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General Introduction

R egression function estimation is the most important tool for addressing nonparametric
prediction problems. However, it is well known that the nonparametric estimation of the

regression function is highly sensitive to the presence of even a small proportion of outliers
in the data. Outliers are understood to be observations that have been corrupted, incorrectly
measured, mis-recorded, drawn under different conditions than those intended, or so atypical
as to require separate modeling. Robust regression was introduced to solve this kind of problem.

The literature on the nonparametric robust estimation method is quite important in the
statistical literature when the variable of interest is completely observed. One can refer, among
others, to Huber (1964)[33] and Härdle (1984)[30] for the independent and identically dis-
tributed (i.i.d.) case, Collomb and Härdle (1986)[17] and Boente and Fraiman (1989)[8] for
mixing processes. Azzedine et al. (2008)[5] established the almost complete convergence rate
of the kernel-type estimator in the i.i.d. case while Cai and Roussas (1992)[11] studied its
asymptotic properties under an α-mixing assumption. Crambes et al. (2008)[19] studied the
same problem for a functional covariate. They established the exact asymptotic expression
of the convergence rate in Lp norm. However, in many practical situation such as in medical
follow-up or in engineering life-test study, the variable of interest may not be completely ob-
servable. This case occur when dealing with censored data. For example, in the clinical trials
domain, it frequently happens that patients from the same hospital have correlated survival
times due to unmeasured variables such as the quality of hospital equipment.

The regression model in presence of censored data has been studied by several authors. Cox
(1972)[18] considered the linear regression model and estimated the slope via the proportional
hazard model. In the general linear case, many approaches have been used, see for instance
Koul et al. (1981)[40] and Koul and Stute (1998)[41]. Ren and Gu (1997)[50] proposed a type
of M -estimators for the linear regression model with random design when the response obser-
vations are doubly censored. For the nonlinear regression model, Beran (1981)[6] introduced
a class of nonparametric estimators for the conditional survival function in the presence of
right-censoring. He proved some consistency results of these estimates, his work has extended
by Dabrowska, D.M. (1987, 1989)[20][21]. Jin (2007)[36] constructed M -estimators for the re-
gression parameters in semi-parametric linear models for censored data and established the
asymptotic normality.

Notice that, the estimator of the conditional survival function could be used in order to get
a consistent estimate of the regression function m(·) in the presence of censored data. How-
ever, the computations may be difficult practically. To overcome this drawback, Carbonez el
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General Introduction 8

al. (1995)[13] introduced a general nonparametric partitioning estimate of m(·) and proved its
strong consistency. Kohler et al. (2002)[39] gave a simpler proof for kernel, nearest neighbor,
least squares and penalized least squares estimates.

In all papers mentioned above when dealing with dependent data the condition of α-mixing
is assumed to be fulfilled. A large class of processes satisfy this condition. Therefore, many
processes fail to satisfy these conditions. However, there are still a great number of models
where such assumption does not hold. For example, in some cases the first order linear autore-
gressive process in discrete time is not strongly mixing. In particular, the stationary process
(Xt)t∈Z checking the model AR (1) defined by Xt = θXt−1 + εt, where the (εt)t∈Z is an inno-
vation sequence of Bernoulli i.i.d, is not strongly mixing. However, ergodicity is conserved by
taking measurable functions from an ergodic process. As the autoregressive process, above, can
be represented as a linear function of the εt, it follows then that it is also ergodic. It is then
necessary to consider a general larger dependency framework as is the ergodicity.

Recently Laïb and Louani (2011)[44] studied (in the case of complete data) the asymptotic
properties of the regression function using functional stationary ergodic data. In the case of
right censored response, Chaouch and Khardani (2015)[16] considered the conditional quantile
estimation based on functional stationary ergodic data.

In this work, we present a study on the kernel smoothing estimation of the Robust regression
function for right censored and stationary ergodic data, by developing the article of M.Chaouch
et al (2016)[14].

This master memory falls into four chapters.

In chapter 1, we give some background and some concepts, nonparametric regression, ro-
bust nonparametric analysis, ergodic theory, we recall the preliminaries on survival models.
We introduce the main functions in survival analysis: survival function, survival rate and the
different forms of the risk rate etc. we also give the different models and types of censoring.

In chapter 2, we focus on the robust regression in the case where the explanatory variable
is functional and the observations are completely observed. The main objective is to prove
the almost complete convergence (with rate) and the asymptotic normality for the proposed
estimator. This result is obtained under an ergodic stationary process assumption, without the
aid of mixing conditions traditional.

In chapter 3, we consider a robust regression estimator when the interest random variable
is subject to random right-censoring and assumed to be sampled from a stationary and ergodic
process. The strong consistency (with rate) and the asymptotic distribution of the estimator
are established under mild assumptions. Moreover, a usable confidence interval is provided
which does not depend on any unknown quantity. Our results hold without assuming any type
of mixing conditions and the existence of marginal and conditional densities. To prove our
results we use only the martingale differences idea combined with the ergodic theory, then we
avoid any additional condition on the structure of the process under study as is in the case of
α-mixing one.
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In chapter 4, we present numerical simulations illustrating the performance of robust esti-
mator.



Chapter 1

Introduction and preliminaries

In this chapter we introduce some basic notions, nonparametric regression, robust nonpara-
metric analysis, ergodic and incomplete data, which will be useful later.

1.1 Nonparametric regression
Nonparametric regression functions have been widely used in recent decades, not just in

statistics, but in different fields such as medicine, signal processing, economics and biology ...
The regression function is a general function that characterizes the relationship between two
variables. For example, we want to know if reducing speed reduces the number of accidents on
the road, does increasing study hours allow to improve the student’s average, etc. The latter
represents one of the first quantities that a practitioner can study when interested in explaining
a variable through another. We can see this problem as follows: We have two real random
variables (v.a.) Y (variable of interest / response) and X (explanatory variable / co-variable)
linked by the following relation:

Y = m(X) + ε.

Such that ε is a random variable independent of X.
When we want to describe the influence of a quantitative variable on an event, or the link

between an explanatory variable X and a variable called response variable Y , Having observed
X, the mean value of Y is given by a regression function:it is this function that us inform about
the type of dependence there is between these two variables. This regression function is defined
for all X ∈ R by:

m(x) = E(Y | X = x). (1.1)

Which is the mean of the conditional distribution of Y given X = x.
Note that, the main advantage of nonparametric regression is that it does not assume any

specific shape for the estimator, which gives it more flexibility in practice. However, one of
the main drawback of classical regression is that the estimation of the regression function is
sensitive to outliers, and may be insufficient in some cases, such as when the distribution is
asymmetric or multimodal. Thus we must seek alternative approaches that are sufficiently
insensitive to the effects of outliers.

1.2 Robust nonparametric analysis
The robustness of a usual statistical procedure (estimation, test) is of the utmost significance

in statistics. It allows to control the stability of this procedure with respect to the deviation
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1.3 Ergodic 11

of the model and/or observations. It should be noted that this problem was the subject of a
long debate at the end of the 19th century, several scientists already had a relatively clear idea
of this notion of robustness. In fact, the first mathematical work on robust estimation seems
to date back to 1818 with Laplace’s work in his second supplement to the analytical theory of
probability. More exactly, the term "robust" was introduced in 1954 by G. E. P. Box[10]. But
this concept was not recognized as a field of research until the mid-1960s. It is especially with
the work of Huber P.J. (1964)[33], Hampel F.R. (1971)[28] that a coherent theory of robust
statistics was developed based on min-max criteria and uses essentially convexity arguments.
From another point of view other authors Huber (1973 and 1981)[34][35], Andrews (1974)[4],
Krasker and Welsh (1982)[42], have developed robust automatic adjustment methods, which
have the advantage of being as effective as the least squares method when there are no outliers,
but more effective in the presence of atypical observations or when the error distribution in the
model follows a long-tailed distribution.

The robust estimation of the regression function is a topic of great interest in nonparametric
statistics. This is an area in which the first consequent results were established in the early
sixties by Huber (1964)[33], of which he obtained the consistency and asymptotic normality
of a class of estimators for this function. Robinson (1984)[51], Hardle (1984)[30] and Hardle
and Tsybakov (1989)[31] established under mixing conditions the asymptotic normality of a
weighted family of estimators derived from the kernel method for the regression function. At
the same time, Boente and Fraiman (1989, 1990)[8][9] used the Robinson estimator (1984)[51] to
simultaneously study the two position and scale parameters. The consistency of the constructed
estimators is obtained under general conditions and in the two independent and strongly mixing
cases. The uniform convergence of the robust regression estimator was obtained by Collomb
and Hardle (1986)[17] by considering mixed φ observations. An alternative method of robust
estimation of the regression function was proposed by Fan and al.(1994)[22]. This method makes
it possible to encompass several nonparametric models and robustify classical regression. Laïb
and Ould-Saïd (2000)[45] adapted the estimator of Collomb and Hardle (1986)[17] for the model
of autoregression of a stationary ergodic process. They obtained the uniform convergence of
this estimator even when the objective function is unbounded. Cai and Ould-Saïd (2003)[12]
used a robust version of the local polynomial method estimation for the regression function.
They demonstrated under standard conditions and when the observations are alpha mixing,
the asymptotic normality and the almost sure convergence of these estimators. This paper also
provides root mean square convergence result as well as the smoothing parameter optimizing
this error. Recently, Ghement and al. (2008)[26] introduce a family of robust M -estimators for
the dispersion parameter of which they have shown the consistency and asymptotic normality.
A criterion for quantifying robustness is also proposed in this work.

1.3 Ergodic
The term "ergodic" comes from the Greek words (ergon, odos) which mean (work, path),

Ludwing Boltzmann choose it while he was working on a problem in statistical mechanics. The
branch of mathematics that studies ergodic systems is known as ergodic theory. The later is a
fundamental hypothesis of statistical physics. more precisely, it has experienced a development
in the use of dynamic systems, chaos theory as well in signal processing. Researchers as Birkhoff
and Von Neumann (1931) were interested in this theory and developed two of the main theorems
on this subject. We refer to Krengel’s book (1985)[43] for a series of results on ergodic theory.
And since then, ergodic theory has occupied a place in different branches of mathematics such
as functional analysis and group theory, calculates probabilities and more precisely Markovian
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processes, estimation theory... .
For the sake of clarity, we introduce some details defining the ergodic property of processes

and its link with the mixing one. Let {Xn, n ∈ Z} be a stationary sequence. Consider the
backward field Bn = σ (Xk; k ≤ n) and the forward field Hm = σ (Xk; k ≥ m) . The sequence
{Xi, i = 1, 2, . . .} is strongly mixing if

sup
A∈B0,B∈Hn

|P(A ∩B)− P(A)P(B)| = α(n)→ 0 as n→∞.

The sequence is ergodic if

lim
n→∞

1

n

n−1∑
k=0

∣∣P (A ∩ τ−kB)− P(A)P(B)
∣∣ = 0,

where τ is the time-evolution or shift transformation. The naming of strong mixing in the
above definition is a more stringent than what is ordinarily referred as strong mixing, namely
to that lim

n→∞
P
(
A ∩ τ−nB

)
= P(A)P(B) for any two measurable sets A, B. Hence, strong mixing

implies ergodicity. However, the converse is not true: there exist ergodic sequences which are
not strong mixing. The ergodicity condition is then a condition which is lower than any type
of mixing for which usual nonparametric estimators (density, regression, ...) are convergent.
It seems to be a condition of obtaining law of large numbers, we are interested in the ergodic
theorem, for a stationary ergodic process X.

Theorem 1.3.1. [43](Ergodic theorem) If X = (Xt)t∈Z is a stationary ergodic process and
if X1 is integrable, we have

lim
n→∞

1

n

n∑
i=1

Xi = E (X1) , almost surely (a.s.)

1.4 Incomplete data (Censored data)
One of the characteristics of survival data is the existence of incomplete observations. For

instance, in epidemiological surveys, data is often collected incompletely. Censoring is part of
a process that generates this type of data. It must be taken into account when writing the
likelihood. We will talk about censored data when the survival time is only known when it is
limited by a limited observation time.

1.4.1 Survival Analysis

Survival analysis involves the modeling of time to event data. The time to event data shows
the time span from well defined time origin till the well defined end point of interest (event).
For instance, in study of a particular type of cancer, the time point of diagnosis of that type
of cancer is chosen to be time origin and the death due to that particular cancer would be
the end point. Or a study might follow people from birth (time origin) until the occurrence of
a disease(end point). Survival analysis is a very active research field for several decades. An
important contribution that stimulated the entire field was the counting process formulation
given by Aalen (1975)[1]. The flexibility of a counting process is that it allows modeling
multiple (or recurrent) events. Since then a large number of fine text books have been written
on survival analysis and counting processes, with some key references being Andersen et al.
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(1993)[3], Fleming and Harrington (1991)[25], Kalbfleisch and Prentice (2002)[38], and Lawless
(2003)[48].

In survival analysis, a data set can be exact or censored, and it may also be truncated.
Exact data, also known as uncensored data, occurs when the precise time until the event of
interest is known. Censored data arises when a subject’s time until the event of interest is
known only to occur in a certain period of time. For example, if an individual drops out of a
clinical trial before the event of interest has occurred, then that individual’s time-to-event is
right censored at the time point at which the individual left the trial. The time until an event
of interest is truncated if the event time occurs within a period of time that is outside of the
observed time period.

1.4.2 Functions of Survival Times

For purposes of survival analysis, the functions of time are usually defined. They are sur-
vival function, density function, hazard function and cumulative hazard function from which
survival and hazard functions are of particular interest. In traditionally established statistical
models, density and cumulative distributions are used but due to the incomplete observations
in survival data(censored and truncated data) these standard functions are not appropriate. So
survival and hazard functions are considered more suitable.

The distribution of the random variable T can be described in a number of equivalent ways.
There is of course the usual (cumulative) distribution function

F (t) = P[T ≤ t], t ≥ 0,

which is right continuous, i.e., lim
u→t+

F (u) = F (t). When T is a survival time. If T is a continuous

random variable, then it has a density function f(t), which is related to F (t) through following
equations

f(t) =
dF (t)

dt
, F (t) =

∫ ∞
0

f(u)du, t > 0,

if the distribution function has a derivative at point t then

f(t) = lim
dt→0

P(t ≤ T < t+ dt)

dt
= F ′(t) = −S ′(t).

In biomedical applications, it is often common to use the survival function

S(t) = P[T > t] = 1− F (t).

The survival function S(t) is a non-increasing function overtime taking on the value 1 at t = 0,
i.e., S(0) = 1. For a proper random variable T , S(∞) = 0.
The hazard rate is a useful way of describing the distribution of "time to event" because it has
a natural interpretation that relates to the aging of a population. We motivate the definition of
hazard rate by first defining the mortality rate, which is a discrete version of the hazard rate.
The hazard rate λ(t) is the limit of the mortality rate if the interval of time is taken to be small
(rather than one unit). The hazard rate is the instantaneous rate of failure at time t given that
an individual is alive at time t. Specifically, λ(t) is defined by the following equation

λ(t) = lim
h→0

P|t ≤ T < t+ h|T ≥ t]

h
.
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This can be expressed as

λ(t) =
lim
h→0

P[t < T < t+ h]

h
P[T ≥ t]

=
f(t)

S(t)
= −S

′(t)

S(t)
= −d log(S(t))

dt
.

