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Abstract

The objective of this thesis is to model volatility by fractional Gaussian processes with

long memory and irregular trajectories. We use high-frequency data to estimate the reg-

ularity of the log-volatility paths. We consider the mixed fractional Brownian motion

with H < 1
2
as a stochastic volatility model and construct a stationary mixed fractional

Ornstein-Uhlenbeck process as a stationary model of log-volatility. Further, we establish a

fundamental result on the integration of non-adapted processes with respect to fractional

type processes (sub-fractional Brownian motion, mixed fractional Brownian motion) when

H > 1
2
as a Riemann sum with an appropriate choice of sub-interval evaluation points by

decomposing the integrand processes to a linear combination of adapted and instantly in-

dependent processes. This study is considered as a generalization of what has been given

in the Brownian framework. We prove that our anticipating integrals are near-martingales

under some conditions.
Keywords: Gaussian processes, mixed fractional Brownian motion, sub-fractional Brow-

nian motion, non-adapted process, near martingale, stochastic volatility.
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Résumé

L’objectif de cette thèse est de modéliser la volatilité par des processus Gaussiens frac-

tionnaires à mémoire longue et à trajectoires irrégulières. Nous utilisons des données

à haute fréquence pour estimer la régularité des trajectoires de la log-volatilité. Nous

proposons le mouvement Brownien fractionnaire mixte avec H < 1
2
comme un modèle

de volatilité stochastique et nous construisons un processus d’Ornstein-Uhlenbeck frac-

tionnaire mixte stationnaire comme modèle stationnaire de la log-volatilité. Par ailleurs,

nous avons démontré un résultat fondamental sur l’intégration des processus non adaptés

par rapport aux processus de type fractionnaire (mouvement Brownien sous fractionnaire,

mouvement Brownien fractionnaire mixte) lorsque H > 1
2
comme une somme de Riemann

avec un choix approprié de points d’évaluation de sous-intervalles tout en décomposant le

processus intégrant à une combinaison linéaire des processus adaptés et instantanément

indépendants. Cette étude est considérée comme une généralisation du celle établie dans

le cadre Brownien. De plus, sous certaines conditions, nous prouvons que nos intégrales

anticipées sont des près-martingales.

Mots clés : Processus gaussiens, mouvement Brownien fractionnaire mixte, mou-

vement Brownien sous-fractionnaire, processus non-adapté, près-martingale, volatilité

stochastique.
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صخـــالمـل  

 
ظمة. نس تخدم بيانات الكسرية ذات الذاكرة الطويلة والمسارات غير المنت غوس يانمن خلال عمليات  العشوائيالهدف من هذه الأطروحة هو نمذجة التقلب  

أأولنبك عملية أأورنش تاين ونقدم عشوائيكنموذج تقلب  ةالمختلط . نقترح الحركة البراونية الكسريةلوغاريتم التقلب العشوائي مساراتلتقدير انتظام  عالية التردد  

لعمليات بالنس بة ة أأساس ية لتكامل العمليات غير المكيفةـيجــ نت رنا ــه ـلاوة على ذلك، أأظ ـع . ب العشوائيـــاريتم التقلــكنموذج ثابت للوغ    H<1/2   لماّ 

½ < H        ب ـريمان مع الاختيار المناس  كمجموع   لماّ  الحركة البراونية الكسرية الجزئية(، من النوع الكسري )الحركة البراونية الكسرية المختلطة غوس يان

لى مجموعة خطية من العمليات المتكيفة والمس تقلة على الفور. تعتبر هذه الدراسة بمثابة النقاط في المجالات الفرعية وهذا  من خلال تفكيك عملية الدمجلقيم  ا   

لى ذلك، في ظل شروط معينة، نثبت أأن التكاملات المتوقعة لدينا قريبة من مارتينغال.   تعميم لتلك التي تم وضعها في الا طار البراوني.  بالا ضافة ا   

 

مارتينغال،عمليات غوس يان، الحركة البراونية الكسرية المختلطة، الحركة البراونية الكسرية الفرعية، العملية غير المكيفة، القرب من المفتاحية: الكلمات     

.التقلب العشوائي  
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Introduction

Volatility modeling has received a lot of attention in the literature since the introduction

of Black and Scholes model in 1973 [13]. The model describes the dynamic of price of

derivative instrument in financial markets as a diffusion stochastic process under the form:

dSt = St(µtdt+ σtdWt), t ∈ [0, T ].

where µt is a drift term and Wt is a standard Brownian motion. The term σt denotes

the volatility process and is the most important parameter in the model. In this model,

the volatility is considered as a constant, However, such specification of volatility σt is

inadequate with observed prices for European options. To overcome this problem, few

researchers introduced several volatility models. Dupire [35], Derman and Kani [31] pro-

posed the so-called local volatility σ(t, St) which considered that volatility is a determin-

istic function of time and asset price but still insufficient to describe the real dynamic of

price. Stochastic volatility models are the most realistic way to describe the behavior of

the volatility process of an underlying asset as a diffusion process. Hull and White [47]

where the first authors who proposed the use of stochastic volatility models, this model

describes the dynamic of asset price St as follows:

dSt = µtStdt+ σtStdWt,

dσ2
t = θσ2

t dt+ γσ2
t dBt,

15



Introduction 16

where σt denotes the stochastic volatility of price St and Wt and Bt, t ∈ [0, T ] are two

standards Bm with correlation coefficient ρ ∈ (−1, 1) and µ, θ, γ are constants.

Scott [95] assumed that the volatility follows a mean-reverting Ornstein-Uhlenbeck

process with an independence between the asset price and the volatility in order to com-

pute the prices of options. Stein and Stein [98] adopted the same model but with a

correlation between the asset price and the volatility. Hagan et al.[43] introduced SABR

model which is a stochastic version of elasticity of variance (CEV) model. Heston [44]

suggested that the variance follows a Cox-Ingersoll-Ross (CIR) interest model. This model

enjoys success since it is possible to deduce a closed formula for the price of an European

call (put) options1. Notice that all this models are diffusion processes driven by a standard

noises.

Andersen and Bollerslev [2], Andersen et al. [4] and Ding et al. [33] observed the

presence of long memory in volatility process through statistical analysis, this feature be-

came later a stylized fact in financial mathematics. Many authors proposed long memory

model based on a fractional Brownian motion, indeed the fractional Brownian motion

BH
t , t ≥ 0 with Hurst index H ∈ (0, 1) offers a good formulation of this long memory

property. A few studies related to fractional stochastic volatility models have been pub-

lished (Comte et al. [24], Comte and Renault [25], Rosenbaum [93] and so on), where the

volatility is modeled by a stochastic differential equation driven by a fractional Brownian

motion. Specifically, Comte and Renault [25] suggested that the log-volatility is a frac-

tional Ornstein-Uhlenbeck process with Hurst index H > 1
2
to capture the long memory.

However, the analysis of Fukasawa [39] show that the choice of H > 1
2
is inconsistent

with the term of volatility skew for short expirations. Another extension has been studied

in Corlay et al.[27] where the volatility process is driven by a multifractional Brownian

motion. Recently, Gatheral et al. [42] proposed a rougher fractional volatility model with
1An option is a contract that gives its holder (buyer or seller) the right but not the obligation) to

buy (call option) or sell (put option) a quantity of assets at a specified price K called the strike price
(or exercise price) and at a specified date T called the maturity. An option which may be exercised at
any time before the maturity is an European option while an option which may be exercised only at the
expiration date of the option is an American option.
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a Hurst index H < 1
2
. This model permits to generate the term of observed volatility

skew and also to reproduce the observed regularity of the volatility process. We note that

even if this model has not long memory property, the authors proved that it is consistent

with time series data of volatility, what solidified the stylized fact that volatility is long
memory.

The so-called fractional Brownian motion was introduced as an appropriate gener-

alization of standard Brownian motion parameterized by a Hurst index H ∈ (0, 1) with

features that provide its utility as a suitable model in many applications including finance,

traffic internet, turbulence, geophysics, etc. This process is considered as the most known

process exhibiting the properties of self-similarity, long-range dependence and stationarity

of increments, it was introduced first by Kolmogorov [58] in 1940, in order to study spiral

curves in Hilbert space, and studied later in the famous paper of Mandelbrot and Van

Ness [73] in 1968 that shed light on its properties such as its integral representation with

respect to standard Brownian motion. Note that for H = 1
2
, the fBm coincides with the

standard Brownian motion.
An extension of Brownian motion is the so-called mixed fractional Brownian motion

(mfBm), this process is is a linear combination of fractional Bm and independent standard

Bm, such mixture has been firstly introduced by Cheridito [20] to present an interesting

stochastic model of the discount stock price in some arbitrage-free and complete finan-

cial markets under the form M = B + αBH , where B is a standard Brownian motion

independent of the fBm BH . Zili [109] considered a more general form of mixed fBm as

MH = aBH+bB and studied some stochastic properties and characteristic of this process.

Note that, for H ∈ (0, 1
2
) ∪ (1

2
, 3

4
), the process MH is not a semimartingale, when H > 3

4

is equivalent in distribution to bB (Cheridito [20]), and for H < 1
4
, MH is equivalent in

distribution to aBH (Van Zanten [108]).

A more general self-similar Gaussian process, considered as an intermediate between

standard Brownian motion and fractional Brownian motion, has been introduced in Bo-

jdecki et al.[14], and appeared in Dzhaparidze and Van Zanten [36] as the even part of
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fractional Brownian motion. This process arises from occupation time fluctuations of

branching particle systems with Poisson initial condition. The so called sub-fractional

Brownian motion (SHt ; t ≥ 0) with a Hurst parameter H ∈ (0, 1) is a centered Gaus-

sian process. The sub-fBm preserves many properties of fBm (self-similarity, long-range

dependence, and Hölder paths) unless the stationarity of increments and its long range

dependence decays faster than that of fBm. Similarly to fBm, the case H = 1
2
also

corresponds to standard Brownian motion.

Note that the fBm and sub-fBm are neither Markov processes nor a semimartingales

for H 6= 1
2
. This fact is considered as a limitation for applying classical stochastic cal-

culus developed by Itô; i.e, to give a sense for
∫ t

0

usdXs, the integrator X must be a

semimartingale which is not the case for BH and SH . Therefore, many techniques from

classical stochastic analysis are not available when dealing with this processes, for this

reason various approaches have been proposed.

In the case of fractional Brownian motion, the simplest approach is the wiener ap-

proach which discusses the problem of integration of deterministic function with respect to

fractional Brownian motion. Pipiras and Taqqu [86] defined the families of integrand cor-

responding to the Wiener integral via fractional integrals and derivatives. For 0 < H < 1
2
,

the entire domain is defined whereas for 1
2
< H < 1, a class of functions that are subset

of the integral domain are determined due to the non-completeness of the whole domain.

In [87], the authors discussed the question of completeness of the class of deterministic

integrand on an interval. After that, Jolis [54] treated the problem of Wiener integral

with respect to fBm for every H ∈ (0, 1).

When the integrand is a not deterministic function, various approaches have been pro-

posed in order to define
∫ t

0

XsdB
H
s , s ∈ [0, t]. Due to the results of Young [106] applied to

fractional Brownian motion, the pathwise Riemann-Stieltjes integral
∫ t

0

Xs(ω)dBH
s (ω), s ∈
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[0, t] exists for all ω ∈ Ω as a Riemann sums, specifically, in the case where H > 1
2
, the

pathwise integral
∫ t

0

f(BH
s )dBH

s exists and the change of variables formula f(BH
t ) =

f(0) +

∫ t

0

f ′(BH
s )dBH

s holds for all continuously differentiable function f . We refer to

Zähle [107], Dudley and Norvaisa [34], Feyel and Pradelle [38] and Mikosch and Norvaisa

[77] for more details about pathwise integral. In the case where H < 1
2
, the pathwise in-

tegral may not exists. Lyons [70] introduced the theory of rough paths analysis to define

a pathwise approach to the stochastic integrals of the form
∫ t

0

f(BH
s )dBH

s in the case

where 1
4
< H < 1

2
(see also Coutin and Qian [28]). The inconvenient of these pathwise

integrals is that the mean is not null and it is not easy to get a formula for the variance.

In the case of sub-fractional Brownian motion, Tudor [101] characterized the Wiener

integral’s domain with respect to SH for all H ∈ (0, 1). After that, Shen and Chen [96]

defined a stochastic integral with respect to sub-fBm SH with H < 1
2
. This extends

the divergence integral from Malliavin calculus. In addition, like the fBm, the pathwise

Riemann-Stieltjes integral
∫ t

0

us(ω)dSHs (ω) exists for a stochastic process u with β-Hölder

continuous trajectories, where β > 1−H and the sub-fBm is Hölder continuous of order

γ for any γ < H on any finite interval (see Young [106]).

As we mentioned above, the fact that the fractional type Gaussian process are not

semimartingales limited the use of the classical itô stochastic calculus. Other limitation

of classical Itô integral is the adaptedness of the integrand to the natural filtration of

integrator ie,
∫ t

0

YsdXs is well defined if and only if Yt is adapted to the filtration Ft

=σ{Xt, t ≥ 0}. Then, the integral is defined like Riemann sums at which the evaluation

points are the left endpoints of subintervals. The problem of non-adaptedness of the
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integrand has been discussed by Itô [52], where he raised the question how to define

∫ t

0

B(1)dB(s), 0 ≤ t ≤ 1, (1)

since B(1) is not Ft-adapted. Itô proposed to enlarge the filtration by considering Gt the

field generated by Ft and B(1), ie Gt =σ{Ft, B(1)}, B(1) is adapted to Gt and Bt is a

Gt-quasimartingale. Therefore, the integral (1) may be defined as a stochastic integral

with respect to quasimartingale.

There have been several extensions in the literature on anticipating stochastic inte-

gration. Let’s cite for instance Hitsuda [46], Skorokhod [97] and serval works treating the

anticipating integrals and their applications, see Buckdahn [18], León and Protter [67],

Pardoux and Protter [85], and the references therein.

Ayed and Kuo [6] proposed a new viewpoint for defining this kind of integrals by

decomposing the anticipating stochastic integrand into a linear combination of the prod-

ucts of instantly independent and adapted stochastic processes. Then, authors defined a

stochastic integral of the product of an adapted process and instantly independent process

as a Riemann sum thanks to the classical definition of stochastic integral proved in Kuo

[60]. Notice that the evaluation points are the left endpoints of subintervals for the first

process and the right endpoints for the second. Motivated by this new approach, many

authors developed different studies. Itô formula of anticipating integral proved in Kuo

and Ayed [6], was generalized to different cases in Kuo et al.[62, 61, 49]. The study of a

class of stochastic differential equations with anticipating initial conditions was treated in

Khalifa et al.[57]. The Itô isometry based on the new integral for anticipating processes

was discussed by Kuo et al. [64]. The near-martingale property of anticipating stochastic

integral introduced in Kuo et al.[63] was studied recently in Hwang et al. [50] and Hibino

et al. [45].



Introduction 21

Contribution of the thesis

In this thesis, we aim to define a stochastic integral of the two anticipating integral∫ T

0

UtdS
H(t) and

∫ T

0

UtdM
H(t), t ∈ [0, T ], H > 1

2
, to be the limit of the corresponding

Riemann sum, where the anticipating process Ut is a product of an instantly independent

process g(B(T )−B(t)) and an adapted process f(B(t)). Furthermore, we show that our

stochastic integral admits the near-martingale property under some conditions. In the

case of mixed fBm, we give some examples of anticipating integral in the specific case

when H > 3
4
.

In addition, we propose a mixed fractional volatility model which extends the rough

stochastic volatility model given in Gatheral el al. [42], We show through empirical

experiments that the measured smoothness of log-volatility is similar to that of mixed

fractional Brownian motion when 0.09 ≤ H ≤ 0.2. We propose to model the log-volatility

by a mixed fractional Brownian motion with H < 1
2
and we construct a stationary mixed

fractional Ornstein-Uhlenbeck process:

dXt = −λ(Xt − µ)dt+ γdMH
t , t ∈ [0, T ],

as a stationary model of log-volatility Xt, and we show that it tends in distribution to

the mixed fractional Brownian motion when λ→ 0.

