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General introduction: 

            Unlike the majority of electronic devices, which are silicon based, optoelectronic 

devices are predominantly made using III–V semiconductor compounds such as GaAs, InP, 

GaN, and GaSb, and their alloys due to their direct-band gap. Understanding the properties of 

these materials has been of vital importance in the development of optoelectronic devices. 

Since the first demonstration of a semiconductor laser in the early 1960s, optoelectronic 

devices have received considerable attention due to their applications in communications, 

computing, entertainment, lighting, and medicine. 

II–VI semiconductors have attracted much interest in fundamental research in various areas. For 

example, the study of diluted magnetic semiconductor (DMS) and manganese-based alloys[1], 

the emission of single photons in the visible range with CdSe quantum boxes [2], or Bose 

condensation of excitants in CdTe-based microcavities [3] or again Aharonov–Bohm effect[4]. 

II–VI semiconductors, such as ZnS, ZnSe and CdTe, appear to be promised for optoelectronic 

applications [5-15]. The limitation of some II–VI semiconductors in various fields makes the 

search of new semiconductors a major challenge for materials science. The first work on the 

chalcopyrites was carried out by Hahn et al.[16]; later, studies on this family of compounds have 

been largely motivated by their potential in different applications. The similarity between the 

zinc-blende and chalcopyrite structure has pushed the scientists to focus their attention on this 

compounds family. Effectively, Zunger and his collaborators [17, 18] have explained the 

formation of ternary compounds made by a substitution of atoms in a tetrahedral empty site. 

Another particularly interesting class of materials is named half-Heusler compounds or 

‘‘Nowotny– Juza,’’ [19] with a chemical composition XYZ. So, the half-Heusler compounds, 

which have eight valence electrons, including a large number of semiconductors with energy 

gaps vary in a wide range [20]. In general, the half-Heusler materials with eight valence 

electrons can be of II–VI, I–II V, I–III– IV, II–II–IV and III–II–III type. In addition, the 
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ferromagnetic behavior was observed by de Groot et al. [21] in half-Heusler compounds. 

Researchers have resumed the studies on these materials that can show: the topological 

properties [22-24] , they can also be used as spintronic devices [25] and as thermo-electrics with 

high-performance [26-28]. Recently, Roy et al have predicted the piezoelectric response and 

their associated properties in half-Heusler compounds. Another significant theoretical 

advancement came in 1985, and first principle calculations were presented by Wood et al.[17] 

who have predicted the energy gaps of about 1 eV in Li–half-Heusler compounds. After 

experimental and theoretical observations [29, 30]on the NiSnZr half-Heusler, a lot of additional 

semiconductor systems have been identified [20, 31, 32] . Some of these compounds, such as 

LiMgN and LiMgP, have large energy gaps that make them suitable for optoelectronic 

applications [33-35].  

The properties of the Nowonty-Juza phases are strongly determined by their crystalline 

order and the resulting electronic structure. Particularly, the electronic structures of LiMgN and 

LiZnN were proposed to fill the green gap left open by existing InGaN-based emission 

devices[36].Most of NaMgZ (Z = N, P, As, Sb and Bi) compounds have been theoretically 

predicted as direct band gap materials. Ab initio calculations show that both NaMgP and NaMgN 

are potential candidates for light-emitting diodes [37]. 

KMgZ (Z = N, P, As, Sb and Bi) compounds crystallize in zinc blende structure (space 

group F-43m). Theoretically, the KMgN is found to have an indirect band gap of 0.13 eV [38], 

whereas KMgP, KMgAs and KMgSb are found to have direct band gaps of 0.96, 0.46 [37]  and 

0.59 eV, respectively [39]. 

In this work, we report on first principles calculations of the structural, elastic, electronic 

and optical properties of our compounds LiZnN, which is organized as follows: 
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 The first chapter is devoted to present general information on heusler alloys as well as 

their nomenclature, their crystal structure within order and disorder phenomena and their 

application. 

 The second and the last chapter, is devoted to present and discuss the obtained results, 

their interpretations as well as a comparison with some theory and experimental works of 

our compound.  

 Finally, a brief conclusion is given about the obtained results. 
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  I.1 Introduction: 

Heusler compounds are ternary intermetallics permitting the prediction of half-metallic 

semiconductors,
 
and superconductors [1]. There are two families of Heusler compounds: half-

Heusler compounds XYZ, and (full) Heusler compounds XY
2
Z and crystallize in crystalline cubic 

structure. Today Heusler compounds form a large class of more than 3000 compounds that 

exhibit versatile properties. Figure.I.1 shows an over view of possible combinations of elements 

forming these materials. 

 

 

 

Figure I.1: Periodic table of the elements. The huge number of Heusler materials can be formed 

by combination of the different elements according to the color scheme [2]. 

I.2 Nomenclature of Heusler compounds: 

I.2.1. Half-Heusler compounds: 

In general, Half-Heusler materials XYZ can be understood as compounds consisting of a 

covalent and an ionic part. The X and Y atoms have a distinct cationic character, whereas Z can 

be seen as the anionic counterpart [3, 4]. The nomenclature in literature varies a lot, ranging from 

sorting the elements alphabetically, according to their electro-negativity or randomly, and thus, 

all three possible permutations can be found. In this work, we will stick to an order reflecting the 
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electro-negativity. The most electropositive element is placed at the beginning of the formula. It 

can be a main group element, a transition metal or a rare earth element. The most electronegative 

element, at the end, is a main group element from the second half of the periodic table, e.g. 

