REPUBLIQUEALGERIENNEDEMOCRATIQUEETPOPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHESCIENTIFIQUE

UNIVERSITE« Dr. TAHAR MOULAY »DE SAIDA

FACULTE DES SCIENCES

DEPARTEMENT DE PHYSIQUE

Présenté en vue de l'obtention du diplôme de

MASTER Spécialité : PHYSIQUE

Option : Rayonnements

Par

Bahlouli Ouarda

Sur le thème

Étude théorique par la méthode DFT des propriétés structurale, vibrationnelle, électronique et optique non linéaire de dérivés de quinoléine

Soutenu le :29/06/2020 devant le jury composé de :

Mr. Elkeurti Mohammed	Pr	Université Dr.Tahar Moulay de Saida	Président
M ^{me} . BENHALIMA Nadia	MCA	Université Dr.Tahar Moulay de Saida	Encadreur
M ^{elle} Ould Kada Mokhtaria	MCB	Université Dr.Tahar Moulay de Saida	Examinateur

Année Universitaire 2019 - 2020

DEDICACE

Grâce à mon Dieu «el Kadir» Je dédie ce travail à : Mes très chers parents pour leurs soutien, leur amour, leurs sacrifices... Aucune dédicace ne saurait exprimer mes sentiments d'amour et de respect envers vous. Que Dieu vous procure bonne santé et très longue vie. Mes très chers frères : Azzedine, Abed Essamed. Ma chère sœur : Karima. Mes belles sœurs : Fatna, Souad, Fouziya. Mes très chers Hanane, Rouka, zeyenb, Nafissa, Karima. Tous mes amises. A tous ceux qui m'aiment A tous ceux que j'aime Ie dédie ce travail

REMERCIEMENTS

Je remercie ALLAH le Tout-puissant de m'avoir donné le courage, la volonté et la patience de mener à terme ce présent travail.

Je tiens à remercier M^{me} BENHALIMA Nadia, Maître de conférences « A » à l'université Dr. Tahar Moulay de Saida qui a accepté de m'encadrer, et je lui exprime particulièrement toute ma reconnaissance pour m'avoir fait bénéficier de ses compétences scientifiques, ses qualités humaines et sa constante disponibilité. J'exprime mes sincères remerciements à Pr Elkeurti Mohammed, Professeur à l'université Dr. Tahar Moulay de Saida, d'avoir accepté de présider le Jury de ce mémoire. Je remercie sincèrement Dr Ould Kada Mokhtaria Maître de conférence « B » à l'université Dr. Tahar Moulay de Saida , qui nous on fait l'honneur de juger ce mémoire.

A tous ceux qui ont contribué de près ou de loin à la réalisation de ce travail.

Tables des matières

Introduction générale	01
Chapitre I Concepts théoriques	
I.1.Approche ab initio	04
I.1.1.Equation de Schrödinger	04
I.1.2.Approximation de Born-Oppenheimer	05
I.1.3.Approximation de Hartree	06
I.1.4.Approximation de Hartree-Fock	06
I.1.5.Equations de Hartree-Fock	07
I.2.Théorie de la fonctionnelle de la densité (DFT)	08
I.2.1. Densité Electronique	08
I.2.2. Théorèmes de Hohenberg et Kohn	09
I.2.2.a- Premier théorème de Hohenberg et Kohn	09
I.2.2. b- Deuxième théorème de Hohenberg-Kohn	09
I.2.3.Equation de Kohn et Sham	10
I.3. Approximations de la fonctionnelle d'échange – corrélation	11
I.3.1.Approximations de la densité locale (LDA)	11
I.3.2. Approximation du Gradient Généralisé (GGA)	12
I.4.Résolution des équations de Kohn-Sham	12
I.5.Fonctionnelles «hybrides »	14
I.6.Succès et limites de la DFT	14
Chapitre II Etude des propriétés Géométriques de dérivés quinoléine	
II.1.1.Historique et définition de la quinoléine	16
II.1.2. Dérivés de quinoléine	18
II.1.3.Applications des dérivés de quinoléine	19
II.1.3.1.Activité antibiotique	19
II.1.3.2.Activité anti-malarique	19
II.1.3.3.Activité antitumorale	19
II.1.3.4.Intérêt dans le domaine de l'agrochimie	20
II.1.3.5.Activité optique non linéaire	20
II.1.3.6.Autres activités	20
II.1.3.7.Sécurité	21
II.2.Description de la structure théorique	21
II.2. Etude des propriétés géométriques des dérivés de quinoléine	22
II.2.1.Conformation moléculaire calculée à partir de la DFT	22
II.2.2.Analyse des données géométrique	22
II.2.2.1.Longueurs des liaisons	23
II.2.2.2.Déformation des angles de valence	25
II.2.2.2.Déformation des angles dièdres	27