From this, we can integrate both sides to get

H(t) =

∫ t

0

λ(u)du = − log(S(t)),

where H(t) is referred to as the cumulative hazard function. Here we used the fact that
S(0) = 1. Hence,

S(t) = exp(−H(t)) = exp

(
−
∫ t

0

λ(u)du

)
.

The expected life time and its variance are given by:

E[T ] =

∫ ∞
0

S(t)dt,

Var(T ) = 2

∫ ∞
0

tS(t)dt− {E(T )}2.

Example1: Exponential distribution
Suppose that T ∼ E(γ) with γ > 0

F (t) = 1− exp(−γt)
S(t) = exp(−γt)
f(t) = γ exp(−γt)
h(t) = γ

Example2: the Weibull distribution
Suppose that T ∼ W(γ, α):

F (t) = 1− exp (−γtα)
S(t) = exp (−γtα)
f(t) = γαtα−1 exp (−γtα)
h(t) = γαtα−1

1.4.3 Censoring

Apart from survival analysis censoring may arise in other applications, whereby not all sur-
vival data hold censored observations. However, this is one such topic that unites a lot of
applications to survival analysis because censored survival data are so common and censoring
needs special treatment. Censoring has many forms the most important is right censoring, Left
Censoring and Interval Censoring, and there are different causes of occurrence of censoring.
The most common form of censoring is right censoring.

IRight Censoring
In survival data T is the time from start of observation until an event happens and some

cases become right censored as observation breaks off before the event arise. Accordingly, if T
is said to be the event as person’s age at death(in years), the event is right censored at age
50 if you may only know that T > 50. This concept is also not confined to event times only.
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The income is right censored at 75,000$, if the only thing you know is that a person’s income
is more then 75,000$ per year.

IThe types of right censoring
For individual i, consider that
- his survival time Xi

- his censoring time Ci
- the actual duration observed Ti

1. Type I censoring
Let C be a fixed value, instead of observing the variables X1, · · · , Xn which interests us,

we observe Xi only when Xi ≤ C, otherwise we only know that Xi > C, we use the following
notation:

Ti = Xi ∧ C = min (Xi, C) .

This censoring mechanism is frequently encountered in industrial applications.

2. Type II censoring
It is present when it is decided to observe the survival times of n patients until k of them

have died and to stop the study at that time. Let Xi and Ti the order statistics of the variables
Xi and Ti The date of censorship is therefore Xk and we observe the following variables

T1 = X1
...

Tk = Xk

Tk+1 = Xk
...

Tn = Xk.

3. Type III censoring(or type I random censoring)
Let C1, · · · , Cn be random variables i.i.d. We observe the variables Ti = Xi ∧ Ci. The

available information can be summarized by:
- the actual duration observed Ti
- let δi denote the indicator.

δi =

{
1 if the event is observed (Ti = Xi) ,
0 if the individual is censored (Ti = Ci) .

For example, in a follow-up study, the censoring occurs due to the end of the study, loss to
follow-up, or early withdrawals.
Reasons for censoring :
- patients decide to move to another hospital
- patients quit treatment because of side-effects of a drug
- failures occur after the end of study
- etc.

Example. Figure (1.1) shows data from a study in which all the persons go through heart
surgery at time 0 and followed up to 3 years. The horizontal axis shows time in years after
surgery and horizontal lines tagged A to E represents different person. The vertical line at 3 is
the point at which we stop following the patients. An X specify that death occurred at that
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point in time. Deaths occurred at point 3 or before time 3 is observed and hence are uncensored
but on the other hand, deaths occurring after time point 3 are not observed thus are censored
at time 3. Consequently, A,C and D are uncensored, while B and E are right-censored.

Figure 1.1: Image showing right censoring

ILeft Censoring
Left censoring occur when we only know that T is less than some value. This concept is not

only applicable for event time but any kind of variables. For survival data left censoring most
probably occur when some of the individuals may have already experienced the event when
observing a sample at a time is just started.

IInterval Censoring
Interval censoring is more common then left censoring. Both left censoring and right cen-

soring together makes interval censoring. When you only know about variable T is a < T < b
for some values of a and b then T is interval censored. Interval censoring arise in survival data
when the observations are made at specific time points and retroactive information on the exact
timing of event cannot be achieved.

1.4.4 Kaplan-Meier Estimator

In the absence of censoring, the distribution function F is estimated very simply using the
usual empirical distribution function. For example F (t) = P(T ≤ t) is estimated by:

F̂emp(t) =
1

n

∑
1≤i≤n

1{Ti≤t}.

Unfortunately in case the data is censored, it is impossible to use the empirical function since it
involves unobserved quantities, because all the censored Yi are not observed. It is then generally
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estimated that F using the Kaplan and Meier (1958) estimator. The latter is the bottom tool
in statistics for non parametric estimating the distribution of a right-censored v.a. T .

The Kaplan-Meier (K-M) estimator is the most widely used duration model in practice. It
intervenes in all applications that require time modeling.
Note by: F (t) = P(T > t), G(t) = P(C > t) et H(t) = P(Y > t) = F (t)G(t). The idea of this
model is as follows: to survive after time t is to be alive just before t and not to die at time t,
i.e. if t2 < t1 < t, using compound probabilities, we have:

F (t) = P(T > t)

= P (T > t1, T > t)

= P (T > t | T > t1)× P (T > t1)

= P (T > t | T > t1)× P (T > t1 | T > t2)× P (T > t2) ,

and so on. Considering for i = 1, · · · , n only the dates when the event of interest occurs (death
or censoring), we estimate quantities of the type:

pi = P
(
T > Y(i) | T > Y(i−1)

)
,

where pi is the probability of surviving in the interval ]Y(i−1), Y(i)] knowing that we were alive
in Y(i−1). Consider the following notations: ri the number of individuals at risk to undergo the
event just before time Y(i) and di the number of death in Y(i). We denote by qi = 1 − pi the
probability of dying during the interval ]Y(i−1), Y(i)] knowing that we were alive at the beginning
of this interval. so qi can be estimated by:

q̂i =
di
ri
.

As event times are assumed to be distinct, we have: di = 0 in case of censoring in Y(i), i.e. when
δi = 0 and di = 1 in the event of death in Y(i), i.e. when δi = 1. It is clear that ri = n− i+ 1,
we then obtain:

p̂i =

{
1− 1

n−i+1
si δi = 1,

1 si δi = 0.

Hence, we finally arrive at the estimator of K-M of the survival function of our duration of
interest T given by:

Ŝ(t) = F n(t) =


∏
Y(i)≤t

(
1− 1

n− i+ 1

)δ(i)
si t < Y(n),

0 si t ≥ Y(n).

See that the censoring situation of T by C is symmetrical to the censoring of C by T , we can
define the estimator of K-M of the survival function of the censoring variable G(·) by replacing
δ(i) by 1− δ(i) which gives:

Gn(t) =


∏
Y(i)≤t

(
1− 1

n− i+ 1

)1−δ(i)
si t < Y(n),

0 si t ≥ Y(n).

Where Y(1), · · · , Y(n) are the ordered values of Yi and δ(i) is the concomitant uncensored indicator
to the Y(i).
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Remark 1.4.1. The Kaplan-Meier (1958) estimator (KM), also called the product limit esti-
mator, is defined as

Gn(t) =


∏

1≤i≤n

(
1−

1− δ(i)

n− i+ 1

)1{Y(i)≤t}
si t < Y(n),

0 si t ≥ Y(n).

(1.2)

Example. Figure (1.2) illustrates the survival function drawn by taking a hypothetical
data of group of patients entered in clinical trial receiving anti-retroviral therapy for HIV in-
fection. The data shows the time of event i.e death, occured among the patients that is:
6, 12, 21, 27, 32, 39, 43, 43, 46+, 89, 115+, 139+, 181+, 211+, 217+, 261, 263, 270, 295+, 311, 335+, 346+,
365+(+ means right censored observation).

ti di ri di/ri 1− di/ri ŜKM
6 1 23 0.043 0.957 0.957
12 1 23 0.45 0.955 0.913
21 1 21 0.048 0.952 0.869
27 1 20 0.05 0.95 0.825
32 1 19 0.052 0.948 0.782
39 1 18 0.056 0.944 0.738
43 2 17 0.118 0.882 0.650
89 1 14 0.714 0.928 0.603
261 1 8 0.125 0.875 0.527
263 1 7 0.143 0.857 0.451
270 1 6 0.167 0.833 0.375
311 1 4 0.25 0.75 0.281

Table 1.1: Construction of the Kaplan-Meier estimator.

Figure 1.2: Plot of Kaplan-Meier estimates group of patients receiving ARV therapy

From Figure (1.2) we can see the estimated probability is the step function that remain
unchanged even if there is a censored observation in between. The X-axis (horizontal lines)
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show the time past after entry into studies and the Y -axis (vertical lines) shows the estimated
survival probabilities. The time t when the cumulative probability is 0.5 i.e S(t) = 0.5 is
called median survival time which according to this example is t = 263. We can use different
statistical programs to plot Kaplan-Meier curve such as SPSS, R, Sigma plot etc. Here in our
example we have used R to plot the curve.



Chapter 2

Nonparametric robust regression for
ergodic complete data

The main goal of this chapter is to treat some asymptotic results for the estimation of the
robust regression function when the observations are complete and the covariates take values in
an infinite dimensional space. This chapter is divided into three sections: In the first section,
we will present the robust model and its estimate. In the second one, we will study the almost
complete convergence. In the last section we will deal with asymptotic normality.

2.1 Robust model and its estimate
Let us consider (Xi, Yi)i=1,...,n a couple of random variables be an F × R-valued measurable

strictly stationary ergodic process, where F is a semi-metric space. We denoted d the semi-
metric. For x ∈ F , we consider a real measurable function denoted ψx and we model the
co-variation between Xi and Yi through the nonparametric robust regression, denoted by θx,
implicitly defined as a zero with respect to (w.r.t.) t of the following equation:

Ψ(x, t) = E[ψx(Yi, t)|Xi = x] = 0, (2.1)

where ψx is a real-valued Borel function satisfying some regularity conditions to be stated below.
We suppose that, for all x ∈ F , θx exists and is the unique zero w.r.t t of equation (2.1). We
point out that this robustification method covers and includes many important nonparametric
models introduced by Huber (1964)[33], for example, ψx(y, t) = (y − t) yields the classical
regression. For more example of the function ψx consulted Stone (2005)[52].
For all (x, t) ∈ F × R, we propose a nonparametric estimator of Ψ(x, t) given by:

Ψ̂(x, t) =

n∑
i=1

K(h−1d(x,Xi))ψx(Yi, t)

n∑
i=1

K(h−1d(x,Xi))

,

where K is a kernel and h = hn is a sequence of positive real numbers which goes to zero
as n goes to infinity. A natural estimator θ̂x of θx is a zero w.r.t. t of the equation

Ψ̂(x, t) = 0.

20
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Clearly, when ψx(Y, t) = Y − t, then θ̂n is the estimator given in Ferraty and Vieu (2006)[23]for
the functional nonparametric regression, while for ψx(y, t) = 1y>t− (1− α), we obtain the αth
conditional quantile estimate studied by Laksaci et al.(2009)[47].

2.2 Almost complete convergence
The concept of almost complete convergence was introduced by Hsu and Robbins (1947)[32].

It implies almost sure convergence and lends itself well to calculations involving sums of random
variables. Despite this, it did not begin to become popular in the statistical community in the
1980s after the work of Collomb. It is used mainly in nonparametric statistics.

In this section, we will list some assumptions and we will provide the main results.

2.2.1 Notations, hypotheses and comments

From now on, we will denote by C and C ′ some strictly positive generic constants, x
is a fixed point in F , Nx denotes a fixed neighborhood of x. For r > 0, let B(x, r) =
{x′ ∈ F/d(x′, x) < r}. Furthermore, for i = 1, . . . , n, we define Fk as the σ-field generated
by ((X1, Y1), . . . , (Xk, Yk)) and Gk as the σ-field generated by ((X1, Y1), . . . , (Xk, Yk), Xk+1).
We need the following hypotheses to establish our asymptotic results:

(H1) The process (Xi, Yi)i∈N satisfies:
(i) The function φ(x, r) = P(X ∈ B(x, r)) > 0,∀r > 0.
(ii)For all i = 1, ..., n there exists a deterministic function φi(x, ·) such that 0 < P
(Xi ∈ B(x, r)|Fi−1) ≤ φi(x, r),∀r > 0.

(iii) For all r > 0, 1
nφ(x,r)

n∑
i=1

P(Xi ∈ B(x, r)|Fi−1) −→ 1 a.co.

(H2) The function Ψ is such that :
(i) The function Ψ(x, .) is of class C1 on [θx − δ, θx + δ], δ > 0.
(ii) For each fixed t ∈ [θx − δ, θx + δ] the function Ψ(·, t) is continuous at the point x.
(iii) ∀(t1, t2) ∈ [θx − δ, θx + δ]× [θx − δ, θx + δ],∀(x1, x2) ∈ Nx ×Nx
|Ψ(x1, t1)−Ψ(x2, t2)| ≤ Cdb1(x1, x2) + |t1 − t2|b2 , b1 > 0, b2 > 0.

(H3) For each fixed t ∈ [θx − δ, θx + δ], ∀j ≥ 1,E[ψjx(Y, t)|Gi−1] = E[ψjx(Y, t)|Xi] < Cj! < ∞,
a.s.

(H4) The function ψx is monotone w.r.t. the second component.

(H5) K is a function with support (0,1) such that

0 < C1(0,1) < K(t) < C ′1(0,1) <∞.
The derivative K ′ exists on [0,1] and satisfied the condition K ′(t) < 0, ∀t ∈ [0, 1] and∣∣∣∫ 1

0
(Kj)

′
(u)du

∣∣∣ <∞ for j ≥ 1.

