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Introduction

Over the last two decades, an immense innovation on measuring instruments has
emerged and realized that enabling several objects to be monitored continuously, such
as stock market indices, pollution, climatology, satellite images,..., this technological
development required the modernization of statistical methods as tools for analysis
and control. Thus, a new branch of statistics, called functional statistics, has been de-
veloped to treat observations as functional random elements. The first contributions
on the subject were devoted to the study of parametric models (see, e.g. Ramsay
and Silverman 2005,[39]), such as parametric models are models in which the vector
of parameters is a vector in finite dimensional space ). Our interest in this case is
estimating the vector of parameters. In parametric models, the researcher assumes
completely the form of the model and its assumptions. However, statistical analysis
via linear models is based on a preliminary knowledge of the nature of covariability
between observations, which is very difficult to verify in functional statistic, contrary
to the classical statistic where graphic tools are available such as the scatterplot
which gives an overview on the relation between the observations. This justifies the
importance of modeling functional data by nonparametric methods.

Nonparametric processing of functional data is much more recent than parametric
analysis. The term nonparametric does not mean that such models are completely
lack parameters, but that the number of the parameters are flexible and not fixed pe-
riori. The primary interest is in estimating that infinite-dimensional vector of param-
eters. In nonparametric regression models, the relationship between the explanatory
variables and response is unknown.

Semi-parametric modeling is a hybrid of the parametric and nonparametric ap-
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proaches of statistical models. It may appear at first that semi-parametric model
include nonparametric model, however, It is considered to be "smaller" than a com-
pletely nonparametric model because we are often interested only in the finite-dimensional
component. By contrast, in nonparametric models, the primary interest is in esti-
mating the infinite dimensional parameter. In result, the estimation is statistically
harder in nonparametric models compared to semi-parametric models. While para-
metric models are being easy to understand and easy to work with, they fail to give
a fair representation of what is happening in the real world.

Semi-parametric models allow you to have the best of both worlds, a model that is
understandable and offering a fair representation of the messiness that is involved in
real life. Beside their contribution in reducing the dimensionality of the covariate’s
space and therefore damping the curse of dimensionality effect in the estimation pro-
cedure, we briefly recall the method SIR introduced by Li (1991) and Duan and Li
(1991), this method makes it possible to estimate the parametric part of the semi-
parametric models considered without having to estimate the functional part ni to
specify the law of the error ε. One possibility is to be interested to the conditional
distribution of y (dependent variable knowing x multidimensional explanatory vari-
able). Dimension reduction methods assume that we can replace x by a vector of
lower dimension (x̀θ1, ..., x̀θK), with K < p, without losing information on the link
between y and x. We then seek to estimate a basis of the effective dimension re-
duction subspace (generated by the vectors θk, k = 1, ..., K). The basic idea of SIR
methods is to exchange the role of x and y (in order to reduce the dimension of the
problem) and to study the conditional moments of x knowing y. SIR methods are
based on a geometric property of the curve of inverse regression which relies on a
crucial condition of linearity of the distribution of the covariate. For a recent sur-
vey on semi-parametric literature for infinite dimensional variables, the reader can be
referred to Vieu (2018,[48]) and Goia and Vieu (2014,[26]). Semi-parametric models
include, but not limited to, functional single-index models (see, e.g. Li et al. 2010;
Goia and Vieu 2015,[27]), projection pursuit models (see, e.g. Bali et al. 2011[8];
Chen et al. 2011[10]; Ferraty et al. 2013[16]), partial linear models (see, e.g. Aneiros-
Prez and Vieu 2011[3]; Lian 2011[32]; Maity and Huang 2012,[35]; Aneiros-Pérez and
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Vieu 2015[4]) and functional sliced inverse regression (see Ferré and Yao 2005). For
a broader overview on functional data analysis, the reader can be referred to Aneiros
et al. (2019,[2]), Hsing and Eubank (2015,[28]), Cuevas (2014,[11]), Ferraty and Vieu
(2006,[25]) and Ramsay and Silverman (2002)[38]. The extension of the single-
index model to the functional data framework was first introduced in Ferraty et al.
(2003,[17]) to estimate, semi-parametrically, the regression operator where the re-
sponse variable is real-valued and the covariate is a functional random variable. The
single functional index model (SFIM) assumes that a functional explanatory vari-
able acts on a scalar response only through its projection on one functional direction.
The SFIM was intensively extended to estimate several statistical parameters describ-
ing the shape of the conditional distribution. For instance, Ait-Saïdi et al. (2008,[1])
used SFIM to estimate the regression operator and suggested to use a cross-validation
procedure to estimate the unknown link function as well as the unknown single func-
tional index. Furthermore,Attaoui (2014,[7]) studied the estimation of the conditional
density Goia and Vieu (2015,[27]) introduced a semi-parametric methodology, which
approximates the unknown regression operator through a single index approach, tak-
ing possible structure changes into account.
The study of a variable Y conditioned by a variable X is a very important subject
in statistics. In nonparametric stat, regression is the main tool for study that kind
of variables. However, this tool is not very suitable for certain situations, like the
conditional density actually contains more information than the regression function,
which is simply the conditional expectation and this letter is affected by the existence
of outliers in the sample that we are studying. The purpose of this dissertation is to
study some conditional models in the case where the explanatory variable is functional
or infinitely dimensioned in single functional index. The memory is orgnised as fol-
lows, the first chapter presents the non-parametric estimation of conditional models
for functional variables. In next chapters , we treat the uniform almost complete
convergence of the kernel estimators of the conditional models in functional index
model :conditional density function,conditional distribution function,and their appli-
cation the conditional mode (resp.the conditional quantile). Finally, the last chapter
is devoted on the estimation of the functional single index. We end this work with a
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general conclusion and some future perspectives.



Chapter 1

Estimation of conditional models

1.1 Parametric estimation:

The parametric statistics remonstrates with Fisher 1920, it is the "classical" frame-
work of statistics. The statistical model is described there by a finite number of
parameters. Typically {P

θ
, θ ∈ Rp} is the statistical model that describes the distri-

bution of observed random variables. Let (Ω,A,P) be a probability space and X an
v.a. from (Ω,A) into (E, ε). The data of a statistical model is the data of a family
of probabilities on (E, ε), {Pθ, θ ∈ Θ}.
Given the model, we then assume that the law of X belongs to the model {Pθ, θ ∈ Θ}.

1.1.1 Definitions

Definition 1.1.1. Let g : Θ 7→ Rk. We call estimator of g(θ) in view of observation

X, any application T : Ω→ Rk of the form T = h(X) where h : E → Rk measurable.

An estimator must not depend on the quantity g(θ) that we seek to to estimate. We
introduce the following properties of an estimator:

Definition 1.1.2. T is an unbiased estimator of g(θ) if for all θ ∈ Θ, Eθ[T ] =

g(θ). Otherwise, we say that the estimator T is biased and we calls bias the quantity
Eθ[T ]− g(θ).
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Generally X is a vector (X1, ..., Xn) of observations (n being the number of them). An
important example is the case where X1, ..., Xn form an n-sample, i.e. when X1, ..., Xn

are i.i.d. We can then look at the asymptotic properties of the estimator, stretch the
number of observations n towards +∞ .In this case, it is natural to note T = TN as
dependent on n. We then have the following definition:

Definition 1.1.3. Tn is a consistent estimator of g(θ) if for all θ ∈ Θ, Tn converges
in probability to g(θ) under Pθ when n→∞.