II.2.2.3.Interprétation des résultats	29	
Chapitre III Analyse vibrationnelle des Dérivés de Quinoléine		
III.1. Aspects théoriques de la spectroscopie de vibration dans l'infrarouge	31	
III.1.1.Spectroscopie infrarouge	31	
III.1.2.Principe de la spectroscopie IR	33	
III.2. Aspects théoriques	33	
III.2.1. Les modes de vibration interne	33	
III.2.2.Classification des modes de vibrations	34	
III.2.3.Fréquence de vibration	35	
III.2.4. Fréquence de vibration caractéristique	36	
III.2.5.Application de la spectroscopie de vibration dans l'infrarouge	37	
III.2.5.1.Analyse fonctionnelle	37	
III.3.Résultats et discussions		
III.3.1.Calcul analytique des spectres IR		
III.2.Etude vibrationnelles des dérives de Quinoléine		
Chapitre IV Etude des propriétés physico-chimie des dérivés de quinoléine		
IV.1. Propriétés électroniques moléculaires	60	
IV.1.1. Orbitales moléculaires frontières HOMO-LUMO	60	
IV.1.2. Energies des orbitales moléculaires HOMO-LUMO des dérivés de quinoléine		
IV.2 Propriétés optiques non linéaires	65	
IV.2.1 Propriétés optiques non linéaires des dérivés de quinoléine	66	
V. 3.Potentiel électrostatique	71	
Conclusion générale	73	
Bibliographies	74	

Liste de figures

Figure I.1 . Schéma de calcul self consistant de la fonctionnel de la densité			
Figure II.1. Quinoléine			
Figure II.2. Quelques exemples des dérivés de quinoléine d'origine végétale,	17		
microbienne et animale			
Figure II.3. Glycosmis	18		
Figure II.4. Numérotation des atomes des molécules CH3-QU, NH2-QU et SCH3-QU	22		
Figure II.5. Elongation entre deux atomes	23		
Figure II.6.Déformation des angles de valence	25		
Figure II.7.Déformation des angles dièdres	27		
Figure III.1. Domaines de l'IR dans le spectre électromagnétique	32		
Figure III.2. Vibration d'une molécule sous l'effet des radiations	33		
Figure III.3. Mouvements associés aux modes normaux de vibration d'une molécule	35		
contenant 3 atomes			
Figure III.4. Fréquence de vibration est proportionnelle a la constante de force k	36		
Figure III.5. Fréquence de vibration est inversement proportionnelle a la masse	36		
réduite µ			
Figure III.6. Fréquences caractéristiques en IR	37		
Figure III.7. Représentation de quelques modes de vibration et la Spectre I.R.			
théorique de CH3- QU obtenue par (B3LYP/6-31G (d,p))			
Figure III.8 Représentation de quelques modes de vibration et la Spectre I.R.			
théorique de CH3-QU obtenue par (B3PW91/6-31G (d,p))			
Figure III.9 Représentation de quelques modes de vibration et la Spectre I.R.	45		
théorique de QU-CH3 obtenue par (BPV86/6-31G (d,p)).			
Figure III.10 Représentation de quelques modes de vibration et la Spectre I.R.	49		
théorique de NH2-QU obtenue par (B3LYP/6-31G (d,p))			
Figure III.11 Représentation de quelques modes de vibration et la Spectre I.R.	50		
théorique de NH2-QU obtenue par (BPV86/6-31G (d,p))			
Figure III.12 Représentation de quelques modes de vibration et la Spectre I.R.	52		
théorique de NH2-QU obtenue par (B3PW91/6-31G (d,p))			
Figure III.13 Représentation de quelques modes de vibration et la Spectre I.R.	56		

