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 ملخص :

  على  المستقلة العشوائية العمليات لفئة العشوائي  للتكامل جديد نهجاقتراح هو   الأطروحة هذه من الهدف

  النظير اكتشاف  هي  التقييم نقطة. محدودة زمنية فترة على  الكسرية البراونية بالحركة يتعلق  فيما الفور

 .إيتو لنظرية

 خلال من تكييف  عمليات وجود بعدم يتعلق فيما العشوائي  التكامل على  النتائج بعض  نعرض ، أدق بتعبير  

 .البراوني  الإطار في [ 4] كيوو  و عياد عليها حصل التي  النتائج تعميم

  النظام حالة إعطاء يتم حيث العشوائية الأمثل التحكم لمشكلة وضرورية كافية قصوى مبادئ نشتق ، وبالمثل

  الحد نطبق. مارتينجال  واحدة وقفزة براونية بحركة مدفوعة  محكومة عشوائية تفاضلية معادلة  خلال من

 . الافتراضي  الوضع مع السجل أداة تعظيم مشكلة لحل المبادئ من الأقصى 

 

 الكلمات المفتاحية: 

 الحركة البراونية الكسرية ، التكامل العشوائي  ، القياس الغاوسي 

  مبدأ الحد الأقصى  العشوائي  ، المعادلات التفاضلية العشوائية المتخلفة  مع الافتراضي 

 



Abstract

The objective of this thesis is to propose a new approach to stochastic integration of the

class of instantly independent stochastic processes with respect to fractional brownian mo-

tion on a finite interval. The appraisal point is to discover the counterpart of the Itô theory.

More precisely, we show some results on stochastic integration with respect to no adapted

processes by generalizing the results obtained by Ayed and Kuo [4] in the Brownian frame-

work.

Similarly, we derive sufficient and necessary maximum principles for a stochastic optimal

control problem where the system state is given by a controlled stochastic differential equa-

tion driven by a Brownian motion and a single jump martingale. We apply the maximum

principles to solve a log-utility maximization problem with default.

Key words:

Fractional Brownian motion, stochastic integration, gaussian measure, stochastic maximum

principle, backward stochastic differential equations with default.
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Résumé

L’objectif de cette thèse est de proposer une nouvelle approche d’une intégration stochas-

tique de classe de processus qui sont instantanément indépendants par rapport au mouve-

ment Brownien fractionnaire sur un interval fini. Le point important est de trouver la con-

trepartie de la théorie d’Itô. Plus précisément, nous montrons des résultats sur l’intégration

stochastique par rapport à des processus non adaptés en généralisant les résultats obtenus

par Ayed et Kuo [4] dans le cadre Brownien.

De même, on dérive les principes de maximum nécessaires et suffisants pour un control

optimal stochastique où l’état du système est donné par une équation différentielle stochas-

tique contrôllée, dirigée par le mouvement Brownien et une martingale à saut. On applique

les principes des maximums pour résoudre le problème de maximisation par défaut.

Mots clés:

Mouvement brownien fractionnaire, intégration stochastique, mesure gaussienne, principe

de maximum stochastique, équation différentielle stochastique rétrograde avec saut.
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Introduction

In the theory of stochastic integration, the mathematician K. Itô [35] introduced the Itô

stochastic integral in order to obtain a method to construct diffusion processes as solutions

to stochastic differential equations. The main problem of the integration with respect to

Brownian motion, is the fact that the Riemann-Stieltjes integration fails. This need inspired

Itô to construct a theory of stochastic integration [21].

The Itô stochastic integral has a rage of applications. The most famous are those related

to financial modeling, as the Black-Scholes-Merton model. A continuous-time model, which

aim is to describe the behavior of stock price. Specifically, it faces the problem of pricing Eu-

ropean options. However, this integration theory requires that the stochastic process must

be adapted [21].

Fractional Brownian motion (fBm) is a similar to a continuous fractal walk. Nonetheless,

fBm has dependant increments contrary to regular brownian motion, which means that the

current step of fBm is independent on previous step, The dependance of this process is

measured on a scale from zero to one and this measure is appointed(called) the Hurst in-

dex H ∈ (0,1) relative to the hydrologist "Harold Edwin Hurst" for this work in the field of

hydrology. Many researchers in recent years were attracted by the stochastic calculus with

respect to fBm, this later has been motivated by applications in finance and interest traffic

modeling.

In most real-world systems, everyone agrees that uncertainty is inherent. It places many

inconvenience (and sometimes surprisingly advantages) on humankind’s effort, which are

habitually associated with the research for optimal results.

12
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Control theory was originally developed in order to obtain tools for analyzing and tuning

a control system. Early development was concerned with centrifuge counters, simple in-

dustrial process regulators, electronic amplifiers, and fire control systems. As the theory

developed, it became clear that tools could be applied to a large variety of different systems,

both technical and non-technical.

Results (findings) from various branches of applied mathematics were exploited during the

development of control theory. Control problems have also led (given arise) to new results

in applied mathematics.

The story of backward stochastic differential equations (in short BSDEs) was appeared

by Bismut [12], whose, he was introduced a linear BSDE in an attempt to solve an optimal

stochastic control problem by the maximum principle.

Backward stochastic differential equation can be used to solve stochastic optimal con-

trol problems (more precisely, BSDEs can just trait the subclass of standard stochastic con-

trol problems with uncontrolled diffusion, and with corresponding semi-linear PDE), define

nonlinear expectations and establish probabilistic representations of solutions to partial dif-

ferential equations. Since many financial problems can be related to stochastic optimization

problems and nonlinear expectations, it is not surprising that BSDEs have become a very

important tool in financial mathematics. Nowadays, backward stochastic differential equa-

tions are an active field of research which is stimulated by new financial and actuarial ap-

plications.

Our aim in the third chapter is to derive sufficient and necessary maximum principles

of controlled stochastic differential equation driven by a Brownian motion and a pure jump

martingale. This type of equations has been studied by Dumitrescu et al. [28]. They proved

existence and uniqueness as well as comparison theorems for these types of BSDEs. They

also generalized the results to drivers including a singular process. If the driver is λ-linear,

they found a representation of the solution of the associated BSDE in terms of a conditional

expectation and an adjoint exponential semi-martingale. The framework of Dumitrescu et

al. [28] is the same as that of the third chapter. However, in contrast to Dumitrescu et al.

[28], we consider a stochastic optimal control problem in this default framework, and derive

maximum principles characterizing the optimal solution of this problem.
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Several other papers have studied similar frameworks (third chapter): Kharroubi and

Lim [45] considered BSDEs with random marked jumps as well as applications to default

risk. They connected the BSDEs with random marked jumps to Brownian BSDEs by enlarge-

ment of filtrations and proved that the jump BSDEs have solutions if the Brownian BSDEs

have solutions. Furthermore, they proved a uniqueness theorem for jump BSDEs via a com-

parison theorem with Brownian BSDEs. Though the framework of Kharroubi and Lim [45]

was similar to that of our paper, we focus on the stochastic control problem instead of the

properties of the BSDEs. Lim and Quenez [50] analyzed the exponential utility maximiza-

tion problem for an incomplete market with a default time which causes a discontinuity in

the stock price. They applied dynamic programming to characterize the value function as

the maximal subsolution of a BSDE. Lim and Quenez [51] considered a financial market

with an asset exposed to a risk which can cause a jump in the asset price. They assume that

the asset can be traded after the default time. In this context, they studied the expected

utility maximization of terminal wealth for several utility functions. They proved that the

value function for the power utility function can be determined as the minimal solution of

a BSDE. Though the framework of Lim and Quenez [50] and [51] is similar to ours, they

considered the control problem for maximizing the utility of terminal wealth. In contrast,

the objective function in the present paper consists of both a terminal time term and an

integral term over the whole time period.

For information about stochastic control with default jumps, we refer to Pham [59].

For more on stochastic control for jump processes, see for instance Cohen and Elliott

[19] Chapter 21. Note that in Cohen and Elliott [19], the control cannot affect the diffusion

coefficient function. In the present work, this is possible.

This thesis is organized in four chapters:

• In the first one, we recall some preliminaries on Malliavin calculus and on the frac-

tional calculus and construct suitable spaces of integrands in order to have a well-

defined integral using integral representation. In the second chapter, we introduce a

new outcome on stochastic integration w.r.t fractional Brownian motion (fbm) for non

adapted process by using idea of Lebovits, and we give a new result on stochastic in-

tegration w.r.t. fbm for no adapted processes that are written as the product of two
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processes, one is adapted, and second is instantly independent.

The next two chapters are related to stochastic controls, we talk about stochastic optimal

control , and we go to define our problem of stochastic maximum principle:

• In Chapter 3, we give some preliminaries about jump processes and we shall set up a

rigorous mathematical framework for stochastic optimal control problems.

• In the last Chapter, we give the reader a powerful tool of stochastic maximum princi-

ple in optimal control.

The appendix include a summary on notions and properties of fractional Brownian mo-

tion.



Chapter 1

Stochastic integration for no adapted

processes

1.1 Fractional calculus

Let H̃ be a some class of integrands and complete, and let ε ∈ H̃ be the class of step

functions, and J H (f ) be an integral of f ∈ ε w.r.t. fractional brownian motion BHt , under

this assumptions:

• H̃ is an inner product space with an inner product < f ,g >H̃, f ,g ∈ H̃.

• for f ,g ∈ ε, < f ,g >H̃= E[J H (f ),J (g)].

• The set ε is dense in H̃.

In this section we give a short summary of fractional calculus for process driven by frac-

tional brownian motion.

Fractional calculus is a branch of mathematical analysis that unifies the integration operator

and differentiation operator of classical calculus as one operator. The differintegral is a sin-

gle operator depending on a real valued parameter α, where positive values of α correspond

to differentiation and negative values of α correspond to integration. Fractional calculus

is an extension, or generalization, of the well known classical calculus. It was presented by

authors and they mentioned the possible approach to fractional-order differentiation in that

16
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sense, that for non-integer values of n the definition has given as

dnexm

dxn
=mnemx, m > 0.

Authors suggested to use this relationship also for negative or non-integer (rational) values

of n, and they generalized the notion of differentiation for arbitrary functions.

According to Riemann-Liouville the notion of fractional integral of order α, (α > 0) for a

function f (t), is a natural consequence of the well known formula (Cauchy-Dirichlet ) that

reduces the calculation of the n-fold primitive of a function f (t) to a single integral of con-

volution type

J na+f (t) =
1

(n− 1)!

∫ t

a
(t − τ)n−1f (τ)dτ n ∈N, (1.1)

disappear at t = a with its derivative 1,2,3, ...,n − 1. Impose J na+f (t) and f (t) to be causal

function, here, vanishing for t < 0. Expand to any positive real value by using the Gamma

function (n− 1)! = Γ (n).

1.1.1 Fractional Integral of order α > 0 :

(Right-Sided)

J αa+f (t) =
1
Γ (n)

∫ t

a
(t − τ)α−1f (τ)dτ, α ∈R. (1.2)

We define J 0
a+ = I , J 0

a+f (t) = f (t).

Alternatively(left-sided integral)

J αb−f (t) =
1
Γ (n)

∫ b

t
(t − τ)α−1f (τ)dτ, α ∈R,

for(a = 0,b = +∞)−→ Riemann derivative. and for (a = −∞,b = +∞)we have a Liouville

derivative. According to [9], we have the following definition

Definition 1.1.1. [9] Let f ∈ L2[a,b] ⊂ L2, 0 < α < 1 and t ∈ [a,b]. The fractional derivatives of

order α on the interval [a,b] are

(Dαa+f )(t) =
1

Γ (1−α)
d
du

∫ b

a
f (u)(u − t)−α+ du,

and

(Dαb−f )(t) =
1

Γ (1−α)
d
du

∫ b

a
f (u)(u − t)−α+ du.
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Furthermore, this case admits what is known as the Weyl representation of the fractional deriva-

tives:

(Dαa+f )(t) =
1

Γ (1−α)

[ f (t)
(t − a)α

+α
∫ t

a

f (t)− f (u)
(t −u)α−1 du

]
,

and

(Dαb−f )(t) =
1

Γ (1−α)

[ f (t)
(b − t)α

+α
∫ b

t

f (t)− f (u)
(t −u)α−1 du

]
.

Notice that Dαa+ = I−αa+ and Dαb− = I−αb− . Furthermore, the fractional derivatives Dαa+ and Dαb− are

called left sided and right sided, respectively.

1.2 The spaces of stochastic test functions and stochastic dis-

tributions

In all this work we denote by S(R) the Schwartz space of rapidly decreasing functions

on R and S ′(R) denote its dual space. Let µ be the standard Gaussian measure on S ′(R).

Let (L2) = L2(S ′(R),µ) and let (S) and (S)? denote the spaces of test functions and general-

ized functions on S ′(R), respectively. We have (See: [49] )

(S) ⊂ (L2) ⊂ (S)? .

