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Abstract 

 

The objective of this thesis is to establish stability, existence, uniqueness and 

model results for various classes of functional differential equations, with delay 

which may be finite or state-dependent in Banach space. 

Our results are based upon very recently fixed point theorems. 
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 ملخص
نموذج لفئات مختلفة من المعادلات ونتائج   وحدانيةو وجود الاستقرار ودراسة  من هذه الاطروحة هو الهدف

ناخ.في فضاء ب بالحل رتبطار قد يكون محدودا او مالتفاضلية الوظيفية ، مع تأخ  
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Résumé 

L’objectif  de cette thèse est d’établir la stabilité, l’existence, l’unicité et 

les résultats du modèle pour différentes classes d’équations 

différentielles fonctionnelles, avec un retard qui peut être fini ou 

dépendant de l’état dans l’espace de Banach. 

Nos résultats sont basés  sur des théorèmes de point fixe très récents. 

Mots et expressions clés : 

Solution faible, stabilité, existence et unicité, retards dépendants de 

l’état, point fixe,  équations différentielles fonctionnelles. 
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Introduction

Functional differential equations emerge in all fields of biology, engineering and physical
applications, and such equations have granted much attention in recent years. A good
directory to the literature for functional differential equations is the books by Hale
and Verduyn Lunel [33], Kolmanovskii and Myshkis [45], and the references therein.
During the last decades, existence and uniqueness of mild solutions.
functional differential equations has been studied extensively by many authors using
fixed point argument, measures of non-compactness, Semigroup of Linear Operator.
We mention, for instance, the books by Ahmed [3], Kamenskii et Al. [43], Pazy [51],
Wu [54], and the references therein. Hernandez in [40] proved the existence of mild
solutions for neutral equations. Studying the possibility of controlling a certain period
of a set of neutral functional differential equations by Fu in [24, 25]. Existence of
moderate and climacteric solutions of a class of neutral partial functional differential
Equations with non-local terms as I consider it Fu and Ezzinbi [26]. The existence
and regularity of solutions to functional and neutral functional differential equations
with unbounded delay studied by Henriquez [39] and Hernandez [40, 41]. Neutral func-
tional differential equations with infinite delay and Various classes of partial functional
have been studied by Adimy and Al. Balachandran and Dauer have considered various
classes of first and second order semi-linear ordinary, functional and neutral functional
differential equations on Banach spaces in [9].
Abstract neutral differential equations are found in the fields of applied mathematics,
that is why it has been largely studied over the past few decades. There is a reference
to literature the relevance to ordinary neutral differential equations is very broad, for
which we refer the reader to [33] only, which contains a comprehensive description of
such equations. Such as, for more on partial neutral functional differential equations
and related issues we refer to Adimy and Ezzinbi [1], Hale [32], Wu and Xia [55] and
[54] for finite delay equations.
A functional differential equation with state-dependent delays is frequently found in
applications Like typical equations (see, e.g., [4, 7, 12, 49]). The study of such equa-
tions is an active research area (see, e.g., [13, 1, 25, 35, 34, 36, 37, 41, 46, 47, 48, 52, 53].

This work consists of five chapters and each chapter contains more sections.
They are arranged as follows:
In Chapter 1, we introduce definitions, theories, and notations preliminary facts that
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CONTENTS

will be used through this work.
In Chapter 2, we prove the existence of mild solutions of nonlinear neutral time vary-
ing multiple delay differential equations in Banach space.
In Chapter 3, we study and prove the existence and uniqueness of solutions for neutral
differential equations with state-dependent delays.
In Chapter 4, we solve the stability problem of neural networks equipped with state-
dependent state delay.
In Chapter 5, we introduce applications and models of neutral differential equations
with state-dependent delays.
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Chapter 1

Preliminaries

In this chapter, we introduce notations, definitions, lemmas and fixed point theorems
which are used throughout this thesis. In this section, we introduce notations, defini-
tions, and preliminary facts which are used throughout this section.

1.1 Measure of Noncompactness

First, we define in this Section the Kuratowski (1896-1980) and Hausdorf measures of
noncompactness (MNC for short) and give their basic properties.

Definition 1.1.1. ([44]) Let (X, d) be a complete metric space and B the family of
bounded subsets of X. For every B ∈ B we define the Kuratowski measure of noncom-
pactness α(B) of the set B as the infimum of the numbers d such that B admits a finite
covering by sets of diameter smaller than d.

Remark 1.1.1. The diameter of a set B is the number sup{d(x, y) : x ∈ B, y ∈ B}
denoted by diam(B), with diam(∅) = 0.
It is clear that 0 ≤ α(B) ≤ diam(B) < +∞ for each nonempty bounded subset B of X
and that diam(B) = 0 if and only if B is an empty set or consists of exactly one point.

Definition 1.1.2. ([11]) Let E be a Banach space and ΩE the family of bounded subsets
of E. The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞) defined
by

α(B) = inf{ε > 0 : B ⊆ ∪ni=1Bi and diam(Bi) ≤ ε},

where
diam(Bi) = sup{||x− y|| : x, y ∈ Bi}.

The Kuratowski measure of noncompactness satisfies the following properties:

Lemma 1.1.1. ([11]) Let A and B bounded sets.

9



Preliminaries

(a) α(B) = 0⇔ B is compact (B is relatively compact), where B denotes the closure
of B.

(b) nonsingularity : α is equal to zero on every one element-set.

(c) If B is a finite set, then α(B) = 0.

(d) α(B) = α(B) = α(convB), where convB is the convex hull of B.

(e) monotonicity : A ⊂ B ⇒ α(A) ≤ α(B).

(f) algebraic semi-additivity : α(A+B) ≤ α(A) + α(B), where

A+B = {x+ y : x ∈ A, y ∈ B}.

(g) semi-homogencity : α(λB) = |λ|α(B); λ ∈ R, where λ(B) = {λx : x ∈ B}.

(h) semi-additivity : α(A
⋃
B) = max{α(A), α(B)}.

(i) α(A
⋂
B) = min{α(A), α(B)}.

(j) invariance under translations : α(B + x0) = α(B) for any x0 ∈ E.

Remark 1.1.2. The α-measure of noncompactness was introduced by Kuratowski in
order to generalize the Cantor intersection theorem

Theorem 1.1.2. ([44]) Let (X, d) be a complete metric space and {Bn} be a decreasing
sequence of nonempty, closed and bounded subsets of X and lim

n→∞
α(Bn) = 0. Then the

intersection B∞ of all Bn is nonempty and compact.

In [42], Horvath has proved the following generalization of the Kuratowski theorem:

Theorem 1.1.3. ([44]) Let (X, d) be a complete metric space and {Bi}i∈I be a family
of nonempty of closed and bounded subsets of X having the finite intersection property.
If inf

i∈I
α(Bi) = 0 then the intersection B∞ of all Bi is nonempty and compact.

Lemma 1.1.4. ([31]) If V ⊂ C(J,E) is a bounded and equicontinuous set, then

(i) the function t→ α(V (t)) is continuous on J , and

αc(V ) = sup
0≤t≤T

α(V (t)).

(ii) α

(∫ T

0

x(s)ds : x ∈ V
)
≤
∫ T

0

α(V (s))ds,

where
V (s) = {x(s) : x ∈ V }, s ∈ J.
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1.2 Semigroup of Linear Operator

In the definition of the Kuratowski measure we can consider balls instead of arbi-
trary sets. In this way we get the definition of the Hausdorff measure:

Definition 1.1.3. ([44]) The Hausdorff measure of noncompactness χ(B) of the set B
is the infimum of the numbers r such that B admits a finite covering by balls of radius
smaller than r.

Theorem 1.1.5. ([44]) Let B(0, 1) be the unit ball in a Banach space X. Then
α(B(0, 1)) = χ(B(0, 1)) = 0 if X is finite dimensional,
and α(B(0, 1)) = 2, χ(B(0, 1)) = 1 otherwise.

Theorem 1.1.6. ([44]) Let S(0, 1) be the unit sphere in a Banach space X. Then
α(S(0, 1)) = χ(S(0, 1)) = 0 if X is finite dimensional, and α(S(0, 1)) = 2, χ(S(0, 1)) =
1 otherwise.

Theorem 1.1.7. ([44]) The Kuratowski and Hausdorff MNCs are related by the in-
equalities

χ(B) ≤ α(B) ≤ 2χ(B).

In the class of all infinite dimensional Banach spaces these inequalities are the best
possible.

Example 1.1.1. Let l∞ be the space of all real bounded sequences with the supremum
norm, and let A be a bounded set in l∞. Then α(A) = 2χ(A).

For further facts concerning measures of noncompactness and their properties we
refer to [5, 11, 44, 8] and the references therein.

1.2 Semigroup of Linear Operator

Definition 1.2.1. A one-parameter family S(t) for of bounded linear operators on a
Banach space X is a C0-semigroup (or strongly continuous) on X if

(i) S(t) ◦ S(s) = S(t+ s), for t, s ≥ 0, (semigroup property),

(ii) S(0) = I, (the identity on X);

(iii) the map t→ S(t)x is strongly continuous, for each x ∈ X, i.e;

lim
t→0

S(t)(x) = x, ∀x ∈ X.

Remark 1.2.1. A semigroup of bounded linear operators (S(t))t≥0 is uniformly con-
tinuous if

lim
t→0
‖S(t)− I‖ = 0.

11
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Here I denotes the identity operator in E. A strongly continuous semigroup of bounded
linear operators on X will be called a semigroup of class C0 or simply a C0 semigroup.
If only (i) and (ii) are satisfied we say that the family (S(t))t≥0 of bounded linear
operators is a semigroup.

Definition 1.2.2. Let S(t) be a semigroup of class (C0) defined on X. The infinitesi-
mal generator A of S(t) is the linear operator defined by

A(x) = lim
h→0

=
S(h)(x)− x

h
, for x ∈ D(A),

where D(A) = {x ∈ X | lim
h→0

=
S(h)(x)− x

h
exists in X}.

Let us recall the following property:

Theorem 1.2.1. [51] If S(t) is a C0-semigroup, then there exist ω ≥ 0 and M ≥ 1
such that

‖S(t)‖B(E) ≤M exp(ωt), for 0 ≤ t <∞ (1.2.1)

Proof. We show first there is η ∈ (0, 1] such that

sup
t∈[0,η]

‖S(t)‖ < +∞.

Assume the contrary, i.e ∀η = 1
n
∈ (0, 1] with n ∈ N : sup

t∈[0,η]

‖S(t)‖ = +∞. It follows

that

∀n ∈ N, ∃tn ∈ [0, 1
n
] such that sup

n≥1
‖S(tn)‖ = +∞.

By uniform boundedness principle ∃x ∈ X : sup
n≥1
‖S(tn)x‖ = +∞ that ‖S(tn)x‖ is

unbounded.
On the other hand ∀x ∈ X,R 3 t → S(t)x ∈ X is continuous at 0; that is ∀ε > 0,
∃δ > 0: |t| < δ ⇒ ‖S(t)x− x‖ < ε.
In particular, let ε = 1.
Then,

‖S(t)x− x‖ < 1.