We define the quadratic risk of the estimator in the case where g(θ) ∈ R.

Definition 1.1.4. Let Tn be an estimator of g(θ). The quadratic risk of Tn is defined
by

R(Tn, g(θ)) = Eθ[(Tn − g(θ))2]

The quadratic risk is the sum of the variance and the square through the estimator.

1.1.2 Estimation methods

There are several methods of parametric estimation, in this section we will see
estimation by the method of moments and estimation by maximum likelihood.

Estimation by the method of moments

X is the vector formed by an n-sample X1, ..., Xn. The Xi are values in a set X . Let
f = (f1, ..., fk) be an application from X to Rk such as the application

Φ : Θ→ RK

θ 7→ Eθ[f(X1)]

either injective. We define the estimator θ̂n as the solution in Θ (when it exists) of
the equation

Φ(θ) =
1

n

n∑
i=1

f(Xi)
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Often, when X ⊂ R the function on takes fi(x) = xi and Φ corresponds therefore at
the ith moment of the variable X1 under Pθ. This choice justifies the name given to
the method.Here is an example of estimators built on this method:
Uniform Law:

Here k = 1, Qθ is the uniform law on [0, θ] with θ > 0. We only have for all

θ,Eθ[X1] = θ
2
, we can therefore take for example Φ(θ) = θ

2
and f = Id : R→ R. The

estimator obtained by the method of moments is then θ̂n = 2Xn. This estimator is
unbiased and consistent.

Estimation by maximum white likelihood

Let {E, ε, {Pθ, θ ∈ Θ}} be a statistical model, where Θ ⊂ Rk (we are in a parametric
framework). We assume that there is a σ-finite measure µ which dominates the model,
that is to say that ∀θ ∈ Θ, Pθ admits a density p(θ, .) by compared to µ.

Definition 1.1.5. Let X be an observation. We call likelihood of X the application

Θ→ R

θ 7→ p(θ,X)

We call maximum likelihood estimator of θ any element θ̂ of Θ maximizing the like-
lihood, i.e. verifying

θ̂ = arg max
θ∈Θ

p(θ,X)

Consider the typical case where X = (X1, ..., Xn), the Xi forming an n sample of law

Qθ where Qθ s a law on X of unknown parameter θ ∈ Θ ⊂ Rk. We further assume
that for all θ ∈ Θ,Qθ is absolutely continuous by with respect to a measure ν on X.
In this case, noting

q(θ, x) =
dQθ

dν

we have that the likelihood is written

p(θ,X) =
n∏
i=1

q(θ,Xi)
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and so

θ̂n = arg max
θ∈Θ

1

n

n∑
i=1

log[q(θ,Xi)]

Let’s see an example:
Bernoulli’s model

Let Qθ0 = B(θ) with θ ∈]0, 1[= Θ and ν the counting measure on N. For all θ ∈]0, 1[

and x ∈ {0, 1}

q(θ, x) = θx(1− θ)1−x = (1− θ) exp[x log(
θ

1− θ
)]

and so the maximum likelihood estimator must maximize in [0, 1]

log(θSn(1− θ)n− Sn) = Sn log(
θ

1− θ
) + n log(1− θ)

Which leads to θ̂n = X.

1.2 Nonparametric estimation of the conditional den-

sity for functional variables:

Non-parametric statistics is concerned with the estimation from a finite number of
observations, of an unknown function f ∈ Θ , where Θ is a fairly large functional
space.
Let X and Y be two continuous random variables .The conditional probability density
function of Y given X = x given by this formula

fY |X=x : R→ [0,∞[

y → fXY (x, y)

fX(x)

with : fXY is the density function, and fX is the marginal function.
In nonparametric regression setting, it is a well-known fact that for forecasting and
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statistical inferences, the conditional density function is very useful. It provides the
one of the best tool to estimate some characteristic feature of the dataset, such as
the conditional mode. Indeed, this last has received a considerable attention, see, for
instance, Collomb et al. (1987), Samanta and Thavaneswaran (1990,[45]), Quintela-
del-Rio and Vieu (1997,[28]), Berlinet et al.(1998,[9]), and among others.
Estimation of the conditional density function and its derivatives, in statistics func-
tional, was introduced by Ferraty et al (2006,[20]). These authors obtained the almost
complete convergence in the i.i.d.The precision of the leading terms of the squared
error of the kernel estimator of the conditional density was obtained by Laksaci
(2007,[30]). We refer to Laksaci et al. (2010,[31]) for the question of the choice
of smoothing parameter in the estimation of the conditional density with a functional
explanatory variable. Ali Laksaci et al. (2013,[2]) used the polynomial method local.

1.2.1 Kernel conditional density estimates

Let (X1, Y1)...(Xn, Yn) be a random independent indentically distributed (i.i.d) sample
of the pair (X, Y ) ,which is valued in F × R, where F is a functional space. the
conditional density estimator is given

f̂(Y |X = x) =

n∑
i=1

K(h−1
K d(x,Xi))H(h−1

H (y − Yi))

hH

n∑
i=1

K(h−1
K d(x,Xi))

(1.1)

And d is a semi-metric.withK is a kernel ,and hK = hK(n)(respg=hH(n))is a sequence
of positive real numbers which tends to 0 when n to infinity (it is also called the
smoothing parameter).
Ferraty and al.(2005,[21]) established the almost complete convergence of a kernel
estimator of the conditional mode defined by the random variable maximizing the
conditional density. Alternatively, Ez zahrioui and Ould-Said (2005, 2006,[14],[15])
estimated the conditional mode by the point which cancels the derivative of the kernel
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estimator of the conditional density. Those the latter have focused on the asymptotic
normality of the estimator proposed in both cases (i.i.d. and mixing).

1.2.2 The conditional mode:

The mode is very popular in classification, because it is a useful tool for representing
groups and also robust sweaters than the average (like the median).Mode estimation
is often a direct consequence of density estimation. His importance is due to the fact
that it is a natural measure of central tendency, which is not influenced by the tails
of the distributions. The mode is the most probable value: for a density f, it is the
value for which f admits a maximum (global or local). For a symmetric distribution,
it coincides with two other positional parameters, the mean and the median.

Presentation of the model:

Consider (Xi, Yi)i=1...n a sample of couple of random variables (X, Y ), the conditional
mode is the value that maximizes the conditional density Y knowing X = x .We
assume that there is a compact subset s ∈ R, where the mode is unique denoted by
θ(x) :

θ(x) = arg sup
y∈s

fx(y)

The estimator of this mode θ̂(x) is defined by the expression :

θ̂(x) = arg sup
y∈s

f̂x(y)

With f̂x(y)is defined by (1.1).
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1.3 Nonparametric estimation of the conditional dis-

tribution function for functional variables:

Let X and Y be two continuous random variables.The conditional distribution func-
tion of Y given X = x is a function FY |X=x such that:

FY |X=x = P(Y ∈ [a, b]|X = x) =

∫ b

a

fY |X=x(x)dx (1.2)

1.3.1 Kernel estimate of the conditional distribution

the kernel estimator of the conditional distribution function FY |X=x defined by ∀y ∈
R.