1.2.1 (S)?-process, (S)?-derivative and (S)?-integral

Let B(R) denote the Borelian σ -field on R and λ a measure on B(R) such that (R,B(R),λ) is

a σ -finite measure space. Through this section, [0,T ] denote an element of B(R).

A measurable function Φ : I −→ (S)? is called a stochastic distribution process ((S)?-

process). Φ is said differentiable at t0 if lim
r−→0

r−1(Φt0+r −Φt0) exists in (S)? .

one notes
dΦt0
dt the (S)?-derivative at t0 of the stochastic distribution process Φ . If Φ is

differentiable at every t0 of I , we said that Φ to be differentiable over I . Generally, for every

k ∈N, Φ is Ck in (S)? if the process Φ : I −→ (S)? is Ck.
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Definition 1.2.1. [49] Assume that Φ : I −→ (S)? is weakly in L1(I,λ), i.e. assume that for all ϕ

in (S), the mapping u 7−→� Φu ,ϕ�, from I to R belongs to L1(I,λ). Then there exists an unique

element in (S)? , noted
∫
I
Φuλ(du), such that, for all ϕ in (S).

�
∫
I
Φuλ(du),ϕ�=

∫
I
� Φu ,ϕ� λ(du)

We say in this case that Φ is (S)?- integrable in I (with respect to the measure λ), in the Pettis

sense. In the sequel, when we do not specify a name for the integral (resp. for the measure λ) of

an (S)?- integrable process Φ on I . We always refer to the integral in Petti’s sense (resp. to the

Lebesgue measure).

1.2.2 S-transform and Wick product

Lemma 1.2.1. [49] For any (p,q) ∈N2 and (X,Y ) ∈ (S)−p × (S)−q,

|S(X �Y )(η)| ≤ ‖X‖−p‖Y ‖−qe|η|
2
maxp;q .

Where η ∈ L(R) and "�" is notation of wick-product.

Some properties of S-transforms

1. If Φ is deterministic function, then Φ � Ψ = ΦΨ , for all Ψ ∈ (S)? . Furthermore,

let (Xt)t∈R be a Gaussian process and let H be the subspace of (L2) defined by H =

vect
R
{Xt; t ∈R}

L2. If X and Y two elements of H, then

X �Y = XY −E[XY ].

2. We define Φ =
∑
k ak < ·, ek > and Ψ =

∑
n In(fn) be in (S)? . So their S-transform is given

by

S(Φ)(η) =
∑
k

ak < η,ek >L2(R) .

and

S(Ψ )(η) =
∑
k

< fn,η
⊗n > .

for every η ∈ L(R).
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3. For every (f η ξ) in L2(R)×L(R)×R, we have this equality

(S)(eiξ<·,f >)(η) = e
1
2 (|η|20+2iξ<f ,η>−ξ2|f |20).

Also, the S-transform verifies the following properties: see [49]

Lemma 1.2.2. [49]

• (i) The map S : Φ 7−→ S(Φ), from (S)? into F (L(R);R), is injective.

• (ii) Let Φ : I −→ (S)? be an (S)? processes. If Φ is (S)? -integrable over I w.r.t λ. then one

has, for all η in L(R), S(
∫
I
Φ(u)λ(du))(η) =

∫
I
S(Φ(u))(η)λ(du).

• (iii) Let Φ : I −→ (S)? be an (S)? processes. If Φ is (S)? -differentiable at t in I . Then, for

every η in L(R)the map u 7−→ [SΦ(u)](η) is differentiable at t and verifies

S[
dΦ
dt

(t)](η) =
d
dt

[SΦ(t)](η).

Theorem 1.1. [47] Let Φ : I −→ (S)? be a stochastic distribution such that, for all η in L(R).

the real- valued map t 7−→ S[Φ(t)](η) is measurable and such that there exist a natural integer p,

a real a and a function L in L1(I,λ) such that |S(Φ(t))(η)| ≤ L(t)ea|η|
2
p , for all η of L(R) and for

almost every t of I . Then Φ is (S)?- integrable over I , w.r.t to λ.

Theorem 1.2. [8] For any differentiable map F : I −→ L′(R), the element < ·,F(t) > is a differen-

tiable stochastic distribution process which satisfies the equality:

d
dt
< ·,F(t) >=< ·, dF

dt
(t) > .

1.2.3 Operators (MH )H∈(0,1)

We now define our fundamental L2(R)-operator MH for 0 < H < 1 , in the Fourier domain

by:([49])

̂MH (u)(y) =

√
2π
cH
|y|1/2−H û(y),∀y ∈R? .

Where cH is defined by

cH =
( 2π
Γ (2H + 1)sin(πH)

) 1
2
. (1.3)
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We define the homogeneous Sobolev space of order 1/2−H , noted L2
H (R) as:

L2
H (R) := {u ∈ S ′(R) : û = Tϕ;ϕ ∈ L1

Loc(R) and ‖u‖H < +∞},

where the norm ‖ · ‖H derives from the inner product 〈·, ·〉H which is defined on L2
H (R),

〈u,v〉H :=
1

c2
H

∫
R

|ξ |1−2H û(ξ)v̂(ξ)dξ.

MH being an isometry from (L2
H (R),‖ · ‖H ) into (L2(R),‖ · ‖)L2(R), it is clear that, for every

(H,t, s) ∈ (0,1)×R×R, 〈MH (1[0,t]),MH (1[0,s])〉2L(R) = RH (t, s).

1.3 Instantly independent processes and Itô isometry (BM

case)

The Itô isometry is considered to be the one of the important theorems of Itô calculus.

In this section, we present a first step to find an extension of the Itô isometry for the new

integral. In the definition of the next section, we based on result of Ayed and Kuo [4].

1.3.1 Anticipating stochastic integrals

A New viewpoint for stochastic integral (Ayed-Kuo,s Idea)

Let B(t) be a Brownian motion {B(t)t≥0} and let {Ft,0 ≤ a ≤ t ≤ b ≤ T } a filtration satisfying

the following conditions:

• (a) Bt is {F }-adapted ie: Bt is Ft measurable for each t ∈ [a,b].

• (b) (Bt −Bs) and Fs are independent for any s ≤ t ∈ [a,b].

Definition 1.3.1. [4] A stochastic process φ(t) is said to be instantly independent with respect to

a filtration {Ft} if φ(t) and Ft are independent for each t.

Lemma 1.3.1. [4] If a stochastic process φ(t) is both adapted and instantly independent with

respect to a filtration {Ft}, then φ(t) is a deterministic function.
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Proof. φ(t) is Ft-adapted, we have E(φ(t)|Ft) = φ(t).

Moreover, φ(t) is an instantly independent process with respect to the filtration Ft, a ≤

t ≤ b such that

E(φ(t)|Ft) = E(φ(t)).

Combining both statements, we have

E(φ(t)) = φ(t).

Thus, φ(t) is a deterministic function.

In this sense, we can view instantly independent stochastic processes as a counterpart of

the adapted stochastic processes for the Itô integral.

Definition 1.3.2. (Ayed-Kuo’s stochastic integral[4]) For an adapted stochastic process f (t) and

an instantly independent stochastic process φ(t), we define the stochastic integral of f (t)φ(t) to be

the limit ∫ b

a
f (t)φ(t)dW (t) = lim

‖∆‖−→0

n∑
i=1

f (ti−1)φ(ti)(W (ti)−W (ti−1)), (1.4)

provided that the limit in probability exists. Where ∆ = {a = t0, t1, t2, · · ·, tn = b} is a partition of

the interval [a,b] and ‖∆n‖ = max1≤i≤n(ti − ti−1).

In general, for a stochastic process F(t) =
N∑
n=1

∫ b

a
fn(t)φn(t) with fn(t)’s being adapted and

φn(t)’s instantly independent.

This definition follows the argument of Itô integral(can be defined in terms of Riemann

sums by evaluating the integrand at the left endpoints of the intervals of the partition)

but with adapted processes, and the instantly independent process is evaluated at the right

endpoints of the intervals of the partition in order to take advantage of the independence

property [21].

Unfortunately, the question of Ayed and Kuo about the new stochastic integral did not

have an answer.
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We pass now to give some example of stochastic process.

Example 1.3.1. Consider the stochastic process

∫ t

0
B(1)dB(s), 0 ≤ t ≤ 1.

We have by linearity

∫ t

0
B(1)dB(s) =

∫ t

0
(B(1)−B(s))dB(s) +

∫ t

0
B(s)dB(s), 0 ≤ t ≤ 1. (1.5)

The second integral on the right-hand side of equation (1.5) is an adapted stochastic process,

whereas(while) the first integral is an instantly independent stochastic process with respect to

filtration Ft, it means anticipating , we start calculating the first integral of the right-hand side of

equation (1.5) as follows

∫ t

0
(B(1)−B(s))dB(s) = lim

‖∆n‖−→0

n∑
i=1

(B(1)−B(si))(B(si)−B(si−1)),

= lim
‖∆n‖−→0

(
B(1)

n∑
i=1

(B(si)−B(si−1))

−
n∑
i=1

(B(si)−B(si−1) +B(si−1))(B(si)−B(si−1))
)
,

= lim
‖∆n‖−→0

(
B(1)B(t)−

( n∑
i=1

(B(si)−B(si−1))2

+B(si−1)(B(si)−B(si−1))
))
,

= B(1)B(t)− t −
∫ t

0
B(s)dB(s), 0 ≤ t ≤ 1.

(1.6)

By substituting equation (1.6) into (1.5), we get
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∫ t

0
B(1)dB(s) =

∫ 1

0
B(1)dB(s) +

∫ t

1
B(t)dB(s),

= B(1)B(t)− t −
∫ t

0
B(s)dB(s) +

∫ t

0
B(s)dB(s),

= B(1)B(t)− t, 0 ≤ t ≤ 1.

(1.7)

When t > 1, we can write the integral from 0 to t as the integral from 0 to 1 plus the integral

from 1 to t to obtain the equality, such that

∫ t

0
B(1)dB(s) =

∫ 1

0
B(1)dB(s) +

∫ t

1
B(1)dB(s),

= B(1)2 − 1 +B(1)
∫ t

1
dB(s),

= B(1)2 − 1 +B(1)B(t)−B(1)2,

= B(1)B(t)− 1, t > 1.

Example 1.3.2. Let a stochastic process∫ t

0
B(1)B(s)dB(s), 0 ≤ t ≤ 1.

We note that the integrand can be decomposed as

B(1)B(s) = (B(1)−B(s) +B(s))B(s) = (B(1)−B(s))B(s) +B(s)2.

By integral linearity, we have

∫ t

0
B(1)B(s)dB(s) =

∫ t

0
(B(1)−B(s))B(s)dB(s) +

∫ t

0
B(s)2dB(s), 0 ≤ t ≤ 1. (1.8)

We calculate the first integral of the right-hand side instantly independent stochastic process

with respect to the filtration Ft of Equation (1.8)
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∫ t

0
(B(1)−B(s))B(s)dB(s) = lim

‖∆n‖−→0

n∑
i=1

B(si−1)(B(1)−B(si))(B(si)−B(si−1)),

= lim
‖∆n‖−→0

(
B(1)

n∑
i=1

B(si−1)(B(si)−B(si−1))

−
n∑
i=1

B(si−1)(B(si)−B(si−1) +B(si−1))(B(si)−B(si−1))
)
,

= lim
‖∆n‖−→0

(
B(1)

n∑
i=1

B(si−1)(B(si)−B(si−1))

−
n∑
i=1

B(si−1)(B(si)−B(si−1)2 −
n∑
i=1

B(si−1)2(B(si)−B(si−1)
)
,

= lim
‖∆n‖−→0

(
B(1)

∫ t

0
B(s)dB(s)−

∫ t

0
B(s)ds −

∫ t

0
B(s)2dB(s)

)
.

Also, by classical Itô integration theory, we conclude that

B(1)
∫ t

0
B(s)dB(s) =

1
2

(B(t)2 − t),

and

∫ t

0
B(s)2dB(s) =

1
3
B(t)3 −

∫ t

0
B(s)ds.

We have

∫ t

0
B(s)(B(1)−B(s))dB(s) = 1

2B(1)(B(t)2 − t)−
∫ t

0
B(s)ds −

(1
3
B(t)3 −

∫ t

0
B(s)ds

)
,

= 1
2B(1)(B(t)2 − t)− 1

3B(t)3, 0 ≤ t ≤ 1.

