kth order

derivative of F.

(M3) • The hypothesis (H.3) holds, and:

sup
v∈B(x,r)

| β(v, x)− δ(x, v) |= o(r).

(M4) • The kernel K satisfies the assumption (H.4, i) and its first derivative K(1)

satisfies:

K2(1)−
∫ 1

−1

(K2(u))(1)Ψx(u)du > 0.

(M5) • The kernel H satisfies (H.4, ii) and its first derivative H(1) is symmetric and∫
R
z2H(1)(z)dz <∞.

(M6) • On the functional space:

For all (x1, x2, y1, y2) ∈ Nx ×Nx ×Ny ×Ny:
F : F× R −→ R, lim

|δ(x1,x2)|→0
F x1(y) = F x2(y),

and
lim

|y1−y2|→0
F x(y1) = F x(y2).

This assumption is a continuity-type which allow us to get the pointwise con-
vergence. The reason behind this hypothesis lies in the fact that, with an ap-
propriate choice of the semi-metric d, our functional space can be identified.



4 Asymptotic normality of the nonparametric local linear estimator of
the conditional cumulative distribution 35

Theorem 4.1.1. [9] Under assumptions (M1),(M3)-(M6) and (H.5) we obtain

√
nφx(hK)(F̂ x(y)− F x(y)−Bn(x, y))

D−→ N (0, VHK(x, y)),

where

VHK(x, y) =
M2

M2
1

F x(y)(1− F x(y)), (2.10)

and

Bn(x, y) =
IE(F̂ x

N(y))

IE(F̂ x
D)
− F x(y). (2.11)

Remark 4.1. As mentioned in Demongeot et al. [14], the function φx(t) can be
empirically estimated by

φ̂x(t) =
# {i : |δ(Xi, x)| ≤ t}

n
,

where #(A) denotes the cardinality of the set A. So, if we take advantage of the
following assumption,

(M7) lim
n→∞

√
nφx(hK)Bn(x, y) = 0,

we can cancel the bias term and obtain the following corollary.

Corollary 4.1. Under the conditions of the theorme (4.1.1) and by the assumption

(M7), we have the following asymptotic result√
nφx(hK)

VHK(x, y)
(F̂ x(y)− F x(y))

D−→ N (0, 1).

4.2 Proofs

Proof of Theorem 4.1.1. Remark that

F̂ x(y)− F x(y)−Bn(x, y) =
F̂ x
N(y)− F x(y)F̂ x

D − F̂ x
DBn(x, y)

F̂ x
D

.
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If,

Qn(x, y) = F̂ x
N(y)− F x(y)F̂ x

D − IE
(
F̂ x
N(y)− F x(y)F̂ x

D

)
= F̂ x

N(y)− F x(y)F̂ x
D −Bn(x, y),

(2.12)

since

F̂ x
N(y)− F x(y)F̂ x

D = Qn(x, y) +Bn(x, y),

then, the proof of this theorem will be completed from the following expression

F̂ x(y)− F x(y)−Bn(x, y) =
Qn(x, y)−Bn(x, y)(F̂ x

D − IE(F̂ x
D))

F̂ x
D

, (2.13)

Moreover, in addition to lemma 3.2.1, the following auxiliary lemmas, which play a
key role in the proof of our result

Lemma 4.2.1. (see [39] and [38] )

(c) E [Ka
1 ] = Maφx(hK) + o (φx(hK)) , for all a > 0;

(d) E [Ka
1β1] = o (hKφx(hK)) , for all a > 0;

(e) E
[
Ka

1β
b
1

]
= N (a, b)hb

K
φx(hK) + o

(
hb

K
φx(hK)

)
, for all a > 0, b > 1;

(f)
E(K1∆1)

n− 1
= E(W12) = N(1, 2)M1h

2
Kφ

2
x(hK) + o

(
h2
Kφ

2
x(hK)

)
.

Lemma 4.2.2. (see [15]).