F̂Y |X=x =

n∑
i=1

K(h−1
K d(x,Xi))H(h−1

H (y − Yi))

n∑
i=1

K(h−1
K d(x,Xi))

(1.3)

Roussas (1969,[40]) treated the estimation of the conditional distribution function by
the method kernel using Markovian observations. He established the convergence in
probability of the constructed estimator. Stute (1986,[47]) added results on the almost
complete convergence of the kernel estimator of the distribution function of a vector
random variable conditional on a vector explanatory variable.The estimation of this in
a functional framework was introduced by Ferraty et al (2006,[20]).They constructed
a dual-kernel estimator for the conditional distribution function and they specified
the speed of convergence almost completeness of this estimator when the observations
are independent and identically distributed. The case of α -mixing observations has
been studied by Ferraty et al (2005,[19]).

1.3.2 Conditional quantile

Several authors have dealt with the estimation of the distribution function condi-
tional as a preliminary study of estimating quantiles conditionals. Let us quote for
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example, Ezzahrioui and Ould-Saïd (2005,2006,[14],[15]) who studied the asymptotic
normality of this estimator in both cases (i.i.d. and α -mixing).

Presentation of the model:

LetX and Y be two continuous random variables,F x(y) is the conditional distribution
function of Y given X = x,and θ ∈]0, 1[.The conditional quantile (just note tθ(x)) is
defined by:

tθ(x) = inf{y ∈ R : F (Y |X ≥ θ)} (1.4)

The conditional quantile estimate is given for:

t̂θ = F̂−1(Y |X) (1.5)

1.4 Nonparametric estimation of the regression func-

tion for functional variables

We have Y = r(X) + ε ,where the response variable Y is real-valued while the ex-
planatory variable X has value in infinite dimensional semimetric space (F , d) ,we
also assume that the variable ε (corresponding to the residual)fulfills E(ε|X) = 0 in
such a way that the regression function defined by : r(X) = E(Y |X = x) , r ∈ C(R).
The first results in functional nonparametric statistics were developed by Ferraty
et Vieu (2000,[22]) and they concern the estimation of the regression function with
an explanatory variable of fractal dimension. They established the almost complete
convergence of a kernel estimator of this model not parametric in the i.i.d.Based on
recent developments of small ball probability theory, Ferraty et Vieu (2004,[30]) have
generalized these last results to the α -mixing case and exploited the importance of
nonparametric modeling of functional data in applying their study to curve discrimi-
nation and forecasting.In the framework of α -mixing functional observations, Masry
(2005,[34]) showed the asymptotic normality of the estimator of Ferraty and Vieu
(2004,[30]) for the regression function.
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1.4.1 Kernel estimate of the regression function

The kernel estimator of the regression function r̂ is defined by:

r̂x(y) =

n∑
i=1

YiK

(
Xi − x
h

)
n∑
i=1

k

(
Xi − x
h

)
.
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Chapter 2

Conditional density with simple

functional index

2.1 Model

Let (X, Y ) be a couple of random variables taking its values in F × R ,where F is
a Hilbertian space with scalar product < ., . > . Let (Xi, Yi)1≤i≤n ,be n copies of
independent vectors each having the same distribution as (X, Y ).
The single functional index approach is very efficient way to reduce the effect of the
infinite dimensional feature of the nonparametric estimation in functional statistic.
The main aim of this work is the estimation of the conditional density of Y given
< θ, x >,denoted by f(θ, ., x).It is well known that, in nonparametric statistics, this
latter provides an alternative approach to study the links between Y and X and it
can be also used, in single index modeling, to estimate the functional index θ if it is
unknown.
Naturally, the kernel estimator f̂(θ, y, x) of f(θ, y, x) is defined by

f̂(θ, y, x) =

h−1
H

n∑
i=1

K(h−1
K (< x−Xi, θ >))H(h−1

H (y − Yi))

n∑
i=1

K(h−1
K (< x−Xi, θ >))

,∀y ∈ R
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with the convention 0/0 = 0, and the functions K and H are kernels and hK = hK,n

(resp.hH = hH,n) is a sequence of positive real numbers which goes to zero as n tends
to infinity.

we will denote by C and C̀ some strictly positive generic constants. In the following,
we put, for any x ∈ F , and i = 1, ..., n,

Ki(θ, x) = K(h−1
K < x−Xi, θ >)

and, for all y ∈ R,
Hi(y) = H(h−1

H (y − Yi)).

2.2 Uniform almost complete convergence

In this section we propose to study the uniform almost complete convergence of our

estimator f̂ for this, we suppose that C is subset compact of R and SF (resp. ΘF

, the space of parameters) are such that

SF ⊂
d
SF
n⋃
k=1

B(xk, rn) and ΘF ⊂
d

ΘF
n⋃
j=1

B(tj, rn) (2.1)

with xk (resp.tj) ∈ F and rn, dSF
n , dΘF

n are sequences of positive real numbers which
tend to infinity as n goes to infinity, and we need the following assumptions.

2.2.1 Assumptions and results

(U1) There exists a differentiable function φ(.) with

P(| < X − x, θ > | < h) = φθ,x(h) > 0

such that ∀x ∈ SF ,and ∀θ ∈ ΘF ,

0 < Cφ(h) ≤ φθ,x(h) ≤ C̀φ(h) <∞

and
∃η0 > 0, ∀η < η0 , φ̀(η) < C,
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(U2) The conditional density is such that ∀(y1, y2) ∈ C × C, ∀(x1, x2) ∈ SF × SF ,and
∀θ ∈ ΘF .

|f(θ, y1, x1)− f(θ, y2, x2)| ≤ C(||x1 − x2||b1 + |y1 − y2|b2),

(U3) The kernel K is a positive bounded function with support [−1, 1] and Lipschitz’s
condition holds

|K(x)−K(y)| ≤ C||x− y||,

(U4) H is a bounded Lipschitz continuous function, such that∫
H(t)dt = 1,

∫
|t|b2H(t)dt <∞ and

∫
H2(t)dt <∞,

(U5) For some γ ∈ (0, 1),limn−→∞ n
γhH =∞,and for rn = o( logn

n
) the sequences dSF

n

and dΘF
n satisfy:

(log n)2

nhHφ(hK)
< log dSF

n + log dΘF
n <

nhHφ(hK)

log n

and
∞∑
n=1

n(3γ+1)/2(dSF
n dΘF

n )1−β <∞

for some β > 1.

Comments on the assumptions:

Note that assumptions (U1) and (U2) are, respectively, the uniform version of P(| <
X − x, θ > | < h) = φθ,x(h) > 0 and the conditional density f(θ, y, x) satisfies the

Hölder condition, that is ∀(x1, x2) ∈ Nx × Nx, ∀(y1, y2) ∈ C2, with Nx is a fixed
neighborhood of x and C is a fixed compact subset of R

|f(θ, y1, x1)− f(θ, y2, x2)| ≤ Cθ,x(||x1 − x2||b1 + |y1 − y2|b2), b1 > 0, b1 > 0

in pointwise almost complete convergence.
Assumption (U4) is added by Lipschitz condition. Assumptions (U1)and (U5) are
linked with the the topological structure of the functional variable.
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Theorem 2.2.1. Under Assumptions (U1)-(U5), we have, as n goes to infinity

sup
θ∈Θ

sup
x∈SF

sup
y∈C
|f̂(θ, y, x)− f(θ, y, x)| = O(hb1K) +O(hb2H) +Oa.co

√ log dSF
n + log dΘF

n

nhHφ(hK)


(2.2)

Remark 2.2.1. In the particular cases,

1. where the functional single-index is fixed we get the following result. Under
Assumptions (U1)-(U5), we have, as n goes to infinity

sup
x∈SF

sup
y∈C
|f̂(y, x)− f(y, x)| = O(hb1K) +O(hb2H) +Oa.co

√ log dSF
n

nhHφ(hK)


2. In the α-mixing case, to establish the almost complete convergence we use the

Fuck-Nagaev exponential-type inequality.