théorique de SCH3-QU obtenue par (B3LYP/6-31G (d,p))		
Figure III.14 Représentation de quelques modes de vibration et la Spectre I.R.		
théorique de SCH3-QU obtenue par (BPV86/6-31G (d,p))		
Figure III.15 Représentation de quelques modes de vibration et la Spectre I.R.	59	
théorique de SCH3-QU obtenue par (B3PW91/6-31G (d,p))		
Figure IV.1 Diagramme énergétique des orbitales moléculaires frontières	60	
Figure IV.2 Orbitales moléculaires de CH3-QU	63	
Figure IV.3 Orbitales moléculaires de NH2-QU	63	
Figure IV.4 Orbitales moléculaires de SCH3-QU	64	
Figure IV.5 Variation du moment dipolaire de CH3-QU, NH2-QU et SCH3-QU	67	
obtenus au niveau B3LYP, B3PW91 et BPV86		
Figure IV.6 Variation du polarisabilités de CH3-QU, NH2-QU et SCH3-QU	68	
obtenus au niveau B3LYP, B3PW91 et BPV86		
Figure IV.7 Variation d' Hyperpolarisabilités de CH3-QU, NH2-QU et SCH3-QU	69	
obtenus au niveau B3LYP, B3PW91 et BPV86		
Figure V.8 Potentiel électrostatique théorique dans les dérivées de la molécule	71	
étudiée SCH3-QU, NH2-QU, CH3-QU(Couleur bleu : contour équipotentiel positif,		
Couleur rouge : contour équipotentiel négatif)		

Liste des tableaux

Tab. II.1 Valeurs des longueurs de liaisons (Å) obtenues par DFT de molécule de CH3-QU	23	
Tab. II.2 Valeurs des longueurs de liaisons (Å) obtenues par DFT de molécule de NH2-QU		
Tab. II.3 Valeurs des longueurs de liaisons(Å) obtenues par DFT de molécule de SCH3-QU	24	
Tab. II.4 Valeurs des angles de valence en (°) obtenus par DFT de molécule de CH3-QU	25	
Tab. II.5 Valeurs des angles de valence en (°) obtenus par DFT de molécule de NH2-QU	26	
Tab. II.6 Valeurs des angles de valence en (°) obtenus par DFT de molécule de SCH3-QU	26	
Tab. II.7 Valeurs des angles de torsion en (°) obtenus par DFT de molécule de CH3-QU	27	
Tab. II.8 Valeurs des angles de torsion en (°) obtenus par DFT de molécule de NH2-QU	28	
Tab. II.9 Valeurs des angles de torsion en (°) obtenus par DFT de molécule de SCH3-QU	29	
Tab. III.1 Degrés de liberté moléculaire	34	
Tab. III.2 Nombres d'onde (cm ⁻¹), intensités IR calculés aux niveaux B3PW91, BPV86 et	40	
B3LYP avec la base 6-31G (d,p) du (CH3-QU)		
Tab.III.3 Nombres d'onde (cm-1), intensités IR calculés aux niveaux B3PW91, BPV86 et	46	
B3LYP avec la base 6-31G (d,p) du (NH2-QU)		
Tab. III.4 Nombres d'onde (cm-1), intensités IR calculés aux niveaux B3PW91, BPV86 et	53	
B3LYP avec la base 6-31G (d,p) du(SCH3-QU)		
Tab. IV.1 Energie de gap (ΔE), potentiel d'ionisation (<i>I</i>), affinité électronique (<i>A</i>), potentiel	65	
chimique (μ), électronégativité (χ), la dureté (η), et l'indice d'électrophile (ω) des dérivés de		
quinoléine calculés par DFT au niveau 6-31G(d,p)		
Tab. IV.2 Moment dipolaire μ_{tot} (D) des dérives de Quinoléine calculés par DFT au niveau	67	
6-31G (d,p)		
Tab. IV.3 Polarisabilités $\alpha_{tot} \times 10^{-23}$ (esu) des dérives de Quinoléine calculés par DFT au	68	
niveau 6-31G (d,p)		
Tab.IV.4 Hyperpolarisabilités $\beta_{tot} \times 10^{-30}$ (esu) des dérives de Quinoléine calculés par DFT	70	
au niveau 6-31G (d,p)		

Introduction Générale De nos jours, l'avancement de la science repose essentiellement sur plusieurs activités de recherche. L'intérêt que présentent les molécules contenant des noyaux hétérocycliques, résulte du fait que ces molécules constituent le squelette de base, pour une grande variété de composés d'intérêts physique, chimique, biologique, pharmacologique et industriel. La quinoléine, également nommée leucoline, 1-azanaphthalène,1-benzazine, ou benzopyridine et appartenant à la famille des alcaloïdes, est un composé organique aromatique hétérocyclique de formule chimique C9H7N.