1. IE(F̂ x
N(y))− F x(y) = BH(x, y)h2

H +BK(x, y)h2
K + o(h2

K) + o(h2
K),

2. Var(F̂ x(y)) =
VHK(x, y)

nφx(hK)
+ o

(
1

nφx(hK)

)
,

3. Cov(F̂ x
N(y), F̂ x

D(y)) = o

(
1

nφx(hK)

)
,

4. Var(F̂ x
D(y)) = o

(
1

nφx(hK)

)
,
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where

BH(x, y) =
1

2

∂2F x(y)

∂y2

∫
t2H(1)(t)dt , BK(x, y) =

1

2
ψ

(2)
0 (0)

N(1, 2)

M1

,

and

VHK(x, y) = F x(y)(1− F x(y))
M2

M2
1

.

Lemma 4.2.3. Under assumptions of Theorem 4.1.1, we have:

F̂ x
D

P−→ IE(F̂ x
D) = 1.

Lemma 4.2.4. Under assumptions (H.1), (H.4, ii), (M6), as n→∞, we have:

IE

(
K2

1Var
(
H

(
y − Y1

h

) ∣∣X1

))
→ IE(K2

1)F x(y)(1− F x(y)).

Proof of Lemma 4.2.1.

proof of (c) Under assumptions (M1) and (H.4-i) , we have

E
[
Kj

1

]
=

∫ 1

−1

Kj
1(v)dP

δ(X1,x)/hK
X (v), for j = 1, 2

=

∫ 1

−1

Kj
1(1)−

1∫
v

(
Kj

1(u)
)(1)

du

 dP δ(X1,x)/hK
X (v)

= Kj
1(1)φx(hK)−

1∫
−1

 1∫
v

(
Kj

1(u)
)(1)

du

 dP δ(X1,x)/hK
X (v)

= Kj
1(1)φx(hK)−

1∫
−1

 u∫
−1

dP
δ(X1,x)/hK
X (v)

(Kj
1(u)

)(1)
du

= Kj
1(1)φx(hK)−

1∫
−1

(
Kj

1(u)
)(1)

φx(−hK , uhK)du
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E
[
Kj

1

]
=

Kj
1(1)−

1∫
−1

(
Kj

1(u)
)(1)

Ψx(u)du

φx(hK) + o(φx(hK))

= Mjφx(hK) + o(φx(hK)).

proof of (d) Under assumption (H.4, i), we obtain that:

E [Ka
1β1] ≤ C

∫
B(x,hK)

β(u, x)dPX(u)

So, by using the assumptions (H.3) and (H.5), we get:

hKE [Ka
1β1] = o

(∫
B(x,hK)

β2(u, x)dPX(u)

)
= o

(
h2

K
φx(hK)

)
which allows to write:

E [Ka
1β1] = o (hKφx(hK)) .

proof of (e) We can write:

E
[
Ka

1β
b
1

]
= E

[
Ka

1 δ
b(X1, x)

]
+ E

[
Ka

1

(
βb(X1, x)− δb(X1, x)

)]
Concerning the second term we have:

E
[
Ka

1

(
βb(X1, x)− δb(X1, x)

)]
= E

[
Ka

1 1B(x,hK) (β(X1, x)− δ(X1, x))

×
b−1∑
l=0

(β(X1, x))b−l−1 (δ(X1, x))l
]

≤ sup
u∈B(x,hK)

|β(u, x)− δ(u, x)|

×
b−1∑
l=0

E
[
Ka

1 1B(x,hK) |β(X1, x)|b−l−1|δ(X1, x)|l
]
.
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Moreover by assumption (H.3), we get

1B(x,hK) |β(X1, x)| ≤ 1B(x,hK) |δ(X1, x)| .

Thus, it follows:

E
[
Ka

1

(
βb(X1, x)− δb(X1, x)

)]
≤ b sup

u∈B(x,hK)

|β(u, x)− δ(u, x)|E
[
Ka

1 |δ|
b−1(X1, x)

]
≤ b sup

u∈B(x,hK)

|β(u, x)− δ(u, x)|hb−1

K E [Ka
1 ]

≤ b sup
u∈B(x,hK)

|β(u, x)− δ(u, x)|hb−1

K φx(hK)

= o(h
b

Kφx(hK))

It suffices to use (c) and the assumption (M3) for obtaining the desired lower
bound.