Outline of thesis

This thesis is organized as follows: we recall in the first chapter the basic background

on fractional, sub-fractional and mixed fractional Brownian motions, as well as, the

fractional-Ornstein Uhlenbeck process. We present in the second chapter the anticipating

stochastic integral introduced by Ayed and Kuo [6] based on the decomposition of the

integrand, we present also the near martingale property and we show that the anticipat-

ing integral admits this property. Then, we give our main result by defining anticipating

stochastic integrals with respect to sub-fractional and mixed fractional Brownian motions,



Introduction 22

we show that our stochastic integral admits the near-martingale property under some con-

ditions. In the case of mixed fBm, we give some examples of anticipating integral in the

specific case when H > 3
4
.

The third chapter is consecrated to the financial modeling, where we give a review of

the volatility notion in financial markets and its different classes: constant volatility, local

volatility and stochastic volatility. Finally, we present the details of the construction of

our mixed fractional stochastic volatility model. We show via empirical studies that the

smoothness of the increment of log-volatility and those of mixed fBm are similar when

H < 1
2
. We suggest to model the volatility process with a mixed fractional Ornstein-

Uhlenbeck process, where H < 1
2
.



Chapter 1
On fractional Gaussian processes:
Background and definitions

Gaussian processes enjoy success as a crucial tool various probabilistic, statistical, finan-

cial or machine learning phenomena, because of their useful properties derived from the

Gaussian distribution. These latters can be seen as an infinite generalizations of multi-

variate normal variables distributions. A Gaussian process is characterized by a mean

vector and covariance matrix. These are key elements that controls its properties.

Motivated by its interest in applications specifically in internet traffic modeling and fi-

nance, stochastic integration with respect to Gaussian processes has attracted considerable

attention since last century. The classical theory of stochastic integration was developed

by Wiener [104] in 1923, Itô [51] in 1944 and Lévy [68] in 1948. The classical Brownian

motion (Bm in short) plays a crucial role in this theory, due to its tractability and the

easiness of making the stochastic calculus when dealing with classical Bm, as well as its

considerable success in modeling several random problems in various fields. We note that

these theories are reduced by the use of stochastic process which are semi-martingales

as integrators. Indeed, we say that a process (Xt)t∈[0,T ] is a semi-martingale for a given

filtration (Ft)t∈[0,T ] if it is a càdlàg (right continuous with left limits), adapted process

23
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and it can be decomposed as:

Xt = X0 +Mt + At,

where Mt is a local martingale and At is an adapted càdlàg process with finite variation.

In recent years, several random phenomena are not compatible with the criteria of

Brownian motion. This fact provides the use of largest class of stochastic process that

are not semi-martingales. For instance, in finance lots of evidence proposed that many

financial products like asset returns, interest rates and volatility have a long memory.

This feature cannot be described using a classical Bm that is a Markov process.

Starting form this fact, the interest in fractional Gaussian processes has mostly increased

due to applications in such fields as hydrology, economics, telecommunications and fi-

nance. The so-called fractional Brownian motion (fBm) is the best known and most used

fractional Gaussian process. The fBm is an appropriate generalization of standard Brow-

nian motion. Though, unlike regular Brownian motion, fBm has dependent increments,

which means that the current "step" of a fBm is dependent on previous "steps". This

dependence is measured on a scale from zero to one and this measure is called the Hurst

index, H ∈ (0, 1), named in honor of the hydrologist Harold Edwin Hurst, for his work in

the field of hydrology. In 1951, Hurst [48] studied the yearly variance in levels of the Nile

river and applied this to the so called R/S statistic, where R is the range of partial sums

of the data and S is the sample standard deviation. The R/S statistic should grow like

n
1
2 under normal assumptions of independent and identically distributed observations and

finite variance, where n is the sample size. Interestingly enough, the Nile data indicated

growth of nH , where H ∈ (1
2
, 1). Random walk typically yields a growth of n

1
2 , and the

scaling limit of random walk in dimension one is Brownian motion.

Hence, it must be the case that the growth nH , with H ∈ (1
2
, 1) corresponds to some-

thing else. Mandelbrot [74] noticed that while Brownian motion has standard deviation

t
1
2 , fractional Brownian motion has a standard deviation tH , where H ∈ (0, 1), and thus

fBm might be a more appropriate fit for this behavior. The Hurst index describes the

self-similarity, the long range dependence and the smoothness of the path of the fBm.
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In 1940, it was Andrei Kolmogorov [58], while studying spiral curves in Hilbert space, who

first introduced fractional Brownian motion. In 1968, Mandelbrot and Van Ness recog-

nized fBm’s significance. They derived many of its important properties in their famous

paper [73]. In that paper, fractional Brownian motion was named. This comes from its

representation as a fractional stochastic integral with respect to Brownian motion.

Since then, several authors proposed some extensions of this process which preserve

many properties of fBm. For instance, Bojdecki et al.[14] introduced a rather special class

of fractional Gaussian processes preserving many of its properties. This process arises from

occupation time fluctuations of branching particle systems with Poisson initial condition.

This process is called the sub-fractional Brownian motion. Cheridito [20] introduced

another extension to present a stochastic model of the discounted stock price in some

arbitrage-free and complete financial markets as a linear combination of independent

standard and fractional Brownian motions. We present in this chapter a background

about of the fractional, sub-fractional, mixed fractional Brownian motions and fractional

Ornstein-Uhlenbeck process.

1.1 Fractional Brownian motion

The fractional Brownian motion (fBm) is a suitable generalization of standard Brownian

motion, it is the most known process which is not a semi-martingale. It is the only Gaus-

sian self similar stationary process with long-range dependance property. Due to these

interesting properties it enjoyed success as a modeling tool in many field of applications

including telecommunications, turbulence and finance, the demand to stochastic calculus

with respect to fBm are raised. This process was introduced by Kolmogorov [58] and

studied later by Mandelbrot and Van Ness [73] who provided an integral representation

of fBm with respect to a standard Brownian motion over a real line time interval.

Definition 1.1.1. The fractional Brownian motion BH = {BH
t , t ≥ 0} with Hurst index

H ∈ (0, 1) defined on a probability space (Ω,F ,P) is a continuous centered Gaussian
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process, starting from zero, with covariance

RH(s, t) =
1

2
[t2H + s2H + |t− s|2H ], s, t ≥ 0,

verifying:

• BH
0 = 0, a.s,

• E(BH
t )2 = t2H ,

• BH has a stationary increments.

Remark 1.1.1. We have:

• For H = 1
2
, R

1
2 (s, t) = t ∧ s, then BH restricts to a standard Brownian motion.

• For H = 1, BH
t and ηt have the same probability distribution, where η → N (0, 1).

We state some main properties of the fBm, Their proofs can be found in many sources

such as Mishura [79], Nourdin [82], Mishura and Zili [78], Biagini el al. [11], Nualart [84]

and other references.

1.1.1 Basic properties

1. BH is self-similar with index of similarity equal to H. It means that for all a > 0,

{BH
at , t ≥ 0} and {aHBH

t , t ≥ 0} have the same probability distribution.

2. The increments of BH are stationary. It means that ∀t > 0, {BH
t −BH

s , s ≥ 0} has

same distribution as {BH
s , s ≥ 0}, and the second moment of increments is given by

E[|BH
t −BH

s |2] = |t− s|2H , s, t > 0.

3. The sample paths of BH are almost surely Hölder continuous of order γ for all

γ < H. This fact follows from Kolmogorov-Centsov criteria and the fact that for

any α > 0, we have

E[|BH
t −BH

s |α] = Cα|t− s|2H ,
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where Cα = E(|BH
1 |α).

4. The sample paths of BH are nowhere differentiable. Indeed for every t0 ≥ 0, we

have

P
(

lim sup
t0→0

∣∣∣∣BH
t −BH

0

t− t0

∣∣∣∣ =∞
)

= 1.

5. SH is neither a semimartingale nor a Markov process when H 6= 1
2
.

1.1.2 Long and short range dependence

Definition 1.1.2. A stationary sequence {Xn, n ∈ N} exhibits long-range dependence or

short range dependence if ρ(n) = Cov(X1, Xn) satisfies:

∞∑
n=1

ρ(n) =∞ or
∞∑
n=1

ρ(n) <∞,

respectively.

Remark 1.1.2. If a stationary sequence {Xn, n ∈ N} is long-range dependent, then the

covariance function slowly decays as a power law when n tends to infinity in the sense

that

lim
n→∞

ρ(n)

cn−α
= 1,

where c is a constant and α ∈ (0, 1).

Proposition 1.1.1. (Tudor [102]). A fractional Brownian motion is long range depen-

dence if H > 1
2
and short range dependence if H < 1

2
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Proof. Let X1 = BH
1 −BH

0 and Xn = BH
n −BH

n−1. Then, we have

ρ(n) = Cov(X1, Xn)

= E(B1(BH
n −BH

n−1))

=
1

2

[
(n+ 1)2H − 2n2H + (n− 1)2H

]
= 2H(2H − 1)n2H−2 + o(n2H−2).

We see that ρ(n) is a general term of divergent series if and only if 2H − 2 > 0, i.e H > 1
2

It is clear that if H = 1
2
, ρ(n) = 0 for all n ∈ N∗ and then, the increments are

independents. In other hand we see that ρ(n) < 0 for H < 1
2
and ρ(n) > 0 for H > 1

2
.

Hence the increments of fractional Brownian motion are:

• Positively correlated if H > 1
2
,

• Negatively correlated if H < 1
2
,

The following graph present ρ(n) in function of n and H.

Figure 1.1: Graphical representation of (H,n)→ ρ(n).
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1.1.3 Markov property

Lemma 1.1.1. (Revuz and Yor [90]). If X is a Gaussian centered Markovian process,

then for all s < t < u

E(XtXs)E(XtXu) = E(XtXt)E(XuXs).

Theorem 1.1.1. (Tudor [102]). The fractional Brownian motion BH of Hurst index

H ∈ (0, 1)/1
2
is not a Markov process.

Proof. Assume that BH is a Markov process. Since it is a Gaussian process we have, for

s = 1 < t = 2 < u = 3

E(BH
1 B

H
2 )E(BH

2 B
H
3 ) = E(BH

2 B
H
2 )E(BH

1 B
H
3 ), (1.1)

we have:

E(BH
1 B

H
2 )E(BH

2 B
H
3 ) = 22H(22H + 32H − 1),

and

E(BH
2 B

H
2 )E(BH

1 B
H
3 ) = 22H+1.

Then, for all H ∈ (0, 1) 1
2
, Equation (1.1) is not verified which leads to a contradiction.

1.1.4 Semimartingale property

Proposition 1.1.2. (Tudor [102]). Fractional Brownian motion is not a semimartingale

expect when H = 1
2
.

Proof. For the case when H = 1
2
, the fBm restricts to a standard Brownian motion B

1
2

which is a martingale since E[B
1
2
t /Fs] = B

1
2
s for s < t, where Fs is the σ-algebra generated

by the Brownian motion up to time s. However, when H 6= 1
2
, fBm is not semimartingale.

This can be shown by the following argument provided in Rogers [92]:
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Let p > 0, the two processes {Mn,p, n ≥ 1} and {M∗
n,p, n ≥ 1} where

Mn,p = npH−1

n∑
i=1

| BH
i/n −BH

(i−1)/n |p,

M∗
n,p = n−1

n∑
i=1

| BH
i −BH

i−1 |p,

have the same distribution because of the self-similar property of fBm. By the Ergodic

Theorem M∗
n,p converges to E[| BH

1 |p] in L1 almost surely as n goes to infinity. This

implies Mn,p converges to E[| BH
1 |p] in probability as n goes to infinity. Hence the

process

Nn,p =
n∑
i=1

| BH
i/n −BH

(i−1)/n |p,

converges to zero in probability as n goes to infinity when pH > 1, and to infinity when

pH < 1. The p-variation of fBm is defined as lim
n→∞

Nn,p. Consider the following two cases:

• WhenH < 1
2
, choosing p > 2, then pH < 1. Then, the quadratic variation variation

when p = 2 is infinite.

• When H > 1
2
, if 1

H
< p < 2, then pH > 1 and the quadratic variation is zero.

However if we choose 1 < p < 1
H
, then pH < 1 and the quadratic variation is

infinite.

Any semimartingale can be decomposed into a process of limit variation i.e. with van-

ishing quadratic variation and a local martingale having locally finite quadratic variation

according to Doob-Meyer Theorem for semimartingale. Then, we conclude that it cannot

be a semimartingale.
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1.1.5 Integral representations of fBm

Moving Average Representation

Mandelbrot and Van Ness [73] considered the moving average representation of BH , via

the Wiener process {Bt, t ≥ 0} over an infinite interval

BH(t)
1

C1(H)

∫
R

(
(t− u)

H− 1
2

+ − (−u)H−
1
2

)
dBu, t ∈ R,

where

C1(H) =

(∫
R

(
(1 + s)H−

1
2 − sH−

1
2

)2

ds+
1

2H

) 1
2

.

Levy-Hida Representation

Note that the fractional Brownian motion is a particular case of Volterra processes. Fol-

lowing Decreusfond and Üstünel[30], we have this kernel representation

BH(H) =

∫ t

0

KH(t, s)dBs, 0 < s < t <∞,

where

KH(t, s) = C2(H)s
1
2
−H
∫ t

s

|u− s|H−
3
2 uH−

1
2du, t > s,

and

C2(H) =

(
H(2H − 1)

β(2− 2H,H − 1
2
)

) 1
2

.

1.1.6 Sample paths of fBm

The simulation of sample paths of fractional Brownian motion gives a better understand-

ing of its characteristic. Various method have been introduced in order to give an exact

numerical approximation based on Cholesky decomposition of covariance matrix, we cite
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Cholesky method [5], Davies and Harte mothod [29] which was later simultaneously gen-

eralized by Dietrich and Newsam [32] and Wood and Chan [105]. Although this methods

are known, approximative methods that simulate this process have been proposed to

reduce the computation time. A natural idea is to approximate this integral by Riemann-

type sums to simulate the process. As we saw in Mandelbrot and van Ness [73] defined

fractional Brownian motion by a stochastic integral with respect to standard Brownian

motion. A natural idea is to approximate this integral by Riemann-type sums to simulate

the process. For i = 1, ..., N , the approximations given by

BH(i) = C1(H)

[
0∑

j=−b

(
(i− j)H−1/2 − (−j)H−1/2

)
ξj +

i∑
j=0

(i− j)H−1/2ηj

]
, (1.2)

where ξj resp. ηj are vectors of b + 1 resp. N + 1 i.i.d. standard normal variables. We

can generate sample paths of fBm directly on Matab using the the function wfbm or in

R via the function fbm using the package somebm.

Figure 1.2: Sample paths of fBm when H = 0.2

Figure 1.3: Sample paths of fBm when H = 0.5
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Figure 1.4: Sample paths of fBm when H = 0.9

1.2 Sub-fractional Brownian motion

Definition 1.2.1. Sub-fractional Brownian motion SH = (SHt ;∀t ≥ 0) with a Hurst

parameter H ∈ (0, 1) is defined on a probability space (Ω,F ,P) as a centered gaussian

process with continuous simple paths such that and for all t ≥ 0 ,

CH(s, t) = s2H + t2H − 1

2
[(t+ s)2H − |t− s|2H ]

and verify

• SH0 = 0,

• SHt =
BH
t +BH

−t√
2

,

• E
[
|SHt |2

]
= (2− 22H−1)t2H .

Particulary, if H = 1
2
, C

1
2 (s, t) = s + t − 1

2
[(t + s) − |t − s|] = t ∧ s, then sub-fBm

reduces to the standard Brownian motion.

The following properties of a sub-fBm are established in Bojdecki el al. [14], Tudor

[99, 100].

1.2.1 Main properties

1. The process SH is self similar, for each a > 0

{SHat , t ≥ 0} law= {aHSHt , t ≥ 0}.
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2. The increments of SH are not stationary. Indeed, for all s > 0, t > 0, the second

moment of increments is given by:

• E
[
|SHt − SHs |2

]
= −22H−1(t2H + s2H) + (t+ s)2H + (t− s)2H

• E
[
|SHt |2

]
= (2− 22H−1)t2H

Hence, the increments of SH are not stationary and admit the following estimates:

(t− s)2H ≤ E
[
|SHt − SHs |2

]
≤ (2− 22H−1)(t− s)2H if H <

1

2
,

and

(2− 22H−1)(t− s)2H ≤ E
[
|SHt − SHs |2

]
≤ (t− s)2H if H >

1

2
.