(1.9)
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Thence, substituting equation (1.8) into equation (1.9), we get

∫ t

0
B(1)B(s)dB(s) =

∫ t

0
B(s)(B(1)−B(s))dB(s) +

∫ t

0
B(s)2dB(s),

= 1
2B(1)(B(t)2 − t)− 1

3B(t)3 +
(

1
3B(t)3 −

∫ t

0
B(s)ds

)
,

= 1
2B(1)(B(t)2 − t)−

∫ t

0
B(s)ds, 0 ≤ t ≤ 1.

If t > 1, we get

∫ t

0
B(1)B(s)dB(s) =

∫ 1

0
B(1)B(s)dB(s) +

∫ t

1
B(1)B(s)dB(s),

= 1
2B(1)(B(t)2 − t)−

∫ 1

0
B(s)ds+

1
2
B(1)(B(t)2 − t)− 1

2
B(1)(B(t)2 − t),

= 1
2B(1)(B(t)2 − t)−

∫ 1

0
B(s)ds, t ≥ 1.

For more example, see ([21]).



Chapter 2

New approach to stochastic integration

w.r.t fractional brownian motion

In this chapter, we propose a new approach to stochastic integration of the class of in-

stantly independent stochastic processes with respect to fractional Brownian motion on a

finite interval. The appraisal point is to discover the counterpart of the Ito theory. More pre-

cisely, we show some result on stochastic integration with respect to no adapted processes

by generalizing the results obtained by Ayed and Kuo [4] in the Brownian framework.

2.1 Introduction

Fractional Brownian motion was introduced by Kolmogorov [46] while studying spiral curves

in Hilbert space. Later, its properties were given by Mandelbrot and Van Ness [10]. In fact,

in [10], authors considered the fractional brownian motion as a centered and continuous

gaussian process, denoted by BH = {BHt , t ≥ 0}, H ∈ (0,1) with covariance

E(BHt B
H
s ) =

VH
2

(t2H + s2H − (t − s)2H ),

and VH is normalizing constant given by

VH =
Γ (2− 2H)cos(πH)
πH(1− 2H)

.

27
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This process is starting from 0 with stationary increments,

E(BHt − BHs ) = VH |t − s|2H , which is self-similar, and, BHat has the same distribution as aHBHt

(See definition A.1.1 in Appendix A). The parameter H determines the sign of the covari-

ance of past increments and the future. This latter is positive when H > 1
2 and negative

when H < 1
2 . Moreover, it exhibits a long-range dependence in the sense that the covariance

between increments at a distance u decreases to zero as u2H−2.

The self-similarity and long-range dependence properties make the fractional Brownian

motion a suitable driving noise in different applications like economics, finance, and telecom-

munications especially in internet traffic to hydrology problems via linguistic.

Lin [52] also Dai and Heyde [22] gave a stochastic integral
∫ t

0
φsdB

H
s as limit of Rie-

mann sums.The propriety E(
∫ t

0
ΦsdB

H
s ) = 0 is not satisfying by this integral, Duncan et

al.[29] introduced a new stochastic integral with zero measn which is the limit of Riemann

sums defined by means of the Wick product [2]. Alo et al.[2] constructed a stochastic in-

tegral with respect to the fBm with Hurst parameter lesser than 1
2 , and Ayed and Kuo [4]

explained this idea for an extension of the Itô integral.

The main objective in next section is to introduce a new approach of stochastic integration

for processes not necessarily adapted with respect to fractional brownian motion. Particu-

lary we are interested in the case when the index H is greater than 1
2 .

2.1.1 A New stochastic integration

In this part, we define our idea for stochastic integration ; we will integrate with respect

to Fractional brownian motion a no adapted process, this later is a product of tow processes,

one is adapted, and the second is instantly independent.

Our work is based on result of Ayed and Kuo [4], but in our case, we integrate with respect to

fractional brownian motion where the Hurst parameter H is upper than 1
2 , and we append

this work by a new integration of [48].

Definition 2.1.1. [4] A stochastic process φ(t) is called instantly independent process of {Ft} if

φ(t) and Ft are independent for each t ∈ [a,b].
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Suppose f (t) is an {Ft}-adapted continuous stochastic process which is also L2- inte-

grable. We present the following definition

Definition 2.1.2. [4] For an adapted stochastic process f (t) and an instantly independent stochas-

tic process φ(t), we define the stochastic integral of f (t)φ(t) with respect to fractional brownian

motion BHt as follows :∫ b

a
f (t)φ(t)dBHt = lim

||∆n||−→0

n∑
i=1

f (ti−1)φ(ti)(B
H
ti −B

H
ti−1

). (2.1)

According to the stochastic integration w.r.t fractional Brownian motion introduced in

[37], for t ∈ [a,b] we have the following Wienner’s Integration :∫ b

a
φ(t)dBHt =

∫ b

a
φ(t)K?HdBt. (2.2)

Hence, if f (t)φ(t)K?H ∈ L2[a,b], then this integral is well defined and we have∫ b

a
f (t)φ(t)dBHt =

∫ b

a
f (t)φ(t)K?HdBt. (2.3)

Here, we integrate the product of two measurable processes with respect to standard brow-

nian motion Bt. Therefore, we find ourselves in the definition presented by Kuo et al.[16].

If we Take ψ = f (t)K?H , we verify that this new process is also adapted.

By the above definition of K?H , we can show that ψ is adapted. Indeed, we have f (t) is an

{Ft}-adapted stochastic process with almost all sample paths being in L2[a,b], and moreover,

K?H is an linear operator in L2[a,b].

Therefore, the product of f (t) and K?H are in L2[a,b], from it, we conclude that ψ is an {Ft}-

adapted process with almost all sample paths being in L2[a,b].

We have given some properties of fractional brownian motion, our aim is to define

stochastic integral of the form ∫ b

a
F(t,ω)dBHt , (2.4)

where BH is fbm(fractional brownian motion) and F is non-adapted stochastic process,

which is written as a product of two processes, one is adapted process and the second is
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instantly independent.

It’s necessary to give some notions before explaining our approach.

Since BH is a Gaussian process, it easier for us to integrate with respect to this process

(For more details see [49]). There remains the problem that the integrator is an non-adapted

process.

The next definition from [49] is needed for our approach

Definition 2.1.3. [49] Define for every t in RD

WG
t =< ·, g

′
t >, (2.5)

where the equality holds in (S?). Then (W (G)
t )t∈RD is a (S?)-process and is the (S?)-derivative of

the process (Gt)t∈RD . We will sometimes dGt
dt instead of W (G)

t .

By proposition 2.2 [49], W (G)
t is defined as

W
(G)
t =

+∞∑
k=0

(
d
dt
< gt, ek >) < ·, ek >, (2.6)

‖W (G)
t ‖−p is continuous If and only if |g ′t |−p is continuous.

Remark 2.1.1. On [0,T ], in [48] , as well as the fact that ‖W (BH )
t ‖−p is continuous on compact

set [0,T ] are verified for every p ≥ 2 and H ∈ (0,1).

As the fbm BH is continuous non-derivable, we define its increments for a time interval

s. They can be assimilated to a derivative of the process at a resolution s. They are called

fractional Gaussian noises, it’s define by

Gs(i) = BH (i)−BH (i − s). (2.7)
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In this subsection, we introduce the integral of a non-adapted process F w.r.t to fbm .

Since the map s −→ Gs is weakly differentiable on I , we give a Wienner’s integral w.r.t Gs as∫
I
F(s)dGs =

∫
I
f (s)φ(s)dGs;

=
∫
I
f (s)φ(s)d[BH (i)−BH (i − s)];

=
∫
I
f (s)φ(s)d[

BH (i)−BH (i − s)
ds

]ds;

=
∫
I
f (s)φ(s)W BHi −B

H
i−sds.

(2.8)

2.1.2 Bochner’s integral

Before passing to give assumption about a process f (t) and φ(t), we need the next defi-

nition from [47] ;

Definition 2.1.4. [47] Let I be a subset of [0,1] endowed with the Lebesgue’s measure. One

says that Φ : I −→ (S)? is Bochner’s integrable of index p on I if it satisfies the two following

conditions:

1. Φ is weakly measurable on I , i.e. t −→� Φt,ϕ� is measurable on I for every ϕ in (S).

2. There exists p inN such that Φt ∈ (S−p) for almost every t in I and such that t −→ ‖Φt‖−p
belongs to L1(I,dt).

The Bochner’s integral of Φ on I is denoted
∫
I
Φ(t)dt.

2.1.3 Wick-itô’s integral w.r.t gaussian process

According to [49], we have this definition

Definition 2.1.5. [49] Let X : R −→ (S)? be a process such that the process t 7−→ Xt �WG
t is

(S)?-integrable on R. The process X is then said to be dG-integrable on R w.r.t the Gaussian
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process G. The Wick-Itô’s integral of X w.r.t G, on R, is defined by setting:∫
R

Xsd
�Gs :=

∫
R

Xs �W
(G)
s ds. (2.9)

For any Borel set I of R, we define
∫
I
Xsd

�Gs :=
∫
R

1(s)Xsd
�Gs.

Now, back to our approach ; Let H ∈ (0,1), [a,b] is borel’s subset of (0,1). BH = (BHt )t∈[a,b]

is a fbm with Hurst parameter H ∈ [0,1]. Assuming that f (t)φ(t) is an (S)?-valued process,

we have the following result

• (i) There exists p ∈N such that f (t)φ(t) ∈ (S)? a.e. t ∈ [a,b].

• (ii) the process f (t)φ(t) �WH
t is Bochner’s integral on [a,b].

Let ∆ = {0 = t0, t1, t2, · · ·, tn = 1} be a partition of the interval [0,1]. On the subinterval [ti−1, ti],

we take the rightendpoint ti as the evaluation point for the integrand B(1)−B(t). We define

this integral

∫ 1

0
(B(1)−B(t))d�BH (t) = lim

‖∆‖−→0

n∑
i=1

(B(1)−B(ti))(W
BH
ti −W

BH
ti−1

);

= B(1)2 − lim
‖∆‖−→0

n∑
i=1

B(ti)(W
BH
ti −W

BH
ti−1

);

= B(1)2 − lim
‖∆‖−→0

n∑
i=1

{[B(ti)−B(ti−1)] +B(ti−1)}(W BH
ti −W

BH
ti−1

);

= B(1)2 − 1−
∫ 1

0
B(t)d�BH (t),

(2.10)

where the last integral is the Wick-Itô’s integral.

We conclude that
∫ 1

0
B(1)d�BH (t) = B(1)2 − 1.

In this way, we define an adapted process f and an instantly independent process φ on

[0,T ], with respect to BH . Since the map s −→ BHs is weakly differentiable on [0,T ], one may
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think the formal definition of the Wienner’s integral w.r.t BH denoted
∫

[0,T ]
f (s)φ(s)d�BHs ,

by setting ∫
[0,T ]

f (s)φ(s)d�BHs =
∫

[0,T ]
f (s)φ(s)

dBHs
ds

ds =
∫

[0,T ]
f (s)φ(s)W BH

s ds. (2.11)

In general, the problem of non-adaptation remains , in this case, we passe to give this defi-

nition

Definition 2.1.6. For an adapted stochastic process f (t) and an instantly independent stochastic

process φ(t), we define stochastic integral of f (t)φ(t) as follow∫
[0,T ]

f (s)φ(s)d�BHs = lim
‖∆n‖−→0

n∑
i=1

f (ti−1)φ(ti)(w
BH
ti −w

BH
ti−1

), (2.12)

provided that the limit in probability exists.

2.1.4 Some examples of our approach

Example 2.1.1. For t ∈ [0,1], we calculate the following stochastic integral using our approach ;∫ t

0
B(1)B(s)d�BHs .

The random variable B1 is independent of BHs because s is less than t, but the random vari-

able Bs is adapted to the filtration generated by BHs and so the random variable B(1)B(s) is not

adapted to the filtration generated by BHs and which is written as a product of two variables, one

is instantaneously independent of BHs and the other is adapted to the filtration generated by BHs

By (2.10) this formula is given as

∫ t

0
B(1)B(s)d�BHs =


1
2B(1)(B(t)2 − t)−

∫ t

0
W BH
s ds, 0 < t ≤ 1

1
2B(1)(B(t)2 − t)−

∫ 1

0
W BH
s ds, t > 1.

Example 2.1.2. Let f (t) and g(t) be two deterministic functions in L2([0,1]). Then∫ 1

0
g(t)

(∫ 1

0
f (s)dB(s)

)
d�BH (t) =

∫
[0,1]2

g(t)f (s)dB(s)⊗ d�BH (t).

Note that the Wiener integral of f (s) in the left-hand side has the decomposition∫ 1

0
f (s)dB(s) =

∫ t

0
f (s)dB(s) +

∫ 1

t
f (s)dB(s).
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Remarking that the first integral is an the Itô part and the second integral is an the counterpart.

