#### **REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE** MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

**UNIVERSITE « D. TAHAR MOULAY » DE SAIDA** 

FACULTE DES SCIENCES

**DEPARTEMENT DE PHYSIQUE** 



Présenté en vue de l'obtention du diplôme de

### MASTER

Spécialité : PHYSIQUE

**Option : Physique des rayonnements** 

Par

#### **KADDOURI** Zohra

Sur le thème

## Spectroscopie infrarouge des deux bandes isolées $v_3$ et $v_4$ de la molécule ${}^{80}SeF_6$

Soutenu le : 23/06/2020 devant le jury composé de :

| M. DJAAFRI Abdelkader | MCB | Université D. TAHAR Moulay de Saida | Président    |
|-----------------------|-----|-------------------------------------|--------------|
| M. MESKINE Mohamed    | MCA | Université D. TAHAR Moulay de Saida | Encadreur    |
| M. KAAROUR Abdelkrim  | МСВ | Université D. TAHAR Moulay de Saida | Co-encadreur |
| M. DJAAFRI Tayeb      | MCA | Université D. TAHAR Moulay de Saida | Examinateur  |

Année Universitaire 2019 - 2020

Tout d'abord, je remercie ALLAH le tout puissant qui m'a donné la force et la volonté, la santé et la patience durant mes années d'études et surtout pendant la réalisation de ce travail.

emerciements

J'exprime mes profondes reconnaissances à mon encadreur Docteur «MESKINE Mohamed» pour sa disponibilité, sa patience et la qualité de son encadrement, ses compétences et ses conseils inestimable qui m'ont permis de mener à bien ce modeste travail.

Mes remerciements vont également aux membres du jury, d'avoir accepté de lire ce mémoire et de l'évaluer et pour l'intérêt qu'ils ont porté à mes recherche en acceptant d'examiner mon travail et de l'enrichir par leurs propositions.

Je remercie de tout cœur les enseignants de département des physiques.

Mes remerciements s'étendent également à tous les professeurs qui nous ont enseigné et qui par leurs compétences nous ont soutenu dans la poursuite de nos études, Spécialement : A. DJaafri, O. Ouardi, F. Saadaoui, M. Boutaleb, H. Boutaleb et M. Elkeurti.

A ma mère, je dis un immense merci. Je remercie également mon frère et deux sœurs, ainsi que mes amis et surtout spécialité du physique des rayonnements.

De plus, je remercie tous à l'ensemble des permanents et les professionnels de la bibliothèque.

Enfin, J'adresse plus sincères remerciements à toutes les personnes qui ont participé de près ou de loin à la réalisation de ce travail.

« Mercí Beaucoup »

« Kaddouri Zohra »\_\_\_\_

# Dédicaces

« Grâce à mon Díeu »

Je tiens a dédié ce modeste travail :

À mes chers parents, pour tous leurs sacrifices, leur amour pour leur soutien, leur patience, leurs conseils, et leurs encouragements.

À mon frère manssour et à ma sœur ainée : Plus qu'une mère pour moi, toujours présente quand j'avais besoin de vous et son mari Abdel Wahab.

À ma sœur Aida et son mari Abdel Jabbar et son fils Houssem Khalil.

À mon Encadreur Docteur « Meskine Mohamed » qui j'ai toute l'appréciation et le respect, qui était avec moi par son encouragement et m'aidé à la réalisation de ce travail du début à la fin.

À tous les professeurs de l'université de Saida et spécialement les professeurs de la physique des Rayonnements.

À toutes mes chères copines Spécialement: B. Messaouda, D. Meriem, M. Fatima.

À tous mes chères amis Spécialement : T. Cheikh, M. Lahrache, K. Abdelhaq, B. Yassine.

À celui qui était avec moi par son encouragement et m'aidé à la réalisation de ce travail.

À tous mes collègues la promotion de la physique des Rayonnements 2019-2020.

A tous ceux qui me sont chers.

« Kaddouri Zohra »

Sommaire

| Remerciements     |              |                                                                                                       |  |  |  |  |  |  |  |
|-------------------|--------------|-------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Dédicaces         |              |                                                                                                       |  |  |  |  |  |  |  |
| Liste des figures |              |                                                                                                       |  |  |  |  |  |  |  |
| Liste des tableau | ıх           |                                                                                                       |  |  |  |  |  |  |  |
| Introduction gén  | nérale       |                                                                                                       |  |  |  |  |  |  |  |
| Références bibli  | ographique   | S                                                                                                     |  |  |  |  |  |  |  |
| Chapitre I : Gér  | téralités su | r le groupe octaédrique                                                                               |  |  |  |  |  |  |  |
| I-1               | Introduci    | tion                                                                                                  |  |  |  |  |  |  |  |
| <i>I-2</i>        | Symétrie     | moléculaire                                                                                           |  |  |  |  |  |  |  |
|                   | I-2-1        | Définitions                                                                                           |  |  |  |  |  |  |  |
|                   | I-2-2        | Opérations de symétrie                                                                                |  |  |  |  |  |  |  |
|                   | I-2-3        | Éléments de symétrie                                                                                  |  |  |  |  |  |  |  |
| I-3               | le groupe    | $e O_h$                                                                                               |  |  |  |  |  |  |  |
| I-4               | Les mode     | es normaux de vibration des molécules octaédriques                                                    |  |  |  |  |  |  |  |
|                   | I-4-1        | Théorie des caractères                                                                                |  |  |  |  |  |  |  |
|                   | I-4-2        | Théorème                                                                                              |  |  |  |  |  |  |  |
| Références bibli  | ographique.  | S                                                                                                     |  |  |  |  |  |  |  |
| Chapitre II : Fo  | ormalisme (  | Ictaédrique                                                                                           |  |  |  |  |  |  |  |
| II-1              | Introduct    | tion                                                                                                  |  |  |  |  |  |  |  |
| <i>II-2</i>       | Transfor     | mations de contact                                                                                    |  |  |  |  |  |  |  |
| <i>II-3</i>       | Expressio    | on de l'Hamiltonien                                                                                   |  |  |  |  |  |  |  |
| II-4              | Expressio    | Expression de moment dipolaire                                                                        |  |  |  |  |  |  |  |
| II-5              | Expressio    | on de la polarisabilité                                                                               |  |  |  |  |  |  |  |
| II-6              | Les règle    | rs de sélection                                                                                       |  |  |  |  |  |  |  |
| Références bibli  | ographique   | S                                                                                                     |  |  |  |  |  |  |  |
| Chapitre III : A  | nalyse des d | <i>leux bandes isolées</i> $v_3$ <i>et</i> $v_4$ <i>de la molécule</i> <sup>80</sup> SeF <sub>6</sub> |  |  |  |  |  |  |  |
| III-1             | Introduci    | tion                                                                                                  |  |  |  |  |  |  |  |
| III-2             | Program      | mes utilisés                                                                                          |  |  |  |  |  |  |  |
|                   | III-2-1      | XTDS et SPVIEW                                                                                        |  |  |  |  |  |  |  |
|                   | III-2-2      | Fichier de paramètres                                                                                 |  |  |  |  |  |  |  |
|                   | III-2-3      | Génération du spectre                                                                                 |  |  |  |  |  |  |  |
|                   | III-2-4      | Simulation du spectre                                                                                 |  |  |  |  |  |  |  |
| <i>III-3</i>      | La métho     | ode d'analyse                                                                                         |  |  |  |  |  |  |  |
| III-4             | Analyse a    | des positions des raies de la bande $ u_3$ de la molécule ${}^{80}SeF_6$                              |  |  |  |  |  |  |  |
|                   | III-4-1      | Résultats et discussion                                                                               |  |  |  |  |  |  |  |
|                   | III-4-2      | Les niveaux d'énergies réduits                                                                        |  |  |  |  |  |  |  |
|                   | III-4-3      | Prédiction du spectre IR de la bande $v_3$ de la molécule $^{80}$ Se $F_6$                            |  |  |  |  |  |  |  |
| <i>III-5</i>      | . Analyse    | des positions des raies de la bande $v_4$ de la molécule <sup>80</sup> SeF <sub>6</sub>               |  |  |  |  |  |  |  |
|                   | III-5-1      | Résultats et discussion                                                                               |  |  |  |  |  |  |  |
|                   | III-5-2      | Les niveaux d'énergies réduits                                                                        |  |  |  |  |  |  |  |
|                   | III-5-3      | Prédiction du spectre IR de la bande $v_4$ de la molécule <sup>80</sup> SeF <sub>6</sub>              |  |  |  |  |  |  |  |
| Références bibli  | ographique.  | S S                                                                                                   |  |  |  |  |  |  |  |
| Conclusion géné   | érale        |                                                                                                       |  |  |  |  |  |  |  |

Résumé

## Liste des figures

| Figure (I-1).   | La rotation de 180° d'une molécule d'eau autour d'un axe la laisse inchangée,<br>ainsi que la réflexion au travers de deux plans miroirs.        | 06 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Figure (I-2).   | Effet de rotation de l'axe $C_2$ .                                                                                                               | 07 |
| Figure (I-3).   | Effet de l'opération de plan.                                                                                                                    | 08 |
| Figure (I-4).   | Effet de l'opération d'inversion i sur la molécule de $SF_6$ .                                                                                   | 08 |
| Figure (I-5).   | Rotation impropre $S_4$ .                                                                                                                        | 09 |
| Figure (I-6).   | Géométrie d'une molécule octaédrique.                                                                                                            | 09 |
| Figure (II-1).  | Illustration schématique de l'extrapolation vibrationnelle de l'Hamiltonien et de moment dipolaire dans le cas de polyades et de bandes chaudes. | 31 |
| Figure (III-1). | L'onglet "creat a job" dans XTDS.                                                                                                                | 34 |
| Figure (III-2). | Visualisation des spectres avec SPVIEW.                                                                                                          | 34 |
| Figure (III-3). | Méthode d'utilisation des deux logiciels XTDS et SPVIEW.                                                                                         | 37 |
| Figure (III-4). | Organigramme des programmes utilisés dans le calcul.                                                                                             | 38 |
| Figure (III-5). | Configuration d'équilibre de la molécule $XY_6$ .                                                                                                | 39 |
| Figure (III-6). | Spectres des transitions rovibrationnelles de la bande $\nu_3$ de la molécule ${}^{80}SeF_6$                                                     | 42 |
| Figure (III-7). | Répartitions des niveaux d'énergies réduits de niveau $\nu_3$ de la molécule ${}^{80}{ m SeF_6}$                                                 | 43 |
| Figure (III-8). | Spectre des transitions rovibrationnelles de la bande $\nu_4$ de la molécule ${}^{80}\text{SeF}_6$                                               | 51 |
| Figure (III-9). | Répartitions des niveaux des énergies de niveau de $\nu_4$ de la molécule ${}^{80}{ m SeF}_6$                                                    | 52 |



| Tableau (I-1).   | Table de caractères du groupe <b>Oh</b> .                                                                                                     | 10 |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|----|
| Tableau (1-2).   | Table de produits de caractères du groupe <b>Oh</b> .                                                                                         | 12 |
| Tableau (1-3).   | Caractères des opérations de symétrie.                                                                                                        | 15 |
| Tableau (1-4).   | Valeurs des caractères des opérations de symétrie des molécules $XY_6$ .                                                                      | 16 |
| Tableau (I-5).   | Caractères vibrationnels des opérations de symétrie des molécules $XY_6$ .                                                                    | 16 |
| Tableau (I-6).   | Table de caractères et valeurs de caractères vibrationnels des molécules $XY_6$ .                                                             | 17 |
| Tableau (I-7).   | Symétries des modes de vibrations des molécules octaédriques.                                                                                 | 18 |
| Tableau (I-8).   | Caractéristiques des bandes d'absorption des molécules octaédriques                                                                           | 19 |
| Tableau (II-1).  | Les symétries des opérateurs (Hamiltonien, moment dipolaire et polarisabilité)<br>dans les repères (MFF) et (LFF) des molécules octaédriques. | 30 |
| Tableau (III-1). | Les paramètres de l'Hamiltonien relatif à la bande $\nu_3$ de la molécule ${}^{80}{ m SeF}_6$ .                                               | 41 |
| Tableau (III-2). | Informations sur le spectre IR de la bande $\nu_3$ de la molécule <sup>80</sup> SeF <sub>6</sub> .                                            | 41 |
| Tableau (III-3). | Prédiction du spectre IR de la bande $\nu_3$ de la molécule <sup>80</sup> SeF <sub>6</sub> .                                                  | 44 |
| Tableau (III-4). | Les paramètres de l'Hamiltonien relatif à la bande $\nu_4$ de la molécule ${}^{80}SeF_6$ .                                                    | 50 |
| Tableau (III-5). | Informations sur le spectre IR de la bande $\nu_4$ de la molécule <sup>80</sup> SeF <sub>6</sub> .                                            | 50 |
| Tableau (III-6). | Prédiction du spectre IR de la bande $\nu_4$ de la molécule <sup>80</sup> SeF <sub>6</sub> .                                                  | 53 |



#### **Introduction :**

La spectroscopie infrarouge est l'une des techniques employée pour l'identification des composés organiques et inorganiques ou pour déterminer la composition d'un échantillon et de déterminer la nature des liaisons chimiques présentes dans une molécule à partir de leurs propriétés vibrationnelles (en complément d'autres méthodes, la Raman et la spectrométrie de masse). Elle est basée sur l'interaction du rayonnement infrarouge avec les molécules en excitantes leur modes de vibration (déformation, élongation) spécifiques de liaisons chimiques. Les fréquences des modes vibrationnels dépendent de la forme des surfaces d'énergie potentielle, les masses atomiques et du couplage vibronique associé.

Il est nécessaire de découvrir des méthodes faciles à appliquer, et qui permettent d'interpréter les résultats expérimentaux, et d'en tirer des informations sur la structure des molécules. C'est ici que la théorie des groupes joue un rôle primordial, elle fournit à l'expérimentateur un outil pour interpréter et expliquer ses résultats expérimentaux, et au théoricien un guide indispensable pour affronter le problème complexe de corrélation des résultats expérimentaux avec la structure moléculaire **[1]** 

Parmi les systèmes moléculaires qui occupent une place importante dans le domaine de la recherche, les molécules octaédriques  $XY_6$ , et dans ce travail on s'est intéressé à la molécule  ${}^{80}SeF_6$  et plus précisément à son spectre d'absorption infrarouge.

Les travaux consacrés à l'étude des spectres de vibration - rotation des molécules (toupie sphérique) de type  $XY_4$  et  $XY_6$  font appel à des méthodes spécifiques, caractérisées principalement par une utilisation très large de la théorie des groupes et des techniques tensorielles associées.

La structure octaédrique de la molécule  $SF_6$  a été reconnue depuis longtemps, grâce aux spectres infrarouge à faible résolution [2] et Raman [3].

Durant les années 1970 et le début des années 1980, plusieurs études de résolutions moyennes (de quelques ) ont été effectuées sur cette molécule. Ces études ont été publiées par Mc Dowell et al **[4,5]**, elles incluent toute à fait une étude systématique de toutes les bandes fondamentales, et quelques bandes de combinaison et harmoniques de molécules de type  $XY_6$ .

Cependant, et du fait de la faible résolution, ces bandes n'ont pas été analysées en utilisant des modèles bruts. En particulier, pour les bandes harmoniques et de combinaison, seuls les sous niveaux actives en infrarouge (avec une symétrie  $F_{1u}$ ) ont été considérés et traités comme étant des bandes isolées. Nous devrions également remarquer que ces travaux s'intéressent aux spectres d'absorption infrarouge, plus qu'aux spectres Raman [6,7].

La plupart des études à haute résolution réalisées jusqu'à maintenant ont été sur les bandes fondamentales  $\nu_4[8]$  et  $\nu_3$  [9].

D'autres efforts ont été également consacrés à l'étude de la bande  $\nu_3$ , en utilisant des diodes lasers [10,11]. Le groupe Bordé à Villetaneuse (France) a effectué des études à haute résolution [12,13], en utilisant des techniques d'absorption saturées de la structure hyperfine.

Baldacchini et al [11] ont analysé le spectre de la diode laser de  ${}^{34}SF_6$ , en utilisant un modèle simple.

#### Introduction générale

Entre 1977 et 1982, quelques autres travaux ont été également effectués sur les spectres de la bande  $2\nu_3$  en utilisant la technique de double résonance (par observation des raies de ( $2\nu_3 - \nu_3$ ) [14,15] et de la bande  $3\nu_3$  [16,17].

Concernant la bande  $\nu_3$ , nous pouvons mentionner aussi les travaux de Hartmann et al [18], et qui ont observé la bande de  $SF_6$  dans les groupes d'Hélium liquide pour atteindre une température rotationnelle de  $0.37^{0}$ k seulement.

La spectroscopie infrarouge à transformé de Fourier FTIR (Fourier Transformed Infrared) et les techniques diodes lasers sont aussi utilisées pour étudier les spectres à haute résolution de la bande  $v_4$  à Los Alamos par W. Person et al **[8,19].** Les chercheurs pourraient observer des raies rotationnelles pour une valeur de nombre quantique rotationnel allant jusqu'à J = 150.

Li et al [20], ont étudié la bande de combinaison  $(\nu_1 + \nu_4)$ , en utilisant le même modèle utilisé par W. Person et al.

À la fin des années 1970, Berger et al [21,7], qui ont étudié le spectre Raman de la molécule  $SF_6$  à une résolution de 0.02  $cm^{-1}$  .ont préliminairement analysé la bande  $\nu_2$  et ont ainsi déterminé quelques paramètres de l'Hamiltonien effectif.

V. Boudon et al [22] ont présenté les premiers détails sur le spectre infrarouge FTIR de la bande de combinaison ( $\nu_2 + \nu_6$ ) de la molécule  $SF_6$ .

Tandis que, Ch. Wenger et al [23]ont développé un logiciel nommé HTDS (Highly- Spherical Top Data Système) permettant de simuler les spectres des molécules octaédriques  $XY_6$ , V. Boudon et al [24] ont, ensuite, étudié simultanément les bandes  $v_4$  et ( $v_4 + v_6 - v_6$ ) de la molécule  ${}^{32}SF_6$ , en utilisant un spectre FTIR à haute résolution. Tandis que, M. Ray et al [25] ont développés le calcul de la matrice *G* intervenant dans l'orientation de O(3) et  $SU(2) \otimes CI$  des représentations dans les molécules  $XY_6$ .

M. Ray et al [26], ont développé un formalisme tensoriel rovibronique de l'Hamiltonien et moment de transition (moment dipolaire et polarisabilité) pour les molécules  $XY_6$ , ce qui a permis à N. Cheblal et al [27] de donner l'expression de l'opérateur rovibrationnel de moment dipolaire et de la polarisabilité des molécules  $XY_6$ . V. Boudon et al [28] ont analysé, ensuite, le spectre FTIR de la bande de combinaison  $\nu_2 + \nu_4$  de la molécule  ${}^{32}SF_6$ .

CH. Wenger et al **[29]** ont finalisé les deux logiciels nommés **XTDS** et **SPVIEW**, utilisés dans l'analyse, la simulation et le calcul des spectres à haute résolution de quelques types de molécules.

Pour cela, et du fait que la spectroscopie  $SeF_6$  reste encore mal connue, nous avons entrepris dans ce travail une étude systématique des deux bandes d'absorption  $\nu_3$  et  $\nu_4$  de la molécule <sup>80</sup>SeF<sub>6</sub>, en utilisant le formalisme octaédrique et les logiciels SPVIEW et XTDS développés à Dijon, université de Bourgogne.

Le premier chapitre, contient des généralités sur le symétries moléculaires, et la théorie des groupes, et plus particulièrement sur le groupe octaédrique auquel appartenant la molécule en question.

Le deuxième chapitre sera consacré au développement complet de l'opérateur Hamiltonien et moment de transition (moment dipolaire et polarisabilité) des molécules octaédriques  $XY_6$ .

#### Introduction générale

Ensuite et dans un dernier chapitre, nous décrivons brièvement la méthode d'analyse et les logiciels utilisés dans le calcul des spectres infrarouges des deux bandes en questions. Puis nous allons présenter et discuter les résultats obtenus lors de cette étude.

Enfin, la conclusion résume l'essentiel de notre travail.





- [1] Frédric Fauré and Boris Zhilinski, Lettres in Mathématical Physics, 55,219-238, (2001). https://link.springer.com/article/10.1023/A:1010912815438
- [2] J. Gaunt. Trans. Faraday Soc, 49 :1122, (1953). https://doi.org/10.1016/0371-1951(58)80107-1
- [3] H. Claassen, G. Goodmann, J. Holloway, and H. Selig. J. Chem. Phys, 53:341, (1970). https://doi.org/10.1063/1.1673786
- [4] R. Mc Dowell. Informel report la-6025-ms. Technical report, Los Alamos National Laboratory (unpublished).
- [5] R. Mc Dowell and B. Krohn. Spectrochim. Acta, 42A :371, (1986). https://doi.org/10.1016/0584-8539(86)80199-4
- [6] J. Cahen et al. Non-linear behaviour of molecules, atoms and ions in electric, magnetic or electromagnetic fields. In 31st international meeting, pages 127–140, Abbaye de Fontevraud, France, sept (1978). PUBLISHER, ADRESS, 1979.
- [7] A. Aboumajd, H. Burger, and R. Saint-Loup. J. Mol. Spectrosc, 78 :486, (1979). https://doi.org/10.1006/jmsp.1998.7699
- [8] K. Kim, W. Person, D. Seitz, and B. Krohn. J. Mol. Spectrosc, 76:322, (1979).
- [9] O.Acef, Ch.J.Bordé, A.Clairon, G.Pierre and B.Sartakov. J. Mol. Spectrosc, 199 :188-204, (2000). <u>https://doi.org/10.1006/jmsp.1999.8015</u>
- [10] Aldridge, Jack P. Filip, Henry, Flicker, Herbert, Holland Redus, F. McDowell, Robin S.Nereson, Norris G. Fox, Kenneth. J. Mol. Spectrosc, 58 issue 01 p:165-168, (1975). <u>https://doi.org/10.1016/0022-2852(75)90164-2</u>
- [11] G. Baldacchini, S. Marchetti, and V. Montelatici. J. Mol. Spectrosc, Volume 91, issue 01 :80-86, (1982). <u>https://doi.org/10.1016/0022-2852(82)90032-7</u>
- [12] J. Bordé and C. Bordé. J. Chem. Phys, 71 :417, (1982).
- [13] B. Bobin, C. Bordé, J. Bordé, and C. Bréant. J. Mol. Spectrosc, Volume 121, issue 01. p:91-127, (1987). https://doi.org/10.1016/0022-2852(87)90174-3
- [14] C. Reiser, J. Steinfeld, and H. Galbraith. J. Chem. Phys. 74, 2189 (1981); https://doi.org/10.1063/1.441379
- [15] M. Dubs, D. Harradine, E. Schweitzer, and J. I. Steinfeld. J. Chem. Phys. 77, 3824 (1982); https://doi.org/10.1063/1.444357
- [16] H. Kildal. J. Chem. Phys, 67 :1287, (1977). https://doi.org/10.1063/1.434948

- [17] A. Pine and A. Robiette. J. Mol. Spectrosc, Volume 80, Issue 2 :p: 388-402, (1980). https://doi.org/10.1016/0022-2852(80)90150-2
- [18] H. Hatmann, R. E. Miller, J. P. Toennies, and A. Vilesov. *Phys. Rev. Lett*, 75 :1566, (1995). https://doi.org/10.1103/PhysRevLett.75.1566
- [19] W. Person and B. Krohn. J. Mol. Spectrosc, Volume 98. issue 01. p: 229-257, (1983). https://doi.org/10.1016/0022-2852(83)90217-5
- [20] B. Li, Q. Zhu, and Z. Shen. Spectrochim. Acta A, Volume 43, Issue 11, p:13611363, (1987). https://doi.org/10.1016/S0584-8539(87)80011-9
- [21] H. Berger, A. Aboumajd et R. Saint-Loup. J. Phys. Letteres, Volume 38. Issue 18 : 373-375, (1977). https://doi.org/10.1051/jphyslet:019770038018037300
- [22] V.Boudon<sup>\*</sup> M.Hepp, M.Herman, I.Pak, and G.Pierre. J. Mol. Spectrosc, Volume 192. Issue 02. p:359-367, (1998). <u>https://doi.org/10.1006/jmsp.1998.7699</u>
- [23] Ch. Wenger, V. Boudon, J-P. Champion, and G. Pierre. Journal of Quantitative Spectroscopy and Radiative Transfer, volume 66. Issue 01. p:1–16, (2000). https://doi.org/10.1016/S0022-4073(99)00161-2
- [24] V. Boudon, G. Pierre, and H. Burger. J. Mol. Spectrosc, volume 205. Issue 02. p:304–311, (2001). https://doi.org/10.1006/jmsp.2000.8267
- [25] M. Rey, V. Boudon, Ch. Wenger, G. Pierre, and B. Sartakov. J. Mol. Spectrosc, volume 219. Issue 2 :313–325, (2003). https://doi.org/10.1016/S0022-2852(03)00056-0
- [26] Michael Rey, Vincent Boudon, and Michel Loete. J. Mol. Structure, volume 599. Issue 1-3. p:125–137, (2001).
   https://doi.org/10.1016/S0022-2860(01)00841-9
- [27] N. Cheblal, M. Loete, and V. Boudon. J. Mol. Spectrosc, Volume 197. Issue 02. p:222–231, (1999). https://doi.org/10.1006/jmsp.1999.7902
- [28] V. Boudon and N. Lacome. J. Mol. Spectrosc, Volume 222. Issue 02. p :291–295, (2003). https://doi.org/10.1016/j.jms.2003.09.003
- [29] Ch.Wenger, V. Boudon, M. Rotger, and M. Sanzharov. J. Mol. Spectrosc, Volume 251. Issue 01-02. p :102–113, (2008). https://doi.org/10.1016/j.jms.2008.01.011



#### **I-1.Introduction** :

La théorie des groupes est une discipline mathématique. C'est la partie de l'algèbre générale qui étudie les structures algébriques appelées groupes. Le développement de la théorie des groupes est issu de la théorie des nombres, de la théorie des équations algébriques et de la géométrie.

La théorie des groupes est étroitement liée à la théorie des représentations. elle sont très utilisées en chimie et aussi en physique théoriques, sciences des matériaux et cryptographie asymétrique, surtout pour le développement des théories de jauge.

La théorie des groupes permet de simplifier l'écriture de l'Hamiltonien d'une molécule en exploitant ses symétries, et le calcul des orbitales moléculaires. Elle permet de prédire le type de déformation que peut subir une molécule et selon la symétrie de sa déformation, elle permet de prévoir si une transition peut être visible dans les spectres IR/ou Raman.

#### I-2.Symétrie moléculaire:

#### I-2-1.Définitions :

L'étude des symétries d'une molécule est fondée sur l'étude de son infrastructure géométrique constituée par les noyaux de ses atomes. La molécule peut contenir des noyaux identiques et occupants, dans l'infrastructure, des positions équivalentes du point de vue physique. Dans la théorie de la symétrie moléculaire, Nous considérerons, parmi les permutations de noyaux identiques et physiquement équivalents, les permutations obtenues par des rotations de l'infrastructure considérée comme un solide indéformable, on par des symétries par rapport à un plan, on encore par des combinaisons de ces deux types de transformation. **[1]** 

#### I-2-2. Opération de symétrie :

L'opération de symétrie c'est le mouvement de déplacement d'un objet le conduisant soit à une position équivalente soit à une position identique, chaque opération de symétrie possède un élément de symétrie. [2]



Figure (I-1): La rotation de 180° d'une molécule d'eau autour d'un axe la laisse inchangée, ainsi que la réflexion au travers de deux plans miroirs.

#### I-2-3. Éléments de symétrie :

Un élément de symétrie est un objet géométrique qui sert à définir l'opération de symétrie un point, une droite, un plan .....etc.

Les cinq opérations de symétrie possibles pour les molécules sont :[3]

- ✤ L'opération d'identité E : Est une opération de symétrie qui consiste à ne rien faire à la molécule.
- \* Axe propres de rotation  $C_n$ : La rotation d'ordre n, c'est à dire d'un angle de  $2\pi/n$  laisse la molécule inchangée. Certaines molécules ont plusieurs axes de symétrie la plus grande valeur de *n* est appelé l'axe principal.



Figure (I-2) : Effet de rotation de l'axe C<sub>2</sub>.

- *Plans de symétries*  $\sigma$ : Il définit une opération de symétrie plane ou réflexion, il existe trois types de plan de symétrie selon son positionnement par rapport à l'axe principal :
  - > *Plan*  $\sigma_h$ : On note  $\sigma_h$  un plan de symétrie horizontal, il est perpendiculaire à l'axe d'ordre n.
  - > *Plan*  $\sigma_v$ : Plan de réflexion est appelé plan vertical et est noté  $\sigma_v$ , il est perpendiculaire à  $\sigma_h$ qui contient l'axe principal  $C_n$ .
  - > *Plan*  $\sigma_d$ : Plan de réflexion est note  $\sigma_d$ , il est perpendiculaire à  $\sigma_v$ , s'il contient l'axe principal et au même temps il est bissecteur d'un angle formé par deux axes  $C_2$ .



Figure (I-3): Effet de l'opération de plan.

Centre d'inversion « i » : l'opération de symétrie associée à un centre d'inversion Consiste à faire une réflexion par rapport à un point, notée i. Si le centre de symétrie coïncide avec l'origine des coordonnées, l'opérateur i a pour effet de changer le signe des coordonnées selon : i(x, y, z) \_ (-x,-y,-z).



Figure (I-4) : Effet de l'opération d'inversion i sur la molécule de SF<sub>6</sub>.

\* Axe de rotation impropre  $S_n$ : Appelée aussi rotation-réflexion, consiste en une rotation propre de  $2\pi/n$  et une réflexion dans un plan perpendiculaire à l'axe de rotation.



**Figure (I-5) :** Rotation impropre *S*<sub>4</sub>.

#### *I-3.le* groupe $O_h$ :

Il est le groupe de l'octaèdre régulier qui dérive du groupe O en lui ajoutant un centre d'inversion donc :

 $\mathbf{O} + \mathbf{I} \rightarrow \boldsymbol{O}_h$ .

Il contient tous les éléments de symétrie d'un octaèdre régulier: 8 axes d'ordre 3; 6 axes d'ordre 2; 6 axes d'ordre 4; 3 axes d'ordre 4 joignant les centres de deux faces opposées du cube ; un centre d'inversion i; 8 axes impropre d'ordre 6; 6 axes impropre d'ordre 4 ; 3 plans de symétrie  $\sigma_h$ ; 6 plans de symétrie  $\sigma_d$ .



Figure (I-6): Géométrie d'une molécule octaédrique.

Chaque groupe ponctuel possède sa table de caractères (ou table caractéristique) que vous trouverez cidessous. [4]

Généralités sur le groupe octaédrique

| O <sub>h</sub> E | <b>8C</b> <sub>3</sub> | <b>6</b> <i>C</i> <sub>2</sub> | <b>6</b> <i>C</i> <sub>4</sub> | <b>3</b> <i>C</i> <sub>2</sub> '' | i  | <b>6</b> <i>S</i> <sub>4</sub> | <b>8</b> <i>S</i> <sub>6</sub> | <b>3</b> 5h | <b>6o</b> <i>d</i> |
|------------------|------------------------|--------------------------------|--------------------------------|-----------------------------------|----|--------------------------------|--------------------------------|-------------|--------------------|
| Alg 1            | 1                      | 1                              | 1                              | 1                                 | 1  | 1                              | 1                              | 1           | 1                  |
| A1u 1            | 1                      | 1                              | 1                              | 1                                 | -1 | -1                             | -1                             | -1          | -1                 |
| A2g 1            | 1                      | -1                             | -1                             | 1                                 | 1  | -1                             | 1                              | 1           | -1                 |
| A2u 1            | 1                      | -1                             | -1                             | 1                                 | -1 | 1                              | -1                             | -1          | 1                  |
| <i>E g</i> 2     | -1                     | 0                              | 0                              | 2                                 | 2  | 0                              | -1                             | 2           | 0                  |
| Eu 2             | -1                     | 0                              | 0                              | 2                                 | -2 | 0                              | 1                              | -2          | 0                  |
| F1g 3            | 0                      | -1                             | 1                              | -1                                | 3  | 1                              | 0                              | -1          | -1                 |
| F1u 3            | 0                      | -1                             | 1                              | -1                                | -3 | -1                             | 0                              | 1           | 1                  |
| F2g 3            | 0                      | 1                              | -1                             | -1                                | 3  | -1                             | 0                              | -1          | 1                  |
| F2u 3            | 0                      | 1                              | -1                             | -1                                | -3 | 1                              | 0                              | 1           | -1                 |

**Tableau** (I-1) : Table de caractères du groupe  $O_h$ .

- $A_{1q}, A_{1u}, A_{2q}, A_{2u}$ : Représentation irréductible à une dimension.
- $E_g, E_u$ : Représentation irréductible à deux dimensions.
- $F_{1q}, F_{1u}, F_{2q}, F_{2u}$ : Représentation irréductible à trois dimensions.

#### I-4.Les modes normaux de vibration des molécules octaédriques:

Un mode de vibration d'une molécule est un mouvement pour lequel tous les atomes de la molécule vibrent en phase, à la même fréquence mais dans des directions ou avec des amplitudes différentes.

Chaque atome d'une molécule a 3degrés de liberté ; il y a donc 3N degrés de liberté dans une molécule formée de N atomes, mais comme parmi ces 3N degrés il y en a 3 pour la translation globale de la molécule et3 Pour sa rotation, il n'en reste que 3N-6 pour les mouvements relatifs des atomes formant ce que l'on appelle les modes de vibration de la molécule. Il faut toutefois ajouter que pour une molécule linéaire, il n'y a que 3N-5 modes de vibration puisque il n'y a pas de degré de liberté associé à la rotation de la molécule autour de son axe principal.

En résumé : [1]

- > 3N 6 degrés de liberté pour une molécule non linéaire.
- > 3N 5 degrés de liberté pour une molécule linéaire.

#### I-4-1. Théorie des caractères :

 $\chi_i^{\mu}$ : le caractère d'un élément appartenant à la classe  $K_i$  dans la représentation irréductible  $\Gamma_i$ .

Le caractère  $\chi_i^{\mu}$  des différentes représentations irréductibles satisfait les relations suivantes.

$$\sum_{i=1}^{k} g_{i} \cdot \chi_{i}^{*(\mu)} \cdot \chi_{i}^{*(\nu)} = g \cdot \delta_{\mu\nu}$$
 (I.1)

où:

- >  $\chi_i^{*(\mu)}$ : Le complexe conjugué de  $\chi_i^{u_i}$ .
- **k** : Le nombre des représentations irréductibles (classes d'éléments).
- ➢ g : Le nombre d'élément de symétrie de groupeG.
- > gi: Le nombre d'élément de symétrie de classe $K_i$ .
- >  $\chi_i^{*(v)}$ : Le caractère d'un élément de symétrie appartenant à la classe  $K_i$  dans la représentation  $\Gamma_{v}$ .
- >  $\delta_{\mu\nu}$ : Le symbole de Kronecker.

#### I-4-2. Théorème :

L'énumération des représentations irréductibles. Contenant dans une représentation réductible  $\Gamma$  est :

$$\boldsymbol{a}_{(\mu)} = \frac{1}{g} \sum_{i=1}^{\kappa} \mathbf{g}_i \cdot \boldsymbol{\chi}^{*(\mu)} \cdot \boldsymbol{\chi}^{*(\Gamma)}$$
(I.2)

- >  $a_{(\mu)}$ : Le nombre de fois où  $\Gamma$   $\mu$  apparaît dans la représentation réductible  $\Gamma$ .
- > g: Ordre du groupe.
- > gi : nombre d'éléments (l'ordre) de la 2ième classe d'opérations.
- >  $\chi_i^{*(\Gamma)}$ : Caractère de la matrice du ou des opérateur(s) de cette classe k dans la RR.

La méthode des opérateurs de projection nous permet de déterminer une base qui sert à décomposer une représentation réductible comme suit :

$$p^{(\mu)} \cdot f_{g}^{(\nu)} = \frac{g}{n_{\mu}} \cdot \delta_{\mu\nu} \cdot \delta_{ig} \cdot f_{i}^{(\mu)}$$
 (I.3)

Tel que :

$$p^{(\mu)} = \sum_{i=1}^{n} \chi^{*(\mu)}(\mathbf{g}) \cdot \mathbf{g}$$
 (I.4)

Avec :

- $p^{(\mu)}$ : L'opérateur de projection dans la base de la représentation irréductible  $\Gamma_{\mu}$ .
- $f_{g}^{(\nu)}$ : Vecteurs de base de la représentation irréductible  $\Gamma_{v}$ .
- **χ**<sup>\*(μ)</sup> : Le complexe conjugué de **χ**<sup>(μ)</sup>.
- $\delta_{\mu\nu}$  et  $\delta_{ig}$ : Symboles de Kronecker.
- $f_i^{(\mu)}$ : Vecteurs de base de la représentation irréductible  $\Gamma_{\mu}$ .
- $n_{\mu}$ : La dimension de la représentation irréductible  $\Gamma_{\mu}$ .