3. SH has Hölder paths, by Komogorov’s continuity criterion, for each γ < H and each

T > 0, ∃ a random variable Kγ,T such that

|SHt − SHs | ≤ KT |t− s|H−γ, s, t ≥ 0, a.s.

4. SH is neither a semimartingale nor a Markov process when H 6= 1
2
.

5. The process SH has a short memory for all H ∈ (0, 1). Indeed, for each n ≥ 1

r(n) = Cov(SH1 , S
H
n+1 − SHn )

= 1 + (n+ 1)2H − 1

2

[
(n+ 2)2H + n2H

]
− 1− n2H +

1

2

[
(n+ 1)2H + (n− 1)2H

]
= 2H(1−H)(2H − 1)n2H−3 + o(n2H−3).

Then, r(n) <∞ and
∑
n

|r(n)| <∞, for all H ∈ (0, 1).
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Figure 1.5: Graphical representation of (H,n)→ r(n).

1.2.2 Integral representation of sub-fBm

Moving average representation

Bojedecki el al.[14] considered the following integral representation of SH Based on the

moving average representation of fBm: for any t ≥ 0

SH(t) =
1

C3(H)

∫
R

[
(t− s)H−

1
2

+ + (t+ s)
H− 1

2
− − 2(−s)H−

1
2

+

]
dB(s), (1.3)

where B is the Brownian process on R and

C3(H) =

[
2

∫ +∞

0

(
(1 + s)H−

1
2 − sH−

1
2

)2

ds+
1

2H

] 1
2

. (1.4)

Integral representation on a finite time interval

According Dzapharize and Van Zaten [36], the sub-fractional Brownian motion is the even

part of the fractional Brownian motion with the following representation over a finite time
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interval:

SH(t) = C4(H)

∫ t

0

nH(t, s)dB(s) (1.5)

where

nH(t, s) =
21−H√π

Γ(H − 1
2
)
s

3
2
−H
(∫ t

s

(x2 − s2)H−
3
2dx

)
I[0,t](s) (1.6)

and

C4(H) =

[
Γ(1 + 2H) sin(πH)

π

]
1

2
.

1.2.3 Sample paths of sub-fBm

Morozewics and Filatova [80] suggested a simulation algorithm by discretize the integral

representation of sub-fBm on R given by (1.3) and the integral C3(H) given by (1.4).

Kuang and Xie [59] proposed a simulation algorithm of the trajectories of sub-fractional

Brownian motion using the integral representation on a finite interval, the formula is de-

veloped as follows:

SHti+1
≈ SHti +

C4(H)√
n

i∑
j=1

[
n(ti+1,

tj + tj−1

2
)− n(ti,

tj + tj−1

2
)

]
ζj+

C4(H)√
n

[
n(ti+1,

ti + ti+1

2
)

]
ηi,

where ζj, j = 1, i and ηi, i = 0, n− 1 are gaussian standard variables and SHt0 = SH0 = 0.

The kernel 1.6 is approximated by

nH(t, s) ≈
√
πs

3
2
−H

2HΓ(H + 1
2
)

(t2 − s2)H−
1
2

t
+

[(
t+s
2

)2 − s2
]H− 1

2
(t− s)(

t+s
2

)2

 , 0 < s < t.



1.2.4 Some comparisons between fBm and sub-fBm 37

Figure 1.6: Sample paths of sub-fBm, H = 0.2

Figure 1.7: Sample paths of sub-fBm, H = 0.5

Figure 1.8: Sample paths of sub-fBm, H = 0.9

1.2.4 Some comparisons between fBm and sub-fBm

1. The increment of fBm are self-similar in the sense that for each a>0,

BH(t+ as)−BH(t)
law
= aH(BH(t+ s)−BH(t)),

but sub-fBm does not have this property.

2. Covariance: for all s, t > 0, the covariance function CH(s, t) > 0. Moreover

CH(s, t) > RH(s, t) if H <
1

2

and

CH(s, t) < RH(s, t) if H >
1

2
.
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FBm and sub-fBm become similar for large t in the sense that for each τ > 0

lim
t→+∞

CH(t, t+ τ)

RH(t, t+ τ)
= 2− 22H−1.

3. Covariance between increments for 0 ≤ u < v ≤ s < t, let

RH(u, v, s, t) = E[(BH
v −BH

u )(BH
t −BH

s )]

and

CH(u, v, s, t) = E[(SHv − SHu )(SHt − SHs )]

Then,

RH(u, v, s, t) < CH(u, v, s, t) < 0 if H <
1

2
,

0 < CH(u, v, s, t) < RH(u, v, s, t) if H >
1

2
,

where

Ch =
1

2

(
(t+ u)2H + (t− u)2H + (s+ v)2H + (s− v)2H

− (t+ v)2H − (t− v)2H − (s+ u)2H + (s− u)2H
)
,

and

Rh =
1

2

(
(s− v)2H + (t− u)2H − (s− u)2H − (t− u)2H

)
.

Therefore the covariance of increments of sfBm over non-overlapping intervals have

the same sign but are smaller in absolute value than those of fBm lim
s,t→∞

CH(u, v, s, t) =

0 for all H ∈ (0, 1) but lim
s,t→∞

RH(u, v, s, t) = 0 for H ∈ (0, 1
2
).

4. Correlation between increments: for u ≥ 0, r > 0 let ρBH (u, r) and ρSH (u, r)

denote the correlation coefficient of the increment BH
u+r − BH

u ,BH
u+2r − BH

u+r and

SHu+r − SHu ,SHu+2r − SHu+r We have:

|ρSH (u, r)| ≤ |ρBH |.
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Then, the increments of sub-fBm on the intervals [u, u+ r], [u+ r, u+ 2r] are more

weakly correlated than those of fBm.

5. Long-range dependence:

For 0 ≤ u < v ≤ s < t, we have:

RH(u, v, s+ τ, t+ τ) ∼ 2H(H − 1

2
)(t− s)(v − u)τ 2H−2 as τ →∞,

and

CH(u, v, s+ τ, t+ τ) ∼ 2H(H − 1

2
)(2H − 2)(v2 − u2)τ 2(H− 3

2
) as τ →∞.

The long-range dependence decays at a height rate for sub-fBm than for fBm.

1.3 Mixed fractional Brownian motion

An extension of the fractional Brownian motion has been introduced by Cheridito [20]

to present an interesting stochastic model of the discount stock price in some financial

markets under the form M = B + αBH , α > 0, this process is called mixed fraction

Brownian motion (mfBm in short). Zili [109] considered a more general version of mixed

fBm as a linear combination of standard Bm B and independent fractional Bm BH with

Hurst parameter H ∈ (0, 1)

∀t ≥ 0, MH = MH
t = MH

t (a, b) = aBt + bBH
t ,

where a and b are two real constants. Cheridito [20] claimed that the process MH is

equivalent to aB if and only if H > 3
4
. In the case when H < 1

4
, the mixed fBm is

equivalent to bBH (see Van Zanten [108]). The Lemma 1.3.1 gives the main properties of

mixed fractional Brownian motion, the proofs are detailed in Zili [109]

Lemma 1.3.1. (Zili [109]). The mfBm satisfies the following properties:
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• MH is a centered gaussian process;

• Second moment: for all t ∈ R+, E((MH
t (a, b))2) = a2t+ b2t2H .

• Covariance function: for all t, s ≥ 0;

Cov(MH
t (a, b),MH

s (a, b)) = a2 min(t, s) +
b2

2

(
t2H + s2H − |t− s|2H

)
.

• The increments of the mfBm are stationary.

• Mixed self similarity: for all t ∈ R+

(
MH

αt(a, b)
)
and

(
MH

t (aα
1
2 , bα)

)
have the same

distribution.

• For all H ∈ (0, 1)\{1
2
}, a ∈ R, b ∈ R, (MH

t (a, b))t≥0 is not a markovian process.

• Long and short memory: the mfBm is long memory when H > 1
2
and short memory

when H < 1
2
, indeed, for n ∈ N∗,

r(n) = E
(
(MH

n+1 −MH
n )MH

1

)
=
b2

2

(
(n+ 1)2H + (n− 1)2H − 2n2H

)
= b2H(H − 1)n2H−2ε(n),

where lim
n→+∞

ε(n) = 0.

we see that
∑

n∈N∗ r(n) =∞ if and only if H > 1
2
.

1.3.1 Correlation between the increments

We denote the correlation coefficient between the increments MH
t+h−MH

t , MH
s+h−MH

s by

∀s ∈ R+,∀t ∈ R+, ∀h ∈ R+, 0 ≤ h ≤ t− s

ρ(MH
t+h −MH

t ,M
H
s+h −MH

s ) =
b2

2(a2h+b2h2H )

(
(t− s+ h)2H − 2(t− s)2H + (t− s− h)2H)

)
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Corollary 1.3.1. (Zili [109]). for all a ∈ R et b ∈ R\{0}, the increments of

(MH
t (a, b))t∈R+ are:

1. positively correlated if 1
2
< H < 1.

2. negatively correlated if 0 < H < 1
2
.

3. uncorrelated if H = 1
2
.

1.3.2 Hölder continuity

Lemma 1.3.2. (Zili [109]). For all T > 0 and β < 1
2
∧H, the mfBm has a modification

which sample paths having a Hölder continuity, with order β, on the interval [0, T ] such

that: ∀q > 0,∆ > 0,

E
(∣∣MH

t+∆ −MH
t

∣∣q) ≤ Cq∆
q(H∧ 1

2
), (1.7)

where

Cq = C1|a|qT q((1/2)−H)E(|B1|q) + C2|b|qE(|BH
1 |q), when H <

1

2
,

and

Cq = C ′1|a|qE(|B1|q) + C ′2|b|qT q((1/2)−H)E(|BH
1 |q), when H <

1

2
,

where C1, C2, C
′
1, C

′
2 are positive constants depending on q.

1.3.3 Non-differentiability

Definition 1.3.1. Let f be a continuous function on [a, b], and let α ∈]0, 1[. We call a

local fractional α−derivative of f at t0 ∈ [a, b], the following quantity

dασf(t0) = Γ(1 + α) lim
t→tσ0

σ(f(t)− f(t0))

|t− t0|α
,

for σ = +(resp, σ = −), where Γ is the Euler function.
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Definition 1.3.2. Let f be a continuous function on [a, b], and let α ∈]0, 1[. The function

f is α− differentiable at t0 ∈ [a, b], if and only if dα−f(t0) = dα+f(t0) exist and are equal.

In this case we call dαf(t0) the α−derivative of f at t0

Theorem 1.3.1. (Zili [109]). For all α ∈]0, 1
2
∧ H[, the sample paths of the mfbm are

almost surely α−differentiable at evrey t0 ≥ 0.

Theorem 1.3.2. (Zili [109]). For all α ∈]1
2
∧H, 1[, the sample paths of mfbm are nowhere

α− differentiable almost surely.

1.3.4 Semimartingale property

Definition 1.3.3. (Cheridito [20]). Let {Ft, t ∈ [0, 1]} be the natural filtration. A process

Xt is a Ft-weak semimartingale if it is Ft-adapted and satisfying the following property:

IX(β(Ft)) is bounded in L0, (1.8)

where

β(Ft) =

{
n−1∑
j=0

fj1(tj ,tj−1), n ∈ N, 0 ≤ t0 ≤ . . . ≤ tn ≤ 1,

∀j, fj is Ft −measurable and |fj| ≤ 1 p.s.

}

and

IX(ϑ) =
n−1∑
j=0

fj(Xtj+1
−Xtj) for ϑ =

n−1∑
j=0

fj1(tj ,tj+1] ∈ β(Ft)

an a.s. right-continuous, Ft-adapted stochastic process (Xt)t∈[0,1] is a semimartingale

if and only if X satisfying (1.8).

Theorem 1.3.1. (Cheridito [20]). MH is not a weak semimartingale if H ∈ (0, 1
2
)∪(1

2
, 3

4
],

it is equivalent to
√

1 + α2Bt if H = 1
2
and equivalent in distribution to Brownian motion

if H ∈ (3
4
, 1].
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1.4 Fractional Ornstein-Uhlenbeck process

1.4.1 An overview on Ornstein-Uhlenbeck process

The Ornstein-Uhlenbeck (O.U.) process can be defined as the strong solution of the

Langevin equation with Brownian noise. Langevin described in his pioneer paper [65]

published in 1908 the random movement of a free particle in a fluid, he described the

velocity of the particle via the following differential equation

dv(t)

dt
=
f

m
v(t) +

F (t)

m
, (1.9)

where m > 0 is the mass of the particle, f > 0 is the friction coefficient and F (t) is

the force on the particle by the impact of molecules in the fluid. In 1930, Ornstein

and Uhlenbeck [103] imposed a probability hypothesis on F (t) and then derived that for

v(0) = x ∈ R, v(t) is normally distributed with mean xe−λt and variance σ2

2λ
(1 − e−2λt),

for λ = f
m

and σ =
√

2fkt
m2 , where k is the Boltzmann constant and T is the temperature.

Then, the differential equation (1.9) is written as:

dv(t) = −λ(v(t)− v(0))dt+ ση(t), t ≥ 0,

where η(t) is a white Gaussian process.

In application fields as physics, engineering and finance, the common representation of

O.U process is a solution of a stochastic differential equation with a Brownian noise under

the form:
dXt = −λXtdt+ σdBt, t ≥ 0,

where λ > 0, σ > 0 and Bt denotes the Brownian motion. Another version of O.U. process

by adding an additional drift term is as:

dXt = λ(m−Xt)dt+ σdBt, t ≥ 0.
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The classical Ornstein-Uhlenbeck process with parameters λ > 0 and σ > 0 starting at

x ∈ R, is the unique strong solution of the Langevin equation (1.4.1).

Xt = x− λ
∫ t

0

Xsds+ σBt, t ≥ 0,

It is given by the almost surely continuous Gaussian Markov process

Xt = e−λt
(
x+ σ

∫ t

0

eλudBu

)
t ≥ 0.

Considering that B is a two-sided Brownian motion through 0, the unique strong solution

of (1.4.1) with random initial condition ξ

ξ = σ

∫ 0

−∞
eλudBu

is the stationary, almost surely continuous, centered Gaussian Markov process

Xt = σ

∫ 0

−∞
e−λ(t−u)dBu.

It can easily be checked that

Cov(Xt, Xt+s) =
σ2

2λ
e−λ|s|.

1.4.2 Definition and properties of fractional Ornstein-Uhlenbeck
process

The fractional Ornstein-Uhlenbeck process (fOU for short) was introduced in Cheridito

[21] as a solution of a Langevin-type equation driven by a fractional Brownian motion BH

given as follows: {
dXt = −λXtdt+ σdBH

t , t ≥ 0,

X0 = ξ.



1.4.2 Definition and properties of fractional Ornstein-Uhlenbeck process 45

The solution can be expressed in a pathwise sense as:

Xt = e−λt
(
ξ + σ

∫ t

0

eλudBH
u

)
, t ≥ 0.

In particular, if we consider ξ =

∫ 0

−∞
eλudBH

u , we write the solution of (1.4.2) in the

following form:

Xξ
t = σ

∫ t

−∞
e−λ(t−u)dBH

u , t ∈ R.

The results shown below are derived from the following proposition:

Proposition 1.4.1. (Cheridito et al. [21]). Let (BH
t ∈ R) be a fractional Brownian

motion with Hurst parameter H ∈ (0, 1) and ξ ∈ L0(Ω). Let −∞ ≤ a < +∞ and

λ, σ > 0. Then for almost all ω ∈ Ω, we have the following:

1. For all t > a, ∫ a

0

eλudBH
u (ω)

exists as a Riemann-Stieltjes integral and is equal to

eλtBH
t (ω)− eλaBH

a (ω)− λ
∫ t

a

BH
u (ω)eλudu.