Concerning the term E
[
Ka

1 δ
b
1

]
, which can be evaluated by the same computation

as in 2.4, then we can write

E
[
Ka

1 δ
b
1

]
= hb

K

Ka
1 (1)φx(hK)−

1∫
−1

(
ubKa

1 (u)
)(1)

φx(−hK , uhK)du


Finally, under assumption (M1) , we get:

E
[
Ka

1β
b
1

]
= hb

K
φx(hK)

Ka
1 (1)−

1∫
−1

(
ubKa

1 (u)
)(1)

Ψx(u)du

+ o(hb
K
φx(hK))

= N(a, b)hb
K
φx(hK) + o(hb

K
φx(hK)).

proof of (f) It is clear that:

E(∆jKj) = E

(
n∑

i,i 6=j

Wij

)
= (n− 1)E[W12] = (n− 1)

(
E[β2

1K1K2] − E[β1β2K1K2]
)

= (n− 1)
(
E[β2

1K1]E[K1] − (E[β1K1])2
)
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by using (c), (d) and (e), with a = 1 and b = 2 we obtain

E(K1∆1)

n− 1
= E(W12) = N(1, 2)M1h

2
Kφ

2
x(hK) + o

(
h2
Kφ

2
x(hK)

)
.

2

Proof of Lemma 4.2.3.
By applying the Bienaymé-Tchebychev’s inequality, we obtain, for all ε > 0

P(|F̂ x
D − E(F̂ x

D)| > ε) ≤ V ar(F̂ x
D)

ε2
.

By using Lemma 4.2.2, and with assumption (H.5), we get:

P(|F̂ x
D − E(F̂ x

D)| > ε) = O

(
1

ε2nφx(hK)

)
−→ 0, as n→∞

2

Proof of Lemma 4.2.4. We have

IE

(
K2

1Var
(
H

(
y − Y1

h

) ∣∣X1

))
= IE

(
K2

1IE

((
(H

(
y − Y1

h

))2 ∣∣X1

))
(2.14)

− IE

(
K2

1IE
2

(
H

(
y − Y1

h

) ∣∣X1

))
. (2.15)

Concerning the term 2.14 under assumptions (M6) and (H.4, ii) and by an integration
by parts followed by a change of variable, we get

IE

((
H

(
y − Y1

h

))2 ∣∣X1

)
=

∫
R

(
H
(
h−1
H (y − z)

))2
fX1 (z) dz

= −hH
∫
R

(H (t))2 fX1 (y − thH) dt

= −hH
∫
R

(H (t))2 dFX1 (y − thH)
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IE

((
H

(
y − Y1

h

))2 ∣∣X1

)
=

∫
R

2H(t)H(1)(t)
(
FX1 (y − thH)− F x (y)

)
dt

+

∫
R

2H(t)H(1)(t)F x (y) dt.

Since
∫
R

2H(t)H(1)(t)F x (y) dt = F x (y), as n→∞, we deduce that

IE

(
K2

1IE

((
(H

(
y − Y1

h

))2 ∣∣X1

))
→ IE

(
K2

1

)
F x (y)

and

IE

(
H

(
y − Y1

h

) ∣∣X1

)
− F x (y)→ 0.

So, the term 2.15 tends to (F x (y))2 as n tends to infinity. Then

IE

(
K2

1IE
2

(
H

(
y − Y1

h

) ∣∣X1

))
→ IE

(
K2

1 (F x (y))2) = IE
(
K2

1

)
(F x (y))2

Finally, as n→∞, we have,

IE

(
K2

1Var
(
H

(
y − Y1

h

) ∣∣X1

))
→ IE(K2

1)F x(y)(1− F x(y)).

2

So, Lemma 4.2.3, implies that F̂ x
D → 1. Moreover, Bn(x, y) = op(1) as n→∞ due to

the continuity of F x. Then, we obtain that

F̂ x(y)− F x(y)−Bn(x, y) =
Qn(x, y)

F̂ x
D

(1 + op(1)).