LiAlSi, ZrNiSn, LuAuSn  [5-7] 

I.2.2. Full-Heusler compounds: 

In the past, Heusler compounds were often understood as inter-metallic alloys, although 

the description as an inter-metallic compound is more appropriate due to their characteristic 

atomic order. Ternary Heusler compounds have the general formula X2YZ, where X and Y are 

transition metals and Z is a main group element. 

However, in some cases Y is replaced be a rare earth element or an alkaline earth metal. 

Traditionally, the metal, which exists twice, is put at the beginning of the formula, whereas the 

main group element is placed at the end, e.g. Co2MnSi, Fe2Val [8]  . Exceptions are those 

compounds, in which one element can definitively be defined to be most electropositive, for 

instance LiCu2Sb and YPd2Sb [9].  

I.2.3.Quaternary Heusler compounds: 

Except the usual and inverse full-Heusler compounds, another full-Heuslers family are 

the LiMgPdSn-type ones, also known as LiMgPdSb-type[10] Heusler compounds. These are 

quaternary compounds with the chemical formula XX’YZ, where X, X’, and Y are transition 

metal atoms. 

I.3 Crystal structure: 

There are two distinct families of Heusler compounds according to their crystal structure 

and their atomic arrangements. Several properties depend on the one hand on the size difference 

between the involved atoms, and on the other hand on the kind of interatomic interaction,  Which 

cause considerable changes in their magnetic and electronic properties [11].  
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I.3.1. Half Heusler: 

I.3.1.1.Chemical Composition: 

The Half-Heusler compounds with the composition 1:1:1 have the general formula XYZ 

and crystallize in a non-centro symmetric cubic structure (space group no. 216, F43m, C1b ) 

which is a ternary ordered variant of the CaF2 structure and can be derived from the tetrahedral 

ZnS-type structure by filling the octahedral lattice sites Figure.I.2.  

 

Figure I.2: (a) Rock salt structure, (b) zinc blende structure and their relations to the Half-

Heusler structure (c), and to the Heusler structure (d). 

 

Generally, the Half-Heusler structure type are three interpenetrating fcc sublattices, the 

atomic ordering according two type I and II (see TableI.1) is frequently observed. In MgAgAs Y 

and anionic Z form the covalent ZnS-sublattice [12], while the X and Y built the NaCl-type 

lattice  . Consequently, As is eightfold coordinated by monovalent and divalent cations. Even 

though MgAgAs is the assigned prototype of all Half-Heusler compounds, it has to be clarified 

that this material actually crystallizes with a different atomic order than most other Half-Heusler 

compounds [13]. In this case a peculiar situation is present: MgCuSb [12-14] is an example 

which represents the atomic arrangement in most Half-Heusler materials correctly  ; here, the Y 
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and the anionic Z form the ZnS-sublattice, and the electropositive X and the electronegative Z 

occupy the ionic NaCl-type sublattice.  

The corresponding occupied Wyckoff positions are 4a (0, 0, 0), 4b (1/2, 1/2, 1/2), and 4c 

(1/4, 1/4, 1/4). In principle, three in equivalent atomic arrangements are possible within this 

structure type as summarized in Table.I.1. 

Table I.1: In equivalent site occupancies within the C1b-type structure. Atoms on Wyckoff 

positions 4a and 4c form a ZnS-type sub lattice; the atoms on 4b occupy the octahedral holes. 

                          4a                                       4b                                            4c 

 I                        X                                         Y                                             Z 

II                        Z                                         X                                             Y 

III                      Y                                         Z                                             X 

 

I.3.1.2.Order-disorder phenomena for half- Heusler structure: 

As described above, the crystal structure of materials are strongly dependent on the 

atomic arrangement of the atoms. Already a partial intermixture can alter the electronic structure 

distinctly [15]. Within the Half-Heusler structure different types of atomic disorder are possible 

[16] (compare Table.I.2). 
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Table.I.2: Site occupancy and general formula for differently ordered Half-Heusler compounds. 

The notations according to the Inorganic Crystal Structure Database (ICSD), the Strukturberichte  

(SB), the Pearson database, as well the space group are given. Wyckoff position 4d (3/4, 3/4, 

3/4) denotes the second tetrahedral lattice site, which is void in ordered materials [16]. 

Site occupancy General 

formula 

Structure 

type ICSD 

Structure 

type SB 

Structure 

type Pearson 

Space group 

4a, 4b, 4c                  XYZ      LiAlSi(MgA

gAs) 

C1b cF16                                   F43m(No. 216) 

 

4a =4b, 4c XZ2 CaF2 C1 cF12 Fm3m(No. 225) 

4a, 4b, 4c= 4d X2YZ            Cu2MnAl L21 cF16 Fm3m(No. 225)               

 

4a =4b, 4c= 4d XZ  CsCl B2 cP2 Pm3m(No. 221) 

4a =4c, 4b= 4d YZ  NaTl B32 cF16 Fd3m(No. 227) 

4a =4b =4c= 4d  X W A2 cI2 Im3m(No. 229) 

 

 

I.3.2.Full Heusler: 

I.3.2.1.Chemical Composition: 

The Heusler compounds with 2:1:1 stoichiometry, have the general formula X2YZ and 

crystallize in the cubic space group Fm3m (space group no. 225) with Cu2MnAl (L21) as 

prototype [17-20]. The X atoms occupy the Wyckoff position 8c (1/4, 1/4, 1/4), the Y and the Z 

atoms are located at 4a (0, 0, 0) and 4b (1/2, 1/2, 1/2), respectively. this structure consists of four 

interpenetrating fcc sublattices, two of which are equally occupied by X. A rock salt-type lattice 

is formed by the least and most electropositive element (Y and Z). 
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 Figure I.3: (a) CsCl structure and (b) the Heusler structure which is shifted by (1/4, 1/4, 1/4) 

with respect to the standard cell to make the CsCl superstructure visible. 