2. The function ∫ a

0

eλudBH
u (ω), t > a,

is continuous in t

3. The unique continuous function y that solves the equation

y(t) = ξ(ω)− λ
∫ t

0

y(s)ds+ σBH
t (ω), t ≥ 0,
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is given by

y(t) = eλt
(
ξ(ω) + σ

∫ t

0

eλudBH
u (ω)

)
, t ≥ 0.

In particular, the unique continuous solution of the equation,

y(t) = σ

∫ 0

−∞
eλudBH

u (ω)− λ
∫ t

0

y(s)ds+ σBH
t (ω), t ≥ 0.

is given by

y(t) = σ

∫ t

−∞
e−λ(t−u)dBH

u (ω), t ≥ 0.

The covariance of fractional O.U. process decays as a power function and is very similar

to the decays of fBm’s increments.

Theorem 1.4.1. (Cheridito et al. [21]). Let H ∈ (0, 1
2
) ∪ (1

2
, 1] and N ∈ N. Then for a

fixed t ∈ R and s→∞,

Cov(Xξ
t , X

ξ
t+s) =

1

2
σ2

N∑
n=1

a−2n

( 2n−1∏
k=0

(2H − k)

)
s2H−2n +O(s2H−2N−2).

Proposition 1.4.2. (Kaarakka and Salminen [55]). The stationary sequence process Xξ

is long range dependent when H > 1
2
, and short range dependent when H < 1

2
.

Proof. The leading term of the sum in (1.4.1) is of the order t2H−2. Consequently,

∞∑
n=0

∣∣∣Cov(Xξ
i , X

ξ
i+n)

∣∣∣ ' ∞∑
n=0

n2H−2.

In particular, for ξ = x ∈ R, Cheridito [21] claimed that

Cov(Xx
t , X

x
t+s) = Cov(Xξ

t , X
ξ
t+s)− eλtCov(Xξ

0 , X
ξ
t+s) +O(eλs).
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The next corollary shows that the solution Xx
t decays also like a power function of the

order 2H − 2.

Corollary 1.4.1. (Cheridito et al. [21]). Let H ∈ (0, 1
2
) ∪ (1

2
, 1] and N ∈ N. Then for a

fixed t ∈ R and s→∞,

Cov(Xx
t , X

x
t+s) =

1

2
σ2

N∑
n=1

a−2n

( 2n−1∏
k=0

(2H−k)

)[
s2H−2n−e−at(t+s)2H−2n

]
+O(s2H−2N−2).



Chapter 2
Stochastic integration of non-adapted
processes related to fractional Gaussian
processes

The issue of stochastic integration of anticipating integrand has received an interest since

a considerable attention since the past fifty years (Hitsuda [46] in 1972, Skorohod [97] in

1975, etc).

In 1976, Itô [52] highlighted the problem of anticipating integral in the international

symposium on stochastic differential equations. He gave a solution for

∫ t

0

B(1)dB(t), 0 ≤ t ≤ 1, (2.1)

which is not an Itô integral as the integrand B(1) is not adapted to Ft, the filtration

generated by B(t), 0 ≤ t ≤ 1. His idea is to enlarge filtration by letting Gt the σ-field

generated by Ft and B(1). Then, the integrand B(1) is evidently adapted to Gt.

However, the stochastic process B(t) is no more a Brownian motion with respect to Gt,

but it is a Gt-quasimartingale under the decomposition:

B(t) =

(
B(t)−

∫ t

0

B(1)−B(u)

1− u
du

)
+

∫ t

0

B(1)−B(u)

1− u
du.

48
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Therefore, the stochastic integral (2.1) can be defined with respect to a quasimartingale.

Then: ∫ t

0

B(1)dB(t) = B(1)B(t), 0 ≤ t ≤ 1.

In 2008, Ayed and Kuo [6] introduced a new approach to define stochastic integrals of

anticipating integrands using Itô’s idea. As we seen above, Itô [52] kept the integrand and

decomposed the integrator (with respect to an enlarged filtration), while Ayed and Kuo

[6] kept the integrator (and the filtration) and decomposed the integrand into a linear

combination of an adapted part and an instantly independent part. Then, the integral

is defined as a Riemann-like sum, the evaluation points for the instantly independent

part are the right endpoints of subintervals, while those for the adapted part are the left

endpoints.

In our work, we extend the above study for the class of fractional type process, namely,

the sub-fractional and mixed fractional Brownian motions by exploiting the fact that the

stochastic integral with respect to such processes can be defined as a Riemann sum when

H > 1
2
.

2.1 Anticipating stochastic integral: Ayed and Kuo ap-
proach

In this section, we describe the idea of Ayed and Kuo on to define the new stochastic

integral, their idea came from a very simple observation of integrand’s decomposition.

The following are some simple examples that demonstrate the decompositions.

Example 2.1.1. The anticipating stochastic process B(1) can be decomposed as

B(1) = (B(1)−B(t)) +B(t).

Example 2.1.2. Consider another anticipating stochastic process B(1)2. This antici-
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pating integrand B(1)2 can be decomposed as

B(1)2 = (B(1)−B(t))2 + 2B(t)(B(1)−B(t)) +B(t)2.

Example 2.1.3. For n ∈ N, it follows from the binomial theorem that B(1)n can be

decomposed as

B(1)n = (B(1)−B(t) +B(t))n =
n∑
k=1

(
n

k

)
(B(1)−B(t))kB(t)n−k.

Example 2.1.4. The stochastic process eB(1) can be written as

eB(1) = eB(1)−B(t)eB(t).

from above examples, we note that every decomposition is a linear combination of

products of an adapted part (e.g., B(t), B(t)k, eB(t)) and an anticipating part with a special

property (e.g., B(1)−B(t), (B(1)−B(t))k, eB(1)−B(t)) given in the following definition.

Definition 2.1.1. A stochastic process {Xt, 0 ≤ t ≤ T}, is said to be instantly indepen-

dent with respect to the filtration Ft if for each t, the random variable Xt is independent

of the σ-field Ft.

According to above definition, the following stochastic processes are all instantly inde-

pendent with respect to Ft : (B(1)−B(t)), [B(1)−B(t)]n;n ∈ N, eB(1)−B(t) for 0 ≤ t ≤ 1.

Example 2.1.5. Let Ft be the underlying filtration of Brownian Motion B(t):

• (B(1)−B(t)) is instantly independent of Ft for t ∈ [0, 1].

• (B(1)−B(t)) is adapted to Ft for t ≥ 1.

Lemma 2.1.1. (Ayed and Kuo [6]). If a stochastic process Xt is both adapted and in-

stantly independent with respect to the filtration Ft, then Xt must be a deterministic

function.
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Proof. Let us examine the conditional expectation of Xt with respect to Ft. On one hand,

Xt is adapted to Ft. So, by the property of the conditional expectation, we have

E(Xt/Ft) = Xt,

but at the same time it is independent of Ft. Hence,

E(Xt/Ft) = E(Xt).

Therfore, Xt = E(Xt) and so Xt is a deterministic function.

From this Lemma, we conclude that instantly independent processes are independent

of the past and present contrarily to the adapted processes. Thus, we can consider the

class of instantly independent processes as a counterpart of Itô’s theory. In addition, we

can deduce that many anticipating stochastic processes can be decomposed into sums of

the products of Itô parts (adapted processes) and counterparts (instantly independent

processes). This turns out to be a key idea of Ayed and Kuo approach to define the new

stochastic integral. To use their idea to evaluate an anticipating stochastic integral, one

needs to:

1. keep the filtration Ft and the integrator B(t).

2. decompose the integrand into a sum of the products of adapted stochastic processes

and instantly independent stochastic processes.

3. evaluate each stochastic integral of a product of an adapted stochastic process and

an instantly independent stochastic process.

Hence the next question we need to answer is how one can define a stochastic integral of

a product of an adapted process and an instantly independent process. Recall that Itô

integral measures the integrand using left endpoint for each subinterval. For instantly

independent part, if we also use the left endpoint to approximate, we lose its important

properties as it has been seen in Example 2.1.5. However, if we measure the instantly

independent part using right endpoint, its properties will be conserved. This lead to Ayed

and Kuo’s definition of the new integral.



2.1 Anticipating stochastic integral: Ayed and Kuo approach 52

Definition 2.1.2. (Ayed and Kuo [6]). Let B(t) be a Brownian motion, for an adapted

stochastic process f(t) with respect to the filtration Ft and an instantly independent

stochastic process g(t) with respect to the same filtration, we define the stochastic integral

of f(t)g(t) to be the limit:

∫ T

0

f(t)g(t)dB(t) = lim
‖∆n‖→0

n∑
i=1

f(ti−1)g(ti)(B(ti)−B(ti−1))

provided that the limit in probability exists, where ∆n = {0 = t0 < t1 < .... < tn = T} is

the partition of interval [0, T ].

Remark 2.1.1. Note that, by the above definition, if f(t) is continuous and g(t) = 1,

∫ T

0

f(t)dB(t) = lim
‖∆n‖→0

n∑
i=1

f(ti−1)(B(ti)−B(ti−1))

We see that this new integral reduces to the Itô integral. This is why it can be seen as an

extension of Itô integral.

Next, let us provide some examples to show how this idea works. More examples can

be found in Ayed and Kuo [6, 7]. First, we begin with the simplest case when f(t) = 1.

Example 2.1.6. We have to find
∫ 1

0

(B(1)−B(t))dB(t).

Let ∆n = {0 = t0 < t1 < t2 < ... < tn = 1} be a partition of the interval [0, 1]. Here,

g(t) = B(1)− B(t) is instantly independent. Thus, on each subinterval [ti−1, ti], we take

the right endpoint ti as the evaluation point to form a Riemann like sum. So, we have:
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∫ 1

0

(B(1)−B(t))dB(t) = lim
‖∆n‖→0

n∑
i=1

[B(1)−B(si)](B(si)−B(si−1))

= lim
‖∆n‖→0

n∑
i=1

B(1)(B(si)−B(si−1))− lim
‖∆n‖→0

n∑
i=1

B(si)(B(si)−B(si−1))

= B(1)2 − lim
‖∆n‖→0

n∑
i=1

[[B(si)−B(si−1)] +B(si−1)](B(si)−B(si−1))

= B(1)2 − lim
‖∆n‖→0

n∑
i=1

(B(si)−B(si−1))2 − lim
‖∆n‖→0

n∑
i=1

B(si−1)(B(si)−B(si−1))

= B(1)2 − 1−
∫ 1

0

B(t)dB(t).

The last integral
∫ 1

0

B(t)dB(t) is an Itô integral since B(t) is adapted. Hence, by the

decomposition (2.1.1), we have:∫ 1

0

B(t)dB(t) =

∫ 1

0

(B(1)−B(t))dB(t) +

∫ 1

0

B(t)dB(t)

=

(
B(1)2 − 1−

∫ 1

0

B(t)dB(t)

)
+

∫ 1

0

B(t)dB(t)

= B(1)2 − 1.

Example 2.1.7. We evaluate the stochastic integral

∫ t

0

B(s)(B(1)−B(s))dB(s), 0 ≤ t ≤ 1.

For 0 ≤ t ≤ 1, f(t) = B(t) is adapted and g(t) = B(1) − B(t) is instantly independent.

Let ∆n = {0 = s0 < s1 < s2 < ... < sn = t} be a partition of the interval [0, t]. By

definition:
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∫ t

0

B(s)(B(1)−B(s))dB(s)

= lim
‖∆n‖→0

n∑
i=1

B(si−1)(B(1)−B(si))(B(si)−B(si−1))

= B(1) lim
‖∆n‖→0

n∑
i=1

B(si−1)(B(si)−B(si−1))

− lim
‖∆n‖→0

n∑
i=1

B(si−1) (B(si)−B(si−1) +B(si−1)) (B(si)−B(si−1))

= B(1) lim
‖∆n‖→0

n∑
i=1

B(si−1)(B(si)−B(si−1))

− lim
‖∆n‖→0

n∑
i=1

B(si−1)(B(si)−B(si−1))2 − lim
‖∆n‖→0

n∑
i=1

B(si−1)2(B(si)−B(si−1)).

Note that, as ‖∆n‖ → 0, the above three summations converge in probability to∫ t

0

B(s)dB(s),
∫ t

0

B(s)ds and
∫ t

0

B(s)2dB(s), respectively. Therefore,

∫ t

0

B(s)(B(1)−B(s))dB(s) = B(1)

∫ t

0

B(s)dB(s)−
∫ t

0

B(s)ds−
∫ t

0

B(s)2dB(s).

Since both
∫ t

0

B(s)dB(s) and
∫ t

0

B(s)2dB(s)are Itô integrals, we can apply the regular

Itô’s formula to evaluate these two integrals. So, for 0 ≤ t ≤ 1, we have

∫ t

0

B(s)(B(1)−B(s))dB(s)

= B(1)

[
1

2
(B(t)2 − t)

]
−
∫ t

0

B(s)ds−
[

1

3
B(t)3 −

∫ t

0

B(s)ds

]
=
B(1)

2

(
B(t)2 − t

)
− B(t)3

3
.

2.1.1 Near martingale property and anticipating integral

In Itô integration theory, one of the important property of a stochastic process is the

"martingale property". Recall that if f(t) is an adapted and square integrable process,
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B(t) is a Brownian motion and Ft is the natural Brownian filtration, then the stochastic
process

Xt =

∫ t

0

f(s)dB(s), t ∈ [0, T ] (2.2)

is a martingale with respect to Ft.

In the anticipating integration theory, we use an instantly independent process (or

generally a product of adapted and instantly independent process) which is non-adapted.

Hence, the process Xt defined by (2.2) is not Ft-adapted which involves that it is not a

Ft-martingale.

Recall that a martingale with respect to the filtration Ft is an Ft-adapted stochastic

process with E(|Xt|) <∞ and E(Xt/Fs) = Xs for any s ≤ t. Thus, this property makes

sense only for adapted stochastic processes. Therefore, it is natural to ask if we will have a

similar property to that martingale property in this new theory which still makes sense for

non-adapted stochastic processes. Obviously, in order to obtain such similar property, the

first assumption that Xt is Ft-adapted must be removed and consider only the assumption

E(Xt/Fs) = Xs, for any s ≤ t. However, this assumption can be rewritten as

E(Xt −Xs/Fs) = 0, ∀s ≤ t. (2.3)

Observe that, the expression in Equation (2.3) still makes sense for non-adapted stochastic

processes including instantly independent stochastic processes in the new theory. There-

fore, this property motivates a definition of new concept called "near-martingale". We

consider backward and forward filtration (see the work of Protter and Pardoux [85]).

Definition 2.1.3. (Protter and Pardoux [85])

1. We say that a family Ft of sub-σ-fields is a forward filtration if Fs ⊆ Ft, for 0 ≤
s ≤ t.

2. We say that a family F (t) of sub-σ-fields is a backward filtration if F (s) ⊇ F (t), for

s ≤ t.
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Definition 2.1.4. (Kuo et al.[63]). Let Xt be a stochastic process with E(|Xt|) <∞ for

all t. We say that Xt is a near-martingale with respect to a forward filtration Ft if

E(Xt −Xs/Fs) = 0, ∀s ≤ t.

On the other hand, we say that Xt is a near-martingale with respect to a backward filtration

F (t) if

E(Xt −Xs/F (t)) = 0, ∀s ≤ t.

Remark 2.1.2. If Xt is a near-martingale with respect to the filtration Ft and is adapted

to Ft, then it is a martingale with respect to Ft. This is the reason why we call this class

of stochastic processes near-martingales.

Instantly independent processes take a central place on the anticipating integral the-

ory. The next theorems state the cases when such processes are near-martingales. Next

Theorem establishes the conditions under which this product of stochastic processes is a

near-martingale.

Theorem 2.1.1. (Kuo et al.[63]). Suppose g(t) is instantly independent with respect to

a forward filtration Ft and E(|Xt|) < ∞ for all t. Then, g(t) is a near-martingale with

respect to Ft if and only if E[g(t)] = E[g(s)] for all s and t, i.e., E[g(t)] is constant.

Next, consider the case of a product of an adapted process and an instantly inde-

pendent process. Next Theorem establishes the conditions under which this product of

stochastic processes is a near-martingale.