Multiplication des représentations dans le groupe Oh de la molécule XY<sub>6</sub>:

Généralités sur le groupe octaédrique

| Oh                      | E | <b>8C</b> <sub>3</sub> | <b>6</b> <i>C</i> <sub>2</sub> | <b>6</b> <i>C</i> <sub>4</sub> | <b>3</b> <i>C</i> <sub>2</sub> ' | ' i | <b>6</b> <i>S</i> <sub>4</sub> | <b>8</b> <i>S</i> 6 | <b>3</b> σh | <b>6σ</b> d |
|-------------------------|---|------------------------|--------------------------------|--------------------------------|----------------------------------|-----|--------------------------------|---------------------|-------------|-------------|
| $A_{1g}$                | 1 | 1                      | 1                              | 1                              | 1                                | 1   | 1                              | 1                   | 1           | 1           |
| $A_{1u}$                | 1 | 1                      | 1                              | 1                              | 1                                | -1  | -1                             | -1                  | -1          | -1          |
| $A_{2g}$                | 1 | 1                      | -1                             | -1                             | 1                                | 1   | -1                             | 1                   | 1           | -1          |
| $A_{2u}$                | 1 | 1                      | -1                             | -1                             | 1                                | -1  | 1                              | -1                  | -1          | 1           |
| $E_{g}$                 | 2 | -1                     | 0                              | 0                              | 2                                | 2   | 0                              | -1                  | 2           | 0           |
| $E_u$                   | 2 | -1                     | 0                              | 0                              | 2                                | -2  | 0                              | 1                   | -2          | 0           |
| $F_{1g}$                | 3 | 0                      | -1                             | 1                              | -1                               | 3   | 1                              | 0                   | -1          | -1          |
| $F_{1u}$                | 3 | 0                      | -1                             | 1                              | -1                               | -3  | -1                             | 0                   | 1           | 1           |
| $F_{2g}$                | 3 | 0                      | 1                              | -1                             | -1                               | 3   | -1                             | 0                   | -1          | 1           |
| $F_{2u}$                | 3 | 0                      | 1                              | -1                             | -1                               | -3  | 1                              | 0                   | 1           | -1          |
| $A_{1g} \otimes A_{1g}$ | 1 | 1                      | 1                              | 1                              | 1                                | 1   | 1                              | 1                   | 1           | 1           |
| $A_{1g} \otimes A_{1u}$ | 1 | 1                      | 1                              | 1                              | -1                               | -1  | -1                             | -1                  | -1          | -1          |
| $A_{1g} \otimes A_{2g}$ | 1 | 1                      | -1                             | -1                             | 1                                | 1   | -1                             | 1                   | 1           | -1          |
| $A_{1g} \otimes A_{2u}$ | 1 | 1                      | -1                             | -1                             | 1                                | -1  | 1                              | -1                  | -1          | 1           |
| $A_{1g} \otimes E_g$    | 2 | -1                     | 0                              | 0                              | 2                                | 2   | 0                              | -1                  | 2           | 0           |
| $A_{1g} \otimes E_g$    | 2 | -1                     | 0                              | 0                              | 2                                | -2  | 0                              | 1                   | -2          | 0           |
| $A_{1g} \otimes F_{1g}$ | 3 | 0                      | -1                             | 1                              | -1                               | 3   | 1                              | 0                   | -1          | -1          |
| $A_{1g} \otimes F_{1u}$ | 3 | 0                      | -1                             | 1                              | -1                               | -3  | -1                             | 0                   | 1           | 1           |
| $A_{1g} \otimes F_{2g}$ | 3 | 0                      | 1                              | -1                             | -1                               | 3   | -1                             | 0                   | -1          | 1           |
| $A_{1g} \otimes F_{2u}$ | 3 | 0                      | 1                              | -1                             | -1                               | -3  | 1                              | 0                   | 1           | -1          |
| $A_{1a}\otimes F_{2a}$  | 1 | 1                      | 1                              | 1                              | 1                                | 1   | 1                              | 1                   | 1           | 1           |
| $A_{1g} \otimes F_{2g}$ | 1 | 1                      | -1                             | -1                             | 1                                | -1  | 1                              | -1                  | -1          | 1           |
| - 3                     | 1 |                        |                                |                                |                                  |     |                                |                     |             |             |

Tableau(I-2): Table de produit de caractères du groupe Oh.

La suite est dans la page suivante.

Généralités sur le groupe octaédrique

| Oh                      | E | <b>8C</b> <sub>3</sub> | <b>6C</b> <sub>2</sub> | Tablea<br>6C4 | u(I-2): (s<br>3C2'' | uite).<br>i | <b>6</b> <i>S</i> 4 | <b>8</b> <i>S</i> <sub>6</sub> | 3σh | <b>60</b> <i>d</i> |
|-------------------------|---|------------------------|------------------------|---------------|---------------------|-------------|---------------------|--------------------------------|-----|--------------------|
| $A_{1g} \otimes F_{2g}$ | 1 | 1                      | -1                     | -1            | 1                   | 1           | -1                  | 1                              | 1   | -1                 |
| $A_{1g} \otimes F_{2g}$ | 2 | -1                     | 0                      | 0             | 2                   | -2          | 0                   | 1                              | -2  | 0                  |
| $A_{1g} \otimes F_{2g}$ | 2 | -1                     | 0                      | 0             | 2                   | 2           | 0                   | -1                             | 2   | 0                  |
| $A_{1g} \otimes F_{2g}$ | 3 | 0                      | -1                     | 1             | -1                  | -3          | -1                  | 0                              | 1   | 1                  |
| $A_{1g} \otimes F_{2g}$ | 3 | 0                      | -1                     | 1             | -1                  | 3           | 1                   | 0                              | -1  | -1                 |
| $A_{1g} \otimes F_{2g}$ | 3 | 0                      | 1                      | -1            | -1                  | -3          | 1                   | 0                              | 1   | -1                 |
| $A_{1g} \otimes F_{2g}$ | 3 | 0                      | 1                      | -1            | -1                  | 3           | -1                  | 0                              | -1  | 1                  |
| $A_{1u} \otimes A_{1u}$ | 1 | 1                      | 1                      | 1             | 1                   | 1           | 1                   | 1                              | 1   | 1                  |
| $A_{1u} \otimes A_{2g}$ | 1 | 1                      | -1                     | -1            | 1                   | -1          | 1                   | -1                             | -1  | 1                  |
| $A_{1u} \otimes A_{2u}$ | 1 | 1                      | -1                     | -1            | 1                   | 1           | -1                  | 1                              | 1   | -1                 |
| $A_{1u} \otimes E_u$    | 2 | -1                     | 0                      | 0             | 2                   | -2          | 0                   | 1                              | -2  | 0                  |
| $A_{1u} \otimes E_g$    | 2 | -1                     | 0                      | 0             | 2                   | 2           | 0                   | -1                             | 2   | 0                  |
| $A_{1u} \otimes F_{1g}$ | 3 | 0                      | -1                     | 1             | -1                  | -3          | -1                  | 0                              | 1   | 1                  |
| $A_{1u} \otimes F_{1u}$ | 3 | 0                      | -1                     | 1             | -1                  | 3           | 1                   | 0                              | -1  | -1                 |
| $A_{1u} \otimes F_{2g}$ | 3 | 0                      | 1                      | -1            | -1                  | -3          | 1                   | 0                              | 1   | -1                 |
| $A_{1u} \otimes F_{2u}$ | 3 | 0                      | 1                      | -1            | -1                  | 3           | -1                  | 0                              | -1  | 1                  |
| $A_{2g} \otimes A_{2g}$ | 1 | 1                      | 1                      | 1             | 1                   | 1           | 1                   | 1                              | 1   | 1                  |
| $A_{2g} \otimes A_{2u}$ | 1 | 1                      | 1                      | 1             | 1                   | -1          | -1                  | -1                             | -1  | -1                 |
| $A_{2g} \otimes E_g$    | 2 | -1                     | 0                      | 0             | 2                   | 2           | 0                   | -1                             | 2   | 0                  |
| $A_{2g} \otimes E_u$    | 2 | -1                     | 0                      | 0             | 2                   | -2          | 0                   | 1                              | -2  | 0                  |
| $A_{2g} \otimes F_{1u}$ | 3 | 0                      | 1                      | -1            | -1                  | 3           | -1                  | 0                              | -1  | 1                  |
| $A_{2g} \otimes F_{1g}$ | 3 | 0                      | 1                      | -1            | -1                  | -3          | 1                   | 0                              | 1   | -1                 |

La suite est dans la page suivante.

Généralités sur le groupe octaédrique

| Oh                      | E | <b>8</b> <i>C</i> <sub>3</sub> | <b>6C</b> <sub>2</sub> | <b>6</b> C4 | $a(1-2) : (s)  3C_2''$ | uite).<br>i | <b>6</b> <i>S</i> <sub>4</sub> | <b>8</b> <i>S</i> <sub>6</sub> | <b>3</b> σh | 6 <del>o</del> d |
|-------------------------|---|--------------------------------|------------------------|-------------|------------------------|-------------|--------------------------------|--------------------------------|-------------|------------------|
| $A_{2g} \otimes F_{2u}$ | 3 | 0                              | -1                     | 1           | -1                     | 3           | 1                              | 0                              | -1          | -1               |
| $A_{2g} \otimes F_{2g}$ | 3 | 0                              | -1                     | 1           | -1                     | -3          | -1                             | 0                              | 1           | 1                |
| $A_{2g} \otimes F_{1u}$ | 1 | 1                              | 1                      | 1           | 1                      | 1           | 1                              | 1                              | 1           | 1                |
| $A_{2g} \otimes F_{1u}$ | 2 | -1                             | 0                      | 0           | 2                      | -2          | 0                              | 1                              | -2          | 0                |
| $A_{2g} \otimes F_{1u}$ | 2 | -1                             | 0                      | 0           | 2                      | 2           | 0                              | -1                             | 2           | 0                |
| $A_{2g} \otimes F_{1u}$ | 3 | 0                              | 1                      | -1          | -1                     | -3          | 1                              | 0                              | 1           | -1               |
| $A_{2g} \otimes F_{1u}$ | 3 | 0                              | 1                      | -1          | -1                     | 3           | -1                             | 0                              | -1          | 1                |
| $A_{2g} \otimes F_{1u}$ | 3 | 0                              | -1                     | 1           | -1                     | -3          | -1                             | 0                              | 1           | 1                |
| $A_{2g} \otimes F_{1u}$ | 3 | 0                              | -1                     | 1           | -1                     | 3           | 1                              | 0                              | -1          | -1               |
| $A_{2u}\otimes A_{2u}$  | 1 | 1                              | 1                      | 1           | 1                      | 1           | 1                              | 1                              | 1           | 1                |
| $A_{2u} \otimes E_g$    | 2 | -1                             | 0                      | 0           | 2                      | -2          | 0                              | 1                              | -2          | 0                |
| $A_{2u} \otimes E_u$    | 2 | -1                             | 0                      | 0           | 2                      | 2           | 0                              | -1                             | 2           | 0                |
| $A_{2u} \otimes F_{1u}$ | 3 | 0                              | 1                      | -1          | -1                     | -3          | 1                              | 0                              | 1           | -1               |
| $A_{2u} \otimes F_{1g}$ | 3 | 0                              | 1                      | -1          | -1                     | 3           | -1                             | 0                              | -1          | 1                |
| $A_{2u} \otimes F_{2u}$ | 3 | 0                              | -1                     | 1           | -1                     | -3          | -1                             | 0                              | 1           | 1                |
| $A_{2u} \otimes F_{2g}$ | 3 | 0                              | -1                     | 1           | -1                     | 3           | 1                              | 0                              | -1          | -1               |
| $E_g \otimes E_g$       | 4 | 1                              | 0                      | 0           | 4                      | 4           | 0                              | 1                              | 4           | 0                |
| $E_g \otimes E_u$       | 4 | 1                              | 0                      | 0           | -4                     | 4           | 0                              | -1                             | -4          | 0                |
| $E_g \otimes F_{1g}$    | 6 | 0                              | 0                      | 0           | -2                     | 6           | 0                              | 0                              | -2          | 0                |
| $E_g \otimes F_{1u}$    | 6 | 0                              | 0                      | 0           | -2                     | -6          | 0                              | 0                              | 2           | 0                |
| $E_g \otimes F_{2g}$    | 6 | 0                              | 0                      | 0           | -2                     | 6           | 0                              | 0                              | -2          | 0                |
| $E_g \otimes F_{2u}$    | 6 | 0                              | 0                      | 0           | -2                     | -6          | 0                              | 0                              | 2           | 0                |

La suite est dans la page suivante.

Généralités sur le groupe octaédrique

|                         |   |                        |                                | Tableau(1   | [-2): (suit                       | e). |                                |                                |             |                    |
|-------------------------|---|------------------------|--------------------------------|-------------|-----------------------------------|-----|--------------------------------|--------------------------------|-------------|--------------------|
| Oh                      | E | <b>8C</b> <sub>3</sub> | <b>6</b> <i>C</i> <sub>2</sub> | <b>6C</b> 4 | <b>3</b> <i>C</i> <sub>2</sub> '' | i   | <b>6</b> <i>S</i> <sub>4</sub> | <b>8</b> <i>S</i> <sub>6</sub> | <b>3</b> σh | <b>60</b> <i>d</i> |
| $E_u \otimes E_u$       | 4 | 1                      | 0                              | 0           | 4                                 | 4   | 0                              | 1                              | 4           | 0                  |
| $E_u \otimes F_{1g}$    | 6 | 0                      | 0                              | 0           | -2                                | -6  | 0                              | 0                              | 2           | 0                  |
| $E_u \otimes F_{1u}$    | 6 | 0                      | 0                              | 0           | -2                                | 6   | 0                              | 0                              | -2          | 0                  |
| $E_u \otimes F_{2g}$    | 6 | 0                      | 0                              | 0           | -2                                | -6  | 0                              | 0                              | 2           | 0                  |
| $E_u \otimes F_{2u}$    | 6 | 0                      | 0                              | 0           | -2                                | 6   | 0                              | 0                              | -2          | 0                  |
| $F_{1g} \otimes F_{1g}$ | 9 | 0                      | 1                              | 1           | 1                                 | 9   | 1                              | 0                              | 1           | 1                  |
| $F_{1g} \otimes F_{1u}$ | 9 | 0                      | 1                              | 1           | 1                                 | -9  | -1                             | 0                              | -1          | -1                 |
| $F_{1g} \otimes F_{2g}$ | 9 | 0                      | -1                             | -1          | 1                                 | 9   | -1                             | 0                              | 1           | -1                 |
| $F_{1g} \otimes F_{2u}$ | 9 | 0                      | -1                             | -1          | 1                                 | -9  | 1                              | 0                              | -1          | 1                  |
| $F_{1u} \otimes F_{1u}$ | 9 | 0                      | 1                              | 1           | 1                                 | 9   | 1                              | 0                              | 1           | 1                  |
| $F_{1u} \otimes F_{2g}$ | 9 | 0                      | -1                             | -1          | 1                                 | -9  | 1                              | 0                              | -1          | 1                  |
| $F_{1u} \otimes F_{2u}$ | 9 | 0                      | -1                             | -1          | 1                                 | 9   | -1                             | 0                              | 1           | -1                 |
| $F_{2u} \otimes F_{2g}$ | 9 | 0                      | 1                              | 1           | 1                                 | 9   | 1                              | 0                              | 1           | 1                  |
| $F_{2g} \otimes F_{2u}$ | 9 | 0                      | 1                              | 1           | 1                                 | -9  | -1                             | 0                              | -1          | -1                 |
| $F_{2u} \otimes F_{2u}$ | 9 | 0                      | 1                              | 1           | 1                                 | 9   | 1                              | 0                              | 1           | 1                  |
|                         | I |                        |                                | Fin du      | tableau.                          |     |                                |                                |             |                    |

Le tableau ci-dessous présente les caractères de quelques opérations de symétrie :

| Tableau (I-3): Caractères des opérations de symétrie. |    |                    |                     |              |    |  |  |  |  |  |
|-------------------------------------------------------|----|--------------------|---------------------|--------------|----|--|--|--|--|--|
|                                                       | sy | métries propres    | symétries impropres |              |    |  |  |  |  |  |
| Symétrie (R)                                          | E  | <b>C</b> (α)       | σ                   | <i>S</i> (α) | i  |  |  |  |  |  |
| Caractères $\chi_R$                                   | 3  | $1+2 \cos(\alpha)$ | 1                   | -1+2 cos(α)  | -3 |  |  |  |  |  |

Tel que :

- $\bigstar E = C(2\pi)$
- $\, \bigstar \, \sigma = S(2\pi)$

\* 
$$i = S(\pi)$$

Les valeurs correspondantes de  $\chi_R$  sont données par le tableau ci-dessous :

| $\boldsymbol{R} \equiv \boldsymbol{C}_n^k$ | $\chi_R$ | $\mathbf{R} \equiv \mathbf{S}_n^{\mathbf{k}}$ | $\chi_R$ |
|--------------------------------------------|----------|-----------------------------------------------|----------|
| E                                          | 3        | $\sigma_h \equiv S_1$                         | 1        |
| Сз                                         | 0        | $\sigma_d \equiv S_1$                         | 1        |
| <i>C</i> <sub>2</sub>                      | -1       | $i \equiv S_2$                                | -3       |
| <i>C</i> 4                                 | 1        | $S_4 \equiv S_4^3$                            | -1       |
| <b>C</b> <sup>"</sup> <sub>2</sub>         | -1       | $S_6 \equiv S_6^5$                            | 0        |

Tableau (I-4): Valeurs des caractères des opérations de symétrie des molécules XY<sub>6</sub>.

Les coordonnées normales de vibrations et leur type de symétrie de la molécule octaédrique.
 Le caractère d'une symétrie *R* vérifie :

$$\chi_0(R) = n_R \cdot \chi_R \tag{I-5}$$

Où :

>  $n_R$ : Le nombre des noyaux que *R* laisse dans leurs positions initiales.

le caractère  $\chi_{vib}$  de la représentation  $\Gamma_{vib}$  à partir de la formule :

\_\_\_\_

$$\chi_{vib} = (n_R - 2) \cdot \chi_R$$
 pour les rotations propres. (I.6)

$$\chi_{vib} = n_R \cdot \chi_R$$
 pour les rotations impropres (I.7)

Tableau(I-5) : Caractères vibrationels des opérations de symétrie des molécules  $XY_6$ .

|                |    | symétries propres |              |              |       |    |            | symétries impropres        |                  |                    |  |
|----------------|----|-------------------|--------------|--------------|-------|----|------------|----------------------------|------------------|--------------------|--|
| symétrie R     | E  | 8C3               | 6 <b>C</b> 2 | 6 <b>C</b> 4 | 3C2'' | i  | <b>6S4</b> | <b>8</b> <i>S</i> <b>6</b> | 3 <del>o</del> h | <b>60</b> <i>d</i> |  |
| n <sub>R</sub> | 7  | 1                 | 1            | 3            | 3     | 1  | 1          | 1                          | 5                | 3                  |  |
| $\chi_R$       | 3  | 0                 | -1           | 1            | -1    | -3 | -1         | 0                          | 1                | 1                  |  |
| <b>X</b> vib   | 15 | 0                 | 1            | 1            | -1    | -3 | -1         | 0                          | 5                | 3                  |  |
|                |    |                   |              |              |       |    |            |                            |                  |                    |  |

• On utilise la table de caractères du groupe  $\boldsymbol{O}_h$  et les valeurs obtenues de  $\boldsymbol{\chi}_{vib}$  :

|                        | symétries propres |                        |                        |                                | symétries impropres               |    |                                |                                |             |                  |
|------------------------|-------------------|------------------------|------------------------|--------------------------------|-----------------------------------|----|--------------------------------|--------------------------------|-------------|------------------|
| symétrie R             | E                 | <b>8C</b> <sub>3</sub> | <b>6C</b> <sub>2</sub> | <b>6</b> <i>C</i> <sub>4</sub> | <b>3</b> <i>C</i> <sub>2</sub> '' | i  | <b>6</b> <i>S</i> <sub>4</sub> | <b>8</b> <i>S</i> <sub>6</sub> | <b>3</b> σh | 6 <del>o</del> d |
| Alg                    | 1                 | 1                      | 1                      | 1                              | 1                                 | 1  | 1                              | 1                              | 1           | 1                |
| A 1u                   | 1                 | 1                      | 1                      | 1                              | 1                                 | -1 | -1                             | -1                             | -1          | -1               |
| $A_{2g}$               | 1                 | 1                      | -1                     | -1                             | 1                                 | 1  | -1                             | 1                              | 1           | -1               |
| A2u                    | 1                 | 1                      | -1                     | -1                             | 1                                 | -1 | 1                              | -1                             | -1          | 1                |
| $E_g$                  | 2                 | -1                     | 0                      | 0                              | 2                                 | 2  | 0                              | -1                             | 2           | 0                |
| Eu                     | 2                 | -1                     | 0                      | 0                              | 2                                 | -2 | 0                              | 1                              | -2          | 0                |
| $F_{lg}$               | 3                 | 0                      | -1                     | 1                              | -1                                | 3  | 1                              | 0                              | -1          | -1               |
| F1u                    | 3                 | 0                      | -1                     | 1                              | - 1                               | -3 | -1                             | 0                              | 1           | 1                |
| $F_{2g}$               | 3                 | 0                      | 1                      | -1                             | -1                                | 3  | -1                             | 0                              | -1          | 1                |
| <b>F</b> <sub>2u</sub> | 3                 | 0                      | 1                      | -1                             | -1                                | -3 | 1                              | 0                              | 1           | -1               |
| Xvib                   | 15                | 0                      | 1                      | 1                              | -1                                | -3 | -1                             | 0                              | 5           | 3                |

**Tableau**(I-6) : Table de caractères et valeurs de caractères vibrationels des molécules  $XY_6$ .

et on obtient, ainsi :

- $a(A_{1g}) = \frac{1}{48} [1 \times 1 \times 15 + 1 \times 8 \times 0 + 1 \times 6 \times 1 + 1 \times 6 \times 1 + 1 \times 3 \times (-1) + 1 \times 1 \times (-3) + 1 \times 6 \times (-1) + 1 \times 8 \times 0 + 1 \times 3 \times 5 + 1 \times 6 \times 3] = 1.$
- $a(A_{1u}) = \frac{1}{48} [1 \times 1 \times 15 + 1 \times 8 \times 0 + 1 \times 6 \times 1 + 1 \times 6 \times 1 + 1 \times 3 \times (-1) + (-1) \times 1 \times (-3) + (-1) \times 6 \times (-1) + (-1) \times 8 \times 0 + (-1) \times 3 \times 5 + (-1) \times 6 \times 3] = 0.$
- $a(A_{2g}) = \frac{1}{48} [1 \times 1 \times 15 + 1 \times 8 \times 0 + (-1) \times 6 \times 1 + (-1) \times 6 \times 1 + 1 \times 3 \times (-1) + 1 \times 1 \times (-3) + (-1) \times 6 \times (-1) + 1 \times 8 \times 0 + 1 \times 3 \times 5 + (-1) \times 6 \times 3] = 0.$
- $a(A_{2u}) = \frac{1}{48} [1 \times 1 \times 15 + (-1) \times 8 \times 0 + (-1) \times 6 \times 1 + (-1) \times 6 \times 1 + 1 \times 3 \times (-1) + (-1) \times 1 \times (-3) + 1 \times 6 \times (-1) + (-1) \times 8 \times 0 + (-1) \times 3 \times 5 + 1 \times 6 \times 3] = 0.$

- $a(E_g) = \frac{1}{48} [2 \times 1 \times 15 + (-1) \times 8 \times 0 + 0 \times 6 \times 1 + 0 \times 6 \times 1 + 2 \times 3 \times (-1) + 2 \times 1 \times (-3) + 0 \times 6 \times (-1) + (-1) \times 8 \times 0 + 2 \times 3 \times 5 + 0 \times 6 \times 3] = 1.$
- $a(E_u) = \frac{1}{48} [2 \times 1 \times 15 + (-1) \times 8 \times 0 + 0 \times 6 \times 1 + 0 \times 6 \times 1 + 2 \times 3 \times (-1) + (-2) \times 1 \times (-3) + 0 \times 6 \times (-1) \times + 1 \times 8 \times 0 + (-2) \times 3 \times 5 + 0 \times 6 \times 3] = 0.$
- $a(F_{1g}) = \frac{1}{48} [3 \times 1 \times 15 + 0 \times 8 \times 0 + (-1) \times 6 \times 1 + 1 \times 6 \times 1 + (-1) \times 3 \times (-1) + 3 \times 1 \times (-3) + 1 \times 6 \times (-1) + 0 \times 8 \times 0 + (-1) \times 3 \times 5 + (-1) \times 6 \times 3] = 0.$
- $a(F_{1u}) = \frac{1}{48} [3 \times 1 \times 15 + 0 \times 8 \times 0 + (-1) \times 6 \times 1 + 1 \times 6 \times 1 + (-1) \times 3 \times (-1) + (-3) \times 1 \times (-3) + (-1) \times 6 \times (-1) + 0 \times 8 \times 0 + 1 \times 3 \times 5 + 1 \times 6 \times 3] = 2.$
- $a(F_{2g}) = \frac{1}{48} [3 \times 1 \times 15 + 0 \times 8 \times 0 + 1 \times 6 \times 1 + (-1) \times 6 \times 1 + (-1) \times 3 \times (-1) + 3 \times 1 \times (-3) + (-1) \times 6 \times (-1) + 0 \times 8 \times 0 + (-1) \times 3 \times 5 + 1 \times 6 \times 3] = 1.$
- $a(F_{2u}) = \frac{1}{48} [3 \times 1 \times 15 + 0 \times 8 \times 0 + 1 \times 6 \times 1 + (-1) \times 6 \times 1 + (-1) \times 3 \times (-1) + (-3) \times 1 \times (-3) + 1 \times 6 \times (-1) + 0 \times 8 \times 0 + 1 \times 3 \times 5 + (-1) \times 6 \times 3] = 1.$

Donc :

$$\Gamma_{vib} = A_{1g} \oplus E_g \oplus 2 F_{1u} \oplus F_{2g} \oplus F_{2u}$$
 (I-8)

On peut conclure que, les molécules octaédriques possèdent six modes fondamentaux de

#### vibration :

Tableau (I-7): Symétries des modes de vibrations des molécules octaédriques.

| v <sub>1</sub> | v <sub>2</sub> | V3       | V4       | ۷ <sub>5</sub> | v <sub>6</sub> |
|----------------|----------------|----------|----------|----------------|----------------|
| $A_{1g}$       | Eg             | $F_{1u}$ | $F_{1u}$ | $F_{2g}$       | $F_{2u}$       |

Les quinze coordonnés de vibrations correspondent à six fréquences fondamentales différentes : [5]

- $v_1$ : une fréquence non dégénéré de type  $A_{1g}$ , et dont la coordonnée normale est  $Q_{11}$ .
- $v_2$ : une fréquence doublement dégénérée de type  $E_g$ , et dont les coordonnées normales sont  $Q_{21}$  et  $Q_{22}$ .
- v<sub>3</sub>: une fréquence Triplement dégénérée de symétrie F<sub>1u</sub>, etdont les coordonnées normales sontQ<sub>31</sub>, Q<sub>32</sub> et Q<sub>33</sub>.
- $v_4$ : une fréquence Triplement dégénérée de symétrie  $F_{1u}$ , et dont les coordonnées normales sont $Q_{41}$ ,  $Q_{42}$  et  $Q_{43}$ .
- $v_5$ : une fréquence Triplement dégénérée de symétrie  $F_{2g}$ , et dont les coordonnées normales sont $Q_{51}$ ,  $Q_{52}$  et  $Q_{53}$ .
- $v_6$ : une fréquence Triplement dégénérée de symétrie  $F_{2u}$ , et dont les coordonnées normales sont $Q_{61}$ ,  $Q_{62}$  et  $Q_{63}$ .

Tableau (I-8): Caractéristiques des bandes d'absorption des molécules octaédriques.

| ν <sub>1</sub>  | ν <sub>2</sub> | <b>v</b> <sub>3</sub>  | ν <sub>4</sub>         | $\nu_5$         | ν <sub>6</sub>         |  |
|-----------------|----------------|------------------------|------------------------|-----------------|------------------------|--|
| A <sub>1g</sub> | Eg             | <b>F</b> <sub>1u</sub> | <b>F</b> <sub>1u</sub> | F <sub>2g</sub> | <b>F</b> <sub>2g</sub> |  |
| Raman           | Raman          | IR                     | IR                     | Raman           | inactif                |  |
| ]               | Elongatio      | n                      | Pliage                 |                 |                        |  |





- [1] D. S. Scholland, «La symétrie moléculaire »; collection "Enseignement de chimie" GOULLIER VILARS
- [2] Symétrie moléculaire, théorie des groupes Applications aux petites molécules, Hubert Klein, 2008. https://cdn-cms.f-static.com/uploads/181234/normal\_584b85aa3b85e.pdf
- [3] Peter F. Bernath. Spectra of atoms and molecules. Oxford university press, 1995. http://www.chemistry.uoc.gr/lapkin/Bernath\_Spectra%20of%20Atoms%20and%20Molecules.pdf
- [4] M. Meskine, Mémoire de MAGISTER, Université e SAIDA, Avril (2006).
- [5] M. Meskine, Thèse de DOCTORAT, Université de SAIDA, Janvier (2015). http://rdoc.univ-sba.dz/handle/123456789/1547



#### **II-1.** Introduction :

La résolution de l'équation aux valeurs propres de l'Hamiltonien moléculaire fournit les valeurs possibles de l'énergie de la molécule. Cependant la complexité du problème, même avec l'approximation de Born-Oppenheimer **[1,2]**, nécessite l'utilisation d'autres méthodes simplificatrices, qui permettent de se ramener à des problèmes plus faciles à résoudre.

Dans ce chapitre, nous présentons une méthode tensorielle, valable pour tous les modes de vibration, et des méthodes d'extrapolation vibrationnelles développées à Dijon. Cette méthode est utilisée pour écrire l'opérateur Hamiltonien, et moment de transition (moment dipolaire et polarisabilité), des molécules toupie sphériques.

Nous présentons, brièvement, la notion de transformations de contact, et nous donnons l'expression de l'opérateur Hamiltonien, et de moment de transition (moment dipolaire et polarisabilité) sous une forme tensorielle, avec leurs éléments matriciels.

Les résultats de la théorie des groupes qu'on a présentés au premier chapitre, montre que les transitions rovibrationnelles entre les niveaux d'énergie, ne sont pas toutes permises. Alors, nous donnons, à la fin de ce chapitre, les règles de sélection rovibrationnelles des molécules octaédriques  $XY_6$ .

#### **II-2.** Transformations de contact :

Pour simplifier le calcul de l'énergie de vibration-rotation ou les intensités des transitions rovibrationnelles, la méthode la plus utilisée est la méthode de la transformation de contact (Van Velck) [3,4].

Ces transformations de contact sont appliquées à l' Hamiltonien pour le rend diagonal complètement ou partiellement par rapport au nombre quantique vibrationnel  $\vartheta_s$ .

Si A représente soit l'Hamiltonien (H), le moment dipolaire ( $\mu$ ) ou la polarisabilité ( $\alpha$ ), l'opérateur transformé  $\tilde{A}$  est donné par : [5].

$$\widetilde{A} = TAT^{-1} \tag{II.1}$$

 $\succ$  **T** est pris sous la forme :

$$T = e^{i\lambda s}$$
(II.2)

Telle que :

S : est hermétique (appelé générateur de transformations de contact).

>  $\lambda$ : est un paramètre égale à l'unité indiquant simplement l'ordre de grandeur de chaque terme de développement.

On peut encore écrire :

$$T = 1 + i\lambda s - \frac{1}{2} \lambda^2 s^2 + \dots$$
(II.3)

#### Formalisme Octaédrique

#### **II-3.** Expression de l'Hamiltonien :

La procédure habituelle utilisée pour transformer l'Hamiltonien de vibration-rotation est : [6]

L'Hamiltonien initial est développé sous la forme :

$$H = H_0 + \lambda H_1 + \lambda^2 H_2 + \dots$$
 (II.4)

• On applique une première transformation de contact :

$$\mathbf{T}_1 = \mathbf{e}^{\mathbf{i}\boldsymbol{\lambda}\boldsymbol{s}_1} \tag{II.5}$$

✤ L'Hamiltonien transformé <sup>(1)</sup>H s'écrit :

$${}^{(1)}H = T_1 H \ T_1^{-1} = {}^{(1)}H_0 + \lambda \,{}^{(1)}H_1 + \lambda^2 \,{}^{(1)}H_2 + \dots$$
(II.6)

Avec :

$$\begin{cases} {}^{(1)}H_0 = H_0 \\ {}^{(1)}H_1 = H_1 + \mathfrak{i} [S_1, H_0] \\ {}^{(1)}H_2 = H_2 + \mathfrak{i} [S_1, H_1] - \frac{1}{2} [S_1, [S_1, H_0]] \end{cases}$$
(II.7)

- >  $S_1$ : est choisi de manière à ce que  ${}^{(1)}H_1$  soit complètement diagonale dans le cas d'une étude d'une bande vibrationnelle isolée ou de manière de conserver que les termes non diagonaux internes à la polyandre dans le cas de l'étude simultanée de bandes vibrationnelles en interaction.
- L'Hamiltonien deux fois transformé s'écrit :

$$^{(2)}\mathbf{H} = \mathbf{T}_{2}^{(1)} \mathbf{H} \mathbf{T}_{2}^{-1} = {}^{2}\mathbf{H}_{0} + \lambda {}^{(2)}\mathbf{H}_{1} + \lambda {}^{2} {}^{(2)}\mathbf{H}_{2} + \dots \dots$$
(II.8)

Avec :

$$\begin{cases} {}^{(2)}H_0 = H_0 \\ {}^{(2)}H_1 = {}^{(1)}H_1 \\ {}^{(2)}H_2 = {}^{(1)}H_1 + i [S_2, H_0] \end{cases}$$
(II.9)

- \* L'Hamiltonien possède les mêmes propriétés que l'Hamiltonien initial, il est :
  - ✓ Hermétique.
  - ✓ Invariant par les opérations du groupe de symétrie de la molécule.
  - $\checkmark$  invariant dans un renversement du temps.

Les fonctions propres  $\widetilde{\Psi}_i$  de e *H* se déduisent des fonctions propres  $\Psi_i$  de **H** par :

$$\widetilde{\Psi}_{i} = H \Psi_{i} \tag{II.10}$$

L'expression de l'Hamiltonien, développé en utilisant le formalisme tensoriel dans le groupe  $O_h$ , est très proche à celle utilisée dans le groupe  $T_d$ . Le groupe  $O_h$  possède un indice supplémentaire pour caractériser ses représentations irréductibles, la parité (g) ou (u).

\* L'Hamiltonien est écrit comme une combinaison linéaire des opérateurs rovibrationnelles  $T^{\Omega(K_g,n\Gamma_g) \alpha_1\Gamma_{1\chi}\alpha_2\Gamma_{2\chi}}_{\{n_e\}\{m_e\}}$ .

$$H = \sum_{\text{tous les indices}} t^{\Omega(K_g, n\Gamma_g) \alpha_1 \Gamma_{1\chi} \alpha_2 \Gamma_{2\chi}}_{\{n_s\}\{m_s\}} \otimes T^{\Omega(K_g, n\Gamma_g) \alpha_1 \Gamma_{1\chi} \alpha_2 \Gamma_{2\chi}}_{\{n_s\}\{m_s\}}$$
(II. 11)

Où :

>  $\mathbf{t}_{\{\mathbf{n}_s\}\{\mathbf{m}_s\}}^{\Omega(\mathbf{K}_g, \mathbf{n}_g) \alpha_1 \Gamma_{1\chi} \alpha_2 \Gamma_{2\chi}}$ : sont les paramètres de l'Hamiltonien, et  $\chi = u$  ou g est la parité.