Proof of Theorem2.2.1

The proof is based on the following decomposition

f̂(θ, y, x)−f(θ, y, x) =
1

f̂D(θ, x)
{(f̂N(θ, y, x)−E[f̂(θ, y, x)])+(E[f̂N(θ, y, x)]−f(θ, y, x))}

−f(θ, y, x)

f̂D(θ, x)
{f̂D(θ, x)− 1}

where

f̂N(θ, y, x) =
1

nhHE[K1(θ, x)]

n∑
i=1

Ki(θ, x)Hi(y), f̂D(θ, x) =
1

nE[K1(θ, x)]

n∑
i=1

Ki(θ, x)

So, the proof is a direct consequence of the following results

Lemma 2.2.1. Under Assumptions (U1), (U3) and (U5), we have as n→∞

sup
θ∈ΘF

sup
x∈SF

|f̂D(θ, x)− 1| = Oa.co

√ log dSF
n + log dΘF

n

nφ(hK)
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Corollary 2.2.1. Under the assumptions of Lemma2.2.1 , we have,

∞∑
n=1

P( inf
θ∈ΘF

inf
x∈SF

f̂D(θ, x) < 1/2) <∞

Lemma 2.2.2. Under Assumptions (U1), (U2) and (U4), we have, as n goes to
infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈C
|fN(θ, y, x)− E[f̂N(θ, y, x)]| = O(hb1k ) +O(hb2H)

Lemma 2.2.3. Under the assumptions of Theorem2.2.1 , we have, as n goes to
infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈C
|f̂N(θ, y, x)− E[f̂N(θ, y, x)]| = Oa.co

√ log dSF
n + log dΘF

n

nhHφ(hK)


2.2.2 Proof

Proof of Lemma2.2.1

For all x ∈ SF , and for all θ ∈ ΘF we set

k(x) = arg min
k∈{1...rn}

||x− xk||

and
j(θ) = arg min

j∈{1...ln}
||θ − tj||

We consider the following decomposition

sup
x∈SF

sup
θ∈Θ
|f̂D(θ, x)− E[f̂D(θ, x)]| ≤ sup

x∈SF

sup
θ∈Θ
|f̂D(θ, x)− f̂D(θ, xk(x))|︸ ︷︷ ︸

T1

+

sup
x∈SF

sup
θ∈ΘF

|f̂D(θ, xk(x))− f̂D(tj(θ), xk(x))|︸ ︷︷ ︸
T2

+ sup
x∈SF

sup
θ∈ΘF

|f̂D(tj(θ), xk(x))− E[f̂D(tj(θ), xk(x))]|︸ ︷︷ ︸
T3

+

sup
x∈SF

sup
θ∈ΘF

|E[f̂D(tj(θ), xk(x))]− E[f̂D(θ, xk(x))]|︸ ︷︷ ︸
T4

+ sup
x∈SF

sup
θ∈ΘF

|E[f̂D(θ, xk(x))]− E[f̂D(θ, x)]|︸ ︷︷ ︸
T5
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For T1, T2, we use the Hölder continuity condition on K, the Cauchy-Schwartz’s in-
equality and the Bernstein’s inequality 1. With theses arguments we get

T1 = O

√ log dSF
n + log dΘF

n

nφ(hK)

 and T2 = O

√ log dSF
n + log dΘF

n

nφ(hK)

 (2.3)

Moreover, using the fact that T4 ≤ T1 and T5 ≤ T2 to get, for n tending to infinity

T4 = O

√ log dSF
n + log dΘF

n

nφ(hK)

 and T5 = O

√ log dSF
n + log dΘF

n

nφ(hK)

 (2.4)

Now, we deal with T3. For all η > 0, we have

P

T3 > η

√
log dSF

n + log dΘF
n

nφ(hK)


≤

dSF
n dΘF

n max
k∈1...d

SF
n

max
j∈1...d

ΘF
n

P

|f̂D(tj(θ), xK(x))− E[f̂D(tj(θ), xK(x))]| > η

√
log dSF

n + log dΘF
n

nφ(hK)


Applying Bernstein’s exponential inequality to

∆i =
1

φ(hK)
{Ki(tj(θ), xK(x))− E[Ki(tj(θ), xK(x))]}

one get , under (U7),

T3 = O

√ log dSF
n + log dΘF

n

nφ(hK)


1Let W1...Wn a sequence of random variables which are independent identically distributed,

and σ2
n = E(W 2

j ). If there exists M = Mn < ∞ such that W1 ≤ M . Then we have ∀ε >

0,P

 1
n

∣∣∣∣∣∣
n∑
j=1

Wj

∣∣∣∣∣∣ > ε

 ≤ 2 exp
(
− ε2n/2
σ2+εM

)
If ωn = n−1σ2

n log n, such that limn→∞ωn=0 with M/σ2
n <∞, then we have 1

n

n∑
j=1

Wj = Oa.co(
√
ωn).
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and

T5 = O

√ log dSF
n + log dΘF

n

nφ(hK)


Finally the result can be easily deduced from the latter together with 2.3 and 2.4.

Proof of Lemma2.2.2

One has

E(f̂N(θ, y, x))− f(θ, y, x) = E(
1

nhHE[K1(θ, x)]

n∑
i=1

Ki(θ, x)Hi(y))− f(θ, y, x)

=
1

hHE[K1(θ, x)]
E(K1(θ, x)H1(y))− f(θ, y, x) (2.5)

=
1

hHE[K1(θ, x)]
E(K1(θ, x))E(H1| < θ,X1 >)− f(θ, y, x)

Moreover, we have:
E(H1| < θ,X1 >) =

∫
R
H(h−1(y − z))f(θ, z,X1)dz

=
1

hH

∫
R

H(h−1(y − z))f(θ, z,X1)dz − f(θ, y, x)

We pose:
T = h−1

H (y − z)⇒ z = y − hHT and dz = hHT

=
1

hH

∫
R

H(T )f(θ, y − hHT,X1)hHdT − f(θ, y, x)

=

∫
R

H(T )[f(θ, y − hHT,X1)− f(θ, y, x)]dT

|E(f̂N(θ, y, x))− f(θ, y, x)| ≤
∫
R

H(T )|f(θ, y − hHT,X1)− f(θ, y, x)|dT

Finally, the use of (U2) implies that:

≤ C

∫
R

H(T )(hb1H + |t|b2hb2H)dT (2.6)
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Because this inequality is uniform on (θ, y, x) ∈ ΘF × SF × SR and because of (U4),
2.2.2 is a direct consequence of 2.5,2.6 and of Corollary 2.2.1.