Theorem 2.1.2. (Kuo et al.[63]). Let Ft be a forward filtration. Assume that f(t) and

g(t) are stochastic processes such that

1. f(t) is a martingale with respect to Ft;

2. g(t) is instantly independent with respect to Ft and E[g(t)] is constant;

3. E|f(t)g(t)| <∞ for all t.
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Then, θ(t) = f(t)g(t) is a near-martingale with respect to Ft.

Remark 2.1.3. Observe that

1. By Theorem 2.1.1, condition (2) implies that g(t) is a near-martingale.

2. Theorem 2.1.2 is false if we assume that g(t) is a near-martingale without the in-

stantaneous independence of g(t).

Remark 2.1.4. The same theorems holds when dealing with the backward filtration F (t).

In the new theory, we can also define these stochastic processes associated with the

new integrals. That is, for continuous functions f and g, we define Xt to be the stochastic
process

Xt =

∫ t

0

f(B(s))g(B(T )−B(s))dB(s); 0 ≤ t ≤ T,

and we prove, under some conditions, that Xt is a near-martingale with respect to the

forward filtration Ft, where Ft = σ{B(s), 0 ≤ s ≤ t}. Moreover, we introduce another

associated stochastic process defined by

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dB(s); 0 ≤ t ≤ T,

then, under the same conditions, we can also show that the stochastic process Yt is a

near-martingale with respect to the same filtration

Theorem 2.1.3. (Kuo et al.[63]). Let Ft be a forward filtration and let f(x) and g(x)

be continuous functions such that:

1. E
[
Xt

]
< +∞,

2. E
[
Yt
]
< +∞.

Then,

Xt =

∫ t

0

f(B(s))g(B(T )−B(s))dB(s); 0 ≤ t ≤ T,
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and

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dB(s); 0 ≤ t ≤ T

exist and are near-martingales with respect to the forward filtration Ft.

Now, we turn our attention to the backward filtration F (t) where

F (t) = σ{B(T )−B(s), 0 ≤ s ≤ t}

It can also be shown that the stochastic process Xt and Yt are both near-martingales

with respect to this backward filtration F (t).

Theorem 2.1.4. (Kuo et al.[63]). Let F (t) be a backward filtration and let f(x) and g(x)

be continuous functions such that:

1. E
[
Xt

]
< +∞,

2. E
[
Yt
]
< +∞.

Then

Xt =

∫ t

0

f(B(s))g(B(T )−B(s))dB(s); 0 ≤ t ≤ T, (2.4)

and

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dB(s); 0 ≤ t ≤ T (2.5)

exist and are near-martingales with respect to the backward filtration F (t).

The proofs of Theorems can be found in Kuo et al [63].
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2.2 Anticipating stochastic integral related to fractional
Gaussian processes

We treat in this section the problem of integration of non-adapted processes with respect

to fractional Gaussian processes. Particulary, we consider the mixed fractional Brownian

motion MH and sub fractional Brownian motion SH with H ∈ (0, 1) defined in chapter 1.

Nevertheless, when H 6= 1
2
this processes are not semimartingales. Therefore, we cannot

apply directly Itô’s theory in this case. Moreover, the Riemann-Stieltjes integration cannot

be used since the paths of the fBm (then those of mfBm) and sub-fBm have unbounded

variations. Many technics have been introduced in order to study the integral with respect

to fBm and sub-fBm. In the case where H > 1
2
, the processes have a p-bounded variation,

which allows to use the pathwise approach that allows us to write the integral as a

limit of Riemann sum (Young [106], Zähle [107], and Feyel and Pradelle [38] and the

references therein). In our study, we use this approach in order to give a definition of the

anticipating integral with respect to a mixed fractional Brownian motion MH and sub

fractional Brownian motion SH , then study the near-martingale property.

2.2.1 Fractional stochastic integral and Riemann sum

In order to define the stochastic integral with respect to sub-fBm and mixed fBm we start

by defining the Riemann-Stieltjes integral.

Definition 2.2.1. (Riemann-Stieltjes Integrals). Let f : [0, T ] → R be continuous and

g : [0, T ]→ R be a function of bounded variation. We define the Riemann-Stieltjes integral

as follows: ∫ T

0

f(t)dg(t) = lim
||∆n||→0

n∑
i=1

f(τi)(g(ti)− g(ti−1))

where 0 = t0 < .... < tn = t, ∆n = ti − ti−1, i = 1, n and τi is an evaluation point in the

interval [ti−1; ti].
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Recall that in the Brownian case, it is impossible to define

∫ T

0

f(t)dB(t) (2.6)

via Riemann-Stieltjes approach for all continuous process f since B has unbounded vari-

ation but it has bounded quadratic variation. Then, Itô defined the integral (2.6) as a

limit of Riemann-Stieltjes for adapted and square integrable processes.

Definition 2.2.2. We denote by L2
ad(Ω, [0, T ]) the space of all adapted stochastic processes

H(t) such that

E
(∫ T

0

H2(s)ds <∞
)
.

Definition 2.2.3. (Itô integral). Suppose that H ∈ L2
ad(Ω × [0, T ]). We define the Itô

integral of f with respect to Brownian motion as

I(H) =

∫ T

0

H(t)dB(t) = lim
||∆n||→0

n∑
i=1

H(ti−1)(B(ti)−B(ti−1))

whenever the limit in probability exists.

Proposition 2.2.1. (Kuo[60]). The process M(t), t ∈ [0, T ], defined by

M(t) =

∫ t

0

H(s)dB(s) (2.7)

is a-martingale with respect to Ft = σ{B(s), s ≤ t}.

Now, we extend the Riemann-Stieltjes integral to functions of unbounded variation.

Let Φ : R+ → R+ be a strictly increasing, continuous, unbounded, convex function and

Φ(0) = 0. For each partition ∆n = {0 = t0 < t1 < t2 < ... < tn = T} of the interval [0, T ].

For a function f: [0, T ]→ R, set

vΦ(f,∆n) =
n∑
i=1

Φ|f(ti)− f(ti−1)|.
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Definition 2.2.4. We define Φ-variation of the function f over the interval [0, T ] by

vΦ(f) = sup
∆n

vΦ(f,∆n), (2.8)

where the spermium is taken over all partitions ∆n of the interval [0, T ]. If vΦ(f) < ∞,

we say that f has the bounded Φ-variation property and we denote by WΦ the class of all

functions f with bounded Φ-variation.

The case p = 1 corresponds to the classical case of bounded variation. For the function

Φ(x) = xp, let vΦ(f) = vp(f) andWΦ =Wp. Moreover, we define the index of the function

f by

v(f) := inf{p ≥ 1, vp(f) <∞}.

The family of functions with bounded p-variation is denoted by Wp and it becomes a

Banach space under the norm

‖f‖[p] = max
(
vp(f)

1
p , ‖f‖∞

)
.

We denote by H[0,T ],α the class of all α-Hölder functions f : [0, T ]→ R with f(0) = 0

and define

‖f‖[0,T ],α = sup
0≤u<v≤T

|f(u)− f(v)|
|v − u|α

.

The next proposition shows the link between Hölder continuous and bounded p-

variation functions.

Proposition 2.2.2. (Dudley and Norvaisa [34]). Let 1 ≤ p < ∞. Then the function

f : [0, T ]→ R belongs to Wp if and only if f = g ◦ h, where h is a bounded, non-negative

and increasing function on [0, T ] and g is a 1
p
-Hölder continuous function on [h(0), h(T )].

Theorem 2.2.1. (Young [106]). If f(t) and g(t) are continuous paths of finite p, q vari-

ation, respectively, where 1
p

+ 1
q
> 1, then the integral

∫ t

0

f(s)dg(s) may be defined as the

corresponding Riemann-Stieltjes sum.
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Proposition 2.2.3. (Feyel and Pradelle [38]). If f is α-Hölder, g is β-Hölder with

α + β > 1, then the Steiltjes integral
∫ T

0

f(s)dg(s) exists as limit of the corresponding

Riemann-Stieltjes sums and is β-Hölder. Moreover for every 0 < ε < α + β − 1,

∣∣∣∣ ∫ T

0

f(s)dg(s)

∣∣∣∣ ≤ C(α, β) ‖ f ‖[0,T ],α‖ g ‖[0,T ],β T
1+ε.

Concerning the variation of fBm and sub-fBm we have the following results:

Proposition 2.2.4. (Mishura[79]). For every p > 0, we have:

• vp(BH) <∞ if p > 1
H
.

• vp(BH) = E(|N (0, 1)|p) if p = 1
H
.

• vp(BH) =∞ if p < 1
H
,

Proposition 2.2.5. (Tudor[100]). For every p > 0, we have:

• vp(SH) <∞ if p > 1
H
.

• vp(SH) = E(|N (0, 1)|p) if p = 1
H
.

• vp(SH) =∞ if p < 1
H
,

where N (0, 1) is standard Gaussian random variable.

Thus, BH and SH inWp and if and only if p ≥ 1
H
. Then, for every process f(t), t ∈ [0, T ]

in Wq, the Riemann-Stieltjes integrals
∫ t

0

f(u)dBH(u) and
∫ t

0

f(u)dSH(u) are well de-

fined, i.e. ∫ T

0

f(t)dBH(t) = lim
||∆n||→0

n∑
i=1

f(ti−1)(BH(ti)−BH(ti−1)), (2.9)
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and ∫ T

0

f(t)dSH(t) = lim
||∆n||→0

n∑
i=1

f(ti−1)(SH(ti)− SH(ti−1)), (2.10)

where 0 = t0 < .... < tn = t, ∆n = ti − ti−1, i = 1, n.

In particular, as BH and SH are γ-Hölder for all γ < H, then for every α-Hölder

process f(t) for some α > 1−H,the Riemann-Stieltjes integrals (2.9) and (2.10) are well

defined and have γ-Hölder paths, for every γ < H.

Now, we can define the stochastic integrals (2.9) and (2.10) for adapted integrands for

H > 1
2
in a pathwise sense.

Remark 2.2.1. Recall that

MH(t) = MH
t (a, b) = aB(t) + bBH(t), t ∈ R+, a, b ∈ R∗,

where B and BH are independent standard and fractional Brownian motions, respectively.

It follows that

∫ t

0

f(u)dMH(u) = a

∫ t

0

f(u)dBH(u) + b

∫ t

0

f(u)dB(u). (2.11)

then, the integral (2.11) is defined in a similar way as
∫ t

0

f(u)dBH(u) in pathwise sense.

2.2.2 New anticipating integral with respect to sub-fractional

Brownian motion

In this section, we give a definition of stochastic integral of the product f(t)g(t) as in

Definition 2.1.2 by taking the sub-fBm SH as integrator. Formally, we have:

Definition 2.2.5. Let SH , H > 1
2
be a sub-fractional Brownian motion and let Ft be the

σ-field generated by {SH(t), t ≥ 0}, for an adapted stochastic process f(t) with respect to
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the filtration Ft and an instantly independent stochastic process g(t) with respect to the

same filtration. We define the stochastic integral of f(t)g(t) to be the limit:∫ T

0

f(t)g(t)dSH(t) = lim
‖∆n‖→0

n∑
i=1

f(ti−1)g(ti)(S
H(ti)− SH(ti−1)) (2.12)

provided that the limit in probability exists.

It is clear that the anticipating integral (2.12) is not a Ft-martingale since the integrand

is non-adapted to Ft. Moreover the integrator SH is not a Ft-semimartingale what brings

us to verify if it satisfy the near-martingale property with respect to forward and backward

filtrations given respectively by Ft = σ{B(s), SH(s); 0 ≤ s ≤ t} and F (t) = σ{B(T ) −

B(s), SH(T )− SH(s); 0 ≤ s ≤ t}.

Theorem 2.2.2. Let Ft be a forward filtration and let f(x) and g(x) be continuous

functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T )−B(t))dSH(t)
]
< +∞,

2. E
[
g(B(T )−B(t))

]
= 0.

Then,

Xt =

∫ t

0

f(B(s))g(B(T )−B(s))dSH(s); 0 ≤ t ≤ T (2.13)

exists and is a near-martingale with respect to the forward filtration Ft.

Proof. We need to verify that E[Xt −Xs/Fs] = 0 for 0 ≤ s ≤ t. Notice that

Xt −Xs =

∫ t

s

f(B(u))g(B(T )−B(u))dSHu .

Let ∆n = {s = t0 < t1 < ... < tn−1 < tn = t} a partition of interval [s, t] and ∆SHi =

SH(ti)− SH(ti−1), we have:

E[Xt −Xs/Fs] = E
[ ∫ t

s

f(B(u))g(B(T )−B(u))dSH(u)/Fs
]
.
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From Definition 2.2.6

E[Xt −Xs/Fs] = E
[

lim
‖∆n‖→0

n∑
i=1

f(B(ti−1))g(B(T )−B(ti))∆S
H
i /Fs

]
= lim
‖∆n‖→0

n∑
i=1

E
[
f(B(ti−1))g(B(T )−B(ti))∆S

H
i /Fs

]
.

It is sufficient to verify that every component of the last sum is zero. Recall that

f(B(ti−1)) is Fti−1
-measurable and g(B(T ) − B(ti)) is independent of Fti−1

, using the

properties of conditional expectation, we obtain:

E

[
f(B(ti−1))g(B(T )−B(ti))∆S

H
i /Fs

]
= E

[
E
[
f(B(ti−1))g(B(T )−B(ti))∆S

H
i /Fti

]
/Fs
]

= E

[
f(B(ti−1))∆SHi E

[
g(B(T )−B(ti))/Fti

]
/Fs
]

= E

[
f(B(ti−1))∆SHi E

[
g(B(T )−B(ti))

]
/Fs
]
.

From the independence of Brownian increments and the zero expectation of g(B(T )−

B(ti)), we have:

E
[
f(B(ti−1))g(B(T )−B(ti))∆S

H
i /Fs

]
= E

[
g(B(T )−B(ti))

]
E
[
f(B(ti−1))∆SHi /Fs

]
= 0.

Thus Xt is a near-martingale with respect to Ft.

Theorem 2.2.3. Let Ft be a forward filtration and let f(x) and g(x) be continuous

functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T )−B(t))dSH(t)
]
< +∞,
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2. E
[
g(B(T )−B(t))

]
= 0.

Then

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dSH(s); 0 ≤ t ≤ T (2.14)

exists and is a near-martingale with respect to the forward filtration Ft.

Proof. Notice that for 0 ≤ s < t ≤ T , we have

Yt − Ys = −
∫ t

s

f(B(u))g(B(T )−B(u))dSH(u) = −(Xt −Xs), (2.15)

where Xt is given in (2.13). Thus Yt is a near-martingale with respect to Ft.

Theorem 2.2.4. Let F (t) be a backward filtration and let f(x) and g(x) be continuous

functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T )−B(t))dSH(t)
]
< +∞,

2. E
[
f(B(t))

]
= 0.

Then

Xt =

∫ t

0

f(B(s))g(B(T )−B(s))dSH(s); 0 ≤ t ≤ T

exists and is a near-martingale with respect to the backward filtration F (t).

Proof. According to the proof of Theorem 2.2.2, we just have to prove that

E
[
f(B(ti−1))g(B(T )−B(ti))∆S

H
i /F (t)

]
= 0,

where 0 ≤ s < t ≤ T and s = t0 < t1 < .... < tn−1 < tn = t. Notice that

∆SHi = (SHT − SHti−1
)− (SHT − SHti ) ∈ F (ti−1).



2.2.2 New anticipating integral with respect to sub-fractional Brownian
motion 67

Next, by the F (ti−1)- measurability of ∆SHi and the conditional expectation properties,

we obtain

E
[
f(B(ti−1))g(B(T )−B(ti))∆S

H
i /F (t)

]
= E

[
E
[
f(B(ti−1))g(B(T )−B(ti))∆S

H
i /F (ti−1)

]
/F (t)

]
= E

[
g(B(T )−B(ti))∆S

H
i E
[
f(B(ti−1))/F (ti−1)

]
/F (t)

]
.

Notice that for each s > ti−1, B(T ) − B(s) is independent of Fti−1
. This implies the

independence of the σ-fields F (ti−1) and Fti−1
. Since f(B(ti−1)) is Fti−1

measurable, it

follows that f(B(ti−1)) is independent of F (ti−1). Thus

E
[
f(B(ti−1))g(B(T )−B(ti))∆S

H
i /F (t)

]
= E

[
g(B(T )−B(ti))∆S

H
i E
[
f(B(ti−1))

]
/F (t)

]
.