Les opérateurs rovibrationnelles sont obtenus par couplage des deux opérateurs rotationnel  $\mathbb{R}^{\Omega(K_g, n\Gamma_g)}$  (de degré  $\Omega$ ) et l'opérateur vibrationnel  $V^{\Omega(K_g, n\Gamma_g) \alpha_1 \Gamma_{1\chi} \alpha_2 \Gamma_{2\chi}}_{\{n_s\}\{m_s\}}$  (de degré

 $\sum_{s} (n_{s} + m_{s})$  ). [7]

$$T_{\{n_s\}\{m_s\}}^{\mathcal{Q}(K_g, n\Gamma_g) \alpha_1 \Gamma_{1\chi} \alpha_2 \Gamma_{2\chi}} = \beta \left( R^{\mathcal{Q}(K_g, n\Gamma_g)} \otimes {}^{(\varepsilon)} V_{\{n_s\}\{m_s\}}^{\mathcal{Q}(K_g, n\Gamma_g) \alpha_1 \Gamma_{1\chi} \alpha_2 \Gamma_{2\chi}} \right)$$
(II.12)

Où :

 $\triangleright$   $\beta$ : est un facteur numérique qui vaut :

$$\boldsymbol{\beta} = \begin{cases} \sqrt{\left[\Gamma_{v}\right]\left(\frac{-\sqrt{3}}{4}\right)\Omega \setminus 2} & \text{Si} \quad (K, n\Gamma) = (0, 0A_{1g}) \\ 1 & \text{si non} \end{cases}$$
(II.13)

La parité de ces opérateurs est g.

$$\boldsymbol{\varepsilon} = (-1) \tag{II.14}$$

- **Σ**: est la symétrie par renversement de temps et est liée au degré de l'opérateur rotationnel.
- L'opérateur rotationnel est construit en utilisant une méthode introduite par MoretBailly [8] et l'expression récursive de Zhinlinski [9] :

$$\begin{cases}
R^{1(1)} = 2J^{(1)} \\
R^{\Omega(K)} = R^{\Omega-K(0)} \cdot R^{K(K)} \\
R^{\Omega-K(0)} = ((R^{1(1)} \otimes R^{1(1)})^{(0)})^{(\frac{\Omega-K}{2})} \\
R^{K(K)} = (R^{(K-1)(K-1)} \otimes R^{1(1)})^{(K)}
\end{cases}$$
(II. 15)

Ces opérateurs sont symétriques dans le groupe $O_h$ , grâce à la matrice d'orientation G: [10]

$$R^{\Omega(K,n\Gamma)}_{\vartheta\gamma} = \sum_{m} {}^{(K)} G_{n\Gamma_{\gamma}} R^{\Omega(K)}_{m}$$
(II.16)

L'opérateur vibrationnel  ${}^{\varepsilon}V^{\Omega(K_g, n\Gamma_g) \alpha_1\Gamma_{1\chi}\alpha_2\Gamma_{2\chi}}_{\{n_s\}\{m_s\}}$  est obtenu par couplage des opérateurs de création  $(a_{s\sigma}^+)$  et d'annihilation $(a_{s\sigma})$ , pour obtenir des tenseurs de symétrie: [11].

$$a_{s\sigma}^{+} = \frac{1}{\sqrt{2}} \left( q_{s\sigma} - i p_{s\sigma} \right) \tag{II.17}$$

$$a_{s\sigma} = \frac{1}{\sqrt{2}} \left( q_{s\sigma} + i p_{s\sigma} \right) \tag{II.18}$$

On considère que les niveaux d'énergie sont regroupés dans des séries de polyades  $\{P_K\}$ (k = 0, ..., n, ...), avec  $\{P_0\}$  est le niveau de base GS.

$$\mathbf{H} = \mathbf{H}_{\{\mathbf{P}_0 = \mathbf{GS}\}} + \mathbf{H}_{\{\mathbf{P}_1\}} + \dots + \mathbf{H}_{\{\mathbf{p}_n\}} + \dots$$
(II.19)

✤ L'Hamiltonien effectif d'une polyade  $\{P_n\}$  est obtenu par projection dans le sous espace correspondant ;

$$H^{\langle P_n \rangle} = P^{\langle P_n \rangle} H P^{\langle P_n \rangle}$$
(II.20)

$$H^{\langle P_n \rangle} = H^{\langle P_n \rangle}_{\{GS\}} + \ldots + H^{\langle P_n \rangle}_{\{P_n\}} + \ldots$$
(II.21)

L'Hamiltonien effectif de niveau de base vaut :

$$H^{\langle GS \rangle} = H^{\langle GS \rangle}_{\{GS\}} \tag{II.22}$$

• L'Hamiltonien effectif de la bande  $\nu_4$  vaut :

$$H^{\langle \nu_4 \rangle} = H^{\langle \nu_4 \rangle}_{\{GS\}} + H^{\langle \nu_4 \rangle}_{\{\nu_4\}}$$
(II.23)

\* L'Hamiltonien transformé  $\tilde{H}$  a la même forme que l'Hamiltonien initial :

$$\widetilde{H} = \sum_{\text{tous les indices}} \widetilde{t}^{\mathfrak{a}\,(K_g,\,n\Gamma_g)\,\alpha_1\Gamma_{1\chi}\alpha_2\Gamma_{2\chi}}_{\{n_s\}\{m_s\}} \otimes T^{\mathfrak{a}\,(K_g,n\Gamma_g)\,\alpha_1\Gamma_{1\chi}\alpha_2\Gamma_{2\chi}}_{\{n_s\}\{m_s\}}$$
(II.24)

 $\tilde{t}_{\{n_s\}\{m_s\}}^{\Omega(k_g, n\Gamma_g) \alpha_1 \Gamma_{1\chi} \alpha_2 \Gamma_{2\chi}} : \text{Le jeu de paramètres transformé dépend de jeu de paramètres initiaux}$  $t_{\{n_s\}\{m_s\}}^{\Omega(k_g, n\Gamma_g) \alpha_1 \Gamma_{1\chi} \alpha_2 \Gamma_{2\chi}} \text{ et le jeu de paramètres de l'opérateur de transformation de contact S.}$ 

Les éléments matriciels de l'Hamiltonien des molécules octaédriques sont donnés par l'expression : [5]

$$\langle \left[ \Psi^{(f_{g}, n'C_{rg})} \otimes \Psi^{(C_{v\tau})}_{v'} \right] \sigma^{(C_{\tau})} | \left[ R^{\Omega(K_{g}, n\Gamma_{g})} \otimes {}^{\varepsilon} V^{\Omega(K_{g}, n\Gamma_{g}) \alpha_{1}\Gamma_{1\chi}\alpha_{2}\Gamma_{2\chi}}_{\{n_{s}\}\{m_{s}\}} \right]^{(A_{1u})} | \left[ \Psi^{(J_{g}, nC_{g})} \otimes \Psi^{(C_{v\tau})}_{v'} \right] \sigma^{(C_{\tau})} \delta_{Jf} \rangle = (-1)^{\Gamma + C + C_{r} + C_{v}'} \frac{(-1)^{J}}{\sqrt{[\Gamma]}} K^{(J_{g} - K_{g} - J_{g})}_{(n'C_{rg} - n_{r}\Gamma_{g} - n_{r}C_{rg})}$$

$$\left\{ \begin{cases} C_{rg} - C_{v\tau} - C_{\tau} \\ C_{v\tau} - C_{rg} - \Gamma_{g} \end{cases} \right\} \langle J_{g} | | R^{\Omega(K_{g})} | | J_{g} \rangle \langle \Psi^{(C_{v\tau})}_{v'} | | {}^{\varepsilon} V^{\Omega(K_{g}, n_{g}) \alpha_{1}\Gamma_{1\chi}\alpha_{2}\Gamma_{2\chi}}_{\{n_{s}\}\{m_{s}\}} | | \Psi^{(C_{v\tau})}_{v} \rangle$$

- Let **K** sont les facteurs iso scalaires de la chaîne $O(3) \supset O_h$ .
- Les termes entre accolades sont les coefficients 6C du groupe $O_h$ . (J = 2j+1).
- C : est la dimension de la représentation irréductible C.

Ces éléments matriciels sont calculés dans la base couplée :

$$|\Psi_{M\sigma}^{(C_{\sigma})}\rangle = |[\Psi_{M}^{(J_{g}, nC_{rg})} \otimes \Psi_{\sigma}^{(C_{\sigma\tau})}]\sigma^{(C_{\tau})}\rangle$$
(II.26)

Avec :

- $\checkmark \quad \Psi_{M}^{(J_{g}, \, nC_{rg})}: \text{ est la fonction rotationnelle de symétrie } C_{rg}.$
- $\checkmark$  **n** : indice de multiplication.

- $\checkmark \Psi_{\sigma}^{(C_{\sigma\tau})}$  : est la fonction d'onde vibrationnelle de symétrie  $C_{\sigma\tau}$ .
- $\checkmark$  **J** : Nombre quantique rotationnel.
- ✓ M : La composante sphérique dans le repère (LFF).
- $\checkmark$  C<sub> $\tau$ </sub> : La symétrie rovibrationnelles de composante $\sigma$ .
- $\checkmark$  **\tau = g** ou u : La parité.

Les fonctions propres de l'Hamiltonien sont notées  $|\Psi_{M\alpha}^{(J,C_{\tau\alpha})}\rangle$ ;  $\alpha$  numérote les niveaux d'énergie dans l'ordre croissant dans le bloc  $(J, C_{\tau})$ .

#### II-4. Expression de moment dipolaire :

Le moment dipolaire transformé est donné par : [12]

$$\widetilde{\boldsymbol{\mu}} = \boldsymbol{T} \,\boldsymbol{\mu} \, \boldsymbol{T}^{-1} \tag{II.27}$$

De même façon que celle suivie dans la construction de l'Hamiltonien transformé, l'expression de moment dipolaire transformé est :

$${}^{(2)}\mu_{\alpha} = {}^{(2)}\mu_{0\alpha} + \lambda^{2(2)}\mu_{1\alpha} + \lambda^{2(2)}\mu_{2\alpha}$$
(II.28)

Avec :

$$^{(2)}\mu_{0\alpha}=\mu_{0\alpha} \tag{II.29}$$

$$^{(2)}\mu_{1\alpha} = \mu_{1\alpha} + \mathfrak{i} [S_1, \mu_{0\alpha}]$$
(II.30)

$${}^{(2)}\mu_2 = \mu_{2\alpha} + \mathfrak{i} [S_1, \mu_{1\alpha}] + \frac{\mathfrak{i}^2}{2} [S_1, [S_1, \mu_{0\alpha}]] + \mathfrak{i} [S_2, \mu_{0\alpha}] \qquad (II.31)$$

La probabilité de transition entre l'état initial  $\Psi_i$  et l'état final  $\Psi_f$  est proportionnelle à  $|\langle \Psi_i / \mu_z / \Psi_f \rangle|^2$ ,  $\mu_z$  est la composante du moment dipolaire suivant l'axe des Z dans le repère lié au laboratoire.

Après une série de transformations de contact, le moment dipolaire transformé  $\tilde{\mu}_z$  s'exprime (en première approximation) en fonction de composante  $\tilde{\mu}_\alpha$  par :

$$\widetilde{\mu}_{z} = \frac{1}{2} \sum_{\alpha} (\lambda_{z\alpha} \widetilde{\mu}_{\alpha} + \widetilde{\mu}_{\alpha} \lambda_{z\alpha})$$
(II. 32)

Où :

>  $\lambda_{z\alpha}$ : sont les cosinus directeurs de l'axe fixe (OZ).

Chaque composante de moment dipolaire initiale (non transformé) dans le repère (MFF) est développée en série d'opérateurs vibrationnels :

$$\mu_{\theta}^{(F_{1u})} = \sum_{\text{tous les indices}} \mu^{\alpha_1 \Gamma_1 \tilde{\chi} \alpha_2 \Gamma_2 \tilde{\chi}(F_{1u})} \otimes {}^{\varepsilon} V_{\{n_s\}\{m_s\}}^{\alpha_1 \Gamma_1 \tilde{\chi} \alpha_2 \Gamma_2 \tilde{\chi}} \theta^{(F_{1u})}$$
(II.33)

Où :
$\succ \chi = g \text{ ou } u.$ 

L'opérateur transformé de moment dipolaire vaut : [10]

$$\widetilde{\mu}_{\theta}^{(F_{1u})} = \sum_{i} \widetilde{\mu}^{\{i\}} \otimes M_{\theta}^{(\{i\}, F_{1u})}$$
(II. 34)

Les  $\tilde{\mu}^{\{i\}}$ sont les paramètres de moment dipolaire transformé.

$$M_{\theta}^{(\{i\}, F_{1u})} = (R^{\Omega(K_g, n_r \Gamma_{rg})} \otimes {}^{\varepsilon} V_{\{n_s\}\{m_s\}}^{\alpha_1 \Gamma_1 \chi \alpha_2 \Gamma_2 \chi (F_{1u})}) \theta^{(F_{1u})}$$
(II.35)

Le symbole  $\{i\}$  remplace tous les indices de l'équation (II-33) pour simplifier cette équation.

Les composantes de moment dipolaire transformé peuvent être exprimées par l'équation :

$$\mu_{(\Theta)}^{(A_{1u})} = \sqrt{3} \sum_{m} \langle 1; m \setminus \Theta \rangle \sum_{\{i\}} [C^{(1_g, F_{1u})} \otimes M^{(\{i\}, F_{1u})}]^{(A_{1g})}$$
(II.36)

Les termes entre crochets représentent le produit des tenseurs de symétrie définie par :

$$[A^{(\Gamma_{1})} \otimes B^{(\Gamma_{2})}] = \frac{1}{2} [(A^{(\Gamma_{1})} \otimes B^{(\Gamma_{2})})^{(\Gamma)} + (-1)^{\Gamma_{1} + \Gamma_{2} + \Gamma_{3}} (B^{(\Gamma_{2})} \otimes A^{(\Gamma_{1})})]$$
(II.37)

Finalement, nous rappelons l'intensité d'une transition entre l'état rovibrationnel  $\phi_i(d'énergie E_i)$  et l'état  $\phi_f(d'énergie E_f)$ :

$$S_{if} = K_{if}g_{i} e^{-\left(\frac{hCE_{i}}{KT}\right)} \sum_{M_{i},M_{f}} \langle \widetilde{\varphi}_{i} | \widetilde{\mu}_{z} | \widetilde{\varphi}_{f} \rangle$$
(II.38)

Où :

- $\checkmark$   $K_{if}$ : Coefficient numérique, qui dépend des fréquences des transitions et de la température.
- ✓  $\mathbf{g}_i$ : Le poids statistique du spin de l'état $\tilde{\phi}_i$ .
- ✓ La somme et réalisée sur  $M_i$  et  $M_f$  des deux états dans le repère (LFF).

Les composantes de moment dipolaire dans le repère lié au laboratoire (LFF : Laboratory fixed frame)  $\mu_{\theta}$  (avec :  $\theta = X$ , Y ou Z) peuvent liées aux composant  $\mu_{\theta}$  (avec  $\theta = x$ , y ou z) du repère lié à la molécule (MFF : molécule fixed frame), à partir de l'expression :

$$\mu_{\Theta} = \sum_{\Theta} \lambda_{\Theta, \Theta} \cdot \mu_{\Theta}$$
 (II.39)

Où  $\lambda_{\Theta, \theta}$  sont les cosinus directeurs.

Dans l'approximation de mouvement de faibles amplitudes, on peut développer chaque composant  $\mu_{\theta}$  en série des coordonnées normales sans dimensions  $q_{s\sigma}$ , (s présente l'indice de l'oscillateur et  $\sigma$  sa composante) :

$$\mu_{\theta} = \sum_{s,\sigma} \left( \frac{\partial \mu_{\theta}}{\partial q_{s,\sigma}} \right) q_{s,\sigma} + \frac{1}{2} \sum_{s,\sigma, s, \sigma} \left( \frac{\partial^2 \mu_{\theta}}{\partial q_{s,\sigma} \partial q_{s,\sigma}} \right) q_{s,\sigma} q_{s,\sigma} q_{s,\sigma} + \cdots$$
(II.40)

Où :

>  $\mu_{\theta}^{e}$ : est le moment dipolaire permanent de la molécule, les autres termes sont introduits par les interactions moléculaire.

Après certaines transformations de contact, le moment dipolaire transformé s'écrit sous la forme :  $\widetilde{\mu}_{\Theta} = \frac{1}{2} \sum_{\theta} (\lambda_{\Theta,\theta} \cdot \widetilde{\mu}_{\theta} + \widetilde{\mu}_{\theta} \cdot \lambda_{\Theta,\theta}) \qquad (II.41)$ 

Pour établir l'expression de  $\tilde{\mu}_{\Theta}$  et  $\tilde{\mu}_{\Theta}$ , il est nécessaire d'introduire les coordonnées sphériques des opérateurs de moment dipolaire.

Les coordonnées sphériques dans le repère (LFF) du moment dipolaire noté  $\mu_m^{(1)}$  sont liées aux ceux dans le repère (MFF) du moment dipolaire noté  $\mu_k^{(1)}$  par la relation : [13]

$$\mu_m^{(1)} = \sum_K D_{Km}^{(1)} \mu_K^{(1)}$$
(II.42)

Où :

>  $D_{km}^{(1)}$ : sont les fonctions harmoniques de Wigner, et k, m = -1, 0, ou 1.

Les coordonnées cartésiennes et sphériques dans les deux repères sont liées par :

$$\mu_{\Theta} = \sum_{m} (1, m \setminus \Theta). \ \mu_{m}^{(1)}$$
(II.43)

$$\boldsymbol{\mu}_{\boldsymbol{\theta}} = \sum_{K} (\mathbf{1}, K \setminus \boldsymbol{\theta}) \cdot \boldsymbol{\mu}_{K}^{(1)}$$
(II. 44)

 $\mathrm{O}\grave{\mathrm{u}}<1$  ,  $m\setminus\Theta>$  et <1 ,  $k\setminus\theta>$  sont les coefficients de Stone. [14]

L'expression générale des éléments matriciels est donnée par :

$$\langle [\Psi^{(J'_{g}, n'C'_{rg})} \otimes \Psi^{(C'_{v\tau})}_{v'}] \sigma^{(C_{\tau})} | [C^{(1_{g}, F_{1g})} \otimes M^{(\{i\}, F_{1u})}]^{(A_{1u})} | [\Psi^{(J_{g}, nC_{rg})} \otimes \Psi^{(C_{v\tau})}_{v}] \sigma^{(C_{\tau})} \rangle$$

$$= - \frac{C'_{v} + C'_{\tau}}{2} (-1)^{C'_{v} + C'_{\tau} + C} \langle J'_{g} | | C^{(1_{g})} | | J_{g} \rangle \langle \Psi^{(C'_{v\tau})}_{v'} | |^{\varepsilon} V^{\alpha_{1}\Gamma_{1\chi}\alpha_{2}\Gamma_{2\chi}(F_{\sigma g})} | | \Psi^{(C_{v\tau})}_{v} \rangle$$

$$\{ (-1)^{C + \Gamma_{v} + \Gamma_{r}} \langle J'_{g} | R^{\Omega(K_{g})} | J'_{g} \rangle \sum_{\dot{C}_{r}} \begin{cases} \Gamma_{vu} C_{rg} C'_{rg} \\ C_{\tau'} C'_{v\tau'} C_{v\tau} \end{cases} \times \begin{cases} \Gamma_{vu} C_{rg} C'_{rg} \\ C'_{rg} \Gamma_{rg} F_{1u} \end{cases} \end{cases}$$

$$\sum_{\dot{n}} K^{(1_{g} J_{g} f_{g})}_{(0F_{1g} nC_{rg} \dot{n} c'_{rg})} K^{(K_{g} f_{g} f_{g})}_{(n_{r}\Gamma_{rg} \dot{n} c'_{rg} \dot{n} c'_{rg})} + (-1)^{J + J'} (-1)^{C''} \langle J_{g} | R^{\Omega(K_{g})} | J_{g} \rangle$$

$$\sum_{\dot{c}_{v}} [ \begin{cases} \Gamma_{vu} C'_{rg} C_{rg} \\ C_{\tau} C_{v\tau} \dot{C}_{v\tau} & \dot{C}_{v\tau} \end{cases} \end{cases} \times \begin{cases} \Gamma_{vu} C'_{rg} C_{rg} \\ C'_{rg} \Gamma_{rg} F_{1u} \end{cases}$$

$$\sum_{\dot{n}} K^{(1_{g} J_{g} f_{g})}_{(0F_{1g} nC_{rg} \dot{n} c'_{rg})} K^{(K_{g} f_{g} f_{g})}_{(n_{r}\Gamma_{rg} \dot{n} c'_{rg} f_{rg})} + (-1)^{J + J'} (-1)^{C''} \langle J_{g} | R^{\Omega(K_{g})} | J_{g} \rangle$$

$$\sum_{\dot{n}} [ \begin{cases} \Gamma_{vu} C'_{rg} C_{rg} \\ C_{\tau} C_{v\tau} \dot{C}_{v\tau} & \dot{C}_{rg} & F_{rg} \end{cases} \end{cases} \times \begin{cases} \Gamma_{vu} C'_{rg} C_{rg} \\ C'_{rg} \Gamma_{rg} F_{1u} \end{cases} \end{cases}$$

### II-5. Expression de la polarisabilité :

Malgré que notre travail n'est pas consacré aux spectres Raman, où l'opérateur polarisabilité intervient dans l'écriture de l'intensité, nous avons préféré de donner toutes les formules utiles pour cet opérateur, et ceci en prévisions d'éventuelles études sur les spectres Raman.

L'application d'un champ électrique  $\vec{E}$  à la molécule induit un moment dipolaire définit par :

$$\boldsymbol{\mu}_{\boldsymbol{\theta}_1} = \sum_{\boldsymbol{\theta}_2} \ \boldsymbol{\alpha}_{\boldsymbol{\theta}_1 \boldsymbol{\theta}_2}. \ \boldsymbol{E}_{\boldsymbol{\theta}_2}$$
(II. 46)

Où :

 $\alpha_{\theta_1\theta_2}$ : sont les composantes du tenseur de la polarisabilité dans le repère lié au laboratoire (LFF), qui sont reliées aux composantes du repère lié à la molécule (MFF) par :

$$\alpha_{\Theta_1\Theta_2} = \sum_{\theta_1, \theta_2} \lambda_{\Theta_1, \theta_1} \cdot \lambda_{\Theta_2, \theta_2} \cdot \alpha_{\theta_1, \theta_2}$$
(II.47)

L'approximation de faibles amplitudes permet de développer les composantes  $\alpha_{\theta_1, \theta_2}$ en série de coordonnées normales  $q_{s,\sigma}$ :

$$\alpha_{\theta_{1},\theta_{2}} = \alpha_{\theta_{1},\theta_{2}}^{e} + \sum_{s,\sigma} \left( \frac{\partial \alpha_{\theta_{1},\theta_{2}}}{\partial q_{s,\sigma}} \right) q_{s,\sigma} + \frac{1}{2} \sum_{s,\sigma,,\dot{s},\dot{\sigma}} \left( \frac{\partial^{2} \alpha_{\theta_{1},\theta_{2}}}{\partial q_{s,\sigma} \partial q_{\dot{s},\dot{\sigma}}} \right) q_{s,\sigma} q_{\dot{s},\dot{\sigma}} + \cdots$$
(II.48)

Telle que :

>  $\alpha_{\theta_1,\theta_2}^e$ : est la polarisabilité permanente, les autres termes sont introduits par les vibrations moléculaires.

La polarisabilité transformée dans repère (LFF) vaut :

$$\widetilde{\alpha}_{\Theta_1,\Theta_2} = \frac{1}{2} \sum_{\Theta} \left( \lambda_{\Theta_1,\theta_1} \lambda_{\Theta_2,\theta_2} \widetilde{\alpha}_{\theta_1,\theta_2} + \widetilde{\alpha}_{\theta_1,\theta_2} \lambda_{\Theta_1,\theta_1} \lambda_{\Theta_2,\theta_2} \right)$$
(II. 49)

Les coordonnées sphérique  $\alpha_m^{(L)}$  dans le repère (LFF) et ceux dans le repère (MFF) sont liées par :

$$\alpha_{m}^{(L)} = \sum_{K} D_{Km}^{(L)} \alpha_{K}^{(L)}$$
(II.50)

Telle que :

 $\blacktriangleright$  **L** : prend les valeurs 0 et 2.

Pour les Harmonique de Wigner [15], on a :

$$\begin{cases}
L = 0 \Rightarrow m, K = 0 \\
L = 2 \Rightarrow m, K = 0, \pm 1, \pm 2
\end{cases}$$
(II.51)

Finalement, on aura :

$$\alpha_{\Theta_1,\Theta_2} = \sum_{L,M} \langle L; M \setminus \Theta_1 \Theta_2 \rangle \alpha_m^{(L)}$$
(II. 52)

$$\alpha_{\theta_1, \theta_2} = \sum_{L, K} \langle L; K \setminus \theta_1 \theta_2 \rangle \alpha_K^{(L)}$$
(II. 53)

Où :

 $\succ$  (*L*; *M* \ Θ<sub>1</sub>Θ<sub>2</sub>) et (*L*; *K* \ θ<sub>1</sub>θ<sub>2</sub>) sont les coefficients de Stone.

L'opérateur de la polarisabilité est développé de la même méthode que l'Hamiltonien et le moment dipolaire. Pour les composantes dans le repère (**MFF**) de l'opérateur initial de la polarisabilité, nous obtenons :

$$\alpha_{\theta}^{(L_{g},\Gamma_{g})} = \sum_{\text{tous les indices}} \alpha_{\{n_{s}\}\{m_{s}\}}^{\alpha_{1}\Gamma_{1\chi}\alpha_{2}\Gamma_{2\chi}(\Gamma_{g})} \otimes {}^{\epsilon}V_{\{n_{s}\}\{m_{s}\}}^{\alpha_{1}\Gamma_{1\chi}\alpha_{2}\Gamma_{2\chi}} \theta^{(\Gamma_{g})}$$
(II.54)

Où :

- $\succ \chi = g \text{ ou } u.$
- >  $\boldsymbol{\theta}$ : est la composante de l'opérateur $\alpha_{\boldsymbol{\theta}}^{(L_g, \Gamma_g)}$ .
- > La parité est généralement g et  $\varepsilon = 1$ .
- >  $\alpha_{\{n_s\}\{m_s\}}^{\alpha_1\Gamma_{1\chi}\alpha_2\Gamma_{2\chi}(\Gamma_g)}$ : Sont les paramètres de la polarisabilité.

Comme dans le cas de moment dipolaire, la polarisabilité transformée vaut :

$$\widetilde{\alpha}_{\theta}^{(L_{g},\Gamma_{g})} = \sum_{\{i\}} \widetilde{\alpha}^{(\{i\},\Gamma_{g})} \cdot P_{\theta}^{(\{i\},\Gamma_{g})}$$
(II.55)

Où :

 $\succ$   $\widetilde{\alpha}^{(\{i\}, \Gamma_g)}$ : sont les paramètres transformés.

$$\mathbf{P}_{\boldsymbol{\theta}}^{(\{i\},\,\Gamma_{g})} = \left[ \mathbf{R}^{\Omega\,(K_{g},\,\mathbf{n}\Gamma_{g})} \otimes {}^{\boldsymbol{\varepsilon}} \mathbf{V}^{\alpha_{1}\Gamma_{1\chi}\alpha_{2}\Gamma_{2\chi}(\,\Gamma_{\sigma_{g}})} \right] \boldsymbol{\theta}^{(\,\sigma_{g})} \tag{II.56}$$

Avec:  $\varepsilon = (-1)^{\Omega}$ 

Les composantes de la polarisabilité transformée dans (LFF) vaut :

$$\widetilde{\alpha}_{\Theta_{1}\Theta_{2}}^{(A_{1g})} = \langle \mathbf{0} ; \mathbf{0} \setminus \Theta_{1}\Theta_{2} \rangle \sum_{\{i\}} \widetilde{\alpha}^{(A_{1g})} [ \mathbf{C}^{(\mathbf{0}_{g};A_{1g})} \otimes \mathbf{P}^{(\{i\},A_{1g})} ]^{(A_{1g})}$$

$$+ \sqrt{2} \sum_{m} \langle \mathbf{0} ; \mathbf{m}\mathbf{0} \setminus \Theta_{1}\Theta_{2} \rangle \sum_{\{i\}} \widetilde{\alpha}^{(E_{g})} [ \mathbf{C}^{(2_{g};E_{g})} \otimes \mathbf{P}^{(\{i\},E_{g})} ]^{(A_{1g})}$$

$$+ \sqrt{3} \sum_{m} \langle \mathbf{0} ; \mathbf{m}\mathbf{0} \setminus \Theta_{1}\Theta_{2} \rangle \sum_{\{i\}} \widetilde{\alpha}^{(F_{2g})} [ \mathbf{C}^{(2_{g};F_{2g})} \otimes \mathbf{P}^{(\{i\},FE_{2g})} ]^{(A_{1g})}$$

$$(II.57)$$

Avec :  $\Theta_1$ ,  $\Theta_2 = X$ , Y ou Z.

Le premier terme dans cette équation (symétrie  $(A_{1g})$ ) représente la partie isotropique de la polarisabilité, les deux autres parties (de symétrie  $(E_g)$  et  $(F_{2g})$ ) sont sa partie anisotropique.

L'intensité Raman est donnée par :

$$I_{if} = R_{if} \cdot \mathbf{g}_i \cdot e^{\left(\frac{-hCE_i}{KT}\right)} \sum_{\boldsymbol{\Theta}, \boldsymbol{\Theta}} \sum_{M_i, M_f} |\langle \widetilde{\boldsymbol{\Phi}}_i | \, \widetilde{\boldsymbol{\alpha}}_{\boldsymbol{\Theta}, \boldsymbol{\Theta}} \, | \, \widetilde{\boldsymbol{\Phi}}_f \rangle|^2 \tag{II.58}$$

L'expression générale des éléments matriciels de l'opérateur de la polarisabilité est :

Les éléments matriciels réduits  $C^{(L_g)}$  sont donnés par :

$$\langle \Psi_{\acute{M}}^{(\acute{J}g)} | C_m^{(L_g)} | \Psi_M^{(J_g)} \rangle = (-1)^{1+\acute{J}-\acute{M}} \cdot \sqrt{[J][\acute{J}]} \cdot \begin{pmatrix} \acute{J} & L & J \\ -\acute{M} & m & M \end{pmatrix}$$
(II.60)

### II-6. Les règles de sélection :

Considérons deux fonctions rovibrationnelles  $|\Psi_{M,\sigma}^{(C_t)}\rangle$  et  $|\Psi_{M,\sigma}^{(C_t)}\rangle$ . Les règles de sélection proviennent directement des expressions des éléments matriciels et des différents symboles de couplage [10, 13]. Ces règles de sélection sont regroupées dans le tableau (II-1) :

 Tableau (II-1) : Les symétries des opérateurs (Hamiltonien, moment dipolaire et polarisabilité) dans les repères (MFF) et (LFF) des molécules octaédriques.

| Opérateur | MFF                                  | LFF             |
|-----------|--------------------------------------|-----------------|
| Н         | $A_{1g}$                             | A <sub>1g</sub> |
| μ         | $F_{1u}$                             | $A_{1u}$        |
| α         | $A_{1g} \oplus E_{1g} \oplus F_{2g}$ | A <sub>1g</sub> |

Concernant le nombre quantique J, les règles de sélection proviennent du non nullité des facteurs isoscalaires K qui interviennent dans l'expression des éléments matriciels.

La règle  $\hat{C} = C$  provient du fait que les trois opérateurs sont de symétrie ( $A_{1g}$ ) dans le repère (LFF), tandis que, la règle de sélection de la parité dépend de la parité de l'opérateur à étudier.

Dans le cas de l'absorption ou l'émission, les transitions se produisent seulement entre états de parité opposées ( $\mathbf{g} \leftrightarrow \mathbf{u}$ ), et les transitions Raman se produisent seulement entre états de même parité ( $\mathbf{g} \leftrightarrow \mathbf{g} \text{ ou } \mathbf{u} \leftrightarrow \mathbf{u}$ ).



**Figure (II-1)** : Illustration schématique de l'extrapolation vibrationnelle de l'Hamiltonien et de moment dipolaire dans le cas de polyades et de bandes chaudes.





- [1] Wave H. Shaffer, Harald H. Nielsen, and L. H. Thomas. Phys. Rev. 56, 895. (November 1939). https://doi.org/10.1103/PhysRev.56.895
- [2] H.A. Jahn, Proc. R. Soc, A168, 469. (1938). https://doi.org/10.1098/rspa.1938.0187
- [3] H. Pickett. J. Mol. Spectrosc, Volume 148, Issue 2 .p: 371–377, (1991). https://doi.org/10.1016/0022-2852(91)90393-0
- [4] Jahn. Van Velck. Phys. Rev, volume 33. Issue 04 :467, (1929). https://journals.aps.org/pr/abstract/10.1103/PhysRev.33.467
- [5] N. Cheblal, M. Loete, and V. Boudon. J. Mol. Spectrosc, Volume 197, Issue 2. p:222–231, (1999). https://doi.org/10.1006/jmsp.1999.7902
- [6] Jean Paul Champion. PhD thesis, université de Bourgogne, Dijon, France, (1978).
- [7] Michel Loete. PhD thesis, université de Bourgogne, Dijon, France, (1984).
- [8] J. Moret Bailly. Can. J. Phys, Volume 15, Issue 3. p: 344-354, (1965). https://doi.org/10.1016/0022-2852(65)90150-5
- [9] B.I.Zhilinskii, Opt. Spectrosc. Volume 156, Issues 7–8,p : 377-380 (1981). https://doi.org/10.1016/0375-9601(91)90710-P
- [10] Wave H. Shaffer, Harald H. Nielsen, and L. H. Thomas. Phys. Rev. 56, 895. (November 1939).
   <u>https://doi.org/10.1103/PhysRev.56.895</u>
- [11] J-P. Champion, G. Pierre, F. Michelot, and J. Moret Bailly. Can. J. Phys, 55. 512. (1977). https://doi.org/10.1139/p77-070
- [12] M. Loete. Can. J. Phys, 61(8): 1242-1259. (1983). https://doi.org/10.1139/p83-158
- [13] A.R. Edomnds. Angular Moment in Quantum Mechanics. Princeton University Press, (1982). https://press.princeton.edu/books/paperback/9780691025896/angular-momentum-in-quantummechanics
- [14] A.J. Stone. Mol. Phys, 29 :1461–1471, (1975). https://doi.org/10.1080/00268977500101281
- [15] A.Boutahar and M. Loete. Can. J. Phys, 69 :26–35, (1990). https://doi.org/10.1139/p91-005



### III-1. Introduction :

Dans ce travail on s'est proposé de faire une analyse et une prédiction du spectre des transitions rovibrationnelles des deux bandes isolées  $v_3$  et  $v_4$  de la molécule <sup>80</sup>SeF<sub>6</sub>. Pour ce faire, on est besoin d'un jeu de paramètres entrant dans le développement de l'Hamiltonien à certain ordre de et de logiciels de calcul.

Concernant le jeu de paramètres de l'Hamiltonien, on utilise celui de :

- > M. Terki-Hassaine, G. Pierre, H. Burger et H. Willner [1], pour la bande  $v_3$ .
- > M. Rotger, V. Boudon, H. Burger et H. Willner [2], pour la bande  $v_4$ .

Les logiciels utilisés lors de l'analyse et le calcul sont XTDS et SPVIEW [3], dérivés au-dessous.

### **III-2.** Programmes utilisés :

### **III-2-1. XTDS et SPVIEW :**

Les spectroscopistes ont toujours œuvré pour rendre leurs résultats disponibles à tous les chercheurs. Ainsi, beaucoup de logiciels ont été mis au point et sont généralement disponibles gratuitement via le web. Parmi ces logiciels, XTDS et SPVIEW.

**XTDS** est un logiciel développé à l'institut Carnot de Bourgogne (ICB) à Dijon. Mettant en œuvre le formalisme tensoriel (pour Top Data System), il est un logiciel permettant la simulation des spectres.

Il contient plusieurs programmes, correspondant aux différents groupes de symétrie, permettant de calculer, de prédire et de simuler des spectres d'une molécule donnée.

- > **STDS** : Pour les molécules  $XY_4$ (groupe  $T_d$ ).[4]
- > **HTDS** : Pour les molécules  $XY_6$  (groupe  $O_h$ ). [5]
- >  $D_{2h}$  TDS : Pour les molécules  $X_2Y_4$  (groupe  $D_{2h}$ ). [6]
- >  $C_{4v}$ TDS : Pour les molécules  $XY_5Z$  (groupe  $C_{4v}$ ). [7]
- >  $C_{2v}$ TDS : Pour les molécules  $XY_2Z_2$  (groupe  $C_{2v}$ ). [8]
- >  $C_{3v}TDS$ : Pour les molécules  $XY_3Z$  (groupe  $C_{3v}$ ). [9]
- >  $C_{3vs}TDS$ : Pour les molécules  $XY_3Z$  (groupe  $C_{3vs}$  rovibronic). [9]

| 0    | 0       |              |           | Managing xTDS jo                                                                           | bs                  |                   |
|------|---------|--------------|-----------|--------------------------------------------------------------------------------------------|---------------------|-------------------|
| File | Help    |              |           |                                                                                            |                     |                   |
|      | Welcome | Create a job | Run a job | Visualize results                                                                          | Recompile a package | Create a molecule |
|      | Welcome | Create a job | Run a job | Visualize results DS DS TDS Shoose a Package of f Parameter File Cr Level Job Spectrum Job | Recompile a package | Create a molecule |
|      |         |              |           |                                                                                            |                     |                   |
|      |         |              |           |                                                                                            |                     |                   |
|      |         |              |           |                                                                                            |                     |                   |

Figure (III-1): L'onglet "creat a job" dans XTDS.