Let Wi =W BH
ti
−W BH

ti−1
, by definition (2.1.6), we have

∫ 1

0
g(t)

(∫ 1

0
f (s)dB(s)

)
d�BH (t) = lim

‖∆‖−→0

n∑
i=1

g(ti−1)
[∫ ti−1

0
f (s)dB(s) +

∫ 1

ti

f (s)dB(s)
]
∆Wi ;

= lim
‖∆‖−→0

n∑
i=1

g(ti−1)
[∫ 1

0
f (s)dB(s)−

∫ ti

ti−1

f (s)dB(s)
]
∆Wi ;

=
∫ 1

0
f (s)dB(s)− lim

‖∆‖−→0

n∑
i=1

g(ti−1)f (ti−1)[B(ti)−B(ti−1)]∆Wi ;

=
∫ 1

0
f (s)dB(s)

∫ 1

0
g(t)dBH (t)

− lim
‖∆‖−→0

n∑
i=1

g(ti−1)f (ti−1)[B(ti)−B(ti−1)]∆Wi ;

=
∫ 1

0
f (s)dB(s)

∫ 1

0
g(t)dBH (t)−

∫ 1

0
g(t)f (t)W BH (t)dt.

Concluded remarks

We conclude that the Itô’s integral is perfect for making sense of studying differential

systems directed by a semimartingale, so unfortunately we cannot use it in the case of the

fractional.

If H > 1
2 , the fractional has sufficiently regular trajectories to be able to use Young’s inte-

gral, which is defined a bit like the Riemann integral, namely a passage to the limit after

discretization. But the problem is going to complicate when the integrands are not adapted

processes, in this case we take the wick-Itô’s integral. In this paper, we introduced a new ap-

proach of stochastic integration for non-adapted processes with respect to fractional Brow-

nian motion (BHs )s≥0 (which is not a semimartingale for H , 1
2 ). These processes are written

as a product of two processes, one is instantaneously independent of BHs and the other is

adapted to the filtration generated by BHs , s ≥ 0.



Chapter 3

Stochastic maximum principle with

jumps

Lévy processes theory is much simpler than the more general theory of processes with

independent increment. We recall that Lévy processes have stationary and independent

increments.

3.1 Lévy processes

Definition 3.1.1. [61] An adapted process X = (Xt)t≥0 with X0 = 0 a.s. is a Lévy process if

(i) X has increments independent of the past; ie, Xt −Xs independent Fs,0 ≤ s < t;

(ii) X has stationary increments; ie, Xt −Xs has the same distribution as Xt−s, 0 ≤ s < t <∞;

(iii) Xt is continuous in probability; ie, lim
t−→s

Xt = Xs, where the limit is taken in probability.

Example 3.1.1. Brownian motion is one example of Lévy processes.

Definition 3.1.2. [61] A stochastic process W = (W (t))t≥0 on Rd is a brownian motion if it is a

Lévy procees, and

(i) P(ω ∈Ω :Wt(0) = 0) = 1;

(ii) ∀n,∀ti ,0 ≤ t0 ≤ t1 ≤ · · · ≤ tn. (Wtn −Wtn−1
, . . . ,Wt1 −Wt0 ,Wt0) are independent;

(iii) For any s ≤ t, Wt −Ws is a centered real valued gaussian distributed with variance t − s,

i.e.Wt −Ws ∼N (0, t − s);

35
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(iv)

P

(
ω ∈Ω : t 7−→Wt(ω) is continuous

)
= 1.

3.2 Enlargement of filtrations

We start with a filtered probability space (Ω,F ,F , P ) where F = (Ft, t ≥ 0) is a given fil-

tration satisfying the usual conditions, and F = F∞.

There are mainly two kinds of enlargement of filtration:

• Initial enlargement of filtrations: in this case, Gt = Ft ∨ σ (L) where

L is a real-valued random variable. (more generally Gt = Ft ∨ F̃ is a σ -algebra)

• Progressive enlargement of filtrations: where Gt = Ft ∨Ht, with H = (Ht, t ≥ 0) the

natural filtration of right-continuous process Ht = 1{τ≤t} where τ is a random time.

3.3 Martingale measure

• Martingale Representation Theorem: Let W be a Brownian motion on a standard

filtered probability space (Ω,F ,Ft,P) and let Gt be the augmented filtration generated

byW . If X is a square integrable random variable measurable with respect to G∞, then

there exist a predictable process C which is adapted with respect to Gt, such that

X = E(X) +
∫ ∞

0
CsdWs.

Consequently,

E(X |Gt) = E(X) +
∫ t

0
CsdWs.

Theorem 3.1. [60]
(
Brownian Martingale Representation

)
Let M be a martingale (càdlàg)

square integrable for a filtration {F Wt }t∈[0,T ]. Then, there exists a unique processes (Ht)t∈[0,T ] ∈

M2(RK ), such that

Mt =M0 +
∫ t

0
Hs · dWs, P− a.s. ∀t ∈ [0,T ].



3.4 Stochastic optimal control problems 37

Remark 3.3.1. This result implies that in a brownian filtration, the martingale are continuous.

Stopping times

Definition 3.3.1. [58] LetΩ be the set of outcomes and let F be a filtration onΩ.

Let τ :Ω −→Θ ∪ {∞}.

1. The function τ is a stopping time if for every t ∈Θ

{τ ≤ t} ∈ Ft.

2. The function τ is a weak stopping time if for every t ∈Θ

{τ < t} ∈ Ft.

Proposition 3.3.1. [64](Stopping times and martingales)

If (M(t))t∈T be a martingale and let τ be a stopping time. Then the stopped process (Mt∧τ )t∈T is a

martingale. This implies that

E(Mt∧τ ) = E(M0).

3.4 Stochastic optimal control problems

This section is structured as follows: We present strong and weak formulations of stochas-

tic optimal control problems (SOCP) and it also concerned with the existence of SOCP for

both strong and weak formulations, a statement of the stochastic maximum principle is

given in which the stochastic Hamiltonian system is introduced, after, we discuss about

backward stochastic differential equation and we give this application in finance, geometry,

and in stochastic controls.

3.4.1 Formulations of stochastic optimal control problems

We present two mathematical formulations (strong and weak formulations) of stochastic

optimal control problems
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Strong formulation

Let (Ω,F , {Ft}t≥0,P) be a filtered probability space satisfying the usual conditions (i.e.(Ω,F ,P)

is complete, F0 contains all the P-null sets in F , and {Ft}t≥0 in right continuous.) on which

an m-dimensional standard brownian motion W (·) is defined, we consider the following

controlled stochastic differential equation:

 dXt = b(t,x(t),u(t))dt + σ (t,x(t),u(t))dW (t);

X0 = x0 ∈Rn,
(3.1)

where

b : [0,T ] ×Rn ×U −→ Rn, σ : [0,T ] ×Rn ×U −→ Rn×m, and U is given a separable metric

space, and T ∈ (0,∞) being fixed. The function u(·) is called the control representing the

action, policy of the decision-makers (controllers) or decision. The nonanticipative restric-

tion in mathematical terms can be represented as "u(·) is {Ft}t≥0-adapted". The control u(·) is

taken from the set

U [0,T ] , {u : [0,T ]×Ω −→U|u(·) is {Ft}t≥0

-adapted}.

Next, we introduce the performance functional as follows:

J(u(·)) = E
{∫ T

0
f (t,x(t),u(t))dt + h(x(T ))

}
. (3.2)

The following definition is given in [43].

Definition 3.4.1. [43] Let (Ω,F ,Ft,P) be given satisfying the usual conditions andW (t) be am-

dimensional standard {Ft}t≥0-browniam motion. A control u(·) is called an s- admissible control,

and (x(·),u(·)) an s-admissible pair, if

(i) u(·) ∈ U [0,T ];

(ii) x(·) is the unique solution of equation (3.1);

(iii) f (·,x(·),u(·)) ∈ L1
F (0,T ;R);

(iv) h(x(T )) ∈ L1
F (Ω;R).
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Our stochastic optimal control problem under strong formulation can be stated as fol-

lows:

Problem(PP)

Minimize (3.2) over U sad[0,T ].

The purpose is to find u ∈ U sad[0,T ] , such that

J(u(·)) = inf
u(·)∈U sad [0,T ]

J(u(·)). (3.3)

Weak formulation

Starting by a definition of [43],

Definition 3.4.2. [43] A 6-tuple π = (Ω,F , {Ft}t≥0, P ,W (·),u(·)) is called aw-admissible control,

and (x(·),u(·)) a w-admissible pair, if

(i) (Ω,F , {Ft}t≥0, P ) is a filtered probability space satisfying the usual conditions;

(ii) W (·) is an m-dimensional standard Brownian motion defined on (Ω,F , {Ft}t≥0, P );

(iii) u(·) is an {Ft}t≥0-adapted process on (Ω,F , P ) taking value in U;

(iv) x(·) is the unique solution of equation (3.1) onΩ,F , {Ft}t≥0, P under u(·);

(v) some prescribed state constraints (for example, (3.2)) are satisfied;

(vi) f (·,x(·),u(·)) ∈ L1
F (0,T ,R) and h(x(T )) ∈ L1

FT (Ω;R).

Problem (WS). Minimize (3.2) over Uwad .

Namely, we search π ∈ Uwad[0,T ], such that

J(π) = inf
π∈Uwad [0,T ]

J(π). (3.4)
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3.4.2 Existence of optimal controls

In this section we discuss the existence of optimal control.

The background of the theory is the following: A lower semicontinuous function defined on

some compact metric space attains it minimum.

Let (Ω,F , {Ft}t≥0, P ) satisfies the usual conditions, and W (·) be a given one-dimensional

Brownian motion. Consider the following stochastic linear controlled system:


dx(t) = [Ax(t) +Bu(t)]dt + [Cx(t) +Du(t)]dW (t), t ∈ [0,T ]

x(0) = x0,

(3.5)

where A,B,C and D are matrices of suitable sizes. The states x(·) takes values in Rn, and

the control u(·) is in

UL[0,T ] , {u(·) ∈ L2
F (0,T ;Rk)|u(t) ∈U, a.e.t ∈ [0,T ], P − a.s.},

With U ⊂Rk.

Existence under strong formulation

Problem (SL). Minimize (3.5) over UL[0,T ].

We introduce the following assumptions:

(H1) The set U ∈ RK is convex and closed, and the function f and h are convex and for

some σ,K > 0

f (x,u) ≥ σ |u|2 −K, h(x) ≥ −K, ∀ (x,u) ∈Rn ×U. (3.6)

(H2) The set U ∈RK is convex and compact, and the function f and h are convex.

Theorem 3.2. [43] Under either (H1) or (H2), if problem SL is finite, then it admits an optimal

control.

Proof. We suppose that (H1) holds. Let xj(·),uj(·) be a minimizing sequence. By (3.6), we

have

E

∫ T

0
|uj(t)|2dt ≤ K, ∀j ≥ 1,
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for some positive constant K . Thus, there is a subsequence which is still labeled by uj(·),

such that

uj(·) −→ u(·), in L2
F (0,T ;Rk). weakly convergence.

By Mazur’s theorem, we have a sequence of convex combinations

ũj(·) ,
∑
i≥1

αijui+j(·), αij ≥ 0 and
∑
i≥1

αij = 1,

such that

ũj(·) −→ u(·), in L2
F (0,T ;Rk). Strongly convergence.

Since the set U ⊆Rk is convex and closed, it follows that u(·) ∈ UL[0,T ].

On the other hand, if x̃j(·) is the state under the control ũj(·), here we have the convergence

x̃j(·) −→ x(·), strongly in CF ([0,T ],Rn).

So, (x(·),u(·)) is admissible, and the convexity of f and h implies

J(u(·)) = lim
j−→∞

J(ũj(·)) ≤ lim
j−→∞

∑
i≥1

αijJ(ui+j(·)),

= inf
u(·)∈UL[0,T ]

J(u(·)).

Whence, (x(·),u(·)) is optimal.

Existence under weak formulation

Let us make the following assumptions:

(SE1) (U,d) is a compact metric space and T > 0.

(SE2) The maps b,σ ,f and h are continuous, and there exists a constant L > 0 such that for

φ(t,x,u) = b(t,x,u),σ (t,x,u), f (t,x,u),h(x),
|φ(t,x,u)−φ(t, x̂,u)| ≤ L|x − x̂|,∀t ∈ [0,T ], x, x̂ ∈Rn,u ∈U.

|φ(t,0,u)| ≤ L; ∀(t,u) ∈ [0,T ]×U.
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(SE3) For every (t,x) ∈ [0,T ] ∈Rn, the set

(b,σσ>, f )(t,x,U ) , |(bi(t,x,u), (σσ>)ij(t,x,u), f (t,x,u))|u ∈U, {i = 1, · · ·,n, j = 1, · · ·,m}

is convex in Rn+nm+1.

(SE4) S(t) ≡Rn.

Theorem 3.3. [43] Under (SE1)-(SE4), if problem (WS) is finite, then it admits an optimal

control.