Since E
[
f(B(ti−1))

]
is F (t)- measurable, then

E
[
f(B(ti−1))g(B(T )−B(ti))∆S

H
i /F (t)

]
= E

[
f(B(ti−1))

]
E
[
g(B(T )−B(ti))∆S

H
i /F (t)

]
= 0.

Theorem 2.2.5. Let F (t) be a backward filtration and let f(x) and g(x) be continuous

functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T )−B(t))dSH(t)
]
< +∞,

2. E
[
f(B(t))

]
= 0.
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Then,

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dSH(s); 0 ≤ t ≤ T (2.16)

exists and is a near-martingale with respect to the backward filtration F (t).

Proof. From Theorem 2.2.4, we have Yt − Ys = −(Xt − Xs). Consequently, the proof is

completed.

2.2.3 New anticipating integral with respect to mixed fractional

Brownian motion

Similarly to sub-fractional case when H > 1
2
, we give a definition of the stochastic integral

of the product f(t)g(t) by taking the mfBm MH as an integrator. Formally, we have

Definition 2.2.6. Let MH(t), H > 1
2
be a mixed fractional Brownian motion and let Ft

denote the σ-field generated by {MH(t), t ≥ 0}. For an adapted stochastic process f(t)

with respect to the filtration Ft, and an instantly independent stochastic process g(t) with

respect to the same filtration. We define the stochastic integral of f(t)g(t) as:

∫ T

0

f(t)g(t)dMH(t) = lim
‖∆n‖→0

n∑
i=1

f(ti−1)g(ti)(M
H(ti)−MH(ti−1)) (2.17)

provided that the convergence in probability exists.

It is quite clear that the anticipating integral (2.17) is not a Ft-martingale. Thus, we

have to check if this latter satisfies the near-martingale property. We show that this latter

satisfy near martingale property with respect to the forward filtration

Ft = σ{B(s),MH(s); 0 ≤ s ≤ t}

and with respect to the backward filtration

F (t) = σ{B(T )−B(s),MH(T )−MH(s), 0 ≤ s ≤ t}.
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Theorem 2.2.1. Let Ft be a forward filtration and let f(x) and g(x) be continuous

functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T )−B(t))dMH(t)
]
< +∞,

2. E
[
g(B(T )−B(t))

]
= 0.

Then,

Xt =

∫ t

0

f(B(s))g(B(T )−B(s))dMH(s); 0 ≤ t ≤ T (2.18)

exists and is a near-martingale with respect to the forward filtration Ft.

Theorem 2.2.2. Let Ft be a forward filtration and let f(x) and g(x) be continuous

functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T )−B(t))dMH(t)
]
< +∞

2. E
[
g(B(T )−B(t))

]
= 0.

Then,

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dMH(s), 0 ≤ t ≤ T (2.19)

exists and is a near-martingale with respect to the forward filtration Ft.

Theorem 2.2.3. Let F (t) be a backward filtration and let f(x) and g(x) be continuous

functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T )−B(t))dMH(t)
]
< +∞,

2. E
[
f(B(t))

]
= 0.
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Then,

Xt =

∫ t

0

f(B(s))g(B(T )−B(s))dMH(s), 0 ≤ t ≤ T (2.20)

exists and is a near-martingale with respect to the backward filtration F (t).

Theorem 2.2.4. Let F (t) be a backward filtration and let f(x) and g(x) be continuous

functions such that:

1. E
[ ∫ T

0

f(B(t))g(B(T )−B(t))dMH(t)
]
< +∞,

2. E
[
f(B(t))

]
= 0.

Then,

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dMH(s), 0 ≤ t ≤ T (2.21)

exists and is a near-martingale with respect to the backward filtration F (t).

Proof. The proofs of Theorems 2.2.1-2.2.4 are similar to Theorems 2.2.2-2.2.5 (when deal-

ing with SH).

Some results in the case where H ∈ (3
4
, 1)

This section presents some results establishing the relationship between standard Bm and

mixed-fBm in the case where H > 3
4
. We show that our anticipating integral with respect

to MH can be written as a Riemann sum depending on standard Bm satisfying the near

martingale property.

Proposition 2.2.6. Let MH(t);H > 3
4
be a mixed fractional Brownian motion and

Ft = σ{MH(t), t ≥ 0}. For an Ft-adapted stochastic process f(t) and an Ft-instantly

independent stochastic process g(t), we have

∫ T

0

f(t)g(t)dMH(t) = a lim
‖∆n‖→0

n∑
i=1

f(ti−1)g(ti)(B(ti)−B(ti−1)) (2.22)
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provided that the convergence in probability exists.

Proof. The proof is a direct result of Theorem 1.7 of Cheridito [20].

Proposition 2.2.7. Let Ft be a forward filtration, F (t) denotes the backward filtration

and let f(x) and g(x) be continuous functions such that:

E
[ ∫ T

0

f(B(t))g(B(T )−B(t))dMH(t)
]
< +∞.

Then,

Xt =

∫ t

0

f(B(s))g(B(T )−B(s))dMH(s); 0 ≤ t ≤ T,

and

Yt =

∫ T

t

f(B(s))g(B(T )−B(s))dMH(s); 0 ≤ t ≤ T

exist and are near-martingales with respect to Ft and F (t) respectively.

Proof. The proof of this proposition is based on Theorem 1.7 in Cheridito [20] and The-

orems 3.5-3.8 given in Kuo et al. [63].

In what follows, we give some examples where we evaluate some anticipating stochastic

integrals with respect to mixed fractional Brownian motion when H > 3
4
, using the result

obtained in the Proposition 2.2.6.

Example 2.2.1. Consider the following integral

∫ t

0

B(T )2dMH(s), 0 ≤ t ≤ T.

The integrand B(T )2 is decomposed as

B(1)2 = [(B(T )−B(s))]2 + 2B(s)[B(T )−B(s)] +B(s)2.
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In addition, the integral converges in probability to

n∑
i=1

(
[(B(T )−B(si))]

2 + 2B(si−1)[B(T )−B(si)] +B(si−1)2
)
(MH(si)−MH(si−1)).

As MH and aB are equivalent (in law), then the above sum can be expressed as

a

n∑
i=1

(
[(B(T )−B(si))]

2 + 2B(si−1)[B(T )−B(si)] +B(si−1)2
)
(B(si)−B(si−1)).

Therefore, we have

∫ t

0

B(T )2dMH(s) = aB(T )2B(t)− 2aB(T )t, 0 ≤ t ≤ T.

In general, for any n ∈ N∗, it is easy to check that

∫ t

0

B(T )ndMH(s) = aB(T )nB(t)− anB(T )n−1t, 0 ≤ t ≤ T.

Example 2.2.2. Consider the integrand B(s)B(T ), equivalently,

B(s)(B(T )−B(s)) +B(s)2.

Then,

∫ t

0

B(s)B(T )dMH(s)

= a lim
‖∆n‖→0

n∑
i=1

(
B(si−1)(B(T )−B(si)) +B(si−1)2

)
(B(si)−B(si−1))

=
a

2
B(T )(B(t)2 − t)− a

∫ t

0

B(s)ds, 0 ≤ t ≤ T.

In the same manner, an integrand of the form φ(B(s))B(T ) can be decomposed as

φ(B(s))(B(T )−B(s)) + φ(B(s))B(s),
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for any continuous function φ(x). Therefore, the integral

∫ t

0

φ(B(s))B(T )dMH(s), 0 ≤ t ≤ T

converges in probability to

aB(T )
n∑
i=1

(φ(B(si−1))(B(si)−B(si−1))− a
n∑
i=1

φ(B(si−1))(B(si)−B(si−1))2,

which is equivalent to

aB(T )

∫ t

0

φ(B(s))dB(s)− a
∫ t

0

φ(B(s))ds.

Example 2.2.3. The integral

∫ t

0

eB(T )dMH(s), 0 ≤ t ≤ T

is the limit of the sum

eB(T )

n∑
i=1

e(B(si)−B(si−1))(M(si)−M(si−1)).

Using Taylor series expansions of exponential function, Equation (2.2.3) converges in

probability to

aeB(T )

n∑
i=1

(
1−(B(si)−B(si−1))−1

2
(B(si)−B(si−1))2+o((B(si)−B(si−1))2)(B(si)−B(si−1)).

Consequently,

∫ t

0

eB(T )dMH(s) = aeB(T )(B(t)− t), 0 ≤ t ≤ T.
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2.2.4 Practical application of of the anticipating integral

Our study has a notable application in finance and economy. For instance, we consider a

financial stock market where the process f(t) is a quantity of the stock at time t, adapted

to Ft, the σ-field represents information available by time t, and B(t) (the standard

Brownian motion) characterizes the stock price at time t. The integral
∫ T

0

f(t)dB(t)

describes the change of the stock market wealth over the trading period [0, T ]. By dividing

the time integral into the subintervals [ti−1, ti],
∫ T

0

f(t)dB(t) can be computed as a limit of

Riemann-like sums of f(ti−1)(B(ti)−B(ti−1)). The use of the left endpoint of subintervals

comes from the fact that f(t) depends on the past and present but not on the future. If

one comes across the case where the quantity of stock f(t) is independent of past and

present, i.e for each t ∈ [0, T ]), f(t) is Ft-independent, then the future change in stocks

can be known and one can use the right endpoint ti as an evaluation point for the above

stochastic integral. On the other hand, it has been interesting, in recent years, to divide

the noise of stock price into two parts: the first describes the stochastic behavior of stock

markets which is considered as a white noise, the other one represents the random state

of the stock price which has a long memory, this motivates researchers to take such a

situation into consideration and to provide a mixture of processes in accordance with the

requirements of the phenomena.

Furthermore, over the past, there has been an extensive studies on option pricing. It

has been shown that the distributions of logarithmic returns of financial assets generally

exhibit properties of self-similarity and long-term dependence, and since the fractional

Brownian motion has these two important properties, it has the ability to capture the be-

havior of the underlying asset price. The Black-Scholes model supposed that the volatility

of the underlying security is constant, while stochastic volatility models classified the price

of the underlying security as a random variable or, more generally, a stochastic process.

In turn, the dynamics of this stochastic process can be driven by another process (usually
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by Brownian motion). In a stochastic volatility model, the volatility randomly changes

according to stochastic processes. In our work, the process used is the mixture between

fBm (fractional Brownian motion) and Bm(Brownian motion). The current study helps

to solve the stochastic differential equations (SDEs) driven by a mixed fractional Brown-

ian motion in the case of non adapted integrands which contributes to the resolution of

the phenomena linked to volatility in the above situations.



Chapter 3
Stochastic volatility modeling via
fractional Gaussian processes

The concept of volatility is probably one of the most researched topics in the field of

financial mathematics. The interest is motivated by two important reasons: the increasing

number of companies using risk management tools and the large number of derivatives

traded in the world’s financial markets.
The fair price of an option is determined by a number of factors including the volatility

of the underlying asset. All factors are directly observable in the market except for

volatility. The most well-known study in the world of mathematical finance is certainly

the Black & Scholes option pricing model, which has been an immediate success with

researchers and financial practitioners . The model allows the price of an option to be

assessed in the non-arbitrage case based on the assumption that the valuation of a security

follows a geometric Brownian motion and that the volatility is constant. However, the

assumption of constant volatility in the Black & Scholes formula was rejected from the

beginning as demonstrated in various works, mainly Black [12] in 1976 and especially

after the 1987 Krash which highlighted the smile effect which should not appear under

the Black & Scholes hypothesis. Accordingly, alternative models have been proposed

since eighties to capture the empirical behavior of the volatility. We give in this chapter

an overview volatility dynamic in financial markets and its different classes: constant,

76
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local and stochastic volatility, then we present the fractional stochastic volatility models:

Comte & Renault model with H > 1
2
and the rough stochastic volatility model with

H < 1
2
. Finally we give our mixed stochastic volatility model

3.1 A review of volatility dynamics

3.1.1 Types of volatility in markets

In the context of option pricing theory, volatility takes two main and distinct forms:

Realized volatility (historical volatility)

The concept of realized volatility, introduced by Andersen and Bollerslev [3], is an alter-

native measure of daily volatility in financial markets. The realized volatility modeling is

based on the idea of using the sum of the squared intra-day returns to generate more ac-

curate measures of daily volatility. Merton [76] was the first to use high frequency data to

measure volatility. Realized volatility is a statistical measure of the dispersion of returns

of a given price of a financial instrument over a given period of time. In general, this

measure is calculated by determining the average deviation from the average price over

the given period. Realized volatility is calculated from underlying price changes over a

certain period. If this period is in the past, we call it historical volatility. Different sources

may use slightly different historical volatility formulas, the following is the most common

approach: calculating historical volatility as standard deviation of logarithmic returns,

based on daily closing prices. Given the (discrete) stock price time series S(t0), ..., S(tn),

the realized volatility σ in discrete time is obtained by calculating the standard devia-

tion of the stock’s continuously compound return Ri for each period (sampling interval)

∆t = ti − ti−1, such that :

Ri = ln

(
S(ti)

S(ti−1)

)
.
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The realized variance of the log-returns of the stock is given by:

σ2 =
1

n− 1

n∑
i=1

(Ri −R)2,

where the sample mean R is given by:

R =
1

n

n∑
i=1

Ri.

The realized volatility converges in probability to the integrated volatility as n → +∞

during a certain time period [0, T ]:

σ2
t =

1

T

∫ T

0

σ2(u)du.

Implied volatility

Implied volatility consists of using observed market prices to extract a volatility; it is

related to the present value of the market. The Black & Scholes implied volatility is given

by the volatility that equals to the option price given by the Black & Scholes formula and

the option price observed on the market.

Ct(St, ..., T,K, σ̂) = Ĉt,

where Ct is the theoretical premium calculated through the model and Ĉt is the premium

of call observed on the market. Its calculation requires the inversion of the Black & Scholes

valuation formula. Among the methods of calculating implied volatility, we present two

common numerical methods:

• The Newton-Raphson algorithm that requires a priori knowledge of the option pre-

mium derivative in relation to the volatility

σ̂i+1 = σ̂i + a(Ct(σ̂i)− Ĉt)
(
∂Ct(σ̂i)

∂σ̂i

)−1

,
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where 0 < a ≤ 1 (for more details see Manaster and Koehler [71]).

• Method of bisection which is based on the choice of two volatilities, one low σl and

other high σh, corresponding respectively to premiums C l
t and Ch

t such as C l
t < Ĉt <

Ch
t and

σ̂ = σl +
(Ĉt − C l

t)(σh − σl)
(Ch

t − C l
t)

.

(See Chapters 3 and 4 of Brent [17] for more details).

3.1.2 Stylized facts of volatility

Volatility clustering

In 1963, Mandelbrot [72] observed an important characteristic of volatility which he sum-

marizes with the famous remark : "large changes tend to be followed by large changes -

of either sign- and small changes tend to be followed by small changes". This phenomena

is called "volatility clustering". it can be explained also by a positive autocorrelation of

the absolute log-returns over few days.

Leverage effect

The leverage effect is another empirical characteristic of volatility, it determined a negative

relation between stock returns and volatilities This effect is first observed by Black [12]

in 1976 and describes the negative correlation with stock prices and volatility. Other

empirical studies on leverage have been carried out by Chirtie [22], Nelson[81], Schwert

[94], Bollerslev [16] and other references.

Long memory

The long memory in volatility is considered a stylized fact and has been notably reported

in Ding and Granger [33] in 1993 and Andersen et al.[4] in 2001. The long memory is
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referred to the slow decay of auto-covariance function of volatility of scale n > 0

Cov(σt+n, σn) ∼ C

tγ
, n→ +∞

with γ < 1. The auto-covariance function is not integrable, i.e.

+∞∑
t=1

Cov(σt+n, σn) = +∞.

3.1.3 Volatility in Black & Scholes world

Black & Scholes model

In 1973, Black and Scholes [13] proposed to model stock price as a geometric Brownian

motion with a constant volatility assumption. Although the constant volatility is obvi-

ously inconsistent with the stylized facts presented above. This helps us to understand

how advanced mathematics is applied in finance. Moreover, Black & Scholes model is

very practical in the sense that it provides a closed form expressions for the price of basic

options like calls and puts.