 

In addition to the structure described above, an inverse Heusler structure is observed 

Instead, they are placed on the Wyckoff positions 4a (0, 0, 0) and 4d (3/4, 3/4, 3/4), while the Y 

and the Z atoms are located at 4b (1/2, 1/2, 1/2) and 4c (1/4, 1/4, 1/4), respectively. The 

prototype of this structure is AgLi2Sb with space group F43m (Space group no. 216) [21]. 

 

Figure I.4: Mn2-based Heusler compounds form both, the inverse and the regular structure, 

depending on the element on the Y position. 

 

This structure calculation show that already small amounts of disorder within the 

distribution of the atoms on the lattice sites cause distinct changes in their electronic structure, 

and thus also in their properties. Therefore, a careful analysis of their crystal structure is essential 

to understand the structure-to-property relation of Heusler compounds [22]. 
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 I.3.2.2.Order-disorder phenomena for Heusler structure:      

 Similar to the Half-Heusler materials, the properties of Heusler compounds are strongly 

dependent on the atomic order. The different ordering variants of Heusler compounds are 

summarizes in Table.I.3.                          

TableI.3: Site occupancy and general formula for different atomic order of Heusler compounds. 

The notations according to the Inorganic Crystal Structure Database (ICSD), the Strukturberichte 

(SB), the Pearson database, as well the space group are given [23]. 

 

Site 

occupancy 

General 

formula 

Structure type 

ICSD 

Structure 

type SB 

Structure type 

Pearson 

Space group 

X, X’, Y, Z   XX’YZ LiMgPdSn Y cF16 F43m(No. 216) 

 

X =X, Y,Z X2YZ Cu2MnAl L21 cF16 Fm3m(No. 225) 

 

X, X’ = Y,Z XX2’Z CuHg2Ti X cF16 F43m(No. 216) 

 

X =X’ = Y,Z X3Z BiF3  DO3 cF16 Fm3m(No. 225) 

 

X =X’ , Y=Z X2Y2 CsCl B2 cP2 Pm3m(No. 221) 

X =Y, X’ =Z X2X2’ 

 

NaTl B32 cF16 Fd3m(No. 227) 

X =X’= Y=Z X4 W A2 cI2 Im3m(No. 229) 

 

I.3.3.Qaternary compounds: 

Quaternary Heusler compounds with the 1:1:1:1 stochiometry have the general formula 

XX’YZ. There are two different elements X and X’. They are located at the 4a (0, 0, 0), and 4d 

(1/4, 1/4, 1/4). positions, respectively, Y is placed on 4b (1/2, 1/2, 1/2), and Z on 4c (3/4, 3/4, 

3/4), Where the valence of X’ is lower than the valence of X atoms and the valence of the Y 

element is lower than the valence of both X and X’. The sequence of the atoms along the fcc 

cube’s diagonal is X-Y-X’-Z which is energetically the most stable [24]. This structure has the 
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prototype LiMgPdSn [10] and crystallizes in (space group no. 216, F43m). An illustration of the 

inverse Heusler structure and the quaternary variant is given in Figure.I.5  

 

 

Figure I.5: (a) The inverse Heusler structure CuHg2Ti and (b) the quaternary version 

LiMgPdSn. 

I.4 Heusler compounds electronic classification: 

Heusler compounds can be ferromagnetic, Half-metallic, and semiconductor according to 

their electronic behavior. 

I.4.1.Ferromagnetic Heusler compounds: 

Heusler compounds first attracted interest among the scientific community in 1903 when 

Fritz Heusler discovered that an alloy with the composition Cu2MnAl behaves like a 

ferromagnet, although non of its constituent elements is magnetic by itself [17, 18].This 

remarkable material and its relatives, which by now comprise a vast collection of more than 

1000 compounds, are now known as Heusler compounds. They are ternary semiconducting or 

metallic materials with a 1:1:1 (also known as “Half-Heusler”) or a 2:1:1 (Full Heusler) 

stoichiometry. Surprisingly, the properties of many Heusler compounds can be predicted by 

simply counting the number of valence electrons [25].Recently, they attracted great interest due 

to their potential application in spintronics and the green energy-related fields, such as solar cells 

or thermoelectric (TEs). 



Chapter I:                                                                                                                    Heusler alloys 

 

 

16 
 

I.4.2.Half-metalic Heusler compounds: 

 The large family of magneto-electrical Heusler compounds, the half-metallic 

ferromagnets are semiconducting for electrons of one spin orientation, whereas they are metallic 

for electrons with the opposite spin orientation. Such compounds exhibit nearly full spin 

polarized conduction electrons, making them suitable materials for spintronic applications. 

Heusler compounds continuously attract interest duo to their high Curie temperatures [26] and, 

in fact, are being used today in magnetic tunnel junctions [27]. 