Hence we obtain the estimates:

‖S(t)x‖ − ‖x‖ ≤ |‖S(t)x‖ − ‖x‖| ≤ ‖S(t)x− x‖ < 1.

This implies that
‖S(t)x‖ ≤ 1 + ‖x‖.

But one has 0 ≤ tn ≤ 1
n

and then tn → 0 as n→ +∞ i.e take ε = δ,

∃n0 ∈ N : |tn| < δ; ∀n > n0,
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1.2 Semigroup of Linear Operator

then

‖S(tn)x‖ ≤ 1 + ‖x‖, n > n0;

it follows that

sup
n≥n0

‖S(tn)x‖ ≤ 1 + ‖x‖, n > n0. (1.2.2)

Now let n = 1, 2, ..., n0 − 1 there is only a finite number of S(tn)x.
Let M∗ = max ‖S(tn)x‖, n = 1, 2, ..., n0 − 1. Then for these,

sup ‖S(tn)x‖ ≤M∗ for n = 1, 2, ...., n0 − 1. (1.2.3)

So from (1.2.2) and (1.2.3) we have sup
n≥1
‖S(tn)x‖ ≤ 1 + ‖x‖+M∗.

Hence we get the contradiction,
Thus,

∃η ∈ (0, 1] : sup
t∈[0,η]

‖S(t)‖ < +∞.

Let M := sup
t∈[0,η]

‖S(t)‖, since ‖S(0)‖ = 1 then M ≥ 1.

Let ω = η−1 logM . Given t ≥ 0 with t > η we have t = n(t)η + δ, where 0 ≤ δ < η
and n(t) ∈ N.
By semigroup property

‖S(t)‖ = ‖S(η)n(t)S(δ)‖
≤ ‖S(η)n(t)‖‖S(δ)‖
≤ MMn(t) = MM

t−δ
η

≤ MM
t
η = M exp(ωη

t

η
) = M exp(ωt).

This completes the proof.

Remark 1.2.2. If, M = 1 and ω = 0, i.e; ‖S(t)‖B(E) ≤ 1, for t ≥ 0, then the
semigroup S(t) is called a contraction semigroup (C0)

Theorem 1.2.2. If (S(t))t≥0 is a C0 semigroup then t→ S(t)x is continuous, for each
x ∈ X is continuous from R+ (the positive real line) into X.

Proof. Let t0 > 0, x ∈ X.
We want to show that lim

t→t0
S(t)(x) = S(t0)x.

Case 1: t > t0

S(t)(x)− S(t0)x = S(t0)[S(t− t0)x− x]

‖S(t)(x)− S(t0)x‖ ≤ ‖S(t0)‖‖S(t− t0)x− x‖ → 0 as t→ t0.

13
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Therefore, lim
t→t+0

S(t)(x) = S(t0)x.

Case 2: t < t0

‖S(t)(x)− S(t0)x‖ = S(t)[S(t0 − t)x− x]

‖S(t)(x)− S(t0)x‖ ≤ ‖S(t)‖‖S(t0 − t)x− x‖ → 0 as t→ t0.

Therefore, lim
t→t−0

S(t)(x) = S(t0)x.

Theorem 1.2.3. Let S(t)t≥0 be a C0 semigroup and A be its infinitesimal generator.
Then

(a) For x ∈ X,

lim
h→0

1

h

∫ t+h

t

S(s)xds = S(t)x. (1.2.4)

(b) For x ∈ X,

∫ t

0

S(s)xds ∈ D(A) and

A(

∫ t

0

S(s)xds) = S(t)x− x. (1.2.5)

(c) For x ∈ D(A), S(t) ∈ D(A) and

d

dt
S(t)(x) = A(S(t)(x)) = S(t)(A(x)). (1.2.6)

(d) For x ∈ D(A)

S(t)x− S(s)x =

∫ t

s

S(τ)Axdτ =

∫ t

s

AS(τ)xdτ. (1.2.7)

lim
t→0

S(t)(x) = x, ∀x ∈ X.

Proof. (a) Let x ∈ X and h > 0; let’s write the estimates

‖1

h

∫ t+h

t

S(s)xds− S(t)x‖ = ‖1

h

∫ t+h

t

S(s)xds− 1

h

∫ t+h

t

S(t)xds‖

≤ 1

h

∫ t+h

t

‖S(s)x− S(t)x‖ds. (1.2.8)

Changing the variable, set u+ t = s, du = ds; if s = u then u = 0 and s = t+ h then
u = h.

1

h

∫ t+h

t

S(s)xds‖S(s)x− S(t)x‖ds =
1

h

∫ h

0

‖S(t+ u)x− S(t)x‖du.

14



1.2 Semigroup of Linear Operator

Since u is a dummy variable one can write

1

h

∫ t+h

t

S(s)xds‖S(s)x− S(t)x‖ds =
1

h

∫ h

0

‖S(s+ t)x− S(t)x‖ds.

Since t 7→ S(t)x is a continuous function from R+ to X i.e, given ε > 0, ∃δ > 0 such
that |t− t0| < δ then ‖S(t)x−S(t0x‖ < ε. Take h = t0− t, we can write the continuity
of t 7→ S(t)x equivalentely as follows given ε > 0, ∃δ > 0 such that |h| < δ then
‖S(t)x− S(t+ h)x‖ < ε.

1

h

∫ h

0

‖S(s+ t)x− S(t)x‖ds < 1

h

∫ h

0

εds = ε.

It is then natural to write

1

h

∫ t+h

t

‖S(s)x− S(t)x‖ds =
1

h

∫ h

0

‖S(s+ t)x− S(t)x‖ds < 1

h

∫ h

0

εds = ε.

Therefore

lim
h→0

1

h

∫ t+h

t

S(s)xds = S(t)x.

(b) Let x ∈ X and h > 0;

S(h)− I
h

∫ t

0

S(s)xds =
1

h

∫ t

0

S(s+ h)xds− 1

h

∫ t

0

S(s)xds

=
1

h

∫ t+h

h

S(s)xds− 1

h

∫ t

0

S(s)xds.

In the right hand side we have set for the first integral u = s + h; du = ds; if s = 0
then u = h and if s = t then u = t+ h.

1

h

∫ t+h

h

S(s)xds− 1

h

∫ t

0

S(s)xds =
1

h

∫ t

h

S(s)xds+
1

h

∫ t+h

t

S(s)xds− 1

h

∫ t

0

S(s)xds

=
1

h

∫ 0

h

S(s)xds+ ac1h

∫ t

0

S(s)xds

+
1

h

∫ t+h

t

S(s)xds− 1

h

∫ t

0

S(s)xds

=
1

h

∫ t+h

t

S(s)xds− 1

h

∫ t

0

S(s)xds.

and letting h→ 0 the right-hand side tends to S(t)x− x ∈ X, which proves (b).
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(c) Let x ∈ D(A) and h > 0; then

S(h)− I
h

S(t)x =
S(t+ h)− S(t)

h
x

= S(t)
S(h)− I

h
x→ S(t)A(x) as h→ 0. (1.2.9)

Thus, S(t)x ∈ D(A) and AS(t)x = S(t)x. (1.2.9) implies also that

d+

dt
S(t)x = AS(t)x = S(t)Ax,

i.e the right derivative of S(t)x is S(t)Ax, to prove (1.2.6) we have to show that for
t > 0 the left derivative of S(t)x exists and equals S(t)Ax.
This follows from,

lim
h→0

[
S(t)x− S(t− h)x

h
−S(t)x] = lim

h→0
S(t−h)[

S(h)x− x
h

−S(t)x]+lim
h→0

(S(t−h)Ax−S(t)Ax)

and the fact that both terms on the right-hand side are zero, the first since x ∈ D(A)
and ‖S(t − h)‖ is bounded on 0 ≤ h ≤ t and the second by continuity of S(t). This
conclude the proof of (c).
(d) Integrating (1.2.6) from s to t we obtain (d).

Corollary 1.2.4. If A is the infinitesimal generator of a C0 semigroup (S(t)t≥0) then
D(A) the domain of A, is dense in X and A is closed linear operator.

Proof. Let x ∈ X, set xt = 1
t

∫ t

0

S(t)xds. By part (c) of Theorem 1.2.3, xt ∈ D(A) for

t > 0 and by part (a) of the same theorem xt → x as t→ 0. Thus D(A) = X.
Let (x, y) ∈ A then there exist (xn)n≥1 ⊂ D(A) such that (xn, Axn)→ (x, y) i.e xn → x
and Axn → y.
By part (b) of Theorem 1.2.3, we have

S(t)xn − xx =

∫ t

0

S(s)Axnds (1.2.10)

Claim:

∫ t

0

S(s)Axnds →
∫ t

0

S(s)yds uniformly on bounded interval. Let t ∈ [0, a]

with a > 0;

‖
∫ t

0

S(s)Axnds−
∫ t

0

S(s)yds‖ ≤
∫ t

0

‖S(s)(Axn − y‖ds

≤
∫ t

0

‖S(s)‖‖Axn − y‖ds

≤ Meωt‖Axn − y‖.
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1.2 Semigroup of Linear Operator

Since Axn → y, it follows that

lim
n→+∞

sup
t∈[0,a]

‖
∫ t

0

S(s)Axnds−
∫ t

0

S(s)yds‖ = 0,

therefore our claim is true. Using the previous claim and letting n → +∞ in (1.2.10)
yields

S(t)x− x =

∫ t

0

S(s)ydy. (1.2.11)

Dividing (1.2.11) by t > 0 and letting t → 0, we see, using part (a) of Theorem 1.2.3
that x ∈ D(A) and Ax = y.

Theorem 1.2.5. A linear operator A is the infinitesimal generator of a uniformly
continuous semigroup if and only if A is a bounded linear operator.

Proof. (a) It is known that the series
∞∑
n=0

(tA)n

n!
in norm for every t ≥ 0 and defines for

each such t a bounded linear operator S(t). It is easy to see that

• S(0) = I,

• S(t+s)=S(t)S(s), for all t, s ≥ 0,

•

etA =
∞∑
n=0

(tA)n

n!
= I +

∞∑
n=1

(tA)n

n!

etA − I = tA
∞∑
n=1

(tA)n−1

(n− 1)!
.

Taking the norm of both side, one has

‖etA − I‖ ≤ ‖tA‖‖
∞∑
n=1

(tA)n−1

(n− 1)!
‖

≤ |t|‖A‖‖
∞∑
n=1

(tA)n−1

(n− 1)!
‖

≤ |t|‖A‖et‖A‖,

‖etA − I‖ ≤ t‖A‖et‖A‖ which goes to 0 as t goes to 0. Now, we claim that A is the

17



Preliminaries

infinitesimal generator of S(t). Let us prove our claim, let t > 0. We have

etA − I = tA
∞∑
n=1

(tA)n−1

(n− 1)!

etA − I
t

= A
∞∑
n=1

(tA)n−1

(n− 1)!

etA − I
t

− A = A
[ ∞∑
n=1

(tA)n−1

(n− 1)!
− I
]
.