The Black and Scholes model assumed that the dynamics of the price of the underlying

asset is given by :

∀t ∈ [0, T ], dSt = St(µtdt+ σtdBt), S0 > 0,

under the historical probability P, where B is a standard Brownian motion, µ is the drift,

σ is the volatility and µ, σ are assumed to be constant. In other words, the value at

time t of the risky asset is given as the exponential of Brownian motion, it is a geometric

Brownian motion as follows:

∀t ∈ [0, T ], St = S0 exp

((
µ− σ2

2

)
t+ σBt

)
.

and the risk-less asset Zt with interest rate r under the structure

dZt = Ztrdt.
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Proposition 3.1.1. (Jeanblanc et al. [53]). In the Black and Scholes model, there exists

a unique equivalent risk-neutral measure Q, precisely Q|Ft = exp(−θBt − θ2

2
t)P|Ft, where

θ = µ−r
σ

is the risk premium. The risk-neutral dynamic of the asset is given as:

dSt = St(rdt+ σdWt), (3.1)

where W is a Q-Brownian motion. In a closed form, we have

∀t ∈ [0, T ], St = S0e
rt exp

(
−σ

2

2
t+ σWt

)
. (3.2)

In the case of a European call, we have:

C(St, t) = EQ[e−r(T−t) max(ST −K, 0)]. (3.3)

with EQ is the expectation under the risk-neutral probability. This expectation is

explicitly calculated to obtain the value of the European options in the Black and Scholes

model which is expressed by the Black and Scholes formula:

Theorem 3.1.1. (Black and Scholes [13]). Let dSt = St(µtdt + σtdWt) be the dynamic

of the price of a risky asset and assume that the interest rate is a constant r. The value

at time t of an European call with maturity T and a strike K is CBS where

CBS(t, St, σ, r,K, T ) = StN (d1)−Ke−r(T−t)N (d2), (3.4)

where

d1 =
ln
(
St
K

)
+ τ

(
r + σ2

2

)
σ
√
τ

,

d2 = d1 − σ
√
τ ,

N (d) =
1

2π

∫ d

−∞
e−u

2

du

and τ = T − t is the time to maturity.
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Implied volatility and volatility surface

In Black & Scholes world, the volatility is assumed to be constant. However, empirical

data shows that options written on the same underlying asset with different strike price

K and exercise time T have different implied volatilities. The plot of implied volatility

as a function of strike price and expiry time produces the volatility surface, which is

discussed in detail in Gatheral [40]. Such a Volatility Surface generated from a stochastic

volatility inspired (for more details see Gatheral and Jaquier [41]) fit to closing prices of

S&P options as of June 20, 2013 is is illustrated in Figure 3.1 in Gatheral et al. [42]. The

plot of implied volatility against strike price K for a fixed maturity T is often symmetric

and "U-shape" looking, hence called volatility smile. As we mentioned, the Black &

Scholes model assumes a constant volatility, thus will have a volatility surface which is

completely flat as illustrated in Figure 3.2. But in reality this is not the case. This is also

a motivation of various models which are designed later on.

Figure 3.1: The S&P implied volatility surface as of June 20, 2013.
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Figure 3.2: Black & Scholes implied volatility surface.

3.1.4 Local volatility model

The inability of generating empirical features such as leverage effect and the implied

volatility surface via the constant volatility motivates the next generation model: the

local volatility models where volatility is a deterministic function of time and stock price.

The structure of local volatility models is given as follows:

dSt = St(µdt+ σdBt),

σ = f(t, St).

Dupire [35], Derman and Kani [31] give a relation between the volatility and the price

of European calls. They have showed that for local volatility there exists a unique such

risk-neutral process that is consistent with option data such that he stock price modeled

by a risk natural diffusion process

dSt = St(rdt+ σ(t, St)dWt),
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and the price of the European call option by risk neutral valuation is given by

C(K,T ) = e−rTEQ(ST −K)+

= e−rT
∫ ∞
K

(ST −K)+p(ST )dST

where (ST−K)+ = max((ST−K), 0), p(ST ) is the risk neutral probability density function

for ST , andK is the strike. Dupire used Fokker-Planck equation (see Risken [91]) to obtain

local volatility formula presented in the next proposition:

Proposition 3.1.2. (Dupire [35]). Assume that the European call prices

C(K,T ) = E(e−rT (ST −K)+))

for any maturity T and any strike K are known. If, under the risk-neutral probability,

the stock price dynamics are given by

dSt = St(rdt+ σ(t, St)dWt)

where σ is a deterministic function, then

σ2(T,K) =
∂TC(K,T ) + rK∂KC(K,T )

1
2
K2∂2

KKC(K,T )

where ∂T (resp. ∂K) is the partial derivative operator with respect to the maturity

(resp. the strike).

3.1.5 Stochastic volatility models

The local volatility models enable volatility to vary with strike K and maturity T , but

they capture only some features of empirical volatility and still have some limitations.

For instance, because volatility is a deterministic function of time and stock price, it is

perfectly correlated with stock price, i.e. the absolute value of the correlation between
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volatility and stock price is 1. However, there is no empirically observed perfect correla-

tion. Furthermore, volatility clustering is not captured in local volatility models. These

failures motivated the stochastic volatility models which are described under the dynamic


dSt = µStdt+ σStdBt,

dσt = f(t, σt)dt+ g(t, σt)dWt,

corr(Bt,Wt) = ρ.

Note that ρ can take any value in (−1, 1) but in order to capture leverage, ρ must be

negative.

Stochastic volatility models have many more advantages over previous classes of volatil-

ity models, capturing more empirical features such as volatility clustering and leverage

by choosing a negative value for ρ. In addition, they have greater variability and are able

to capture extreme events such as the dramatic changes in volatility during the financial

crisis. The disadvantages of stochastic volatility are mainly due to the additional ran-

domness of the second stochastic process. The inconveniences of stochastic volatility are

mainly due to the additional randomness of the second stochastic process W . Stochastic

volatility has less practical use because the market is no longer complete, therefore not all

contingent claims can be perfectly hedged and the price cannot be uniquely determined.

Hull and White

We refer to Hull and White [47] as the first authors who proposed the use of stochastic

volatility models, this model describes the dynamic of asset price St, t ≥ 0 as follows:

dSt = µtStdt+ σtStdWt,

dσ2
t = θσ2

t dt+ γσ2
t dBt,

where σt denotes the stochastic volatility of price St, Wt and Bt, t ∈ [0, T ] are two

standards Bm with correlation coefficient ρ ∈ (−1, 1) and µ, θ, γ are constants.
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Hull & White model provides a closed form solution to European option prices when

ρ = 0. The solution is obtained by using Black & Scholes pricing formula with

σt =

√
1

T − t

∫ T

t

σ2
sds. (3.5)

Stein and Stein [98] adopted the same model but with a correlation between the asset

price and the volatility.

SABR model

Hagan et al. [43] introduced SABR model which is a stochastic version of elasticity of

variance (CEV) model. Under risk natural measure, the price follows the following system

of stochastic differential equations

dSt = σtS
β
t dBt, t > 0,

dσt = vσtdWt, t > 0.

Here, σ models the stochastic volatility of asset price, β is the elasticity parameter, v > 0

is the volatility of volatility. Note that in this model the volatility increases exponentially

for long term options.

Heston model

Heston [44] suggested that the variance follows a Cox-Ingersoll-Ross (CIR) interest pro-
cess.

dSt = µtStdt+ σtStdWt, (3.6)

dσ2
t = α(m− σ2

t )dt+ γσ2
t dBt, (3.7)

where m is the long-term average of σ2, t > 0, α > 0 is the rate of mean-reversion, γ is

the volatility of volatility coefficient. The quantities µ, α,m, γ are real constants, α > 0,

and Wt, Bt, t > 0, are standard Brownian motions with correlation coefficient ρ ∈ (−1, 1)

.
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This model enjoys success since it is possible to deduce analytical formula for the price of

an European call (put) options whose underlying asset price and its stochastic volatility

satisfy Equations (3.6) and (3.7) respectively. The formula for the option prices are

expressed as integrals of explicitly known integrands. These integrals must be numerically

evaluated but due to the incompleteness of the market, the risk neutral measure has to

be specified first.

3.2 Fractional stochastic volatility models

Stochastic volatility models can reproduce some important features of implied volatility

such as the variation from the strike price, represented graphically as a smile or a skew.

The effect of stochastic volatility are not easily explained, however, because of its depen-

dence on the time of maturity. For example, the effects of stochastic volatility remain

important for long maturities (see Bollosev and Mikkelsen [15]). In practice, the slope

of the observed short-term implied volatility skewness tends to infinity when the time

to maturity tends to zero, while for classical stochastic volatility models this limit is a

constant (see Lee [66]). On the other side, The empirical results show that the auto-

correlation function of squared hight frequency returns decays slowly towards zero, then

it has been proposed that squared returns may be modeled as a long memory process

whose autocorrelation function decays slowly. (see Andersen and Bollerslev [2], Andersen

et al.[4] and Ding et al.[33]).

3.2.1 Comte and Renault model

Comte and Renault [25] introduced for a first time a fractional stochastic volatility model

(FSV) which is a long memory volatility process, using a model based on a fractional

Brownian motion with Hurst H > 1
2
. This model is a generalization of Hull & White

model by replacing the Wiener process by a fBm. More precisely, the model considered

that that the risky asset dynamic’s price follows (3.6) and the log-volatility is a fractional
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Ornstein-Uhlenbeck process where H > 1
2
, to ensure the long-range dependence:

dXt = −κXtdt+ γdBH
t , X0 = 0, κ > 0, H >

1

2
. (3.8)

The solution can be written as

Xt = γ

∫ t

0

e−κ(t−s)dBH
t .

Integration with respect to BH is defined only in the Wiener L2 sense and for the inte-

gration of deterministic functions. We thus obtain families of Gaussian processes. The

process Xt can also be written as
∫ t

0

a(t− s)dWs, such that

a(x) =
γ

Γ(H − 1
2
)

d

dx

∫ x

0

e−κu(x− u)H−
1
2du

=
γ

Γ(H − 1
2
)

(
xH − 1

2
− κe−κx

∫ x

0

eκuuH−
1
2

)
.

We denote by Yt the stationary version of Xt, Yt =

∫ t

−∞
a(t − s)dWs. Therefore, the

solution X of the fractional SDE (3.8) is given by

Xt =

∫ t

0

(t− s) 1
2
−H

Γ(H − 1
2
)
dXH

s ,

where

XH
t =

d

dt

∫ t

0

(t− s)H− 1
2

Γ(3
2
−H)

= γ

∫ t

0

e−κ(t−s)dWs.

It seems interesting to note that long-memory fractional processes as considered in Comte

and Renault [25] and solutions of (3.8), in particular, have the following properties proved

in Comte [23]
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• The covariance function ρ = ρY associated with X satisfies for h → 0 and C

constant:

ρ(h) = ρ(0) +
1

2
C|h|2H + o(|h|2H).

• X is ergodic in L2 sense.

• There is a process Zt equivalent to Xt, such that the sample function of Z satisfies

a Lipschitz condition of order β, ∀β ∈ (0, H), a.s.

Consider a truncated version B̃H
t of the fBm such that:

B̃H
t =

∫ t

0

(t− s)H− 1
2

Γ(H + 1
2
)
dWt, H >

1

2
.

The volatility process σt is asymptotically equivalent (in quadratic variation) to the

stationary process:

σ̃t = exp

{
γ

∫ t

−∞
e−κ(t−s)dB̃H

t

}
. (3.9)

As in usual diffusion models of stochastic volatility, the volatility process is assumed to be

asymptotically stationary and nowhere differentiable. The fractional exponent H provides

some degree of regularity. Indeed, it is possible to show for σt, the same type of regularity

property as for the fractional process Xt = ln(σt)

Proposition 3.2.1. (Comte and Renault [25]).

Let rσ(h) = Cov(σ̃t+h, σ̃t), where σ̃ is given by (3.9). Then, for h→ 0,

rσ(h) = rσ(0) + η|h|2H + o(|h|2H),

where η is a given constant.

In fact, we can see that when H > 1
2
:

rσ(h)− rσ(0)

h
→ 0 as h→ 0.
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In the main, the autocorrelation function of the stationary process satisfies the regularity

condition that ensures the Lipschitz characteristic of the sample paths. As the H is larger,

the smoothness of the path of the volatility process is higher.

3.2.2 Rough fractional volatility model

Although correlated fBm volatility models (with Hurst parameter H > 1
2
) can explain the

observed long range properties of implied volatility, it has been shown in Alòs et al. [1]

that these models cannot describe its empirical behavior in the short range. In particular,

if H > 1
2
, the slope of the skewness of implied volatility at money tends to zero with

time to maturity when the time to maturity tends to zero, whereas this slope tends to

infinity in the case of non-correlation H < 1
2
. These properties were also investigated by

Fukasawa [39].

According to the above results, Gatheral et al. [42] recently suggested a model of fractional

volatility with H < 1
2
. This model was found to be very efficient in describing real market

data. Gatheral et al. [42] suggested to use a more rough version of the previous model,

they proved that the log-volatility behaves like a fractional Brownian motion with Hurst

index H towards 0.1 and showed that this model is remarkably consistent with empirical

financial time series data, and gives better forecasts of realized volatility. The model has

the following structure:

dXt = γdBH
t + κ(θ −Xt)dt, (3.10)

with θ ∈ R, κ and γ are positive parameters and H < 1
2
.

Using daily realized variance estimates as proxies for daily spot volatilities, authors

found that the empirical quantity

m(∆, q) =
1

N

N∑
k=1

| log(σk∆)− log(σ(k−1)∆)|q

with k ∈ {[t/∆]}, N = [T/∆] and q ≥ 0, enjoy the scaling property of the fBm it the
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sense that:

E
[
| log(σt+∆)− log(σt)|q

]
= Kqv

q∆qH , (3.11)

where 0, 06 < H < 0, 2 and it can be seen as a measure of smoothness characteristic of the

underlying volatility process. In addition, the distributions of increments of log-volatility

is close to normal distribution. Then, naturally the log-volatility may be modeled using

fractional Brownian motion under the form:

log(σt+∆)− log(σt) = v(BH
t+∆ −BH

t ). (3.12)

Clearly, (3.12) can be written under the form

σt = α exp{vBH
t }, α ∈ R,

which is non-stationary model. The solution of the stochastic differential equation (3.10)

is the stationary version of RFSV model, then the final specification of the RFSV model

for the volatility on the time interval is as follows:

σt = exp{Xt}.

3.3 Stochastic volatility modeling via mixed fractional
Brownian motion

We propose a generalization of rough stochastic volatility model by dealing with the mixed

fractional Brownian motion with H < 1
2
, we show that the realized volatility enjoy the

scaling property of mixed fBm with 0.09 < H < 0.2.

3.3.1 Empirical results related to the increments of log-volatility

The scaling property and gaussianity

In this section, we are interesting in the dynamic of log-volatility process, since it is not

directly observed. We use non parametric daily data from Oxford-Man Institute of Quan-

titative Finance Realized Library during 5311 days (from January 3, 2000 to November 2,
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2020) which include a collection of daily non parametric estimates of integrated variance

of all indices in the Oxford-Man dataset1, we use the realized kernel estimates (Tukey-

Hanning(2)) denoted by rk_th2 in order to proxy the spot volatility. We consider in our

study the S&P and FTSE indices. Following the same steps as Gatheral et al.[42], we

observe the behavior of the empirical quantity defined by:

m(∆, q) =
1

N

N∑
k=1

| log(σk∆)− log(σ(k−1)∆)|q, (3.13)

where {σk∆}k is a volatility process on time interval [0, T ], k ∈ {0, N}, N = [T/∆] and

q > 0. We recall that m(∆, q) is the empirical counterpart of E(| log σt+∆ − log σt|q).

Our aim is to show that the log-volatility can be approximated by mixed fractional

Brownian motion, i.e, m(∆, q) satisfies the scaling property of mfBm (1.7) in the sense

that:

m(∆, q) ≤ C̃q∆
fq , (3.14)

where C̃q is a constant depending on q. The parameter fq can be viewed as the smoothness

parameter which controls the regularity of trajectories of the log-volatility process. To

give the best estimation of the parameter H for which

fq ∼ q

(
1

2
∧H

)
,

we first display the logm(∆, q) against log ∆ for different values of q.