So, it suffices to show that

√
nφx(hK)Qn(x, y)

D−→ N (0, VHK(x, y)) , (2.16)
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where VHK(x, y) is defined by (2.10). For this, notice that on one side, we have√
nφx(hK)Qn(x, y)

=

√
nφx(hK)

nIE(∆1K1)

(
n∑
j=1

∆jKj(Hj − F x(y))− IE

(
n∑
j=1

∆jKj(Hj − F x(y))

))
,

which, combined with (2.12) implies that√
nφx(hK)Qn(x, y)

=
1

nIE(β2
1K1)

n∑
i=1

β2
iKi

√
nφx(hK)IE(β2

1K1)

IE(∆1K1)

n∑
j=1

Kj(Hj − F x(y)),

− 1

nIE(β1K1)

n∑
i=1

βiKi

√
nφx(hK)IE(β1K1)

IE(∆1K1)

n∑
j=1

βjKj(Hj − F x(y)),

− IE

(
1

nIE(β2
1K1)

n∑
i=1

β2
iKi

√
nφx(hK)IE(β2

1K1)

IE(∆1K1)

n∑
j=1

Kj(Hj − F x(y))

)
,

+ IE

(
1

nIE(β1K1)

n∑
i=1

βiKi

√
nφx(hK)IE(β1K1)

IE(∆1K1)

n∑
j=1

βjKj(Hj − F x(y))

)
.

Denote by

T1 =
1

nIE(β2
1K1)

n∑
i=1

β2
iKi , T2 =

√
nφx(hK)IE(β2

1K1)

IE(∆1K1)

n∑
j=1

Kj(Hj − F x(y)),

T3 =
1

nIE(β1K1)

n∑
i=1

βiKi and T4 =

√
nφx(hK)IE(β1K1)

IE(∆1K1)

n∑
j=1

βjKj(Hj − F x(y)).

Then √
nφx(hK)Qn(x, y) = (T1T2 − T3T4 − IE(T1T2 − T3T4))

= (T1T2 − IE(T1T2))− (T3T4 − IE(T3T4)).

Hence, by the Slutsky’s theorem, to show (2.16), it suffices to prove the following two
claims:

T1T2 − IE(T1T2)
D−→ N (0, VHK(x, y)) (2.17)
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T3T4 − IE(T3T4)
P−→ 0, (2.18)

Proof of (2.17). We can write that

T1T2 − IE(T1T2) = (T2 − IE(T2)) + ((T1− 1)T2 − IE((T1 − 1)T2)).

Again by the Slutsky’s Theorem, (2.17), we can deduce the two following intermediate
results,

(T1 − 1)T2 − IE((T1 − 1)T2)
P−→ 0, (2.19)

and

T2 − E(T2)
D−→ N (0, VHK(x, y)). (2.20)

Concerning the proof of (2.19), by applying the Bienaymé-Tchebychev’s inequality,
we obtain for all ε > 0

IP (|(T1 − 1)T2 − IE((T1 − 1)T2)| > ε) 6
IE(|(T1 − 1)T2 − IE((T1 − 1)T2)|)

ε
.

Then, the Cauchy-Schwarz inequality implies that

IE|(T1 − 1)T2 − IE((T1 − 1)T2)| 6 2IE|(T1 − 1)T2| ≤ 2
√
IE((T1 − 1)2)

√
IE(T 2

2 ).

On one side, by using Lemma 4.2.1’s result, we obtain

IE
(
(T1 − 1)2

)
= Var(T1) =

1

n2IE2(β2
1K1)

nVar(β2
1K1)

6
1

n(O(h4
Kφ

2
x(hK)))

IE(β4
1K

2
1) = O

(
1

nφx(hK)

)
,

and on the other side, we obtain

IE
(
(T2)2

)
=

nφx(hK)IE2(β2
1K1)

IE2(∆1K1)
IE

(
n∑
j=1

Kj(Hj − F x(y))

)2

=
n

(n− 1)2O(φx(hK))

(
nO(φx(hK)) + n(n− 1)o(φ2

x(hK))
)

= O(1) + o(nφx(hK)).



4 Asymptotic normality of the nonparametric local linear estimator of
the conditional cumulative distribution 44

Thus,

IE|(T1 − 1)T2 − IE((T1 − 1)T2) 6 2
√
IE ((T1 − 1)2)

√
IE(T 2

2 )

6 2

√
O

(
1

nφx(hK)

)
(O(1) + o(nφx(hK))) = o(1),

which implies that
(T1 − 1)T2 − IE((T1 − 1)T2) = op(1),

then, as n→∞, we get:

IP (| (T1 − 1)T2 − IE((T1 − 1)T2) |> ε) 6
IE(| (T1 − 1)T2 − IE((T1 − 1)T2) |)

ε
→ 0.