Proof. Let πk ≡ (Ωk ,Fk , {Fkt }t≥0, Pk ,Wk(·),uk(·)) ∈ Uwa,d[0,T ] be a minimizing sequence, namely,

lim
k−→∞

J(πk) = inf
π∈Uwa,d [0,T ]

J(π). (3.7)

Let xk(·) be the state trajectory corresponding to πk. Define

Xk(·) , (xk(·),Bk(·),Σk(·),Fk(·),Wk(·)), (3.8)

where

Bk(t) ,
∫ t

0
b(s,xk(s),uk(s))ds,

Σk(t) ,
∫ t

0
σ (s,xk(s),uk(s))dWk(s),

Fk(t) ,
∫ t

0
f (s,xk(s),uk(s))ds.

(3.9)

By (SE2), it is routine to show that there is a constant K > 0 such that

Ek |Xk(t)−Xk(s)|4 ≤ K |t − s|2, ∀t, s ∈ [0,T ],∀k,

where Ek is the expectation under Pk. By Skorohod’s theorem, we have



3.4.2 Existence of optimal controls 43



{
(Xk(·),λk)

}
≡

{
(xk(·),Bk(·),Σk(·),Fk(·),W k(·),λk)

}
,

(
X(·),λ

)
≡

(
x(·),B(·),Σ(·),F(·),W (·),λ

)
,

on a suitable probability space (Ω,F , P ) such that

law of (Xk(·),λk) = law of (Xk(·),λuk(·)), ∀k ≥ 1, (3.10)

and P -a.s.,

Xk(t) −→ X(t) unif ormly on t ∈ [0,T ], (3.11)

and

λk −→ λ weakly on Λ.

Set
F kt ,

(
σ {W k(s),xk : s ≤ t} ∨λ−1

k (βt(Λ))
)
,

F t ,
(
σ {W (s),x : s ≤ t} ∨λ−1

(βt(Λ))
)
.

We have

Ek

{
g(Yk)(Wk(t)−Wk(s))

}
= 0,

where
Yk ,

{
Wk(ti),xk(ti),λk(f

ti
jα)

}
,

0 ≤ t1 ≤ t2 ≤ · · · ≤ tl ≤ s, α = 1,2, · · ·,β.

In view of (3.10),

Ek

{
g(Yk)(W k(t)−W k(s))

}
= 0,
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where
Y k ,

{
W k(ti),xk(ti),λk(f

ti
jα)

}
,

0 ≤ t1 ≤ t2 ≤ · · · ≤ tl ≤ s, α = 1,2, · · ·,β.

By (3.10), we have the following Stochastic differential equation on (Ω,F , {Fkt}t≥0, P ):

xk(t) = x0 +Bk(t) +Σk(t),

= x0 +
∫ t

0
b̃(s,xk(s),λk(s))ds+

∫ t

0
σ̃ (s,xk(s),λk(s))dW k(s).

(3.12)

Note that all the integrals in (3.12) are well-defined due to the fact that W k(·) is an {Fkt}t≥0-

Brownian motion. Moreover

EFk(T ) = E
{∫ T

0
f̃ (s,xk(s),λk(s)) + h(xk(T ))

}
,

= J(πk) −→ inf
π∈Uwad [0,T ]

J(π), as k −→∞,

(3.13)

where E is the expectation under P . Letting k −→∞ in (3.12) and (3.13), and noting (3.11),

we get
x = x0 +B(t) +Σ(t), t ∈ [0,T ], P − a.s.,

E(F (T )) = inf
π∈Uwad [0,T ]

J(π).

(3.14)

After several calculations (See the book of [43]), we arrive that

π ,
(
Ω̂, F̂ , {F̂t}t≥0, P̂ , Ŵ (·),u(·)

)
∈ Uwad[0,T ] is an optimal control.
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3.4.3 The pontryagin maximum principle

Statement of the stochastic principle

We consider the following stochastic controlled system: dXt = b(t,x(t),u(t))dt + σ (t,x(t),u(t))dWt, t ∈ [0,T ]

X0 = x0,
(3.15)

with the cost functional

J(u(·)) = E
{∫ T

0
f (t,x(t),u(t)dt + h(x(T )))

}
. (3.16)

In the above

b : [0,T ]×Rn ×U −→Rn,

σ : [0,T ]×Rn ×U −→Rn×m,

f : [0,T ]×Rn ×U −→R,

h :Rn −→R.

We define



b(t,x,u) =



b1(t,x,u)

·

·

·

bn(t,x,u)


;

σ (t,x,u) = σ1(t,x,u), · · ·,σm(t,x,u);

σ j(t,x,u) =



σ1j(t,x,u)

·

·

·

bnj(t,x,u)


,1 ≤ j ≤ n,
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Let now give the following assumptions:

(S0) {Ft}t≥0 is the natural filtration generated by W (t), augmented by all the P-null set in

F .

(S1) (U,d) is a separable metric space and T > 0.

(S2) The maps b,σ ,f and h are measurable, and there exist a constant L > 0 andω : [0,∞) −→

[0,∞) such that for ϕ(t,x,u) = b(t,x,u),σ (t,x,u), f (t,x,u),h(x), we have

|ϕ(t,x,u)−ϕ(t, x̂, û) | ≤ L|x − x̂|+ω(d(u, û)),

∀t ∈ [0,T ], x, x̂ ∈Rn, u, û ∈U,

|ϕ(t,0,u)| ≤ L, ∀(t,u) ∈ [0,T ]×U.

(3.17)

(S3) The maps b,σ ,f and h are C2 in x. Otherwise, there exist a constant L > 0 and a

modulus continuous ω such that for ϕ = b,σ ,f ,h, we have

|ϕx(t,x,u)−ϕx(t, x̂, û)| ≤ L|x − x̂|+ω(d(u, û)),

|ϕx,x(t,x,u)−ϕx,x(t, x̂, û)| ≤ ω(|x − x̂|+ d(u, û)),

∀t ∈ [0,T ], x, x̂ ∈Rn, u, û ∈U.

(3.18)

Problem (S). Minimize (3.16) over U [0,T ].

Any ū(·) ∈ U [0,T ] satisfying

J(ū(·)) = inf
u(·)∈U [0,T ]

J(u(·)) (3.19)

is called an optimal control.

Adjoint equations

in this part, we introduce adjoint equations involved in a stochastic maximum principle

and the associated stochastic Hamiltonian system. Recall that Sn = {A ∈ Rn×n | Aᵀ = A} and

let x(·),u(·) be a given optimal pair.
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We introduce the following terminal value problem for a stochastic differential equation:


dp(t) = −{bx(t,x(t),u(t))> +

m∑
j=1

σ
j
x(t,x(t),u(t))>qj(t)

−fx(t,x(t),u(t))}dt + q(t)dW (t), t ∈ [0,T ];

p(T ) = −hx(x(T )).

(3.20)

We have seen that in the deterministic case the adjoint variable p(·) plays a central role

in the maximum principle. The adjoint equation that p(.) satisfies is a backward ordinary

differential equation (meaning that the terminal value is specified). It is nevertheless equiv-

alent to a forward equation if we reverse the time. In the stochastic case, however, one

cannot simply reverse the time, as it may destroy the nonanticipativeness of the solutions.

an additional adjoint equation



dP (t) = −{bx(t,x(t),u(t))>P (t) + P (t)bx(t,x(t),u(t))

+
m∑
j=1

σ
j
x(t,x(t),u(t))>P (t)σ jx(t,x(t),u(t))

+
m∑
j=1

{σ jx(t,x(t),u(t))>Qj(t) +Qj(t)σ
j
x(t,x(t),u(t))}

+Hxx(t,x(t),u(t),p(t),q(t))}dt +
m∑
j=1

Qj(t)dW
j(t),

P (T ) = −hxx(x(T )).

(3.21)

Where the Hamiltonian H is defined by

H(t,x,u,p,q) = 〈p,b(t,x,u)〉+ tr[q>σ (t,x,u)]− f (t,x,u),

(t,x,u,p,q) ∈ [0,T ]×Rn ×U ×Rn ×Rn×m.

and (p(·),q(·)) is the solution to (3.20).

The maximum principle and stochastic hamiltonian systems

Theorem 3.4. [43]{Stochastic Maximum Principle} Let (S0)-(S3) hold. Let ((x(·)), (u(·))) be

an optimal pair of problem (S). Then there are pairs of processes
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
(p(·),q(·)) ∈ L2

F (0,T ;Rn)× (L2
F (0,T ;Rn))m,

(P (·),Q(·)) ∈ L2
F (0,T ;Sn)× (L2

F (0,T ;Sn))m,

(3.22)

where


q(·) = (q1(·), ...,qm(·)), Q(·) = (Q1(·), ...,Qm(·))

qj ∈ L2
F (0,T ;Rn), Qj ∈ L2

F (0,T ;Sn)

(3.23)

satisfying the first-order and second-order adjoint equations (3.20) and (3.21), respec-

tively, such that

H(t,x(t),u(t),p(t),q(t))−H(t,x(t),u(t),p(t),q(t))

1
2tr

(
{σ (t,x(t),u(t))− σ (t,x(t),u(t))}>P (t)

·{σ (t,x(t),u(t))− σ (t,x(t),u(t))}
)
≥ 0,

∀u ∈ U , a.e.t ∈ [0,T ] P.a.s.

(3.24)

Or, equivalently,

H(t,x(t),u(t)) = max
u∈U
H(t,x(t),u(t)), a.e.t ∈ [0,T ], P.a.s. (3.25)

Theorem 3.5. [43] Let (S0)-(S3) hold. Let problem (S) admits an optimal pair (x(·),u(·)). Then

the optimal 6-tuple (x(·),u(·),p(·),q(·), P (·),Q(·)) of problem (S) solves the stochastic hamiltonian

system (3.21) and (3.24).

3.4.4 Backward stochastic differential equation
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We start by simple example (but it’s illustrative) to know f ≡ 0. Let m = 1, T > 0, and

ξ ∈ L2
Ft (Ω;R). Consider the following stochastic differential equation:


dY (t) = 0, t[0,T ];

Y (T ) = ξ.

(3.26)

It’s impossible to find an {Ft}t≥0-adapted solution Y (·), since the only solution of (3.26) is

Y (t) = ξ, t ∈ [0,T ]. (3.27)

A natural way to making (3.27) {Ft}t≥0-adapted is to redefine Y (·) as follows:

Y (t) = E(ξ |Ft), t ∈ [0,T ]. (3.28)

Then, Y (·) is {Ft}t≥0-adapted and satisfies the terminal condition Y (T ) = ξ. Noting that

the process Y (·) defined by (3.28) is a square integrable {Ft}t≥0-martingale. By the martingale

representation theorem, we can find an {Ft}t≥0-adapted process Z(·) ∈ L2
Ft ([0,T ];R) such that

Y (t) = Y (0) +
∫ t

0
Z(s)dW (s), ∀t ∈ [0,T ], P − a.s. (3.29)

From (3.28)-(3.29), it follows that

ξ = Y (T ) = Y (0) +
∫ T

0
Z(s)dW (s). (3.30)

Hence,

Y (t) = ξ −
∫ T

t
Z(s)dW (s), ∀t ∈ [0,T ]. (3.31)

Here, the role of the process Z is to make the process Y adapted.

We allow f to depend on the process Z, the equation therefore becomes:

−dYt = f (t,Yt,Zt)dt −ZtdWt, YT = ξ, (3.32)
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or, equivalently, in integral form,

Yt = ξ +
∫ T

t
f (s,Ys,Zs)ds −

∫ T

t
ZsdWs, 0 ≤ t ≤ T . (3.33)

Definition 3.4.3. [60] A solution of BSDE (3.33) is a pair {(Yt,Zt)}0≤t≤T verify:

1. Y and Z are progressively measurable at values respectively in Rk and Rk×d ;

2.
∫ T

0
{|f (s,Ys,Zs)|+ ‖Zs‖2}ds <∞ P.a.s.;

3. P.a.s., we are

Yt = ξ +
∫ T

t
f (s,Ys,Zs)ds −

∫ T

t
ZsdWs, 0 ≤ t ≤ T .

Proposition 3.4.1. [60] We suppose that exists a positif process {ft}0≤t≤T ∈ M2(R), and a con-

stant λ > 0 such as

∀(y, t, z) ∈ [0,T ]×Rk ×Rk×d , |f (t,y,z)| ≤ ft +λ(|y|+ ‖z‖).

If {(Yt,Zt)}0≤t≤T is a solution of (3.33) such as Z ∈M2, then Y belongs to S2
c .

Lipschitz case

Pardoux-Peng result

We give some assumption

Assumption 3.4.1. There exists a constant λ P-a.s.,

1. Lipschitz condition in (y,z): for everything t,y, ỳ, z, z̀,

|f (t,y,z)− f (y, ỳ, z̀)| ≤ λ(|y − ỳ|+ ‖z − z̀‖);

2. Integrability condition

E
[
|ξ |2 +

∫ T

0
|f (s,0,0)|2ds

]
<∞.
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Theorem 3.6. [60] (Pardoux−Peng 90.)