1Data obtained from https://realized.oxford-man.ox.ac.uk/data/download
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Figure 3.3: logm(∆, q) vs. log ∆ of S&P index.
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Figure 3.4: logm(∆, q) vs. log ∆ of FTSE index.
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Then, in order to give a graphic illustration of (3.14), we plot a straight line of the

form

y : log ∆ 7→ fq log(∆) + vq,

where fq is the slope of line associated with q and vq is a positive constant, such that for

all q:

logm(∆, q) ≤ fq log(∆) + vq.

We can see easily that for some f , the inequality (3.14) holds. Now, we give the estimation

of the smoothness parameter by regressing fq against q. We get fq ∼ q
(

1
2
∧H

)
with

H = 0.156 for S&P and with H = 0.147 for FTSE.
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Figure 3.5: fq against q of S&P index.



3.3.1 Empirical results related to the increments of log-volatility 95

0.5 1.0 1.5 2.0 2.5 3.0

0.
10

0.
20

0.
30

0.
40

q

fq

0.147q
fq

Figure 3.6: fq against q of FTSE index.

Furthermore, the comparison between the increments of empirical log-volatility over

different time scales (∆ = 1, ∆ = 10, ∆ = 100) and the normal fit shows that the distri-

bution of log-volatility increments tends to Normal distribution. We display histograms

of log-volatility increments and the normal fit of mfBm for S&P index, the same result is

obtained for FTSE index.
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Figure 3.7: The distribution of the increment of log-volatility, standard normal distri-
bution in red and distribution of the increments of mfBm with H=0.156 in green, S&P
index.

Smoothness parameter of other indices under the MFSV model and compar-

ison with rough model

To obtain the best estimation of the smoothness parameter, we repeat the statistical

study applied on S&P and FTSE indices for all other indices of the data from Oxford-

Man Institute, we find that the estimated parameter H varies between 0.09 and 0.2.

Moreover, comparing the results obtained using our mixed fractional volatility (MFSV)

model and those obtained from the rough volatility (RFSV) model, we remark a slight

difference between (see Table 3.1). We conclude that the choice of a stochastic volatility

model generated by the mixed fractional Brownian motion with Hurst index H < 1
2
can

be seen as an alternative of rough model.
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Index MFSV RFSV Index MFSV RFSV
AEX.rk_th2 0.161 0.162 KSE.rk_th2 0.0795 0.117
AORD.rk_th2 0.109 0.115 MXX.rk_th2 0.0961 0.0974
BFX.rk_th2 0.154 0.152 N225.rk_th2 0.144 0.139
BVSP.rk_th2 0.14 0.14 OMXC20.rk_th2 0.123 0.124
DJI.rk_th2 0.161 0.174 OMXHPI.rk_th2 0.131 0.132
FCHI.rk_th2 0.148 0.149 OSEAX.rk_th2 0.144 0.152
FTMIB.rk_th2 0.171 0.154 RUT.rk_th2 0.133 0.134
FTSE.rk_th2 0.147 0.15 SMSI.rk_th2 0.124 0.124
GDAXI.rk_th2 0.163 0.164 SPX.rk_th2 0.156 0.17
GSPTSE.rk_th2 0.149 0.151 SSEC.rk_th2 0.141 0.137
HSI.rk_th2 0.111 0.119 SSMI.rk_th2 0.202 0.198
IBEX.rk_th2 0.145 0.141 STI.rk_th2 0.0793 0.0789
IXIC.rk_th2 0.153 0.156 STOXX50E. 0.127 0.128
KS11.rk_th2 0.108 0.13 rk_th2

Table 3.1: Estimated values of H under mixed fractional model and rough model.

3.3.2 Mixed fractional stochastic volatility model

The empirical results given in Section 3.3.1 showed that the increments of log-volatility

behave as those of mfBm and their probability distribution tends to Normal distribution.

Thus, in the light of rough model and taking into account the properties of (MH
t+∆−MH

t ),

let:

log(σt+∆)− log(σt) = γ(MH
t+∆ −MH

t ), (3.15)

where γ is a positive constant and H the empirical measure of smoothness of log-volatility.

Equivalently, we have :

Xt = γMH
t + κ, κ ∈ R+, t ∈ [0, T ], (3.16)

where Xt = log(σt). Xt is clearly non-stationary model because of the non-stationarity of

the process MH . The first natural way to get a stationary model is to define an Ornstein

Uhlenbeck process as the solution to the following Langevin equation:
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dXt = −λ(Xt − µ)dt+ γdMH
t , t ∈ [0, T ], (3.17)

where λ, µ and γ are positive constants. The explicit solution of (3.17) is given by

Riemann Stieltjes integral as :

Xλ
t = γ

∫ t

−∞
e−λ(t−s)dMH

s + µ.

If λ tends to zero, the mixed fractional Ornstein Uhlenbeck process tends to the

non-stationary model (3.16), i.e. the behavior of the stationary log-volatility model is

approximatively similar to that of mfBm. Moreover the scaling property of its trajectories

tends to that of MH . These facts are established.

Proposition 3.3.1. Let MH be a mixed fractional Brownian motion and Xλ defined by

(3.3.2) for a given λ > 0. As λ > 0 tends to zero, we have

E

[
sup
t∈[0,T ]

| Xλ
t −Xλ

0 − γMH
t |

]
→ 0. (3.18)

Proof. We have

Xλ
t = γ

∫ t

−∞
e−λ(t−s)dMH

s + µ.

Applying integration by parts, we obtain

Xλ
t = γMH

t − γλ
∫ t

−∞
e−λ(t−s)MH

s ds+ µ.

Then,

Xλ
t −Xλ

0 − γMH
t = γλ

(∫ t

−∞
e−λ(t−s)MH

s ds+

∫ 0

−∞
eλsMH

s ds

)

= γλ

(∫ 0

−∞
(eλs − e−λ(t−s))MH

s ds−
∫ t

0

e−λ(t−s)MH
s ds

)
.

(3.19)
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Using the fact that ex ≥ 1 + x, we have

sup
t∈[0,T ]

| Xλ
t −Xλ

0 − γMH
t |≤ γλ

∫ 0

−∞
(Tλeλs)M̂H

s ds− γλTM̂H
T , (3.20)

where M̂H
T = supt∈[0,T ] |MH

s |. Then,

E

[
sup
t∈[0,T ]

| Xλ
t −Xλ

0 − γMH
t |

]
≤ cγλ

∫ 0

−∞
(Tλeλs)E

[
M̂H

s

]
ds− γλTE

[
M̂H

T

]
, (3.21)

where c is a constant. Using the inequality of Novikov [83] for the fBm, classical Burkholder

inequalities for the standard Brownian motion [19] and taking into account that M̂H
T ≤

B̂H
T + ŴT , we get

E

[
sup
t∈[0,T ]

| Xλ
t −Xλ

0 − γMH
t |

]
≤ cγλ

∫ 0

−∞
(Tλeλs)

(
|s|H + |s|

1
2

)
ds− γλT

(
|T |H + |T |

1
2

)
.

(3.22)

Clearly,

E

[
sup
t∈[0,T ]

| Xλ
t −Xλ

0 − γMH
t |

]
−−→
λ→0

0. (3.23)

Corollary 3.3.1. Let q > 0, t > 0 and ∆ > 0. As λ→ 0, we have

E
[
|Xλ

t+∆ −Xλ
t |q
]
→ γqKq∆

Hq. (3.24)
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Proof. We have

Xλ
t = γ

∫ t

−∞
e−λ(t−s)dMH

s + µ

= γ

∫ t

−∞
e−λ(t−s)dBH

s + γ

∫ t

−∞
e−λ(t−s)dBs + µ

= Zλ
t + Y λ

t + µ,

where Zλ
t is a fractional Ornstein Uhlenbeck process and Y λ

t is the classical Ornstein

Uhlenbeck process. Due to the independence between BH and B, Zλ
t and Y λ

t are inde-

pendents. Therefore we have

Cov(Xλ
t+∆, X

λ
t ) = Cov(Zλ

t+∆, Z
λ
t ) + Cov(Y λ

t+∆, Y
λ
t ).

According to Cheridito [21],

Cov(Zλ
t+∆, Z

λ
t ) = K

∫
R
ei∆x
|x|1−2H

λ2 + x2
dx,

with K = γ2Γ(2H+1)sin(πH)
2π

, then, it follows

Cov(Y λ
t+∆, Y

λ
t ) = K

∫
R
ei∆x

1

λ2 + x2
dx.

The second moment E
[
|Xλ

t+∆ −Xλ
t |2
]
is equal to

2V
[
Xλ
t

]
− 2Cov

[
Xλ
t+∆, X

λ
t

]
.

Then,

E
[
|Xλ

t+∆ −Xλ
t |2
]

= 2K

∫
R

(
1− ei∆x

) 1 + |x|1−2H

λ2 + x2
dx.

The right hand side is uniformly bounded by

2K

∫
R

(
1− ei∆x

) 1 + |x|1−2H

x2
dx,
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for some fixed ∆.

Here, Xλ
t+∆ − Xλ

t is a Gaussian random variable, according to the properties of Normal

distribution, the family |Xλ
t+∆ −Xλ

t |q is uniformly integrable. Proposition 3.3.1 claimed

that |Xλ
t −Xλ

0 | → γMH
t in distribution as λ tends toward zero. Thus by stationarity, we

get

E
[
|Xλ

t+∆ −Xλ
t |q
]
−−→
λ→0

γqE
[
|MH

t+∆ −MH
t |q
]
.



Conclusion and Perspectives

Conclusion

In this thesis, we introduced an anticipating stochastic integral with respect to a sub-

fractional Brownian motion and a mixed fractional Brownian motion (mfBm) in the case

whereH > 1
2
. This gives a new concept of stochastic integration of non-adapted processes.

Under some conditions, we showed that our anticipating integral turns out to be a near-

martingale. In addition, few specific cases when dealing with MH when H > 3
4
have been

treated.
Moreover, we shed light on an important issue on modern financial modeling which is

the description of volatility process. Due to the important characteristics of the mixed

fractional Brownian motion and their adequacy with observed time series data, we give a

description of volatility process under our mixed fractional stochastic volatility model as:

σt = exp (Xt) , t ∈ [0, T ],

where Xt is the mixed fractional Ornstein-Uhlenbeck process with index H < 1
2
.

We gave in the first chapter a general overview on fractional, sub-fractional and mixed

fractional Brownian motions as well as fractional Ornstein-Uhlenbeck process.

In the second chapter, we defined integrals of non-adapted process which is a prod-

uct of adapted and instantly independent processes with respect to sub-fractional and

mixed fractional Brownian motions as a Riemann sum. Then and we showed that our
anticipating integrals are near-martingales under some assumptions.

102
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In the third chapter, we proposed a stochastic volatility model which is represented as

an Ornstein-Uhlenbeck process driven by a mixed fractional Brownian motion MH when

H < 1
2
.

Perspectives

The study carried out in this thesis can be used to develop new research on anticipating

stochastic integration theory as well as stochastic volatility modeling. for further work ,

there is many interesting issues to address such as :

• Develop an anticipating Itô formula of the anticipating integral with respect to

sub-fBm and mixed fBm.

• Define anticipating stochastic integrals with respect to fractional, sub-fractional and

mixed fractional Brownian motion when H < 1
2
using other technics of stochastic

integration.

• Extend the study dealing with a more general fractional Gaussian processes.

• Introduce new stationary stochastic volatility models via Gaussian processes with

long/short range dependence .

• Introduce an European pricing option formula using MFSV model.
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''ا�تلطة العشوائي الكسریةنماذج التقلب  "التكامل العشوائي المتعلق بعملیات غوس�یان والتطبیق في  
 

        الكسریة ذات ا�ا�رة الطوی� والمسارات �ير المنتظمة.  غوس�یانمن �لال عملیات  العشوائيالهدف من هذه أ�طرو�ة هو نمذ�ة التقلب  الملخص:
   عملیة ونقدم كنموذج تقلب عشوائي ا�تلطة . نقترح الحركة البراونیة الكسریةلو�اریتم التقلب العشوائي مساراتلتقد�ر انتظام  �س�ت�دم بیا�ت �الیة التردد 

. ج �بت �لو�اریتم التقلب العشوائيكنموذ     � < 1/2   لما  ٔ�ور�ش�تا�ن ٔ�ولنبك 
من النوع الكسري (الحركة البراونیة الكسریة  غوس�یان لعملیات �ل�س�بة العملیات �ير المك�فةن���ة ٔ�ساس�یة لتكامل  �لاوة �لى ذ�، ٔ�ظهر�   

النقاط في ا�الات الفرعیة وهذا  من �لال  يمقل  مع �خ�یار المناسب كمجموع ريمان       � > 1/2       لماّ �كون  الحركة البراونیة الكسریة الجزئیة)، �تلطةا 
    .إلى مجمو�ة خطیة من العملیات المتك�فة والمس�تق� �لى الفور. تعتبر هذه ا�راسة بمثابة تعميم لت� التي تم وضعها في الإطار البراوني ا�مجتفك�ك عملیة  
  قریبة من مارت��غال.   التكاملات هذه ٔ�ن ٔ�ثب��ا إلى ذ�، في ظل شروط معینة، �لإضافة 
 

مارت��غال،القرب من ك�فة، عملیات غوس�یان، الحركة البراونیة الكسریة ا�تلطة، الحركة البراونیة الكسریة الفرعیة، العملیة �ير الم المف�اح�ة: ا�كلمات     
.التقلب العشوائي  

 

« Intégration stochastique par rapport à des processus Gaussiens et application aux 
modèles de volatilité stochastique fractionnaire mixte » 

 

Résumé : L’objectif de cette thèse est de modéliser la volatilité par des processus Gaussiens fractionnaires à 
mémoire longue et à trajectoires irrégulières.  Nous utilisons des données à haute fréquence pour estimer la 
régularité des trajectoires de la log-volatilité. Nous proposons le mouvement Brownien fractionnaire mixte 
avec H< ½ comme un modèle de volatilité stochastique et nous construisons un processus d’Ornstein-
Uhlenbeck fractionnaire mixte stationnaire comme modèle stationnaire de la log-volatilité 
Par ailleurs, nous avons démontrer un résultat fondamental sur l’intégration des processus non adaptés par 
rapport aux processus de type fractionnaire (mouvement Brownien sous fractionnaire, mouvement Brownien 
fractionnaire mixte) lorsque H> ½ comme une somme de Riemann avec un choix approprié de points 
d’évaluation de sous-intervalles tout en décomposant le processus intégrant à une combinaison linéaire des 
processus adaptés et instantanément indépendants. Cette étude est considérée comme une généralisation du 
celle établie dans le cadre Brownien.  De plus, sous certaines conditions, nous prouvons que nos intégrales 
anticipées sont des près-martingales. 

Mots clés : Processus gaussiens, mouvement brownien fractionnaire mixte, mouvement brownien sous-
fractionnaire, processus non-adapté, près-martingale, volatilité stochastique. 

 

« Stochastic Integration with respect to Gaussian Processes and application to mixed 
fractional volatility models » 

 
Abstract: The objective of this thesis is to model volatility by fractional Gaussian processes with long 
memory and irregular trajectories.  We use high-frequency data to estimate the regularity of the log-
volatility paths. We propose the mixed fractional Brownian motion with H< ½ as a stochastic volatility 
model and construct a stationary mixed fractional Ornstein-Uhlenbeck process as a stationary model of log-
volatility. 
Furthermore, we demonstrate a fundamental result to the integration of non-adapted processes with respect 
to fractional type processes (sub-fractional Brownian motion, mixed fractional Brownian motion) when    
H> ½ as a Riemann sum with an appropriate choice of sub-interval evaluation points by decomposing the 
integrand processes to a linear combination of adapted and instantly independent processes. This study is 
considered as a generalization of the one established in the Brownian framework.  We prove that our 
anticipating integrals are near-martingales under some conditions. 
 
Keywords: Gaussian processes, mixed fractional Brownian motion, sub-fractional Brownian motion, non-
adapted process, near-martingale, stochastic volatility. 
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