Therefore, to prove (2.17), we just need to prove (2.20). For that we denote

Rn = T2 − IE(T2)

=

√
nφx(hK)IE(β2

1K1)

IE(∆1K1)

n∑
j=1

(Kj(Hj − F x(y))− IE(Kj(Hj − F x(y)))

=
n∑
j=1

εnj(x, y),

where,

εnj =

√
nφx(hK)E(β2

1K1)

IE(∆1K1)
[Kj(Hj − F x(y))− IE(Kj(Hj − F x(y))].

By the fact that εnj(x, y) are i.i.d., it follows that

Var(Rn(x, y)) = nVar(εn1(x, y)).

Thus,

Var(Rn(x, y)) (2.21)

=
n2φx(hK)E2(β2

1K1)

IE2(∆1K1)
[IE
(
(H1 − F x(y))2K2

1

)
− IE ((H1 − F x(y))K1)2].
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Concerning the second term on the right hand side of (2.21), we have

(IE ((H1 − F x(y))K1))2 =
(
IE
(
IE(H1 − F x(y))K1

∣∣X1

))2

=
(
IE
(
K1IE((H1

∣∣X1)− F x(y))
))2

,

where,

IE((H1

∣∣X1)− F x(y))→ 0 as n→∞. (2.22)

Now, let us return to the first term of the right hand side of (2.21). We have

n2φx(hK)IE2(β2
1K1)

IE2(∆1K1)
(IE
(
(H1 − F x(y))2K2

1

)
=

n2φx(hK)IE2(β2
1K1)

E2(∆1K1)

(
IE
(
IE((H1 − F x(y))2

∣∣X1

)
K2

1

)
=

n2φx(hK)IE2(β2
1K1)

IE2(∆1K1)
IE
(
Var(H1

∣∣X1)K2
1

)
+

n2φx(hK)IE2(β2
1K1)

IE2(∆1K1)

(
IE
(
IE((H1

∣∣X1)− F x(y))
)2
K2

1

)
.

By using (2.22), we have

n2φx(hK)IE2(β2
1K1)

IE2(∆1K1)

(
IE
(
IE((H1

∣∣X1)− F x(y))
)2
K2

1

)
−→
n→∞

0.

Combining Lemma 4.2.1 with Lemma 4.2.4, we obtain,

IE
(
Var(H1

∣∣X1)K2
1

)
−→
n→∞

IE(K2
1)F x(y)(1− F x(y)) = M2F

x(y)(1− F x(y))φx(hK).

Therefore, by using Lemma 4.2.1’s result, equation (2.21) becomes

Var(Rn(x, y)) =
n2φx(hK)(N(1, 2)h2

Kφx(hK))2

((n− 1)N(1, 2)M1h2
Kφ

2
x(hK))

2M2F
x(y)(1− F x(y))φx(hK)

=
n2M2

(n− 1)2M2
1

F x(y)(1− F x(y))

−→
n→∞

M2

M2
1

F x(y)(1− F x(y)) = VHK(x, y).
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Now, in order to end the proof of (2.17), we focus on the central limit theorem. So,

the proof of (2.17) is completed if the Lindeberg’s condition is verified. In fact, the
Lindeberg’s condition holds since,

1

V ar(Rn(x, y))

n∑
j=1

IE
(
ε2
nj11(|εnj |>η

√
V ar(Rn(x,y)))

)
→ 0, for all η > 0

where 11 is the indicator function. Indeed, since |εnj| ≤ C(nφx(hK))−1/2 and

Var(Rn(x, y)) = nVar(εn1(x, y)),

we have

1

V ar(Rn(x, y))

n∑
j=1

IE
(
ε2
nj11(|εnj |>η

√
V ar(Rn(x,y)))

)
≤ Cx,hK

n∑
i=1

P
(
|εnj| > η

√
V ar(Rn(x, y))

)
.