SPVIEW est également un logiciel développé à l'ICB. Celui-ci permet l'affichage des spectres simulés, et des spectres mesurés en laboratoire. Chaque spectre ayant un fichier spectre.t qui lui est associé, contenant la liste des transitions ainsi que leur fréquence et les nombres d'onde et les intensités.



Figure (III-2): Visualisation des spectres avec SPVIEW.

### III-2-2. Fichier de paramètres :

XTDS permet la création d'un *job\_par*. C'est donc un programme en FORTRAN, permettant la création du fichier de paramètre nécessaire. A la création du *job*, il est demandé de renseigner plusieurs éléments :

- le schéma de polyade.
- > la polyade inférieure, et son degré de développement.
- > la polyade supérieure et son degré de développement.
- > le moment de transition et son degré de développement.

Il sera calculé les transitions entre la polyade supérieure et la polyade inférieure et dipolaire pour les spectres analysés en infrarouge.

Un fichier de paramètres, est créé. Ce fichier contient les paramètres des bandes rovibrationnelles qui seront utilisés pour la création des spectres. Ce fichier est une structure du fichier de paramètre final. Le fichier de paramètre ne contient que la structure des bandes sélectionnées par le schéma de polyade initial.

Une fois le fichier de paramètre créé, il convient donc de le remplir avec les paramètres déjà connu et publiés dans la littérature.

Ces paramètres correspondent aux opérateurs nécessaires au calcul de l'Hamiltonien.

### III-2-3. Génération du spectre :

Une fois le fichier de paramètres créé, le calcul du spectre peut être initié. Une fois le programme exécuté, il y a création de deux fichiers : un fichier *spectre.xy*, ainsi qu'un fichier *spectre.t*.

- spectre.xy est un fichier qui contient la liste des fréquences et des transitions calculées par le job\_spe.
- spectre.t contient quant à lui les états et les paramètres caractérisant le système étudié, puis, la liste des transitions associées.

#### **III-2-4. Simulation du spectre :**

Une fois le *job\_spe* est exécuté, les fichiers *spectre.xy* et *spectre.t sont* créés. Il permet de calculer des spectres simulés sous les conditions de l'expérience (température, pression, ...).

### **III-3.** La méthode d'analyse :

La méthode d'analyse qui peut être utilisée lors de l'analyse de ce type de molécules est celle des moindres carrées pondérée itérative. C'est la plus fréquente pour réaliser ces travaux, et qui nous permet encore d'obtenir des spectres simulés avec une grande précision, surtout que l'expérience se fait avec des équipements plus développés actuellement.

Cette méthode consiste à rapprocher le plus possible les valeurs calculées aux valeurs observées pour déterminer les paramètres de l'Hamiltonien.

$$Q = \sum_{i=1}^{N} \left( \frac{{}^{(o)}E_i - {}^{(c)}E_i}{\Delta E_i} \right)^2 + \sum_{j=1}^{n} \left( \frac{{}^{(o)}t_j - {}^{(c)}t_j}{\Delta t_j} \right)^2$$
(III-1)

Où ces termes représentent respectivement :

 ${}^{(o)}E_i$ : La i<sup>ème</sup> valeur de la transition observée

- $^{(c)}E_i$ : La i<sup>ème</sup> valeur de la transition calculée.
- $\Delta E_i$ : L'estimation de l'incertitude de la transition observée.
- *N* : Le nombre des transitions utilisées.
- $^{(o)}t_j$ : La j<sup>ème</sup> valeur du paramètre observé.
- $^{(c)}t_j$ : La j<sup>ème</sup> valeur du paramètre calculé.
- $\Delta t_i$ : L'estimation de l'incertitude du paramètre observé.
- n: Le nombre total des paramètres utilisés.

On peut calculer  ${}^{(c)}E_i^{n+1}$  à la  $(n + 1) i^{eme}$  itération en faisant la somme de la transition calculée  $n^{eme}$  et la quantité  $d^{(c)}E_i$  (sa différentielle totale :

$${}^{(c)}E_i^{n+1} = {}^{(c)}E_i^n + d^{(c)}E_i$$
(III-2)

De la même façon que  ${}^{(c)}E_i^{n+1}$ ; le paramètre  ${}^{(c)}t_l^{n+1}$  à la (n+1)  $i^{\text{ème}}$  itération s'obtient par :

$${}^{(c)}t_l^{n+1} = {}^{(c)}t_l^n + d{}^{(c)}t_l \tag{III-3}$$

Dans le but de rapprocher le plus possible les transitions calculées aux transitions observées, en utilisant cette méthode qui nous permet de minimiser une quantité dépendante des énergies de transition observées et des paramètres de l'Hamiltonien. Qui s'écrive sous la forme :

$$E.Q.M = \sqrt{\left(\frac{\sum_{i=1}^{N} p_i^{(oc)} E_i^2}{\sum_{i=1}^{N} p_i}\right)}$$
(III-4)

Où les P<sub>i</sub> : Sont les poids donnés par :

$$p_i = \frac{1}{\Delta E_i^2} \tag{III-5}$$

L'organigramme ci-dessous explique comment peut-on utilisé les deux logiciels dans l'analyse et le calcul des spectres :



Figure (III-3): Méthode d'utilisation des deux logiciels XTDS et SPVIEW.

Le calcul des spectres des bandes  $\nu_3$  et  $\nu_4$  de la molécule <sup>80</sup>SeF<sub>6</sub> ce fait par le logiciel HTDS inclus dans XTDS, de la façon suivante :



Figure (III-4): Organigramme des programmes utilisés dans le calcul.

# III-4. Analyse des positions des raies de la bande $v_3$ de la molécule ${}^{80}SeF_6$ :

Les vibrations des atomes et les rotations possibles de la molécule, ainsi que les interactions entre les vibrations et les rotations correspondent à des énergies.

La configuration d'équilibre de la molécule  $XY_6$  est un octaèdre au sommet duquel se trouvent les atomes Y et au centre duquel st trouve l'atome X ces molécules ont pour groupe de symétrie  $O_h$ .

La molécule possède six modes normaux de vibration :

- $v_1$  : Complètement symétrique non dégénéré de symétrie  $A_{1g}$ , actif en Raman.
- $v_2$  : Doublement dégénéré de symétrie  $E_q$ , actif en Raman.
- $v_3$  et  $v_4$  : triplement dégénérés de symétrie  $F_{1u}$ , actif en IR.
- ν<sub>5</sub> : Triplement dégénérés de symétrie F<sub>2g</sub>, actif en Raman.
- $v_6$ : Triplement dégénérés de symétrie  $F_{2u}$ , totalement inactif.



Figure (III-5): Configuration d'équilibre de la molécule XY<sub>6</sub>.

Il existe quatre types des niveaux d'énergie rovibrationnels  $v_s$  qui sont :

- $\triangleright$  Le niveau de base ou tous les  $\nu_s$  sont nuls.
- Eles niveaux fondamentaux ou un seul  $v_s$  et non nul et égal 1.
- $\triangleright$  Les niveaux harmoniques ou un seul  $v_s$  et non nul et différent de 1.
- $\triangleright$  Les niveaux de combinaisons ou plusieurs  $\nu_s$  sont non nuls.

### III-4-1. Résultats et discussion :

Dans un premier lieu, nous allons calculer et prédire le spectre complet des transitions rovibrationnelles entre le niveau  $v_3$  et le niveau de base GS de la molécule  ${}^{80}SeF_6$ .

La bande  $v_3$  est l'ensemble des transitions rovibrationnelles entre les niveaux rovibrationnels ayant le nombre quantique  $v_3 = 1$  et les niveaux de base GS.

La variation de nombre quantique rotationnel J peut nous donne l'ensemble des niveaux rovibrationnels possibles.

Le niveau vibrationnel  $v_3$  se décompose en sous niveaux vibrationnels caractérisés par des nombres quantiques secondaires *ls* et par leurs symétries dans le groupe  $O_h$ .

On peut obtenir des niveaux rovibrationnels appartenant au même niveau vibrationnel par la variation des nombres quantiques rotationnels J.

Dans le but de calculer le spectre des transitions rovibrationnelles de la bande  $v_3$  de la molécule  ${}^{80}SeF_6$  en utilise :

**\*** États vibratoires supérieurs :

| # | v1         | v2           | <b>v</b> 3     | <b>v4</b>         | v5             | <b>v6</b>       | Cv        |
|---|------------|--------------|----------------|-------------------|----------------|-----------------|-----------|
| 1 | [[[[0(0,0A | 1g)* 0(0,0A1 | g)* 1(1,0F1u)  | ] F1u* 0(0,0A1g)] | F1u* 0(0,0A1g) | )] F1u* 0(0,0A1 | g)] F1u > |
|   | ×.         | • États vibr | rationnels inj | férieurs :        |                |                 |           |
| # | v1         | v2           | <b>v</b> 3     | v4                | v5             | v6              | Cv        |

### 

L'analyse complète du spectre des transitions rovibrationnelles de la bande  $v_3$  de la molécule  ${}^{80}SeF_6$ , dans la région (750 – 800  $cm^{-1}$ ), se fait par l'utilisation de 19 paramètres relatifs à la bande  $v_3$  de la molécule  ${}^{80}SeF_6$ , dont 6 relatifs au niveau de base GS et 13 relatifs au niveau  $v_3$ . Ces paramètres sont trouvés par M. Terki-Hassaine et al [1].

L'ensemble de paramètres utilisé dans le développement de l'Hamiltonien de la bande  $\nu_3$  en question à l'ordre 4 pour les deux niveaux ont été reportés dans le tableau ci-dessous :

Où les différents termes (colonnes) de ce tableau représentent :

- i: Indice permettant de numéroter les différents paramètres.
- \*  $\Omega$  (K, n  $\Gamma$ ): Les caractéristiques de l'opérateur relatif au paramètre i.
- \*  $n_s$ : Le nombre de fois qu'a  $\tilde{a}^+$  été couple pour former un tenseur de symétrie $\Gamma_1$ .
- $\Gamma_1$ : La symétrie de l'opérateur résultant de couplage des  $\tilde{a}^+$ .
- \*  $m_s$ : Le nombre de fois qu'a  $\tilde{a}^-$  été couplé pour former un tenseur de symétrie $\Gamma_2$ .
- $\Gamma_2$ : La symétrie de l'opérateur résultant de couplage des  $\tilde{a}^-$ .
- Γ : la symétrie de l'opérateur rovibrationnel.
- Hmn: Le degré de polynôme rovibrationnel.
- Les deux dernières colonnes représentent la valeur du paramètre i et sa précision respectivement.

| i  | $\Omega(K, n\Gamma)$ | $n_s$ $\Gamma_1$ | $m_s$ $\Gamma_2$ | Γ   | Hmn | Value/cm-1         | St.Dev./cm-1  |
|----|----------------------|------------------|------------------|-----|-----|--------------------|---------------|
| 1  | 2(0,0A1g)            | 000000A1g        | 000000A1g        | Alg | 02  | 0.78130718020E-01  | 0.000000E+00  |
| 2  | 4(0,0A1g)            | 000000A1g        | 000000A1g        | A1g | 04  | 0.0000000000E+00   | 0.000000E+00  |
| 3  | 4(4,0A1g)            | 000000A1g        | 000000A1g        | A1g | 04  | 0.0000000000E+00   | 0.000000E+00  |
| 4  | 6(0,0A1g)            | 000000A1g        | 000000A1g        | A1g | 06  | 0.0000000000E+00   | 0.000000E+00  |
| 5  | 6(4,0A1g)            | 000000A1g        | 000000A1g        | A1g | 06  | 0.0000000000E+00   | 0.000000E+00  |
| 6  | 6(6,0A1g)            | 000000A1g        | 000000A1g        | A1g | 06  | 0.0000000000E+00   | 0.000000E+00  |
| 7  | 0(0,0A1g)            | 001000F1u        | 001000F1u        | A1g | 20  | 0.78007748648E+03  | 0.1412353E-04 |
| 8  | 1(1,0F1g)            | 001000F1u        | 001000F1u        | F1g | 21  | 0.99914193861E-01  | 0.6766449E-06 |
| 9  | 2(0,0A1g)            | 001000F1u        | 001000F1u        | A1g | 22  | -0.93516018822E-04 | 0.1223724E-07 |
| 10 | 2(2,0E g)            | 001000F1u        | 001000F1u        | Еg  | 22  | -0.77311288919E-04 | 0.2526490E-07 |
| 11 | 2(2,0F2g)            | 001000F1u        | 001000F1u        | F2g | 22  | 0.53873290085E-04  | 0.3301042E-07 |
| 12 | 3(1,0F1g)            | 001000F1u        | 001000F1u        | F1g | 23  | 0.23985560694E-08  | 0.1343194E-09 |
| 13 | 3(3,0F1g)            | 001000F1u        | 001000F1u        | F1g | 23  | -0.15647162169E-07 | 0.1792522E-09 |
| 14 | 4(0,0A1g)            | 001000F1u        | 001000F1u        | A1g | 24  | -0.65287335959E-10 | 0.1769927E-11 |
| 15 | 4(2,0E g)            | 001000F1u        | 001000F1u        | Еg  | 24  | 0.0000000000E+00   | 0.000000E+00  |
| 16 | 4(2,0F2g)            | 001000F1u        | 001000F1u        | F2g | 24  | 0.95222285922E-10  | 0.3110158E-11 |
| 17 | 4(4,0A1g)            | 001000F1u        | 001000F1u        | A1g | 24  | -0.12940010005E-10 | 0.1287909E-11 |
| 18 | 4(4,0E g)            | 001000F1u        | 001000F1u        | Еg  | 24  | 0.68732279102E-10  | 0.3947080E-11 |
| 19 | 4(4,0F2g)            | 001000F1u        | 001000F1u        | F2g | 24  | 0.56283139358E-10  | 0.3767962E-11 |
|    |                      |                  |                  |     |     |                    |               |

**Tableau (III-1):** Les paramètres de l'Hamiltonien relatif à la bande  $\nu_3$  de la molécule <sup>80</sup>SeF<sub>6</sub>.

L'ensemble de ces paramètres, nous ont permis de calculer et de prédire le spectre complet de la bande  $v_3$  de la molécule  ${}^{80}SeF_6$  dans la fenêtre (750-800 $cm^{-1}$ ), pour une valeur maximale de nombre quantique rotationnel Jmax = 95, avec un écart quadratique moyen de 0,643.  $10^{-3} cm^{-1}$ , très proche de la précision expérimentale.

**Tableau (III-2):** Informations sur le spectre IR de la bande  $v_3$  de la molécule <sup>80</sup>SeF<sub>6</sub>.

| Nombre de transitions calculées | 11520                                                               |
|---------------------------------|---------------------------------------------------------------------|
| première transition             | 768,202989 1.77E-02 P 96 F1g                                        |
| Transition la plus intense      | 783,961365 2.35E-01 R 36 A2g                                        |
| Dernière transition             | 789,722577 2.10E-02 R 94 F2g                                        |
| Imax                            | 95                                                                  |
| Intensité sommet                | $0,93.10^3 cm^{-2}$ . $atm^{-1}$ avec seuil = $0,1.10^{-2} cm^{-1}$ |

La figure ci-dessous montre que les rais calculées sont réparties selon trois branches P, Q et R suivant les règles de sélections rovibrationnelles (Voir chapitre II).



Figure (III-6): Spectres des transitions rovibrationnelles de la bande  $\nu_3$  de la molécule <sup>80</sup>SeF<sub>6</sub>.

### III-4-2. Les niveaux d'énergies réduits :

La figure (III-7) montre la répartition des niveaux d'énergie réduits calculés en fonction de nombre quantique rotationnel **J** pour les différentes Transitions de la bande  $v_3$ .Ces niveaux sont calculés par la relation :

$$E_{red} = E - B_0 J (J + 1) + \dots$$
 (III.6)

$$\tilde{v}_{red}^{C} = \tilde{v}^{C} + \sum_{\Omega} t_{\{GC\}\{GC\}}^{\Omega(0,0A_{1g})A_{1g}A_{1g}} . (J(J+1))^{\Omega/2}$$
(III.7)

$$\tilde{v}_{red}^{C} = \frac{E}{hC} - B_0 J (J+1) + D_0 J^2 (J+1)^2 + \dots$$
(III.8)

M. Terki-Hassaine [1], a déterminé la valeur numérique de la constante rotationnelle  $B_0$ qui vaut :

$$B_0 = \frac{h}{8\pi^2 C I_0}$$
(III.9)

Avec :

$$B_0 = 0.78130718020 \text{E} \cdot 01 \text{cm}^{-1} \tag{III.10}$$

>  $B_0$ : Est la valeur du paramètre qui correspond à i =1 dans le tableau (III-1).

$$t_{\{0\}\{0\}}^{2(0,0A_{1g})A_{1g}A_{1g}} = B_0 = 0.78130718020\text{E-}01cm^{-1}$$
(III.11)

Ces niveaux sont répartir suivant trois branches P, Q, R, selon les règles de sélection rovibrationnelles  $\Delta J = -1, 0, +1$  respectivement.



Figure (III-7): Répartitions des niveaux d'énergies réduits de niveau  $\nu_3$  de la molécule <sup>80</sup>SeF<sub>6</sub>.

## III-4-3. Prédiction du spectre IR de la bande $v_3$ de la molécule <sup>80</sup>SeF<sub>6</sub> :

Dans le tableau (III-3), nous reportons un ensemble de transitions rovibrationnelles appartenant au spectre calculé de la bande  $\nu_3$  de la molécule en question.

Dans ce tableau, chaque ligne explique l'origine de la transition calculée. Par exemple et pour la première ligne, la raie de fréquence 779.921225  $cm^{-1}$  résulte d'une transition de niveau supérieur caractérisé par J = 0 de symétrie F1u au nivau inferieur caractérisé par J = 1 de symétrie F1g, et puisque  $\Delta j = -1$ , cette raie appartient à la branche P.

**Tableau (III-3):** Prédiction du spectre IR de la bande  $v_3$  de la molécule <sup>80</sup>SeF<sub>6</sub>.

| Fréquence                | Intensité            |        | <b>J</b> '' | <b>C''</b> | n''    | J | С           | n      | <b>Energie inf</b>   | <b>Population inf</b>        |
|--------------------------|----------------------|--------|-------------|------------|--------|---|-------------|--------|----------------------|------------------------------|
| 779.921225               | 3.08E-03             | Р      | 1           | F1g        | 1      | 0 | F1u         | 1      | 0.156261             | 0.357201E-05                 |
| 780.139330               | 3.08E-03             | ĸ      | 0           | ALG        | 1      | 1 | AIU         | 1      | 0.000000             | 0.397188E-06                 |
| 780 030215               | 9 23E-02             | 0      | 1           | E y<br>F1a | 1      | 1 | E U<br>F1u  | 1      | 0.400704             | 0.792392E-03<br>0.357201E-05 |
| 779.811964               | 9.22E-03             | P      | 2           | F2a        | ī      | 1 | F2u         | 1      | 0.468784             | 0.594444E-05                 |
| 779.702866               | 2.55E-02             | Р      | 3           | A2g        | 1      | 2 | A2u         | 1      | 0.937569             | 0.138392E-04                 |
| 780.030027               | 2.05E-02             | Q      | 2           | Еğ         | 1      | 2 | Eu          | 1      | 0.468784             | 0.792592E-05                 |
| 780.248083               | 1.54E-02             | R      | 1           | F1g        | 1      | 2 | Flu         | 1      | 0.156261             | 0.357201E-05                 |
| 779.702050               | 1.53E-02             | P      | 3           | Flg        | 1      | 2 | Flu         | 2      | 0.93/569             | 0.830352E-05                 |
| 779 702414               | 1.54E-02             | Q<br>P | 2           | F2g<br>F2g | 1      | 2 | FZU<br>FZU  | 2      | 0.400704             | 0.394444E-03<br>0.830352E-05 |
| 779.591892               | 7.13E-03             | P      | 4           | Ala        | ī      | 3 | Alu         | ī      | 1.562614             | 0.354800E-05                 |
| 780.028726               | 3.58E-02             | Q      | 3           | A2g        | 1      | 3 | A2u         | 1      | 0.937569             | 0.138392E-04                 |
| 780.356597               | 2.87E-02             | R      | 2           | Еġ         | 1      | 3 | ЕU          | 1      | 0.468784             | 0.792592E-05                 |
| 779.592475               | 2.85E-02             | P      | 4           | Eg         | 1      | 3 | Eu          | 2      | 1.562614             | 0.141920E-04                 |
| 760.029745               | 2.15E-02<br>2.14E-02 | Q      | 5<br>4      | F1g<br>F1g | 1      | 2 | F10         | 2      | 0.957569             | 0.030352E-05<br>0 106440E-04 |
| 780.356662               | 2.15E-02             | R      | 2           | F2a        | 1      | 3 | F2u         | 1      | 0.468784             | 0.594444E-05                 |
| 780.029290               | 2.15E-02             | Q      | 3           | F2g        | 1      | 3 | F2u         | 2      | 0.937569             | 0.830352E-05                 |
| 779.593205               | 2.14E-02             | Р      | 4           | F2g        | 1      | 3 | F2u         | 3      | 1.562614             | 0.106440E-04                 |
| 780.029707               | 9.17E-03             | Q      | 4           | Alg        | 1      | 4 | Alu         | 1      | 1.562614             | 0.354800E-05                 |
| 780.465216               | 4.60E-02             | R      | 3           | AZG        | 1      | 4 | AZU         | 1      | 0.937569             | 0.138392E-04<br>0.141920E-04 |
| 779 483263               | 3.65E-02             | P      | 5           | Eg         | 1      | 4 | EU          | 2      | 2 343922             | 0.141920E-04<br>0.172809E-04 |
| 780.464875               | 2.76E-02             | Ŕ      | 3           | F1a        | ī      | 4 | F1u         | ī      | 0.937569             | 0.830352E-05                 |
| 780.029228               | 2.75E-02             | Q      | 4           | F1g        | 1      | 4 | F1u         | 2      | 1.562614             | 0.106440E-04                 |
| 779.481792               | 2.74E-02             | Р      | 5           | F1g        | 2      | 4 | F1u         | 3      | 2.343922             | 0.129607E-04                 |
| 779.483456               | 2.74E-02             | P      | 5           | Flg        | 1      | 4 | Flu         | 4      | 2.343922             | 0.129607E-04                 |
| 780.465026               | 2.76E-02<br>2.75E-02 | R      | 3           | F2g        | 1      | 4 | F2U         | 1<br>2 | 0.937569             | 0.830352E-05<br>0.106440E-04 |
| 779 482199               | 2.73E-02<br>2.74E-02 | P      | 5           | F2g<br>F2g | 1      | 4 | F2u<br>F2u  | 3      | 2 343922             | 0.129607E-04                 |
| 780.572796               | 1.12E-02             | R      | 4           | Alg        | ī      | 5 | Alu         | ĭ      | 1.562614             | 0.354800E-05                 |
| 779.373774               | 1.11E-02             | Р      | 6           | Alg        | 1      | 5 | Alu         | 2      | 3.281490             | 0.508281E-05                 |
| 779.371791               | 5.55E-02             | Р      | 6           | A2g        | 1      | 5 | A2u         | 1      | 3.281490             | 0.254141E-04                 |
| 780.573091               | 4.49E-02             | R      | 4           | Eg         | 1      | 5 | Eu          | 1      | 1.562614             | 0.141920E-04                 |
| 780.026999               | 4.47E-02<br>4.44E-02 | Q      | 5           | Eg         | 1      | 5 | EU          | 2      | 2.343922<br>3.281490 | 0.172809E-04<br>0.203313E-04 |
| 780.572968               | 3.37E-02             | R      | 4           | F1a        | 1      | 5 | F1u         | 1      | 1.562614             | 0.106440F-04                 |
| 780.026703               | 3.35E-02             | Q      | 5           | F1g        | ī      | 5 | Flu         | 2      | 2.343922             | 0.129607E-04                 |
| 780.029188               | 3.35E-02             | Q      | 5           | F1g        | 2      | 5 | F1u         | 3      | 2.343922             | 0.129607E-04                 |
| 779.373469               | 3.33E-02             | P      | 6           | F1g        | 1      | 5 | F1u         | 4      | 3.281490             | 0.152484E-04                 |
| 780.573464               | 3.37E-02<br>3.35E-02 | ĸ      | 4           | F2g        | 1      | 5 | FZU<br>FZU  | 2      | 1.362614             | 0.106440E-04<br>0.129607E-04 |
| 779.371421               | 3.33E-02             | P      | 6           | F2g        | 1      | 5 | F2u<br>F2u  | ŝ      | 3.281490             | 0.152484F-04                 |
| 779.373123               | 3.33E-02             | P      | õ           | F2g        | 2      | 5 | F2u         | 4      | 3.281490             | 0.152484E-04                 |
| 780.024938               | 1.31E-02             | Q      | 6           | A1g        | 1      | 6 | Alu         | 1      | 3.281490             | 0.508281E-05                 |
| 780.028016               | 6.57E-02             | Q      | 6           | A2g        | 1      | 6 | A2u         | 1      | 3.281490             | 0.254141E-04                 |
| 779.202303               | 0.33E-U2<br>5.28E-02 | P      | 5           | AZG        | 1      | 6 | AZU         | 2      | 4.373320             | 0.291705E-04<br>0.172809E-04 |
|                          | 5 25E-02             | 0      | 6           | Fa         | 1      | 6 | FU          | 2      | 3 281490             | 0.203313E-04                 |
| 779.263187               | 5.22E-02             | P      | 7           | Eq         | ī      | õ | Eu          | 3      | 4.375320             | 0.233364E-04                 |
| 780.680614               | 3.96E-02             | R      | 5           | F1g        | 2      | 6 | F1u         | 1      | 2.343922             | 0.129607E-04                 |
| 780.681575               | 3.96E-02             | R      | 5           | F1g        | 1      | 6 | Flu         | 2      | 2.343922             | 0.129607E-04                 |
| 780.025423               | 3.94E-02             | Q      | 67          | FLG        | 1      | 6 | Flu         | 3      | 3.281490             | 0.152484E-04<br>0.175022F 04 |
| 779.263668               | 3.92E-02             | P      | 7           | F1g<br>F1a | 1      | 6 | F1u<br>F1u  | 5      | 4.375320             | 0.175023E-04                 |
| 780.680848               | 3.96E-02             | R      | 5           | F2q        | 1      | õ | F2u         | 1      | 2.343922             | 0.129607E-04                 |
| 780.025973               | 3.94E-02             | Q      | 6           | F2g        | 2      | 6 | F2u         | 2      | 3.281490             | 0.152484E-04                 |
| 780.028613               | 3.94E-02             | Q      | 6           | F2g        | 1      | 6 | F2u         | 3      | 3.281490             | 0.152484E-04                 |
| 779.260709               | 3.92E-02             | Р      | 4           | F2g        | 2      | 6 | F2u         | 4      | 4.375320             | 0.175023E-04<br>0.175023E-04 |
| 780 789665               | 1.52E-02             | R      | 6           | F29<br>∆1α | 1      | 7 | F∠u<br>∆1u  | 1      | 3 281490             | 0.508281E-05                 |
| 779.149350               | 1.50E-02             | P      | 8           | Ala        | 1      | 7 | Alu         | 2      | 5.625412             | 0.657245E-05                 |
| 780.788414               | 7.59E-02             | R      | 6           | A2g        | 1      | 7 | A2u         | 1      | 3.281490             | 0.254141E-04                 |
| 780.025605               | 7.54E-02             | Q      | 7           | A2g        | 1      | 7 | A2u         | 2      | 4.375320             | 0.291705E-04                 |
| 780.788107               | 6.07E-02             | R      | 6           | Eg         | 1      | 7 | Eu          | 1      | 3.281490             | 0.203313E-04                 |
| 780.024129               | 6.03E-02<br>5.09E-02 | Q      | 8           | Еg         | 1      | 4 | EU          | 2      | 4.375320             | 0.233364E-04<br>0.262808E-04 |
| 779 153274               | 5 99E-02             | Р      | 8           | Fa         | 2      | 7 | FU          | 4      | 5 625412             | 0 262898E-04                 |
| 780.789469               | 4.55E-02             | R      | õ           | F1g        | ī      | 7 | F1u         | 1      | 3.281490             | 0.152484E-04                 |
| 780.023349               | 4.52E-02             | Q      | 7           | F1g        | 1      | 7 | F1u         | 2      | 4.375320             | 0.175023E-04                 |
| 780.028441               | 4.52E-02             | Q      | 7           | Flg        | 2      | 7 | F1u         | 3      | 4.375320             | 0.175023E-04                 |
| //9.149490<br>770 152565 | 4.49E-02<br>4.40E-02 | Р      | ð<br>R      | F1g        | ⊥<br>2 | 7 | ⊢⊥u<br>⊏1   | 4      | 5.625412<br>5.625/12 | 0.19/1/4E-04<br>0.10717/E-0/ |
| 780 788183               | 4.55F-02             | R      | 6           | F19<br>F20 | 1      | 7 | F1U<br>F211 | 1      | 3,281490             | 0.1524845-04                 |
| 780.789248               | 4.55E-02             | R      | ĕ           | F2q        | 2      | 7 | F2u         | 2      | 3.281490             | 0.152484E-04                 |
| 780.024642               | 4.52E-02             | Q      | 7           | F2g        | 1      | 7 | F2u         | 3      | 4.375320             | 0.175023E-04                 |
| 780.028110               | 4.52E-02             | Q      | 7           | F2g        | 2      | 7 | F2u         | 4      | 4.375320             | 0.175023E-04                 |
| //9.151773               | 4.49E-02             | P      | ð           | F2g        | 1      | 7 | FZU         | 5      | 5.625412             | 0.19/1/4E-04                 |
| 780 028215               | 4.49E-02<br>1 70E-02 | Р<br>0 | 0<br>8      | r∠y<br>∆1a | 2<br>1 | 8 | r∠u<br>∆1   | 0      | 5 625412             | 0.19/1/4E-04                 |
| 779.041908               | 1.68E-02             | P      | 9           | Alg        | 1      | 8 | Alu         | 2      | 7.031765             | 0.729630E-05                 |

| Fréquence                        | Intensité            | J''          | <b>C''</b> | <b>n''</b>     | J               | С          | n      | <b>Energie inf</b>     | <b>Population inf</b>        |
|----------------------------------|----------------------|--------------|------------|----------------|-----------------|------------|--------|------------------------|------------------------------|
| 780.896502                       | 8.56E-02             | R 7          | A2g        | 1              | 8               | A2u        | 1      | 4.375320               | 0.291705E-04                 |
| 779.043321                       | 8.43E-02             | Р 9          | A2g        | 1              | 8               | A2u        | 2      | 7.031765               | 0.364815E-04                 |
| 780.897101                       | 6.84E-02             | R /          | Eg         | 1              | 8               | Eu         | 1      | 4.375320               | 0.233364E-04                 |
| 780.021745                       | 6.79E-02             | Q 8          | Еg         | 2              | ð               | EU         | 2      | 5.625412               | 0.262898E-04                 |
| 700.027030                       | 6.79E-02             | U O          | Eg         | 1              | o<br>Q          | E U        | 2      | 7 021765               | 0.202090E-04<br>0.201852E-04 |
| 780 895316                       | 5 13E-02             | P 3          | E 9<br>E10 | 2              | 8               | ⊑ u<br>⊑1u | 1      | 4 375320               | 0.291032E-04<br>0.175023E-04 |
| 780 897428                       | 5 13E-02             | R 7          | F1g<br>F1g | 1              | 8               | F1u        | 2      | 4 375320               | 0.175023E-04                 |
| 780.022917                       | 5.10E-02             | 0 8          | F1a        | 2              | 8               | Flu        | 3      | 5.625412               | 0.197174E-04                 |
| 780.027978                       | 5.10E-02             | Q 8          | F1g        | 1              | 8               | F1u        | 4      | 5.625412               | 0.197174E-04                 |
| 779.038032                       | 5.06E-02             | Р 9          | F1g        | 3              | 8               | F1u        | 5      | 7.031765               | 0.218889E-04                 |
| 779.041069                       | 5.05E-02             | Р 9          | F1g        | 2              | 8               | F1u        | 6      | 7.031765               | 0.218889E-04                 |
| 779.042725                       | 5.05E-02             | P 9          | Flg        | 1              | 8               | Flu        | 7      | 7.031765               | 0.218889E-04                 |
| 780.895447                       | 5.13E-02             | R /          | F2g        | 2              | 8               | FZU        | Ţ      | 4.375320               | 0.175023E-04                 |
| 780.896890                       | 5.13E-02             | R /          | F2g        | 1              | ð               | F2U        | 2      | 4.375320               | 0.1/5023E-04<br>0.107174F 04 |
| 780.021388                       | 5.10E-02<br>5.10E-02 |              | F29        | 1              | 8               | F2u<br>F2u | 4      | 5 625412               | 0.197174E-04<br>0.197174E-04 |
| 779.038144                       | 5.06F-02             | P 9          | F2a        | 2              | 8               | F2u        | 5      | 7.031765               | 0.218889F - 04               |
| 779.043060                       | 5.05E-02             | Р 9          | F2a        | ī              | 8               | F2u        | õ      | 7.031765               | 0.218889E-04                 |
| 781.002187                       | 1.90E-02             | R 8          | A1g        | 1              | 9               | A1u        | 1      | 5.625412               | 0.657245E-05                 |
| 780.021265                       | 1.89E-02             | Q 9          | A1g        | 1              | 9               | Alu        | 2      | 7.031765               | 0.729630E-05                 |
| 778.931115                       | 1.87E-02             | P 10         | A1g        | 1              | 9               | Alu        | 3      | 8.594379               | 0.800412E-05                 |
| 780.018875                       | 9.43E-02             | Q 9          | A2g        | 1              | 9               | A2u        | 1      | 7.031765               | 0.364815E-04                 |
| 778.926469                       | 9.34E-02             | P 10         | A2g        | 1              | 9               | AZU        | 2      | 8.594379               | 0.400206E-04                 |
| 781.002339                       | 7.60E-02             | K Ö          | Eg         | 1<br>2         | 9               | EU         | 1<br>2 | 5.025412               | 0.262898E-04                 |
| 780 022117                       | 7.00E-02<br>7.54E-02 |              | Eg         | 2              | 9               | E U        | 2      | 7 021765               | 0.202090E-04<br>0.201852E-04 |
| 778 926353                       | 7.34E-02<br>7.48E-02 | P 10         | EG         | 1              | 9               | EU         | 4      | 8 594379               | 0.291052E-04<br>0.320165E-04 |
| 778.932406                       | 7.48F-02             | P 10         | Fa         | 2              | 9               | Fu         | 5      | 8.594379               | 0.320165E-04                 |
| 781.002283                       | 5.70E-02             | R 8          | F1a        | 1              | 9               | F1u        | 1      | 5.625412               | 0.197174E-04                 |
| 781.004426                       | 5.70E-02             | R 8          | F1g        | 2              | 9               | F1u        | 2      | 5.625412               | 0.197174E-04                 |
| 780.019901                       | 5.66E-02             | Q 9          | F1ğ        | 1              | 9               | F1u        | 3      | 7.031765               | 0.218889E-04                 |
| 780.022754                       | 5.66E-02             | Q 9          | F1g        | 2              | 9               | F1u        | 4      | 7.031765               | 0.218889E-04                 |
| 780.027779                       | 5.66E-02             | Q 9          | Flg        | 3              | 9               | Flu        | 5      | 7.031765               | 0.218889E-04                 |
| 778.930049                       | 5.61E-02             | P 10         | F1g        | 1              | 9               | F10        | 67     | 8.594379               | 0.240124E-04                 |
| 770.952000                       | 5.01E-02<br>5.70E-02 | P 70         | F19        | 2              | 9               | F1U<br>520 | 1      | 0.394379<br>5 625412   | 0.240124E-04                 |
| 781 005082                       | 5 70E-02             | R 8          | F2g        | 2              | 9               | F2u        | 2      | 5 625412               | 0.197174E-04                 |
| 780.019325                       | 5.66F-02             | 0 9          | F2a        | 1              | 9               | F2u        | 3      | 7.031765               | 0.218889F-04                 |
| 780.027582                       | 5.66E-02             | õ 9          | F2q        | 2              | 9               | F2u        | 4      | 7.031765               | 0.218889E-04                 |
| 778.926390                       | 5.61E-02             | P 10         | F2g        | 1              | 9               | F2u        | 5      | 8.594379               | 0.240124E-04                 |
| 778.929668                       | 5.61E-02             | P 10         | F2g        | 2              | 9               | F2u        | 6      | 8.594379               | 0.240124E-04                 |
| 778.932771                       | 5.61E-02             | P 10         | F2g        | 3              | 9               | F2u        | 7      | 8.594379               | 0.240124E-04                 |
| 781.111059                       | 2.09E-02             | R 9          | Alg        | 1              | 10              |            | 1<br>2 | 7.031/05               | 0.729630E-05                 |
| 780.019402<br>781 112710         | 2.07E-02<br>1.04E-01 | Q IU         | A19        | 1              | 10              | A1U<br>A2U | 2      | 0.394379 7.031765      | 0.800412E-03<br>0.364815E-04 |
| 780 027264                       | 1 03F-01             | 0 10         | Δ2α        | 1              | 10              | Δ2μ        | 2      | 8 594379               | 0.400206F - 04               |
| 778.818010                       | 1.02E-01             | P 11         | A2g        | ī              | 10              | A2u        | 3      | 10.313255              | 0.434722E-04                 |
| 781.110887                       | 8.35E-02             | r 9          | Еğ         | 1              | 10              | Εu         | 1      | 7.031765               | 0.291852E-04                 |
| 780.017145                       | 8.27E-02             | Q 10         | Еğ         | 2              | 10              | ЕU         | 2      | 8.594379               | 0.320165E-04                 |
| 780.027474                       | 8.27E-02             | Q 10         | Еg         | 1              | 10              | ЕU         | 3      | 8.594379               | 0.320165E-04                 |
| 778.818532                       | 8.19E-02             | P II         | Eg         | 2              | 10              | EU         | 4      | 10.313255              | 0.347778E-04                 |
| 778.821946                       | 8.19E-02             | PIL          | E g        | 1<br>2         | 10              | E U        | 5      | 10.313255              | 0.34///8E-04                 |
| 781.108802                       | 6 26E-02             |              | F1g<br>F1g | 2              | 10              | F10        | 2      | 7 031765               | 0.218889E - 04               |
| 781 112264                       | 6 26E-02             | R 9          | F1g<br>F1g | 1              | 10              | F1u        | 3      | 7 031765               | 0.218889E-04                 |
| 780.017715                       | 6.21E-02             | Q 10         | F1q        | 2              | 10              | Flu        | 4      | 8.594379               | 0.240124E-04                 |
| 780.021262                       | 6.21E-02             | Q 10         | F1g        | 1              | 10              | F1u        | 5      | 8.594379               | 0.240124E-04                 |
| 778.814376                       | 6.15E-02             | P 11         | F1g        | 3              | 10              | F1u        | 6      | 10.313255              | 0.260833E-04                 |
| 778.820139                       | 6.14E-02             | P 11         | F1g        | 2              | 10              | Flu        | 7      | 10.313255              | 0.260833E-04                 |
| 7/8.822158                       | 6.14E-02             | PIL          | Flg        | 1<br>2         | 10              | FLU        | 8      | 10.313255              | 0.260833E-04                 |
| 701.100942<br>701 11251 <i>4</i> | 0.20E-02             | к 9<br>в 0   | F29        | 2              | 10              | FZU<br>F2u | 1<br>2 | 7.031765               | 0.218889E - 04               |
| 780 016513                       | 6 21E-02             | 0 10         | F29<br>F20 | 1<br>3         | 10              | F2u<br>F2u | 2      | 8 594379               | 0.210009E-04<br>0.240124E-04 |
| 780.021933                       | 6.21E-02             | o 10         | F2a        | 2              | 10              | F2u        | 4      | 8.594379               | 0.240124E-04                 |
| 780.027408                       | 6.21E-02             | õ 10         | F2g        | 1              | 10              | F2u        | 5      | 8.594379               | 0.240124E-04                 |
| 778.814427                       | 6.15E-02             | P 11         | F2g        | 3              | 10              | F2u        | 6      | 10.313255              | 0.260833E-04                 |
| 778.818329                       | 6.14E-02             | P 11         | F2g        | 2              | 10              | F2u        | 7      | 10.313255              | 0.260833E-04                 |
| 778.821448                       | 6.14E-02             | P 11         | F2g        | 1              | 10              | F2u        | 8      | 10.313255              | 0.260833E-04                 |
| /81.218/32                       | 2.2/E-02             | R 10         | Alg        | 1              |                 | Alu        | 1<br>2 | 8.5943/9               | 0.800412E-05                 |
| //0./U2U0/<br>778 711527         | 2.22E-U2<br>2.22E-02 | Р 12<br>в 12 | A10        | 1<br>2         | 11              | A1U        | 2      | 12.100392              | 0.930300E-05                 |
| 781 215286                       | 1.13F-01             | R 10         | A19<br>A20 | 1              | 11              | Δ211       | נ<br>1 | 8,594379               | 0.400206F-04                 |
| 780.021078                       | 1.12F-01             | 0 11         | A2a        | 1              | 11              | A2u        | 2      | 10.313255              | 0.434722F-04                 |
| 778.710507                       | 1.11E-01             | P 12         | A2a        | $\overline{1}$ | $\overline{11}$ | A2u        | 3      | 12.188392              | 0.468294E-04                 |
| 781.215201                       | 9.08E-02             | r 10         | Εġ         | 1              | 11              | Eu         | 1      | 8.594379               | 0.320165E-04                 |
| 781.219725                       | 9.08E-02             | r 10         | Еğ         | 2              | 11              | ЕU         | 2      | 8.594379               | 0.320165E-04                 |
| 780.014119                       | 8.99E-02             | Q 11         | Eg         | 1              | 11              | Еu         | 3      | 10.313255              | 0.347778E-04                 |
| /80.020133                       | 8.99E-02             |              | Еg         | 2              | 11              | EU         | 4      | 10.313255              | U.34///8E-04                 |
| //0./UZ13/<br>778 700701         | 0.09E-U2<br>8 80E.02 | Р 12<br>в 12 | E g        | 1<br>2         | 11              | E U        | c<br>a | 12.100392<br>12.100392 | 0.374033E-04<br>0.3746255 04 |
| 781.217927                       | 6.81F-02             | г 12<br>R 10 | ⊑ y<br>F1a | 2<br>1         | 11<br>11        | ⊏u<br>F1⊔  | 1      | 8.594379               | 0.374033E-04<br>0.240124F-04 |