I.4.3.Semi-conductors Heusler compounds: 

Heusler compounds with eight valence electrons incorporate an impressive group of 

unconventional semiconductors. Ternary semiconductors are closely related to silicon and binary 

semiconductors such as GaAs. However, the design of unconventional semiconductors based on 

18 for half-Heusler compounds or 24 valence electrons for Heusler compounds is also possible, 

resulting in band gap widths of more than 1 eV. Indeed, the remarkable properties have been 

demonstrated recently. 

In the next chapter we will give more detail for Half-Heusler semiconductors properties.  

 

 

 

Figure I.6.Shematic representation of density of states for: Metals, Half-metals, and 

Semiconductors [28].  
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I.5.Heusler compounds Applications: 

The world at present is facing major problems such as energy crisis and environmental 

impact. Thermoelectricity is considered to be one of the potential ways towards addressing both 

these problems. However Half-Heusler materials having semiconducting [29, 30] properties are 

considered to be potential thermoelectric materials because of their large temperature stability.  

Furthermore, these materials are easy to synthesize and more environmental friendly since they 

consist of non-toxic elements. 

I.6.Conclusion: 

This chapter gives a broad overview of an outstanding class of materials, the Heusler 

compounds. Summarize all important aspects concerning these exceptional materials.  Crystal 

structure and order-disorder phenomenon in relation to multifunctional tunable properties were 

discussed. Many fascinating research projects will certainly emerge in future which take 

advantage of their tunable functionalities. Heusler compounds having semiconducting properties 

based devices could be designed according to the specific needs of the corresponding application 

and the new, unknown multifunctional properties could be developed with plenty of 

technological applications in thermoelectric. All within the one material class, the Heusler 

compounds. 
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II.1. Introduction: 

          The search of new semiconducting compounds for thermoelectric and photovoltaic 

applications becomes necessary. Therefore, filled tetrahedral compounds have been studied 

extensively [1-8]. Zunger et al. [1, 2, 4] have predicted the bang gap nature, by inserting of small 

atoms at tetrahedral interstitial states, of zinc blende semiconductors. Nowotny–Juza compounds 

of the form AIBIICV were predicted to be a new group of direct gap semiconductors [1, 2] in the 

range of 1.3–2 eV. So these compounds are predicted to be promising candidates for 

optoelectronics and anode materials for Lithium batteries. In order to 

discover new interesting materials for thermoelectric applications, the electronic structure of 

LiZnSb was analyzed in detail and has been suggested as a potential new thermoelectric material 

[8]. 

          LiZnN is considered to be one of filled tetrahedral AIBIICV compounds [1, 2, 9-13]  having 

a structure of a BIICV zinc blende lattice with AI atoms filling half of the available tetrahedral 

interstitial sites. This structure has been focused on because of its similarity to III-V 

semiconductors with small atoms filling tetrahedral interstitial sites in the viewpoint of the band 

structure modification. The structure of LiZnN is shown in figure.II.1.            

 

Figure.II.1. Crystal structure of LiZnN. 
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II.2.Calculations details: 

The calculations presented in this work were performed within the  Density functional theory 

(DFT)[14] and the full potential linearized augmented plane wave (FP-LAPW) method. We use 

the WIEN2k [15] implementation of the method which allows the inclusion of  local orbital in 

the basis, improving upon linearization and making possible a consistent treatment of the semi 

core and valence states in an energy window, hence ensuring proper orthogonality. The electron–

electron interaction was treated within  generalized gradient approximation (GGA) by Perdew, 

Burke and Ernzerhof (PBE) exchange–correlation potential[16]. In this method the space is 

divided into non-overlapping muffin-tin (MT) spheres separated by an interstitial region, in this 

context the basis functions are expanded in combinations of spherical harmonic functions inside 

the muffin-tin spheres and Fourier series in the interstitial region. The muffin-tin sphere radii 

(RMT) are showed in table II.1. 

The basis functions are expanded up to RMT*Kmax = 8 (where Kmax is the plane wave cut-off 

and RMT   the smallest of all MT sphere radii) and for the integration we used 30× 30 × 30 

k-points mesh in the whole first Brillouin zone. 

 

Table.II.1: RMT value for the different atoms Li, Zn,  and N. 

Atoms                      Li                                     Zn                                  N 

RMT                         1.72                                  2.04                               1.67 

 

Table.II.2: Electronic configuration for the different atoms Li, Zn, and N. 

Atoms                                            Li                                    Zn                             N  

Electronic 

 configuration                            2S1                                4S2 3d10                  2S² 2P3  
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II.3. structural Properties: 

The structural properties are the main step in investigating the behavior of some material. In our 

work the structural properties were calculated using GGA for the non-magnetic (NM), and 

ferromagnetic (FM) states. These calculations for the half- Heusler: LiZnN. 

The space group of our studied compounds LiZnN is F43m (space gr. No. 216). LiZnN can have 

three different structure type as table.II.3 shows. 

Table II.3: The Wyckoff positions for the atoms: Li, Zn, and N.  

                                  4a(0,0,0)                     4b(1/2,1/2,1/2)                 4c(1/4,1/4,1/4) 

 Type I                           Li                                    Zn                                     N 

 Type II                         N                                     Li                                      Zn 

 Type III                        Zn                                   N                                       Li 

 

II.3.1.total energies and mesh parameter: 

 

The structures of all compounds were optimized by calculating the total energy as a function of 

volume, which was followed by fitting the results with Birch Murnaghan [17]equation of state: 

 

𝐸𝑡𝑜𝑡(𝑉) =  𝐸0(𝑉) + 
9 𝐵0𝑉

16
[𝐵′ {(

𝑉0

𝑉
)

2/3

− 1}
3

+ {(
𝑉0

𝑉
)

2/3

− 1}
2

{6 − 4 (
𝑉0

𝑉
)

2/3

}]         II-1 

Where:      

 E (V) represents the total energy as a function of the unit cell volume.  