On the other hand, we have

|εnj|√
V ar(Rn(x, y))

≤ C

(V ar(Rn(x, y))nφx(hK))1/2
→ 0, for n→∞.

So, for all η and if n is large enough, then P
(
|εnj| > η

√
V ar(Rn(x, y))

)
= 0.

Proof of (2.18). To use same arguments as those invoked to prove (2.17), let us write

T3T4 − IE(T3T4) = (T4 − IE(T4)) + ((T3 − 1)T4 − IE((T3 − 1)T4)).

By applying the Bienaymé-Tchebychev’s inequality we obtain, for all ε > 0

IP (| T3T4 − IE(T3T4) |> ε) ≤ IE(| T3T4 − IE(T3T4) |)
ε

,

and the Cauchy-Schwarz’s inequality implies that

IE|(T3 − 1)T4 − IE((T3 − 1)T4)| ≤ 2IE | (T3 − 1)T4 |≤ 2
√
IE ((T3 − 1)2)

√
IE(T 2

4 ).

By the same arguments, and by using Lemma 4.2.1’s result, we get
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IE((T3 − 1)2) = Var(T3) =
n

n2IE2(β1K1)
Var(β1K1)

6
1

n(O(h2
Kφ

2
x(hK)))

IE(β2
1K

2
1) = O

(
1

nφx(hK)

)
.

On the other hand

IE(T 2
4 ) =

nφx(hK)IE2(β1K1)

E2(∆1K1)
IE

(
n∑
j=1

βjKj(Hj − F x(y))

)2

=
nφx(hK)O(h2

Kφ
2
x(hK))

(n− 1)2O(h4
Kφ

4
x(hK)

[
nIE(β1K1(H1 − F x(y)))2

+ n(n− 1)IE2(β1K1(H1 − F x(y)))
]

= o(1) + o (nφx(hK)) .

Thus,

IE|(T3 − 1)T4 − IE((T3 − 1)T4) | 6 2
√
IE((T3 − 1)2)

√
IE(T 2

4 ) = o(1),

which implies that (T3 − 1)T4 − IE((T3 − 1)T4) = op(1). Therefore,

IP (| T3T4 − IE(T3T4) |> ε) 6
IE(| T3T4 − IE(T3T4)) |)

ε
→ 0 as n→∞.

So, to prove (2.18), it suffices to show that T4 − IE(T4) = op(1), while

IE (T4 − IE(T4))2 = Var(T4) =
n2φx(hK)IE2(β1K1)

IE2(∆1K1)
Var(β1K1(H1 − F x(y))).

We arrive finally at

Var(β1K1(H1 − F x(y))) = F x(y)(1− F x(y))IE(β2
1K

2
1).

This last result together with Lemma 4.2.1 lead directly to

IE (T4 − IE(T4))2 =
n2φx(hK)IE2(β1K1)

E2(∆1K1)
(F x(y)(1− F x(y)))IE(β2

1K
2
1)

= (F x(y)(1− F x(y)))o(1),

which brings us to the end of the proof.

2



Chapter 3

Application on simulated and real
data

1 Simulation

Our main goal of this application is to display the usefulness of the conditional
mode in a prediction context. More precisely, we illustrate the performance and the
superiority of our estimator by using the criteria of the mean square error (MSE).
For this aim , we make comparison with the following two prediction models:

The conditional mode, via the local constant estimation method (classical kernel

method) is defined by:

µ(x) = sup
y∈S

fx(y),

where

f̂xL.C.E(y) =

h−1
H

n∑
i=1

K(h−1
K d(x,Xi))H

(1)(h−1
H (Yi − y))

n∑
i=1

K(h−1
K d(x,Xi))

. (3.1)

The conditional mode via the local linear estimation method is defined by:
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µ(x) = arg max
y

h−1
H

n∑
i,i 6=j,j=1

WijH
(1)
j

n∑
i,i 6=j,j=1

Wij

.

Next, we generated the functional covarite X on the interval [0, π] (see figure 3.1 ) by
the following process:

Xi(τ) = 3 cos(Wiπτ), for i = 1, 2, . . . , 100.

where Wi are independent and identically distributed and following the uniform dis-
tribution on the interval [1, π/2] (Wi ∼ U([1, π/2])).