| Fréquence                | Intensité            | J''          | <b>C''</b> | <b>n''</b> | J        | С          | n       | Energie inf            | Population inf               |
|--------------------------|----------------------|--------------|------------|------------|----------|------------|---------|------------------------|------------------------------|
| 781.219474               | 6.81E-02             | R 10         | F1g        | 2          | 11       | F1u        | 2       | 8.594379               | 0.240124E-04                 |
| 780.013740               | 6.74E-02             | 0 11         | F1g<br>F1g | 2          | 11       | F1u<br>F1u | 2<br>2  | 10.313255              | 0.260833E-04                 |
| 780.027194               | 6.74E-02             | q 11         | F1g        | 3          | 11       | Flu        | 5       | 10.313255              | 0.260833E-04                 |
| 778.702120               | 6.67E-02             | P 12         | F1g        | 1          | 11       | F1u        | 6       | 12.188392              | 0.280976E-04                 |
| 778.706698               | 6.67E-02             | P 12<br>P 12 | F1g<br>F1g | 23         | 11<br>11 | F1u<br>F1u | 8       | 12.188392              | 0.280976E-04<br>0.280976E-04 |
| 781.215228               | 6.81E-02             | R 10         | F2g        | ĭ          | 11       | F2u        | ĭ       | 8.594379               | 0.240124E-04                 |
| 781.217640               | 6.81E-02             | R 10         | F2g        | 2          | 11       | F2u        | 2       | 8.594379               | 0.240124E-04                 |
| 781.220007<br>780.014982 | 6.81E-02<br>6.74E-02 | R 10<br>0 11 | F2g<br>F2g | 3<br>1     | 11<br>11 | FZU<br>FZU | 3<br>4  | 8.594379<br>10 313255  | 0.240124E-04<br>0.260833E-04 |
| 780.020503               | 6.74E-02             | q 11         | F2g        | 2          | 11       | F2u        | 5       | 10.313255              | 0.260833E-04                 |
| 780.027101               | 6.74E-02             | Q 11         | F2g        | 3          | 11       | F2u        | 6       | 10.313255              | 0.260833E-04                 |
| 778.706377               | 6.67E-02             | P 12<br>P 12 | F2g<br>F2g | ⊥<br>2     | 11       | FZU<br>FZU | 8       | 12.188392              | 0.280976E-04<br>0.280976E-04 |
| 778.711021               | 6.67E-02             | P 12         | F2g        | 3          | 11       | F2u        | ğ       | 12.188392              | 0.280976E-04                 |
| 780.010455               | 2.42E-02             | Q 12         | A1g        | 2          | 12       | Alu        | 1       | 12.188392              | 0.936588E-05                 |
| 780.026968<br>778 594694 | 2.42E-02<br>2.39E-02 | Q 12<br>P 13 | ALG<br>Alg | 1          | 12       | Δ10<br>Δ10 | 23      | 12.188392<br>14 219791 | 0.936588E-05<br>0 100171E-04 |
| 781.323974               | 1.22E-01             | R 11         | A2g        | ī          | 12       | A2u        | ĭ       | 10.313255              | 0.434722E-04                 |
| 780.012267               | 1.21E-01             | Q 12         | A2g        | 1          | 12       | A2u        | 2       | 12.188392              | 0.468294E-04                 |
| 778.598455<br>781 324376 | 1.20E-01<br>9.79E-02 | P 13<br>R 11 | AZG<br>F G | 1<br>2     | 12       | AZU<br>F U | 5       | 14.219/91              | 0.300834E-04<br>0.347778E-04 |
| 781.327047               | 9.79E-02             | R 11         | Eg         | ī          | 12       | Eu         | 2       | 10.313255              | 0.347778E-04                 |
| 780.015466               | 9.68E-02             | Q 12         | Eg         | 2          | 12       | Eu         | 3       | 12.188392              | 0.374635E-04                 |
| 780.026874<br>778 594324 | 9.68E-02<br>9.57E-02 | Q 12<br>P 13 | Eg         | ⊥<br>2     | 12       | EU         | 4       | 12.188392<br>14 219791 | 0.374635E-04<br>0.400683E-04 |
| 778.600284               | 9.57E-02             | P 13         | Eg         | 1          | 12       | Eu         | 6       | 14.219791              | 0.400683E-04                 |
| 781.321247               | 7.34E-02             | R 11         | F1g        | 3          | 12       | F1u        | 1       | 10.313255              | 0.260833E-04                 |
| 781.325620<br>781.327216 | 7.34E-02<br>7.34E-02 | R LL<br>R 11 | F1g<br>F1g | 2          | 12       | F1u<br>F1u | 23      | 10.313255              | 0.260833E-04<br>0.260833E-04 |
| 780.010857               | 7.26E-02             | Q 12         | F1g        | 3          | 12       | Flu        | 4       | 12.188392              | 0.280976E-04                 |
| 780.019073               | 7.26E-02             | Q 12         | F1g        | 2          | 12       | F1u        | 5       | 12.188392              | 0.280976E-04                 |
| 780.026906               | 7.26E-02<br>7.18E-02 | Q 12<br>P 13 | F1g<br>F1g | 1          | 12       | F1u<br>F1u | 6<br>7  | 12.188392<br>14 219791 | 0.280976E-04<br>0.300512E-04 |
| 778.594432               | 7.18E-02             | P 13         | F1g        | 3          | 12       | Flu        | 8       | 14.219791              | 0.300512E-04                 |
| 778.597169               | 7.18E-02             | P 13         | F1g        | 2          | 12       | F1u        | 9       | 14.219791              | 0.300512E-04                 |
| 778.600562               | 7.18E-02<br>7.34E-02 | P 13<br>R 11 | F1g<br>F2g | 1<br>3     | 12       | F1U<br>F2u | 10      | 14.219/91              | 0.300512E-04<br>0.260833E-04 |
| 781.324219               | 7.34E-02             | R 11         | F2g        | 2          | 12       | F2u        | 2       | 10.313255              | 0.260833E-04                 |
| 781.326652               | 7.34E-02             | R 11         | F2g        | 1          | 12       | F2u        | 3       | 10.313255              | 0.260833E-04                 |
| 780.011376<br>780.014970 | 7.26E-02<br>7.26E-02 | Q 12<br>0 12 | F2g<br>F2g | 3          | 12       | F2U<br>F2U | 4       | 12.188392              | 0.280976E-04<br>0.280976E-04 |
| 780.019668               | 7.26E-02             | Q 12         | F2g        | ī          | 12       | F2u        | 6       | 12.188392              | 0.280976E-04                 |
| 778.589559               | 7.18E-02             | P 13         | F2g        | 3          | 12       | F2u        | 7       | 14.219791              | 0.300512E-04                 |
| 778.600002               | 7.18E-02<br>7.18E-02 | P 13         | F2g<br>F2g | 1          | 12       | F2u<br>F2u | ĝ       | 14.219791              | 0.300512E-04                 |
| 781.426988               | 2.62E-02             | R 12         | Alg        | 1          | 13       | Alu        | 1       | 12.188392              | 0.936588E-05                 |
| 781.434387               | 2.62E-02             | R 12         | Alg        | 2          | 13       | Alu        | 2       | 12.188392              | 0.936588E-05                 |
| 778.484936               | 2.59E-02<br>2.56E-02 | Q 13<br>P 14 | Alg<br>Alg | 1          | 13       | Alu<br>Alu | 4       | 16.407451              | 0.100171E-04<br>0.106468E-04 |
| 781.433549               | 1.31E-01             | R 12         | A2g        | 1          | 13       | A2u        | 1       | 12.188392              | 0.468294E-04                 |
| 780.011200               | 1.29E-01             | Q 13         | A2g        | 1          | 13       | A2u        | 2       | 14.219791              | 0.500854E-04                 |
| 781.427027               | 1.05E-01             | R 12         | E Q        | 1          | 13       | AZU<br>E U | 1       | 12.188392              | 0.374635E-04                 |
| 781.432159               | 1.05E-01             | R 12         | Еğ         | 2          | 13       | Еu         | 2       | 12.188392              | 0.374635E-04                 |
| 780.007771               | 1.04E-01             | Q 13         | Eg         | 1          | 13       | Eu         | 3       | 14.219791              | 0.400683E-04                 |
| 778.476675               | 1.02E-01             | P 14         | Eq         | 1          | 13       | Eu         | 5       | 16.407451              | 0.425871E-04                 |
| 778.485808               | 1.02E-01             | P 14         | Еğ         | 2          | 13       | Еu         | 6       | 16.407451              | 0.425871E-04                 |
| 778.489339               | 1.02E-01<br>7.86E-02 | P 14<br>P 12 | E g        | 3<br>1     | 13       | E U        | 1       | 16.40/451              | 0.4258/1E-04<br>0.280976E-04 |
| 781.430516               | 7.86E-02             | R 12         | F1g        | 2          | 13       | Flu        | 2       | 12.188392              | 0.280976E-04                 |
| 781.434203               | 7.86E-02             | R 12         | F1g        | 3          | 13       | F1u        | 3       | 12.188392              | 0.280976E-04                 |
| 780.007276<br>780.013492 | 7.77E-02<br>7.77E-02 | Q 13<br>Q 13 | F1g<br>F1g | 1          | 13       | F1u<br>F1u | 4       | 14.219/91              | 0.300512E-04<br>0.300512E-04 |
| 780.018297               | 7.77E-02             | Q 13         | F1g        | 3          | 13       | Flu        | 6       | 14.219791              | 0.300512E-04                 |
| 780.026702               | 7.77E-02             | Q 13         | F1g        | 4          | 13       | Flu        | 7       | 14.219791              | 0.300512E-04                 |
| //8.482138<br>778 485470 | /.6/E-02<br>7.67E-02 | Р 14<br>р 14 | F1g        | 1          | ⊥3<br>1२ | Flu<br>Flu | 8       | 16.40/451<br>16.407451 | 0.319404E-04<br>0.319404E-04 |
| 778.489002               | 7.67E-02             | P 14         | F1g        | 3          | 13       | Flu        | 10      | 16.407451              | 0.319404E-04                 |
| 781.430264               | 7.86E-02             | R 12         | F2g        | 1          | 13       | F2u        | 1       | 12.188392              | 0.280976E-04                 |
| /ŏ⊥.4323/ŏ<br>781 433966 | 7.86E-02<br>7.86E-02 | к 12<br>к 12 | F2g        | 23         | 13<br>13 | F2u<br>F2u | 2       | 12.188392<br>12.188392 | 0.280976E-04<br>0.280976E-04 |
| 780.008276               | 7.77E-02             | Q 13         | F2g        | 1          | 13       | F2u        | 4       | 14.219791              | 0.300512E-04                 |
| 780.012577               | 7.77E-02             | Q 13         | F2g        | 2          | 13       | F2u        | 5       | 14.219791              | 0.300512E-04                 |
| 78 476682                | 7.77E-02<br>7.67E-02 | Q 13<br>P 14 | F2g        | 3<br>1     | 13<br>17 | F2u<br>F2u | 6<br>7  | 14.219/91<br>16 407451 | 0.300512E-04<br>0.319404=-04 |
| 778.481972               | 7.67E-02             | P 14         | F2g        | 2          | 13       | F2u        | 8       | 16.407451              | 0.319404E-04                 |
| 778.487027               | 7.67E-02             | P 14         | F2g        | 3          | 13       | F2u        | 9       | 16.407451              | 0.319404E-04                 |
| //8.489531<br>781.536463 | 7.67E-02<br>2.79E-02 | Р 14<br>R 13 | ⊦2g<br>A1a | 4<br>1     | ⊥3<br>14 | ⊦∠u<br>Alu | 10<br>1 | 16.40/451<br>14.219791 | 0.319404E-04<br>0.100171E-04 |

| Fréquence                | Intensité            | <b>J</b> ''  | <b>C''</b> | <b>n''</b> | J                | С          | n      | <b>Energie inf</b>     | <b>Population inf</b>        |
|--------------------------|----------------------|--------------|------------|------------|------------------|------------|--------|------------------------|------------------------------|
| 780.012158               | 2.75E-02             | Q 14         | A1g        | 1          | 14               | Alu        | 2      | 16.407451              | 0.106468E-04                 |
| 778.377734               | 2.71E-02             | P 15         | Alg        | 1          | 14               | Alu        | 3      | 18.751372              | 0.112538E-04                 |
| 781.539492               | 1.39E-01             | R 13         | A2g        | 1          | 14               | A2u        | 1      | 14.219791              | 0.500854E-04                 |
| 780.026443               | 1.38E-01             | Q 14         | A2g        | 1          | 14               | A2u        | 2      | 16.407451              | 0.532339E-04                 |
| 778.369262               | 1.36E-01             | P 15         | A2g        | 2          | 14               | AZu        | 3      | 18.751372              | 0.562691E-04                 |
| 778.378464               | 1.36E-01             | P 15         | A2g        | 1          | 14               | A2u        | 4      | 18.751372              | 0.562691E-04                 |
| /81.536168               | 1.11E-01             | R 13         | Еg         | 2          | 14               | EU         | Ţ      | 14.219791              | 0.400683E-04                 |
| 781.341007               | 1.11E-01<br>1.10c 01 | K 15         | Eg         | 1<br>2     | 14               | Eu         | 2      | 14.219791              | 0.400005E-04                 |
| 780.004010               | 1.10E-01<br>1.10E-01 | Q 14         | Eg         | 2          | 14               | EU         | 2      | 16 407451              | 0.423071E-04<br>0.425871E-04 |
|                          | 1.10E-01<br>1 10E-01 | 0 14         | Eg         | 1          | 14               | EU         | 5      | 16 407451              | 0.425871E-04<br>0.425871E-04 |
| 778 369445               | 1 09F-01             | P 15         | Fa         | 2          | 14               | FU         | 6      | 18 751372              | 0.450153E-04                 |
| 778.375216               | 1.09E-01             | P 15         | Fa         | 1          | 14               | FU         | 7      | 18.751372              | 0.450153E-04                 |
| 781.532462               | 8.36E-02             | R 13         | F1a        | 4          | 14               | F1u        | 1      | 14.219791              | 0.300512E-04                 |
| 781.536254               | 8.36E-02             | R 13         | Fla        | 3          | 14               | F1u        | 2      | 14.219791              | 0.300512E-04                 |
| 781.538445               | 8.36E-02             | R 13         | F1g        | 2          | 14               | F1u        | 3      | 14.219791              | 0.300512E-04                 |
| 781.541238               | 8.36E-02             | R 13         | F1ğ        | 1          | 14               | F1u        | 4      | 14.219791              | 0.300512E-04                 |
| 780.004613               | 8.25E-02             | Q 14         | F1g        | 3          | 14               | F1u        | 5      | 16.407451              | 0.319404E-04                 |
| 780.011156               | 8.25E-02             | Q 14         | F1g        | 2          | 14               | F1u        | 6      | 16.407451              | 0.319404E-04                 |
| 780.017043               | 8.25E-02             | Q 14         | F1g        | 1          | 14               | F1u        | 7      | 16.407451              | 0.319404E-04                 |
| 778.363520               | 8.14E-02             | P 15         | Flg        | 4          | 14               | Flu        | 8      | 18.751372              | 0.337615E-04                 |
| 778.372949               | 8.14E-02             | P 15         | Flg        | 3          | 14               | Flu        | 9      | 18.751372              | 0.337615E-04                 |
| //8.3/553/               | 8.14E-02             | P 15         | FIG        | 2          | 14               | FLU        | 10     | 18./513/2              | 0.337615E-04                 |
|                          | 8.14E-02             | P 15         | F⊥g        | 1          | 14               | FIU        | 11     | 18.751372              | 0.337615E-04                 |
| 701.33240U               | 0.30E-02             | K 15<br>p 12 | F2g        | 2          | 14               | F2U        | 1<br>2 | 14.219791              | 0.300512E-04                 |
| 781 570034               | 8 365-02             | к 10<br>р 12 | F29<br>F20 | 2<br>1     | 14<br>1/         | r∠u<br>⊏?  | 2      | 14.219/91              | 0.300312E-04                 |
| 780 003667               | 8 25F-02             | 0 14         | F20        | 4          | 14               | F2u<br>F2u | د<br>4 | 16 407451              | 0 319404=-04                 |
| 780 008368               | 8 25E-02             | 0 14         | F2g        | т<br>З     | 14               | F2u        | 5      | 16 407451              | 0 319404E-04                 |
| 780.017359               | 8.25E-02             | 0 14         | F2a        | 2          | 14               | F2u        | 6      | 16.407451              | 0.319404F-04                 |
| 780.026472               | 8.25E-02             | 0 14         | F2a        | ī          | 14               | F2u        | 7      | 16.407451              | 0.319404E-04                 |
| 778.363530               | 8.14E-02             | P 15         | F2g        | 4          | 14               | F2u        | 8      | 18.751372              | 0.337615E-04                 |
| 778.369381               | 8.14E-02             | P 15         | F2g        | 3          | 14               | F2u        | 9      | 18.751372              | 0.337615E-04                 |
| 778.373582               | 8.14E-02             | P 15         | F2g        | 2          | 14               | F2u        | 10     | 18.751372              | 0.337615E-04                 |
| 778.378281               | 8.14E-02             | P 15         | F2g        | 1          | 14               | F2u        | 11     | 18.751372              | 0.337615E-04                 |
| /81.6441/4               | 2.95E-02             | R 14         | Alg        | 1          | 15               | Alu        | 1      | 16.40/451              | 0.106468E-04                 |
| 780.000899               | 2.91E-02             | Q 15         | ALG        | 1          | 15               | ALU        | 2      | 18./515/2              | 0.112538E-04                 |
| 778 264270               | 2.07E-02<br>2.87E-02 | P 10<br>P 16 | ALY<br>ALG | 2          | 15               | A1u        | 2      | 21.231333              | 0.110371E-04<br>0.118371E-04 |
| 781 637649               | 1 47E-01             | R 14         | Δ2α        | 1          | 15               | Δ211       | 1      | 16 407451              | 0.532339E-04                 |
| 779.999591               | 1.45E-01             | 0 15         | A2g        | ī          | 15               | A2u        | 2      | 18.751372              | 0.562691E-04                 |
| 780.016363               | 1.45E-01             | Q 15         | A2g        | 2          | 15               | A2u        | 3      | 18.751372              | 0.562691E-04                 |
| 778.261289               | 1.43E-01             | P 16         | A2g        | 1          | 15               | A2u        | 4      | 21.251555              | 0.591854E-04                 |
| 781.637632               | 1.18E-01             | R 14         | Еġ         | 1          | 15               | ЕU         | 1      | 16.407451              | 0.425871E-04                 |
| 781.644893               | 1.18E-01             | R 14         | Еg         | 2          | 15               | ЕU         | 2      | 16.407451              | 0.425871E-04                 |
| /81.64/850               | 1.18E-01             | R 14         | Eg         | 3          | 15               | Eu         | 3      | 16.40/451              | 0.4258/1E-04                 |
| 780.005713               | 1.10E-UI<br>1.16c 01 | Q 15         | Eg         | 1<br>2     | 15               | EU         | 4      | 10./515/2              | 0.450153E-04                 |
| 778 250078               | 1.10E-01<br>1.15E-01 | P 16         | Eg         | 2          | 15               | EU         | 6      | 21 251555              | 0.430133E-04<br>0.473483E-04 |
| 778 260509               | 1.15E 01<br>1.15E-01 | P 16         | Fa         | 2          | 15               | FU         | 7      | 21 251555              | 0 473483E-04                 |
| 778.266881               | 1.15E-01             | P 16         | Ea         | 3          | 15               | Eu         | 8      | 21.251555              | 0.473483E-04                 |
| 781.641911               | 8.84E-02             | R 14         | F1q        | ī          | 15               | F1u        | ĩ      | 16.407451              | 0.319404E-04                 |
| 781.644614               | 8.84E-02             | R 14         | F1g        | 2          | 15               | F1u        | 2      | 16.407451              | 0.319404E-04                 |
| 781.647565               | 8.84E-02             | r 14         | F1g        | 3          | 15               | F1u        | 3      | 16.407451              | 0.319404E-04                 |
| 780.000333               | 8.72E-02             | Q 15         | F1g        | 1          | 15               | Flu        | 4      | 18.751372              | 0.337615E-04                 |
| 780.005117               | 8.72E-02             | Q 15         | Flg        | 2          | 15               | Flu        | 5      | 18.751372              | 0.337615E-04                 |
| 780.009833               | 8.72E-02             | Q 15         | F1g        | 3          | 15               | F1U        | 67     | 10.751572              | 0.337615E-04                 |
| 78 250075                | 8 60E-02             |              | F19<br>E1a | 4          | 15               | F10        | 8      | 21 251555              | 0.357013E-04<br>0.355112E-04 |
| 778 256465               | 8 60F-02             | P 16         | F1a        | 2          | 15               | F1u        | ğ      | 21 251555              | 0.355112E 04                 |
| 778.263749               | 8.60F-02             | P 16         | Fla        | 3          | 15               | Flu        | 10     | 21.251555              | 0.355112E - 04               |
| 778.266669               | 8.60E-02             | P 16         | F1q        | 4          | 15               | F1u        | 11     | 21.251555              | 0.355112E-04                 |
| 781.637638               | 8.84E-02             | R 14         | F2g        | 1          | 15               | F2u        | 1      | 16.407451              | 0.319404E-04                 |
| 781.641777               | 8.84E-02             | R 14         | F2g        | 2          | 15               | F2u        | 2      | 16.407451              | 0.319404E-04                 |
| 781.645902               | 8.84E-02             | R 14         | F2g        | 3          | 15               | F2u        | 3      | 16.407451              | 0.319404E-04                 |
| 781.648013               | 8.84E-02             | R 14         | F2g        | 4          | 15               | F2u        | 4      | 16.40/451              | 0.319404E-04                 |
| 779.999924               | 8./3E-U2<br>8 72F 02 | Q 15         | F2g        | 1<br>2     | 15               | FZU        | 5      | 18./513/2              | 0.337615E-04                 |
| 780.000025               | 0.72E-02<br>8 72E-02 | Q 15<br>0 15 | F29        | 2          | 15               | FZU<br>F2u | 7      | 10./313/2              | 0.337015E-04<br>0.337615E-04 |
|                          | 8 72E-02             | 0 15         | F2g        | 4          | 15               | F2u<br>F2u | 8      | 18 751372              | 0.337615E-04                 |
| 778.256374               | 8.60E-02             | P 16         | F2a        | i          | 15<br>15         | F2u        | ğ      | 21.251555              | 0.355112E-04                 |
| 778.260711               | 8.60E-02             | P 16         | F2q        | 2          | 15               | F2u        | 10     | 21.251555              | 0.355112E-04                 |
| 778.263186               | 8.60E-02             | P 16         | F2g        | 3          | 15               | F2u        | 11     | 21.251555              | 0.355112E-04                 |
| 778.267083               | 8.60E-02             | P 16         | F2g        | 4          | 15               | F2u        | 12     | 21.251555              | 0.355112E-04                 |
| 781.754105               | 3.10E-02             | R 15         | Alg        | 1          | 16               | Alu        | 1      | 18.751372              | 0.112538E-04                 |
| 780.000/64               | 3.06E-02             | Q 16         | ALG        | 2          | 10<br>1 <i>0</i> | A1U        | 2      | 21.251555              | U.1103/1E-U4                 |
| 700.020110<br>778 142220 | 3.00E-02<br>3.01E-02 | Q 10<br>D 17 | A10        | 1          | 16<br>16         | A1U        | 5<br>∕ | 23 000000<br>21.231333 | 0.1103/1E-04<br>0.1230555-04 |
| 781 747042               | 1.55F-01             | г 1/<br>R 15 | A19<br>A20 | 2          | 16               | Δ211       | 4<br>1 | 18,751372              | 0.562691F-04                 |
| 781.754733               | 1.55E-01             | R 15         | A2a        | ī          | 16               | A2u        | 2      | 18.751372              | 0.562691E-04                 |
| 780.006310               | 1.53E-01             | Q 16         | A2a        | ī          | 16               | A2u        | 3      | 21.251555              | 0.591854E-04                 |
| 778.150281               | 1.51E-01             | P 17         | A2a        | 1          | 16               | A2u        | 4      | 23,908000              | 0.619777E-04                 |

| Fréquence                              | Intensité            | J''          | <b>C''</b> | <b>n''</b> | J          | С           | n        | <b>Energie inf</b>     | <b>Population inf</b>        |
|----------------------------------------|----------------------|--------------|------------|------------|------------|-------------|----------|------------------------|------------------------------|
| 781.747190                             | 1.24E-01             | r 15         | Еg         | 2          | 16         | ЕU          | 1        | 18.751372              | 0.450153E-04                 |
| 781.751953                             | 1.24E-01             | R 15         | Еg         | 1          | 16         | ЕU          | 2        | 18.751372              | 0.450153E-04                 |
| 779.995917                             | 1.22E-01             | Q 16         | Eg         | 3          | 16         | Eu          | 3        | 21.251555              | 0.473483E-04                 |
| 780.007822                             | 1.22E-01<br>1.22E-01 | Q 16<br>0 16 | Eg         | 2          | 16<br>16   | EU          | 4        | 21.251555              | 0.473483E-04                 |
| 778 143135                             | 1 20E-01             | Q 10<br>P 17 | Eg         | 3          | 16         | EU          | 6        | 23 908000              | 0.4754652-04<br>0.495822E-04 |
| 778 151551                             | 1 20E-01             | P 17         | Fa         | 2          | 16         | FU          | 7        | 23.908000              | 0 495822E-04                 |
| 778.155487                             | 1.21E-01             | P 17         | Ea         | ī          | 16         | Eu          | 8        | 23.908000              | 0.495822E-04                 |
| 781.742511                             | 9.31E-02             | R 15         | F1g        | 4          | 16         | F1u         | 1        | 18.751372              | 0.337615E-04                 |
| 781.750056                             | 9.31E-02             | r 15         | F1ğ        | 3          | 16         | F1u         | 2        | 18.751372              | 0.337615E-04                 |
| 781.752225                             | 9.31E-02             | R 15         | F1g        | 2          | 16         | Flu         | 3        | 18.751372              | 0.337615E-04                 |
| 781.754379                             | 9.31E-02             | R 15         | Flg        | 1          | 16         | Flu         | 4        | 18.751372              | 0.337615E-04                 |
| 779.996300                             | 9.18E-02             | Q 16         | F1g        | 4          | 16         | F1U         | 5        | 21.251555              | 0.355112E-04                 |
| 780.001007                             | 9.10E-02             | Q 10<br>0 16 | F19        | 2          | 16         | F10         | 7        | 21.231333              | 0.355112E-04<br>0.355112E-04 |
| 780.026104                             | 9 18F-02             | 0 10         | F1g        | 1          | 16         | F1u         | 8        | 21 251555              | 0.355112E-04                 |
| 778.136331                             | 9.04E-02             | P 17         | Fla        | 5          | 16         | Flu         | ğ        | 23.908000              | 0.371866E-04                 |
| 778.143166                             | 9.04E-02             | P 17         | F1g        | 4          | 16         | F1u         | 10       | 23.908000              | 0.371866E-04                 |
| 778.147772                             | 9.04E-02             | P 17         | F1ğ        | 3          | 16         | F1u         | 11       | 23.908000              | 0.371866E-04                 |
| 778.152493                             | 9.04E-02             | P 17         | F1g        | 2          | 16         | Flu         | 12       | 23.908000              | 0.371866E-04                 |
| 778.155641                             | 9.04E-02             | P 17         | F1g        | 1          | 16         | Flu         | 13       | 23.908000              | 0.371866E-04                 |
| 781.742519                             | 9.31E-02             | R 15         | F2g        | 4          | 16         | FZU         | 1        | 18./513/2              | 0.337615E-04                 |
| /01./4/100<br>701 750504               | 9.51E-02             |              | F2g        | 2          | 16         | FZU<br>F2U  | 2        | 10./313/2              | 0.337013E-04<br>0.227615r 04 |
| 781 754575                             | 9.31E-02<br>9.31E-02 | R 15         | F29<br>F20 | 2          | 16         | F2U<br>F2U  | 2<br>2   | 18 751372              | 0.337615E-04<br>0.337615E-04 |
| 779 995553                             | 9 18F-02             | 0 16         | F2g        | 4          | 16         | FZU<br>F2U  | 5        | 21 251555              | 0.3570152-04                 |
| 780.002932                             | 9.18E-02             | ò 16         | F2a        | 3          | 16         | F2u         | 6        | 21.251555              | 0.355112E-04                 |
| 780.007437                             | 9.17E-02             | Q 16         | F2g        | 2          | 16         | F2u         | 7        | 21.251555              | 0.355112E-04                 |
| 780.015166                             | 9.17E-02             | Q 16         | F2g        | 1          | 16         | F2u         | 8        | 21.251555              | 0.355112E-04                 |
| 778.136335                             | 9.04E-02             | P 17         | F2g        | 4          | 16         | F2u         | 9        | 23.908000              | 0.371866E-04                 |
| 778.148110                             | 9.04E-02             | P 17         | F2g        | 3          | 16         | F2u         | 10       | 23.908000              | 0.371866E-04                 |
| 778.151102                             | 9.04E-02             | P 17         | F2g        | 2          | 16         | FZU         | 11       | 23.908000              | 0.371866E-04                 |
| 770.100209                             | 9.04E-02<br>3.25E_02 | P 17<br>P 16 | F29        | 1          | 17         | F2U         | 1        | 23.900000              | 0.371000E-04<br>0.118371E-04 |
| 781 858795                             | 3 25E-02             | R 16         | Δ1g        | 2          | 17         | Δ1u         | 2        | 21 251555              | 0.118371E-04                 |
| 780.013913                             | 3.20E-02             | 0 17         | Ala        | ī          | 17         | Alu         | 3        | 23.908000              | 0.123955E-04                 |
| 778.034600                             | 3.15E-02             | P 18         | A1g        | 1          | 17         | Alu         | 4        | 26.720706              | 0.129283E-04                 |
| 778.044137                             | 3.15E-02             | P 18         | A1g        | 2          | 17         | Alu         | 5        | 26.720706              | 0.129283E-04                 |
| 781.856174                             | 1.63E-01             | R 16         | A2g        | 1          | 17         | A2u         | 1        | 21.251555              | 0.591854E-04                 |
| 780.001309                             | 1.60E-01             | Q 1/         | A2g        | 1          | 17         | AZU         | 2        | 23.908000              | 0.619///E-04                 |
| 778.022300                             | 1.58E-01             | P 18         | AZG        | 1<br>2     | 17         | AZU<br>AZU  | 3<br>⊿   | 26.720706              | 0.646414E-04                 |
| 781 847104                             | 1.30E-01<br>1.30E-01 | P 10<br>R 16 | AZY<br>F 0 | 1          | 17         | AZU<br>F II | 4        | 20.720700              | 0.040414E-04<br>0.473483E-04 |
| 781.855516                             | 1.30E-01             | R 16         | Ea         | 2          | 17         | Eu          | 2        | 21.251555              | 0.473483E-04                 |
| 781.860982                             | 1.30E-01             | R 16         | Eq         | 3          | 17         | Eu          | 3        | 21.251555              | 0.473483E-04                 |
| 779.991371                             | 1.28E-01             | Q 17         | Еğ         | 1          | 17         | ЕU          | 4        | 23.908000              | 0.495822E-04                 |
| 779.998872                             | 1.28E-01             | Q 17         | Еg         | 2          | 17         | ЕU          | 5        | 23.908000              | 0.495822E-04                 |
| 780.014101                             | 1.28E-01             | Q 17         | Eg         | 3          | 17         | Eu          | 6        | 23.908000              | 0.495822E-04                 |
| 778.022296                             | 1.26E-01             | P 18         | Eg         | 1          | 17         | EU          | /        | 26.720706              | 0.51/131E-04                 |
| 778 040236                             | 1.20E-01             | P 10<br>P 18 | Eg         | 2          | 17         | EU          | å        | 26.720706              | 0.517131E-04<br>0.517131E-04 |
| 781.847102                             | 9.76F-02             | R 16         | F1a        | 1          | 17         | F1u         | í        | 21.251555              | 0.355112F-04                 |
| 781.852181                             | 9.76E-02             | R 16         | F1a        | 2          | 17         | Flu         | 2        | 21.251555              | 0.355112E-04                 |
| 781.858262                             | 9.76E-02             | r 16         | F1g        | 3          | 17         | F1u         | 3        | 21.251555              | 0.355112E-04                 |
| 781.860796                             | 9.76E-02             | R 16         | F1g        | 4          | 17         | F1u         | 4        | 21.251555              | 0.355112E-04                 |
| 779.991091                             | 9.61E-02             | Q 17         | F1g        | 1          | 17         | Flu         | 5        | 23.908000              | 0.371866E-04                 |
| 779.997170                             | 9.61E-02             | Q 17         | F1g        | 2          | 17         | FIU<br>F1   | 6        | 23.908000              | 0.371866E-04                 |
| 780.003833                             | 9.01E-02<br>9.61E-02 | 0 17         | F1g        | 2<br>2     | 17         | F10         | 8        | 23.908000              | 0.371866E - 04               |
| 780.025948                             | 9.61E-02             | 0 17         | F1a        | 5          | 17         | F1u         | ğ        | 23,908000              | 0.371866F-04                 |
| 778.029644                             | 9.45E-02             | P 18         | F1q        | ĭ          | 17         | Flu         | 10       | 26.720706              | 0.387848E-04                 |
| 778.034860                             | 9.45E-02             | P 18         | F1g        | 2          | 17         | F1u         | 11       | 26.720706              | 0.387848E-04                 |
| 778.038963                             | 9.45E-02             | P 18         | F1g        | 3          | 17         | F1u         | 12       | 26.720706              | 0.387848E-04                 |
| 778.043999                             | 9.46E-02             | P 18         | F1g        | 4          | 17         | Flu         | 13       | 26.720706              | 0.387848E-04                 |
| 781.852107                             | 9.76E-02             | R 16         | F2g        | 1          | 17         | FZU         | 1        | 21.251555              | 0.355112E-04                 |
| /81.855080<br>781.857780               | 9.76E-02             | R 16         | F2g        | 2          | 17         | FZU         | 2        | 21.251555              | 0.355112E-04<br>0.355112E-04 |
| 781 861158                             | 9 76E-02             | R 16         | F2g        | 4          | 17         | F2u<br>F2u  | 4        | 21 251555              | 0.355112E-04                 |
| 779.991762                             | 9.61E-02             | 0 17         | F2a        | 1          | 17         | F2u         | 5        | 23.908000              | 0.371866E-04                 |
| 779.999722                             | 9.61E-02             | Q 17         | F2g        | 2          | 17         | F2u         | 6        | 23.908000              | 0.371866E-04                 |
| 780.005182                             | 9.61E-02             | Q 17         | F2g        | 3          | 17         | F2u         | 7        | 23.908000              | 0.371866E-04                 |
| 780.025941                             | 9.61E-02             | Q 17         | F2g        | 4          | 17         | F2u         | 8        | 23.908000              | 0.371866E-04                 |
| 778.022298                             | 9.46E-02             | P 18         | F2g        | 1          | 17         | FZU         | 10       | 26.720706              | 0.38/848E-04                 |
| 778 027004                             | 9.45E-UZ             | Р 18<br>р 19 | F2g<br>F2∼ | 2          | 17         | F2U         | 10<br>11 | 20./20/00              | U.30/040E-U4                 |
| 778 040587                             | 9.43E-02<br>9.45E-02 | Р 10<br>Р 18 | F29<br>F20 | د<br>∡     | 17         | F2U<br>F211 | 12       | 20.720700              | 0.307040E-04<br>0 387848F-04 |
| 778.043839                             | 9.46E-02             | P 18         | F2a        | 5          | 17         | F2u         | 13       | 26.720706              | 0.387848E-04                 |
| 781.956911                             | 3.40E-02             | R 17         | Ala        | ī          | 18         | Alu         | 1        | 23.908000              | 0.123955E-04                 |
| 779.986208                             | 3.34E-02             | Q 18         | Alg        | 2          | 18         | Alu         | 2        | 26.720706              | 0.129283E-04                 |
| 780.004148                             | 3.34E-02             | Q 18         | A1g        | 1          | 18         | Alu         | 3        | 26.720706              | 0.129283E-04                 |
| 777.926409                             | 3.28E-02             | P 19         | Alg        | 1          | 18         | Alu         | 4        | 29.689673              | 0.134344E-04                 |
| 701.902010<br>779 987102               | 1.70E-01<br>1.67F-01 | к 1/<br>0 18 | AZG<br>AZG | ⊥<br>2     | 18<br>18   | A∠U<br>∆211 | ⊥<br>2   | 23.908000<br>26 720706 | 0.019///E-04<br>0 646414F-04 |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | T. 01 C OT           | ~ <u>+</u> 0 | ~~y        | ~          | <b>T</b> O | ~~ u        | 4        | 20.120100              |                              |