 V0 is the cell volume at ambient conditions. 

 V is the deformed volume. 

  B0 is the bulk modulus. 

  B0' is the derivative of the bulk modulus.  
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The bulk modulus and its derivative are usually obtained from fits to experimental data and are 

defined as: 

𝐵 = 𝑉 
𝜕2𝐸

𝜕𝑉2                  II-2                           

The calculated energy curves in function of volume for LiZnN are displayed in figure.II.2. 

 

Figure II.2: Variation of total energy as a function of volume for LiZnN. 

The figure shows that our compound is more stable in the phase NM type I which correspond to 

the lowest energy. 

The results of structural optimization of LiZnN are listed in table.II.4 with the available 

experimental data and results of other calculations. 
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Table II.4: Calculated lattice parameter (a), bulk modulus (B) and its derivative (B'), unit cell 

volume (V0), total energy (E0). 

 Type a ( Bohr)      V0   B ( GPA) B’(GPA) E0 ( Ry ) 

Our 

Calculations 

NM I 4.9257 201.6287 113.7447 4.4615 -3716.872416 

FM I 4.9257 201.6204 113.7404 4.4853 -3716.872426 

NM II 5.0129 212.5223 96.2544 4.6350 -3716.757421 

FM II 5.0129 212.5242 96.2514 4.6345 -3716.757419 

NM III 4.9217 201.1361 88.9727 4.6543 -3716.696275 

FM III 4.9217 201.1322 88.9892 4.6568 -3716.696275 

Experimental  4.91[6]     

Other 

Calculations  

 4.80[18]   141[18]   

 4.7669 

[19] 

 145[19]   

 

From reported values in the above table, it's clear that, our calculated values are close to the 

theoretical and experimental results. 

II.4. Elastic Properties:  

II.4.1.Introduction: 

Now we turn our attention to study the elastic properties of our compound via calculating the 

elastic constant Cij C11, C12, C13, C33, C44 and C66   using the FP-LAPW method . A cubic crystal 

has only three independent elastic constants; C11, C12, C44. 

The elastic constants Cij denote the stability and stiffness (rigidity) of the compounds which are 

determined by calculating the total energy as a function of strain by using the Mehl method[20]. 

For the calculation of the modulus C11 − C12 I used the volume-conserving orthorhombic strain 

tensor: 
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𝜖̅ =  [

𝛿 0 0
0 −𝛿 0

0 0
𝛿2

(1−𝛿2)

]                                                   II-3 

 

Application of this strain changes the total energy from its unstrained value to: 

𝐸(𝛿) =  𝐸(−𝛿) = 𝐸(0) + (𝐶11 − 𝐶12)𝑉0 𝛿
2 +  𝑂(𝛿4)       II-4 

Where: 

 V is the volume of the unit cell.  

 E (0) is the energy of the unstrained lattice at volume V. 

For the elastic modulus C44, we used the volume-conserving monoclinic strain tensor: 

 

 

𝜖 =  

[
 
 
 
 0          

𝛿

2
0

𝛿

2
0 0

0        0
4

(4−𝛿2)]
 
 
 
 

                                             II-5 

 

 The total energy changes this time to: 

 

𝐸(𝛿) = 𝐸(−𝛿) = 𝐸(0) + 
1

2
𝐶44𝑉0𝛿

2 +  𝑂(𝛿4)               II-6 

 

For isotropic cubic crystal, the bulk modulus B shows the resistance to fracture[21]. It has been 

calculated by the given expression: 

𝐵 = 
𝐶11+2𝐶12

3
                                       II-7 

 

           The values of Poission ratio (ν), Zener anisotropy factor (A), Bulk modulus (B), Shear 

modulus (G), and Young modulus (E), have been calculated using the following relations: The 

reported results are listed in Table.II.5. 

G =
1

5
(3C44 + C11 − C12)                    II-8 
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𝐴 = 
2𝐶44

𝐶11−𝐶12
                                         II-9 

𝐸 = 
9𝐵𝐺

 3𝐵+𝐺
                                           II-10 

𝜈 =
1

2
(1 − 

𝐸

3𝐵
)                                    II-11 

          The cubic structure of our compound will be mechanically stable if it satisfies the stability 

criteria of Born–Huang given by: 

 (C11 − C12) > 0,  C11 > 0, C44 > 0, 𝐶11 > 𝐶12, (𝐶11 + 2𝐶12) > 0 and 𝐶12 < 𝐵 < 𝐶11. According to 

Table.II.4 results the born criteria are realized which confirms the stability of our compound 

LiZnN. The shear modulus G represents plastic deformation[21] equal to  87.64 GPa .Young's 

modulus named after the British scientist Thomas Young [22] estimates the stiffness of a solid 

material equal to 211.15 GPa . Poisson's ratio ν named after the French Siméon Poisson 

describes the contraction of a material in directions perpendicular to the direction of loading 

equal to 0.20 which is lower than 0,25 that indicates the non-centralization of the inter forces of 

our material , since  0.25 ˂ν ˂ 0.50 [23].  