Les dérivés de la quinoléine ont été largement étudiés dans différents domaines de la chimie, y compris les industries chimiques et pharmaceutiques (vétérinaire et agrochimique ou thérapeutique). Ainsi ces dérivés ont été utilisés comme des substances antimalariques (¹) au début puis comme agents antibactériens (²), antibiotiques (³), anti-inflammatoires, anti-tumorales (⁴) antihépatites (⁵) et antifongiques (⁶). D'autres chercheurs ont trouvé leurs applications dans divers domaines comme: colorants (⁷), herbicides (⁸, ⁹). Ils sont également utilisés contre des microorganismes pathogènes, en particulier contre des microbes résistants et comme des inhibiteurs de corrosion (¹⁰).

En outre, ces composés ont une grande mobilité électronique qui un paramètre très important pour leurs applications dans le domaine de l'optoélectronique (¹¹, ¹²), diodes électroluminescentes organiques (OLED) et cellules photovoltaïques, ainsi que comme

¹G. Y. Lesher, F. Grutt, M.D. Bailer, J.H. Brumalage, J. R. Med. Chem., 1962, 5, 1063.

² N. L. Allinger, M. P. Cava, D. C. De Jongh, C. R. Johnson, N. A. Lebel, C. L. Stevens " Chimie Organique" ed. Mc Graw-Hill Tome3, 1983, 774.

³ W. Solomon, V. N. Ronihold, Ed. S. W. Pelletie "The Chemistry of Alkaloïdes" New York, 1970, 301.

⁴ D. Barton, D. Ollis, Comprehensive organic Chemistry, the synthesis and reactions of organic compound, ed. Lst, 1e ed., 1979, Vol IV, 160.

⁵ D. Kaminsh, R. Murayama, R. I. J. Med. Chem, 1968, 11, 160.

⁶ O. Meth-Cohn, Heterocycles, 1993, 35, 539.

⁷ R. A. Katrizky, W. C. Rees, E.F.V. Scriven " Comprehensive Heterocycle.Chemistry " 1e ed., 1994, Vol V, 294.

⁸ G. D. Claylon, F. E. Clayton, "Patty's Industrial Hygiene and Toxicology, Part Toxicology" Vol II, 4e éd. John, Wiley & Sons, New York, 1994, 3394.

 ⁹ C. R. Worthing, "The pesticide manual" 8e éd., British Crop Protection council, BCPC, U.K, 1987, 405.
 ¹⁰ Yassir Filali Baba, Youssef Kandri Rodi, Nada Kheira Sebbar, Sonia Hayani, Khalid Misbahi, Fouad

¹⁰ Yassir Filali Baba, Youssef Kandri Rodi, Nada Kheira Sebbar, Sonia Hayani, Khalid Misbahi, Fouad Ouazzani Chahdi, El Mokhtar Essassi, J.MAR.CHIM.HETEROCYCL., 2018, 17(1), 83.

¹¹ Chen, C. H. & Shi, J. M. Coord. Chem. Rev. 171, 161–174, (1998).

¹² Kulkarni, A. P., Tonzola, J., Babel, A. & Jenekhe, S. A. Chem. Mater. 16, 4556–4573, (2004).

solvants pour les terpènes et les résines (¹³). Des recherches sur ce type de composés ont montrés qu'ils peuvent avoir des applications dans le domaine de l'optique non linéaire(¹⁴).