Les différentes colonnes de ce tableau représentent :

- ✤ *lère colonne* : La fréquence de transitions rovibrationnelles en  $cm^{-1}$ . Cette valeur est calculée par le programme inclus dans le logiciel XTDS, toute en respectant les règles de sélections rovibrationnelles
- 2ème colonne: L'intensité calculée pour chaque transition en atm<sup>-1</sup>. cm<sup>-2</sup>. l'intensité de la raie qui se calcule
- \* *3ème colonne*: La branche de raie spécifique à chaque transition.
  - > Si  $\Delta J = J_{Sup} J_{Inf} = -1$  la branche est P.
  - > Si  $\Delta J = J_{Sup} J_{Inf} = 0$  la branche est Q.
  - Si  $\Delta J = J_{Sup} J_{Inf} = +1$  la branche est R.
- \* 4ème colonne et 7ème colonne : la valeur du nombre quantique rotationnel du niveau inférieur  $J_{Inf}$  et du niveau supérieur  $J_{sup}$  respectivement.
- Sème colonne et 8ème colonne: La symétrie de niveau vibrationnel inférieur et supérieur respectivement.
- 6ème colonne et 9ème colonne: l'indice permettant la distinction entre deux niveaux de même symétrie.
- 10ème colonne: L'énergie de niveau inférieur.

## III-5. Analyse des positions des raies de la bande $v_4$ de la molécule <sup>80</sup>SeF<sub>6</sub> :

Dans ce travail, nous avons proposé aussi de calculer et de prédire le spectre des transitions rovibrationnelles de la bande  $v_4$  de la molécule  ${}^{80}SeF_6$ .

La bande  $v_4$  est l'ensemble des transitions rovibrationnelles entre les niveaux rovibrationnels ayant le nombre quantique  $v_4 = 1$  et les niveaux de base GS.

La variation de nombre quantique rotationnel J peut nous donne l'ensemble des niveaux rovibrationnels possibles.

Le niveau vibrationnel  $v_4$  se décompose en sous niveaux vibrationnels caractérisés par des nombres quantiques secondaires *l*s et par leurs symétries dans le groupe  $O_h$ .

On peut obtenir des niveaux rovibrationnels appartenant au même niveau vibrationnel par la variation des nombres quantiques rotationnels J.

Dans le but de calculer le spectre des transitions rovibrationnelles de la bande  $v_4$  de la molécule  ${}^{80}SeF_6$  en utilise :

\* États vibratoires supérieurs :

| ħ | t v1 | l v2 | 2 v3 | • <b>v</b> 4 | l v: | 5 v( | 5 C | V |
|---|------|------|------|--------------|------|------|-----|---|
|   |      |      |      |              |      |      |     |   |

 $1 \hspace{0.1in} | \hspace{0.1in} [[[0(0,0A1g)*\hspace{0.1in} 0(0,0A1g)]*\hspace{0.1in} 0(0,0A1g)] \hspace{0.1in} A1g*\hspace{0.1in} 1(1,0F1u)] \hspace{0.1in} F1u*\hspace{0.1in} 0(0,0A1g)] \hspace{0.1in} F1u*\hspace{0.1in} 0(0,0A1g)] \hspace{0.1in} F1u>\hspace{0.1in} (0,0A1g) \hspace{0.1in} F1u>\hspace{0.1in} F1u$ 

\* États vibrationnels inférieurs :

| # | v1 | <b>v</b> 2 | v3 | <b>v</b> 4 | <b>v</b> 5 | <b>v6</b> | Cv |
|---|----|------------|----|------------|------------|-----------|----|
|   |    |            |    |            |            |           |    |

### III-5-1. Résultats et discussion :

Le calcul du spectre des transitions rovibrationnelles de la bande  $v_4$  de la molécule  ${}^{80}SeF_6$ , dans la région (400 – 450  $cm^{-1}$ ), nécessite l'utilisation de 14 paramètres (déterminé par M. Rotger et al **[2]**) relatifs à la bande  $v_4$  de la molécule  ${}^{80}SeF_6$ , dont 1 est relatif au niveau de base GS et 13 sont relatifs au niveau  $v_4$ .

Tableau (III-4) : Les paramètres de l'Hamiltonien relatif à la bande  $\nu_4$  de la molécule  ${}^{80}SeF_6$ .

| i  | <b>Ω(k, nΓ</b> ) | n <sub>s</sub> Γ <sub>1</sub> | m <sub>s</sub> Γ <sub>2</sub> | Γ   | Hmn | Value/cm-1         | St.Dev./cm-1  |
|----|------------------|-------------------------------|-------------------------------|-----|-----|--------------------|---------------|
| 1  | 2(0,0A1g)        | 000000A1g                     | 000000A1g                     | A1g | 02  | 0.78130718020E-01  | 0.000000E+00  |
| 2  | 0(0, 0A1g)       | 000100F1u                     | 000100F1u                     | A1g | 20  | 0.43512846152E+03  | 0.6475488E-04 |
| 3  | 1(1,0F1g)        | 000100F1u                     | 000100F1u                     | F1g | 21  | 0.62779819617E-01  | 0.2490059E-05 |
| 4  | 2(0, 0A1q)       | 000100F1u                     | 000100F1u                     | A1g | 22  | 0.12648632627E-04  | 0.4423173E-07 |
| 5  | 2(2,0Eq)         | 000100F1u                     | 000100F1u                     | Εğ  | 22  | -0.22346353845E-04 | 0.2531141E-07 |
| 6  | 2(2,0F2q)        | 000100F1u                     | 000100F1u                     | F2g | 22  | -0.6000000000E-04  | 0.000000E+00  |
| 7  | 3(1,0F1q)        | 000100F1u                     | 000100F1u                     | F1g | 23  | -0.46471159771E-07 | 0.2319136E-09 |
| 8  | 3(3,0F1q)        | 000100F1u                     | 000100F1u                     | F1g | 23  | 0.13061089250E-07  | 0.1233511E-09 |
| 9  | 4(0,0A1q)        | 000100F1u                     | 000100F1u                     | A1q | 24  | -0.15750503879E-10 | 0.6485780E-11 |
| 10 | 4(2,0E ď)        | 000100F1u                     | 000100F1u                     | Εğ  | 24  | 0.0000000000E+00   | 0.000000E+00  |
| 11 | 4(2,0F2q)        | 000100F1u                     | 000100F1u                     | F2q | 24  | 0.0000000000E+00   | 0.000000E+00  |
| 12 | 4(4,0A1g)        | 000100F1u                     | 000100F1u                     | A1q | 24  | 0.0000000000E+00   | 0.000000E+00  |
| 13 | 4(4,0E q)        | 000100F1u                     | 000100F1u                     | Εğ  | 24  | 0.0000000000E+00   | 0.000000E+00  |
| 14 | 4(4,0F2g)        | 000100F1u                     | 000100F1u                     | F2g | 24  | 0.000000000E+00    | 0.000000E+00  |

L'ensemble des paramètres reporté au tableau (III-4), nous a permis de calculer et de prédire le spectre complet de la bande  $v_4$  de la molécule  ${}^{80}SeF_6$  dans la fenêtre (400 – 450  $cm^{-1}$ ) (figure III-8), pour une valeur maximale de nombre quantique rotationnel Jmax = 94, avec un écart quadratique moyen de 0,295.  $10^{-3}$   $cm^{-1}$  très proche de la précision expérimentale.

**Tableau (III-5) :** Informations sur le spectre **IR** de la bande  $v_4$  de la molécule <sup>80</sup>SeF<sub>6</sub>.

| Nombre de transitions calculées | 11281                                                                 |
|---------------------------------|-----------------------------------------------------------------------|
| Premières Transitions           | 422.976883 9.21E-03 P 95 F1g                                          |
| Les Transitions les plus fortes | 439.763636 1.19E-01 R 36 A2g                                          |
| Dernières Transitions           | 446.920238 1.14E-02 R 93 F1g                                          |
| Imax                            | 94                                                                    |
| Intensité Sommet                | $0.46.10^3 cm^{-2}$ . $atm^{-1}$ avec seuil = 0,10. $10^{-2} cm^{-1}$ |



Figure (III-8): Spectre des transitions rovibrationnelles de la bande  $\nu_4$  de la molécule  ${}^{80}SeF_6$ .

## III-5-2. Les niveaux d'énergies réduits :

La figure (III-9) montre la répartition des niveaux d'énergie réduits calculés en fonction de nombre quantique rotationnel J pour les différentes Transitions de la bande  $v_4$ .Ces niveaux sont calculés par la relation (III-6) :

On a :

$$B_0 = 0.78130718020 \text{E-}01 \ cm^{-1} \tag{III.12}$$

>  $B_0$ : Est la valeur du paramètre qui correspond à i =1 dans le tableau (III-4). [2]

$$t_{\{0\}\{0\}}^{2\ (\ 0,\ 0A_{1g})\ A_{1g}A_{1g}} = B_0 = 0.78130718020 \text{E-}01 \text{cm}^{-1}$$
(III.13)



Figure (III-9): Répartitions des niveaux des énergies de niveau de  $v_4$  de la molécule <sup>80</sup>SeF<sub>6</sub>.

# III-5-3. Prédiction du spectre IR de la bande $v_4$ de la molécule ${}^{80}SeF_6$ :

Dans le tableau (III-6), nous reportons un ensemble de transitions rovibrationnelles appartenant au spectre calculé de la bande  $v_4$  de la molécule en question.

Les différentes colonnes de ce tableau sont décrites dans le paragraphe III-4-3.

**Tableau (III-6) :** Prédiction du spectre IR de la bande  $v_4$  de la molécule <sup>80</sup>SeF<sub>6</sub>.

| Fréquence                | Intensité            |        | <b>J''</b> | <b>C''</b> | n''    | J      | С           | n      | <b>Energie inf</b>   | <b>Population inf</b>        |
|--------------------------|----------------------|--------|------------|------------|--------|--------|-------------|--------|----------------------|------------------------------|
| 434.972200               | 1.54E-03             | Р      | 1          | F1g        | 1      | 0      | F1u         | 1      | 0.156261             | 0.357200E-05                 |
| 435.225449               | 1.54E-03             | R      | 0          | Alg        | 1      | 1      | Alu         | 1      | 0.000000             | 0.397187E-06                 |
| 434.845569               | 6.15E-03             | P<br>0 | 2          | E g        | 1      | 1      | E U         | 1      | 0.468/84             | 0.792590E-05<br>0.357200E-05 |
| 434 845534               | 4.02E-03             | P      | 2          | F19<br>F2a | 1      | 1      | F1u<br>F2u  | 1      | 0 468784             | 0.594442E-05                 |
| 434.718792               | 1.28E-02             | P      | 3          | A2q        | ī      | 2      | A2u         | ī      | 0.937569             | 0.138392E-04                 |
| 435.099152               | 1.03E-02             | Q      | 2          | Еğ         | 1      | 2      | Еu          | 1      | 0.468784             | 0.792590E-05                 |
| 435.352045               | 7.71E-03             | R      | 1          | F1g        | 1      | 2      | F1u         | 1      | 0.156261             | 0.357200E-05                 |
| 434./18920               | 7.66E-03             | P      | 3          | Fig        | 1      | 2      | Flu         | 2      | 0.93/569             | 0.830350E-05                 |
| 433.099107<br>434 718863 | 7.69E-03<br>7.66E-03 | Q      | 2          | F2g<br>F2a | 1      | 2      | FZU<br>FZU  | 2      | 0.400/04             | 0.394442E-03<br>0.830350E-05 |
| 434.592295               | 3.56F-03             | P      | 4          | A1a        | 1      | 3      | A1u         | 1      | 1.562614             | 0.354799E-05                 |
| 435.099618               | 1.79E-02             | Q      | 3          | A2g        | 1      | 3      | A2u         | 1      | 0.937569             | 0.138392E-04                 |
| 435.478627               | 1.44E-02             | R      | 2          | Еğ         | 1      | 3      | ЕU          | 1      | 0.468784             | 0.792590E-05                 |
| 434.592204               | 1.43E-02             | P      | 4          | Eg         | 1      | 3      | Eu          | 2      | 1.562614             | 0.141920E-04                 |
| 435.099459<br>434 592242 | 1.07E-02<br>1.07E-02 | Q      | 5<br>4     | F1g<br>F1g | 1      | 3      | F10<br>F10  | 1<br>2 | 0.937369             | 0.830350E-05<br>0.106440E-04 |
| 435.478617               | 1.08E-02             | R      | 2          | F2a        | 1      | 3      | F2u         | 1      | 0.468784             | 0.594442E-05                 |
| 435.099530               | 1.07E-02             | Q      | 3          | F2g        | 1      | 3      | F2u         | 2      | 0.937569             | 0.830350E-05                 |
| 434.592090               | 1.07E-02             | Р      | 4          | F2g        | 1      | 3      | F2u         | 3      | 1.562614             | 0.106440E-04                 |
| 435.099817               | 4.59E-03             | Q      | 4          | Alg        | 1      | 4      | Alu         | 1      | 1.562614             | 0.354799E-05                 |
| 435.605143<br>435.099943 | 2.31E-02<br>1 84E-02 | R<br>O | 5<br>4     | AZG<br>F a | 1      | 4<br>4 | AZU         | 1      | 0.937369             | 0.138392E-04<br>0.141920E-04 |
| 434.465383               | 1.83F-02             | P      | 5          | Fa         | 1      | 4      | FU          | 2      | 2.343922             | 0.172809F-04                 |
| 435.605195               | 1.38E-02             | R      | 3          | F1g        | ī      | 4      | F1u         | ī      | 0.937569             | 0.830350E-05                 |
| 435.099890               | 1.38E-02             | Q      | 4          | F1g        | 1      | 4      | F1u         | 2      | 1.562614             | 0.106440E-04                 |
| 434.465353               | 1.37E-02             | Р      | 5          | F1g        | 1      | 4      | F1u         | 3      | 2.343922             | 0.129606E-04                 |
| 434.465613<br>435.605172 | 1.3/E-02             | Р      | 5          | Flg        | 2      | 4      | FLU         | 4      | 2.343922             | 0.129606E-04                 |
| 435 100101               | 1 38E-02             | 0      | 4          | F29<br>F20 | 1      | 4      | FZU<br>FZU  | 2      | 1 562614             | 0.830330E-03                 |
| 434.465549               | 1.37E-02             | P      | 5          | F2a        | 1      | 4      | F2u         | 3      | 2.343922             | 0.129606E-04                 |
| 435.731767               | 5.62E-03             | R      | 4          | A1g        | 1      | 5      | Alu         | 1      | 1.562614             | 0.354799E-05                 |
| 434.338555               | 5.55E-03             | Р      | 6          | A1g        | 1      | 5      | Alu         | 2      | 3.281490             | 0.508280E-05                 |
| 434.338866               | 2.78E-02             | P      | 6          | A2g        | 1      | 5      | A2u         | 1      | 3.281490             | 0.254140E-04                 |
| 435.751722               | 2.23E-02<br>2.24E-02 | к<br>О | 45         | Eg         | 1      | 5<br>5 | EU          | 2      | 2 343922             | 0.141920E-04<br>0.172809E-04 |
| 434.338944               | 2.22E-02             | P      | 6          | Eq         | 1      | 5      | Eu          | 3      | 3.281490             | 0.203312E-04                 |
| 435.731741               | 1.69E-02             | R      | 4          | F1g        | 1      | 5      | F1u         | 1      | 1.562614             | 0.106440E-04                 |
| 435.100336               | 1.68E-02             | Q      | 5          | F1g        | 2      | 5      | F1u         | 2      | 2.343922             | 0.129606E-04                 |
| 435.100/23               | 1.68E-02             | Q      | 5          | Flg        | 1      | 5      | Flu         | 3      | 2.343922             | 0.129606E-04                 |
| 434.330004               | 1.67E-02<br>1.69E-02 | R      | 0<br>4     | F1g<br>F2a | 1      | 5<br>5 | F1U<br>F2U  | 4      | 5.201490<br>1 562614 | 0.152464E-04<br>0.106440E-04 |
| 435.100430               | 1.68E-02             | Ö      | 5          | F2a        | 1      | 5      | F2u         | 2      | 2.343922             | 0.129606E-04                 |
| 434.338659               | 1.67E-02             | P      | 6          | F2g        | 2      | 5      | F2u         | 3      | 3.281490             | 0.152484E-04                 |
| 434.338925               | 1.67E-02             | Р      | 6          | F2g        | 1      | 5      | F2u         | 4      | 3.281490             | 0.152484E-04                 |
| 435.101524               | 6.5/E-03             | Q      | 6          | Alg        | 1      | 6      | Alu         | 1      | 3.281490             | 0.508280E-05<br>0.254140E-04 |
| 434 211995               | 3.29E-02<br>3.26E-02 | P      | 7          | A29<br>A2a | 1      | 6      | Α2U<br>Δ2U  | 2      | 4 375320             | 0.234140E-04<br>0.291704F-04 |
| 435.858175               | 2.65E-02             | R      | 5          | Eq         | ī      | 6      | Eu          | ī      | 2.343922             | 0.172809E-04                 |
| 435.100921               | 2.63E-02             | Q      | 6          | Еğ         | 1      | 6      | ЕU          | 2      | 3.281490             | 0.203312E-04                 |
| 434.211854               | 2.61E-02             | Р      | 7          | Eg         | 1      | 6      | Eu          | 3      | 4.375320             | 0.233363E-04                 |
| 435.858157               | 1.99E-02<br>1.99E-02 | R      | 5          | F1g<br>⊑1a | 1<br>2 | 6      | F1U<br>510  | 1<br>2 | 2.343922             | 0.129606E-04<br>0.129606E-04 |
| 435.101449               | 1.97F-02             | 0      | 6          | F1a        | 1      | 6      | F1u         | 3      | 3.281490             | 0.152484F-04                 |
| 434.211777               | 1.96E-02             | P      | 7          | F1g        | 1      | 6      | F1u         | 4      | 4.375320             | 0.175023E-04                 |
| 434.212273               | 1.96E-02             | Р      | 7          | F1g        | 2      | 6      | F1u         | 5      | 4.375320             | 0.175023E-04                 |
| 435.858268               | 1.99E-02             | R      | 5          | F2g        | 1      | 6      | F2u         | 1      | 2.343922             | 0.129606E-04                 |
| 435.100951               | 1.97E-02<br>1.97F-02 | õ      | 6          | F2g<br>F2g | 2      | 6      | FZU<br>FZU  | 23     | 3 281490             | 0.152484E-04                 |
| 434.211903               | 1.96E-02             | P      | 7          | F2g        | ī      | 6      | F2u         | 4      | 4.375320             | 0.175023E-04                 |
| 434.212242               | 1.96E-02             | Р      | 7          | F2g        | 2      | 6      | F2u         | 5      | 4.375320             | 0.175023E-04                 |
| 435.984602               | 7.61E-03             | R      | 6          | Alg        | 1      | 7      | Alu         | 1      | 3.281490             | 0.508280E-05                 |
| 434.085613               | 7.48E-03             | P      | 8          | Alg        | 1      | 7      | Alu         | 2      | 5.625412             | 0.65/244E-05                 |
| 435.984791               | 3.80E-02<br>3.77F-02 | к<br>О | 7          | A29<br>A2a | 1      | 7      | Α2U<br>Δ2U  | 2      | 4 375320             | 0.234140E-04<br>0.291704F-04 |
| 435.984839               | 3.04E-02             | R      | 6          | Eq         | ī      | 7      | Eu          | 1      | 3.281490             | 0.203312E-04                 |
| 435.102264               | 3.02E-02             | Q      | 7          | Еğ         | 1      | 7      | ЕU          | 2      | 4.375320             | 0.233363E-04                 |
| 434.084997               | 2.99E-02             | P      | 8          | Eg         | 2      | 7      | Еu          | 3      | 5.625412             | 0.262898E-04                 |
| 434.085578               | 2.99E-02             | Р      | 8          | E g        | 1      | 7      | E U         | 4      | 5.625412             | 0.262898E-04<br>0.152484E-04 |
| 435.101591               | 2.26E-02             | Ô      | 7          | F1g<br>F1a | 2      | 7      | F1u<br>F1u  | 2      | 4.375320             | 0.175023E-04                 |
| 435.102386               | 2.26E-02             | Q      | 7          | Flg        | 1      | 7      | Flu         | 3      | 4.375320             | 0.175023E-04                 |
| 434.085109               | 2.24E-02             | P      | 8          | F1g        | 2      | 7      | F1u         | 4      | 5.625412             | 0.197173E-04                 |
| 434.085591               | 2.24E-02             | P      | 8          | F1g        | 1      | 7      | F1u         | 5      | 5.625412             | 0.197173E-04                 |
| 435.984665<br>435 984827 | 2.28E-02<br>2.28E-02 | R      | 6          | F2g<br>F2g | 2<br>1 | 7      | F2U<br>F211 | 1<br>2 | 3.281490<br>3.281400 | 0.152484E-04<br>0.152484E-04 |
| 435.101642               | 2.26E-02             | 0      | 7          | F2a        | 2      | ź      | F2u         | 3      | 4.375320             | 0.175023E-04                 |
| 435.102185               | 2.26E-02             | Q      | 7          | F2g        | 1      | 7      | F2u         | 4      | 4.375320             | 0.175023E-04                 |
| 434.084963               | 2.24E-02             | Р      | 8          | F2g        | 2      | 7      | F2u         | 5      | 5.625412             | 0.197173E-04                 |
| 434.085237               | 2.24E-02             | P      | 8          | F2g        | 1      | 6      | F2u         | 6      | 5.625412             | 0.19/1/3E-04                 |
| 433.958322               | 8.42E-03             | Q<br>P | 0<br>9     | ALQ<br>Alq | 1<br>1 | 0<br>8 | AIU<br>Alu  | 1<br>2 | 7.031765             | 0.037244E-05<br>0.729629E-05 |

| Fréquence                | Intensité            |        | <b>J</b> '' | <b>C''</b> | <b>n''</b> | J        | С          | n      | <b>Energie inf</b>    | <b>Population inf</b>        |
|--------------------------|----------------------|--------|-------------|------------|------------|----------|------------|--------|-----------------------|------------------------------|
| 436.111185               | 4.29E-02             | R      | 7           | A2g        | 1          | 8        | A2u        | 1      | 4.375320              | 0.291704E-04                 |
| 436.111093               | 4.21E-02<br>3.43E-02 | R      | 9           | Fa         | 1          | 8        | AZU<br>FU  | 1      | 4.375320              | 0.233363F-04                 |
| 435.102385               | 3.40E-02             | Q      | 8           | Ēġ         | ī          | 8        | Eu         | 2      | 5.625412              | 0.262898E-04                 |
| 435.103338               | 3.40E-02             | Q      | 8           | Eg         | 2          | 8        | Еu         | 3      | 5.625412              | 0.262898E-04                 |
| 433.958492<br>436 111044 | 3.37E-02<br>2.57E-02 | P      | 9           | E G<br>F1a | 1<br>1     | 8<br>8   | E U<br>F1u | 4      | 7.031/65<br>4 375320  | 0.291852E-04<br>0 175023E-04 |
| 436.111365               | 2.57E-02             | R      | 7           | F1g        | 2          | 8        | Flu        | 2      | 4.375320              | 0.175023E-04                 |
| 435.102364               | 2.55E-02             | Q      | 8           | F1g        | 1          | 8        | F1u        | 3      | 5.625412              | 0.197173E-04                 |
| 435.103154               | 2.55E-02             | Q      | 8           | Flg        | 2          | 8        | Flu        | 4 5    | 5.625412              | 0.197173E-04                 |
| 433.958458               | 2.52E-02<br>2.52E-02 | P      | 9           | F1g<br>F1a | 2          | 8        | F1u<br>F1u | 6      | 7.031765              | 0.218889E-04                 |
| 433.958930               | 2.52E-02             | P      | 9           | F1g        | 3          | 8        | Flu        | 7      | 7.031765              | 0.218889E-04                 |
| 436.111125               | 2.57E-02             | R      | 7           | F2g        | 1          | 8        | F2u        | 1      | 4.375320              | 0.175023E-04                 |
| 436.111344<br>435 102947 | 2.57E-02<br>2.55E-02 | R<br>O | 8           | F2g<br>F2g | 2          | 8<br>8   | FZU<br>FZU | 23     | 4.375320<br>5.625412  | 0.1/5023E-04<br>0 197173E-04 |
| 435.103393               | 2.55E-02             | ğ      | 8           | F2g        | 2          | 8        | F2u        | 4      | 5.625412              | 0.197173E-04                 |
| 433.958139               | 2.52E-02             | Р      | 9           | F2g        | 1          | 8        | F2u        | 5      | 7.031765              | 0.218889E-04                 |
| 433.958912               | 2.52E-02<br>9.53E-03 | P      | 9           | F2g        | 2          | 8        | F2u        | 6<br>1 | 7.031/65              | 0.218889E-04<br>0.657244E-05 |
| 435.104198               | 9.44E-03             | 0      | 9           | Alg        | 1          | 9        | Alu        | 2      | 7.031765              | 0.729629E-05                 |
| 433.831514               | 9.33E-03             | P      | 10          | Alg        | 1          | 9        | Alu        | 3      | 8.594379              | 0.800411E-05                 |
| 435.104574               | 4.72E-02             | Q      | 9<br>10     | A2g        | 1          | 9        | A2u        | 1      |                       | 0.364814E-04                 |
| 435.052230               | 4.67E-02<br>3.81E-02 | Р<br>R | 10          | AZY<br>F Q | 2          | 9        | AZU<br>FU  | 2      | 5.625412              | 0.262898F-04                 |
| 436.237867               | 3.81E-02             | R      | 8           | Eg         | ī          | 9        | Eu         | 2      | 5.625412              | 0.262898E-04                 |
| 435.103918               | 3.78E-02             | Q      | 9           | Eg         | 1          | 9        | Еu         | 3      | 7.031765              | 0.291852E-04                 |
| 433.831303<br>433.832256 | 3.73E-02<br>3.73E-02 | P      | 10          | Eg         | 2          | 9        | EU         | 45     | 8.594379<br>8.594379  | 0.320164E-04<br>0.320164E-04 |
| 436.237550               | 2.86E-02             | R      | 8           | F1g        | 2          | 9        | F1u        | 1      | 5.625412              | 0.197173E-04                 |
| 436.237875               | 2.86E-02             | R      | 8           | F1g        | 1          | 9        | F1u        | 2      | 5.625412              | 0.197173E-04                 |
| 435.103183               | 2.83E-02             | Q      | 9           | Flg        | 3          | 9        | Flu        | 3      | 7.031765              | 0.218889E-04                 |
| 435.103974               | 2.83E-02<br>2.83E-02 | Ö      | 9           | F1g<br>F1a | 1          | 9        | F1u<br>F1u | 5      | 7.031765              | 0.218889E-04                 |
| 433.831356               | 2.80E-02             | P      | 10          | F1g        | 2          | 9        | Flu        | 6      | 8.594379              | 0.240123E-04                 |
| 433.831682               | 2.80E-02             | Р      | 10          | F1g        | 1          | 9        | F1u        | 7      | 8.594379              | 0.240123E-04                 |
| 436.237432               | 2.86E-02             | R      | 8<br>8      | F2g<br>F2a | 1          | 9        | FZU<br>FZU | 2      | 5.625412              | 0.197173E-04<br>0.197173E-04 |
| 435.103213               | 2.83E-02             | Q      | 9           | F2g        | 2          | 9        | F2u        | 3      | 7.031765              | 0.218889E-04                 |
| 435.104504               | 2.83E-02             | Q      | 9           | F2g        | 1          | 9        | F2u        | 4      | 7.031765              | 0.218889E-04                 |
| 433.831245<br>433.831743 | 2.80E-02<br>2.80E-02 | P      | 10          | F2g<br>F2g | 2          | 9        | FZU<br>FZU | 5<br>6 | 8.594379<br>8.594379  | 0.240123E-04<br>0.240123E-04 |
| 433.832250               | 2.80E-02             | P      | 10          | F2g        | ī          | 9        | F2u        | 7      | 8.594379              | 0.240123E-04                 |
| 436.363968               | 1.05E-02             | R      | 9           | Alg        | 1          | 10       | Alu        | 1      | 7.031765              | 0.729629E-05                 |
| 435.105368<br>436 363812 | 1.04E-02<br>5.24E-02 | QR     | 0<br>10     | Alg<br>A2g | 1<br>1     | 10       |            | 2      | 8.594379<br>7.031765  | 0.800411E-05<br>0.364814E-04 |
| 435.104137               | 5.18E-02             | Q      | 10          | A2g        | 1          | 10       | A2u        | 2      | 8.594379              | 0.400205E-04                 |
| 433.705022               | 5.11E-02             | Р      | 11          | A2g        | 1          | 10       | A2u        | 3      | 10.313255             | 0.434722E-04                 |
| 436.364086               | 4.19E-02<br>4.14E-02 | R      | 10          | Eg         | 1          | 10<br>10 | EU         | ⊥<br>2 | 7.031/65<br>8 594379  | 0.291852E-04<br>0.320164E-04 |
| 435.105720               | 4.14E-02             | Q      | 10          | Eq         | 2          | 10       | Eu         | 3      | 8.594379              | 0.320164E-04                 |
| 433.704389               | 4.09E-02             | P      | 11          | Еğ         | 1          | 10       | Еu         | 4      | 10.313255             | 0.347777E-04                 |
| 433.704937               | 4.09E-02             | P      | 11          | E g        | 2          | 10       | E U        | 5      | 10.313255             | 0.347777E-04                 |
| 436.364063               | 3.14E-02<br>3.14E-02 | R      | 9           | F1g<br>F1g | 2          | 10       | F1u<br>F1u | 2      | 7.031765              | 0.218889E-04                 |
| 436.364393               | 3.14E-02             | R      | 9           | F1g        | 3          | 10       | F1u        | 3      | 7.031765              | 0.218889E-04                 |
| 435.105083               | 3.11E-02             | Q      | 10          | F1g        | 1          | 10       | F1u        | 4      | 8.594379              | 0.240123E-04                 |
| 433.704355               | 3.07E-02             | P      | 11          | F1g<br>F1a | 1          | 10       | F1u<br>F1u | 6      | 10.313255             | 0.260833E-04                 |
| 433.704684               | 3.07E-02             | P      | 11          | F1g        | 2          | 10       | Flu        | 7      | 10.313255             | 0.260833E-04                 |
| 433.705583               | 3.07E-02             | Р      | 11          | F1g        | 3          | 10       | F1u        | 8      | 10.313255             | 0.260833E-04                 |
| 436.363841<br>436 364380 | 3.14E-02<br>3.14E-02 | R      | 9           | F2g<br>F2g | 1<br>2     | 10       | FZU<br>FZU | 1<br>2 | 7.031765              | 0.218889E-04<br>0.218889E-04 |
| 435.104116               | 3.11E-02             | Q      | 10          | F2g        | ī          | 10       | F2u        | 3      | 8.594379              | 0.240123E-04                 |
| 435.104980               | 3.11E-02             | Q      | 10          | F2g        | 2          | 10       | F2u        | 4      | 8.594379              | 0.240123E-04                 |
| 435.105819<br>433 704469 | 3.11E-02<br>3.07E-02 | Q      | 10          | F2g        | 3<br>1     | 10<br>10 | F2U<br>F2U | 5      | 8.594379<br>10 313255 | 0.240123E-04<br>0.260833E-04 |
| 433.704970               | 3.07E-02             | P      | 11          | F2g        | 2          | 10       | F2u        | 7      | 10.313255             | 0.260833E-04                 |
| 433.705575               | 3.07E-02             | Р      | 11          | F2g        | 3          | 10       | F2u        | 8      | 10.313255             | 0.260833E-04                 |
| 436.490361<br>433 577418 | 1.14E-02<br>1.11E-02 | Ŕ      | 10<br>12    | ALG<br>Ala | 1          | 11<br>11 | Alu<br>Alu | 1      | 8.5943/9<br>12 188392 | 0.800411E-05<br>0.936586E-05 |
| 433.578913               | 1.11E-02             | P      | 12          | Alq        | 1          | 11       | Alu        | 3      | 12.188392             | 0.936586E-05                 |
| 436.490881               | 5.69E-02             | R      | 10          | A2g        | 1          | 11       | A2u        | 1      | 8.594379              | 0.400205E-04                 |
| 435.106080               | 5.62E-02             | Q      | 11          | A2g        | 1          | 11       | A2u        | 2      | 10.313255             | 0.434/22E-04                 |
| 436.490211               | 4.55E-02             | R      | 10          | E a        | 2          | 11       | E u        | 1      | 8.594379              | 0.320164E-04                 |
| 436.490894               | 4.55E-02             | R      | 10          | Ēġ         | 1          | 11       | Εū         | 2      | 8.594379              | 0.320164E-04                 |
| 435.106223               | 4.50E-02             | Q      | 11          | E g        | 2          | 11       | EU         | 3      | 10.313255             | 0.347777E-04                 |
| 433.577868               | 4.30E-02<br>4.44E-02 | P      | 12          | Ea         | ⊥<br>2     | 11       | EU         | 4<br>5 | 12.188392             | 0.374634E-04                 |
| 433.578905               | 4.44E-02             | P      | 12          | Eg         | ī          | 11       | Eu         | 6      | 12.188392             | 0.374634E-04                 |
| 436.490249               | 3.42E-02             | R      | 10          | F1g        | 2          | 11       | F1u        | 1      | 8.594379              | 0.240123E-04                 |