         The elastic coefficients are  also related to the ductile or brittle properties of the metals by 

the empirical relation (B/G)[24, 25] .where B is the bulk modulus and G is the shear modulus as 

we mentioned. Frantsevich et al.[26] have suggested that if B/G > 1.75, the material has ductile 

nature, otherwise behaves in a brittle way. In the present calculation, the value of B/G has been 

found to be 1.35, which shows that our compound is brittle in nature; the value of B/G is always 

greater than one, which suggests that volume compression is more than shear compression.  

          The Zener anisotropy factor (A) named after Clarence Zener [27] is a dimensionless 

number that is used to quantify the anisotropy for a cubic crystal. Where the value of one means 

that the material is isotropic. While any other value greater or less than one indication the 

anisotropy characteristic. The Zener anisotropy factor (A) has been calculated and found to be 

0.60. This shows that our semiconductor LiZnN is an anisotropic material. 
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 Table II.5: The values of Poisson’s ratio (ν), Zener anisotropy factor (A), Bulk modulus B 

(GPa), shear modulus G (GPa) and Young modulus E (GPa), elastic constants Cij (GPa). 

 

C11 C12 C44 B E G 𝜈 B/G A 

277.31       40.11        71.45        119.17       211.15       87.64       0.20        1.35          0.60   

 

II.4.2.Debye temperature : 

               Debye temperature is obtained from elastic data using the average wave velocity and 

mean atomic volume which corresponds to the upper limit of phonon frequency in a crystal 

lattice and calculated using the following relation: 

θD =
h

k
[
3n

4π
(
NAρ

M
)]

1

3
vm                     II-12 

Where  

 h is Plank constant. 

 k Boltzamann constant.  

 Na Avogadro number.  

 n number of atoms in a molecul.  

 M the molecular weight.  

  ρ The density . 

 vm   The average wave velocity. 

. 

vm is the average wave velocity and is dependent to transverse vt and longitudinal vl wave 

velocity due to following formulas: 

vm = [
1

3
(

2

vt
3 +

1

vl
3
)]

1

3
                              II-13 

Where:  
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vl = √
3B+4G

3ρ
                          II-14 

     vt = v√
G

ρ
                                 II-15 

Debye temperature and the melting temperature have been computed and found to be equal to 

652.15K and 2191.90+300K respectively (see Table.II.6). 

Table.II.6: Presents the average, transverse, and the longitudinal (vm ,vt ,vl) wave velocity 

respectively in m/s,  Debye temperature ƟD in K, and the melting temperature in K.  

vm vl vt ƟD Tm 

4697.78 6979.84 4283.15 652.15 2191.90+300 

 

II.5.Electronic properties: 

In order to discuss the electronic structure in detail, we have calculated the band structures, total 

density of states (DOS) and partial density of states (DOS) of LiZnN. 

II.5.1.band structure: 

          The band structure of a solid describes those ranges of energy, called energy bands, that an 

electron within the solid may have (“allowed bands”) and ranges of energy called band gaps 

(“forbidden bands”), which it may not have. Band theory models the behavior of electrons in 

solids by applying the existence of energy bands. This theory successfully uses a material’s band 

structure to explain many physical properties of solids. Bands may also be viewed as the large-

scale limit of molecular orbital theory. The Fermi level EF is set at 0 eV (dotted horizontal line). 

By definition, the difference between the maximum of the valence band and the minimum of the 

conduction band is the fundamental energy gap for insulators materials and semiconductor[28]. 
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            Using FP-LAPW method witing GGA approximation we have calculated band structure 

and density of states of our compound LiZnN witch shows that the top of valence band and the 

bottom of the conduction band are all at the Γ symmetry point, which indicate that our 

compound  is a semiconductor direct gap material, having band gap energy value  Eg =0.519 eV.  

The band structure calculations have been shown in Figure II.3. 

 

Figure II.3: Band structure for LiZnN. 

 

II.5.2.Density of states: 

             In solid state physics and condensed matter physics, the density of states (DOS) is a 

fundamental quantity in band theory which describes the number of states that are to be occupied 

by the system at each level of energy. 

The partial density of states (PDOS) and total density of states (TDOS) plays vital role to explain 

the physical properties of semiconductor compounds.  

https://en.wikipedia.org/wiki/Solid_state_physics
https://en.wikipedia.org/wiki/Condensed_matter_physics
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Figure.II.4 represents the total and partial Density of states (States/eV) of LiZnN obtained 

within GGA approximation, and were investigated in the energy range from -10 to 14.2. 

 The valence band region of LiZnN lies between -6.79 eV to Fermi energy level (EF) and 

divided into two sets: low and high-energy sets of bands. The low-energy set extending 

from -6.79 eV to -5.53 eV is dominantly formed by Zn-d states. The higher-energy set of 

valence band ranging from -5.53 eV to Fermi energy level is mainly due to Li-s and N- p 

states with a negligible contribution of Zn-s and N-s states.  

 The conduction band region consists mainly of Li-s and N-s/p states in the energy range 

from 5 to 10 eV. 

 We also find that our compound has a direct gap with a forbidden band gap of Eg = 0.519. 

This result confirms the semiconducting behavior of LiZnN. 

 

 

Figure II.4: The total and partial Density of states (States/eV) of LiZnN. 
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II.6.Optical properties: 

II.6.1.Introduction: 

In solid state physics, it is of great interest to know the different ways in which light interacts 

with matter, such as absorption, transmission, reflection, scattering, and emission. First, we will 

present the dielectric function within the framework of quantum mechanics, and then we will 

determine the link between the real and imaginary part of the dielectric function and the complex 

index through the Kramers-Kronig relations. 