La compréhension des propriétés physico-chimiques d'un matériau nécessite la connaissance fondamentale de sa structure, sa stabilité de phases et de ses diverses propriétés structurales, électroniques, optique. Les techniques de calcul de la structure électronique mises au point au cours des dernières décennies sont nombreuses, et en particulier, les méthodes ab-initio qui sont devenues aujourd'hui un outil de base pour le calcul des propriétés électroniques et structurales des systèmes les plus complexes. Dans certains cas, les techniques de simulation ont pu remplacer l'expérience, parfois coûteuse, dangereuse où même inaccessible au laboratoire.

Dans le cadre de ce mémoire, nous nous intéresserons à l'optimisation de la structure de dérivés de quinoléine et l'obtention des propriétés moléculaires par calcul théorique. En outre, la modélisation moléculaire sera utilisée, dans cette étude, dans le but d'établir la relation entre les propriétés structurales et les propriétés optiques non linéaires de ces dérivés. L'intérêt de notre travail est voir avec quelle précision on pouvait comparer les résultats d'optimisation de la géométrie moléculaire obtenue à partir des calculs théoriques (DFT) avec celles obtenues par la cristallographie pour ces molécules. Pour compléter cette analyse structurale nous avons également fait appel à la spectroscopie Infra Rouge pour identifier les différents modes de vibrations des liaisons présentes dans ces molécules. Les techniques spectroscopiques, les calculs théoriques ont permis de mieux déterminer la structure cristalline.

Notre travail s'articule en quatre chapitres avec une introduction et une conclusion générale.

On entame le 1^{er} chapitre par un aperçu théorique sur le problème et les différentes approximations utilisées dans le but de simplifier son traitement. La théorie de la fonctionnelle de la densité (DFT) sera dans ce cadre décrite et développée. Nous présenterons le cadre théorique dans lequel sera effectué ce travail. Il s'agit de mettre en évidence les principes qui sous-tendent un calcul ab- initio, fondé sur la DFT, ainsi que d'introduire les

¹³ Barış Seçkin Arslan, Seda Nur Ülüş, Merve Gezgin, Burcu Arkan, Emre Güzel, Davut Avcı, Mehmet Nebioğlu Ilkay Şişman, Optical Materials, 106, 2020, 109974

¹⁴ Muhammad Khalid, Muhammad Adeel, Malik Aman Ullah, Muhammad Usman Khan, Muhammad Nawaz Tahir, Ataualpa Albert Carmo Braga, Journal of Saudi Chemical Society, 23 (5), 2019, Pages 546-560

méthodes de résolution qui ont été proposées, en particulier les équations de Kohn et Sham et les approximations utilisées pour traiter la partie d'échange et corrélation.

Dans le second chapitre, on évoquera des généralités sur les dérivées de quinoléine, qui sont les éléments clés de notre étude. Nous avons effectué des calculs d'optimisation de géométrie de CH3-QU (8-Hydroxy-2-methylquinoline), NH2-QU (8-Hydroxy-2aminoquinoline), SCH3-QU (8-Hydroxy-2-(methylsulfanyl)quinoline).

Ces calculs sont de différents degré de précision, en utilisant le programme Gaussian09 basés sur la théorie de la fonctionnelle de la densité (DFT) aux niveaux des fonctionnelles B3PW91,BPV86et B3LYP avec la base 6-31G(d,p) généralement bien adaptées pour les molécules organiques pouvant conduire à des prédictions très précises pour l'optimisation géométrique des angles et des longueurs des liaisons.

Quelques notions théoriques sur la spectroscopie IR l'objet de la première partie de troisième chapitre, dans la deuxième partie nous présentons les différentes modes de vibrations obtenues par la méthode DFT.

Le $4^{\acute{eme}}$ et dernier chapitre est consacré à la présentation et à l'interprétation des résultats de la simulation des propriétés électroniques et optique non linéaire des dérivées de quinoléine obtenus par calcul théorique tels que L'énergies HOMO – LUMO, le gap énergétique, moment dipolaire, polarisabilité et l'hyperpolarisabilité ont été calculés en utilisant la méthode de la DFT L'ensemble de ces propriétés permettra de mettre en évidence le transfert de charge au sein de ces dérivés, On conclura ce modeste travail par une conclusion générale.