| Fréquence                | Intensité            |        | <b>J</b> '' | <b>C''</b> | n''    | J        | С          | n       | <b>Energie inf</b>     | <b>Population inf</b>        |
|--------------------------|----------------------|--------|-------------|------------|--------|----------|------------|---------|------------------------|------------------------------|
| 436.490481               | 3.42E-02             | R      | 10          | F1g        | 1      | 11       | F1u        | 2       | 8.594379               | 0.240123E-04                 |
| 435.105113               | 3.37E-02<br>3.37E-02 | Q      | 11<br>11    | F1g        | 3      | 11<br>11 | F1U        | 3<br>⊿  | 10.313255              | 0.260833E-04<br>0.260833E-04 |
| 435.107215               | 3.37E-02             | õ      | 11          | F1g        | 1      | 11       | Flu        | 5       | 10.313255              | 0.260833E-04                 |
| 433.577455               | 3.33E-02             | P      | 12          | F1g        | 3      | 11       | Flu        | 6       | 12.188392              | 0.280976E-04                 |
| 433.578197               | 3.33E-02             | Р      | 12          | F1g        | 2      | 11       | F1u        | 7       | 12.188392              | 0.280976E-04                 |
| 433.578907               | 3.33E-02<br>3.42E-02 | Р      | 12          | F1g        | 1      |          | Flu        | 8       | 12.188392              | 0.280976E-04<br>0.240123E-04 |
| 436.490525               | 3.42E-02             | R      | 10          | F2g        | 2      | 11       | F2u        | 2       | 8.594379               | 0.240123E-04                 |
| 436.490890               | 3.42E-02             | R      | 10          | F2g        | 1      | 11       | F2u        | 3       | 8.594379               | 0.240123E-04                 |
| 435.105126               | 3.37E-02             | Q      | 11          | F2g        | 3      | 11       | F2u        | 4       | 10.313255              | 0.260833E-04                 |
| 435.106167<br>435 107020 | 3.37E-02<br>3.37E-02 | Q      | 11<br>11    | F2g        | 2      | 11<br>11 | F2U        | 5       | 10.313255              | 0.260833E-04<br>0.260833E-04 |
| 433.577502               | 3.33E-02             | P      | 12          | F2g        | 3      | 11       | F2u        | 7       | 12.188392              | 0.280976E-04                 |
| 433.577823               | 3.33E-02             | Р      | 12          | F2g        | 2      | 11       | F2u        | 8       | 12.188392              | 0.280976E-04                 |
| 433.578249               | 3.33E-02             | Р      | 12          | F2g        | 1      | 11       | F2u        | 9       | 12.188392              | 0.280976E-04                 |
| 435.100198               | 1.21E-02<br>1.21E-02 | Q      | 12<br>12    | Alg<br>Alg | 2      | 12       | Alu<br>Alu | 2       | 12.100392              | 0.936586E-05                 |
| 433.451437               | 1.19E-02             | P      | 13          | Alg        | 1      | 12       | Alu        | 3       | 14.219791              | 0.100171E-04                 |
| 436.616973               | 6.14E-02             | R      | 11          | A2g        | 1      | 12       | A2u        | 1       | 10.313255              | 0.434722E-04                 |
| 435.108493               | 6.06E-02             | Q      | 12          | A2g        | 1      | 12       | A2u        | 2       | 12.188392              | 0.468293E-04                 |
| 435.450859               | 5.97E-02<br>4 91F-02 | R      | 15<br>11    | AZQ<br>F Q | 1      | 12       | AZU<br>F U | 5<br>1  | 10 313255              | 0.300833E-04<br>0.347777F-04 |
| 436.616912               | 4.91E-02             | R      | 11          | Eq         | 2      | 12       | Eu         | 2       | 10.313255              | 0.347777E-04                 |
| 435.106212               | 4.85E-02             | Q      | 12          | Еğ         | 1      | 12       | ЕU         | 3       | 12.188392              | 0.374634E-04                 |
| 435.108010               | 4.85E-02             | Q      | 12          | Еg         | 2      | 12       | EU         | 4       | 12.188392              | 0.374634E-04                 |
| 433,450550               | 4.78E-02<br>4.78E-02 | P      | 13<br>13    | Eg         | 2      | 12       | EU<br>FU   | 5       | 14.219791              | 0.400682E-04<br>0.400682E-04 |
| 436.616488               | 3.68E-02             | R      | 11          | F1g        | 1      | 12       | F1u        | ĭ       | 10.313255              | 0.260833E-04                 |
| 436.616727               | 3.68E-02             | R      | 11          | F1g        | 2      | 12       | F1u        | 2       | 10.313255              | 0.260833E-04                 |
| 436.617386               | 3.68E-02             | R      | 11          | Flg        | 3      | 12       | Flu        | 3       | 10.313255              | 0.260833E-04                 |
| 435.106207               | 3.63E-02             | Q      | 12<br>12    | F1g<br>F1g | 2      | 12       | F1U<br>F1U | 4       | 12.100392              | 0.280976E-04<br>0.280976E-04 |
| 435.108717               | 3.63E-02             | Q      | 12          | F1g        | 3      | 12       | Flu        | ő       | 12.188392              | 0.280976E-04                 |
| 433.450491               | 3.58E-02             | Р      | 13          | F1g        | 1      | 12       | F1u        | 7       | 14.219791              | 0.300512E-04                 |
| 433.451046               | 3.58E-02             | P      | 13          | Flg        | 2      | 12       | Flu        | 8       | 14.219791              | 0.300512E-04                 |
| 433.452237               | 3.58E-02             | P      | 13<br>13    | F1g<br>F1a | 4      | 12       | F1u<br>F1u | 10      | 14.219791              | 0.300512E-04                 |
| 436.616571               | 3.68E-02             | R      | 11          | F2g        | 1      | 12       | F2u        | 1       | 10.313255              | 0.260833E-04                 |
| 436.616936               | 3.68E-02             | R      | 11          | F2g        | 2      | 12       | F2u        | 2       | 10.313255              | 0.260833E-04                 |
| 436.61/380<br>435 107351 | 3.68E-02             | R      | 11<br>12    | F2g        | 3<br>1 | 12       | F2u        | 3       | 10.313255              | 0.260833E-04<br>0.280976E-04 |
| 435.108086               | 3.63E-02             | õ      | 12          | F2g<br>F2a | 2      | 12       | F2u<br>F2u | 5       | 12.188392              | 0.280976E-04                 |
| 435.108635               | 3.63E-02             | Q      | 12          | F2g        | 3      | 12       | F2u        | 6       | 12.188392              | 0.280976E-04                 |
| 433.450582               | 3.58E-02             | Р      | 13          | F2g        | 1      | 12       | F2u        | 7       | 14.219791              | 0.300512E-04                 |
| 433.450964<br>433.452234 | 3.58E-02<br>3.58E-02 | Р      | 13<br>13    | F2g        | 23     | 12       | F2U        | 8<br>9  | 14.219791<br>14.219791 | 0.300512E-04<br>0.300512E-04 |
| 436.742761               | 1.31E-02             | R      | 12          | Ala        | 2      | 13       | Alu        | í       | 12.188392              | 0.936586E-05                 |
| 436.743871               | 1.31E-02             | R      | 12          | A1g        | 1      | 13       | Alu        | 2       | 12.188392              | 0.936586E-05                 |
| 435.108776               | 1.30E-02             | Q      | 13          | Alg        | 1      | 13       | Alu        | 3       | 14.219791              | 0.100171E-04                 |
| 435.524279               | 1.20E-02<br>6 57E-02 | R      | 14<br>12    | A19<br>A2a | 1      | 13       |            | 4       | 12 188392              | 0.100408E-04<br>0.468293E-04 |
| 435.109817               | 6.48E-02             | Q      | 13          | A2g        | 1      | 13       | A2u        | 2       | 14.219791              | 0.500853E-04                 |
| 433.325562               | 6.38E-02             | P      | 14          | A2g        | 1      | 13       | A2u        | 3       | 16.407451              | 0.532338E-04                 |
| 436.743092               | 5.26E-02             | R      | 12          | Еg         | 2      | 13       | EU         | 1       | 12.188392              | 0.374634E-04                 |
| 435.108673               | 5.18F-02             | к<br>0 | 13          | Fa         | 2      | 13       | FU         | 3       | 14.219791              | 0.374634E-04                 |
| 435.110336               | 5.18E-02             | Q      | 13          | Ēġ         | ī      | 13       | Eu         | 4       | 14.219791              | 0.400682E-04                 |
| 433.323558               | 5.10E-02             | Р      | 14          | Еġ         | 3      | 13       | Еu         | 5       | 16.407451              | 0.425871E-04                 |
| 433.324136               | 5.10E-02             | Р      | 14<br>14    | Eg         | 2      | 13<br>12 | EU         | 6       | 16.407451              | 0.425871E-04<br>0.425871E-04 |
| 436.742788               | 3.94E-02             | Р<br>R | 14          | E 9<br>F1a | 3      | 13       | E u<br>F1u | 1       | 12.188392              | 0.280976E-04                 |
| 436.743337               | 3.94E-02             | R      | 12          | F1g        | 2      | 13       | F1u        | 2       | 12.188392              | 0.280976E-04                 |
| 436.743867               | 3.94E-02             | R      | 12          | F1g        | 1      | 13       | F1u        | 3       | 12.188392              | 0.280976E-04                 |
| 435.10/3//<br>435.108703 | 3.89E-02<br>3.89E-02 | Q      | 13<br>13    | F1g<br>F1g | 4      | 13<br>13 | F1U<br>F1U | 4       | 14.219791              | 0.300512E-04<br>0.300512E-04 |
| 435.109459               | 3.89E-02             | õ      | 13          | Flq        | 2      | 13       | Flu        | 6       | 14.219791              | 0.300512E-04                 |
| 435.110414               | 3.89E-02             | Q      | 13          | F1g        | 1      | 13       | F1u        | 7       | 14.219791              | 0.300512E-04                 |
| 433.323612               | 3.83E-02             | Р      | 14          | F1g        | 3      | 13       | F1u        | 8       | 16.407451              | 0.319403E-04                 |
| 433.324192               | 3.83F-02             | Р<br>Р | 14<br>14    | F10<br>F10 | 2<br>1 | 13<br>13 | F1u<br>F1u | 9<br>10 | 16.407451              | 0.319403E-04<br>0.319403F-04 |
| 436.742822               | 3.94E-02             | R      | 12          | F2q        | 3      | 13       | F2u        | 1       | 12.188392              | 0.280976E-04                 |
| 436.743059               | 3.94E-02             | R      | 12          | F2g        | 2      | 13       | F2u        | 2       | 12.188392              | 0.280976E-04                 |
| 436.743375               | 3.94E-02             | R      | 12<br>12    | F2g        | 1      | 13<br>12 | F2u        | 3       | 12.188392              | 0.2809/6E-04                 |
| 435.109599               | 3.89E-02             | 0      | 13          | F2g<br>F2g | 2      | 13       | F2u<br>F2u | 5       | 14.219791              | 0.300512E-04                 |
| 435.110256               | 3.89E-02             | Q      | 13          | F2g        | ī      | 13       | F2u        | 6       | 14.219791              | 0.300512E-04                 |
| 433.323526               | 3.83E-02             | Р      | 14          | F2g        | 4      | 13       | F2u        | 7       | 16.407451              | 0.319403E-04                 |
| 433.323941<br>433 201718 | 3.83E-02<br>3.83E-02 | P<br>D | ⊥4<br>1⊿    | F2g        | 3      | ⊥3<br>1२ | F2u<br>E2u | 8<br>a  | 16.40/451<br>16.407451 | 0.319403E-04<br>0.319403E-04 |
| 433.325564               | 3.83F-02             | г<br>Р | 14          | F2g<br>F2g | 2<br>1 | 13       | F2u        | 10      | 16.407451              | 0.319403F-04                 |
| 436.869736               | 1.40E-02             | R      | 13          | Ala        | ī      | 14       | Alu        | ĩ       | 14.219791              | 0.100171E-04                 |

| 435. 110899       1.38-02       Q       14       Alg       1       14       Alu       2       16.407451       0.106381-04         436. 106672       7.31.00       7.31.00       P       13       Alu       3       17.11.00       0.1123381-04         435. 105519       6.889-02       Q       13       Alu       3       1.44       Alu       3       1.571372       0.562690E-04         433. 195519       6.889-02       P       15       Alg       2       1.44       Alu       4       1.871372       0.562690E-04         435. 195519       6.889-02       P       15       Alg       2       1.44       E u       3       1.6407451       0.4206821-04         435. 101646       5.311-02       Q       1.44       E u       3       1.6407451       0.4258711-04         435. 110164       5.311-02       Q       1.45       E u       3       1.6771372       0.4501528-04         435. 110174       A.20-02       R       13       F10       1.44       E u       7       1.4571372       0.4501528-04         435. 110173       A.20-02       R       13       F10       1.44       F10       1.44       E u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Fréquence                | Intensité            |        | <b>J</b> '' | <b>C''</b> | <b>n''</b> | J          | С          | n        | <b>Energie inf</b>     | <b>Population inf</b>        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|----------------------|--------|-------------|------------|------------|------------|------------|----------|------------------------|------------------------------|
| $\begin{array}{c} 136, 807827 \\ 136, 196719 \\ 137, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 196719 \\ 136, 1967$                                                                                                                                                                                  | 435.110899               | 1.38E-02             | Q      | 14          | A1g        | 1          | 14         | Alu        | 2        | 16.407451              | 0.106468E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.190038               | 1.35E-02<br>7.00E-02 | P      | 13<br>13    | Alg<br>A2g | 1          | 14<br>17   |            | 5        | 10./515/2              | 0.112538E-04                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 435.108642               | 6.89E-02             | Ö      | 14          | A2g        | 1          | 14         | A2u        | 2        | 16.407451              | 0.532338E-04                 |
| $ \begin{array}{c} 433, 198009 \\ 435, 198009 \\ 5, 500^{-0.2} \\ 6, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0.2} \\ 7, 510^{-0$                                                                                                                                                                                                    | 433.196519               | 6.77E-02             | P      | 15          | A2g        | 1          | 14         | A2u        | 3        | 18.751372              | 0.562690E-04                 |
| $ \begin{array}{c} 436 803908.2 \\ 435 106836 \\ 435 106836 \\ 5 5 5 1 = 0 \\ 435 106836 \\ 5 5 1 = 0 \\ 435 101146 \\ 5 5 1 = 0 \\ 435 11146 \\ 5 5 1 = 0 \\ 435 11146 \\ 5 5 1 = 0 \\ 435 11146 \\ 5 5 1 = 0 \\ 435 11146 \\ 5 5 1 = 0 \\ 435 11146 \\ 5 5 1 = 0 \\ 435 11146 \\ 5 5 1 = 0 \\ 435 11146 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11249 \\ 5 5 1 = 0 \\ 435 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 145 11251 \\ 1$                                                                                                                                                          | 433.198009               | 6.77E-02             | Р      | 15          | A2g        | 2          | 14         | A2u        | 4        | 18.751372              | 0.562690E-04                 |
| $\begin{array}{c} 435, 11166536 \\ 5, 512-02 \\ 435, 111246 \\ 5, 512-02 \\ 435, 111246 \\ 5, 512-02 \\ 435, 111246 \\ 5, 512-02 \\ 435, 112249 \\ 5, 512-02 \\ 7, 12249 \\ 5, 512-02 \\ 7, 12249 \\ 5, 512-02 \\ 7, 12249 \\ 5, 512-02 \\ 7, 12249 \\ 5, 512-02 \\ 7, 12249 \\ 5, 512-02 \\ 7, 12249 \\ 5, 512-02 \\ 7, 12249 \\ 5, 512-02 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249 \\ 7, 12249$                                                                                                                                             | 436.869061               | 5.60E-02<br>5.60E-02 | R      | 13<br>13    | Eg         | ⊥<br>2     | 14<br>14   | EU         | 1<br>2   | 14.219791<br>14.219791 | 0.400682E-04<br>0.400682E-04 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.108636               | 5.51E-02             | Ö      | 14          | Ea         | 1          | 14         | Eu         | 3        | 16.407451              | 0.425871E-04                 |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.111146               | 5.51E-02             | Q      | 14          | Еğ         | 2          | 14         | Еu         | 4        | 16.407451              | 0.425871E-04                 |
| $\begin{array}{c} 433, 137(390) \\ 445, 680942 \\ 4.20e-02 \\ R \\ 456, 680944 \\ 4.20e-02 \\ R \\ 456, 680946 \\ 4.20e-02 \\ R \\ 4.13e-02 \\ 0 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 \\ 14 \\ 750 $ | 435.112149               | 5.51E-02             | Q      | 14          | Еg         | 3          | 14         | Eu         | 5        | 16.407451              | 0.425871E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.197058<br>433 197979 | 5.42E-02<br>5.42E-02 | P      | 15<br>15    | Eg         | 1<br>2     | 14<br>14   | EU         | 6<br>7   | 18.751372              | 0.450152E-04<br>0.450152E-04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.869028               | 4.20E-02             | R      | 13          | F1g        | 1          | 14         | F1u        | 1        | 14.219791              | 0.300512E-04                 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 436.869442               | 4.20E-02             | R      | 13          | F1g        | 2          | 14         | F1u        | 2        | 14.219791              | 0.300512E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.869768               | 4.20E-02             | R      | 13          | Flg        | 3          | 14         | Flu        | 3        | 14.219791              | 0.300512E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435 110124               | 4.20E-02<br>4.13E-02 | к<br>О | 14          | F1g<br>F1a | 4          | 14         | F1u<br>F1u | 4<br>5   | 16 407451              | 0.319403F-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.111050               | 4.13E-02             | Q      | 14          | F1g        | 2          | 14         | Flu        | 6        | 16.407451              | 0.319403E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.112053               | 4.13E-02             | Q      | 14          | F1g        | 3          | 14         | F1u        | 7        | 16.407451              | 0.319403E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.19658/               | 4.06E-02             | P      | 15          | Flg        | 1          | 14         | Flu        | 8        | 18./513/2              | 0.33/614E-04<br>0.337614E-04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.197425               | 4.06E-02             | P      | 15          | F1g<br>F1a | 3          | $14 \\ 14$ | F1u<br>F1u | 10       | 18.751372              | 0.337614E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.198894               | 4.06E-02             | P      | 15          | F1g        | 4          | 14         | F1u        | 11       | 18.751372              | 0.337614E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.869096               | 4.20E-02             | R      | 13          | F2g        | 1          | 14         | F2u        | 1        | 14.219791              | 0.300512E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.869381               | 4.20E-02             | R      | 13<br>13    | F2g        | 23         | 14<br>17   | F2U        | 23       | 14.219/91              | 0.300512E-04<br>0.300512E-04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.108638               | 4.13E-02             | Ô      | 14          | F2g        | 1          | 14         | F2u        | 4        | 16.407451              | 0.319403E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.110077               | 4.13E-02             | Q      | 14          | F2g        | 2          | 14         | F2u        | 5        | 16.407451              | 0.319403E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.111488               | 4.13E-02             | Q      | 14          | F2g        | 3          | 14         | F2u        | 6        | 16.407451              | 0.319403E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.112204<br>433 196549 | 4.13E-02<br>4.06E-02 | Q      | 14<br>15    | F2g<br>F2g | 4          | 14<br>14   | F2U<br>F2U | 8        | 16.40/451<br>18 751372 | 0.319403E-04<br>0.337614E-04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.197321               | 4.06E-02             | P      | 15          | F2g        | 2          | 14         | F2u        | 9        | 18.751372              | 0.337614E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.197990               | 4.06E-02             | Ρ      | 15          | F2g        | 3          | 14         | F2u        | 10       | 18.751372              | 0.337614E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.198893               | 4.06E-02             | P      | 15          | F2g        | 4          | 14         | F2u        | 11       | 18.751372              | 0.337614E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 430.995822               | 1.46E-02<br>1.46E-02 | к<br>О | 14          | Alg<br>Alg | 1          | 15<br>15   | Alu<br>Alu | 2        | 18 751372              | 0.106468E-04<br>0.112538E-04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.069972               | 1.43E-02             | P      | 16          | Alg        | 2          | 15         | Alu        | 3        | 21.251555              | 0.118371E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.072225               | 1.43E-02             | Ρ      | 16          | Alg        | 1          | 15         | Alu        | 4        | 21.251555              | 0.118371E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.996803               | 7.40E-02             | R      | 14          | A2g        | 1          | 15         | A2u        | 1        | 16.40/451              | 0.532338E-04<br>0.562690E-04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.114154               | 7.28E-02             | õ      | 15          | AZY<br>AZa | 1          | 15         | AZU<br>AZU | 3        | 18.751372              | 0.562690E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.070469               | 7.15E-02             | P      | 16          | A2g        | 1          | 15         | A2u        | 4        | 21.251555              | 0.591853E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.995277               | 5.92E-02             | R      | 14          | Eg         | 3          | 15         | Eu         | 1        | 16.407451              | 0.425871E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.995714               | 5.92E-02<br>5.92E-02 | R      | 14<br>14    | Eg         | 2          | 15<br>15   | EU         | 23       | 16.407451              | 0.425871E-04<br>0.425871E-04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.111599               | 5.82E-02             | Q      | 15          | Eq         | 2          | 15         | Eu         | 4        | 18.751372              | 0.450152E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.113219               | 5.82E-02             | Q      | 15          | Еğ         | 1          | 15         | Еu         | 5        | 18.751372              | 0.450152E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.069550               | 5.72E-02             | P      | 16          | Eg         | 3          | 15         | EU         | 6        | 21.251555              | 0.473482E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 433.070399               | 5.72E-02             | P      | 16          | Εg         | 2          | 15         | EU         | 8        | 21.231333              | 0.473482E-04<br>0.473482E-04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.995318               | 4.44E-02             | R      | 14          | F1g        | 3          | 1 <u>5</u> | F1u        | ĭ        | 16.407451              | 0.319403E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.995755               | 4.44E-02             | R      | 14          | F1g        | 2          | 15         | F1u        | 2        | 16.407451              | 0.319403E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.996158               | 4.44E-02<br>4.37E-02 | R      | 14<br>15    | FLG        | 1          | 15<br>15   | FLU        | 3        | 16.40/451<br>18 751372 | 0.319403E-04<br>0.337614E-04 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.112576               | 4.37E-02             | õ      | 15          | Fla        | 3          | 15         | F1u        | 5        | 18.751372              | 0.337614E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.113311               | 4.37E-02             | Q      | 15          | F1g        | 2          | 15         | F1u        | 6        | 18.751372              | 0.337614E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 435.114036               | 4.37E-02             | Q      | 15          | Flg        | 1          | 15         | Flu        | 7        | 18.751372              | 0.337614E-04                 |
| 433.071238       4.29E-02       P       16       F1g       2       15       F1u       10       21.251555       0.355112E-04         433.072224       4.29E-02       P       16       F1g       1       15       F1u       11       21.251555       0.355112E-04         436.99556       4.44E-02       R       14       F2g       3       15       F2u       1       16.407451       0.319403E-04         436.99556       4.44E-02       R       14       F2g       3       15       F2u       2       16.407451       0.319403E-04         436.996178       4.44E-02       R       14       F2g       2       15       F2u       3       16.407451       0.319403E-04         435.109982       4.37E-02       Q       15       F2g       3       15       F2u       5       18.751372       0.337614E-04         435.112757       4.37E-02       Q       15       F2g       3       15       F2u       7       18.751372       0.337614E-04         435.112757       4.37E-02       Q       15       F2g       3       15       F2u       7       18.751372       0.337614E-04         433.070165       4.29E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 433.069383               | 4.29E-02<br>4.29E-02 | P      | 16          | F1g<br>F1a | 4          | 15<br>15   | F1u<br>F1u | ĝ        | 21.251555              | 0.355112E-04<br>0.355112E-04 |
| 433.072224       4.29E-02       P       16       F1g       1       15       F1u       11       21.251555       0.355112E-04         436.995566       4.44E-02       R       14       F2g       3       15       F2u       1       16.407451       0.319403E-04         436.995566       4.44E-02       R       14       F2g       2       15       F2u       2       16.407451       0.319403E-04         436.99566       4.44E-02       R       14       F2g       2       15       F2u       3       16.407451       0.319403E-04         436.996805       4.44E-02       R       14       F2g       1       15       F2u       4       16.407451       0.319403E-04         435.109982       4.37E-02       Q       15       F2g       4       15       F2u       5       18.751372       0.337614E-04         435.112577       4.37E-02       Q       15       F2g       2       15       F2u       9       21.251555       0.355112E-04         433.070165       4.29E-02       P       16       F2g       2       15       F2u       10       21.251555       0.355112E-04         433.071253       4.29E-02 <td>433.071238</td> <td>4.29E-02</td> <td>P</td> <td>16</td> <td>F1g</td> <td>2</td> <td>15</td> <td>Flu</td> <td>10</td> <td>21.251555</td> <td>0.355112E-04</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 433.071238               | 4.29E-02             | P      | 16          | F1g        | 2          | 15         | Flu        | 10       | 21.251555              | 0.355112E-04                 |
| 436.995253       4.44E-02       R       14       F2g       4       15       F2u       1       16.407451       0.319403E-04         436.995566       4.44E-02       R       14       F2g       2       15       F2u       2       16.407451       0.319403E-04         436.996178       4.44E-02       R       14       F2g       1       15       F2u       3       16.407451       0.319403E-04         436.996805       4.44E-02       R       14       F2g       1       15       F2u       3       16.407451       0.319403E-04         435.109982       4.37E-02       Q       15       F2g       4       15       F2u       5       18.751372       0.337614E-04         435.112757       4.37E-02       Q       15       F2g       1       5       F2u       7       18.751372       0.337614E-04         435.114101       4.37E-02       Q       15       F2g       1       5       F2u       8       18.751372       0.337614E-04         433.069517       4.29E-02       P       16       F2g       3       15       F2u       10       21.251555       0.355112E-04         433.070165       4.29E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 433.072224               | 4.29E-02             | Ρ      | 16          | F1g        | 1          | 15         | Flu        | 11       | 21.251555              | 0.355112E-04                 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 436.995253               | 4.44E-02             | R      | 14          | F2g        | 4          | 15         | F2u        | 1        | 16.40/451              | 0.319403E-04                 |
| 436.996805       4.44E-02       R       14       F2g       1       15       F2u       4       16.407451       0.319403E-04         435.109982       4.37E-02       Q       15       F2g       4       15       F2u       5       18.751372       0.337614E-04         435.111581       4.37E-02       Q       15       F2g       3       15       F2u       6       18.751372       0.337614E-04         435.112757       4.37E-02       Q       15       F2g       2       15       F2u       6       18.751372       0.337614E-04         435.112757       4.37E-02       Q       15       F2g       1       5       F2u       7       18.751372       0.337614E-04         435.114101       4.37E-02       Q       15       F2g       1       5       F2u       8       18.751372       0.337614E-04         433.069517       4.29E-02       P       16       F2g       3       15       F2u       9       21.251555       0.355112E-04         433.070165       4.29E-02       P       16       F2g       1       5       F2u       11       21.251555       0.355112E-04         433.071253       4.29E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 436.996178               | 4.44E-02             | R      | 14          | F2g<br>F2a | 2          | 15         | F2u<br>F2u | 3        | 16.407451              | 0.319403E-04                 |
| 435.1099824.37E-02Q15F2g415F2u518.7513720.337614E-04435.1115814.37E-02Q15F2g315F2u618.7513720.337614E-04435.1127574.37E-02Q15F2g15F2u718.7513720.337614E-04435.1141014.37E-02Q15F2g115F2u818.7513720.337614E-04433.0695174.29E-02P16F2g415F2u921.2515550.355112E-04433.0701654.29E-02P16F2g315F2u1021.2515550.355112E-04433.0705664.29E-02P16F2g115F2u1121.2515550.355112E-04433.0712534.29E-02P16F2g115F2u1121.2515550.355112E-04437.1215251.56E-02R15A1g116A1u118.7513720.112538E-04435.1114061.53E-02Q16A1g116A1u221.2515550.118371E-04435.1124347.79E-02R15A2g116A1u321.2515550.562690E-04437.1225727.79E-02R15A2g116A2u118.7513720.562690E-04435.1145177.66E-02Q16A2g116A2u2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 436.996805               | 4.44E-02             | R      | 14          | F2g        | 1          | 15         | F2u        | 4        | 16.407451              | 0.319403E-04                 |
| 435.111581       4.37E-02       Q       15       F2g       3       15       F2u       6       18.751372       0.337614E-04         435.112757       4.37E-02       Q       15       F2g       2       15       F2u       7       18.751372       0.337614E-04         435.114101       4.37E-02       Q       15       F2g       1       15       F2u       8       18.751372       0.337614E-04         433.069517       4.29E-02       P       16       F2g       4       15       F2u       9       21.251555       0.355112E-04         433.070165       4.29E-02       P       16       F2g       2       15       F2u       10       21.251555       0.355112E-04         433.070566       4.29E-02       P       16       F2g       1       15       F2u       11       21.251555       0.355112E-04         433.071253       4.29E-02       P       16       F2g       1       15       F2u       12       21.251555       0.355112E-04         435.111406       1.53E-02       Q       16       A1g       1       16       A1u       2       21.251555       0.118371E-04         435.115395       1.53E-02 </td <td>435.109982</td> <td>4.37E-02</td> <td>Q</td> <td>15</td> <td>F2g</td> <td>4</td> <td>15</td> <td>F2u</td> <td>5</td> <td>18.751372</td> <td>0.337614E-04</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 435.109982               | 4.37E-02             | Q      | 15          | F2g        | 4          | 15         | F2u        | 5        | 18.751372              | 0.337614E-04                 |
| 435.114101       4.37E-02       Q       15       F2g       1       15       F2u       8       18.751372       0.337614E-04         433.069517       4.29E-02       P       16       F2g       4       15       F2u       9       21.251555       0.335614E-04         433.070165       4.29E-02       P       16       F2g       3       15       F2u       10       21.251555       0.355112E-04         433.070566       4.29E-02       P       16       F2g       2       15       F2u       10       21.251555       0.355112E-04         433.071253       4.29E-02       P       16       F2g       1       15       F2u       11       21.251555       0.355112E-04         437.121525       1.56E-02       R       15       A1g       1       16       A1u       1       18.751372       0.112538E-04         435.115395       1.53E-02       Q       16       A1g       1       16       A1u       2       21.251555       0.118371E-04         435.115395       1.53E-02       Q       16       A1g       1       6       A1u       2       21.251555       0.118371E-04         432.94493       1.50E-02 <td>435.111581<br/>435 112757</td> <td>4.37E-02<br/>4.37E-02</td> <td>Q</td> <td>15<br/>15</td> <td>F2g<br/>F2g</td> <td>3</td> <td>15<br/>15</td> <td>F2U<br/>F2U</td> <td>6<br/>7</td> <td>18./513/2<br/>18.751372</td> <td>0.337614E-04<br/>0.337614E-04</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 435.111581<br>435 112757 | 4.37E-02<br>4.37E-02 | Q      | 15<br>15    | F2g<br>F2g | 3          | 15<br>15   | F2U<br>F2U | 6<br>7   | 18./513/2<br>18.751372 | 0.337614E-04<br>0.337614E-04 |
| 433.069517       4.29E-02       P       16       F2g       4       15       F2u       9       21.251555       0.355112E-04         433.070165       4.29E-02       P       16       F2g       3       15       F2u       10       21.251555       0.355112E-04         433.070566       4.29E-02       P       16       F2g       2       15       F2u       11       21.251555       0.355112E-04         433.071253       4.29E-02       P       16       F2g       1       15       F2u       11       21.251555       0.355112E-04         437.121525       1.56E-02       R       15       A1g       1       6       A1u       1       18.751372       0.112538E-04         435.115395       1.53E-02       Q       16       A1g       1       6       A1u       2       21.251555       0.118371E-04         435.115395       1.53E-02       Q       16       A1g       1       6       A1u       2       21.251555       0.118371E-04         435.115395       1.53E-02       Q       16       A1g       2       16       A1u       21.251555       0.118371E-04         437.121434       7.79E-02       R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 435.114101               | 4.37E-02             | õ      | 15          | F2g        | 1          | 15         | F2u        | 8        | 18.751372              | 0.337614E-04                 |
| 433.0/0165       4.29E-02       P       16       F2g       3       15       F2u       10       21.251555       0.355112E-04         433.070566       4.29E-02       P       16       F2g       2       15       F2u       11       21.251555       0.355112E-04         433.071253       4.29E-02       P       16       F2g       1       15       F2u       11       21.251555       0.355112E-04         437.121525       1.56E-02       R       15       A1g       1       6       A1u       1       18.751372       0.112538E-04         435.111406       1.53E-02       Q       16       A1g       1       6       A1u       2       21.251555       0.118371E-04         435.115395       1.53E-02       Q       16       A1g       1       6       A1u       2       21.251555       0.118371E-04         432.944493       1.50E-02       P       17       A1g       1       6       A1u       3       21.251555       0.118371E-04         437.121434       7.79E-02       R       15       A2g       1       16       A1u       4       23.908000       0.123955E-04         437.122572       7.79E-02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 433.069517               | 4.29E-02             | P      | 16          | F2g        | 4          | 15         | F2u        | 9        | 21.251555              | 0.355112E-04                 |
| 433.071253       4.29E-02       P       10       F2g       15       F2u       11       21.251555       0.355112E-04         433.071253       4.29E-02       P       16       F2g       1       15       F2u       12       21.251555       0.355112E-04         437.121525       1.56E-02       R       15       Alg       1       16       Alu       1       18.751372       0.112538E-04         435.111406       1.53E-02       Q       16       Alg       1       6       Alu       2       21.251555       0.118371E-04         435.115395       1.53E-02       Q       16       Alg       2       16       Alu       3       21.251555       0.118371E-04         432.944493       1.50E-02       P       17       Alg       1       6       Alu       3       21.251555       0.118371E-04         437.121434       7.79E-02       R       15       A2g       1       6       A2u       1       18.751372       0.562690E-04         437.122572       7.79E-02       R       15       A2g       1       6       A2u       2       18.751372       0.562690E-04         435.114517       7.66E-02       Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 433.070165               | 4.29E-02             | Р      | 16          | F2g        | 3          | 15         | F2u        | 10       | 21.251555              | 0.355112E-04                 |
| 437.121525       1.56E-02       R       15       Alg       1       16       Alu       1       18.751372       0.112538E-04         435.111406       1.53E-02       Q       16       Alg       1       16       Alu       2       1.251555       0.112538E-04         435.115395       1.53E-02       Q       16       Alg       2       16       Alu       3       21.251555       0.118371E-04         432.944493       1.50E-02       P       17       Alg       1       16       Alu       4       23.908000       0.123955E-04         437.121434       7.79E-02       R       15       A2g       1       16       A2u       1       18.751372       0.562690E-04         437.122572       7.79E-02       R       15       A2g       1       6       A2u       2       18.751372       0.562690E-04         435.114517       7.66E-02       Q       16       A2g       1       6       A2u       3       21.251555       0.591853E-04         435.114517       7.66E-02       Q       16       A2g       1       6       A2u       3       21.251555       0.591853E-04         432.9443371       7 <td< td=""><td>433.070500</td><td>4.29E-02<br/>4.29F-02</td><td>۲<br/>P</td><td>16</td><td>F2g<br/>F2a</td><td>2<br/>1</td><td>15<br/>15</td><td>⊢∠u<br/>F2u</td><td>11<br/>12</td><td>21.251555</td><td>0.355112E-04<br/>0.355112F-04</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 433.070500               | 4.29E-02<br>4.29F-02 | ۲<br>P | 16          | F2g<br>F2a | 2<br>1     | 15<br>15   | ⊢∠u<br>F2u | 11<br>12 | 21.251555              | 0.355112E-04<br>0.355112F-04 |
| 435.111406       1.53E-02       Q       16       A1g       1       16       A1u       2       21.251555       0.118371E-04         435.115395       1.53E-02       Q       16       A1g       2       16       A1u       3       21.251555       0.118371E-04         432.944493       1.50E-02       P       17       A1g       1       16       A1u       4       23.908000       0.123955E-04         437.121434       7.79E-02       R       15       A2g       1       16       A2u       1       18.751372       0.562690E-04         437.122572       7.79E-02       R       15       A2g       1       16       A2u       2       18.751372       0.562690E-04         435.114517       7.66E-02       Q       16       A2g       1       16       A2u       2       12.51555       0.591853E-04         435.943371       7       51E-02       P       17       A2g       1       16       A2u       2       12.51555       0.591853E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 437.121525               | 1.56E-02             | R      | 15          | Alq        | 1          | 16         | Alu        | 1        | 18.751372              | 0.112538E-04                 |
| 435.115395       1.53E-02       Q       16       A1g       2       16       A1u       3       21.251555       0.118371E-04         432.944493       1.50E-02       P       17       A1g       1       16       A1u       4       23.908000       0.123955E-04         437.121434       7.79E-02       R       15       A2g       1       16       A2u       1       18.751372       0.562690E-04         437.122572       7.79E-02       R       15       A2g       2       16       A2u       2       18.751372       0.562690E-04         435.114517       7.66E-02       Q       16       A2g       1       16       A2u       2       18.751372       0.562690E-04         435.114517       7.66E-02       Q       16       A2g       1       16       A2u       3       21.251555       0.591853E-04         432.943371       7       51E-02       P       17       A2g       1       16       A2u       3       21.251555       0.591853E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 435.111406               | 1.53E-02             | Q      | 16          | Alğ        | 1          | 16         | Alu        | 2        | 21.251555              | 0.118371E-04                 |
| 437.121434       7.79E-02       R       15       A2g       1       16       A2u       1       18.751372       0.562690E-04         437.122572       7.79E-02       R       15       A2g       1       16       A2u       1       18.751372       0.562690E-04         435.114517       7.66E-02       Q       16       A2g       1       6       A2u       2       18.751372       0.562690E-04         435.114517       7.66E-02       Q       16       A2g       1       16       A2u       3       21.251555       0.591853E-04         432.943371       7.51E-02       P       17       A2g       1       16       A2u       3       20.8000       0.6123737E       0.4000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 435.115395<br>432 044403 | 1.53E-02<br>1.50E-02 | Q      | 15<br>17    | ALG<br>Ala | 2<br>1     | 16<br>16   | A⊥u<br>∧1  | 3<br>⊿   | 21.251555              | U.1183/1E-04<br>0 1239555-04 |
| 437.122572       7.79E-02       R       15       A2g       2       16       A2u       2       18.751372       0.562690E-04         435.114517       7.66E-02       Q       16       A2g       1       16       A2u       3       21.251555       0.591853E-04         432.943371       7.51E-02       P       17       A2g       1       16       A2u       3       20.0000       0.610276E-04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 437.121434               | 7.79E-02             | R      | 15          | A2a        | 1          | 16         | A2u        | 1        | 18.751372              | 0.562690E-04                 |
| 435.114517 7.66E-02 Q 16 A2g 1 16 A2u 3 21.251555 0.591853E-04<br>432 943371 7 51E-02 P 17 A2g 1 16 A2u 4 23 908000 0.610776F 04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 437.122572               | 7.79E-02             | R      | 15          | A2g        | 2          | 16         | A2u        | 2        | 18.751372              | 0.562690E-04                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 435.114517<br>432 943371 | 7.66E-02<br>7.51E-02 | Q      | 16<br>17    | A2g        | 1          | 16<br>16   | A2u        | 3<br>4   | 21.251555              | 0.591853E-04<br>0.619776E-04 |