Taking the norm of both side, one has

‖e
tA − I
t

− A‖ ≤ ‖A‖‖
∞∑
n=1

(tA)n−1

(n− 1)!
− I‖.

≤ ‖A‖‖
∞∑
n=1

(tA)n−1

(n− 1)!
− I‖ = ‖A‖‖etA − I‖.

That is ‖ etA−I
t
−A‖ ≤ ‖A‖‖S(t)−I‖. Which implies as t→ 0+ that lim

t→0+

etA − I
t

= A.

We have have established that S(t) is a uniformly continuous semgroup of bounded
linear operators on X and that A is its infinitesimal generator.
(b) Let S(t) be a C0 semigroup of bounded linear operator on X.

Fix ρ > 0, small enough such that ‖I−ρ−1

∫ ρ

0

S(s)ds‖ ≤ 1 this implies that ρ−1

∫ ρ

0

S(s)ds

is invertible and therefore

∫ ρ

0

S(s)ds is invertible.

Now, let h > 0,

h−1(S(h)− I)

∫ ρ

0

S(s)ds = h−1

∫ ρ

0

S(h+ s)ds− h−1

∫ ρ

0

S(s)ds

and therefore

h−1
(
S(h)− I

) ∫ ρ

0

S(s)ds = h−1
( ∫ ρ

0

S(s+ h)ds−
∫ ρ

0

S(s)ds
)

= h−1
( ∫ h+ρ

h

S(s)ds−
∫ ρ

0

S(s)ds
)

h−1(S(h) − I) = h−1
( ∫ h+ρ

h

S(s)ds −
∫ ρ

0

S(s)ds
)( ∫ ρ

0

S(s)ds
)−1

and letting h → 0 it

follows that h−1(S(h)− I) converges in norm to a bounded linear operator

(S(ρ− I)
( ∫ ρ

0

S(s)ds
)−1

which is the infinitesimal generator of S(t).
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1.3 Some Fixed Point Theorems

Theorem 1.2.6. Let (T (t))t≥0 and (S(t))t≥0 be two C0 semigroup on X, generated
respectively by A and B. If A = B then T (t) = S(t), t ≥ 0.

Proof. Assume A = B and let x ∈ D(A) = D(B).
Define α(s) := T (t− s)S(s)x, s ∈ [0, t].
From Theorem 1.2.3 part (c) it follows that α is differentiable and that
α′(s) = d

ds
T (t− s)S(s)x = −T (t− s)AS(s)x+ T (t− s)BS(s)x = 0, since A = B.

It follows α(s) = constant. In particular, its values at s = 0 and s = t are the same
that is T (t)x = S(s)x ∀x ∈ D(A). By Corollary 1.2.4 D(A) is dense in X and T (t),
S(s) are closed;
therefore T (t)x = S(s)x; ∀x ∈ X.

For more details see [2, 6, 28, 29, 30, 38, 44, 56]

1.3 Some Fixed Point Theorems

Theorem 1.3.1 (Banach’s fixed point theorem (1922) [16]). Let C be a non-empty
closed subset of a Banach space X, then any contraction mapping T of C into itself
has a unique fixed point.

Theorem 1.3.2 (Schaefer’s fixed point theorem [16]). Let X be a Banach space, and
N : X −→ X completely continuous operator.
If the set E = {y ∈ X : y = λNy, forsome λ ∈ (0, 1)} is bounded, then N has fixed
points.

Theorem 1.3.3 (Darbo’s Fixed Point Theorem [27, 16]). Let X be a Banach space
and C be a bounded, closed, convex and nonempty subset of X. Suppose a continuous
mapping T : C → C is such that for all closed subsets D of C,

α(T (D)) ≤ kα(D), (1.3.1)

where 0 ≤ k < 1, and α is the Kuratowski measure of noncompactness. Then T has a
fixed point in C.

Remark 1.3.1. Mappings satisfying the Darbo-condition (1.3.1) have subsequently
been called k-set contractions.

Theorem 1.3.4 (Mönch’s Fixed Point Theorem [2, 50]). Let D be a bounded, closed
and convex subset of a Banach space such that 0 ∈ D, and let N be a continuous
mapping of D into itself. If the implication

V = convN(V ) or V = N(V ) ∪ {0} ⇒ α(V ) = 0

holds for every subset V of D, then N has a fixed point.
Here α is the Kuratowski measure of noncompactness.
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Chapter 2

Existence of Mild Solution for
Neutral Functional Equations

In this chapter, we study the existence of solutions for neutral differential equations of
the form: 

d
dt

[x(t) + F (t, x(t), x(b1(t)), ..., x(bm(t)))] =
Ax(t) +G(t, x(t), x(a1(t)), ..., x(an(t))), t ∈ J = [0, a],
x(0) = x0.

(2.0.1)

Where A is the infinitesimal generator of a compact analytic semigroup of bounded
linear operators T (t) in a Banach space X, F : [0, a] × Xm+1 −→ X,G : [0, a] ×
Xn+1 −→ X are continuous functions. The delays ai(t), bj(t) are continuous scalar
valued functions defined on J such that ai(t) ≤ t, bj(t) ≤ t. The purpose of this paper
is to prove the existence of mild solutions for the same class of neutral equations with
mild solutions by applying Schaefer’s theorem instead of Sadovskii’s theorem.

2.1 Main Result

Let A : D(A) −→ X be the infinitesimal generator of a compact analytic semigroup of
uniformly bounded linear operator T (t) defined on a Banach space X with norm ‖ . ‖.
Let 0 ∈ ρ(A) then define the fractional power Aα, for 0 < α ≤ 1, as a closed linear
operator on its domain D(Aα) which is dense in X. Further D(Aα) is a Banach space
under the norm

‖ x ‖α=‖ Aαx ‖, for x ∈ D(Aα),

and is denoted by Xα imbedding Xα ↪→ Xβ for 0 < β < α ≤ 1 is compact whenever
the resolvent operator of A is compact. For semigroup {T (t)} the following properties
will be used.

(a) there is a M1 > 1 such that ‖ T (t) ‖≤M1, for all 0 ≤ t ≤ a.
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2.1 Main Result

(b) for any α > 0, there exists a positive constant M2 > 0 such that

‖ AαT (t) ‖≤M2t
−α, 0 < t ≤ a. (2.1.1)

Definition 2.1.1. A function x(·) is called a mild solution of the system (2.0.1) if
x(0) = x0, the restriction of x(·) to the interval [0, a] is continuous and for each
0 ≤ t ≤ a the function AT (t − s)F (s, x(s), x(b1(s)), . . . , x(bm(s))), s ∈ [0, t), is inte-
grable, and the following integral equation

x(t) = T (t)[x0 + F (0, x0, x(b1(0)), . . . , x(bm(0))]

−F (t, x(t), x(b1(t)), . . . , x(bm(t)))

−
∫ t

0
AT (t− s)F (s, x(s), x(b1(s)), . . . , x(bm(s)))ds

+
∫ t

0
T (t− s)G(s, x(s), x(a1(s)), . . . , x(an(s)))ds,

(2.1.2)

is satisfied.

Assume that the following conditions hold:

(H1) For each t ∈ J , the function G(t, ·) : Xn+1 −→ X is continuous, and for each
(x0, x1, . . . , xn) ∈ Xn+1 the function G(·, x0, x1, . . . , xn) : [0, a] −→ X is strongly
mesurable.

(H2) For each positive integer k there exists αk ∈ L1[0, a] such that

sup
‖x0‖...‖xn‖≤k

‖ G(t, x0, x1, . . . , xn) ‖≤ αk(t) for t ∈ J.

(H3) The function F : [0, a] × Xm+1 −→ X is completely continuous and for any
bounded set Q in C([−r, a], X) the set

{t −→ F (t, x(t), x(a1(t)), . . . , x(am(t))) : x ∈ Q},

is equicontinuous.

(H4) There exist β ∈ (0, 1) and a constant c1 ≥ 0such that
‖ (A)βF (t, u(t)) ‖≤M3, t ∈ J .

(H5) There exists an integrable function m : [0, a] −→ [0,∞) such that

‖ G(t, x(t), x(a1(t)), . . . , x(an(t))) ‖≤ (n+ 1)m(t)Ω(‖ x(t) ‖),

where Ω : [0,∞) −→ (0,∞) is a continuous nondecreasing function.
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Existence of Mild Solution for Neutral Functional Equations

(H6) ∫ a

0

m̂(s)ds <

∫ ∞
0

ds

s+ Ω(s)
,

where

c = M1[‖ x0 ‖ +M3M4] +M3M4 +
M3M2a

β

β
,

M4 =‖ (A)−α ‖,

m(t) = M1m(t)(n+ 1)2.

Now let us take

(t, x(t), x(b1(t)), . . . , x(bm(t))) = (t, u(t)),

(t, x(t), x(a1(t)), . . . , x(an(t))) = (t, v(t)).

Theorem 2.1.1. If the above assumptions are satisfied then the problem (2.0.1) has a
mild solution on J = [0, a].

Proof. Consider the Banach space Z = C(J,X) with norm

‖ x ‖= sup{| x(t) | : t ∈ J}.

To prove the existence of mild solution of (2.0.1) we have to apply Schaefer theorem
for the following operator equation

x(t) = λΨx(t), 0 < λ < 1. (2.1.3)

Balachandran et al. Where Ψ : Z −→ Z is defined as

(Ψx)(t) = T (t)[x0+F (0, u(0))]−F (t, u(t))−
∫ t

0

AT (t−s)F (s, u(s))ds+

∫ t

0

T (t−s)G(s, v(s))ds

. Then from (2.1.2) we have

‖ x(t) ‖ ≤M1[‖ x0 ‖ +M3M4] +M3M4 +M2

∫ t
0
Mβ−1

3 (t− s)ds

+M1

∫ t
0
(n+ 1)m(s)Ω(‖ v(s) ‖)ds

≤M1[‖ x0 ‖ +M3M4] +M3M4 + M3M2aβ

β
+M1

∫ t
0
(n+ 1)m(s)Ω(‖ v(s) ‖)ds.

Denoting the right hand side of above inequality as µ(t) then

‖ x(t) ‖≤ µ(t) andµ(0) = c = M1[‖ x0 ‖ +M3M4] +M3M4 +
M3M2a

β

β
,
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2.1 Main Result

µ′(t) = M1(n+ 1)m(t)Ω(‖ v(t) ‖) ≤M1(n+ 1)2m(t)Ω(µ(t)) ≤ m(t)[Ω(µ(t))].