(H6) lim
n→∞

h = 0 and lim
n→∞

ϕ(x, h) log n
n2φ2(x, h)

= 0 where ϕ(x, h) =
n∑
i=1

φi(x, h).
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Comments on the hypotheses
Our assumptions are very standard in this context. Indeed, the ergodicity of functional data:

The latter is exploited together with condition (H1) which is less restrictive to the conditions
imposed by Laïb and Louani (2011)[44] since, it is not necessary to write (approximately)
the concentration function P(Xi ∈ B(x, r)) > 0 and the conditional concentration function
P(Xi ∈ B(x, r)|Fi−1) as products of two independent nonnegative functions of the center and
radius. In both the functional and finite dimensional cases, this generalization on condition
(H1) is very important. Indeed, in the functional case, In addition, such a form of writing
in the multivariate case needs the differentiability of the marginal (resp. the conditional)
distribution function as well as the strict positivity of its densities; Thus, we can also proceed
without the existence of these densities and even if these densities are vanishing at a center.
Furthermore, in the multivariate case, when the marginal density (resp. the conditional density)
of X given Fi−1 exists and is continuous and strictly positive, the hypothesis (H1)(iii) is a direct
consequence of Beck’s theorem (Györfi et al., 1989, p. 49)[27]. the nonparametric model: the
functional space of the model is characterized by some regularity conditions allowing the bias
term to be evaluated. Thus there are two kinds of conditions: the first one ((H2)(ii)) is the
continuity of the model, while the second one is based on Lipschitz-type condition (H2)(iii).
The first one is necessary to get the convergence, while the second consideration is used to
make precise the convergence rate of the estimate. Condition (H3) is a standard assumption
over jth moments of the conditional expectation of the function ψx. The robustness property
is controlled by Condition (H4) where only the convexity ( which is fundamentals constraints
of the robustness properties of the M -estimators ) of the score function is needed. In order
to cover the classical regression studied in this ergodic functional context by Laib and Louani
(2011)[44] we establish our asymptotic normality without the boundedness condition for the
score function. Furthermore, they are needed to evaluate the bias term in the asymptotic
properties. Assumption (H5) concerns the kernel K(·) which is technical and imposed for sake
of simplicity whereas (H6) is classical for consistency results.

2.2.2 Results

Now we are in a position to give our main result. Our first main result is given in the following
theorem which deals with pointwise almost complete convergence.

Theorem 2.2.1. [2] Assume that (H1), (H2)((i)− (ii)) and (H3)-(H6) are satisfied, then θ̂x
exists for all sufficiently large n. Furthermore, we have

θ̂x − θx → 0 a.co.

In order to give a more accurate asymptotic result, we replace (H2) (ii) by (H2)(iii) and we
obtain the following result:

Theorem 2.2.2. [2] Assume that (H1), (H2)((i)− (iii)) and (H3)-(H6) are satisfied, then θ̂x
exists a.s. for all sufficiently large n. Furthermore, if Ψ′(x, θx) 6= 0 we have

θ̂x − θx = O(hb1) + O
(√

ϕ(x,h) log n
n2φ2(x,h)

)
a.co.

Proof. For the proofs of Theorems (2.2.1) and (2.2.2) we use the fact that ψx is monotone
w.r.t. the second component. We give the proof for the case of an increasing ψx(Y, ·), the
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decreasing case being obtained in the same manner. For this case we write, ε > 0, we set
Ki = K

(
d(x,Xi)

h

)
.∑

n

P[|θ̂x − θx| ≥ ε] ≤
∑
n

P
[(
|θ̂x − θx|1{|θ̂x−θx|≤δ}

)
≥ ε
]

+
∑
n

P
[(
|θ̂x − θx|1{|θ̂x−θx|>δ}

)
≥ ε
]
.

Since ψx(Y, ·) is increasing, it follows that,

P
((
|θ̂x − θx|1{|θ̂x−θx|>δ}

)
≥ ε
)
≤ P(|θ̂x − θx| > δ0)

≤ P(|Ψ̂(x, θx + δ)−Ψ(x, θx + δ)| ≥ Ψ(x, θx + δ))

+P(|Ψ̂(x, θx − δ)−Ψ(x, θx − δ)| ≥ −Ψ(x, θx − δ)).

Moreover, we can write under (H2)(i)

(θ̂x − θx)1{|θ̂x−θx|≤δ} =
Ψ(x, θ̂x)− Ψ̂(x, θ̂x)

Ψ′(x, θ?n)
,

where θ?n is a point between θ̂x and θx.
Therefore, the remaining task is to study the convergence rate of

sup
t∈[θx−δ,θx+δ]

|Ψ(x, t)− Ψ̂(x, t)|

and to show that

∃τ > 0,
∞∑
n=1

P(Ψ′(x, θ?n) < τ) <∞. (2.2)

To reach this end, we write

Ψ̂(x, t) = Bn(x, t) +
Rn(x, t)

Ψ̂D(x)
+
Qn(x, t)

Ψ̂D(x)
,

where

Qn(x, t) = (Ψ̂N(x, t)− Ψ̄N(x, t))−Ψ(x, t)(Ψ̂D(x)− Ψ̄D(x))

Bn(x, t) =
Ψ̄N(x, t)

Ψ̄D(x)
−Ψ(x, t), and Rn(x, t) = −Bn(t)(Ψ̂N(x, t)− Ψ̄N(x, t)),

with

Ψ̂N(x, t) =
1

nE[K1]

n∑
i=1

Kiψx(Yi, t),

Ψ̄N(x, t) =
1

nE[K1]

n∑
i=1

E[Kiψx(Yi, t)|Fi−1],

Ψ̂D(x) =
1

nE[K1]

n∑
i=1

Ki,

Ψ̄D(x) =
1

nE[K1]

n∑
i=1

E[Ki|Fi−1].

Therefore, both theorems are a consequence of the following intermediate results.

The asymptotic behavior of the term Ψ̂D(x) is described by the following lemma
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Lemma 2.2.1. [2] Assume that hypotheses (H1)-(H5) and (H6), we have

Ψ̂D(x)− Ψ̄D(x) = O

(√
ϕ(x, h) log(n)

n2φ2(x, h)

)
a.co.

Proof. We have
Ψ̂D(x)− 1 = Rn,1(x) +Rn,2(x),

where

Rn,1(x) =
1

nE [K1(x)]

n∑
i=1

(Ki(x)− E [Ki(x) | Fi−1]) = Ψ̂(x)− Ψ̄(x),

Rn,2(x) =
1

nE [K1(x)]

n∑
i=1

(E [Ki(x) | Fi−1]− EK1(x)) .

With condition (H6)(iii), it is easily seen that Rn,2(x) = oa.s.(1) as n→∞.

For the the first term, since the kernelK is bounded, observe thatRn,1(x) = 1/nE [K1(x)]
n∑
i=1

Ln,i(x),

where {Ln,i(x)} is a triangular array of bounded martingale differences with respect to the se-
quence of σ-fields (Fi−1)i≥1. Using the Jensen inequality (4.6.1), we can deduce that

E
[
L2
n,i(x) | Fi−1

]
≤ 2E

[
K2
i (x) | Fi−1

]
.

By using a similar argument stated in Lemma 2 in Laib and Louani, (2010) [46], we obtained,

Rn,1(x) = Oa.co.

(√
ϕ(x,h) log n
n2φ2(x,h)

)
. 2 (2.3)

Corollary 2.2.1. [2] Under Hypotheses of Lemma (2.2.1), we have,

∃C > 0
∞∑
n=1

P(Ψ̂D(x) < C) <∞.

Proof. It is clear that, under (H5), there exists 0 < C < C ′ <∞ where

0 < C
1

nφ(x, h)

n∑
i=1

P(Xi ∈ B(x, r)|Fi−1) < Ψ̄D(x) < |Ψ̂D(x)− Ψ̄D(x)|+ Ψ̂D(x).

Hence,

P
(

Ψ̂D(x) ≤ C
2

)
≤ P

(
C

nφ(x,h)

n∑
i=1

P(Xi ∈ B(x, r)|Fi−1) <
C

2
+ |Ψ̂D(x)− Ψ̄D(x)|

)

≤ P

(∣∣∣∣∣ C
nφ(x,h)

n∑
i=1

P(Xi ∈ B(x, r)|Fi−1)− |Ψ̂D(x)− Ψ̄D(x)| − C

∣∣∣∣∣ > C
2

)
.

It is obvious that the previous lemma and (H1)(iii) enable us to arrive at this conclusion.

∑
n

P

(∣∣∣∣∣ C
nφ(x,h)

n∑
i=1

P(Xi ∈ B(x, r)|Fi−1)− |Ψ̂D(x)− Ψ̄D(x)| − C

∣∣∣∣∣ > C
2

)
,

which gives the result. 2
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Lemma 2.2.2. [2] Under hypotheses (H1), (H2)((i), (ii)), (H5) and (H6), we have

sup
t∈[θx−δ,θx+δ]

|Bn(x, t)| = o(1),

If we replace (H2)(ii) by (H2)(iii) , we have

sup
t∈[θx−δ,θx+δ]

|Bn(x, t)| = O(hb1).

Proof. We begin by assessing the conditional bias term. Observe that:

Bn(x, t) =
Ψ̄N(x, t)−Ψ(x, t)Ψ̄D(x)

Ψ̄D(x)
.

Similarly as in Lemma (2.2.1), it is easily seen that Ψ̄D(x) = Oa.s.(1). Therefore, we have to
establish that

B̃n(x, t) = Ψ̄N(x, t)−Ψ(x, t)Ψ̄D(x) = Oa.co.(h
b1).

Making use of conditions (H2)(iii) and (H3) one can easily see that

∣∣∣B̃n(x)
∣∣∣ =

∣∣∣∣∣ 1

nE (K1(x))

n∑
i=1

E [(ψx(Yi, t)−Ψ(x, t))Ki(x) | Fi−1]

∣∣∣∣∣
=

∣∣∣∣∣ 1

nE (K1(x))

n∑
i=1

E [E [(ψx(Yi, t)−Ψ(x, t))Ki(x) | Gi−1] | Fi−1]

∣∣∣∣∣
=

∣∣∣∣∣ 1

nE (K1(x))

n∑
i=1

E [E [(ψx(Yi, t)−Ψ(x, t))Ki(x) | Xi] | Fi−1]

∣∣∣∣∣
=

∣∣∣∣∣ 1

nE (K1(x))

n∑
i=1

E [(Ψ (Xi, t)−Ψ(x, t))Ki(x) | Fi−1]

∣∣∣∣∣
≤ sup

u∈B(x,h)

|Ψ(u, t)−Ψ(x, t)|

∣∣∣∣∣ 1

nE (K1(x))

n∑
i=1

E [Ki(x) | Fi−1]

∣∣∣∣∣ = Oa.co.

(
hb1
)
,

since the support of the kernel K is the interval [0,1]. 2

Lemma 2.2.3. [2] Under hypotheses (H1) and (H3)-(H6), we have

sup
t∈[θx−δ,θx+δ]

|Ψ̂N(x, t)− Ψ̄N(x, t)| = O
(√

ϕ(x,h) log n
n2φ2(x,h)

)
a.co.

Proof. Using the compactness of [θx− δ, θx + δ], we cover the compact by [θx− δ, θx + δ] ⊂⋃dn
j=1(tj − ln, tj + ln) with ln = n−1/2b2 and dn = O(n1/2b2). To do that, we denote by Gn the

subset of the intervals extremities grid

Gn = {tj − ln, tj + ln, 1 ≤ j ≤ dn}. (2.4)

We use the monotony of ψx to show that

sup
t∈[θx−δ,θx+δ]

|Ψ̂N(x, t)− Ψ̄N(x, t)| ≤ max
1≤j≤dn

max
z∈{tj−ln,tj+ln}

|Ψ̂N(x, z)− Ψ̄N(x, z)|+ 2b2C2l
b2
n Ψ̄D(x).
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From Lemma (2.2.1), we deduce that

lb2n Ψ̄D(x) = Oa.co.

(√
1
n

)
= Oa.co.

(√
ϕ(x,h) log n
n2φ2(x,h)

)
.

Therefore, all it remains to show that

max
1≤j≤dn

max
z∈{tj−ln,tj+ln}

|Ψ̂N(x, z)− Ψ̄N(x, z)| = Oa.co.

(√
ϕ(x,h) log n
n2φ2(x,h)

)
. (2.5)

The proof of (2.5) is based on the application of the exponential inequality (4.6.1), on the
triangular array of martingale differences (according to the σ-fields (Fi−1)i):

Li = Ki(x)ψx (Yi, z)− E [Ki(x)ψx (Yi, z) | Fi−1] , z ∈ Gn

the application of the mentioned inequality is based on evaluation of E [Lpi (x, z) | Fi−1]. The
latter can be evaluated by using the same arguments as were invoked for proving Lemma 5 in
Laïb and Louani (2011)[44], allowing us to write, under (H3), for any p ∈ N−{0}, observe that

Lpi (x, z) =

p∑
k=0

Ck
p (Ki(x)ψx (Yi, z))

k (−1)p−k [E (Ki(x)ψx (Yi, z) | Fi−1)]p−k .

Thus,

E (Lpi (x, z) | Fi−1) =

p∑
k=0

Ck
pE
[
(Ki(x)ψx (Yi, z))

k | Fi−1

]
(−1)p−k [E (Ki(x)ψx (Yi, z) | Fi−1)]p−k .

Therefore,
E [Lpi (x, z) | Fi−1] ≤ Cφi(x, h).

Thus, we can presently apply the aforementioned exponential inequality and obtain: for all
η > 0 and dn = l−1

n ,
we have

l−1
n max

z∈Gn
P

(∣∣∣Ψ̂N(x, z)− Ψ̄N(x, z)
∣∣∣ > η

√
ϕ(x, h) log n

n2φ2(h)

)
≤ C ′n−Cη

2+1/2b2 .

As a result, a suitable choice of η completes the proof of this lemma. 2

Lemma 2.2.4. [2] Under Assumptions (H1),(H2)((i), (ii)) and (H3)-(H6), θ̂x exists a.s.for
all sufficiently large n and there exists ζ1 > 0 such that∑

n≥1

P{Ψ′(x, θ?n) < ζ1} <∞.

Proof. It is clear that, the monotony of ψx, for all ε > 0

Ψ (x, θx − ε) ≤ Ψ (x, θx) ≤ Ψ (x, θx + ε) .

By using a similar argument as those used in the previous Lemmas, we show that

Ψ̂ (x, θx)−Ψ (x, θx) = O

(
hb1 +

√
log n

nφ(x, h)

)
, a.co.
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for all real fixed t. So, for sufficiently large n and for all ε small enough

Ψ̂ (x, θx − ε) ≤ 0 ≤ Ψ̂ (x, θx + ε) . a.co.

Since ψx and K are continuous functions, it follows that Ψ̂(x, t) is a continuous function of t
and, there exists a θ̂x ∈ [θx − ε, θx + ε] such that Ψ̂(x, θ̂x) = 0. Concerning, the uniqueness of
θ̂x, we point out that the latter is a direct consequence of the strict monotonicity of ψx and
the positivity of K, and its second part is a direct consequence of the regularity assumption
(H2)(i) on Ψ(x, ·). 2

2.3 Asymptotic normality
The asymptotic property discussed in this section is asymptotic normality, this is of a great

significance in statistics, this section deals, under the hypothesis of a stationary ergodic process,
the asymptotic normality of the same estimator.

2.3.1 Notations, hypotheses and comments

Now, we study the asymptotic normality of θ̂x. We replace (H1),(H2),(H3),(H4),(H5) and
(H6) by the following hypotheses, respectively.

(H’1) The concentration property (H1) holds.

(H’2) Condition (H2(i)) holds. Moreover, the condition (H2 (ii)) is replaced by the function
Ψ(·, t) and λ2(·, t) = E[ψ2

x(Y, t)|X = ·] are continuous at the point x. And the condition
(H2 (iii)) is replaced by the derivative function
Φ(s, z) = E[Ψ(X1, z) − Ψ(x, z)|d(x,X1) = s] exists at s = 0 and is continuous w.r.t the
second component at Nx.