| Fréquence                | Intensité            |        | <b>J</b> '' | <b>C''</b> | n''    | J        | С           | n       | <b>Energie inf</b> | <b>Population inf</b>        |
|--------------------------|----------------------|--------|-------------|------------|--------|----------|-------------|---------|--------------------|------------------------------|
| 437.121844               | 6.24E-02             | R      | 15          | Eg         | 1      | 16       | Eu          | 1       | 18.751372          | 0.450152E-04                 |
| 437.122550               | 6.24E-02             | R      | 15<br>16    | Eg         | 2      | 16       | EU          | 23      | 18./513/2          | 0.450152E-04<br>0.473482E-04 |
| 435.114293               | 6.12E-02             | õ      | 16          | Ea         | 2      | 16       | Eu          | 4       | 21.251555          | 0.473482E-04                 |
| 435.116126               | 6.12E-02             | Q      | 16          | Еğ         | 3      | 16       | Еu          | 5       | 21.251555          | 0.473482E-04                 |
| 432.942503               | 6.01E-02             | Р      | 17          | Eg         | 1      | 16       | ЕU          | 6       | 23.908000          | 0.495821E-04                 |
| 432.943160               | 6.01E-02<br>6.01E-02 | P      | 17          | Eg         | 23     | 16       | EU          | 8       | 23.908000          | 0.495821E-04<br>0.495821E-04 |
| 437.121485               | 4.68E-02             | R      | 15          | F1a        | 1      | 16       | F1u         | 1       | 18.751372          | 0.337614E-04                 |
| 437.121803               | 4.68E-02             | R      | 15          | F1g        | 2      | 16       | F1u         | 2       | 18.751372          | 0.337614E-04                 |
| 437.122124               | 4.68E-02             | R      | 15          | F1g        | 3      | 16       | F1u         | 3       | 18.751372          | 0.337614E-04                 |
| 437.123239<br>435 111408 | 4.68E-02<br>4.59E-02 | к<br>О | 15<br>16    | F1g<br>F1a | 4      | 16       | F1u<br>F1u  | 4       | 18./513/2          | 0.337614E-04<br>0.355112E-04 |
| 435.113160               | 4.59E-02             | ğ      | 16          | Flg        | 2      | 16       | Flu         | 6       | 21.251555          | 0.355112E-04                 |
| 435.115217               | 4.59E-02             | Q      | 16          | F1g        | 3      | 16       | Flu         | 7       | 21.251555          | 0.355112E-04                 |
| 435.116065               | 4.59E-02             | Q      | 16          | F1g        | 4      | 16       | Flu         | 8       | 21.251555          | 0.355112E-04                 |
| 432.942478               | 4.51E-02<br>4.51E-02 | P      | 17          | F1g<br>F1g | 2      | 16       | F1u<br>F1u  | 10      | 23.908000          | 0.371865E-04                 |
| 432.943775               | 4.51E-02             | P      | 17          | F1g        | 3      | 16       | Flu         | 11      | 23.908000          | 0.371865E-04                 |
| 432.944504               | 4.51E-02             | Р      | 17          | F1g        | 4      | 16       | F1u         | 12      | 23.908000          | 0.371865E-04                 |
| 432.945556               | 4.51E-02             | P      | 17          | F1g        | 5      | 16       | Flu         | 13      | 23.908000          | 0.3/1865E-04<br>0.337614E-04 |
| 437.122044               | 4.68E-02             | R      | 15          | F2g<br>F2a | 2      | 16       | F2u<br>F2u  | 2       | 18.751372          | 0.337614E-04                 |
| 437.122558               | 4.68E-02             | R      | 15          | F2g        | 3      | 16       | F2u         | 3       | 18.751372          | 0.337614E-04                 |
| 437.123257               | 4.68E-02             | R      | 15          | F2g        | 4      | 16       | F2u         | 4       | 18.751372          | 0.337614E-04                 |
| 435.113135<br>425 114251 | 4.59E-02             | Q      | 16<br>16    | F2g        | 1      | 16<br>16 | F2u         | 5       | 21.251555          | 0.355112E-04<br>0.355112E-04 |
| 435.115056               | 4.59E-02             | õ      | 16          | F2g<br>F2a | 3      | 16       | F2u<br>F2u  | 7       | 21.251555          | 0.355112E-04                 |
| 435.116184               | 4.59E-02             | Q      | 16          | F2g        | 4      | 16       | F2u         | 8       | 21.251555          | 0.355112E-04                 |
| 432.942539               | 4.51E-02             | Р      | 17          | F2g        | 1      | 16       | F2u         | 9       | 23.908000          | 0.371865E-04                 |
| 432.943234<br>432 943719 | 4.51E-02<br>4.51E-02 | P      | 17          | F2g<br>F2g | 23     | 16       | FZU<br>FZU  | 11      | 23.908000          | 0.371865E-04<br>0.371865E-04 |
| 432.945555               | 4.51E-02             | Р      | 17          | F2g        | 4      | 16       | F2u         | 12      | 23.908000          | 0.371865E-04                 |
| 437.247953               | 1.63E-02             | R      | 16          | A1g        | 2      | 17       | Alu         | 1       | 21.251555          | 0.118371E-04                 |
| 437.249701               | 1.63E-02             | R      | 16          | Alg        | 1      | 17       | Alu         | 2       | 21.251555          | 0.118371E-04                 |
| 435.114817<br>432 815402 | 1.60E-02<br>1.57E-02 | Q<br>P | 18          | Alg<br>Alg | 1<br>2 | 17       | Alu<br>Alu  | 3       | 23.908000          | 0.123955E-04<br>0.129282E-04 |
| 432.816977               | 1.57E-02             | P      | 18          | Alg        | 1      | 17       | Alu         | 5       | 26.720706          | 0.129282E-04                 |
| 437.248335               | 8.17E-02             | R      | 16          | A2g        | 1      | 17       | A2u         | 1       | 21.251555          | 0.591853E-04                 |
| 435.116809               | 8.02E-02             | Q      | 17          | A2g        | 1      | 17       | A2u         | 2       | 23.908000          | 0.619776E-04                 |
| 432.813483               | 7.86E-02<br>7.86E-02 | P      | 18          | AZY<br>AZa | 2      | 17       | Δ211        | 2<br>2  | 26.720706          | 0.646412E-04<br>0.646412E-04 |
| 437.247631               | 6.54E-02             | R      | 16          | Eg         | 3      | 17       | Eu          | i       | 21.251555          | 0.473482E-04                 |
| 437.248435               | 6.54E-02             | R      | 16          | Еğ         | 2      | 17       | Еu          | 2       | 21.251555          | 0.473482E-04                 |
| 437.249700               | 6.54E-02             | R      | 16<br>17    | Eg         | 1      | 17       | Eu          | 3       | 21.251555          | 0.4/3482E-04<br>0.495821E-04 |
| 435.117176               | 6.41E-02             | õ      | 17          | Ea         | 2      | 17       | Eu          | 5       | 23.908000          | 0.495821E-04                 |
| 435.118324               | 6.41E-02             | Q      | 17          | Еğ         | 1      | 17       | Еu          | 6       | 23.908000          | 0.495821E-04                 |
| 432.816059               | 6.28E-02             | Р      | 18          | Eg         | 3      | 17       | Eu          | 7       | 26.720706          | 0.517130E-04                 |
| 432.810909               | 6.28E-02             | P      | 18<br>18    | Eg         | 2<br>1 | 17       | EU          | o<br>g  | 26.720706          | 0.517130E-04<br>0.517130E-04 |
| 437.247657               | 4.90E-02             | R      | 16          | F1g        | 4      | 17       | F1u         | í       | 21.251555          | 0.355112E-04                 |
| 437.248030               | 4.90E-02             | R      | 16          | F1g        | 3      | 17       | F1u         | 2       | 21.251555          | 0.355112E-04                 |
| 437.248930               | 4.90E-02             | R      | 16          | F1g        | 2      | 17       | Flu         | 3       | 21.251555          | 0.355112E-04                 |
| 435.112919               | 4.81F-02             | 0      | 17          | F1g<br>F1a | 5      | 17       | F1u<br>F1u  | 5       | 23.908000          | 0.371865F-04                 |
| 435.114798               | 4.81E-02             | Q      | 17          | F1g        | 4      | 17       | Flu         | 6       | 23.908000          | 0.371865E-04                 |
| 435.116093               | 4.81E-02             | Q      | 17          | F1g        | 3      | 17       | F1u         | 7       | 23.908000          | 0.371865E-04                 |
| 435.11/44/<br>435 118369 | 4.81E-02<br>4.81E-02 | Q      | 17          | F1g<br>F1a | 2<br>1 | 17       | F1u<br>F1u  | 8<br>9  | 23.908000          | 0.371865E-04<br>0.371865E-04 |
| 432.815425               | 4.71E-02             | P      | 18          | Flq        | 4      | 17       | Flu         | 10      | 26.720706          | 0.387847E-04                 |
| 432.816266               | 4.71E-02             | Р      | 18          | F1g        | 3      | 17       | F1u         | 11      | 26.720706          | 0.387847E-04                 |
| 432.816934               | 4.71E-02             | P      | 18          | F1g        | 2      | 17       | F1u         | 12      | 26.720706          | 0.387847E-04                 |
| 432.817760               | 4.71E-02<br>4 90E-02 | R      | 16          | F1g<br>F2a | 4      | 17       | F1U<br>F2U  | 13      | 20.720700          | 0.367647E-04<br>0.355112E-04 |
| 437.248101               | 4.90E-02             | R      | 16          | F2g        | 3      | 17       | F2u         | 2       | 21.251555          | 0.355112E-04                 |
| 437.248409               | 4.90E-02             | R      | 16          | F2g        | 2      | 17       | F2u         | 3       | 21.251555          | 0.355112E-04                 |
| 437.248942<br>435 112020 | 4.90E-02             | Ŕ      | 17          | F2g        | T<br>V | 17       | F2u<br>F2·· | 4<br>5  | 21.251555          | 0.355112E-04<br>0.3718655-04 |
| 435.116190               | 4.81E-02             | ŏ      | 17          | F2g        | 3      | 17       | F2u         | 6       | 23.908000          | 0.371865E-04                 |
| 435.117046               | 4.81E-02             | Q      | 17          | F2g        | 2      | 17       | F2u         | 7       | 23.908000          | 0.371865E-04                 |
| 435.118261               | 4.81E-02             | Q      | 17          | F2g        | 1      | 17       | F2u         | 8       | 23.908000          | 0.371865E-04                 |
| 432.815451<br>432 816001 | 4./1E-02<br>4 71E-02 | Р<br>Р | 18<br>18    | F2g<br>F2g | 5<br>4 | 17       | FZU<br>F2u  | 9<br>10 | 20.720706          | 0.387847E-04<br>0 387847E-04 |
| 432.816443               | 4.71E-02             | P      | 18          | F2a        | 3      | 17       | F2u         | 11      | 26.720706          | 0.387847E-04                 |
| 432.817767               | 4.71E-02             | Ρ      | 18          | F2g        | 2      | 17       | F2u         | 12      | 26.720706          | 0.387847E-04                 |
| 432.818890               | 4.71E-02             | Р      | 18          | F2g        | 1      | 17       | F2u         | 13      | 26.720706          | 0.38/847E-04                 |
| 437.373294               | 1.67F-02             | к<br>О | 18<br>18    | AIG<br>Ala | 1<br>1 | 18<br>18 | A10<br>A10  | ⊥<br>2  | 26.720706          | 0.129935E-04<br>0.129282F-04 |
| 435.120707               | 1.67E-02             | q      | 18          | Alg        | 2      | 18       | Alu         | 3       | 26.720706          | 0.129282E-04                 |
| 432.689320               | 1.64E-02             | Р      | 19          | A1g        | 1      | 18       | Alu         | 4       | 29.689673          | 0.134344E-04                 |
| 47/ 7/44/1               |                      | к      | 1/          | 4/0        |        | ١Ň       | 4/11        |         |                    | u = n + 3/(n + -04)          |

| Fréquence                | Intensité            |        | <b>J</b> '' | <b>C''</b> | <b>n''</b> | J        | С          | n      | <b>Energie inf</b> | <b>Population inf</b>        |
|--------------------------|----------------------|--------|-------------|------------|------------|----------|------------|--------|--------------------|------------------------------|
| 435.114517               | 8.36E-02             | Q      | 18          | A2g        | 1          | 18       | A2u        | 2      | 26.720706          | 0.646412E-04                 |
| 435.120562               | 8.36E-02             | Q      | 18          | A2g        | 2          | 18       | A2u        | 3      | 26.720706          | 0.646412E-04                 |
| 432.688913               | 8.18E-02<br>8.18E-02 | Р      | 19          | AZG        | 1<br>2     | 18       | AZU        | 4 5    | 29.689673          | 0.671720E-04<br>0.671720E-04 |
| 437 373754               | 6 83F-02             | R      | 17          | Fa         | 1          | 18       | F II       | 1      | 23 908000          | 0.071720E-04<br>0.495821F-04 |
| 437.374259               | 6.83E-02             | R      | 17          | Ea         | 2          | 18       | Eu         | 2      | 23,908000          | 0.495821E-04                 |
| 437.375307               | 6.83E-02             | R      | 17          | Еğ         | 3          | 18       | Εu         | 3      | 23.908000          | 0.495821E-04                 |
| 435.114516               | 6.69E-02             | Q      | 18          | Еğ         | 1          | 18       | ЕU         | 4      | 26.720706          | 0.517130E-04                 |
| 435.118055               | 6.69E-02             | Q      | 18          | Еg         | 2          | 18       | Еu         | 5      | 26.720706          | 0.517130E-04                 |
| 435.119559               | 6.69E-02             | Q      | 10          | Eg         | 5          | 18       | EU         | 6<br>7 | 26.720706          | 0.51/130E-04<br>0.537376E-04 |
| 432 689547               | 6 55E-02             | P      | 19          | Eg         | 2          | 18       | EU         | 8      | 29.689673          | 0.537376E-04                 |
| 432.691022               | 6.55E-02             | P      | 19          | Eq         | 3          | 18       | Eu         | ğ      | 29.689673          | 0.537376E-04                 |
| 437.373734               | 5.12E-02             | R      | 17          | F1g        | 1          | 18       | F1u        | 1      | 23.908000          | 0.371865E-04                 |
| 437.374141               | 5.12E-02             | R      | 17          | F1g        | 2          | 18       | F1u        | 2      | 23.908000          | 0.371865E-04                 |
| 437.374734               | 5.12E-02             | R      | 17          | FLG        | 3          | 18       | Flu        | 3      | 23.908000          | 0.371865E-04                 |
| 437.373303               | 5.12E-02<br>5.12E-02 | R      | 17          | F1g<br>F1g | 45         | 18       | F10<br>F10 | 4<br>5 | 23.908000          | 0.371865E-04                 |
| 435.116540               | 5.02E-02             | Ö      | 18          | Fla        | 1          | 18       | Flu        | 6      | 26.720706          | 0.387847E-04                 |
| 435.118012               | 5.02E-02             | Q      | 18          | F1g        | 2          | 18       | F1u        | 7      | 26.720706          | 0.387847E-04                 |
| 435.119191               | 5.02E-02             | Q      | 18          | F1g        | 3          | 18       | F1u        | 8      | 26.720706          | 0.387847E-04                 |
| 435.120667               | 5.02E-02             | Q      | 18          | Flg        | 4          | 18       | Flu        | 9      | 26.720706          | 0.387847E-04                 |
| 432.088324               | 4.91E-02             | Р      | 19          | F1g        | 1<br>2     | 10       | F1U        | 10     | 29.089073          | 0.403032E-04<br>0.403032E-04 |
| 432 689497               | 4.91E-02<br>4.91E-02 | P      | 19          | F1g<br>F1g | 3          | 18       | F1U<br>F1U | 12     | 29 689673          | 0.403032E-04<br>0.403032E-04 |
| 432.690139               | 4.91E-02             | P      | 19          | F1q        | 4          | 18       | Flu        | 13     | 29.689673          | 0.403032E-04                 |
| 432.692226               | 4.91E-02             | Р      | 19          | F1g        | 5          | 18       | F1u        | 14     | 29.689673          | 0.403032E-04                 |
| 437.373781               | 5.12E-02             | R      | 17          | F2g        | 1          | 18       | F2u        | 1      | 23.908000          | 0.371865E-04                 |
| 437.374316               | 5.12E-02             | R      | 17          | F2g        | 2          | 18       | F2u        | 2      | 23.908000          | 0.3/1865E-04                 |
| 437.374091<br>437 376130 | 5.12E-02<br>5.12E-02 | R      | 17          | F2g<br>F2g | 3<br>4     | 18<br>18 | FZU<br>FZU | 3<br>4 | 23.908000          | 0.371865E-04<br>0.371865E-04 |
| 435.114516               | 5.02E-02             | Ö      | 18          | F2a        | 1          | 18       | F2u        | 5      | 26.720706          | 0.387847E-04                 |
| 435.116528               | 5.02E-02             | Q      | 18          | F2g        | 2          | 18       | F2u        | 6      | 26.720706          | 0.387847E-04                 |
| 435.118883               | 5.02E-02             | Q      | 18          | F2g        | 3          | 18       | F2u        | 7      | 26.720706          | 0.387847E-04                 |
| 435.119662               | 5.02E-02             | Q      | 18          | F2g        | 4          | 18       | F2u        | 8      | 26.720706          | 0.387847E-04                 |
| 433.120620<br>432.688371 | 5.02E-02<br>4 91E-02 | Q      | 10          | F2g        | 5<br>1     | 18       | F2U        | 10     | 20.720700          | 0.387847E-04                 |
| 432.688998               | 4.91F-02             | P      | 19          | F2g        | 2          | 18       | F2u        | 11     | 29.689673          | 0.403032E-04                 |
| 432.690101               | 4.91E-02             | P      | 19          | F2g        | 3          | 18       | F2u        | 12     | 29.689673          | 0.403032E-04                 |
| 432.691025               | 4.91E-02             | Р      | 19          | F2g        | 4          | 18       | F2u        | 13     | 29.689673          | 0.403032E-04                 |
| 432.692225               | 4.91E-02             | P      | 19          | F2g        | 5          | 18       | F2u        | 14     | 29.689673          | 0.403032E-04                 |
| 437.499821               | 1.78E-02             | R      | 18<br>19    | Alg        | 2          | 19       | Alu<br>Alu | 1      | 26.720706          | 0.129282E-04<br>0.129282E-04 |
| 435.121386               | 1.74F-02             | Ô      | 19          | Alg<br>Alg | 1          | 19       | Alu        | 3      | 29.689673          | 0.134344F-04                 |
| 432.562296               | 1.70E-02             | P      | 20          | Alg        | 2          | 19       | Alu        | 4      | 32.814902          | 0.139132E-04                 |
| 432.565564               | 1.70E-02             | Р      | 20          | A1g        | 1          | 19       | Alu        | 5      | 32.814902          | 0.139132E-04                 |
| 437.499884               | 8.88E-02             | R      | 18          | A2g        | 2          | 19       | A2u        | 1      | 26.720706          | 0.646412E-04                 |
| 437.502549               | 8.88E-02             | R      | 10          | A2g        | 1          | 19       | AZU        | 2      | 26./20/06          | 0.646412E-04                 |
| 435 122110               | 8 69F-02             | õ      | 19          | Δ2g        | 1          | 19       | Δ211       | 4      | 29 689673          | 0.671720E-04                 |
| 432.563282               | 8.49E-02             | P      | 20          | A2a        | ī          | 19       | A2u        | 5      | 32.814902          | 0.695662E-04                 |
| 437.500327               | 7.10E-02             | R      | 18          | Еğ         | 3          | 19       | ЕU         | 1      | 26.720706          | 0.517130E-04                 |
| 437.500988               | 7.10E-02             | R      | 18          | Еg         | 2          | 19       | ЕU         | 2      | 26.720706          | 0.517130E-04                 |
| 437.502549               | 7.10E-02             | R      | 10          | Eg         | 2          | 19       | EU         | <br>⊿  | 26.720706          | 0.51/130E-04<br>0.537376E-04 |
| 435 120990               | 6.95E-02             | õ      | 19          | Fa         | 2          | 19       | FU         | 5      | 29 689673          | 0.537376E-04                 |
| 435.123097               | 6.95E-02             | õ      | 19          | Eq         | ī          | 19       | Eu         | 6      | 29.689673          | 0.537376E-04                 |
| 432.561231               | 6.80E-02             | P      | 20          | Еğ         | 4          | 19       | ЕU         | 7      | 32.814902          | 0.556529E-04                 |
| 432.562003               | 6.80E-02             | Р      | 20          | Еg         | 3          | 19       | Еu         | 8      | 32.814902          | 0.556529E-04                 |
| 432.503324               | 6.80E-02             | Р      | 20          | Еg         | 2          | 19       | EU         | 10     | 32.814902          | 0.556529E-04                 |
| 437 499839               | 5 33F-02             | R      | 18          | E y<br>F1a | 4          | 19       | E U<br>F1u | 10     | 26 720706          | 0.330329E-04<br>0.387847F-04 |
| 437.500488               | 5.33E-02             | R      | 18          | Flq        | 3          | 19       | Flu        | 2      | 26.720706          | 0.387847E-04                 |
| 437.501007               | 5.33E-02             | R      | 18          | F1g        | 2          | 19       | F1u        | 3      | 26.720706          | 0.387847E-04                 |
| 437.501655               | 5.33E-02             | R      | 18          | F1g        | 1          | 19       | F1u        | 4      | 26.720706          | 0.387847E-04                 |
| 435.116198<br>435.110027 | 5.21E-02             | Q      | 19<br>10    | FT0        | 5          | 19<br>10 | F1U        | 5      | 29.6896/3          | 0.403032E-04                 |
| 433.119937               | 5.21E-02<br>5.21E-02 | Q<br>O | 19<br>19    | F10        | 4<br>२     | 19<br>19 | F10<br>F10 | 0<br>7 | 29.009073          | 0.403032E-04                 |
| 435.121793               | 5.21E-02             | õ      | 19          | F1a        | 2          | 19       | Flu        | 8      | 29.689673          | 0.403032E-04                 |
| 435.123138               | 5.21E-02             | Q      | 19          | Flg        | ī          | 19       | Flu        | 9      | 29.689673          | 0.403032E-04                 |
| 432.561253               | 5.10E-02             | Ρ      | 20          | F1g        | 5          | 19       | F1u        | 10     | 32.814902          | 0.417397E-04                 |
| 432.562087               | 5.10E-02             | P      | 20          | Flg        | 4          | 19       | Flu        | 11     | 32.814902          | 0.41/397E-04                 |
| 432.302303               | 5.10E-02<br>5.10E-02 | P      | 20          | F10        | 2<br>2     | 19<br>19 | F10<br>F10 | 13     | 32.014902          | 0.417397E-04                 |
| 432.565564               | 5.10E-02             | P      | 20          | F1a        | 1          | 19       | Flu        | 14     | 32.814902          | 0.417397E-04                 |
| 437.499859               | 5.33E-02             | R      | 18          | F2g        | 5          | 19       | F2u        | _1     | 26.720706          | 0.387847E-04                 |




- M. Terki-Hassaine, G. Pierre, H. Burger et H. Willner. J. Mol. Spectrosc, Volume 185, Issue 1,p: 93–97 (1997)
  https://doi.org/10.1006/jmsp.1997.7364
- M. Rotger, V. Boudon, H. Burger et H. Willner chemical physics letters. Volume 339, Issues 1–2. P: 83-88. (2001).
  https://doi.org/10.1016/S0009-2614(01)00299-8
- [3] Ch.Wenger, V. Boudon, M. Rotger, and M. Sanzharov. J. Mol. Spectrosc, Volume 251. Issue 01-02. p :102–113, (2008). https://doi.org/10.1016/j.jms.2008.01.011
- [4] Ch. Wenger and J.-P. Champion, J. Quant. Spectrosc. Radiat. Transfer, Volume 59, Issues 3–5, p: 471-480 (1998).
  https://doi.org/10.1016/S0022-4073(97)00106-4
- [5] Ch. Wenger, V. Boudon, J.-P. Champion and G. Pierre, J. Quant. Spectrosc. Radiat. Transfer, Volume 66, Issue 1, p: 1-16 (2000) <u>https://doi.org/10.1016/S0022-4073(99)00161-2</u>
- [6] Ch. Wenger, W. Raballand, M. Rotger and V. Boudon, J. Quant. Spectrosc. Radiat. Transfer, Volume 95, Issue 4, p: 521-538 (2005). <u>https://doi.org/10.1016/j.jqsrt.2004.11.012</u>
- [7] Ch. Wenger, M. Rotger and V. Boudon, J. Quant. Spectrosc. Radiat. Transfer, Volume 74, Issue 5, p : 621-636 (2002). https://doi.org/10.1016/S0022-4073(01)00275-8
- [8] Ch. Wenger, M. Rotger and V. Boudon, J. Quant. Spectrosc. Radiat. Transfer, Volume 93, Issue 4, p: 429-446 (2005) https://doi.org/10.1016/j.jqsrt.2004.08.039
- [9] Ch. Wenger, A. El Hilali and V. Boudon, J. Quant. Spectrosc. Radiat. Transfer. Volume 111, Issue 9, p: 1305-1315, (2010). https://doi.org/10.1016/j.jqsrt.2010.01.012



## Conclusion Générale

## **Conclusion générale:**

Dans ce travail on s'est proposé de faire une analyse des fréquences rovibrationnelles de deux bandes d'une molécule octaédriques, en utilisant une forme tensorielle permettant d'écrire l'Hamiltonien moléculaire comme une combinaison linéaire des opérateurs rovibrationnels.

Cette étude présente un guide pour les étudiants de la spectroscopie moléculaire surtout pour ceux qui veulent étudier les spectres infrarouges des molécules toupies sphériques.

Nous avons donné tout d'abord un aperçu général sur la notion de symétrie des molécules octaédriques, puis le modèle théorique utilisé dans le développement de l'Hamiltonien écrit sous la forme tensorielle. Cette forme dépend de la structure géométrique de la molécule, et qui nous indique que les opérateurs rovibrationnels sont les mêmes pour toutes les molécules apprêtement au même groupe ponctuel.

Le calcul des spectres des deux bandes  $v_3$  et  $v_4$  de la molécule  ${}^{80}SeF_6$  a été fait en utilisant les deux logiciels SPVIEW et XTDS.

Un jeu de 19 paramètres de l' Hamiltonien développé à l'ordre 4, ont permet de calculer le spectre de la bande  $v_3$  de la molécule  ${}^{80}SeF_6$ , dont 6 relatifs au niveau de base *GS* et 13 relatifs au niveau  $v_3$ . Ce spectre contient 11520 raies dans la fenêtre de fréquence 750 – 800 cm<sup>-1</sup>, pour une valeur de *Jmax* = 95 et avec une déviation standard de 0,643.  $10^{-3}$  cm<sup>-1</sup>.

L'ensemble de 14 paramètres utilisé dans le développement de l'Hamiltonien de la bande  $v_4$  (dont 1 relatif au niveau de base GS et 13 relatifs au niveau  $v_4$ ), nous ont permet de calculer le spectre de cette bande dans la fenêtre de fréquences 400 – 450  $cm^{-1}$ . Ce spectre contient 11281 raies pour une valeur de Jmax = 94 et avec une déviation standard de 0,295.  $10^{-3} cm^{-1}$ .

Lors de cette étude, et en plus de la prédiction du spectre infrarouge des bandes analysées, nous nous sommes habitués à l'application des différents jobs de XTDS, qui nous seront très utiles dans les prochaines études.

Comme perspectives, nous pouvons dans l'avenir faire une analyse des intensités des transitions rovibrationnelles des deux bandes.

**Résumé.** Nous nous sommes proposé de donner un guide aux étudiants pour étudier les spectres infrarouges des molécules a toupies sphériques. On a présenté un nouveau modèle théorique d'écriture de l'Hamiltonien moléculaire sous une forme tensorielle, en se basant sur la notion de symétrie moléculaire. Le calcul et l'analyse de ces spectres se fait par l'utilisation de deux logiciels XTDS et SPVIEW. Comme exemples, on a calculé les spectres infrarouges de deux bandes isolée  $v_3$  et  $v_4$  de la molécule <sup>80</sup>SeF<sub>6</sub>. L'analyse complète du spectre infrarouge de la bande  $v_3$ , dans la région (750 – 800 cm<sup>-1</sup>), se fait par l'utilisation de 19 paramètres, dont 6 relatifs au niveau de base GS et 13 relatifs au niveau  $v_3$ , pour Jmax = 95, avec un EQM = 0,643.  $10^{-3}$  cm<sup>-1</sup>. Le calcul du spectre infrarouge de la bande  $v_4$ , dans la région (400 – 450 cm<sup>-1</sup>), nécessite l'utilisation de 14 paramètres, dont 1 est relatif au niveau de base GS et 13 sont relatifs au niveau  $v_4$ , pour Jmax = 94, avec un EQM = 0,295.  $10^{-3}$  cm<sup>-1</sup>.

**Mots clé:** <sup>80</sup>SeF<sub>6</sub>, Spectre infrarouge à haute résolution, formalisme octaédrique tensoriel, Analyse des raies rovibrationnelles, XTDS et SPVIEW.

Abstract. We have proposed to give a guide to students to study the infrared spectra of spherical spinning top molecules. We presented a new theoretical model for writing the molecular Hamiltonian in a tensorial form, based on the notion of molecular symmetry. The calculation and analysis of these spectra is done by the use of two software XTDS and SPVIEW. As examples, we calculated the infrared spectra of two isolated bands  $v_3$  and  $v_4$  of the molecule <sup>80</sup>SeF<sub>6</sub>. The complete analysis of the infrared spectrum of the  $v_3$  band, in the region (750 – 800  $cm^{-1}$ ), is done by the use of 19 parameters, including 6 relating to the basic level GS and 13 relative at level  $v_3$ , for Jmax = 95, with a EQM = 0,643.  $10^{-3} cm^{-1}$ . The computation of the infrared spectrum of the  $v_4$  band, in the region (400 – 450  $cm^{-1}$ ), requires the use of 14 parameters, of which 1 is relative to the basic level GS and 13 are relative at level  $v_4$ , for Jmax = 94, with a EQM = 0,295.  $10^{-3} cm^{-1}$ .

**Keywords:** <sup>80</sup>SeF<sub>6</sub>, high-resolution infrared spectra, octahedral tensorial formalism, rovibrational line position analysis, XTDS and SPVIEW.

ملخص. لقد اقترحنا تقديم دليل للطلاب لدراسة أطياف الأشعة تحت الحمراء للجزيئات الكروية. قدمنا نموذجًا نظريًا جديدًا لكتابة معامل هاميلتون الجزيئي في شكل موتر ، بناءً على فكرة التناظر الجزيئي. يتم حساب وتحليل هذه الأطياف باستخدام برنامجين XTDS و XTDS العريئي في شكل موتر ، بناءً على فكرة التناظر الجزيئي. يتم حساب وتحليل هذه الأطياف باستخدام برنامجين XTDS و XTDS. على سبيل المثال ، قمنا بحساب أطياف الأشعة تحت الحمراء لشريطين معزولين  $v_3$  و  $v_4$  للجزيء  $^{80}SeF_6$ . يتم إجراء التريطين معزولين  $v_3$  و  $v_4$  للجزيء  $^{80}SeF_6$ . يتم إجراء التحليل الكامل لطيف الأشعة تحت الحمراء لنشريطين معزولين معزولين  $v_3$  و  $v_4$  للجزيء  $^{80}SeF_6$ . يتم إجراء التحليل الكامل لطيف الأشعة تحت الحمراء لنطاق  $v_3$  ، في المنطقة ( $v_1$  ما 200 - 0.00 - 0.00) باستخدام 10 معامل هاميلتون ، بما في التحليل الكامل لطيف الأشعة تحت الحمراء لنطاق  $v_3$  و 13 معاملات عند المستوى  $v_3$  ، له 29 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0.00 - 0

ا**لكلمات المفتاحية**: <sup>80</sup>SeF<sub>6</sub> ، الطيف بالأشعة تحت الحمراء عالي الدقة ، شكلية ثماني السطوح ، تحليل خط الاهتزازات ، XTDS و SPVIEW.