0.0 0.5 1.0 1.5 2.0 2.5 3.0
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Figure 3.1: The curves Xi(τj), τj ∈ [0, π], for i = 1, . . . , 100.

To illustrate the performance of our estimator, we proceed the following algorithm

• Step 1. We generate the response variables Yi by

Yi = r(Xi) + εi, where r(x) =

∫ π

0

3

ln(X2
i (τ) + 2)

dτ,

and εi simulate independently and follow the normal distribution N(0, 1)
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• Step 2. We divide our observations into two subsets:

– (Xi, Yi)i=1,..,80, training sample.

– (Xj, Yj)j=81,..,100, test sample.

• Step 3. We choose θ the first eigenfunction corresponding to the first higher
eigenvalue of the empirical covariance operator by using the same idea as At-
taoui, S. and Ling, N [2] and we select θ as follows:

– We compute the covariance operator by using the empirical covariance
operator in the sample Λ = {1, . . . , 100} and |Λ| = 100.

1

|Λ|
∑
i∈Λ

(Xi(τ)−X(τ))t(Xi(τ)−X(τ)), (3.2)

where

X(τ) =
1

|Λ|
∑
i∈Λ

Xi(τ).

– We compute the eigenvectors of (3.2) (empirical covariance operator).

The obtained results are shown in the following graphs, such that:
The covariance operator for Λ = {1, . . . , 100} gives the discretization of the

eigenfunctions θi(τ) (The eigenfunction is presented by a continuous curve).

The three eigenfunction θ1(τ), θ2(τ) and θ3(τ), are represented in Figure (3.2),

ten and all the eigenfunctions are displayed in Figure (3.3) and (3.4)
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Figure 3.2: The curves θi(τj), τj ∈ [0, π], for i = 1, 2, 3.
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Figure 3.3: The curves θi(τj), τj ∈ [0, π], for i = 1, 2 . . . , 10.
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Figure 3.4: The curves θi(τj), τj ∈ [0, π], for i = 1, . . . , 100.

• Step 4. Due to the nature of the data (the shape of the curves (3.1), we chose
the following family of locating functions:

β(x1, x2) =

∫ 1

0

θ(τ)(x1(τ)− x2(τ))dτ,

and

δ(x1, x2) =

√∫ 1

0

(x1(τ)− x2(τ))2dτ ,

• Step 5. We choose a quadratic kernel K on [−1, 1] and take K = H(1), where
the bandwidths hK and hH are automatically selected by the procedure of the
cross validation

• Step 6. For each j in the test sample, we compute Ŷj = µ̂(Xj) by using the two

approach (L.C.E) and (LLE)
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• Step 7. We present our results by plotting the boxplot of the prediction error,
which are represented in (Figure 3.5) and we compute the empirical mean square

error with LLE (resp. L.C.E):

– MSE=
1

20

20∑
i=1

(Yi − µ̂Xi
LLE(Yi))

2 = 1, 932

– MSE =
1

20

20∑
i=1

(Yi − µ̂Xi
LCE(Yi))

2 = 2, 483
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Figure 3.5: Comparison of the prediction error



1 Simulation 54

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

0 1 2 3 4

0.
5

1.
5

2.
5

NPFDA Cond. Mode(LLE): MSE=1.932

Responses of testing sample

P
re

di
ct

ed
 r

es
po

ns
es

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 1 2 3 4

0.
5

1.
5

2.
5

NPFDA Cond. Mode(L.C.E): MSE=2.483

Responses of testing sample

P
re

di
ct

ed
 r

es
po

ns
es

Figure 3.6: Comparison results between the local linear estimator and the classical
estimator (LCE)

Based on the figure (3.6), the mean quadratic error presented by the LLE is much

improved than the classical estimator (NWE). This is confirmed by the mean squared

error MSE(NWE)=2,483 whereas MSE(LLE)=1,932 , which confirms that the pro-
posed method also has a practical advantage.
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2 Real data application

In many situations, forecasting via predictive regions is much more adequate than
point forecasting. On this subject, the existing results in this manuscript should be
used to fit a predictive region and/or interval widely known in NPFDA. At this
point, we have constructed predictive interval by using the shortest conditional modal
interval. This notion was proposed by Lientz [25] for the case of an unconditional

distribution. The conditional case was approached by Gooijer and Gannoun [17] In
our work, this concept is given via the conditional distribution function on the interval