This implies ∫ µ(t)

µ(0)

ds

Ω(s)
≤
∫ a

0

m̂(s)ds <

∫ ∞
c

ds

Ω(s)
, 0 ≤ t ≤ a (2.1.4)

Inequality (2.1.4) implies that there is a constant K such that µ(t) ≤ K, t ∈ [0, a] and
hence we have ‖ x ‖= sup{| x(t) |: t ∈ J} ≤ K, where K depends only on a and on the
functions m̂ and Ω.
We shall now prove that the operator Ψ : Z −→ Z is a completely continuous operator.
Let Bk = {x ∈ Z :‖ x ‖1≤ k} for some k > 1. We first show that Ψ maps Bk into
an equicontinuous family. Let x ∈ Bk and t1, t2 ∈ [0, a]. Then if 0 < t1 < t2 < a,

‖ (Ψx)(t1)− (Ψx)(t2) ‖

≤‖ (T (t1)− T (t2))[x0 + F (0, u(0))] ‖ + ‖ F (t1, u(t1))− F (t2, u(t2)) ‖

+ ‖
∫ t1

0
A[T (t1 − s)− T (t2 − s)]F (s, u(s))ds ‖ + ‖

∫ t2
t1
AT (t2 − s)F (s, u(s))ds ‖

+ ‖
∫ t1

0
[T (t1 − s)− T (t2 − s)]G(s, v(s))ds ‖ + ‖

∫ t2

t1

T (t2 − s)G(s, v(s))ds ‖

≤‖ (T (t1)− T (t2))[x0 + F (0, u(0))] ‖ + ‖ F (t1, u(t1))− F (t2, u(t2)) ‖

+

∫ t1

0

‖ A[T (t1 − s)− T (t2 − s)] ‖M3M4ds+

∫ t2

t1

‖ AT (t2 − s) ‖M3M4ds

+

∫ t1

0

‖ T (t1 − s)− T (t2 − s) ‖ αk(s)ds+

∫ t2

t1

‖ T (t2 − s) ‖ αk(s)ds

.

The right hand side is independent of x ∈ BK and tends to zero as t2 − t1 −→ 0,
since F is completely continuous and the compactness of T (t) for t > 0 implies
continuity in the uniform operator topology. Thus Ψ maps Bk into an equicontinuous
family of functions. It is easy to see that ΨBk is uniformly bounded. Next, we show
ΨBk is compact. Since we have shown ΨBk is equicontinuous collection, by the Arzela-
Ascoli theorem it suffices to show that Ψ maps Bk into a precompact set in X.
Let 0 < t ≤ a be fixed and let ε be a real number satisfying 0 < ε < t. For x ∈ Bk,
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Existence of Mild Solution for Neutral Functional Equations

we define

(Ψεx)(t) = T (t)[x0 + F (0, u(0))]− F (t, u(t))−
∫ t−ε

0

AT (t− s)F (s, u(s))ds

+

∫ t−ε

0

T (t− s)G(s, v(s))ds

= T (t)[x0 + F (0, u(0))]− F (t, u(t))− T (ε)

∫ t−ε

0

AT (t− s− ε)F (s, u(s))ds

+T (ε)

∫ t−ε

0

T (t− s− ε)G(s, v(s))ds

Since T (t) is a compact operator, the set Yε(t) = (Ψεx)(t) : x ∈ Bk is precompact in X
for every ε, 0 < ε < t. Moreover, for every x ∈ Bk we have

‖ (Ψx)(t)− (Ψεx)(t) ‖

≤
∫ t−ε

t

‖ AT (t− s)F (s, u(s)) ‖ ds+

∫ t−ε

t

‖ T (t− s)G(s, v(s)) ‖ ds

≤
∫ t−ε

t

‖ AT (t− s)F (s, u(s)) ‖ ds+

∫ t−ε

t

‖ T (t− s) ‖ αk(s)ds

. Therefore there are precompact sets arbitrarily close to the set {(Ψx)(t) : x ∈ Bk}.
Hence, the set {(Ψx)(t) : x ∈ Bk} is precompact in X. It remains to show that Ψ :
Z −→ Z is continuous. Let {xn}∞0 ⊆ Z with xn −→ x in Z. Then there is an integer
q such that ‖ xn(t) ‖≤ q for all n and t ∈ J, so xn ∈ Br and x ∈ Br. by (H2)

G(t, vn(t)) −→ G(t, v(t)),

for each t ∈ J and since

‖ G(t, vn(t))−G(t, v(t)) ‖≤ 2αq(t),
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2.2 Application

Balachandran et al. we have, by the dominated convergence theorem, that

‖ Ψxn −Ψx ‖ = sup
t∈J
‖ [F (t, un(t))− F (t, u(t))]

+

∫ t

0

AT (t− s)[F (s, un(s))− F (s, u(s))]ds

+

∫ t

0

T (t− s)[G(s, un(s))−G(s, u(s))]ds ‖

≤‖ F (t, un(t))− F (t, u(t)) ‖

+

∫ t

0

‖ AT (t− s) ‖‖ F (s, un(s))− F (s, u(s)) ‖ ds

+

∫ t

0

‖ T (t− s) ‖‖ G(s, un(s))−G(s, u(s)) ‖ ds

−→ 0,

as n −→ ∞. Thus Ψ is continuous. This completes the proof that Ψ is completely
continuous.
Finally the set ς(Ψ) = {x ∈ Z : x = λΨx, λ ∈ (0, 1)} is bounded, as we proved in
the first step. Consequently, by Schaefer theorem, the operator Ψ has a fixed point in
Z. This means that any fixed point of Ψ is a mild solution of (2.0.1) on J satisfying
(Ψx)(t) = x(t).

2.2 Application

As an application of Theorem (4.1.1), we shall consider the system (5.1.1) with a control
parameter such as

d
dt

[c(t) + F (t, x(t), x(b1(t), . . . , x(bm(t))))] = Ax(t) +Bω(t)

+G(t, x(t), x(a1(t)), . . . . . . , x(an(t))), t ∈ J = [0, a],

x(0) = x0

(2.2.1)
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Existence of Mild Solution for Neutral Functional Equations

Where B is a bounded linear operator from U , a Banach space, to X and ω ∈ L2(J, U).
In this case the mild solution of (2.2.1) is given by

x(t) = T (t)[x0 + F (0, u(0))]− F (t, u(t))−
∫ t

0

AT (t− s)F (s, u(s))ds

+

∫ t

0

T (t− s)[Bω(s)ds+G(s, v(s))]ds

We say the system (2.2.1) is locally controllable on the interval J if for any subset
Y ⊂ X and for every x0, x1 ∈ Y , there exists a control ω ∈ L2(J, U) such that the
solution x(·) of (2.2.1) satisfies x(a) = x1. Let Xr = {x ∈ X : |x| ≤ r{ for some r > 0
and Zr = C1(J,Xr).
Controllability of nonlinear systems of various types in Banach spaces has been stud-
ied by several authors by means of fixed point principles . Recently Balachandran and
Anandhi and Fu investigated the controllability problem for neutral systems. To es-
tablish the controllability result for the system (2.2.1) we need the following additional
hypotheses.

(H7) The linear operator W : L2(J, U) −→ X defined by

Wu =

∫ a

0

T (a− s)Bω(s)ds

has an induced inverse operator W̃−1 which takes values in L2(J, U)/ kerW and
there exists a positive constant M5 such that ‖ BW̃−1 ‖≤M5.

(H8) ∫ a

0

m(s)ds <

∫ ∞
0

ds

Ω(s)
,

where
c = M1[‖ x0 ‖ +M3c1] +M3M4 + M3M4aβ

β
+M1Na,

N = M5{‖ x1 ‖ +M1 ‖ x0 ‖ +M3M4 + M3M4aβ

β

+M1

∫ a

0

m(s)(n+ 1)Ω(r)ds}.

Theorem 2.2.1. If the hypotheses (H1)-(H8) are satisfied, then the system (2.2.1) is
controllable.

Proof. Using the hypotheses (H7), for an arbitrary function x(.), define the control

ω(t) = W−1{x1 − T (a)[x0 + F (0, u(0))] + F (a, u(a))

+

∫ a

0

AT (a− s)F (s, u(s))ds−
∫ 1

0

T (a− s)G(s, v(s))ds}(t)
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2.2 Application

We shall show that when using this control the operator Φ : Zr −→ Zr defined by

(Φx)(t) = T (t)[x0 + F (0, u(0))]− F (t, u(t))−
∫ t

0

AT (t− s)F (s, u(s))ds

∫ t

0

T (t− s)[Bω(s) +G(s, v(s))]ds, t ∈ J,

has a fixed point. This fixed point is then a solution of (2.2.1). Substituting ω(t) in
the above equation we get (Φx)(a) = x1, which means that the control ω steers system
(2.2.1)from the given initial condition x0tox1 in time a. Thus the system (2.2.1) is
controllable. The remaining part of the proof is similar to Theorem 3.1 and hence it is
omitted.
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Chapter 3

Functional Differential Equations
with State-Dependent Delays

3.1 Uniqueness of Mild Solutions

We study the uniqueness of solutions for neutral differential equations with state-
dependent delays of the following form, on J := [0, T ]

d

dt
(x(t)− g(t, x(t− η(t)))) = A(x(t)− g(t, x(t− η(t)))) + f(t, xt, x(t− τ(t, xt))), t ∈ J,

(3.1.1)
with initial condition

x(t) = ϕ(t), t ∈ [−r, 0], (3.1.2)

where A generates a strongly continuous semigroup (S(t))t≥0 on a Banach space E,
f : J×C([−r, 0], E)×E → E, g : J×E → E are given functions, and ϕ : [−r, 0]→ E,
τ : [0, T ]×C([−r, 0], E)→ [0, r] and η : J → [0, r] are also given continuous functions.

This chapter is organized as follows: in Section 3.1, we give one of our main Unique-
ness results for solutions of (3.1.1)-(3.1.2), with the proof based on Banach’s fixed point
theorem 1.3.1. In Section 3.2, we give two other existence results for solutions of (3.1.1)-
(3.1.2). Their proofs involve the measure of noncompactness paired in one result with
a Mönch fixed point theorem 1.3.4 and paired in the other result with a Darbo fixed
point theorm 1.3.3.