Under hypothesis (3.4.1), BSDE (3.33) has a unique solution (Y ,Z).

Priori estimate

We give an estimate on the BSDE: it is it is in fact a question of studying the dependence

of the solution of the BSDE on the data which is ξ and the process {f (t,0,0)}0≤t≤T
Proposition 3.4.2. [60] Suppose that (ξ,f ) (checks 3.4.1). Let (Y ,Z) be a solution of equation

(3.33), then there exists an constant Ck such that, for all β ≥ 1 + 2λ+ 2λ2,

E
[

sup
0≤t≤T

eβt |Yt |2 +
∫ T

0
eβt‖Zt‖2dt

]
≤ CkE

[
eβT |ξ |+

∫ T

0
eβt |f (t,0,0)|2dt

]
.

3.4.5 BSDEs and stochastic control

In this section, we give a several applications of backward stochastic differential equa-

tions.

Applications

we present a results of Etienne Pardoux.[55]

In financial mathematics

Consider a typical model for continuous time asset pricing. Let Vt denote the total wealth

of an agent at time t, which he can invest in n+ 1 different assets. one nonrisky asset, whose

price per unit P 0
t is governed by the linear ordinary differential equation (ODE) dP 0

t = P 0
t rt,

and n risky assets, where the price process for one share of the ith stock is governed by the

linear stochastic differential equation (SDE) dP it = P it [µitdt +
∑n
j=1σ

ij
t dB

j
t].

The asset pricing problem is as follows. Given a contingent claim ξ which is an FT -

measurable random variable that we suppose to be square integrable, find an initial wealth

V0 and a portfolio (Πit,0 ≤ t ≤ T ),1 ≤ i ≤ n such that the wealth at time T is exactly ξ. Hence,
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we need to solve the following linear BSDE

Vt = ξ −
∫ T

t
rs[Vs −Π?s 1]ds −

∫ T

0
Π?s [µsds+ σdBs].

This linear BSDE is a very classical model in financial mathematics. It is in particular the

starting point of the celebrated Black-Scholes formula for option pricing. No general theory

is necessary to study such a linear equation. However, there is at least one unreasonable

assumption in our model: Vt −Π?t 1 represents an amount of money that is deposited in the

bank whenever it is positive, but it represents an amount of money that is borrowed from

the bank if it is negative. As the interest rate for borrowing is in fact bigger than the bond

rate, we should rather write the above equation as a nonlinear BSDE, with some interest rate

process Rt > rt

Vt = ξ −
∫ T

t
rs[Vs −Π?s 1]+ds+

∫ T

t
Rs[Vs −Π?s 1]−ds −

∫ T

0
Π?s [µsds+ σdBs].

In stochastic controls

From ([27],[57]), we consider the following applications:

Suppose Now that k = 1, and the coefficient f of BSDE is concave in variable y and z We

define the following "polar" process:

F(t,β,γ) := sup
y∈R,z∈Rd

[f (t,y,z)− βy −γ · z].

It follows from a measurable selection theorem that to each progressively measurable pro-

cess (Yt,Zt), one can associate a progressively measurable pair (β?t ,γ
?
t ) such that

F(t,β?t ,γ
?
t ) = f (t,Yt,Zt)− β?t Yt −γ?t ·Zt 0 ≤ t ≤ T .

Let A denote the set of progressively "control" (βt,γt) that satisfy E
[∫ T

0
F(t,βt,γt)

2
]
dt <

∞. Consider for each t ≥ 0 the scalar forward linear SDE

Γ
β,γ
t,s = 1 +

∫ s

t
Γ
β,γ
t,r [βrdr +γrdBr], s ≥ t.
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We then have the following.

Theorem 3.7. [27] Let (Yt,Zt) be the unique solution of the BSDE (f ,ξ). Then for each 0 ≤ t ≤ T ,

Yt is the value function of a stochastic control problem, in the sense that

Yt = sup
(β,γ)∈A

E
[∫ T

t
Γ
β,γ
t,s F(s,βs,γs)ds+ Γ β,γt,T ξ |Ft

]
.

In stochastic geometry

One can show that the construction of a gamma-martingale (which is a notion of mar-

tingale adapted to processes with values in a manifold equipped with a connection Γ ) with

prescribed final value ξ can be achieved by solving a backward SDE where the coefficient f

takes the form

fi(y,z) =
∑
j,k,q

Γ ij,k(y)zj,qzk,q.

One can assume that Γ is bounded and Lipschitz, however, in this case f is not lipschitz

in z, hence Theorem (3.6) does not apply directly. However, combining BSDE and gamma-

martingale techniques, one can show existence and uniqueness of a solution in this case.



Chapter 4

Stochastic maximum principle with

default

In this chapter, We prove existence of a unique solution to the controlled default stochas-

tic differential equation. Furthermore, we prove existence and uniqueness of solution to the

adjoint backward stochastic differential equation which appears in connection to the maxi-

mum principles. Finally, we apply the maximum principles to solve a utility maximization

problem with logarithmic utility functions and exponential utility functions.

4.1 Framework

Let (Ω,G, P ) be a complete probability space. We assume that this space is equipped with

a one-dimensional standard Brownian motion W and a single jump process Ht = 1τ≤t, t ∈

[0,T ], where the random variable τ is positive and may represent a default time in credit-

or counterparty risk, or a death time in actuarial issues1. We assume that this default can

appear at any time, i.e. P (τ ≥ t) > 0 for any t ≥ 0. We denote by G := (Gt)t≥0 the complete

natural filtration of W and H . We assume that W is a G-Brownian motion.

We suppose that the increasing process H admits a predictable compensator Λ. More-

over, the process Λ is assumed to be absolutely continuous w.r.t. Lebesgue’s measure, there

exists a positive process λ, called the intensity, such that Λt =
∫ t

0
λsds for each t ≥ 0. The

1If τ is a death time, the control is often stopped at this time. This complicates the problem, see e.g.,

Bouchard and Pham [13], Choulli and Yansori [17] and Jeanblanc et al. [40].

54
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process M defined as

Mt =Ht −
∫ t

0
λsds.

is a G-martingale called the compensated martingale of H . If the intensity is G-adapted, it vanishes

after tau. This is important for the following. We will state the so-called predictable representation

theorem (PRT) (Theorem 3.12 in Aksamit and Jeanblanc [1], reformulated to the current notation.)

Theorem 4.1. Every G-martingale Y admits a representation

Yt = Y0 +
∫ t

0
ϕsdWs +

∫ t

0
γsdMs,

whereM is the compensated martingale ofH , andϕ = (ϕt)t∈[0,T ],γ = (γt)t∈[0,T ] areG-predictable processes,

such that the stochastic integrals are well defined.

Throughout this section, we introduce some basic spaces.

• S2 is the subset of R-valued G-adapted càdlàg processes (Yt)t∈[0,T ], such that

‖Y ‖2
S

2 := E[ sup
t∈[0,T ]

|Yt |2] <∞.

• H2 is the subset of R-valued G-predictable processes (Zt)t∈[0,T ] , such that

‖Z‖2
H

2 := E[
∫ T

0 |Zt |
2dt] <∞.

• H2(λ) is the subset of R-valued G-predictable processes (Ut)t∈[0,T ] , such that

‖U‖2
H

2(λ) := E[
∫ T

0 λt |Ut |
2dt] <∞.

4.2 Stochastic maximum principles

In this section, we present two stochastic maximum principles which can be used to solve stochas-

tic optimal control problems where the system state is determined by the controlled with default.

We denote by V a bounded convex subset of R and the V -valued controls (ut)t≥0 which are G-

predictable in L2(Ω× [0,T ]) are called admissible. We denote by A the set of all admissible controls.

Let Xut = Xt be the controlled stochastic differential equation (SDE) with default under the filtration

G,
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
dXt = b(t,Xt ,ut)dt + σ (t,Xt ,ut)dWt +γ(t,Xt− ,ut)dMt;

X0 = x0,

(4.1)

where the coefficient functions are as follows:

b :Ω× [0,T ]×R×V →R,

σ :Ω× [0,T ]×R×V →R,

γ :Ω× [0,T ]×R×V →R,

and the initial value x0 ∈R.

Note that we often suppress the ω for ease of notation. So, for instance, we write b(t,Xt ,ut) instead

of b(ω,t,Xt(ω),ut(ω)).

We make the following set of assumptions on these coefficient functions.

Assumption 4.2.1. (a) The functions b(ω,t, ·), σ (ω,t, ·) and γ(ω,t, ·) are assumed to be bounded and

C1 for each fixed ω,t with bounded derivatives.

(b) The functions b(·,x,u) and σ (·,x,u) and γ(·,x,u) are G−predictable, for each (x,u) ∈R×V .

(c) Lipschitz condition: The functions b,σ ,γ are uniformly Lipschitz in the variable x for each u ∈ V ,

with the Lipschitz constant, ψ > 0, independent of the variables t,ω.

(d) Linear growth: The functions b,σ ,γ satisfy the linear growth condition in the variable x, for each

u ∈ V , with the linear growth constant independent of the variables t,ω.

Theorem 4.2 (Existence of unique solution to the SDE with default). For every u ∈ A and ω ∈Ω, the

coefficients b,σ and γ satisfy the assumptions (a-d). Thus there exists a unique solution X ∈ S2 of SDE

(4.1).

Proof. Let us first introduce a norm in the Banach space V := S2 for β > 0, for X ∈ V : ‖X‖V :=

E[
∫ T

0 e
−βs |Xs|2ds]. Setting Φ (x) := X we define a mapping Φ : V → V , for fixed u ∈ A, as follows

Xt := x0 +
∫ t

0
b(s,xs)ds+

∫ t

0
σ (s,xs)dWs +

∫ t

0
γ(s,xs)dMs

We are going to prove that Φ : (V ,‖·‖V )→ (V ,‖·‖V ) is contracting. Indeed, we consider arbitrary

xi ∈ V , i = 1,2, and we put Xi := Φ
(
xi

)
, i = 1,2. Let x̄ := x1 − x2 and X̄ := X1 −X2. Then, by applying

Itô’s formula to (e−βt
∣∣∣X̄t∣∣∣2)t≥0, and taking the expectation, leads to
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E
[
e−βt |Xt |2

]
+E

[∫ t

0
e−βs|Xs|2ds

]
= 2E

[∫ t

0
e−βs{b(s,x1

s )− b(s,x2
s )}ds

]

+E
[∫ t

0
e−βs|σ (s,x1

s )− σ (s,x2
s )|2ds

]

+E
[∫ t

0
e−βsλs|γ(s,x1

s )−γ(s,x2
s )|2ds

]
,

where we have used the fact that Mt =Ht −
∫ t∧τ

0
λsds is a single jump martingale.

that (δMs)
2 = δMs = δHs . Thus, the covariation process of M is H :

[M]t =
∑

0≤s≤t
(δMs)

2 =
∑

0≤s≤t
(δHs)

2 =Ht ,

The quadratic variation is:

〈M〉t =
∫ t∧τ

0
λsds =

∫ t

0
λs(1s<τ −Hs)ds, t ≥ 0.

Consequently,

∫ t

0
|γ(s,x1

s )−γ(s,x2
s )|2d 〈M〉s =

∫ t

0
λs(1s<τ −Hs)|γ(s,x1

s )−γ(s,x2
s )|2ds

≤
∫ t

0
λs|γ(s,x1

s )−γ(s,x2
s )|2ds.

Using the assumptions

E
[
e−βt |Xt |2

]
+E

[∫ t

0
e−βs|Xs|2ds

]
≤ CE

[∫ t

0
e−βs|Xs||xs|ds

]
+C2E

[∫ t

0
e−βs|xs|2ds

]

≤ C2

ε E
[∫ t

0
e−βs|Xs|2ds

]
+ (ε+C2)E

[∫ t

0
e−βs|xs|2ds

]
,

where for the last inequality, we have used the inequality 2ab ≤ εa2 + 1
εb

2 for all ε > 0 (which

follows by basic algebra from (εa− b)2 ≥ 0).
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Choosing β = C2

ε + 1, we have

E
[
e−βt |Xt |2

]
+E

[∫ t

0
e−βs|Xs|2ds

]
≤ (ε+C2)E

[∫ t

0
e−βs|xs|2ds

]
.

Then,
∥∥∥X̄∥∥∥2

V
≤ (ε+C2)‖x̄‖V , i.e.,∥∥∥∥Φ (

x1
)
−Φ

(
x2

)∥∥∥∥
V
≤ (ε+C2)

∥∥∥x1 − x2
∥∥∥
V
, for all x1,x2 ∈ V .