II.6.2.Dielectrique function: 

Optical properties can be obtained from the dielectric function. The dielectric function, 

Ɛ (ω) = Ɛ1 (ω) + iƐ2 (ω)                 II-16 

 Ɛ1 represents the real part while Ɛ2 represents the imaginary part, In reality, the imaginary part Ɛ2 

(ω) is calculated from the joint density of states ≪ Joint Density of States ≫ (JDOS). The real 

part Ɛ1 (ω) is deduced from Ɛ2 (ω) by using the Kramer-Kronig, it is relations are these two 

quantities which provide the set of electrical and optical characteristics of a material. 

The imaginary part: 

Figure II.5 illustrates the imaginary part of the dielectric function of the LiZnN material in the 

energy range from 0 eV to - 13 eV. In this figure II.5, we notice that ε2 (ω), presents an increase 

from 0.53 eV which is the first occurrence denoted E0. It designates direct optical transitions. 

The first main peak is located at around 1.48 eV, the second at 5.23 eV, while the others are 

located at values of 7.76, 8.25 and 9.42 eV respectively. This is shown in Table.II.7. 

Table.II.7.Diffrentes peaks in (eV) of the imaginary part ε2 (ω) as well as the dielectric constant 

ε1 (ω) and the refractive index n (ω). 

LiZnN E0 E1 E 2 E 3 E4 E5 Ɛ1 (0) n(0) 

0.53 1.48 5.23 7.76 8.25 9.42 6,95 2,6 
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Figure II.5: The imaginary part of the dielectric function curves for LiZnN. 

The maximum absorption for the compound is located at 7.70 eV, the imaginary part of the 

dielectric function shows a main peak in the UV region and almost all other peaks are in the UV 

region. 

The real part: 

The figure II.6, shows that, the real part 1ω increases according to the energy of the photons, 

to reach a peak for an energy equal to 0.85. Then it decreases in the spectral part of the visible, 

then increases again in the UV regions reach a maximum for an energy value equal to 4.94 eV, 

after the limit of the maximum value of the function 1ω, the spectrum decreases with small 

oscillations at higher energies, ranging from 6eV to 13 eV, The real part, Ɛ1 (ω) of the static 

dielectric function at 0eV for LiZnN is equal to 6.95. The passage through the zero value of the 

spectrum means that there is no scattering. It should be noted that at this energy value, the 

dispersion is zero, and therefore the absorption is maximum. 
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Figure II.6: The real part of the dielectric function curves for LiZnN. 

II.6.3.Absorption coefficient: 

Using the real and imaginary parts of dielectric function, the optical absorption 

coefficient defined as: 

𝛼(𝜔) =
4𝜋𝑘(𝜔)

𝜆
                                    II-17 

Where k () is the extinction coefficient and  represents the wavelength of light in vacuum. The 

absorption of photons is at the origin of the interband optical transition. The evolution of the 

absorption coefficient is shown in Figure II.7. From this figure, we can see that absorption starts 

from 0.53eV energy. 

The fundamental absorption threshold starts at approximately 0.53eV this value corresponds to 

the energy gap for LiZnN. Figure (II.7) shows that the absorption starts to increase constantly 

from the value 0.53 eV which corresponds to the IR spectral region, up to the energy value 13 

eV which corresponds to the far UV spectral region. It can also be seen that this material is very 

useful for optoelectronic devices operating in the ultraviolet range. 
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Figure II.7: The absorption coefficient for LiZnN. 

 

II.6.4.Reflictivity spectrum: 

           Another very important parameter is the reflectivity coefficient R that characterizes the 

reflective energy part of the interface of the solid and can be deduced by the refraction index. 

Reflectivity index depends on incident photon energy. Main peaks in the reflectivity spectrum 

are corresponding to interband transitions [29]. The reflectivity can be calculated by equation: 

𝑅(𝜔) = |
ñ – 1

ñ + 1
| = (n −  1) 2 +

𝑘2

(n + 1) 2
+ 𝑘2                                               II-18 

Where:  

 N: is the complex refractive index.  

 n : is the refractive index. 

 k : is the extinction coefficient. 

Figure II.8.shows that the reflectivity starts to increase constantly from the value R (0) =.20 eV 

which corresponds to the IR spectral region, up to the energy value 13 eV which corresponds to 

the far UV spectral region. 
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The behavior of the reflectivity spectra, R (ω) of our alloy is plotted in this graph shows a 

variable pattern at range energy from 0eV to 13eV. 

Table.II.8: shows the reflectivity main peak within its width. 

LiZnN  

Peak  13 

Width 13 

 

 

Figure II.8: The reflectivity for LiZnN. 

II.6.4.Refrative index: 

         For optical materials, the knowledge of the refractive index n (ω) is essential for its use as 

photonic and optical devices, waveguides, solar cells and detectors. The refractive index n (ω) is 

related to microscopic atomic interactions and it is a very important physical parameter [30-37], 

we consider the crystal as a collection of electric charges. On the other hand, the refractive index 

will be related to the density and local polarizability of these entities [29, 38]. 
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𝑛(𝜔) = (
1(𝜔)+√+ 1

2(𝜔)+ 2
2(𝜔)

2
)

1
2⁄

                                                  II-19 

 The refractive index of the semiconductor n (ω) is calculated from the real part of the dielectric 

function: 

𝑛(𝝎) = √휀1(𝜔)                                         II-20 

Figure II.9 shows the variation of the refractive index n (ω) of the LiZnN compound as a 

function of the incident photon energy. The refractive index at 0eV for LiZnN is equal to  

n (0) = 2.64. 