Lemma 3.1.1. We say that a continuous function x : [−r, T ]→ E is a mild solution
of problem (3.1.1), (3.1.2) if x(t) = ϕ(t), t ∈ [−r, 0] and

x(t) = S(t)[ϕ(0)− g(0, x(−η(0)))] + g(t, x(t− η(t)))

+
∫ t

0
S(t− s)f(s, xs, x(s− τ(s, xs)))ds, t ∈ J.
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3.1 Uniqueness of Mild Solutions

Proof. we pose

g(s) = T (t− s)x(s), then

g(0) = T (t)x0 = T (t)ϕ(0),

g(t) = T (t− t)x(t) = x(t)

and

g′(s) = −AT (t− s)x(s) + T (t− s)x′(s)
= T (t− s)(−Ax(s) + x′(s))

= T (t− s)(g′(t, x(t− η(t)))− Ag(t, x(t− η(t))) + f(t, xt, x(t− η(t, xt))))

= T (t− s)g′(t, x(t− η(t)))− AT (t− s)g + T (t− s)f(t, xt, x(t− τ(t, xt))

= (T (t− s)g(t, x(t− η(t))))′ + T (t− s)f(t, xt, x(t− τ(t, xs))

An integration from 0 to t , we have:

g(t)− g(0) = [T (t− s)g]t0 +

∫ t

0

T (t− s)fds

g(t) = x(t) = g(0) + g(t, x(t− η(t)))− T (t)g(0, x(0, x(−η(0))) +

∫ t

0

T (t− s)ds

x(t) = T (t)ϕ(0) + g(t, x(t− η(t)))− T (t)g(0, x(−η(0))) +

∫ t

0

T (t− s)fds

x(t) = T (t)ϕ(0)− ϕ(0, x(−η(0))) + g(t, x(t− η(t))) +

∫ t

0

T (t− s)fds

Lemma 3.1.2. (See [37]) Let a > 0, b ≥ 0, r1 > 0, r2 ≥ 0, r = max{r1, r2}, and
v : [0, σ] → [0,∞) be continuous and nondecreasing. Let u : [−r, σ] → [0,∞) be
continuous and satisfy the inequality

u(t) ≤ v(t) + bu(t− r1) + a

∫ t

0

u(s− r2)ds, t ∈ [0, σ].

Then u(t) ≤ d(t)ect for t ∈ [0, σ], where c is the unique positive solution of
cbe−cr1 + ae−cr2 = c, and

d(t) = max
{ v(t)

1− be−cr1
, max
−r≤s≤0

e−csu(s)
}
, t ∈ [0, σ].
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Let Ω1 ∈ C, Ω2 ∈ E and Ω3 ∈ E be open subsets of their respective spaces. Let
T > 0 be finite, or T =∞, in which case [0, T ] denotes the interval [0,∞).
We define the set

Π = {ϕ ∈ C : ϕ ∈ Ω1, ϕ(−τ(0, ϕ)) ∈ Ω2, ϕ(−η(0)) ∈ Ω3}.

Let us introduce the following hypotheses:

(H1) A is the generator of a strongly continuous semigroup S(t), t ∈ J which is compact
for t > 0 in the Banach space E. Let M > 0 be such that

‖S(t)‖ ≤M for all t ∈ J.

(H2) (i) f : J × Ω1 × Ω2 → E is continuous;
(ii) f(t, ψ, u) is locally Lipschitz continuous in ψ and u in the following sense: for
every finite σ ∈ (0, T ], for every closed and bounded subset M1 ⊂ Ω1 of C and
closed and bounded subset M2 ⊂ Ω2 of E, there exists a constant
L1 > 0 such that

‖f(t, ψ1, u1))− f(t, ψ2, u2))‖ ≤ L1( sup
ζ∈[−r,−r0]

‖ψ1(ζ)− ψ2(ζ)‖+ ‖u1 − u2‖),

for every t ∈ [0, σ], ψ1, ψ2 ∈M1 and u1, u2 ∈M2,

(H3) (i) g : J × Ω3 → E is continuous;
(ii) g(t, u) is locally Lipschitz continuous in u in the following sense: for every
finite σ ∈ (0, T ], for every closed and bounded subset M3 ⊂ Ω3 of E, there exists
a constant 0 < L2 < 1 such that

‖g(t, u1)− g(t, u2)‖ ≤ L2‖u1 − u2‖,

for every t ∈ [0, σ] and u1, u2 ∈M3,

(H4) there exists a constant r0 > 0, such that r0 ≤ τ(t, ψ) ≤ r, t ∈ [0, T ], and ψ ∈ Ω1.

(H5) there exists a constant L3 > 0, such that

‖ϕ(ζ)− ϕ(ζ̄)‖ ≤ L3‖ζ − ζ̄‖,

for ζ, ζ̄ ∈ [−r, 0].

Theorem 3.1.3. Assume that assumptions (H1) − (H4) hold and let γ ∈ Π. Then,
there exist δ > 0 and 0 < σ ≤ T finite numbers such that

(i) P = B̄C(γ, δ) ⊂ Π;

(ii) the problem (3.1.1)-(3.1.2) has a unique mild solution on a maximal interval of
existence [−r, T ) for all γ ∈ P .
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Proof. We define the following constants K1, K2, K3 > 0 such that:

‖ f(t, ψ, ψ(−τ(t, ψ))) ‖≤ K1,

‖ g(t, ψ(−η(t))) ‖≤ K2

and
K3 = ‖ϕ(0)‖.

Let δ > 0 and

E0 = {u ∈ C([−r, σ], E), u(t) = ϕ(t) if t ∈ [−r, 0] and sup
t∈[0,σ]

‖u(t)− ϕ(0)‖ ≤ δ}.

It is clear that E0 is a closed set of C([−r, σ], E), for more details see [15]. Transform
the problem (3.1.1)-(3.1.2) into a fixed point problem. Consider the operator

N : E0 → C([−r, σ], E)

defined by

Nx(t) =


ϕ(t), t ∈ [−r, 0].

S(t)[ϕ(0)− g(0, x(−η(0)))] + g(t, x(t− η(t)))

+

∫ t

0

S(t− s)f(s, xs, x(s− τ(s, xs)))ds , t ∈ J.

(3.1.3)

Note that a fixed point of N is a mild solution of (3.1.1)-(3.1.2). We will show that

N(E0) ⊆ E0.

Let v ∈ E0 and t ∈ [0, σ]. We have

‖N(v)(t)− ϕ(0)‖ ≤ ‖S(t)[ϕ(0)− g(0, v(−η(0)))]− ϕ(0)‖+ ‖g(t, v(t− η(t)))‖

+‖
∫ t

0

S(t− s)f(s, vs, v(s− τ(s, vs)))ds‖

≤ (M + 1)‖ϕ(0)‖+M‖g(0, v(−η(0)))‖+ ‖g(t, v(t− η(t)))‖

+M‖
∫ t

0

f(s, vs, v(s− τ(s, vs)))ds‖

≤ (M + 1)K3 +MK2 +K2 +MK1

∫ t

0

ds

≤ (M + 1)K3 + (M + 1)K2 +MσK1

≤ 3β ≤ δ.

Hence,
N(E0) ⊆ E0.
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On the other hand, let v, w ∈ E0. Then for t ∈ [0, σ], we have

‖N(v)(t)−N(w)(t)‖ ≤ ‖S(t)[g(0, v(−η(0)))− g(0, w(−η(0)))]‖
+‖g(t, v(t− η(t)))− g(t, w(t− η(t)))‖

+‖
∫ t

0

S(t− s)[f(s, vs, v(s− τ(s, vs)))

−f(s, ws, w(s− τ(s, ws)))]ds‖
≤ML2‖v(−η(0))− w(−η(0))‖
+L2‖v(t− η(t))− w(t− η(t))‖

+ML1

∫ t

0

sup
ζ∈[−r,−r0]

‖vs(ζ)− ws(ζ)‖

+ML1

∫ t

0

‖v(s− τ(s, vs))− w(s− τ(s, ws))‖ds

≤ML2‖v(−η(0))− w(−η(0))‖
L2‖v(t− η(t))− w(t− η(t))‖

+ML1

∫ t

0

sup
ζ∈[−r,−σ]

‖vs(ζ)− ws(ζ)‖

+ML1

∫ t

0

‖v(s− τ(s, vs))− w(s− τ(s, ws))‖ds.

Since ut(ζ) = u(t + ζ) = ϕ(t + ζ) = ϕt(ζ) for t ∈ [0, σ] and ζ ∈ [−r,−σ]. We have
t− τ(t, ϕt) ≤ t− r0 ≤ t− σ ≤ 0 for t ∈ [0, σ], so ut(−τ(t, ϕt)) = ϕt for t ∈ [0, σ], and
v(−η(0)) = w(−η(0)) = ϕ(−η(0)). Then

‖N(v)(t)−N(w)(t)‖ ≤ ML2‖ϕ(−η(0))− ϕ(−η(0))‖
+L2‖v(t− η(t))− w(t− η(t))‖

+ML1

∫ t

0

[‖ϕs − ϕs‖+ ‖ϕ(s− τ(s, ϕs))− ϕ(s− τ(s, ϕs))‖]ds.

≤ L2‖v(t− η(t))− w(t− η(t))‖
≤ L2 sup

θ∈[−r,0]

sup
t∈[0,σ]

‖v(t+ θ)− w(t+ θ)‖

≤ L2‖v − w‖∞.

Consequently,

‖N(v)−N(w)‖∞ ≤ L2‖v − w‖∞.

Since L2 < 1, N is a contraction. By the Banach fixed point theorem 1.3.1 we conclude
that N has a unique fixed point in E0 and the problem (3.1.1)-(3.1.2) has a unique
mild solution on [−r, σ].

32



3.1 Uniqueness of Mild Solutions

Let u(t) be the unique mild solution of problem (3.1.1)-(3.1.2) defined on its max-
imal interval of existence [0, T ), T > 0. Assume that T <∞ and

lim
t→T−

‖u(t)‖ <∞.

Then, there exists a constant ρ > 0 such that ‖u(t)‖ ≤ ρ, for t ∈ [−r, T ).
Note that (H2) and (H3) imply that

‖f(t, ψ, ψ(−τ(t, ψ)))− f(0, ϕ, ϕ(−τ(0, ϕ)))‖ ≤ L1(‖ψ − ϕ‖+ ‖ψ(−τ(t, ψ))

−ϕ(−τ(0, ϕ))‖)

for t ∈ [0, σ], ψ ∈ B̄C(ϕ̂, δ). Similarly,

‖g(t, ψ(−η(t)))− g(0, ϕ(−η(0)))‖ ≤ L2‖ψ(−η(t))− ϕ(−η(0))‖

for t ∈ [0, σ], ψ ∈ B̄C(ϕ̂, δ).
We define the following constants

c1 = ‖f(0, ϕ, ϕ(−τ(0, ϕ)))‖+ L1(‖ϕ‖+ ‖ϕ(−τ(0, ϕ))‖),

c2 = ‖g(0, ϕ(−η(0)))‖+ L2‖ϕ(−η(0))‖.
Let t ∈ [0, T ). We obtain

‖u(t)‖ ≤ ‖S(t)[ϕ(0)− g(0, u(−η(0)))]‖
+‖g(t, u(t− η(t)))‖

+‖
∫ t

0

S(s)f(s, us, u(s− τ(s, us)))ds‖

≤ M [‖ϕ(0)‖+ ‖g(0, u(−η(0)))‖] + L2‖u(t− η(t))‖+ c2 +Mc1t

+ML1

∫ t

0

[‖us‖+ ‖u(s− τ(s, us))‖]ds

≤ M [‖ϕ(0)‖+ ‖g(0, u(−η(0)))‖] + L2‖u(t− η(t))‖+ c2 + tMc1

+tML1‖u‖∞ +ML1

∫ t

0

‖u(s− τ(s, us))‖ds

≤ v(t) + L2‖u(t− r1)‖+ML1

∫ t

0

‖u(s− r2)‖ds

where r1 = η, r2 = τ and

v(t) = M [‖ϕ(0)‖+ ‖g(0, u(−η(0)))‖] + c2 + tMc1 + tML1‖u‖∞.