(H’3) The condition (H3) stays the same.

(H’4) The condition (H4) for the function ψx stays the same.

(H’5) The kernel K satisfies (H5) and is a positive function supported on ]0,1[.

(H’6) There exists a function τx(·) such that

∀t ∈ [0, 1] lim
h→0

φ(x, th)

φ(x, h)
= τx(t).

K2(1)−
∫ 1

0
(K2(u))′τx(u)du > 0 and K(1)−

∫ 1

0
K ′(u)τx(u)du 6= 0.

Comments on the hypotheses
Our assumptions are quite mild. In this work, the functional space of our model is char-

acterized by the regularity condition (H’2(iii)). This condition replace the Lipschitz condition
usually assumed in nonparametric functional data analysis. This change is useful in order to ex-
plicit asymptotically the bias term. However, the Lipschitz condition gives inexact/inaccurate
asymptotic bias term which is not interesting for the asymptotic normality. The conditions
(H’5) concerns the kernel K(·) which is technical and imposed for sake of simplicity whereas.
Moreover, the function τx(·) defined in (H’6) plays a fundamental role in the asymptotic nor-
mality result. It permits to give the variance term explicitly.
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2.3.2 Results

Our main result is detailed in the following theorem

Theorem 2.3.1. [7] Assume that (H’1)-(H’6) hold, then θ̂x exists and is unique with great
probability and for any x ∈ A, we have(

nφ(x, h)

σ2 (x, θx)

)1/2 (
θ̂x − θx −Bn(x)

)
D→ N (0, 1) as n→∞

where
Bn(x) = hΦ′ (0, θx)

β0

β1

+ o(h) and σ2 (x, θx) =
β2λ2 (x, θx)

β2
1 (Γ1 (x, θx))

2

with

β0 = −
∫ 1

0

(sK(s))′βx(s)ds, (βj = −
∫ 1

0

(
Kj
)′

(s)βx(s)ds, for j = 1, 2),

Γ1 (x, θx) =
∂

∂t
Ψ (x, θx) and A = {x ∈ F , λ2 (x, θx) Γ1 (x, θx) 6= 0}

and D→ means the convergence in distribution.

Corollary 2.3.1. [7] Under the hypotheses of Theorem (2.3.1) and if the bandwidth parameter
h satisfies nh2φ(x, h)→ 0 as n→∞, then(

nφ(x, h)

σ2 (x, θx)

)1/2 (
θ̂x − θx

)
D→ N (0, 1) as n→∞.

Proof.(Proof of Theorem (2.3.1) and Corollary (2.3.1)) We give the proof for the case
of an increasing ψx, decreasing case being obtained by considering −ψx . In this case, we define,
for all u ∈ R, z = θx −Bn(x) + u[nφ(x, h)]−1/2σ (x, θx). Let us notice that,

P

{(
nφ(x, h)

σ2 (x, θx)

)1/2 (
θ̂x − θx +Bn(x)

)
< u

}
= P

{
θ̂x < θx −Bn(x) + u[nφ(x, h)]−1/2σ (x, θx)

}
= P{0 < Ψ̂(x, z)}.

It is clear that we can write

Ψ̂(x, t) = Bn(x, t) +
Rn(x, t)

Ψ̂D(x)
+
Qn(x, t)

Ψ̂D(x)
.

It follows that

P

{(
nφ(x, h)

σ2 (x, θx)

)1/2 (
θ̂x − θx +Bn(x)

)
< u

}
= P

{
−Ψ̂D(x)Bn(x, z)−Rn(x, z) < Qn(x, z)

}
.

Our main result is a consequence of the following intermediates results,

Lemma 2.3.1. [7] Under the hypotheses of Theorem (2.3.1), we have for any x ∈ A(
nφ(x, h)β2

1

β2λ2 (x, θx)

)1/2

Qn(x, z)
D→ N (0, 1) as n→∞.
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Proof. First, we introduce some notations. We note Ki(x) = K(h−1d(x,Xi)) and

ηni =

(
φ(x, h)β2

1

β2λ2 (x, θx)

)1/2

(ψx (Yi, z)−Ψ(x, z))
Ki(x)

EK1(x)
, (2.6)

and defined ζni = ηni − E[ηni|Fi−1]. It is easily seen that(
nφ(x, h)β2

1

β2λ2 (x, θx)

)1/2

Qn(x, z) =
1√
n

n∑
i=1

ζni.

Since ζni is a triangular array of martingale differences according to the σ-fields (Fi−1)i, we
can apply the central limit theorem based on the unconditional Lindeberg condition. More
precisely, we must verify the following conditions

1

n

n∑
i=1

E
[
ζ2
ni | Fi−1

]
→ 1 in probability , (2.7)

and

∀ε > 0
1

n

n∑
i=1

E
[
ζ2
ni1ζ2ni>εn

]
→ 0. (2.8)

We begin by proving (2.7). To do that, we write

E
[
ζ2
ni | Fi−1

]
= E

[
η2
ni | Fi−1

]
− E2 [ηni | Fi−1] .

Therefore, it suffices to show that

1

n

n∑
i=1

E2 [ηni | Fi−1]
P−→ 0, (2.9)

and
1

n

n∑
i=1

E
[
η2
ni | Fi−1

] P−→ 1. (2.10)

For the first convergence, we have

|E [ηni | Fi−1]| = 1

EK1(x)

(
φ(x, h)β2

1

β2λ2 (x, θx)

)1/2

|E [(Ψ (Xi, t)−Ψ(x, t))Ki(x) | Fi−1]|

≤ 1

EK1(x)

((
φ(x, h)β2

1

β2λ2 (x, θx)

))1/2

sup
u∈B(x,h)

|Ψ(u, t)−Ψ(x, t)|E [Ki(x) | Fi−1] .

Obviously, under (H’1) and (H’5) we have

Cφi(x, h) ≤ E [Ki | Fi−1] ≤ C ′φi(x, h),

and
Cφ(x, h) ≤ E [∆i(x)] ≤ C ′φ(x, h).

On other hand condition (H’2(ii)) implies that

sup
u∈B(x,h)

|Ψ(u, t)−Ψ(x, t)| = o(1).
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Combining these three lasts results, we obtain

(| E [ηni | Fi−1] |)2 ≤ sup
u∈B(x,h)

∣∣∣∣Ψ(u, t)−Ψ(x, t)

(
β2

1

β2λ2 (x, θx)

)∣∣∣∣ 1

φ(x, h)
φ2
i (x, h)

≤ sup
u∈B(x,h)

|Ψ(u, t)−Ψ(x, t)|
(

β2
1

β2λ2 (x, θx)

)
1

φ(x, h)
φi(x, h).

Finally, providing the fact that (see, (H’1(iii)))

1

nφ(x, h)

n∑
i=1

φi(x, h)
P−→ 1,

we obtain

1

n

n∑
i=1

(E [ηni | Fi−1])2 = sup
u∈B(x,h)

|Ψ(u, t)−Ψ(x, t)|
(

β2
1

β2λ2 (x, θx)

)(
1

nφ(x, h)

n∑
i=1

φi(x, h)

)
= op(1).

Now, we move to the convergence in (2.10). We write

1
n

n∑
i=1

E
[
η2
ni | Fi−1

]
=

1

n (EK1(x))2

(
φ(x, h)β2

1

β2λ2 (x, θx)

) n∑
i=1

E
[
(ψx (Yi, z)−Ψ(x, z))2K2

i (x) | Fi−1

]
= 1

n(EK1(x))2

(
φ(x,h)β2

1

β2λ2(x,θx)

)( n∑
i=1

E
[
ψ2
x (Yi, z)K

2
i (x) | Fi−1

]
−2Ψ(x, z)

n∑
i=1

E
[
ψx (Yi, z)K

2
i (x) | Fi−1

]
+Ψ2(x, z)

n∑
i=1

E
[
K2
i (x) | Fi−1

])
.

Denote

D1 =
n∑
i=1

E
[
ψ2
x (Yi, z)K

2
i (x) | Fi−1

]
, D2 =

n∑
i=1

E
[
ψx (Yi, z)K

2
i (x) | Fi−1

]
,

and

D3 =
n∑
i=1

E
[
K2
i (x) | Fi−1

]
.

It is clear that

D1 = λ2(x, z)
n∑
i=1

E[K2
i (x) | Fi−1] +

n∑
i=1

[E[ψ2
x (Yi, z)K

2
i (x) | Fi−1]

− λ2(x, z)E[K2
i | Fi−1]]

D1 = λ2(x, z)
n∑
i=1

E[K2
i (x) | Fi−1] +

n∑
i=1

[E[K2
i (x)E[ψ2

x (Yi, z) | Gi−1] | Fi−1]

− λ2(x, z)E[K2
i (x) | Fi−1]]

D1 = λ2(x, z)
n∑
i=1

E[K2
i (x) | Fi−1] +

n∑
i=1

[E[K2
i (x)E[ψ2

x (Yi, z) | Xi] | Fi−1]

− λ2(x, z)E[K2
i (x) | Fi−1]].



2.3.2 Results 31

Using the same arguments as those used in (2.9), to evaluate the second term.Then, we have,

1
nE[K1(x)]

n∑
i=1

[
E
[
K2
i (x)E

[
ψ2 (Yi, z) | Xi

]
| Fi−1

]
− λ2(x, z)E

[
K2
i (x) | Fi−1

]]
≤ sup

u∈B(x,h)

|λ2(x, z)− λ2(x, z)|

(
1

nφ(x, h)

n∑
i=1

P (Xi ∈ B(x, h) | Fi−1)

)
.

Moreover, we use the continuity of λ2(x, ·)to write

λ2(x, z) = λ2(x, θx) + o(1).

Thus,
1

nE [K1(x)]
D1 = λ2(x, θ(x))

1

nE [K1(x)]

n∑
i=1

E
[
K2
i (x) | Fi−1

]
+ o(1),

and similarly we can get

1

nE [K1(x)]
D2 = Ψx(x, θ(x))

1

nE [K1(x)]

n∑
i=1

E
[
K2
i (x) | Fi−1

]
+ o(1) = o(1).

Finally, we have

1

n

n∑
i=1

E
[
η2
ni | Fi−1

]
=

1

n (EK1(x))2

(
φ(x, h)β2

1

β2

) n∑
i=1

E
[
K2
i (x) | Fi−1

]
+ o(1).

Next, we apply the same concepts used in Ferraty et al. (2009)[24] to get

E
[
K2
i (x) | Fi−1

]
= K2(1)φi(x, h)−

∫ 1

0

(
K2(u)

)′
φi(x, uh)du,

and

E [K1(x)] = K(1)φ(x, h)−
∫ 1

0

(K(u))′φ(x, uh)du.

It follows that

1
nφ(x,h)

n∑
i=1

E
[
K2
i (x) | Fi−1

]
=

K2(1)

nφ(x, h)

n∑
i=1

φi(x, h)−
∫ 1

0

(
K2(u)

)′ φ(x, uh)

nφ(x, h)φ(x, uh)

n∑
i=1

φi(x, uh)du

= K2(1)−
∫ 1

0
(K2(u))

′
τx(u)du+ op(1) = β2 + op(1),

and
1

nφ(x, h)
E [K1(x)] = β1 + o(1).

We deduce that

lim
n→∞

1

n

n∑
i=1

E
[
η2
ni | Fi−1

]
= 1,

which completes the proof of (2.7)
Concerning (2.8), we write

ζ2
ni1ζ2ni>εn ≤

|ζni|2+δ√
(εn)δ

for every δ > 0.
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Notice that
E
[
ζ2+δ
ni

]
= E

[
|ηni(x)− E [ηni(x) | Fi−1]|2+δ

]
≤ 21+δE

[
|ηni(x)|2+δ

]
+ 21+δ|E

[
E [ηni | Fi−1]2+δ

]
|.

Using Jensen’s inequality (4.6.1) we obtain

E
[
ζ2+δ
ni

]
≤ CE

[
|ηni(x)|2+δ

]
.

Accordingly, it remains to evaluate E
[
|ηni(x)|2+δ

]
. For this, once again we use the Cr-inequality

(4.6.4). We obtain

E
[
|ηni(x)|2+K

]
≤ C

(
φ(x, h)β2

1

β2λ2 (x, θx)E2 [K1]

)1+δ/2

E
[
K2+δ
i (x)ψ2+δ (Yi, t)

]
+ Ψ2+δ(x, z)E

[
K2+δ
i

]
.

We condition on Xi, using the fact that

E
[
ψ2+δ (Yi, t) | Xi

]
<∞.

To obtain

E
[
|ηni(x)|2+δ

]
≤ C

(
1

φ(x, h)

)1+δ/2

E
(

[Ki(x)]2+δ
)
≤ C

(
1

φ(x, h)

)δ/2
. (2.11)

Consequently,
1

n

n∑
i=1

E
[
ζ2
ni1ζ2ni>εn

]
≤ C

(
1

nφ(x, h)

)δ/2
→ 0,

and the proof is complete. 2

Lemma 2.3.2. [46] Under Hypotheses (H’1) and (H’4)-(H’6), we have,

Ψ̂D(x)− 1 = oP (1).

2

Lemma 2.3.3. [7] Under hypotheses (H’1), (H’2), and (H’4)-(H’6) we have(
nφ(x, h)β2

1

β2λ2 (x, θx)

)1/2

Bn(x, z) = u+ o(1), as n→∞.

Proof. From a simple manipulation we obtain

Ψ̄N(x, z)

Ψ̄D(x)
=

1
n∑
i=1

E [Ki(x) | Fi−1]

n∑
i=1

E [Ki [E [ψx (Y, z) | X1]− E [ψx (Y, z) | X = x]] | Fi−1]

+E [ψx (Y, z) | X = x]− E [ψx (Y, θ(x)) | X = x] = J1 + J2.
(2.12)
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For J1(x) the main basic idea of the proof is to take the same ideas as in Ferraty et al. (2007)[23].
Under (H’2(iii)), we obtain

Ai = E[Ki[E[ψx(Y, z) | Xi]− E[ψx(Y, z) | X = x]] | Fi−1]

= E[Ki[E[Ψ (Xi, z)−Ψ(x, z) | d(x,Xi)] | Fi−1]]

= E[KiΦ (d (x,Xi) , z) | Fi−1]

=

∫
Φ(th, z)K(t)dPFi−1(th)

= hΦ′(0, z)

∫
tK(t)dPFi−1(th).

(2.13)

We use the continuity of Φ′(0, ·) and the fact that∫
tK(t)dPFi−1(th) = K(1)φi(x, h)−

∫ 1

0

(sK(s))′φi(x, sh)ds,

to obtain
1

n

n∑
i=1

Ai = hΦ′ (0, θx)

(
K(1)−

∫ 1

0

(sK(s))′τx(s)ds

)
+ op(h).

In similar fashion, we have

1

n

n∑
i=1

E [Ki(x) | Fi−1] =

(
K(1)−

∫ 1

0

K ′(s)τx(s)ds

)
+ op(1).

Finally,
J1 = Bn(x) + o(h).