Proof of Lemma2.2.3

We keep the same notations as in Lemma 2.2.1 and we use the compactness of C We
can write

C ⊂
zn⋃
K=1

(yj − `n, yj + `n)

with `n = n−
3
2
γ− 1

2 and zn ≤ Cn
3
2
γ+ 1

2 . Taking j(y) = arg minj∈1,2,...zn |y − tj| We get
the following decomposition:

|f̂N(θ, y, x)−E[f̂N(θ, y, x)]| ≤ |f̂N(θ, y, x)− f̂N(θ, y, xk(x))|︸ ︷︷ ︸
F1

+ |f̂N(θ, y, xk(x))− f̂N(tj(θ), y, xk(x))|︸ ︷︷ ︸
F2

+ |f̂N(tj(θ), y, xk(x))− f̂N(tj(θ), yj(y), xk(x))|︸ ︷︷ ︸
F3

+ |f̂N(tj(θ), yj(y), xk(x) − E[f̂N(tj(θ), yj(y), xk(x))]|)︸ ︷︷ ︸
F4

+ |E[f̂N(tj(θ), yj(y), xk(x))]− E[f̂N(tj(θ), y, xk(x))]|︸ ︷︷ ︸
F5

+ |E[f̂N(tj(θ), y, xk(x))]− E[f̂N(θ, y, xk(x))]|︸ ︷︷ ︸
F6

+ |E[f̂N(θ, y, xk(x))]− E[f̂N(θ, y, x)]|︸ ︷︷ ︸
F7

Using the same ideas as for T1,T2,T4 and T5 , permit us to get, , for n tending to
infinity

F7 ≤ F1 = Oa.co

√ log dSF
n + log dΘF

n

nhHφ(hK)

 and F6 ≤ F2 = Oa.co

√ log dSF
n + log dΘF

n

nhHφ(hK)


(2.7)

Concerning the terms F3 and F5, using Lipschitz’s condition on the kernel H, permits
us to write,

|f̂N(tj(θ), y, xk(x))− f̂N(tj(θ), yj(y), xk(x))| ≤
`n

h2
Hφ(hK)
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Now, the fact that limn→∞ n
γhH =∞ and choosing `n = n−

3
2
γ− 1

2 imply that

`n
h2
Hφ(hK)

= O

√ log dSF
n + log dΘF

n

nhHφ(hK)


Hence, for n large enough, we have

F5 ≤ F3 = Oa.co

√ log dSF
n + log dΘF

n

nhHφ(hK)

 (2.8)

Finally, the evaluation of the term (F4) is very close to (T3) in Lemma 2.2.1. Applying
Bernstein’s exponential inequality to

Γi =
1

hKφ(hK)
[Ki(xk)Hi(tj)− E(Ki(xk)Hi(tj))],

it follows that

F4 = Oa.co

√ log dSF
n + log dΘF

n

nhHφ(hK)

 (2.9)

So, the Lemma can be easily deduced from 2.7- 2.9.

2.3 The conditional mode in functional single-index

model

Let us now study the estimation of the conditional mode in the functional single-
index model. Our main aim, here, is to establish the a.co. convergence of the kernel
estimator of the conditional mode of Y given , denoted by Mθ(x), uniformly on fixed
subset SF of F . For this, we assume that Mθ(x) satisfies on S the following uniform
uniqueness property
(U6) ∀ε0 > 0, ∃η > 0,∀υ : SF → C

sup
x∈SF

|Mθ(x)− υ(x)| ≥ ε0 ⇒ sup
x∈SF

|f(θ, υ(x), x)− |f(θ,Mθ(x), x)| ≥ η.
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Moreover, we also suppose that there exists some integer j > 1 such that ∀x ∈ SF ,
the function f(θ, ., x) is j times continuously differentiable y ∈ C and

(U7)

f (l)(θ,Mθ(x), x) = 0

, if 1 ≤ l ≤ j and f (j)(θ, ., x) is uniformly continuous on C such that

f (j)(θ,Mθ(x), x) > C > 0.

where f (j)(θ, ., x) is the jth order derivative of the conditional density f(θ, ., x).

We estimate the conditional mode Mθ(x) with a random variable M̂θ(x) such that

M̂θ(x) = arg sup
y∈C

f̂(θ, y, x)

Theorem 2.3.1. Under the assumptions of Theorem 2.2.1 and if the conditional
density f(θ, ., x) satisfies (U6) and (U7) , we have

sup
x∈SF

|M̂θ(x)−Mθ(x)| = O(h
b1
j

K )−O(h
b2
j

H ) +Oa.co

((
log dSF

n

n1−γφ(hK)

) 1
2j

)

Proof of Theorem 2.3.1

By the Taylor expansion of f(θ, y, x) in neighborhood of Mθ(x), we get

f̂(θ, M̂θ(x), x) = f(θ,Mθ(x), x) +
f (j)(θ,M∗

θ (x), x)

j!
(M̂θ(x)−Mθ(x))j

where M∗
θ (x) is between Mθ(x) and M̂θ(x).

Combining the last equality with the fact that

|f̂(θ, M̂θ(x), x)− f(θ,Mθ(x), x)| ≤ 2 sup
y∈C
|f̂(θ, y, x)− f(θ, y, x)|

allow to write

sup
x∈SF

|M̂θ(x)−Mθ(x)|j ≤ j!

f (j)(θ,M∗
θ (x), x)

sup
x∈SF

sup
y∈C
|f̂(θ, y, x)− f(θ, y, x)|
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Using the second part of (U7) we obtain that,

∃c > 0,
∞∑
n=1

P(f (j)(θ,M∗
θ , x) < c) <∞

So, we would have

|M̂θ(x)−Mθ(x)|j = Oa.co

(
sup
y∈C
|f̂(θ, y, x)− f(θ, y, x)|

)
Lemma 2.3.1. Under the hpotheses of Theorem 2.2.1 thus we have,

lim
n→∞

M̂θ(x)−Mθ(x) = 0 a.co

Proof of Lemma 2.3.1

Because the continuity of the function f(θ, y, x) we have, for all ε > 0, ∃η(ε) > 0 such
that

|f(θ, y, x)− f(θ,Mθ(x), x)| ≤ η(ε)⇒ |y −Mθ(t)| ≤ ε

Therefore, for y = M̂θ(x),

P
(
|M̂θ(x)−Mθ(x)| > ε) ≤ P(|f(θ, M̂θ(x), x)− f(θ,Mθ(x), x)| > η(ε)

)
Then according to lemma, M̂θ −Mθ go almost completely to 0, as n goes to infinity.

2.4 Application to prediction

Let us now define the application framework of our results to prediction problem.
For each n ∈ N∗, let (Xi(t))t∈R i = 1, ..., n be a Hilbertian random variable. For
each curve (Xi(t))t∈R, we have a real response variable Yi. We suppose that the
observations (Xi, Yi) are generated with single-index structure. The prediction aim is
to evaluate ynew given (Xn+1(t))t∈R = xnew. The estimation of the conditional mode

in functional single-index model shows that the random variable M̂θ(xnew), is the
best approximation of ynew given xnew. Applying the result in the above theorem, we
obtain the following result.
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Corollary 2.4.1. Under the assumptions of Theorem 2.3.1, we have as n goes to
infinity

lim
n→∞

M̂θ(xnew)−Mθ(xnew) = 0 a.co



Chapter 3

Conditional distribution function

with simple functional index

3.1 Model

Let (Xi, Yi)1≤i≤n be n random variables, identically distributed as the random pair
(X, Y ) with values in F ×R.