By Lemma 3.1.2, it follows that

‖u(t)‖ ≤ d(t)ect
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for t ∈ [0, T ), where c is the unique positive solution of cL2e
−cr1 +ML1e

−cr2 = c, and

d(t) = max
{

v(t)
1−L2e−cr1 , max

−r≤s≤0
e−csu(s),

}
, t ∈ [0, T ).

It follows that lim
t→T−

u(t) exists. Consequently, u(t) can be extended to T , which con-

tradicts the maximality of [0, T ).

3.2 Existence of Mild Solutions

In this section we apply a technique based on noncompactness measure assumption on
the nonlinear term in proving an existence result for problem (3.1.1)-(3.1.2).
We introduce some additional hypotheses:

(H5) The function f : J × C × E → E is continuous.

(H6) (i) There exist constants c1 ≥ 0 and c2 ≥ 0 such that

‖g(t, u)‖ ≤ c1‖u‖+ c2, a.e. t ∈ J , u ∈ E;

(ii) the function g is completely continuous and for any bounded set B in Ω, the
set
{
t→ g(t, x(t− η(t))) : x ∈ B

}
is equicontinuous in Ω.

(H7) There exist c3 > 0, p ∈ L1(J,R+) and a continuous nondecreasing function
ψ : [0,∞)→ [0,∞) such that

‖f(t, u, v)‖ ≤ p(t)ψ(‖u‖) + c3‖v‖, for each u ∈ C, v ∈ E and t ∈ J.

(H8) For each bounded B ⊂ E, B′ ⊂ E and t ∈ J we have

α(f(t, B,B′)) ≤ p(t)α(B) + c3α(B′).

(H9) For each t ∈ J and bounded B ⊂ E we have

α(g(t, B)) ≤ c1α(B).

(H10) There exists q > 0 such that

M‖ϕ‖∞ + (M + 1)[c1q + c2] +M [‖p‖L1ψ(q) + Tc3q] ≤ q.

Theorem 3.2.1. Assume that (H1), (H5), (H6), (H7), (H8), (H9) and (H10) hold.
Suppose that [

c1 +M
(
c1 + ‖p‖L1 + c3T )

]
< 1. (3.2.1)

Then the problem (3.1.1)-(3.1.2) has at least one mild solution on [−r, T ].
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Proof. Transform the problem (3.1.1)-(3.1.2) into a fixed point problem. Consider the
operator

N : Ω→ Ω

defined by

(Nx)(t) =


ϕ(t), t ∈ [−r, 0].
S(t)[ϕ(0)− g(0, x(−η(0)))] + g(t, x(t− η(t)))

+

∫ t

0

S(t− s)f(s, xs, x(s− τ(s, xs)))ds , t ∈ J.
(3.2.2)

Note that a fixed point of N is a mild solution of (3.1.1)-(3.1.2).
We will show that N satisfies the assumptions of the Mönch fixed point theorem

1.3.4.
Consider the set

Bq = {u ∈ Ω : ‖u‖∞ ≤ q},
where q is the constant defined in (H10). Clearly, the subset Bq is closed, bounded,
and convex.

The proof will be given in several steps.

Step 1: N is continuous.
Using (H6), it suffices to show that the operator N1 : Ω→ Ω defined by

N1(x)(t) =

 ϕ(t), t ∈ [−r, 0].

S(t)ϕ(0) +

∫ t

0

S(t− s)f(s, xs, x(s− τ(s, xs)))ds , t ∈ J.

(3.2.3)
Is continuous.

Let {un} be a sequence such that un → u in Ω. Then

‖N1(un)(t)−N1(u)(t)‖ ≤ ‖
∫ t

0

S(t− s)[f(s, uns, un(s− τ(s, uns)))

−f(s, us, u(s− τ(s, us)))]ds‖

≤ M

∫ t

0

‖f(s, uns, un(s− τ(s, uns)))

−f(s, us, u(s− τ(s, us)))‖ds

≤ M

∫ t

0

sup
θ∈[−r,0]

sup
s∈[0,T ]

‖f(s, uns, un(s+ θ))

−f(s, us, u(s+ θ))‖ds
≤ MT‖f(·, un., un(·))− f(·, u., u(·))‖∞.

Since f is a continuous function, we have
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‖N1(un)−N1(u)‖∞ ≤MT‖f(·, un., un(·))− f(·, u., u(·))‖∞ → 0 as n→∞ .

Thus N1 is continuous.

Step 2: N maps Bq into itself.

For each u ∈ Bq, by (H6), (H7) and (H10), we have for each t ∈ [0, T ]

‖N(u)(t)‖ ≤ ‖S(t)[ϕ(0)− g(0, u(−η(0)))]‖+ ‖g(t, u(−η(0)))‖

+‖
∫ t

0

S(t− s)f(s, f(s, us, u(s− τ(s, us)))ds‖

≤ M‖ϕ(0)‖+ (M + 1)(c1q + c2) +M [ψ(q)

∫ t

0

p(s)ds+ c3q

∫ t

0

ds]

≤ M‖ϕ‖∞ + (M + 1)[c1q + c2] +Mψ(q)‖p‖L1 +MTc3q.

Thus

‖N(u)‖∞ ≤ M‖ϕ‖∞ + (M + 1)[c1q + c2] +M [ψ(q)‖p‖L1 + Tc3q] ≤ q.

Step 3: N(Bq) is bounded and equicontinuous.

By Step 2, it is obvious that N(Bq) ⊂ Bq is bounded. Using (H6), it suffices to
show that the operator N1 defined in (3.1.3) is equicontinuous.

Let 0 < τ1, τ2 ∈ J , τ1 < τ2 and Bq be a bounded set of Ω as in Step 2. Let u ∈ Bq

then for each t ∈ J we have

‖N1(u)(τ2)−N1(u)(τ1)‖ ≤ ‖S(τ2)ϕ(0)− S(τ1)ϕ(0)‖

+

∫ τ1−ε

0

‖S(τ2 − s)− S(τ1 − s)‖[p(s)ψ(q) + c3q]ds

+

∫ τ1−ε

τ1

‖S(τ2 − s)− S(τ1 − s)‖[p(s)ψ(q) + c3q]ds

+

∫ τ2

τ1

‖S(τ2 − s)‖[p(s)ψ(q) + c3q]ds.

The right-hand side tends to zero as τ2 − τ1 → 0, and ε sufficiently small, since S(t)
is a strongly continuous operator and the compactness of S(t) for t > 0 implies the
continuity in the uniform operator topology.

Now let V be a subset of Bq such that V ⊂ conv(N(V ) ∪ {0}). V is bounded and
equicontinuous and therefore the function t → v(t) = α(V (t)) is continuous on J . By
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(H8), (H9), and the properties of the measure α we have for each t ∈ J ,

v(t) ≤ α(N(V )(t) ∪ {0})
≤ α(N(V )(t))

≤ c1

[
Mα(V (−η(0))) + α(V (t− η(t)))

]
+M

∫ t

0

[
p(s)α(Vs) + c3α(V (s− τ(s, Vs)))

]
ds

≤ c1

[
Mv(−η(0)) + v(t− η(t))

]
+M

∫ t

0

[
p(s)vs + c3v(s− τ(s, Vs))

]
ds

≤ c1(M + 1)‖v‖∞ +M
[
‖p‖L1‖v‖∞ + c3T‖v‖∞

]
≤

[
c1 +M(c1 + ‖p‖L1 + c3T

]
‖v‖∞.

Then

‖v‖∞
(
1−

[
c1 +M

(
c1 + ‖p‖L1 + c3T )

])
≤ 0.

Since
[
c1 +M

(
c1 + ‖p‖L1 + c3T )

]
< 1 it follows that v(t) = 0 for each t ∈ J , and then

V (t) is relatively compact in E. In view of the Ascoli-Arzelà theorem, V is relatively
compact in Bq. As a consequence of the Mönch fixed theorem 1.3.4 we deduce that N
has a fixed point which is a mild solution of problem (3.1.1)-(3.1.2). �

For the next theorem we replace the condition (3.2.1) by

c1(M + 1) < 1. (3.2.4)

Now, consider the Kuratowski measure of noncompactness αC defined on the family
of bounded subsets of the space C(J,E) by

αC(H) = sup
θ∈[−r,0]

sup
t∈J

e−τL(t)α(H(t+ θ)),

where L(t) =

∫ t

0

l̃(s)ds, l̃(t) = M(p(t) + c3), τ > 1
1−c1(M+1)

.

Our next result is based on the Darbo fixed point theorem 1.3.3.

Theorem 3.2.2. Assume that (H1), (H5), (H6), (H8), (H9) and (3.2.4) are satisfied.
Then the problem (3.1.1)-(3.1.2) has at least one mild solution on [−r, T ].

Proof. As in Theorem 3.2.1, we can prove that the operator N : Bq → Bq defined in
that theorem is continuous and N(Bq) is bounded.
Now, we show that the operator N : Bq → Bq is a strict set contraction, i.e., there is
a constant 0 ≤ λ < 1 such that α(N(H)) ≤ λα(H) for any H ⊂ Bq. In particular, we
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need to prove that there exists a constant 0 ≤ λ < 1 such that αC(N(H)) ≤ λαC(H)
for any H ⊂ Bq. For each t ∈ J we have

α((N(H)(t)) ≤ c1[Mα(H(−η(0))) + α(H(t− η(t)))]

+M

∫ t

0

[p(s)α(Hs) + c3α(H(s− τ(s,Hs)))]ds

≤ c1[Mα(H(−η(0))) + α(H(t− η(t)))]

+M

∫ t

0

eτL(s)e−τL(s)[p(s)α(Hs) + c3α(H(s− τ(s,Hs)))]ds

≤ c1[Mα(H(−η(0))) + α(H(t− η(t)))]

+M sup
θ∈[−r,0]

sup
s∈J

e−τL(s)α(H(s+ θ))

∫ t

0

eτL(s)[p(s) + c3]ds

≤ c1[Mα(H(−η(0))) + α(H(t− η(t)))] + αC(H)

∫ t

0

l̃(s)eτL(s)ds

≤ c1[Mα(H(−η(0))) + α(H(t− η(t)))] + αC(H)

∫ t

0

(eτL(s)

τ

)′
ds

≤ c1[Mα(H(−η(0))) + α(H(t− η(t)))] + αC(H)
1

τ
eτL(t).

Then

e−τL(t)α((N(H)(t)) ≤ c1e
−τL(t)[Mα(H(−η(0))) + α(H(t− η(t)))] + αC(H)

1

τ

≤ c1[M + 1] sup
θ∈[−r,0]

sup
s∈J

e−τL(s)α(H(s+ θ)) + αC(H)
1

τ
.