Choosing ε > 0 such that ε +C2 < 1, we obtain that Φ : (V ,‖·‖V )→ (V ,‖·‖V ) is a contraction on the

Banach space (V ,‖·‖V ). Hence, from Banach’s fixed point theorem, there exists a unique fixed point

X ∈H, such that X = Φ (X) , i.e.,

Xt := x0 +
∫ t

0
b(s,xs)ds+

∫ t

0
σ (s,xs)dWs +

∫ t

0
γ(s,xs)dHs.

As a consequence, there also exists a unique solution to the SDE with default (4.1).

In fact, the proof of this theorem can be obtained as a consequence of a general result of Theorem

16.3.1 in Cohen and Elliott [19]. Now that we know that there exists a unique solution to the con-

trolled SDE with default (4.1), we can move on to study a stochastic optimal control problem with

default.

The performance functional, which we would like to maximize over all strategies u ∈ A, is defined as

J(u) = E
[∫ T

0
h(t,Xt ,ut)dt + g(XT )

]
.

We assume that the functions

h :Ω× [0,T ]×R×V →R,

g :Ω×R→R,

are G-predictable, GT -measurable respectively, C1 w.r.t. x,u and admits bounded derivatives. More-

over,

E

[∫ T

0
h2(t,Xt ,ut)dt + g2(XT )

]
<∞.
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We would like to derive stochastic maximum principles for this problem.

The associated Hamiltonian functional is defined by

H(t,x,u,p,q,w) := h(t,x,u) + b(t,x,u)p+ σ (t,x,u)q+λtγ(t,x,u)w, (4.2)

where p,q,w are called the adjoint processes.

Notation 4.1. For ease of notation, we define the following shorthand for some given control u with corre-

sponding X

bt := b(t,Xt ,ut),σt := σ (t,Xt ,ut),γt := γ(t,Xt− ,ut),

ht := h(t,Xt ,ut),
∂bt
∂x

:=
∂b
∂x

(t,Xt ,ut),
∂σt
∂x

:=
∂σ
∂x

(t,Xt ,ut),

∂γt
∂x

:=
∂γ

∂x
(t,Xt− ,ut),

∂ht
∂x

:=
∂h
∂x

(t,Xt ,ut),
∂Ht
∂x

:=
∂H
∂x

(t,Xt ,ut ,pt ,qt ,wt),

and we will use the same notations for the partial derivatives w.r.t. u.

The adjoint processes (p,q,w) ∈ S2 ×H2 ×H2(λ) are given as the solution of the adjoint BSDE with

default

dpt = −∂H∂x (t,Xt ,ut ,pt ,qt ,wt)dt + qtdWt +wtdMt; pT = g ′(XT ).

Using the definition of the Hamiltonian (4.2), the above adjoint BSDE can be rewritten as:


dpt = −

[
∂ht
∂x + ∂bt

∂x pt + ∂σt
∂x qt +λt

∂γt
∂x wt

]
dt + qtdWt +wtdMt;

pT = g ′(XT ).

(4.3)

Note that this adjoint equation is a linear BSDE with default, which by our assumptions of the

coefficients and Theorem 2.14 in Dumitrescu et al. [28], has the following explicit solution

pt = E
[
Γt,T g

′(XT ) +
∫ T

t
Γt,s
∂hs
∂x

ds
∣∣∣∣Gt], 0 ≤ t ≤ T ,a.s.

where for each t ∈ [0,T ], (Γt,s)s∈[t,T ] is the unique solution of the following linear SDE

dΓt,s = Γt,s−

[
∂bs
∂x ds+ ∂σs

∂x dWs + ∂γs
∂x dMs

]
; Γt,t = 1.
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4.2.1 Sufficient stochastic maximum principle

Now, we are ready to prove the following sufficient maximum principle for optimal control of an

SDE with default of the form (4.1).

Theorem 4.3. Let û be an admissible performance strategy with corresponding solution X̂ of the SDE (4.1)

and the triple adjoint solution (p̂, q̂, ŵ) to equation (4.3). Assume

(i) The functions x→ g(x) and (x,u)→H(t,x,u, p̂, q̂, ŵ) are concave a.s. for every t ∈ [0,T ].

(ii) For every v ∈ V ,

max
v∈V
H(t,Xt ,v, p̂, q̂, ŵ) =H(t, X̂t , ût , p̂, q̂, ŵ), dt × P a.s.

Then, û is an optimal control for the stochastic optimal control problem with default.

Before we move on to the proof, note that the theorem says that if g and the Hamiltonian are

concave, then we may maximize the Hamiltonian instead of the performance functional in order

to find the optimal control of our problem. This essentially reduces the stochastic optimal control

problem to the problem of solving the SDE (4.1) and the adjoint BSDE (4.3). The idea of the proof is

to show that

J(u)− J(û) ≤ 0.

From this, the maximum principle follows.

Proof. Fix û ∈ A with corresponding solutions X̂t , p̂t , q̂t , ŵt. Define the notations

b̂t := b(t, X̂t , ût), σ̂t := σ (t, X̂t , ût), γ̂t := γ(t, X̂t− , ût),

ĥt := h(t, X̂t , ût),Ht :=H(t,Xt ,ut , p̂t , q̂t , ŵt),Ĥt :=H(t, X̂t , ût , p̂t , q̂t , ŵt),

∂b̂t
∂x

:=
∂b
∂x

((t, X̂t , ût),
∂σ̂t
∂x

:=
∂σ
∂x

(t, X̂t , ût),
∂γ̂t
∂x

:=
∂γ

∂x
t, X̂t− , ût),

∂ĥt
∂x

:=
∂h
∂x

(t, X̂t , ût),
∂Ĥt
∂x

:=
∂Ĥ
∂x

(t, X̂t , ût , p̂t , q̂t , ŵt),

and we introduce the same notation for their partial derivatives w.r.t. u.

Write

J(u)− J(û) = A1 +A2,
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where

A1 := E
[∫ T

0
{ht − ĥt}dt

]
,A2 := E

[
g(XT )− g(X̂T )

]
.

Then, from the definition of the Hamiltonian

A1 = E
[∫ T

0

{
Ht − Ĥt − (bt − b̂t)p̂t − (σt − σ̂t)q̂t −λt(γt − γ̂t)ŵt

}
dt

]
≤ E

[∫ T

0

{∂Ĥt
∂x

(Xt − X̂t) +
∂Ĥt
∂u

(ut − ût)−
(
bt − b̂t

)
p̂t − (σt − σ̂t)q̂t

−λt(γt − γ̂t)ŵt
}
dt

]
,

(4.4)

where the second equality follows because the HamiltonianH is concave. Similarly from the concav-

ity of g, we have

A2 = E
[
g(XT )− g(X̂T )

]
≤ E

[
g ′(X̂T )

(
XT − X̂T

)]
= E

[
p̂T

(
XT − X̂T

)]
,

where we have used the terminal condition of the BSDE (4.3) in the final equality. From Itô’s product

rule,

d(p̂t(Xt − X̂t)) = (Xt − X̂t)dp̂t + p̂td(Xt − X̂t) + d[p̂, (X − X̂)]t . (4.5)

We have

d[p̂, (X − X̂)]t = (σt − σ̂t)q̂tdt + (γt − γ̂t)ŵtdHt .

Substituting this into (4.5), integrating between 0 and T and taking the expectation, we get

E
[
p̂T (XT − X̂T )

]
= E

[∫ T

0
(Xt − X̂t)(−

∂Ĥ
∂x

(t) + q̂tdWt + ŵtdMt)

+
∫ T

0
p̂t{

(
bt − b̂t

)
dt + (σt − σ̂t)dWt + (γt − γ̂t)dMt}

+
∫ T

0
{q̂t(σt − σ̂t) +λt(γt − γ̂t)ŵt}dt +

∫ T

0
(γt − γ̂t)ŵtdMt

]
.

(4.6)

Setting

dMt =
[
(Xt − X̂t)q̂t + (σt − σ̂t)p̂t

]
dWt

+
[
(Xt − X̂t)ŵt + (γt − γ̂t)p̂t + (γt − γ̂t)ŵt

]
dMt .

Since X,X̂, p̂ ∈ S2, q̂ ∈H2, ŵ ∈H2(λ) and the conditions on σ, σ̂ and γ, γ̂ , we get that the local martin-

galeM is a martingale which has 0 mean.

By combining the expressions for A1 and A2 found in equations (4.4) and (4.6) respectively, we find

that

A1 +A2 ≤ E
[∫ T

0

∂Ĥt
∂u

(ut − ût)dt
]
≤ 0, (4.7)
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where the final inequality follows from the Assumption (ii) in theorem 4.3 and the Kuhn-Tucker

condition.

Hence, J(u) ≤ J(û), so since û ∈ A it is an optimal control.

4.2.2 Equivalence maximum principle

A problem with the sufficient maximum principle from the previous section is that the concavity

condition is quite strict, and may not hold in applications. In this section, we derive an alternative

maximum principle, called a necessary maximum principle or equivalence principle for the optimal

control of the SDE with default.

In order to do this we need some additional notation and assumptions:

For all u ∈ A and for all β ∈ A bounded such that there exists δ > 0 satisfying

u + yβ ∈ A, for all y ∈ [0,δ]. (4.8)

Fix s ∈ [0,T ] and define βt := 1[s,T ](t)κ, where κ is a bounded and Gs-measurable random variable,

the process βt ∈ A.

We denote by Xu+yβ
t and Xut the corresponding solutions to u + yβ and u respectively.

Assume that for all u,β ∈ A the following derivative process exists and belongs to L2([0,T ]×Ω):

xt := d
dyX

u+yβ
t

∣∣∣∣
y=0

= lim
y→0+

X
u+yβ
t −Xut

y
. (4.9)

Remark 4.2.1. The existence and L2-features of these derivative process is a non-trivial issue, and we do

not discuss conditions for this in our paper. We refer to Theorem 4.2 in Métivier [53], for a study of this

issue in a related setting.

Notation 4.2. We will use the following notations:

∂bt
∂x

:=
∂b
∂x

(t,Xu+yβ
t ,ut + yβt),

∂σt
∂x

:=
∂σ
∂x

(t,Xu+yβ
t ,ut + yβt),

∂γt
∂x

:=
∂γ

∂x
(t,Xu+yβ

t− ,ut + yβt),

∂ht
∂x

:=
∂h
∂x

(t,Xu+yβ
t ,ut + yβt),

∂Ht
∂x

:=
∂H
∂x

(t,Xu+yβ
t ,ut + yβt ,pt ,qt ,wt),

and we will use the same notations for partial derivatives w.r.t. u.

Now, note that from the SDE (4.1), we define the equation of the derivative process

dxt =
[
∂bt
∂x xt + ∂bt

∂u βt

]
dt +

[
∂σt
∂x xt + ∂σt

∂u βt

]
dWt +

[
∂γt
∂x xt− + ∂γt

∂u βt

]
dMt; x0 = 0. (4.10)
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We remark that this derivative process is a linear SDE, then by assuming that b, σ and γ admit

bounded partial derivatives w.r.t. x and u, there is a unique solution x ∈ S2 of (4.10) . The following

equivalence principle says that for a control to be a critical point for the performance functional J is

equivalent to the critical point of the Hamiltonian.

Theorem 4.4. The following two statements are equivalent:

(i)
dJ(u + yβ)

dy

∣∣∣∣
y=0

= 0. (4.11)

(ii)
∂Ht
∂u

= 0.

Proof. Note that

dJ(u + yβ)
dy

∣∣∣∣
y=0

=
d
dy
E
[∫ T

0
h(t,Xu+yβ

t ,ut + yβt)dt + g(Xu+yβ
T )

]∣∣∣∣
y=0
.

Define I1 := d
dyE

[∫ T
0 h(t,Xu+yβ

t ,ut + yβt)dt
]∣∣∣∣
y=0

and I2 := d
dyE

[
g(Xu+yβ

T )
]∣∣∣∣
y=0

.

Since the coefficients have uniformly bounded derivatives, it follows from the dominated conver-

gence theorem that the equality follows

I1 = E
[∫ T

0

{∂ht
∂x

xt +
∂ht
∂u

βt

}
dt

]
.

Also,

I2 = E
[
g ′(XuT )xT

]
= E[pT xT ],

where the first equality follows by changing the order of differentiation and integration (again, using

the dominated convergence theorem), the second equality follows from the adjoint equation (4.3).

So, by the previous expression for dxt (4.10) and d[p,x]t, as well as the expression for dpt from the

BSDE (4.3), we obtain

I2 = E
[∫ T

0
pt(
∂bt
∂x

xt +
∂bt
∂u

βt)dt −
∫ T

0
xt
∂Ht
∂x

dt +
∫ T

0
qt(
∂σt
∂x

xt +
∂σt
∂u

βt)dt

+
∫ T

0
λtwt(

∂γt
∂x

xt +
∂γt
∂u

βt)dt
]
.