∀y ∈ R. F (θ, y, x) = P(Y ≤ y| < X, θ >=< x, θ >)

We introduce a kernel type estimator F̂ (θ, y, x) of F (θ, y, x) as follows:

F̂ (θ, y, x) =

n∑
i=1

K(h−1
k (< x−Xi, θ >))H(h−1

H (y − Yi))

n∑
i=1

K(h−1
k (< x−Xi, θ >))

(3.1)

3.2 Uniform almost complete convergence

In this section we propose to study the uniform almost complete convergence of our
estimator defined above (3.1) for this, we need the following assumptions.
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3.2.1 Assumptions and results

(A1) and (A3) are the same assumptions (U1) and (U3) as in the second chapter.
(A2) ∀(y1, y2) ∈ SR × SR,∀(x1, x2) ∈ SF × SF and ∀θ ∈ ΘF

|F (θ, y1, x1)− F (θ, y2, x2)| ≤ C(x,θ)(||x1 − x2||b1 + |y1 − y2|b2)

(A4) For rn = O
(

logn
n

)
the sequences dSF

n and dΘF
n satisfy:

(log n)2

nφ(hK)
< log dSF

n + log dΘF
n <

nφ(hK)

log n

and
∞∑
n=1

n1/2b2(dSF
n dΘF

n )1−β <∞forβ > 1.

(A5) H is such that, for all (y1, y2) ∈ R2,|H(y1)−H(y2)| ≤ C|y1−y2|,
∫
|t|b2H(1)(t)dt <

∞.

Comments on the assumptions:

Note that Assumptions (A1) and (A2) are respectively the uniform version of (X ∈
Bθ(x, h)) = φθ,x(h) > 0 and ∀(y1, y2) ∈ SR × SR, ∀(x1, x2) ∈ Nx ×Nx,

|F (θ, y1, x1)− F (θ, y2, x2)| ≤ Cθ,x(||x1 − x2||b1 + |y1 − y2|b2), b1 > 0, b2 > 0

in pointwise almost complete convergence.
Assumptions (A1) and (A4) are linked with the the topological structure of the func-
tional variable.

Theorem 3.2.1. Under Assumptions (A1)-(A5), as n goes to infinity, we have

sup
θ∈Θ

sup
x∈SF

sup
y∈SR
|F̂ (θ, y, x)−F (θ, y, x)| = O(hb1K)+O(hb2H)+Oa.co

√ log dSF
n + log dΘF

n

nφ(hK)


(3.2)
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Remark 3.2.1. In the particular case, where the functional single-index is fixed we
get the following result. Under Assumptions (A1)-(A5), as n goes to infinity, we have

sup
x∈SF

sup
y∈SR
|F̂ (y, x)− F (y, x)| = O(hb1K) +O(hb2H) +Oa.co

(√
log dSF

n

nφ(hK)

)
(3.3)

Proof of Theorem3.2.1

Let F̂N(θ, y, x) (resp.F̂D(θ, x)) be defined as:

F̂N(θ, y, x) =
1

nE[K1(θ, x)]

n∑
i=1

Ki(θ, x)Hi(y) (resp.F̂D(θ, x) =
1

nE[K1(θ, x)]

n∑
i=1

Ki(θ, x))

This proof is based on the following decomposition:

F̂ (θ, y, x)−F (θ, y, x) =
1

F̂D(θ, x)
(F̂N(θ, y, x)− E[F̂N(θ, y, x)])− (F (θ, y, x)− E[F̂N(θ, y, x)])+

F (θ, y, x)

F̂D((θ, x)
{1− F̂D((θ, x))}

and on the following intermediate results.

Lemma 3.2.1. Under Assumptions (A1),(A3)and(A4), we have as n→∞

sup
θ∈ΘF

sup
x∈SF

|F̂D(θ, x)− 1| = Oa.co

√ log dSF
n + log dΘF

n

nφ(hK)


Corollary 3.2.1. Under the assumptions of Lemma 3.2.1, we have

∞∑
n=1

(
inf
θ∈ΘF

inf
x∈SF

F̂D(θ, x) <
1

2

)
<∞

Lemma 3.2.2. Under Assumptions (A1), (A2)and(A4), we have, as n goes to infinity

sup
θ∈ΘF

sup
x∈SF

sup
y∈SR
|FN(θ, y, x)− E(F̂N(θ, y, x))| = O(hb1K) +O(hb2H) (3.4)
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Lemma 3.2.3. Under the assumptions of Theorem 3.2.1 as n goes to infinity, we
have

sup
θ∈ΘF

sup
x∈SF

sup
y∈SR
|F̂N(θ, y, x)− E(F̂N(θ, y, x))| = Oa.co

√ log dSF
n + log dΘF

n

nφ(hK)



3.2.2 Proof

Proof of Lemma3.2.1

To demonstrate this lemma we do the same work as the proof of lemma (2.2.1) in the
second chapter ,instead of density function ’f’ we put the distribution function ’F’.

Proof of Lemma3.2.2

One has

E(F̂N(θ, y, x))− F (θ, y, x) = E(
1

E(K1(x, θ)Hi(y))
)− F (θ, y, x)

E(F̂N(θ, y, x))−F (θ, y, x) =
1

E[K1(x, θ)]
E[K1(x, θ)]E(H1(y)| < X1, θ >)−F (θ, y, x)

(3.5)
Moreover, we have:

E(H1(y)| < X1, θ >) =

∫
R

H(h−1
H (y − z))f(θ, z,X1)dz

now, integrating by parts .

I =

∫
R

H(h−1
H (y − z))f(θ, z,X1)dz

we pose:

U = H(h−1
H (y − z))⇒ dU = −h−1

H H(1)(h−1
H (y − z))

dV = f(θ, z,X1)⇒ V = F (θ, z,X1)
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I = [F (θ, z,X1)H(h−1
H (y − z))]+∞−∞ +

1

hH

∫ +∞

−∞
H(1)(h−1

H (y − z))F (θ, z,X1)dz

So

E(H1(y)| < X1, θ >) =
1

hH

∫ +∞

−∞
H(1)(h−1

H (y − z))F (θ, z,X1)dz

we pose:

T = h−1
H (y − z)⇒ z = y − hHT and dz = hHT

we obtain:

E(H1(y)| < X1, θ >) =

∫
R

H(1)(T )F (θ, y − hHT,X1)dT

Thus, we have:

|E(H1(y)| < X1, θ >)− F (θ, t, x)| ≤
∫
R

H(1)(T )|F (θ, y − hHT,X1)− F (θ, y, x)|dT

Finally, the use of (A2) implies that:

|E(H1(y)| < X1, θ >)− F (θ, t, x)| ≤ Cθ,x
∫
R
H(1)(T )(hb1H + |t|b2hb2H)dT (3.6)

Because this inequality is uniform on (θ, y, x) ∈ ΘF × SF × SR and because of (A5),
(3.4) is a direct consequence of (3.5),(3.2.2) and of Corollary (3.2.1).