[a− b] = argmin{ Leb[a− b], FXn(b)− FXn(a) ≥ α},

where Leb(C) denotes the Lebesgue measure of the set C. the SCM interval is the
smallest interval among all predictive intervals with coverage probability α. The prac-
tical determination of this interval is based on the estimation of the conditional dis-
tribution function:

[a− b] = argmin{ Leb[a− b], F̂Xn(b)− F̂Xn(a) ≥ α}. (3.3)

We apply our approach to the forage quality data. In practice, the analysis of this
kind of data is very important for the food industry. In fact, it intervenes in many
food products such as milk quality, dairy products, meat quality, . . . . Notice that,
there are three fundamental parameters in the study of the forage quality that are
(i) the concentration of crude protein (CP), (ii) the acid detergent fiber (ADF) and

(iii) the neutral detergent fiber (NDF). The classical analytical procedures are time-
consuming and very expensive. That is why we propose a new approach based on
the functional local linear approach. More Precisely, we use the conditional mode to
predict the level of the concentration of crude protein (CP) given the spectrometric
curves of the sheepgrass hay. Moreover, we use the conditional distribution function
and the conditional density to construct a predictive region of this parameter. Notice
that data are collected from sheepgrass fields of the hay factories in Heilongjiang
Province of Northeast China. We refer to Chen et al. [11], for a complete description
of this data-set. We consider a sample of size 150 and the near-infrared spectra were
recorded at 5 nm intervals from 950 to 1650 nm. These functional curves are plotted
in Fig. 3.7.
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Figure 3.7: Near-infrared spectra curves

In order to highlight our model, we compare the local linear approach method to
the kernel method in the prediction by the conditional mode function, while for the
second method we propose the predictive region which is defined in the formula 3.3.
For a practical purpose, we randomly split our data into two subsets. The first sample,
of size n = 130, will be used to calculate our estimators on the 20 remaining curves.
The estimators are computed by using the B-spline semi-metric of the first derivative
and the bandwidths parameters are selected by the local cross-validation technique on
the number of nearest neighbors. On the other hand, we consider the quadratic kernel

K(x) = 0.75(1−x2)if x ∈ [−1, 1], which is supported within [−1, 1], and the function
H is chosen as the primitive of the kernel K. Then, the single-point prediction results
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are presented in Fig. 3.8.
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Figure 3.8: Predicted values (y-axis) versus Test values (x-axis) results: local linear
method (left plot) and the kernel smoothing approach (right plot)

The comparison of both scatterplots indicates that the local linear approach (on the

left plot) gives better prediction results than the classical kernel method (on the right

plot). This is confirmed by the mean squared error which is equal 0.27 versus 0.46. On

the other hand, we give in Table 3.1 the 90% predictive intervals of the concentrations
of crude protein of the 10 values in the sample test.
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The true value [a – b ]
7.26 [7.42 8.56]
7.33 [6.91 8.23]
7.58 [7.02 8.36]
7.47 [7.36 8.55]
15.27 [13.98 17.34]
12.75 [11.02 12.56]
10.15 [9.71 11.16]
10.71 [10.76 11.03]
11.38 [10.85 13.82]
12.83 [11.99 13.51]

Table 3.1: The 90% predictive intervals

We observe that the results of the SCMI predictive intervals are very satisfactory in
regards the average mean length (M.L) which is M.L = 1,61 and the percentage of

the true values in the predictive intervals which is 70%.



Conclusion

In this work, we were interested in the non-parametric estimation, by the local
linear method, and we set as objective the conditional distribution function, when
the explanatory variable is functional and the response is real.
The main results we obtained are the following: First, we built a local linear estima-

tor of the conditional distribution function, then we established its almost complete
convergence by specifying its rate of convergence, when the observations are indepen-
dent identically distributed. We also established the asymptotic normality of the same
estimator by giving an implicit expression of the terms of bias and its the variance.

The advantage of this approach is the its superiority over the kernel method, in
the bias part, is always preserved even in functional statistics. Moreover, the classical
kernel method is reduced to a particular case of this method.
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