Concerning J2 we use a Taylor expansion to get, under (H’2)

J2 = −Bn(x) + u[nφ(x, h)]−1/2σ (x, θx)
∂

∂t
Ψ (x, θx) + o

(
[nφ(x, h)]−1/2

)
.

The result is then a consequence of the decomposition in (2.12).

Lemma 2.3.4. [7] Under hypotheses (H’1), (H’2), and (H’4)-(H’6) we have,(
nφ(x, h)β2

1

β2λ2 (x, θx)

)1/2

Rn(x, z) = oP (1) a.co.

Proof. Clearly, it suffices to show that

Ψ̄N(x, t)−Ψ(x, t)Ψ̄D(x)

Ψ̄D(x)
= op(1),

and ∣∣∣Ψ̂N(x, t)− Ψ̄N(x, t)
∣∣∣ = op(1).

On the one hand
Ψ̄N(x, t)−Ψ(x, t)Ψ̄D(x)

Ψ̄D(x)
=
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=
1

nE [K1(x)] Ψ̄D(x)

n∑
i=1

[E [Ki(x)E [ψ (Yi, t) | Gi−1] | Fi−1]−Ψ(x, t)E [Ki(x) | Fi−1]]

=
1

nE [K1(x)] Ψ̄D(x)

n∑
i=1

[E [Ki(x)E [ψ (Yi, t) | Xi] | Fi−1]−Ψ(x, t)E [Ki(x) | Fi−1]]

≤ 1

nE [K1(x)] Ψ̄D(x)

n∑
i=1

[E [Ki(x) |Ψ (Xi, t)−Ψ(x, t)| | Fi−1]] .

Using (H’1(ii)),we deduce that∣∣∣∣Ψ̄N(x, t)−Ψ(x, t)Ψ̄D(x)

Ψ̄D(x)

∣∣∣∣ ≤ sup
x′∈B(x,h)

|Ψ (x′, t)−Ψ(x, t)| → 0.

On the other hand,
Ψ̂N(x, z)− Ψ̄N(x, z) = op(1).

Our next aim is to show the following two results :

E
[
Ψ̂N(x, z)− Ψ̄N(x, z)

]
→ 0,

and
Var

[
Ψ̂N(x, z)− Ψ̄N(x, z)

]
→ 0.

The first one is an outcome of the definitions of Ψ̂N(x, z) and Ψ̄N(x, z). Next, for the second
one, we have

Ψ̂N(x, z)− Ψ̄N(x, z) =
n∑
i=1

∆i(x, z),

where
∆i(x, z) =

1

nE [K1]
Kiψ (Yi, z)− E [Kiψ (Yi, z) | Fi−1] .

By Burkholder’s inequality (4.6.1), we have

E

[
n∑
i=1

∆i(x, z)

]2

≤
n∑
i=1

E [∆i(x, z)]
2 .

Furthermore, through Jensen’s inequality (4.6.1) we show that

E [∆i(x, z)]
2 ≤ 1

n2E2 [K1]
E
[
K2
i ψ

2 (Yi, z)
]
≤ 1

n2E2 [K1]
E
[
K2
i

]
≤ 1

nφ2(x, h)
φi(x, h).

Now, (H’1) gives
Var

[
Ψ̂N(x, z)− Ψ̄N(x, z)

]
→ 0.

2

Lemma 2.3.5. [7] Under Hypotheses (H’1) and (H’4)-(H’6), θ̂x exists a.s. for all sufficiently
large n

Proof. It is clear that the proof of lemma (2.3.5) is similar to the proof of lemma (2.2.4).
2



Chapter 3

Nonparametric robust regression for right
censored with stationary ergodic data

The present chapter deals with a nonparametric robust regression for right censored when
the covariate takes values in Rd(d ≥ 1) and the data are sampled from a stationary ergodic
process. This chapter is divided into two sections: In the first section, we will give a definition
to the model and the estimator. In the other section, we will present the assumptions under
which the almost sure consistency (with rate) and the asymptotic distribution of the estimator
are established, then we will deal with confidence intervals.

3.1 Definition of the model and the estimator
Consider a triple (X,C, T ) of r.v’s defined in Rd ×R×R, where T is the variable of interest

(typically a lifetime variable), C a censoring variable andX = (X1, ..., Xd) a vector of covariates.
We refer to F (·) (resp. G(·)) the distribution function of T (resp. C) that are supposed to be
unknown and continuous. The continuity of G enables as to use the convergence results for the
Kaplan and Meier (1958)[37] estimator of G. In the following, we assume that:

(T,X) and (C) are independent. (3.1)

In the right censoring model, we don’t directly observe the pair (T,C) with Y = min(T,C)
and δ = 1{T≤C}. Consequently, we presume that a sample {(Xi, δi, Yi) , i = 1, . . . , n} is at
our disposal. In addition, we suppose throughout the chapter that (Xi, Ti)i=1,...,n is a strictly
stationary ergodic sequence, in the sense that satisfies the theorem (1.3.1), and (Ci)i is a
sequence of (i.i.d.) r.v’s which is independent of (Xi, Ti)i=1,...,n. It is noticeable that, the
unobserved sample (Xi, Ti, Ci)i=1,...,n is ergodic by continuity of the identity application. Let
us also consider G : R3 → R× {0, 1} × R be a measurable application defined by (T,C,X) 7→
(Y, δ,X). Clearly, by the multidimensional ergodic theorem, the observed sample is stationary
and ergodic one, as soon as the unobserved sample is. Now put

Z =
δY

G(Y )
, where G(·) = 1−G(·). (3.2)
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Then from (3.1) and (3.2) we get

E (Z | X) = E
[
δY

G (Y )
| X
]

= E
{
E
[
1{T≤C}T

G (T )
| X,T

]
| X
}

= E
{

T

G(T )
E
(
1{T≤C} | X,T

)
| X
}

= E (T | X) .

(3.3)

As a result, any estimator for the regression function E(Z|X = x), which can be derived from
fully observed data(Yi, Ci) , turns out to be an estimator for the regression function E(T |X = x)
based on the unobserved data.
In order to define the ψ-regression function under the right censoring model, consider (as in
(3.2)), the ψ∗-function

ψ∗(T − θ) =
δψ(T − θ)
G(T )

. (3.4)

The issue being found the parameter θψ(x) which is a zero w.r.t. θ of

Ψ(x, θ) = E
[
δψ(T − θ)
G(T )

| X = x

]
= 0. (3.5)

Note here that the ψ∗-function, given by (3.4), inherits the monotony property from ψ(T − ·).
According to the observed sample (Xi, δi, Yi)i=1,...,n, we define the following "pseudo-estimator"
of Ψ(x, θ), which will be used as intermediate estimator

Ψ̃n(x, θ) =

n∑
i=1

K
(
h−1 (x−Xi)

)
δi
(
G (Yi)

)−1
ψ (Yi − θ)

n∑
i=1

K
(
h−1 (x−Xi)

) =
Ψ̃N(x, θ)

Ψ̂D(x)
, (3.6)

where

Ψ̃N(x, θ) =
1

nE (K1(x))

n∑
i=1

Ki(x)
δiψ (Yi − θ)
G (Yi)

and Ψ̂D(x) =
1

nE (K1(x))

n∑
i=1

Ki(x), (3.7)

with Ki(x) = K (h−1 (x−Xi)). Since G is unknown in practice, and in order to get a feasible
estimator, we replace G(·) by its Kaplan and Meier (1958) estimator Gn(·) given by (1.2). Thus,
an estimator of Ψ(x, θ) is given by

Ψ̂n(x, θ) =
Ψ̂N(x, θ)

Ψ̂D(x)
, (3.8)

where the denominator has the same expression as in (3.7) and the numerator is analogous to
Ψ̃N(x, θ) by replacing G(·) by Gn(·).
Therefore, an estimate of the ψ-regression function θψ(x) denoted by θ̂ψ,n(x), may be defined
as a zero w.r.t. θ of the equation Ψ̂n(x, θ) = 0,which satisfies

Ψ̂n

(
x, θ̂ψ,n(x)

)
= 0. (3.9)
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3.2 Assumptions and main results
The introduction of some notation will be the way to present our findings. Let Fi be the σ-

field generated by ((X1, T1), ..., (Xi, Ti)) and Gi the one generated by ((X1, T1), ..., (Xi, Ti), Xi+1).
Set ‖ · ‖2 for the Euclidean norm and ‖ · ‖ the supremum norm in Rd. For any fixed x in Rd

and for r > 0, denoted by Sr,x = {v : ‖v − x‖ ≤ r} the sphere of radius r centered at x.
For any Borel set A ⊂ Rd, set PFi−1

Xi
(A) = P (Xi ∈ A | Fi−1). For some τ > 0, let Cψ,τ be a

subset of R and Nx be a neighborhood of x. Denote by Oa.s.(u) a real random function g such
that g(u)/u is almost surely bounded as u goes to zero. In what follows, for any distribution
function L(·), let ζL = sup{t, such that L(t) < 1} be the support’s right endpoint. We suppose
that θψ(x) ∈ Cψ,τ ∩ (−∞, ζ], where ζ < ζG ∧ ζF .

We will make use of the following assumptions gathered here for easy reference.

(H1) There exist a constant c0 and a nonnegative bounded random function fi(x,w) =
fi(x)(resp.f(x)), w ∈ Ω, defined on Rd, such that, for any i ≥ 1,

PFi−1

Xi
(Sr,x) = c0fi(x)rd a.s. as r → 0, (3.10)

and PXi (Sr,x) = c0f(x)rd as r → 0. (3.11)

(H2) For any x ∈ Rd , and j = 1, 2, lim
n→∞

n−1

n∑
i=1

f ji (x) = f j(x) a.s.

(H3) {hn} is a non-increasing sequence of positive constants such that
(i) hn → 0 and log n/nhdn → 0 as n→∞.

(ii) hdn ln lnn→ 0 and nh1+2α1d
n → 0 as n→∞ for some α1 > 0.

(H4) (i)K is a spherically symmetric density function with a spherical bounded support. That
is, there exists k : R+ → R satisfying k(0) > 0, k(v) = 0 for v > 1, and K(x) = k (‖x‖2) .
Furthermore, for j ≥ 1, kj(·) is of class C1.
(ii) For any m ≥ 1,

∫ 1

0
km(u)ud−1du ≤ 1/d.

(H5) The function Ψ given by (3.5) is such that :
(i) Ψ(x, ·) is of class C1 on Cψ,τ .
(ii) For each fixed θ ∈ Cψ,τ ,Ψ(·, θ) is continuous at the point x.
(iii) ∀ (θ1, θ2) ∈ C2

ψ,τ and ∀ (x1, x2) ∈ N 2
x , the derivative with respect to θ of order p

(p ∈ {0, 1}) Ψ(p)(·, ·) of Ψ(·, ·) satisfying∣∣Ψ(p) (x1, θ1)−Ψ(p) (x2, θ2)
∣∣ ≤ γ1 ‖x1 − x2‖α1

2 + γ2 |θ1 − θ2|α2 ,

for α1 > 0 and α2 > 0.

(H6) The function ψ is such that :
(i) For any fixed θ ∈ Cψ,τ and any j ≥ 1

E
[(
ψ(p) (Ti − θ)

)j | Gi−1

]
= E

[(
ψ(p) (Ti − θ)

)j | Xi

]
< γ3j! < ∞ a.s. with p ∈

{0, 1} and γ3 > 0.
(ii) ψ(·) is strictly monotone, bounded, continuously differentiable such that: ∀θ ∈ R,
|ψ′(· − θ)| > γ4 > 0 with γ4 is a positive constant.
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(H7) (i) For any (x1, x2) ∈ N 2
x , the function

M(x, θ) = E
(
ψ2(T − θ)
G(T )

| X = x

)
, x ∈ Rd (3.12)

satisfies
|M (x1, θ)−M (x2, θ)| ≤ γ5 ‖x1 − x2‖α3

γ5 and α3 are some nonnegative constants uniformly on θ.
(ii) For m = 1, 2,E

(
|δ1G

−1
(T )ψ(T − θ)|m

)
< ∞ and for any x ∈ Rd, the conditional

variance of δ1G
−1

(T )ψ(T − θ) given X = x exists, that is

V(θ | x) = E
[(
δ1G

−1
(T )ψ(T − θ)−Ψ(x, θ)

)2

| X = x

]
(3.13)

for every θ.

(H8) (i) The conditional variance of δiG
−1

(Ti)ψ (Ti − θ) given the σ -field Gi−1 depends only on

Xi, i.e., for any i ≥ 1,E
[(
δiG

−1
(Ti)ψ (Ti − θ)−Ψ (Xi, θ)

)2

| Gi−1

]
= V (θ | Xi) almost

surely.

(ii) For some ς > 0,E
(∣∣∣δ1G

−1
(T1)ψ (T1 − θ)

∣∣∣2+ς
)
<∞ and the function

Ṽ2+ς(θ | u) = E
[(
δiG

−1
(Ti)ψ (Ti − θ)−Ψ (Xi, θ)

)2+ς

| Xi = u

]
, u ∈ Rd (3.14)

is continuous over Nx.

Comments on the hypotheses
The condition (H1) significate that the conditional probability of the d-dimensional ball,

given the σ-field Fi−1, is asymptotically controlled by a local dimension when the radius r tends
to zero. This assumption may be interpreted in terms of the fractal dimension, which ensures
that our results are established without assuming the existence of marginal and conditional
densities. It obvious that whenever the PFi−1

Xi
has a continuous conditional density fFi−1

Xi
(x) =

fi(x) at any point of the set {x : f
Fi−1

Xi
> 0}. then the constant c0 becomes πd/2Γ((d+2)/2) where

Γ stands for the Gamma function. The assumption (H2) means that the random function fi(·)
completed the ergodic property. The first condition of (H3) is used to establish the pointwise
consistency rate of the estimator, the second condition used to vanish the bias term when
dealing with the asymptotic normality. Assumption (H4) is meant to be an alternative to the
use of a product to construct a multivariate function. The function k (‖x‖2) may be displayed
as

k (‖x‖2) =
K (‖x‖2)∫

[0,1]d
K (‖u‖) du

= cdK (‖x2‖) .

Where cd is the normalizing constant.
Condition (H5) deals with some regularities of Ψ(·). Condition (H6)(i) is a standard assumption
over jth moments of the conditional expectation of ψ(·). The existence and uniqueness of the
(3.5) solution is ensured by (ii). Assumption (H7)(i) is a classical condition to obtain the
asymptotic normality. On the other hand (H7)(ii) is necessary to define the conditional variance
given in (3.13). Assumption (H8)(i) is a Markov condition and (H8)(ii) ensures the existence
of the quantity defined in (3.14).
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3.2.1 Pointwise consistency with rate

This result states the pointwise consistency with rate of the M -estimator θ̂ψ,n(x).

Theorem 3.2.1. [14] Suppose that (H1)-(H6) are satisfied, then θ̂ψ,n(x) exists and is unique
a.s., and

θ̂ψ,n(x)− θψ(x) = Oa.s.

(
hdα1
n

)
+ Oa.s.

(√
log n

nhdn

)
.