Proof of Lemma3.2.3

We keep the notation of the Lemma 3.2.1 and we use the compact of SR, we can write

that, for some t1, ..., tzn ∈ SR, SR ⊂
⋃zn
m=1(ym − ln, ym + ln) with ln = n−1/2b2 and

zn ≤ Cn−1/2b2 . Taking m(y) = arg min
1,...,zn

|y − tm|.
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Thus, we have the following decomposition:

|F̂N(θ, y, x)−E(F̂N(θ, y, x))| = |F̂N(θ, y, x)− F̂N(θ, y, xk(x))|︸ ︷︷ ︸
Γ1

+ |F̂N(θ, y, xk(x))− E(F̂N(θ, y, xk(x)))|︸ ︷︷ ︸
Γ2

+ 2|F̂N(tj(θ), y, xk(x))− F̂N(tj(θ), ym(y), xk(x))|︸ ︷︷ ︸
Γ3

+ 2|E(F̂N(tj(θ), y, xk(x)))− E(F̂N(tj(θ), ym(y), xk(x)))|︸ ︷︷ ︸
Γ4

+ |E(F̂N(θ, y, xk(x)))− E(F̂N(θ, y, x))|︸ ︷︷ ︸
Γ5

Concerning Γ1 we have

|F̂N(θ, y, x)−F̂N(θ, y, xk(x))| ≤ 1
n

n∑
i=1

∣∣∣∣ 1

K1(θ, x)
Ki(θ, x)Hi(y)− 1

K1(θ, xk(x))
Ki(θ, xk(x))Hi(y)

∣∣∣∣
We use the Holder continuity condition on K, the Cauchy-Schwartz inequality, the
Bernstein’s inequality and the boundness of H (assumption (A5)). This allows us to
get:

|F̂N(θ, y, x)− F̂N(θ, y, xk(x))| ≤
C

φ(hK)

1

n

n∑
i=1

|Ki(θ, x)Hi(y)−Ki(θ, xk(x))Hi(y)|

≤ C

φ(hK)

1

n

n∑
i=1

|Hi(y)||Ki(θ, x)−Ki(θ, xk(x))|

≤ Ćrn
φ(hK)

Concerning Γ2, the monotony of the functions E(F̂N(θ, ., x)) and F̂N(θ, ., x) permits
to write ∀m ≤ zn, ∀x ∈ SF , ∀θ ∈ ΘF

F̂N(θ, ym(y) − ln, xk(x)) ≤ sup
y∈(ym(y)−ln,ym(y)+ln)

F̂N(θ, y, x) ≤ F̂N(θ, ym(y) + ln, xk(x))

E(F̂N(θ, ym(y)−ln, xk(x))) ≤ sup
y∈(ym(y)−ln,ym(y)+ln)

E(F̂N(θ, y, x)) ≤ E(F̂N(θ, ym(y)+ln, xk(x)))

Next, we use the Holder’s condition on F (θ, y, x) and we show that, for any y1, y2 ∈ SR
and for all x ∈ SF , θ ∈ ΘF
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|E(F̂N(θ, y1, x))−E(F̂N(θ, y2, x))| = 1

E(K1(x, θ))
|E(K1(x, θ))F (θ, y1X1)−E(K1(x, θ))F (θ, y1X2)|

≤ C|y1 − y2|b2

(3.7)

Now, we have, for all η > 0

P

∣∣∣F̂N(θ, y, xk(x))− E(F̂N(θ, y, xk(x)))
∣∣∣ > η

√
log dSF

n + log dΘF
n

nφ(hK)


=

P

(
max

j∈{1...dΘF
n }

max
k∈{1...dSFn }

max
1≤m≤zn

∣∣∣F̂N(θ, y, xk(x))− E(F̂N(θ, y, xk(x))
∣∣∣ > η

√
log dSF

n + log dΘF
n

nφ(hK)

)

≤

znd
SF
n dΘF

n max
j∈{1...dΘF

n }
max

k∈{1...dSFn }
max

1≤m≤zn
P
(∣∣∣F̂N(θ, y, xk(x))− E(F̂N(θ, y, xk(x)))

∣∣∣

> η

√
log dSF

n + log dΘF
n

nφ(hK)


≤ 2znd

SF
n dΘF

n exp
(
−Cη2 log dSF

n dΘF
n

)
Choising zn = O(l−1

n ) = O(n
1

2b2 ), we get:

P

(∣∣∣F̂N(θ, y, xk(x))− E(F̂N(θ, y, xk(x)))
∣∣∣ > η

√
log dSF

n + log dΘF
n

nφ(hK)

)
≤ Ćzn(dSF

n dΘF
n )1−Cη2
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putting Cη2 = β and using (A4), we get:

Γ2 = Oa.co

√ log dSF
n + log dΘF

n

nφ(hK)


Concerning Γ3 and Γ4, using Lipschitz’s condition on the kernel H, one can write

∣∣∣F̂N(tj(θ), y, xk(x))− F̂N(tj(θ), ym(y), xk(x))
∣∣∣ ≤ C

1

nφ(hK)

n∑
i=1

Ki(tj(θ), xk(x))|Hi(y)−Hi(ym(y))|

≤ Cln
nhHφ(hK)

n∑
i=1

Ki(tj(θ), xk(x))

Once again a standard exponential inequality for a sum of bounded variables allows
us to write

F̂N(tj(θ), y, xk(x))− F̂N(tj(θ), ym(y), xk(x)) = O( ln
hH

) +Oa.co

(
ln
hH

√
logn

nφx(hK)

)
Now, the fact that lim

n→∞
nγhH =∞ and ln = n

− 1
2b2 imply that:

ln
hHφ(hK)

= O

√ log dSF
n + log dΘF

n

nφ(hK)


then:

Γ3 = Oa.co

√ log dSF
n + log dΘF

n

nφ(hK)


Hence, for n large enough, we have

Γ3 ≤ Γ4 = Oa.co

(√
log dSF

n + log dΘF
n

nφ(hK)

)
.

Concerning Γ5, we have

E(F̂N(θ, y, xk(x)))− E(F̂N(θ, y, x)) ≤ sup
x∈SF

∣∣∣F̂N(θ, y, x)− F̂N(θ, y, xk(x))
∣∣∣,
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then following similar proof used in the study of Γ1 and using the same idea as for

E(F̂N(θ, y, xk(x)))− E(F̂N(θ, y, x)) we get, for n tending to infinity

Γ5 = Oa.co

√ log dSF
n + log dΘF

n

nφ(hK)



3.3 The conditional quantile in functional single-index

model

In this part we investigate the asymptotic properties of the conditional quantile
function of a scalar response and functional covariate when the observations are from
a single functional index model and data are independent and identically distributed
(i.i.d.). We will consider the problem of the estimation of the conditional quantiles.
Saying that, we are implicitely assuming the existence of a regular version for the
conditional distribution of Y given < X, θ >=< x, θ >. From the conditional dis-
tribution function F (θ, ., x), , it is easy to give the general definition of the α -order
quantile:

tθ(α) = inf{t ∈ R;F (θ, t, x) ≥ α},∀α ∈ (0, 1)