Consequently,

αC(NH) ≤
[
c1(M + 1) +

1

τ

]
αC(H).

So, the operator N is a set contraction. By the Darbo fixed point theorem 1.3.3 we
deduce that N has a fixed point which is a mild solution of problem (3.1.1)-(3.1.2).
�
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Chapter 4

Stability of Differential Equations
with State-Dependent Delay

1. Let R and R+ represent the sets of real numbers and nonnegative real num-
bers, respectively. Rn denotes the n-dimension Euclidean space. For a matrix
E, λmax(E) is used to denote its maximum eigenvalue. P(E) stands for the
minimum value of all elements of matrix E. The vector 1-norm and 2-norm are
severally expressed by ‖ · ‖1 and ‖ · ‖2.

2. Based on the work of Li and Yang, we put forward the following neural network
model with SDSD, which is described by

ẋi(t) = −aixi(t) +
n∑
j=1

bijgj(xj(t))

+
n∑
j=1

dijfj(xj(t− τ(t,X ))), i = 1, 2, . . . , n, t ≥ t0,

(4.0.1)

for the sake of presentation; we also give the compact form of system (4.0.1) as
follows:

Ẋ (t) = −AX (t) +Bg(X (t)) +Df(X (t− τ(t,X ))), (4.0.2)

where n stands for the number of neurons in the network, Ẋ (t) denotes the upper
right derivative of X (t),X = X (t) = (x1(t), x2(t), . . . , xn(t))T , and xi(t) represents
the state of the ith neuron. A is a diagonal matrix, for i = 1, 2, . . . , n, ai > 0 and B
and D are constant matrices with corresponding dimensions.
g(X (t)) = (g1(x1)(t), g2(x2(t)), . . . , gn(xn(t)))T and f(X (t − τ(t,X ))) = (f1(x1(t −
τ(t,X ))),
f2(x2(t − τ(t,X ))), . . . , fn(xn(t − τ(t,X ))))T are the excitation functions of the ith
neuron at time tandt− τ(t,X ), respectively.
Furthermore, we use X (s) = Ψ(s), s ∈ [t0 − η, t0] to denote the initial value of system
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(4.0.2), where Ψ = Ψ(s) = (Ψ1(s),Ψ2(s), . . . ,Ψn(s))T ∈ C ([t0 − η, t0],Rn).
C ([t0 − η, t0],Rn) is a Banach space whose elements are continuous vector-valued
functions. These continuous functions map the interval [t0 − η, t0] into Rn. Let
‖Ψ‖α = supt0−η≤s≤t0 ‖ Ψ(s)‖ stand for the norm of a function Ψ(.) ∈ C ([t0−η, t0],Rn),
where ‖.‖ is the vector norm matching with the content of the paper.

Remark 4.0.1. X (t) is right-upper derivable, which implies that the solution of system
(4.0.2) can be continuous but not smooth. The state delay τ(t,X ) is related to the state
of each neuron. For subsequent analysis, we need the following assumptions for system
(4.0.1) and (4.0.2).

assumption 4.0.1. Functions g(.), f(.) ∈ Rn satisfy f(0) = 0, g(0) = 0. Through
Assumption (4.0.1), this ensures that X = 0 is a constant solution of systems (4.0.1)
and (4.0.2).

assumption 4.0.2. g(.), f(.) ∈ Rn are locally Lipschitz continuous; in other words,
∀β1, β2 ∈ R, and we have

|gi(β1)− gi(β2)| ≤ `i|β1 − β2|, ∀i ∈ {1, 2, . . . , n},
|fi(β1)− fi(β2)| ≤ `i|β1 − β2|,∀i ∈ {1, 2, . . . , n},

(4.0.3)

where `i > 0 and `i > 0.

According to assumption (4.0.2), we can get two constant sets
{`1, `2, . . . , `n} and {`1, `2, . . . , `n}.
Let {`1, `2, . . . , `n} and lf = max{`1, `2, . . . , `n}.

assumption 4.0.3. The state delay τ(t,X )inC (R+ ×Rn, [0, η]) is locally Lipschitz
continuous, namely, for any Γ1,Γ2 ∈ Rn, there always exists a constant `τ > 0 such
that

|τ(t,Γ1)− τ(t,Γ2)| ≤ `τ‖Γ1 − Γ2‖. (4.0.4)

assumption 4.0.4. When X = 0, τ(t,X ) has supremum equipped with τ0(≤ η),
sup{τ(t, 0), t ≥ t0} = τ0.
For ease of expression, let

π1 = max
1≤i≤n

(
−ai +

n∑
j=1

| bji | `i

)
,

π2 = max
1≤i≤n

n∑
j=1

| bji | `i.
(4.0.5)

Definition 4.0.1. (see [58]) The zero solution of system (4.0.2) is said to be locally
exponentially stable (LES) in region M ; if there exist constants γ > 0 and Lyapunov
exponent ζ > 0, for any t ≥ t0, we have

‖X (t; t0,Ψ) ‖≤ γ ‖ Ψ ‖α e−ζ(t−t0), (4.0.6)
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where X (t; t0,Ψ) is a solution of system (4.0.2) with the initial condition Ψ ∈ C ([t0−
η, t0],M ),M ⊂ Rn, and M called a local exponential attraction set of the zero solu-
tion.

Lemma 4.0.1. Let Γ1,Γ2 ∈ Rn and we have

ΓT1 Γ2 + ΓT2 Γ1 ≤ $ΓT1 Γ1 +$−1ΓT2 Γ2, (4.0.7)

for any $ > 0.

4.1 Main Result

Theorem 4.1.1. Under Assumptions 4.0.1-4.0.4, the zero equilibrium of system (4.0.2)
is LES if

π1 + π2 < 0 (4.1.1)

and Lyapunov exponent ζ > 0 satisfies

ζ + π1 + π2e
ζ(`τ‖Ψ‖α+τ0 ≤ 0, (4.1.2)

Proof. . We assume that X (t; t0,Ψ) is a trajectory of system (4.0.2) with initial value
(t0,Ψ), where Ψ ∈ C ([t0 − η, t0],Rn and Ψ 6= 0. For the sake of convenience, let
V (t) = V (t,X ) =‖ X (t) ‖1=

∑n
i=1 | xi(t) | and V0 = {supV (s), s ∈ [t0 − η, t0]}.

Then, for any ε ∈ (0, ζ), we claim that

e(ζ−ε)(t−t0)V (t) ≤ V0,∀t ≥ t0. (4.1.3)

Firstly, when t = t0, (4.1.3) holds. Next, we prove that (4.1.3) holds on (t0,+∞). In
contrast to (4.1.3), there are some instants on (t0,+∞) to make (4.1.3) untenable, and
then we can find an instant tq ≥ t0; the following three events will happen:

1. e(ζ−ε)(t−t0)V (tq) = V0.

2. e(ζ−ε)(t−t0)V (t) ≤ V0, for ∀t ∈ (t0 − η, tq].

3. There exists a right neighbor of tq(U
0
+(tq, ξ)) such that ∀tξ ∈ U0

+(tq, ξ)
and e(ζ−ε)(t−t0)V (tξ) > V0.

On the contrary, by Assumptions 4.0.1-4.0.4 and combining (4.0.2), the derivative of
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e(ζ−ε)(t−t0)V (t) at time tq is as follows:

d
dt

(e(ζ−ε)(t−t0)V (t))|t=tq
= (ζ − ε)e(ζ−ε)(tq−t0)V (tq) + [e(ζ−ε)(t−t0)V̇ (t)]|t=tq

≤ (ζ − ε)V0 + e(ζ−ε)(tq−t0)(
n∑
i=1

sgn(xi(tq))(ẋi(tq)))

= (ζ − ε)V0 + e(ζ−ε)(tq−t0)(
n∑
i=1

sgn(xi(tq))[−aixi(tq)

+
n∑
j=1

bijgj(xj(tq)) +
n∑
j=1

dijfj(xj(tq − τ(tq,X (tq))))])

≤ (ζ − ε)V0 + e(ζ−ε)(tq−t0)(
n∑
i=1

−ai|xi(tq)|

+ e(ζ−ε)(tq−t0)

n∑
i=1

n∑
j=1

|bij)|`i|xj(tq)|

+ e(ζ−ε)(tq−t0)(
n∑
i=1

n∑
j=1

|bij)|`i|xj(tq − τ(tq,X (tq)))|

≤ (ζ − ε)V0

+ e(ζ−ε)(tq−t0) max
1≤i≤n

(−ai +
n∑
j=1

|bji|`i)‖X (tq)‖

+ e(ζ−ε)(tq−t0) max
1≤i≤n

(
n∑
j=1

|dji|`i) ‖X (tq − τ(tq,X )) ‖

= (ζ − ε+ π1)V0 + e(ζ−ε)(tq−τ(tq ,X )−t0) ‖X tq − τ(tq,X ) ‖
×π2e

(ζ−ε)τ(tq ,X )

≤ (ζ − ε+ π1 + π2e
(ζ−ε)τ(tq ,X ))V0

= (ζ − ε+ π1 + π2e
(ζ−ε)[τ(tq ,X )−τ(tq ,0)]e(ζ−ε)τ(tq ,0))V0

≤
(
ζ − ε+ π1 + π2e

(ζ−ε)`τ‖X (tq) ‖1

)
e(ζ−ε)τ(tq ,0)V0

≤ (ζ − ε+ π1 + π2e
(ζ−ε)(`τ‖X (tq)‖1+τ0))V0.

(4.1.4)

Together with the definition of V0, V (t), tq and condition (1), we have

‖X (tq) ‖1= V (tq) ≤ V0 =‖ Ψ ‖α, (4.1.5)

and then from (4.1.2) and (4.1.4), we obtain

d
dt

(e(ζ−ε)(t−t0)V (t))|t=tq
≤ (ζ − ε+ π1 + π2e

(ζ−ε)(`τ‖Ψ‖α+τ0)) ‖ Ψ ‖< 0,
(4.1.6)

which is a contradiction with condition (9), and thus, (10) holds. Consider the arbi-
trariness of ε, let ε −→ 0, and then we obtain

eζ(t−t0)V (t) ≤ V0,∀t ≥ t0, (4.1.7)
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i.e.,

‖X (t) ‖1= V (t) ≤‖ Ψ ‖α e−ζ(t−t0), ∀t ≥ t0, (4.1.8)

The reasoning process of , theorem 4.1.1 is completed.

Example 4.1.1. Consider a 2-dimensional neural network with SDSD, which is de-
scribed by (

ẋ1(t)
ẋ2(t)

)
= −

(
1 0
0 1

)(
x1(t)
x2(t)

)
+

(
0.25 0.25
0.02 0.01

)(
g1(x1(t))
g2(x2(t))

)

+

(
x1(t)

g1(x1(t))

)(
f1(x1(t− τ(t,X )))
f2(x2(t− τ(t,X )))

) (4.1.9)

where t0 = 0 and

gi(·) = |xi(t) + 1|+ |xi − 1|, i = 1, 2,
fi(·) = sin(xi(t− |sin(x1(t) + x2(t))|)), i = 1, 2,
τ(t,X ) = |sin(x1(t) + x2(t))|.