Proof. To prove the theorem some additional notations are needed. Let

¯̃
ΨN(x, θ) =

1

nE (K1(x))

n∑
i=1

E[Ki(x)
δiψ (Yi − θ)
G (Yi)

|Fi−1] and ¯̂
ΨD(x) =

1

nE[K1]

n∑
i=1

E[Ki|Fi−1].

(3.15)
Where

Bn(x, θ) =
¯̃
ΨN(x, θ)

¯̂
ΨD(x)

−Ψ(x, θ), (3.16)

is the pseudo-conditional bias of Ψ̃n(x, θ).
And

Rn(x, θ) = −Bn(x, θ)(Ψ̂D(x)− ¯̂
ΨD(x)), (3.17)

Qn(x, θ) = (Ψ̃N(x, θ)− ¯̃
ΨN(x, θ))−Ψ(x, θ)(Ψ̂D(x)− ¯̂

ΨD(x)). (3.18)

Thus, from (3.15), (3.16), (3.17) and (3.18) we have:

Ψ̃(x, θ)−Ψ(x, θ) = Bn(x, θ) +
Rn(x, θ)

Ψ̂D(x)
+
Qn(x, θ)

Ψ̂D(x)
. (3.19)

As, Ψ(x, θψ(x)) = 0 and Ψ̂n(x, θ̂ψ,n(x)) = 0 , then through Taylor’s expansion of Ψ(x, ·) around
θψ(x) leads to

θ̂ψ,n(x)− θψ(x) =
Ψ(x, θ̂ψ,n(x))

Ψ′(x, θ?n)

=
Ψ(x, θ̂ψ,n(x))− Ψ̂n(x, θ̂ψ,n(x))

Ψ′(x, θ?n)
,

(3.20)

where θ?n is between θ̂ψ,n(x) and θψ(x). It results from Assumption (H6)(ii) that |Ψ′ (x, θ?n)| > γ
and therefore ∣∣∣θ̂ψ,n(x)− θψ(x)

∣∣∣ = Oa.s.

(
sup
θ∈Cψ,τ

∣∣∣Ψ̂n(x, θ)−Ψ(x, θ)
∣∣∣) . (3.21)

Finally, from the following proposition which provides the almost sure consistency with rate of
the estimator Ψ̂n(·, ·) uniformly w.r.t. the second component. We proof the Theorem (3.2.1).

2

Proposition 3.2.1. Assume that (H1)-(H6) hold true, we have, for some α1 > 0.

sup
θ∈Cψ,τ

∣∣∣Ψ̂n(x, θ)−Ψ(x, θ)
∣∣∣ = Oa.s.

(
hdα1
n

)
+ Oa.s.

(√
log n

nhdn

)
.
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Proof. Using the following decomposition

Ψ̂n(x, θ)−Ψ(x, θ) =
(

Ψ̂n(x, θ)− Ψ̃n(x, θ)
)

+
(

Ψ̃n(x, θ)−Ψ(x, θ)
)

=
(

Ψ̂n(x, θ)− Ψ̃n(x, θ)
)

+Bn(x, θ) +
Rn(x, θ) +Qn(x, θ)

Ψ̂D(x)
.

(3.22)

The proof of Proposition (3.2.1) is divided into some lemmas, the convergence of Ψ̂D(x) to 1 and
the convergence of the terms Bn(x), Rn(x) andQn(x). 2

We consider now the following technical lemma, which plays the same role as Bochner Theorem.

Lemma 3.2.1. [14] Assume that Assumptions (H1) and (H4) hold true. For any j ≥ 1, we
have

(i) E
(
∆j
i (x) | Fi−1

)
= c0fi,d(x)hdnd

∫ 1

0
kj(u)ud−1du a.s.

(ii) E
(
∆j

1(x)
)

= c0f(x)hdnd
∫ 1

0
kj(u)ud−1du.

Proof. Using Assumption (H4), we can state

E
(
∆j
i (x) | Fi−1

)
= E

(
kj (‖Xi − x‖2 /hn) | Fi−1

)
=

∫ hn

0

kj (u/hn) dPFi−1 (‖Xi − x‖2 ≤ u)

=

∫ 1

0

kj(t)dPFi−1 (‖Xi − x‖2 /hn ≤ t)

= kj(1)PFi−1

Xi
(Shn,x)−

∫ 1

0

(
kj(u)

)′ PFi−1

Xi
(Suhn,x) du.

At last, with the Assumption (H1), we can easily concluded the proof of (i). As a result that
of (ii) follows from part (i) by considering Fi−1 the trivial σ-field. 2

The following lemma provides the convergence rate of Ψ̂D(x).

Lemma 3.2.2. [14] Suppose that Assumptions (H1)-(H4) hold true, then we have
(i) lim

n→∞
Ψ̂D(x) = lim

n→∞

¯̂
ΨD(x) = 1, a.s.

(ii) Ψ̂D(x)− ¯̂
ΨD(x) = Oa.s.

(√
logn
nhdn

)
.

Proof. First, observe that Ψ̂D(x)− 1 = Rn,1(x) +Rn,2(x), where

Rn,1(x) =
1

nE (K1(x))

n∑
i=1

(Ki(x)− E (Ki(x) | Fi−1)) ,

and

Rn,2(x) =
1

nE (K1(x))

n∑
[E (Ki(x) | Fi−1)− E (K1(x))] .

It can be easily seen that E (Ki(x) | Fi−1) − E (K1(x)) = c0h
d
nd [fi(x)− f(x)]

∫ 1

0
k(u)ud−1du.

And assumption (H2) combined with Lemma (3.2.1) allow to conclude that Rn,2(x) = o(1) a.s.
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as n→∞.
To deal with Rn,1(x) write

Rn,1(x) =
1

n

n∑
i=1

Ln,i(x).

Where Ln,i(x) = [Ki(x)− E (Ki(x) | Fi−1)] /E (K1(x)) is a martingale difference.
Therefore, let us check the condition of Lemma (3.2.1).
Observe that

|Ln,i(x)| = |Ki(x)− E (Ki(x) | Fi−1)|
|E (K1(x))|

≤ 2k

c0hdndf(x)
∫ 1

0
k(u)ud−1du

= M,

where k = supx∈R+ k(x).
On the other hand, making use of Lemma (4.6.1), one can see that

E
(
L2
n,i(x) | Fi−1

)
=

∫ 1

0
k2(u)ud−1du

c0hdndf
2(x)

(∫ 1

0
k(u)ud−1du

)2fi(x) = d2
i .

Then using Lemma 1 in Chaouch et al. (2016)[15], with Dn =
n∑
i=1

d2
i , we obtain for any λ > 0

P

(
1

n

∣∣∣∣∣
n∑
i=1

Ln,i(x)

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

{
− n2λ2

4Dn + 2Mnλ

}

= 2 exp

{
− nλ2

4Dn
n

+ 2Mλ

}
.

Moreover, using Lemma (3.2.1), we get 4Dn
n

+ 2Mλ = Cλ(x)
hdn

, where

Cλ(x) =
4
(∫ 1

0
k2(u)ud−1du

)(∫ 1

0
k(u)ud−1du

)−2

+ 4λk
(∫ 1

0
k(u)ud−1du

)
c0df(x)

.

Consequently,

P

(
1

n

∣∣∣∣∣
n∑
i=1

Ln,i(x)

∣∣∣∣∣ ≥ λ

)
≤ 2 exp

{
− λ2

Cλ(x)
nhdn

}
.

Considering the Assumption (H3), the finding is concluded by Borel-Cantelli Lemma (4.7.1).
The quantity ¯̂

ΨD(x) and Ψ̂D(x) are processed in a similar way. The same arguments can be used
concerning the item (ii) as the study of Rn,1(x) . 2

The following lemma establishes the convergence almost surely (with rate) of the conditional
bias term Bn and the central term as Rn defined in (3.16) and (3.17).

Lemma 3.2.3. [14] Assume that Assumptions (H1)-(H4), (H5)(iii) and (H6)(i) hold true,
then we get

sup
θ∈Cψ,τ

|Bn(x, θ)| = Oa.s.

(
hdα1
n

)
, (3.23)

and

sup
θ∈Cψ,τ

|Rn(x, θ)| = Oa.s.

(
hdα1
n

√
log n

nhdn

)
. (3.24)
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Proof. Recall that

Bn(x, θ) =
¯̃
ΨN(x, θ)− ¯̂

ΨD(x)Ψ(x, θ)
¯̂
ΨD(x)

.

By a double conditioning w.r.t. the σ-fields (Gi−1, Ti) and Fi−1, it follows from (H6)(i) that

¯̃
ΨN(x, θ) =

1

nE (K1(x))

n∑
i=1

E
{
Ki(x)E

[
δiψ (Yi − θ)
G (Yi)

| Gi−1, Ti

]
| Fi−1

}
=

1

nE (K1(x))

n∑
i=1

E
{
Ki(x)E

[
δiψ (Yi − θ)
G (Yi)

| Xi, Ti

]
| Fi−1

}
.

Therefore, we obtain

¯̃
ΨN(x, θ)− ¯̂

ΨD(x)Ψ(x, θ) =
1

nE (K1(x))

n∑
i=1

E {Ki(x) [Ψ (Xi, θ)−Ψ(x, θ)] | Fi−1} .

Making use of the triangular inequality and Assumption (H5)(iii) we get

¯̃
ΨN(x, θ)− ¯̂

ΨD(x)Ψ(x, θ) = Oa.s.

(
hdα1
n

)
× ¯̂

ΨD(x).

Finally the use of Lemma (3.2.2) enable us to deduce the consistency rate of Bn(x, θ) given by
the equation (3.23).
Furthermore, since Rn(x, θ) = −Bn(x, θ)

[
Ψ̂D(x)− ¯̂

ΨD(x)
]
, then equation (3.23) and Lemma

(3.2.2) permit to get the consistency rate of Rn(x, θ) given by the equation (3.24).
2

The following lemma deals with the convergence rate of the numerator Ψ̃N(x, θ) defined in
(3.7) of the pseudo-estimator Ψ̃n(x, θ).

Lemma 3.2.4. [14] Under Assumptions (H4) and (H5)(iii) and (3.1), we have

sup
θ∈Cψ,τ

∣∣∣Ψ̃N(x, θ)− ¯̃
ΨN(x, θ)

∣∣∣ = Oa.s.

(√
log n

nhdn

)
. (3.25)

Proof. Since Cψ,τ = [θψ(x)− τ, θψ(x) + τ ] is a compact set, it admits a covering by a finite
number dn of balls Bj(tj, `j) centered at tj, 1 ≤ j ≤ dn satisfies `n = n−1/2 and dn = O(n−α2/2).
Therefore,

sup
θ∈Cψ,τ

∣∣∣Ψ̃N(x, θ)− ¯̃
ΨN(x, θ)

∣∣∣ ≤ max
1≤j≤dn

sup
θ∈Bj

∣∣∣Ψ̃N(x, θ)− Ψ̃N (x, tj)
∣∣∣+ max

1≤j≤dn

∣∣∣Ψ̃N (x, tj)−
¯̃
ΨN (x, tj)

∣∣∣
+ max

1≤j≤dn
sup
θ∈Bj

∣∣∣ ¯̃ΨN (x, tj)−
¯̃
ΨN(x, θ)

∣∣∣
=In,1 + In,2 + In,3.

(3.26)
Consistency of the first term In,1
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Using Assumption (H6)(ii), we get∣∣∣Ψ̃N(x, θ)− Ψ̃N (x, tj)
∣∣∣ ≤ 1

nE (K1(x))

n∑
i=1

Ki(x)
δi

G (Yi)
|ψ (Yi − θ)− ψ (Yi − tj)|

≤ `n

G (τF )
Ψ̂D(x).

Therefore, through Lemma (3.2.2) Ψ̂D(x) = Oa.s.(1) and G (τF ) > 0, we have

In,1 = Oa.s.

(√
1

n

)
. (3.27)

Consistency of the first term In,3

Using a double conditioning with respect to the σ-algebra Gi−1 and the definition of Ψ(x, θ)
given by equation (3.5), it is unproblematic to obtain

¯̃
ΨN (x, tj)−

¯̃
ΨN(x, θ) =

1

nE (K1(x))

n∑
i=1

E {Ki(x) [Ψ (Xi, tj)−Ψ (Xi, θ)] | Fi−1} .

Then using Assumption (H5)(iii) and Lemma (3.2.2) we have

In,3 = Oa.s.
(
n−α2/2

)
. (3.28)

Consistency of the first term In,2

First, consider that In,2 can be written as

In,2 = max
1≤j≤dn

∣∣∣Ψ̃N (x, tj)−
¯̃
ΨN (x, tj)

∣∣∣
= max

1≤j≤dn

1

nE (K1(x))

∣∣∣∣∣
n∑
i=1

Sn,i (x, tj)

∣∣∣∣∣ ,
where Sn,i (x, tj) = Ki(x)

δiψ(Yi−tj)
G(Yi)

− E
[
Ki(x)

δiψ(Yi−tj)
G(Yi)

| Fi−1

]
is a martingale difference. Thus,

we can use Lemma(4.6.1) to obtain an exponential upper bound relative to the quantity
Ψ̃N (x, tj) −

¯̃
ΨN (x, tj). The condition under which lemma (4.6.1) is allowed to be applied

are verified in what follows. for any p ∈ N− {0}, that

Spn,i (x, tj) =

p∑
k=0

Ck
p

(
δi

G (Yi)
ψ (Yi − tj)Ki(x)

)k
(−1)p−k

[
E
(

δi

G (Yi)
ψ (Yi − tj)Ki(x) | Fi−1

)]p−k
.

In view of Assumption (H6)(i),
[
E
(

δi
G(Yi)

ψ (Yi − tj)Ki(x) | Fi−1

)]p−k
is Fi−1-measurable. As a

result, using Jensen’s inequality(4.6.1), one gets

∣∣E (Spn,i (x, tj) | Fi−1

)∣∣ ≤ p∑
k=0

Ck
pE

{∣∣∣∣ δi

G (Yi)
ψ (Yi − tj)Ki(x)

∣∣∣∣k | Fi−1

}

× E

{∣∣∣∣ δi

G (Yi)
ψ (Yi − tj)Ki(x)

∣∣∣∣p−k | Fi−1

}
.
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With a double conditioning w.r.t. the σ-field Gi−1 , Assumption (H6)(i) and (3.1), we get, for
any m ≥ 1, that

E
{∣∣∣∣ δi

G (Yi)
ψ (Yi − tj)Ki(x)

∣∣∣∣m | Fi−1

}
≤ 1(

G (τF )
)m−1E {K

m
i (x)E [ψm (Yi − tj) | Xi] | Fi−1}

≤ γ3m!(
G (τF )

)m−1E (Km
i (x) | Fi−1) .

Making use of Lemma (3.2.1), we obtain E (Km
i (x) | Fi−1) = c0fi(x)dhdn

∫ 1

0
km(u)ud−1du. It

results then from (H4)(ii) that

E

(∣∣∣∣δiψ (Yi − tj)
G (Yi)

Ki(x)

∣∣∣∣k | Fi−1

)
E

(∣∣∣∣δiψ (Yi − tj)
G (Yi)

Ki(x)

∣∣∣∣p−k | Fi−1

)
≤ γ3f

2
i (x)h2d

n .