Concepts théoriques

I.1.Approche ab initio

I.1.1.Equation de Schrödinger

Le premier postulat de la mécanique quantique stipule que l'état et toutes les propriétés observables d'un système quantique; atome, molécule, ensembles de molécules, macromolécules ou solides sont en principe déterminés par sa fonction d'onde Ψ , En général cette fonction d'onde d épand de l'espace et du temps, $\psi(\mathbf{r}, t)$. Le physicien autrichien E. Schrödinger posé l'équation qui donne l'évolution de $\psi(\mathbf{r}, t)$, connue sous le nom d'équation de Schrödinger dépendante du temps :

$$i\hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t) = \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] \psi(\mathbf{r}, t)$$
(1.1)

où :

- $\hbar = \frac{h}{2\pi} = 1.05475 \cdot 10^{-34} J.s,$
- ∇^2 est le laplacien,
- **m** la masse de la particule,
- *V*(*r*) l'énergie potentielle de la particule au point r.

Dans le cas stationnaire, l'expression de la fonction d'onde devient indépendante du temps, et l'équation se simplifie en :

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + \mathbf{V}(\mathbf{r})\right]\boldsymbol{\psi}(\boldsymbol{r}) = E\boldsymbol{\psi}(\boldsymbol{r})$$
(1.2)

où E est l'énergie de la particule.

La mécanique quantique s'appuie sur une approche mathématique rigoureuse basée sur L'équation de Schrödinger (¹⁵) :

$$\mathbf{H}(\boldsymbol{\psi}) = \mathbf{E}(\boldsymbol{\psi}) \tag{1.3}$$

Où Ψ est la fonction d'onde du système, fonction des coordonnées des noyaux, des électrons et contient toute information du système.

E : l'énergie totale du système.

H : est l'opérateur hamiltonien contient tous les termes énergétiques du système.

¹⁵ E. Schrödinger, Ann.physik, 79, 361, 1926.

Cette équation ne peut pas se résoudre pour des systèmes moléculaires, y compris les plus simples, et approximations sont adaptées.

La première approximation en chimie quantique est de considérer l'équation de Schrödinger non relativiste indépendante du temps, et pour un système de «**N**» noyaux et «**n**» électrons. L'hamiltonien s'écrit en unités atomiques.

$$\mathbf{H} = \underbrace{-\frac{1}{2}\sum_{i=1}^{n} \nabla i_{i}^{2}}_{T_{e}} \underbrace{-\frac{1}{2}\sum_{I=1}^{N} \frac{\nabla i_{i}^{2}}{M_{I}}}_{T_{N}} \underbrace{\sum_{I=1}^{N} \sum_{i=1}^{n} \frac{Z_{I}}{R_{II}}}_{V_{e-N}} + \underbrace{\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{1}{r_{II}}}_{V_{e-e}} + \underbrace{\sum_{I=1}^{N-1} \sum_{J=I+1}^{N} \frac{Z_{I}Z_{J}}{R_{IJ}}}_{V_{N-N}} (1.4)$$

- * T_e : Energie cinétique des électrons.
- ↔ T_N : Energie cinétique des noyaux.
- ♦ V_{e-N} : Energie d'attraction des électrons par les noyaux.
- V_{N-N} : Energie de répulsion entre les noyaux.

Avec :

- * M_I : La masse du noyau.
- **Z**: Le nombre atomique.
- ♦ ∇ : L'opérateur de Laplace.

La résolution exacte de cette équation conduit à des calculs encore inenvisageables, a cause des interactions entre les électrons, qu'elle ne peut être résolue exactement que dans rares cas par exemples l'atome d'hydrogène, et les ions hydrogènoïdes. Cette complexité oblige à chercher des approximations de Born- Oppenheimer.

I.1.2. Approximation de Born-Oppenheimer

En 1927, Max Born et Robert Oppenheimer ont proposé de simplifier la résolution de l'équation de Schrödinger, elle permet de soulager la lourdeur de la tâche qu'est le calcul des niveaux d'énergie et des fonctions d'onde d'une molécule. Elle stipule que l'on peut découpler le mouvement des électrons de celui des noyaux, puis que les électrons se déplacent beaucoup plus rapidement que les noyaux, ceci étant dû à la masse beaucoup plus faible des électrons (environ 1836 fois moindre que celle du proton).