(4.1.10)

Evidently, `1 = `2 = 2, ˙̀
1 = ˙̀

2 = 1, `τ = 1, τ(t, 0) = 0, τ(t,X ) ∈ [0, 1]. By
calculating,

π1 = max
1≤i≤n

{
(−ai +

n∑
j=1

| bji | `i)

}
= −0.46,

π2 = max
1≤i≤n

n∑
j=1

| bji | `i = 0.31.

(4.1.11)

Then, from theorem 4.1.1, system (4.1.8) is LES. The trajectories of the solu-
tion from a random initial value are shown in Figure 1. As shown in Figure 1,
x1(t) and x2(t) in neural network model (4.1.8) are convergent. Figure 2 shows
the phase diagram of system (4.1.8) evolving with time.
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Figure 4.1: Transient behavior of (a) x1(t) and (b) x2(t) in system (4.1.9).
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Figure 4.2: Transient behavior of (x1(t), x2(t)) in system (4.1.9).

45



Chapter 5

Model and Application

A remark in [57] says that state-dependent delays arise in various circumstances, but
it seems not obvious how to single out a tractable class of equations which contains a
large set of examples which are well motivated. The difficulty of singling out a tractable
class of equations to include many interesting models may prove to be an extremely
valuable source to stimulate new mathematical techniques and theories. In this section
we describe differential equations with state-dependent delay that arise from electrody-
namics, automatic and remote control, machine cutting, neural networks, population
biology, mathematical epidemiology and economics.

5.1 A Two Body Problem of Classical Electrody-

namics

In Driver [21] (see also [17, 23]), a mathematical model for a two-body problem of clas-
sical electrodynamics incorporating retarded interaction is proposed and analyzed. He
considers the motion for two charged particles moving along the x-axis and substituted
the expressions for the field of a moving charge, calculated from the Linéard-Wiechert
potential, into the Lorentz-Abraham force law. Radiation reaction is omitted, but time
delays are incorporated due to the finite speed of propagation, c, of electrical effects.
As a result, the model is a system of delay differential equations involving time delays,
which depend on the unknown trajectories. From this model and after some analysis,
he obtains a system of six delay-differential equations for the evolution of the states,
the velocities and the time delays. To describe his model, we denote by xi(t)(i = 1, 2)
the positions of the two point charges on the axis in a given inertial system at time t
, the time of an observer in that system. Let vi(t) = x′i(t)(i = 1, 2) be the velocities
of the charges. As mentioned above, we omit radiation reaction but allow an external
electric field, Eext(t, x), in the x − direction, that is assumed to be continuous over
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some open set D in the (t, x)− plane. Then the equation of motion of charge i is

miv
′
i(t)

[1− v2
i (t)/c

2]3/2
= qiEj(t, xi(t)) + qiEext(t, xi(t)), i, j ∈ {1, 2}, j 6= i, (5.1.1)

where mi is the rest mass and qi is the magnitude of charge i, c is the speed of light,
and Ej(t, x) is the electric field at (t, x) due to other charge j 6= i. The magnetic
field of charge j is not involved in this one-dimensional case. The field at time t and
at the point xi(t) produced by charge j is assumed to be that computed from the
Linéard-Wiechert potentials. The expression for this field involves a time lag, t− τji ,
representing the instant at which a light signal would have to leave charge j in order
to arrive at xi(t) at the instant t . Therefore, the delay τji(t) must be a solution of the
functional equation

τji(t) =| xi(t)− xj(t− τji(t)) | /c. (5.1.2)

Clearly, τji(t) cannot be written explicitly. Because of the occurrence of time delays in
the model equation (5.1.1), one needs to specify initial trajectories of the two charges
over some appropriate interval [α, t0]. Consider now those initial trajectories and their
extensions (x1(t), x2(t)) defined on some interval [α, β), where β > t0, such that

(a) each i(t) is continuous and | x′i(t) |< c for all t ∈ [α, β);

(b) x2(t) > x1(t)andand(t, xi(t)) ∈ Dfor allt ∈ [t0, β);

(c) the two functional equations τ 0
ji =| xi(t0)− xj(t0− τ 0

ji) | /c have solutions τ 0
ji, i 6=

j, i, j ∈ {1, 2}.

Then Driver proves that (x1(t), x2(t)) is a solution of (5.1.1).(5.1.2) if and only if it
satisfies the following system of six delay differential equations for t ∈ (t0, β):

x′i(t) = vi(t),

τ ′ji(t) =
(−1)ivi(t)−(−1)ivj(t−τji(t))

c−(−1)ivj(t−τji(t)) ,

v′i(t)

[1−v2i (t)/c2]3/2
= (−1)iaic

τ2ji(t)
· c+(−1)ivj(t−τji(t))

c
+ qiEext(t, xi(t))/mi,

(5.1.3)

where τji(t0) = τ 0
ji, ai = q1q2/(4πε0mic

3) (a constant, and in particular, ε0 is the
dielectric constant of free space), and (i, j) = (1, 2)or(2, 1). It is shown in Driver [21]
that if given initial trajectories satisfy condition (a) for α 6 t 6 t0, condition (b) at
t0, and condition (c), and if Eext(t, x) is Lipschitz continuous with respect to x in each
compact subset of D and if the initial velocity of each particle is Lipschitz continuous,
then a unique solution does exist. This solution can be continued as long as the charges
do not collide (lim x1(t) = lim x2(t) as t approaches the right endpoint of the maximal
interval for existence) and neither (t, x1(t))nor(t, x2(t)) approaches the boundaryD.
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We remark here that in Driver and Norris [22], the above Lipschitz continuity for the
initial velocities is relaxed to the integrability of the initial velocity on [α, t0]. In Driver
[18], one special case was given where the positions and velocities of the particles at
some instant will determine the state of the system. More precisely, in this example of
electrodynamic equations of motion, instantaneous values of positions and velocities of
the particles will determine their trajectories, if the solutions are defined for all future
time. This property was frequently conjectured, asserted, or implicitly assumed, as in
Newtonian mechanics and as indicated by the long list of related references in Driver
[18], but this property should not be expected for general electrodynamic equations.
In the case where Eext(t, x) = 0for all(t, x) ∈ R2and ifq1q2 > 0 (two point charges of
like sign), then limt→∞[x2(t) · x1(t)] = ∞and | vi(t) |6 c̄ < cfor allt > α. This is a
quite interesting result as it indicates that the delay τji(t) may become unbounded, as
such, one obtains a system of functional differential equation with unbounded state-
dependent delays. It is noted that if three-dimensional motions are considered, then one
obtains a functional differential system of neutral type where the delays are dependent
on the states, and the change rate of vi at the current time also depends on its historical
value vj(t− τji). More precisely, if we introduce a unit vector

ui =
xi − xj(t− τji)

cτji

and a scalar quantity

γji = 1− 1

c
vj(t− τji) · ui

as Driver [20] does, where indicates the dot or scalar product in R3 (note, of course,
x1, x2 are now vectors in R3), then the Lorentz force law yields

v′i(t) =
qi(1− | vi |2 /c2)1/2

mi

[Ej + (vi/c · Ej)(ui − vi/c)− (vi/c · ui)Ej], (5.1.4)

where Ej is the retarded (vector-valued) electric field arriving at xi at the instant t
from particle j . This field, in R3, can be found from the Liénard-Weichert potentials
as

Ej =
kcqj
τ2jiγ

3
ij

[ui − vi(t− τji)/c][1− | vj |2 (t− τji)]

+
kqj
τjiγ3ij

ui × ([ui − vj(t− τji)/c]× v′j(t− τji)),
(5.1.5)

where k > 0 is a constant depending on the units, and × indicates the vector cross
product in R3. The dynamical adaptation for τji is given by

τ ′ji(t) =
ui · [vi − vj(t− τji)]

cγij
. (5.1.6)

In the above discussions, the motion of each particle is influenced by the electromag-
netic fields of the others, and due to the finite speed of the propagation of these fields,
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the model equations describing the motion of charged particles via action at a distance
will involve time delays which depends on the state of the whole system. In Driver [20]
and in Hoag and Driver [59], it is noted that if one considers that the basic laws of
physics are symmetric with respect to time reversal, then the existence of these delays
implies that there should also be advanced terms in the equations, and thus one is
led to a system of functional differential equations with mixed arguments (Hoag and
Driver [59]), and of neutral type (Driver [19]). In summary and in conclusion, despite
the fact that much of the work by Driver and his collaborators on electrodynamics was
published nearly 40 years ago, many interesting questions related to the fundamental
issues of electrodynamics remain unsolved mathematically and Driver?s models remain
as a source of inspiration for the theoretical development and a testing tool for new
results.
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Conclusion

The main goals of this thesis is to establish stability, existence, uniqueness and model
results for various classes of functional differential equations, with delay which may be
finite or state-dependent in Banach space.
In chapter 2, we prove the existence of mild solutions of nonlinear neutral time varying
multiple delay differential equations in Banach space. The purpose of this chapter is
to prove the existence of mild solutions for the same class of neutral equations with
mild solutions by applying Schaefer’s theorem instead of Sadovskii’s theorem.
In Chapter 3, we study and prove the existence and uniqueness of solutions for neutral
differential equations with state-dependent delays. with the proof based on Banach’s
fixed point theorem, Their proofs involve the measure of noncompactness paired in one
result with a Mönch fixed point theorem and paired in the other result with a Darbo
fixed point theorem.
In Chapter 4, we solve the stability problem of neural networks equipped with state-
dependent state delays, and example for that.
In Chapter 5, we introduce applications and models of neutral differential equations
with state-dependent delays, a mathematical model for a two-body problem of classical
electrodynamics incorporating retarded interaction is proposed and analyzed.

50



Bibliography

[1] M. Adimy and K. Ezzinbi, A class of linear partial neutral functiona differential
equations with nondense domain, J. Differential Equations, 147, 285-332, (1998).

[2] R. P. Agarwal, M. Meehan and D. O’Regan, Fixed Point Theory and Applications,
Cambridge Tracts in Mathematics, 141. Cambridge University Press, Cambridge,
(2001).

[3] N.U. Ahmed, Semigroup Theory with Applications to Systems and Control, Pitman
Research Notes inMathematics Series, 246, (1991).

[4] W.G. Aiello, H. I. Freedman and J. Wu, Analysis of a model representing stage-
structured population growth with state-dependent time delay, SIAM J. Appl.
Math, 52, 855-869, (1992).

[5] K.K. Akhmerov, M.I. Kamenskii, A.S. Potapov, A.E. Rodkina and B.N. Sadovskii,
Measures of noncompactness and condensing operators, Birkhäuser Verlag, Basel,
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