Finally, we have
∣∣E (Spn,i (x, tj) | Fi−1

)∣∣ ≤ 2pf 2
i (x)hdn.

By taking d2
i = f 2

i (x)hdn and Dn =
n∑
i=1

d2
i = hdn

n∑
i=1

f 2
i (x), one gets, by assumption (H2),

that n−1Dn = hdnf(x) as n → ∞. Now one can use (4.6.1) with Dn = Oa.s.

(
nhdn

)
and

Sn =
n∑
i=1

Sn,i (x, tj) to get, for any ε0 > 0,

P

(
|In,2| > ε0

√
log n

nhdn

)
≤

dn∑
j=1

P

(∣∣∣Ψ̃N (x, tj)−
¯̃
ΨN (x, tj)

∣∣∣ > ε0

√
log n

nhdn

)

=
dn∑
j=1

P

(
1

E (K1(x))

∣∣∣∣∣
n∑
i=1

Sn,i (x, tj)

∣∣∣∣∣ > ε0

√
log n

nhdn

)

≤
dn∑
j=1

2 exp

− (nE (K1(x)) ε0)2 logn
nhdn

2Dn + 2γ3nE (K1(x)) ε0
√

logn
nhdn


≤ 2dn exp

{
−γ3ε

2
0 log n

}
= n−γ3ε

2
0n−α2/2.

Therefore, by taking ε0 such that, the upper bound becomes a general term of a convergence

Riemann series, we get
∑
n≥1

P

(
|In,2| > ε0

√
log n

nhdn

)
<∞. The proof can be achieved by Borel-

Cantelli Lemma (4.7.1). 2

Lemma below study the uniform asymptotic rate of the quantity Qn(x, θ).

Lemma 3.2.5. [14] Under assumptions (H1)-(H4) and (H5)(iii), we have

sup
θ∈Cψ,τ

|Qn(x, θ)| = Oa.s.

(√
log n

nhdn

)
. (3.29)

Proof. The proof of this Lemma is easily obtained we use Lemmas (3.2.2) and (3.2.4). 2

The following result gives a uniform approximation (with rate) of the estimator Ψ̂n(x, θ) by the
pseudo-estimator of Ψ(x, θ).



3.2.2 Asymptotic distribution 45

Lemma 3.2.6. [14] Assume that assumptions (H1)-(H6) hold true, then we have

sup
θ∈Cψ,τ

∣∣∣Ψ̂n(x, θ)− Ψ̃n(x, θ)
∣∣∣ = Oa.s.

(√
log log n

n

)
.

Proof.∣∣∣Ψ̂n(x, θ)− Ψ̃n(x, θ)
∣∣∣ ≤ 1

nE (K1(x)) Ψ̂D(x)

n∑
i=1

∣∣∣∣Ki(x)δiψ (Yi, θ)

(
1

Gn (Yi)
− 1

G (Yi)

)∣∣∣∣
≤

supt∈Cψ,τ
∣∣Gn(t)−G(t)

∣∣
Gn(ζ)

Ψ̃n(x, θ).

As Gn(ζ) > 0 , in conjunction with the (SLLN) and the (LIL) on the censoring law, the result
is an immediate consequence of decomposition (4.6.1), Lemmas (3.2.2),(3.2.3) and (3.2.5).

2

3.2.2 Asymptotic distribution

The following deals with the asymptotic distribution of the θ̂ψ,n(x).

Theorem 3.2.2. [14] Under Assumptions (H1)-(H8), we have√
nhdn

(
θ̂ψ,n(x)− θψ(x)

)
D−→ N

(
0,Σ2 (x, θ(x))

)
, as n −→ +∞

where D→ denotes the convergence in distribution, N (·, ·) the normal distribution,

Σ2 (x, θψ(x)) =
M (x, θψ(x))

(Γ1 (x, θψ(x)))2 ×
∫ 1

0
k2(u)ud−1du

f(x)d
(∫ 1

0
k(u)ud−1du

)2 , (3.30)

and
Γ1(x, θ) = E [ψ′(T − θ) | X = x] . (3.31)

Proof. With a Taylor’s expansion and the definition of θψ(x), we get

Ψ̂n (x, θψ(x))−Ψ (x, θψ(x)) =
(
θψ(x)− θ̂ψ,n(x)

)
Ψ̂′n (x, θ?n) .

Then, we have

θ̂ψ,n(x)− θψ(x) = −Ψ̂n (x, θψ(x))−Ψ (x, θψ(x))

Ψ̂′n (x, θ?n)
.

Consequently, the asymptotic normality given in Theorem (3.2.2) is going to be cited using
the following Proposition (3.2.2) and Lemma (3.2.8) that give provide, accordingly, the asymp-
totic normality of the numerator and the convergence in probability of the denominator term
Ψ̂′n (x, θ?n) to Γ1 (x, θψ(x)), respectively. 2

Proposition 3.2.2. [14] Suppose that Assumptions (H1)-(H8) hold true, then we have√
nhdn

(
Ψ̂n(x, θ)−Ψ(x, θ)

)
D−→ N

(
0, σ2(x, θ)

)
, as n −→ +∞

where

σ2(x, θ) = [M(x, θ)−Ψ(x, θ)]×
∫ 1

0
k2(u)ud−1du

f(x)d
(∫ 1

0
k(u)ud−1du

)2 . (3.32)
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Proof. The proof is based on the following decomposition(
nhdn

)1/2
[
Ψ̂n(x, θ)−Ψ(x, θ)

]
=
(
nhdn

)1/2
[(

Ψ̂n(x, θ)− Ψ̃n(x, θ))
)

+
(

Ψ̃n(x, θ)− ¯̃
Ψn(x, θ)

)
+
(

¯̃
Ψn(x, θ)−Ψ(x, θ)

)]
=D1,n +D2,n +D3,n.

First, by Lemma (3.2.6), under (H3)(ii), we have D1,n = Oa.s.

(
nhdn

√
log log n/n

)
= oa.s.(1).

The term D3,n is equal to
√
nhdnBn(x, θ) which is oa.s.(1) in view of assumption (H3)(ii) and

Lemma (3.2.3). Furthermore, consider that Dn,2 =
√
nhdn (Qn(x, θ)−Rn(x, θ)) /Ψ̂D(x). The

quantity
√
nhdnRn(x, θ) converges almost surely to zero when n goes to infinity, using the second

part of Lemma (3.2.3) combined with assumption (H3)(ii). Moreover, since by Lemma (3.2.2),
lim
n→∞

Ψ̂D(x) = 1 almost surely, thus using Slutsky’s Theorem, the asymptotic normality is given

by the central term
√
nhdnQn(x, θ) that is the subject of the following Lemma(3.2.7). 2

Lemma 3.2.7. [14] Suppose that Assumptions (H1)-(H8) are satisfied, then we have(
nhdn

)1/2
Qn(x, θ)

D−→ N
(
0, σ2(x, θ)

)
, as n→∞

where

σ2(x, θ) = [M(x, θ)−Ψ(x, θ)]×
∫ 1

0
k2(u)ud−1du

f(x)d
(∫ 1

0
k(u)ud−1du

)2 . (3.33)

Proof. Let us consider

ηni =

(
hdn
n

)1/2(
δi

G (Yi)
ψ (Yi − θ)−Ψ(x, θ)

)
Ki(x)

E (K1(x))
,

and define ξni = ηni − E (ηni | Fi−1). One can see that

(
nhdn

)1/2
Qn(x, θ) =

n∑
i=1

ξni, (3.34)

where, for any fixed x ∈ Rd, the summands in (3.34) form a triangular array of stationary
martingale differences with respect to σ-field Fi−1. The asymptotic normality of Qn(x, θ) is as-
sembled by applying the central limit theorem for discrete-time arrays of real-valued martingales
(see Hall and Heyde [29]). Never the less, the establishing of the following statements is a must :

(a)
n∑
i=1

E
[
ξ2
ni | Fi−1

] 2−→ σ2(x, θ) ,

(b) nE
[
ξ2
ni1[|ξni|>ε]

]
= o(1) holds for any ε > 0 (Lindberg condition).

Proof of part (a). Observe that∣∣∣∣∣
n∑
i=1

E
[
η2
ni | Fi−1

]
−

n∑
i=1

E
[
ξ2
ni | Fi−1

]∣∣∣∣∣ ≤
n∑
i=1

(E [ηni | Fi−1])2 .



3.2.2 Asymptotic distribution 47

By double conditioning with respect to (Gi−1, Ti) and Fi−1 and using Assumptions (H2) and
(H5)(iii) and Lemma (3.2.1), we obtain

n∑
i=1

(E [ηni | Fi−1])2 = Oa.s.

(
h(2α1+1)d
n

)
. (3.35)

Therefore, the statement of (a) follows then if we show that

lim
n→∞

n∑
i=1

E
[
η2
ni | Fi−1

] P−→ σ2(x, θ). (3.36)

To prove(3.36), observe that (by double conditioning) that

n∑
i=1

E
[
η2
ni | Fi−1

]
=

hdn/n

(E (K1(x)))2

n∑
i=1

E

{
K2
i (x)E

[(
δi

G (Yi)
ψ (Yi − θ)−Ψ(x, θ)

)2

| Xi

]
| Fi−1

}
.

Using the definition of the conditional variance, one gets

E

[(
δiψ (Yi − θ)
G (Yi)

−Ψ(x, θ)

)2

| Xi

]
= Var

{
δiψ (Yi − θ)
G (Yi)

| Xi

}
+

{
E
(
δiψ (Yi − θ)
G (Yi)

| Xi

)
−Ψ(x, θ)

}2

= Ln,1 + Ln,2.

Using again a double conditioning with respect to (Gi−1, Ti), Assumptions (H5)(iii) and (H2)
and Lemma (3.2.1), we obtain

hdn/n

(E (K1(x)))2

n∑
i=1

E
[
K2
i (x)Ln,2 | Fi−1

]
= Oa.s.

(
h2α1d
n

)
.

Likewise we can show, by Assumptions (H2), (H3), (H5)(iii), (H7) and Lemma (3.2.1), that

lim
n→∞

hdn/n

(E (K1(x)))2

n∑
i=1

E
[
K2
i (x)Ln,1 | Fi−1

]
= (M(x, θ)−Ψ(x, θ))×

∫ 1

0
k2(u)ud−1du

f(x)d
(∫ 1

0
k(u)ud−1du

)2

= σ2(x, θ).

Proof of part (b)
The Lindeberg’s condition results from Corollary 9.5.2 in Chow and Teicher (1998) which
implies that

nE
[
ξ2
ni1[|ξni|>ε]

]
≤ 4nE

[
η2
ni1[|ηni|>ε/2]

]
.

Let a > 1 and b > 1 such that 1/a + 1/b = 1. Through Hölder’s and Markov’s inequalities
(4.6.2) (4.6.3) , we write, for all ε > 0 E

[
η2
ni[|ηni|>ε/2]

]
≤ E|ηni|2a

(ε/2)2a/b
. Taking C0 a positive constant

and 2a = 2 + ς, and by Assumption (H8) we get that

4nE
[
η2
ni1[|ηni|>ε/2]

]
≤ C0

(
hdn
n

)(2+ς)/2 nE
[
K2+ς

1 (x)
]

(E (K1(x)))2+ς

[
Ṽ2+ς(θ | x) + o(1)

]
.

Conclusively Lemma (3.2.1) allows us to state 4nE
[
η2
ni1[|ηni|>ε/2]

]
= Oa.s.

((
nhdn

)−ς/2) which
complete the proof by using Assumption (H3). 2
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Lemma 3.2.8. [14] Under assumptions of Theorem (3.2.2) , we have, uniformly in θ,

Ψ̂′n(x, θ)→ Γ1(x, θ) in probablility as n→∞.

Proof. The proof of this lemma is based on the following decomposition∣∣∣Ψ̂′n (x, θ?)− Γ1(x, θ(x))
∣∣∣ ≤ ∣∣∣Ψ̂′n (x, θ?)− Ψ̂′n(x, θ(x))

∣∣∣+
∣∣∣Ψ̂′n(x, θ(x))− Γ1(x, θ(x))

∣∣∣ (3.37)

Concerning the first term, using the fact that δi is bounded by one and Gn (Yi) is dominated
by Gn (ζ), then one can write∣∣∣Ψ̂′n (x, θ?)− Ψ̂′n (x, θψ(x))

∣∣∣ ≤ sup
t∈Cψ,τ

∣∣∣∣∂ψ (t− θ?)
∂θ

− ∂ψ (t− θψ(x))

∂θ

∣∣∣∣ 1

Gn(ζ)
.

Since ∂ψ(T − θ)/∂θ is continuous at θψ(x) uniformly in t, the use of Theorem (3.2.1) and the
convergence in probability of Gn (ζF ) to Gn (τF ) permits to conclude that the first term of (3.37)
converges in probability to zero.

Considering Assumptions (H1)-(H4), (H5)(iii) and (H6)(i), we demonstrate, by using similar
arguments as in the proof of Lemma (3.2.3) , that the second term in the right side of the inequal-
ity (3.37) converges almost surely to zero. 2

3.2.3 Confidence intervals

Regarding the fact that Theorem (3.2.2) is useless in practice as many quantities in the variance
are unknown. By Assumption (H1), the term f(x)hdn can be interpreted as the value of the
probability that Xi belongs to the sphere of radius hn and centered at x. In practice this

probability might be estimated by P̂Xi (Shn,x) = 1
n

n∑
i=1

1{Xi∈Shn,x}. Moreover, M (x, θψ(x)) and

Γ1 (x, θψ(x)) could be replaced, in practice, by their nonparametric estimators, defined by:

M̂n

(
x, θ̂ψ,n(x)

)
=

n∑
i=1

ψ2
(
Yi − θ̂ψ,n(x)

) (
Gn (Yi)

)−1
K
(
h−1 (x−Xi)

)
n∑
i=1

K
(
h−1 (x−Xi)

) ,

and

Γ̂1,n

(
x, θ̂ψ,n(x)

)
=

n∑
i=1

ψ′
(
Yi − θ̂ψ,n(x)

)
K
(
h−1 (x−Xi)

)
n∑
i=1

K
(
h−1 (x−Xi)

) .

From these quantities we get the following

Corollary 3.2.1. [14] Under the assumptions of Theorem (3.2.2), we have, as n→∞,

Γ̂1,n

(
x, θ̂ψ,n(x)

) nP̂Xi (Shn,x) d

M̂n

(
x, θ̂ψ,n(x)

) ∫ 1

0
k2(u)ud−1du


1/2 ∫ 1

0

k(u)ud−1du×
(
θ̂ψ,n(x)− θψ(x)

)
D−→ N (0, 1).
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Corollary (3.2.1) permits to establish the 100(1 - a)% confidence intervals for the ψ-regression
θψ(x), which are given by

θ̂ψ,n(x)± qα/2Γ̂1,n

(
x, θ̂ψ,n(x)

) nP̂Xi (Shn,x) d

M̂n

(
x, θ̂ψ,n(x)

) ∫ 1

0
k2(u)ud−1du


1/2 ∫ 1

0

k(u)ud−1du,

where ±qα/2 is the upper α/2 quantile of the Gaussian distribution. All quantities appearing in
the confidence bands are known which make the confidence interval useful in practice.