In order to simplify our framework and to focus on the main interest of our part ,
we assume that F (θ, ., x) is strictly increasing and continuous in a neighborhood of
tθ(α). This is insuring unicity of the conditional quantile tθ(α) which is defined by:

tθ(α) = F−1(θ, α, x), . (3.8)

t̂θ(α) is an estimator of tθ(α),defined as:

t̂θ(α) = F̂−1(θ, α, x) (3.9)

Or as:
F̂ (θ, t̂θ(α), x) = α
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To insure existence and unicity of this quantile, we will assume that

(A6) F (θ, ., x) is some point strictly increasing, In order to insure unicity of t̂θ(α) we
will make the following, quite unrestrictive, assumption:
(A7) H is strictly increasing,
More precisely, we will suppose that there exists some integer j > 0 such that:

(A8) F (l)(θ, tθ(α), x) = 0, if 1 ≤ l < j, and F (j)(θ, ., x) is uniformly continuous on

SR,such that, |F (j)(θ, tθ(α), x)| > C > 0

Theorem 3.3.1.

sup
x∈SF

|t̂θ(α)− tθ(α)| = O(h
b1
j

K + h
b2
j

H ) +Oa.co

((
log dSF

n

nφx(hK)

)1/2j
)

proof of Theorem 3.3.1

Let us write the following Taylor expansion of the function F̂ (θ, ., x):

F̂ (θ, tθ(α), x)−F̂ (θ, t̂θ(α), x) =

j−1∑
l=1

(tθ(α)− t̂θ(α))l

l!
F̂ (l)(θ, tθ(α), x)+

(tθ(α)− t̂θ)j

j!
F̂ (j)(θ, t∗, x)

where t∗ is some point between tθ(α) and t̂θ(α). It suffices now to use the first part
of condition (A8) to be able to rewrite this expression as:

F̂ (θ, tθ(α), x)−F̂ (θ, t̂θ(α), x) =

j−1∑
l=1

(tθ(α)− t̂θ(α))l

l!

(
f̂ (l−1)(θ, tθ(α), x)− f (l−1)(θ, tθ(α), x)

)

+
(tθ(α)− t̂θ)j

j!
f̂ (j−1)(θ, t∗, x)

As long as we could be able to check that

∃τ > 0,
n=∞∑
n=1

(f (j−1)(θ, t∗, x) < τ) <∞,
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we would have

(tθ(α)−t̂θ(α))j = O
(
F̂ (θ, tθ(α), x)− F (θ, tθ(α), x)

)
+O

(
j−1∑
l=1

(tθ(α)− t̂θ(α))

)l (
f̂ (l−1)(θ, tθ(α), x)

−f (l−1)(θ, tθ(α), x)
)
a.co

So we have

(
tθ(α)− t̂θ(α)

)j
= Oa.co

(
F̂ (θ, tθ(α), x)− F (θ, tθ(α), x)

)
Lemma 3.3.1. If the conditions of Theorem 3.2.1 hold together with (A6) and (A7),
then we have:

lim
n→∞

t̂θ(α)− tθ(α) = 0 a.co
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Chapter 4

On the estimation of the functional

single index

4.1 The method of M-estimators

M-estimators were introduced by Huber (1964,[29]), where he proposed to gener-
alize the maximum likelihood estimator by considering it as a minimization problem
of a certain function. We consider an i.i.d.of n real random variables Y1, ..., Yn from

the same variable Y Huber stands in a general framework of estimators θ̂ defined by

θ̂ = arg min
θ∈R

n∑
i=1

ρ(Yi, θ)

where the function ρ : R2 → R is assumed to be measurable. Different choices
of the function ρ lead to different estimators of functionals of the distribution of Y
(mode, median and quantile). Intuitively, the family of M-estimators can be seen as
a generalization of one of the definitions of the mean. Indeed, the expectation E(Y )

of a random variable Y can be defined as the solution of the following minimization
problem:

E(Y ) = arg min
t∈R

E[(Y − t)2]
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This naturally allows us to propose the following estimator of the mean

Ê(Y ) = arg min
t∈R

n∑
i=1

(Yi − t)2

Huber in his study distinguished two classes of M-estimator depending on the convex-
ity or non-convexity of the function ρ. In both cases this function must check certain
terms. For the case of regression estimation, in a simple index model, Delecroix and
Hristache (1999,[12]) propose to estimate θ by the method of M-estimators. The idea

of this method is therefore to define an estimator θ̂ of θ, solution of the problem of
next maximization

θ = arg max
θ∈Θ

E[ψ(Y,E[Y |Xθ])|X = x]

The nonparametric estimator θ̂ = θ̂ψ is, by analogy, a solution of the problem of
maximization

θ̂ψ = arg max
θ∈Θ

1

n

n∑
i=1

ψ(Yi, r̂(Xi, θ))

where ψ is a function defined on R2 and with values in R satisfying a certain number
of conditions and r(Xθ) = rθ(X) is the assumed unknown regression function. Sev-
eral choices of the function ψ can be considered, for more detail on these choice the
reader can consult Serfling (1980,[46]).

Delecroix and Hristache (1999[12]) show that θ̂ψ is almost surely consistent and
asymptotically normal in the case where ψ is the log-likelihood of a density belonging

to an exponential family. For the estimation of θ̂ψ by the M-estimate method, we can
cite Sherman (1994,[35]), Xia and Li (1999,[49]) and Xia et al. (1999,[50]). It exists
other estimation methods based on M-estimators in the literature. HAS as an exam-
ple the pseudo-maximum likelihood method which essentially based on conditional
density estimation.

4.1.1 The pseudo-maximum likelihood method

As indicated in the previous paragraph, the pseudo-maximum likelihood method
is a special case of robust estimation in simple index model. Indeed, Delecroix et
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al. (2003,[13]) propose to estimate the density conditional considering the following
model

fY |X(x, y) = fθ(xθ, y)

where fθ(t, y) represents the conditional density of Y knowing xθ = t evaluated at
the point y. The idea is to take the likelihood function

n∏
i=1

fθ(Xiθ, Yi)fX(Xi)

and the log-likelihood

n∑
i=1

log fθ(Xiθ, Yi) +
n∑
i=1

log fX(Xi)

Since the term
n∑
i=1

fX(Xi) does not depend on θ, the estimator of the maximum of like-

lihood could be defined, if fθ were known, by maximizing the first term
n∑
i=1

log fθ(Xiθ, Yi).

As fθ is unknown, they define the following M-estimator:

θ̂ = arg max
θ∈Θ

1

n

n∑
i=1

log(f̂θ(Xiθ, Yi)) (4.1)

where f̂θ represents the kernel estimator of fθ.
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General Conclusion and perspectives

We were interested specifically in this work to single-index conditional models that
treat the case of functional variables in which "response" variable is true while the
explanatory variable is functional in the i.i.d case. The objective was the semi-
parametrical estimation of the conditional density function as well as the conditional
distribution function by the kernel method, and their application the conditional
mode(resp.the conditional quantile ).
The richness of this functional statistical research area offers many perspectives

both theoretically and practically, let us cite:

• The asymptotic normality of our estimators can allow us to test and build
confidence intervals.

• We can also consider an asymptotic study for our esitmators in the ergodic case.

• Another possible perspective is to assume that not only the explanatory variable
is functional but also the variable of interest.
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