By collecting the βt- and xt-terms and using the definition of the Hamiltonian to cancel all xt-terms

against xt
∂Ht
∂x , we find that

I1 + I2 = E
[∫ T

0
βt(
∂ht
∂u

+ pt
∂bt
∂u

+ qt
∂σt
∂u

+wtλt
∂γt
∂u

)dt
]

= E
[∫ T

0
βt
∂Ht
∂u

dt
]
, for all β ∈ A.
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In particular, if we apply this to

βt = 1[s,T ](t)κ,

where κ is bounded and Gs-measurable, we get

0 = E
[∫ T

s

∂Ht
∂u

κdt

]
.

Since this holds for all such κ (positive or negative) and all s ∈ [0,T ], we conclude that

0 =
∂Ht
∂u

, for a.a. t,

and hence the theorem follows.

4.3 Application

We shall solve some examples.

4.3.1 Log-utility maximization with default

In this subsection, we illustrate the stochastic maximum principles Theorem 4.3 and Theorem

4.4 by applying them to a logarithmic utility maximization problem. As pointed out by the referee,

it is also possible to solve this problem directly by using the formula of Xt and integrating by parts.

Consider the cash flow process with default

dXt = Xt−
[
(αt − ct)dt + ρtdWt +µtdMt

]
; X0 > 0, (4.12)

where the coefficients α,ρ,µ are bounded, R-valued G-predictable processes and we assume that

µt ≥ −1 for all t ∈ [0,T ] a.s. From the so-called, Doléans-Dade formula, we can write the linear SDE

(4.12) explicitly, as follows

Xt = X0exp
(∫ t

0

{
αs − cs −

1
2
ρ2
s

}
ds+

∫ t

0
ρsdWs

)
exp

(
−
∫ t

0
µsλsds

)(
1 +µτ1τ≤t

)
. (4.13)

Since µτ ≥ −1 and X0 > 0 imply that Xt > 0 a.s. for each t ∈ [0,T ]. Also, note that in the SDE (4.12),

the control ct ≥ 0 corresponds to a consumption process because of its negative impact on the cash

flow process Xt. The default term µtdMt implies that the wealth process will grow w.r.t. µt until

the default time τ . From that point on, µt has no impact on the cash flow. This may correspond to

investing in a defaultable firm. The performance function we want to maximize is



4.3.1 Log-utility maximization with default 65

J(c) = E
[∫ T

0
U1(Xt , ct)dt +θU2(XT )

]
,

where U1,U2 are some given deterministic utility functions and θ := θ(ω) > 0 is a GT -measurable,

square integrable random variable which expresses the importance of the terminal value. To be

able to find explicit solutions for our optimal control, we consider logarithmic utilities. Hence, the

performance function is

J(c) = E
[∫ T

0
log(Xtct)dt +θ log(XT )

]
.

The corresponding Hamiltonian functional, see (4.2), is

H(t,x,c,p,q,w) = log(xc) + x(α − c)p+ xρq+λtxµw.

The adjoint BSDE, see (4.3), has the form


dpt = −∂Ht∂x dt + qtdWt +wtdMt;

pT = θ
XT
,

(4.14)

such that

∂Ht
∂x

=
1
Xt

+ (αt − ct)pt + ρtqt +λtµtwt . (4.15)

Using the first order necessary condition of Theorem 4.4, we obtain

∂Ht
∂c

= Xtpt +
1
ct

= 0.

Consequently,

ĉt =
1

Xtpt
.

To derive an explicit expression for the optimal control, we do the following computations:

Note that by the Itô product rule,
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d(ptXt) = ptdXt +Xtdpt + d[p,X]t

= Xt[−∂H∂x dt + qtdWt +wtdMt]

+ptXt−[(αt − ct)dt + ρtdWt +µtdMt]

+dptdXt .

Hence,

pTXT − ptXt =
∫ T

t
Xsdps +

∫ T

t
psdXs +

∫ T

t
1dpsdXs

pTXT − ptXt =
∫ T

t
Xs

(
ps(αs − cs)−

∂Hs
∂x

+wsµsλs
)
ds+Xs

(
psρs + qs

)
dWs

+Xs−
(
ps−µs +ws(1 +µs)

)
dMs.

(4.16)

By taking the conditional expectation w.r.t Gt on both sides of equation (4.16), we see that

PtXt = E
[
pTXT

∣∣∣∣Gt]−E[∫ T

t
Xsdps +

∫ T

t
psdXs

+
∫ T

t
1dpsdXs

∣∣∣∣Gt]

= E
[
pTXT

∣∣∣∣Gt]−E[∫ T

t
Xs[−

∂H
∂x

ds+ qsdWs+wsdMs]

+
∫ T

t
psXs−[(αs − cs)ds+ ρsdWs +µsdMs]

+
∫ T

t
1dpsdXs

∣∣∣∣Gt]

= E
[
θ
∣∣∣∣Gt]+E

[∫ T

t
ds

∣∣∣∣Gt]

= E
[
θ + T − t

∣∣∣∣Gt],
where the second to last equality follows by inserting expression for pT from the adjoint BSDE (4.14).
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Hence, an explicit expression for the stochastic optimal consumption is

ĉt = 1

E

[
θ+T−t

∣∣∣∣Gt]

= 1
E[θ|Gt]+T−t

.

4.3.2 Exponential utility maximization

Consider a financial market which consists of two investment possibilities:

(i) Safe, or risk free asset with unit price

S0
t = 1.

(ii) Risky asset with unit price

dS1
t = S1

t−[atdt + btdWt + dtdMt].

We assume that at ,bt and dt are G-predictable processes with bt > 0 and we assume that dt > −1 for

all t ∈ [0,T ] a.s.

Let πt be a self-financing portfolio invested in the risky asset at time t which is a G-predictable

process. The corresponding wealth process Xπ = X satisfies

dXt = πt

[
atdt + btdWt + dtdMt

]
; X0 = x0, (4.17)

for some given initial state x0.

We want to maximize a performance functional of the form

J(π) = E[U (XT )], (4.18)

over the admissible processes A, for some given constant γ > 0. In particular, we consider the fol-

lowing function

U (x) = −exp(−γx).

This exponential utility is always negative, but it is increasing and convex, so it is indeed a utility

function. The Hamiltonian is given by

H(t,x,π,p,q,w) = π(ap+ bq+λdw), (4.19)
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and the adjoint equation becomes dpt = qtdWt +wtdMt;

pT = γ(exp(−γXT )).

such that

∂Ht
∂x

= 0.

Suppose now that π is an optimal control. Then by the necessary maximum principle, it holds for

every t, P -a.s. that

0 =
∂H
∂π

(
Xt ,πt ,pt ,qt ,wt

)
= atpt + btqt +λtdtwt . (4.20)

So we search for a candidate π̂ satisfying

atpt + btqt +λtdtwt = 0. (4.21)

We start by guessing that p has the form

pt = Atγexp(−γXt), (4.22)

for some deterministic function A ∈ C1([0,T ]) with

AT = 1. (4.23)

Using Itô’s formula to find the integral representation of p and comparing with the adjoint equation

(4.22), we find that the following three equations need to be satisfied:

0 = A′tγexp(−γXt)−Atγ2exp(−γXt)πtat +
1
2
Atγ

3exp(−γXt)(π2
t b

2
t +λtπ

2
t d

2
t ),

i.e.,

0 = A′t −Atγπtat +
1
2
Atγ

2(π2
t b

2
t +λtπ

2
t d

2
t ), (4.24)

qt = −Atγ2exp(−γXt)πtbt , (4.25)

wt = −Atγ2exp(−γXt)πtdt . (4.26)

Now inserting the expressions for the adjoint processes (4.22), (4.25) and (4.26) into (4.21), the fol-

lowing equation need to be satisfied:

0 = atAtγexp(−γXT )− b2
t Atγ

2exp(−γXT )πt −λtd2
t Atγ

2exp(−γXT )πt .
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This means that the control π̂ also needs to satisfy

π̂t =
at

γ(b2
t +λtd

2
t )
. (4.27)

Substituting the expressions for π̂ into (4.24), we find that

0 = A′t −At
a2
t

2(b2
t +λtd

2
t )
.

This is 0 if and only if

A′t =
a2
t

2(b2
t +λtd

2
t )
At; AT = 1,

i.e.,

At = exp
(∫ T

t

a2
s

2(b2
s +λsd

2
s )
ds

)
; AT = 1.

Our computations show that π̂ given by (4.27) satisfies all the conditions of the sufficient maximum

principle (Theorem 3.2) and therefore we have proved the following:

Theorem 4.5. The optimal portfolio for the problem to maximise the performance (4.18) is given by (4.27).



Conclusion and perspective

In this thesis, we introduce a new method of stochastic integration for no-adapted processes w.r.t

fractional Brownian motion by choosing a hurst parameter greater than 1
2 .

Another way, we study a controlled stochastic differential equation driven by Brownian motion

and a single jump martingale, we derive sufficient and necessary maximum principles for a stochastic

optimal control problem, we apply the maximum principles to solve some examples.

The study established in this thesis offers different perspectives, let’s mentioned for instance:

• the role of stochastic maximum principles to solve stochastic optimal control problems.

• In the future, we will study rough path theory to eliminate the problem of irregular trajecto-

ries.
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Appendix A

Notions and proprieties of fractional

brownian motion

A.1 Fractional brownian motion

Definition A.1.1. A Gaussian process B(H)
t = {B(H)

t (t), t ≥ 0} is called fractional brownian motion (fbm) of

hurst index H ∈ (0,1) if it has mean zero with covariance function

RH (t, s) = E[B(H)(t)B(H)(s)] =
1
2

(t2H + s2H − |t − s|2H ).

By definition, fbm is a Gaussian process, and therefore it is strictly characterized by its mean and

covariance. Its mean by definition is zero and covariance given by RH (t, s) Hence the following three

properties are obtained through RH (t, s) in Definition A.1.1.

1. Self-similarity: The process {a−HBH (at), t ≥ 0} has the same law as {BH (t), t ≥ 0}, i.e. a−HBH (at) ∼

BH (t).

2. Stationary increments: BH (t + s)−BH (s) ∼ BH (t) for s, t ≥ 0.

3. Variance: E[BH (t)2] = t2H for all t ≥ 0.

There are an other representations of the fbm as a Wienner’s integral. taken [0,T ]. Fbm (B(H)
t )0≤t≤T

has defined by general formula:

BHt =
∫ t

0
KH (t, s)dBs, t ∈ [0,T ],
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where (Bt)0≤t≤T is one-sided standard brownian motion satisfying the conditions (a) and (b)-

Chapter 1.

A.2 Lévy-Hida Representation:

Following Decrensfond and Üstunel in [25], this Kernel is done as

KH (t, s) =
(t − s)H−

1
2

+

Γ (H + 1
2 )
F(

1
2
−H,H − 1

2
,H +

1
2
,1− t

s
)0 < s < t <∞,

and F is Gauss hypergeometric function.

Generally, remarking that we have:

RH (t, s) =
∫ s∧t

0
KH (t,u)KH (s,u)du,

where, RH (t, s) is the covariance function.

Case H ∈ (1
2,1)

Proposition A.2.1. [37] For H ∈ (1
2 ,1), the Kernel function is given by

KH (t, s) = CHs
1
2−H

∫ t

s
|u − s|H−

3
2uH−

1
2du,

where

CH =
( H(2H − 1)

β(2− 2H,H − 1
2 )

) 1
2
,

with β is the beta function:

β(a,b) =
∫ 1

0
ta−1(1− t)1−bdt.
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Corollary A.1. [37] Besides, we have

RH (t, s) = ($1(H))2
∫ t

0
{r

1
2−H (I

H− 1
2

T− uH−
1
2 1[0,t)(u))(r)(r

1
2−H (I

H− 1
2

T− uH−
1
2 f rm[o]−−[0,s)(u))(r))}dr,

$1 is defined by:

$1 =
(Γ (H − 1

2 )2H(2H − 1)

β(2− 2H,H − 1
2 )

) 1
2
,

hence, this Kernel can be rewritten as

KH (t, s) = $1(H)s
1
2−H (I

H− 1
2

T− uH−
1
2 f rm[o]−−[0,t)(u))(s).

Theorem A.2. [37] The representation of a fbm for H ∈ (1
2 ,1) over a finite interval is

B
(H)
t =

∫ t

0
KH (t, s)dWs, s, t ∈ [0,T ],

where (Wt)t∈[0,T ] is a particular Wienner process.

Lévy-Hida approach:[37]

By the above condition in last proposition, we have

∂KH (t, s)
∂t

= CH (
t
s

)H−
1
2 (t − s)H−

3
2 .

Thus, a linear operator K∗H : E −→ L2[a,b] is given by:

(K∗Hφ)(s) :=
∫ T

s
φ(t)

∂KH (t, s)
∂t

dt,

where, φ ∈ ε.
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