Proof. Observe that

Γ̂1,n

(
x, θ̂ψ,n(x)

){
nP̂Xi(Shn,x)d

M̂n(x,θ̂ψ,n(x))
∫ 1
0 k

2(u)ud−1du

}1/2 ∫ 1

0
k(u)ud−1du×

(
θ̂ψ,n(x)− θψ(x)

)
={

P̂Xi(Shn,x)
hdnf(x)

}1/2{
M(x,θψ(x))

M̂n(x,θ̂ψ,n(x))

}1/2{
Γ̂1,n(x,θ̂ψ,n(x))

Γ1(x,θψ(x))

}
×

Γ1 (x, θψ(x))

{
nhdnf(x)d

M(x,θψ(x))
∫ 1
0 k

2(u)ud−1du

}1/2 ∫ 1

0
k(u)ud−1du×

(
θ̂ψ,n(x)− θψ(x)

)
.

Using Theorem (3.2.2), we get

Γ1 (x, θψ(x))

{
nhdnf(x)d

M (x, θψ(x))
∫ 1

0
k2(u)ud−1du

}1/2 ∫ 1

0

k(u)ud−1du×
(
θ̂ψ,n(x)− θψ(x)

)
D−→ N (0, 1).

Therefore, the Corollary (3.2.1) is established if we show that

{
P̂Xi (Shn,x)

hdnf(x)

}1/2
 M (x, θψ(x))

M̂n

(
x, θ̂ψ,n(x)

)


1/2 Γ̂1,n

(
x, θ̂ψ,n(x)

)
Γ1 (x, θψ(x))

 P−→ 1, as n→∞.

By the consistency of the empirical distribution function of X and the decomposition given by
(3.11), we obtain

P̂Xi (Shn,x)

hdnf(x)

P−→ 1, as n→∞.

Since θ̂ψ,n(x) is a consistent estimator of θψ(x) (see Theorem (3.2.1)), then we have only to
show that M̂n(x, θ)

P−→M(x, θ) and Γ̂1,n(x, θ)
P−→ Γ1(x, θ) as n→∞ which are conse-

quence of the previous results. 2



Chapter 4

Simulation

The main objective of this chapter is to show the superiority of our prediction method by
varying a number of parameters and conditions. We vary the sample size and the Censoring
Rate. We carry out a simulation to compare the finite-sample performance of the robust
regression θ̂ψ,n(x) and the classical regression, say θ̂n(x), when both the response and the
covariate are one-dimensional scalar random variables.

4.1 Data
First, Consider a stationary ergodic process generated in the following way: for i = 1, . . . , n,
Xi = 0.4Xi−1 + ηi, where ηi ∼ Bernoulli(0.5). Observe that, since the ηi’s are Bernoulli-
distributed then the processes , described above, do not satisfy the α-mixing condition whereas
they are ergodic.

Figure 4.1: Plot of AR(1) process.

Concerning the response variables Ti, we collect them according to the following regression
model: for i = 1, . . . , n, Ti = m (Xi) + σεi, where m(x) = x + 2 exp {−16x2}, εi ∼ N (0, 1) and
σ = 0.01

We also, simulate n i.i.d. censoring variables (Ci)i=1,...,n is such that Ci = Xi+1 + λ with λ
is a varying constant which allows to adapt the censoring rate. In this simulation study, two
sample sizes are considered n = 300 and 800 and for each sample size different Censoring Rates
(CR) are taken CR = 32%, 63% and 79%.

We propose to compare two methods namely, for the robust case we used the score function
defined by ψ1(y, t) =

y − t√
1 + (y − t)2

to calculate θ̂ψ,n(x), while for the classical case θ̂n(x) we

50
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have ψ2(y, t) = y − t . It should be noted that for simulations we choose Gaussian kernel.

4.2 Algorithm
The robust estimator computation algorithm is as follows:
Step 1
Generate an n-sample (Xi, Yi, δi)i=1,··· ,n from the regression model.
Step 2:
Calculate the Kaplan-Meier estimator based on the data generated in Step 1.
Step 3:
Calculate the estimator of θψ,n(x) .
Step 4:

We compute the MSE of θ̂ψ,n as follows: MSE
(
θ̂ψ,n

)
=

1

n

n∑
i=1

(
θ̂ψ,n(Xi)−m(Xi)

)2

. Same

thing for MSE of θ̂n(x).

4.3 Result
The MSE values found for the Robuste estimator, θ̂ψ,n, as well as the classical estimator, θ̂n
are shown in the table below, when different sample sizes and censoring rates are taken into
account. One can observe, that the two estimators perform better when the sample size n
increases. It is also clear that the estimators accuracy is affected by the censoring rate, the
quality of the estimators fell sharply when the censoring rate law.

CR n θ̂ψ,n θ̂n
λ = 2, CR ' 32% 300 0.4529446 1.068348

800 0.4356878 1.091404
λ = 5, CR ' 63% 300 0.5147869 1.103946

800 0.4563536 1.108231
λ = 8, CR ' 79% 300 0.4425118 1.100906

800 0.4441645 1.117007

4.4 R Code
****************************************************************************
> n = 300
> X = arima.sim(list(ar = 0.4), innov = rbinom(n, 1, 0.5), n)
> E = rnorm(n)
> T = X + 2 ∗ exp(−16 ∗X2) + 0.01 ∗ E
> plot.ts(X)
> W = window(X, start = 5, end = 10)
> plot.ts(W )
> K = function(t)(1/sqrt(2 ∗ pi)) ∗ exp(−0.5 ∗ t2)
> psi = function(y, t)(y)/(sqrt(1 + (y)2))
> h = n−.3 (the bandwidth)
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> s = 300 (Initiation)
> a = min(X)
> b = max(X)
> x = seq(a, b, length = s)
> V = numeric(n)
> fn = numeric(s)
> W = numeric(n)
> Hn = numeric(s) (Fonction Hn(.))
> c = X + 8
> Y = pmin(T, c)
> d = as.numeric(T = c)
> summary(Y )
> df = data.frame(x = X, y = Y,Rn)
> z = survfit(Surv(Y, d) 1, data = df)
> summary(z)
> plot(z,mark.time = TRUE, conf.int = F )
> z1 = function(t)z$surv
> for(jin1 : s) > for(iin1 : n)V [i] = K((x[j]−X[i])/h) > fn[j] = sum(V ∗ z1(Y [i]))
> for(jin1 : s) > for(iin1 : n)W [i] = d[i] ∗K((x[j]−X[i])/h) ∗ (Y [i]) > Hn[j] = sum(W )
> Rn = Hn/fn (Régression Rn(.))
> Se.reg = abs(Rn− T )
> mes1 = mean(Se.reg)
> op = par(mfrow = c(1, 3))
> plot.ts(Rn)
> W = window(Rn, start = 1, end = 3)
> W1 = window(Y, start = 1, end = 3)
> lines(W1, col = ”red”)
****************************************************************************



Conclusion

In this work, we treated a robust nonparametric estimation of the regression function. The
model considered here is the right censored model which is the most used in different practical
fields. The principal aim is to establish the asymptotic properties of this estimator for a
stationary ergodic process with any use of traditional mixing conditions. Notice that the
ergodic setting covers and completes various situations as compared to the mixing case and
stands as more convenient to use in practice.

From a theoretical standpoint, this model is a generalization to the right censored case of the
robust estimator of the regression function proposed by Gueriballah et al.(2013). As asymptotic
results we have established the strong consistency (with rate) and the asymptotic distribution
of the estimator this asymptotic property will make it possible to determine the confidence
intervals. However, from a practical standpoint, our model provides an alternative estimate of
the classical regression which has more advantage in sense of robustness and incomplete data.
The superiority of our model compared to the classical and robust regression in the presence
of values atypical censored is confirmed by our simulation study.

furthermore, the results that were obtained on the robust censored regression estimation in
finite dimension can be generalized to the case of functional data.
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Appendix

4.5 Definitions
Definition 4.5.1. (Stationary process) The process {xt; t ∈ Z} is strongly stationary if

Ft1+k,t2+k,··· ,ts+k (b1, b2, · · · , bs) = Ft1,t2,··· ,ts (b1, b2, · · · , bs)

for any finite set of indices {t1, t2, · · · , ts} ⊂ Z with s ∈ Z+, and any K ∈ Z.
Thus the process is strongly stationary if the joint distribution function of the vector
(xt1+k, xt2+k, . . . , xts+k) is equal with the one of (xt1 , xt2 , . . . , xts) for any finite set of indices
{t1, t2, · · · , ts} ⊂ Z with s ∈ Z+, and any K ∈ Z.

Definition 4.5.2. (Filtration) Let (Ω,F ,P) be a probability space. A filtration on (Ω,F ,P) is
an increasing family (Ft)t≥0 of sub-σ-algebras of F . In other words, for each t, Ft is a σ-algebra
included in F and if s ≤ t, Fs ⊂ Ft. A probability space (Ω,F ,P) endowed with a filtration
(Ft)t≥0 is called a filtered probability space.

Definition 4.5.3. (Martingale) A process M = (Mn)∞n=0 is martingale if

1. if (Mn) is adapted,

2. Mn ∈ L1 for all n,

3. E [Mn+1 | Fn−1] = Mn almost surely, for all n.

Definition 4.5.4. ( Martingale differences). A sequence of random variables (Zn)n≥1 is said to
be a sequence of martingale differences with respect to the sequence of σ-fields (Fn)n≥1 whenever
Zn is Fn measurable and

E (Zn | Fn−1) = 0 almost surely.

4.6 Some Inequalities

4.6.1 Exponential inequality.

Lemma 4.6.1. [44] Let (Zn)n≥1 be a sequence of real martingale differences with respect to the
sequence of σ-fields (Fn = σ (Z1, . . . , Zn))n≥1, where σ(Z1, ..., Zn) is the σ-field generated by the

random variables Z1, ..., Zn. Set Sn =
n∑
i=1

Zi. For any p ≥ 2 and any n ≥ 1, assume that there

exist some nonnegative constants C and dn such that

E (Zp
n | Fn−1) ≤ Cp−2p!d2

n almost surely. (4.1)

Then, for any ε > 0, we have

P (|Sn| > ε) ≤ 2 exp

{
− ε2

2 (Dn + Cε)

}
,

where Dn =
n∑
i=1

d2
i .
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4.6.2 Jensen’s inequality.

Proposition 4.6.1. [49] Let X be a real valued random variable such that E|X| <∞, and let
g : R→ R be convex function such that E|g(X)| <∞. Then

g(EX) ≤ E(g(X)).

4.6.3 Hölder’s inequality.

Proposition 4.6.2. [49]

E[|XY |] ≤ E1/p [|X|p]E1/q [|Y |q] ≡ ‖X‖p‖Y ‖q,
1

p
+

1

q
= 1.

4.6.4 Markov’s inequality.

Proposition 4.6.3. [49] Let X : S → R be a non-negative random variable. Then, for any
a > 0,

P(X ≥ a) ≤ E(X)

a
.

4.6.5 Cr-inequality.

Proposition 4.6.4. [49]

E|X + Y |r ≤ crE|X|r + crE|Y |r where cr = 1 for 0 < r ≤ 1 and cr = 2r−1 for r ≥ 1.

4.6.6 Burkholder’s inequality

Theorem 4.6.1. [49] If {Si,Fi, 1 6 i 6 n} is a martingale and 1 < p < ∞, then there exist
constants C1 and C2 depending only on p such that

C1E

∣∣∣∣∣
n∑
i=1

X2
i

∣∣∣∣∣
p/2

6 E |Sn|p 6 C2E

∣∣∣∣∣
n∑
i=1

X2
i

∣∣∣∣∣
p/2

.

4.7 Convergences
Definition 4.7.1. (Convergence in Probability). A sequence of random variables X1, X2, X3, · · ·
converges in probability to a random variable X, shown by Xnp→X, if

lim
n→∞

P (|Xn −X| ≥ ε) = 0, for all ε > 0

Definition 4.7.2. Let Xn, Yn be two sequences of random variables. The following(
Xn
Yn

)
n∈N
−→ 0 a.co. if

Xn −→ 0 a.co.

And

∃δ > 0,
∞∑
n=0

P (|Yn| < δ) <∞.
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Definition 4.7.3. (Almost complete convergence). Let (Zn)n∈N be a sequence of real random
variables; we say that Zn converges almost completely (a.co.) to zero if, and only if,

∀ε > 0,
∞∑
n=1

P (|zn| > ε) < ∞. Moreover, we say that the rate of almost complete convergence

of Zn to zero is of order un (with un → 0) and we write Zn = Oa.co.(un) if, and only if, ∃ε > 0,
∞∑
n=1

P (|zn| > ε(un)) < ∞. This kind of convergence implies both almost sure convergence and

convergence in probability.

Definition 4.7.4. (Almost Sure Convergence). Let (Ω,F ,P) be a probability space. Let
X1, X2, . . . be a sequence of random variables on (Ω,F ,P). Let X be another random vari-
able on (Ω,F ,P) ). We say that Xn converges almost surely (or, with probability 1) to
X if

lim
n→∞

P ({ω : Xn(ω) = X(ω)}) = 1.

In this case, we write
Xn

a.s.→ X.

This is a really strong type of convergence for random variables in the sense that

Xn
a.s.→ X ⇒ Xn

P→ X ⇒ Xn
d→ X.

Remark 4.7.1. Almost complete convergence is stronger than almost sure convergence and
convergence in probability.

Definition 4.7.5. (Convergence in Distribution). A sequence of random variables X1, X2, X3, · · ·
converges in distribution to a random variable X, shown by Xn

d→ X, if

lim
n→∞

FXn(x) = FX(x),

for all x at which FX(x) is continuous.

Lemma 4.7.1. [49](Borel-Cantelli Lemma.) Let {En} be a sequence of events in sample space
Ω. Then
(a) If

∞∑
n=1

P (En) <∞, =⇒ P

(
∞⋂
n=1

∞⋃
m=n

, Em

)
= 0

that is,
P [En occurs infinitely often] = 0.

(b) If the events {En} are independent

∞∑
n=1

P (En) =∞ =⇒ P

(
∞⋂
n=1

∞⋃
m=n

Em

)
= 1,

that is,
P [En occurs infinitely often] = 1.

This result is useful for assessing almost sure convergence. For a sequence of random vari-
ables {Xn} and limit random variable X, suppose, for ε > 0, that An(ε) is the event

An(ε) ≡ {ω : |Xn(ω)−X(ω)| > ε}
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The BC Lemma says

(a) if
∞∑
n=1

P (An(ε)) =
∞∑
n=1

P [|Xn −X| > ε] <∞ then Xn
a.s−→ X

(b) if
∞∑
n=1

P (An(ε)) =
∞∑
n=1

P [|Xn −X| > ε] =∞ with the Xn independent then Xn
a.s9 X.
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