 

 

Figure II.9: The refractive index curve for LiZnN. 
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General Conclusion: 

The structural, electronic ,elastic and optical properties of the half-Heusler semiconductor 

compound LiZnN have been investigated in this work, by using full-potential linear-augmented 

plane wave (FP-LAPW) method formed within the density functional theory DFT. Generalized 

gradient approximation (GGA) was used to calculate the exchange correlation energy and 

potential.  

Our theoretical and study can be summarized as follows: 

 Structural properties: 

First, we studied the structural properties in order to characterize the fundamental state of 

the studied system. Three possible differerent types were investigated where, the results of 

structural optimization of LiZnN show that our compound is more stable in the phase NM type I. 

 Elastic properties: 

Second, the computed elastic properties indicate the stability of our compound. The value 

of B/G ratio has been found to be 1.35, which shows that our compound is brittle in nature. In 

addition the Zener anisotropy factor (A) has been calculated and found less than one which 

indicates the anisotropy characteristic.  

 Electronic properties: 

Next, the electronic properties such as density of states and band structures have been 

presented. The LiZnN compound shows a direct band gap (Γ- Γ). 

 Optical properties: 

The optical properties such as dielectric function and absorption coefficient, refractive 

and reflectivity index have been also calculated in order to study the behavior of the 

semiconductor LiZnN. The real part, Ɛ1 (ω) of the static dielectric function at 0eV for LiZnN is 

equal to 6.95. this means that the dispersion is zero, and therefore the absorption is maximum. 

We found that the fundamental absorption threshold starts at approximately 0.53eV; this value 
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corresponds to the energy gap for LiZnN. Also the reflectivity starts to increase R (0) =.20 eV 

which corresponds to the IR spectral region, up to the energy value 13 eV which corresponds to 

the far UV spectral region. This result can be used as a theoretical basis for potential application 

in optoelectronic and thermoelectric. 

         Finally, it is worth noting that the WIEN2k code is a very powerful tool which allows easy 

and direct calculation of the different properties of the matter despite of our modest and short 

experience of using it. 



 

 

 

 

Abstract: 

Structural, elastic, electronic and optical semiconductor compound properties LiZnN  have been calculated 

by the augmented plane waves (FP-LAPW) method based on the theory of the functional of the density (DFT) using 

the Wien2K code. We used the approximation of generalized gradient GGA for the term of the Exchange and 

correlation potential. From the elastic properties after it was mechanically stable. The electronic and optical 

properties are also discussed, according to the calculation of the structure of electronic bands and the density of total 

states; we found that this compound has a direct gap, with a semiconductor behavior. Which is suitable for 

thermoelectric and optoelectronic applications. The results in this work appear promising for future experimental 

investigations. 

Keywords: Density functional theory (DFT), generalized gradient functional (GGA), dielectric function, absorption, 

reflectivity, half-Heusler. 

Résumé : 

Les propriétés structurelles, élastiques, électroniques et optique  du composé semi-conducteur LiZnN  ont 

été calculées par la méthode des ondes planes augmentées (FP-LAPW) qui se base sur la théorie de la fonctionnelle 

de la densité (DFT) en utilisant le code Wien2K. Nous avons utilisé l'approximation du gradient généralisé GGA 

pour le terme du potentiel d'échange et de corrélation. D’après les propriétés élastiques il a été constaté que notre 

matériau est mécaniquement stable. Les propriétés électroniques et optiques sont également discutées, d’après le 

calcul de la structure de bande électronique et de la densité d’états  (DOS), nous avons constaté que ce composé 

présente un gap direct. Avec un comportement semi-conducteur. Ce qui convient aux application thermoélectriques 

et optoélectroniques. Les résultats de ces travaux semblent prometteurs pour de futures recherches expérimentales.  

Mots-clés: Théorie de le fonctionnelle de la densité (DFT), fonctionnelle du gradient généralisé (GGA), fonction 

diélectrique, absorption, réflectivité, demi-Heusler. 

 ملخص

.تم استخدام Half-Heusler LiZnNالخصائص الالكترونية والضوئية لمركب ‚بدراسة الخصائص الهيكلية و الخصائص المرنة  قمنا

لأجل حساب كمون التبادل  k2Wien( باستعمال برنامج DFT( في إطار نظرية دالة الكثافة )LAPW-FPمتزايدة خطيا )طريقة الأمواج المستوية ال

للبيانات التجريبية  الخصائص الهيكلية المحسوبة مثل معامل الشبكة ومعامل الانضغاط كانت موافقة‚ GGAالارتباط تم استخدام تقريب التدرج المعمم 

مستقر ميكانيكيا . كما تكشف بنية  LiZnNتشير ثوابت المرونة التي تم الحصول عليها أن مركب  LiZnNراستنا لخواص المرونة والنظرية المتاحة  د

كما قمنا بتحليل الخواص البصرية   0.519   يساوي Γهو شبه ناقل ذو فجوة مباشرة من أشباه الموصلات عند النقطة  LiZnNالعصابة ان المركب 

 ل الكهربائي, معامل الانكسار , الانعكاسية و معامل الامتصاص.مثل : دالة العز

 هسلر نظرية الكثافة الوظيفية، دالة التدرج المعمم، وظيفة العزل الكهربائي ،الامتصاص، الانعكاسية، نصف الكلمات المفتاحية:
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