Approximation de Born-Oppenheimer consiste à fixer la position des noyaux et a considérer que les électrons sont déplacent dans un champ de noyau constant par conséquent la fonction d'onde totale $\boldsymbol{\psi}$ se partage en deux fonction : une fonction d'onde décrivant les

noyaux ψ **R**(**r**), et une d'autre fonction d'onde décrivant les électrons et qui ne dépend que de manière paramétrique des positions ioniques ψ **R**(**r**).

$$\psi_R(R,r) = \Phi(R)\psi_R(r) \tag{1.5}$$

Le nouvel Hamiltonien issu de cette approximation s'écrit :

$$H_{tot} = H_e + V_{N-N} \tag{1.6}$$

$$H_e = T_e + V_{N-e} + V_{e-e} \tag{1.7}$$

Tel que H_e est l'hamiltonien électronique, on peut négliger leurs mouvements par rapport à ceux des électrons et on ne prend en compte que ceux des électrons dans le réseau rigide périodique des potentiels nucléaires. On néglige ainsi l'énergie cinétique T_N des noyaux, l'énergie potentielle noyaux-noyaux V_{N-N} devient une constante qu'on peut choisir comme la nouvelle origine des énergies. Le terme d'énergie total devient :

$$E_{sys} = E_{ele} + V_{N-N} \tag{1.8}$$

L'énergie électronique rassemble les contributions des énergies cinétiques T_e , énergies potentielles dues à l'interaction inter-électrons E_{e-e} , et celles dues à l'interaction électronnoyau E_{e-N}

I.1.3. Approximation de Hartree

L'approximation orbitélaire, introduite par Hartree en 1928 consiste a exprimer la fonction d'onde ψ , solution de l'équation de Schrodinger limitée a l'hamiltonien électronique H d'écrit plus haut, par un produit de fonctions dépendantes chacune des coordonnées d'un seul électron:

$$\psi(1, 2, \dots, n) = \psi_1(1)\psi_2(2)\dots\psi_n(n)$$
(1.9)

Les fonctions mono électroniques ψ_i sont appelées orbitales.

Malheureusement, cette fonction d'onde ψ ne satisfait pas au principe de Pauli qui stipule que la fonction d'onde décrivant un système multiélectronique doit changer de signe lors de la permutation des coordonnées de deux électrons quelconques.

I.1.4. Approximation de Hartree-Fock

Hartree et Fock ont généralisé le concept en montrant que le principe d'exclusion de Pauli est respecté si on écrit la fonction d'onde sous la forme de déterminant de Slater :

$$\psi = \frac{1}{\sqrt{n!}} \begin{vmatrix} \chi_1(1) & \chi_2(1) & \chi_n(1) \\ \chi_1(2) & \chi_2(2) & \chi_2(2) \\ \dots & \dots & \dots \\ \chi_1(i) & \chi_2(i) & \chi_n(i) \\ \dots & \dots & \dots \\ \chi_1(n) & \chi_2(n) & \chi_n(n) \end{vmatrix}$$
(1.10)

Ou χ_i est un spin orbitale, produit d'une orbitale d'espace ψ_i par sa fonction de spin associée $\eta_i (\chi_i = \psi_i. \eta_i \text{ avec } \eta_i = \alpha \text{ ou } \beta).$

Le problème consiste dès lors à rechercher les spin-orbitales qui conduisent à l'énergie la plus basse possible pour le système, ce but est atteint en utilisant la méthode auto-cohérente de Hartree-Fock .

I.1.5.Equations de Hartree-Fock

On recherche la fonction d'onde multiélectronique à **n** électrons écrite sous la forme d'un déterminant de Slater construit a partir de n spin orbitales: $\boldsymbol{\psi} = |\boldsymbol{\chi}_1 \dots \boldsymbol{\chi}_n|$ L'énergie, à l'état fondamental, d'un système moléculaire peut alors s'écrire:

$$\mathbf{E} = \langle \boldsymbol{\psi} | \boldsymbol{H} | \boldsymbol{\psi} \rangle \tag{1.11}$$

L'énergie, a l'état fondamental, d'un système moléculaire peut alors s'écrire :

$$E = \langle \chi_1 \dots \chi_n | H | \chi_1 \dots \chi_n \rangle$$
 (1.12)

$$E = \left\langle |\chi_1 \dots \chi_n| \left| -\frac{1}{2} \sum_i \Delta_i - \sum_i \sum_K \frac{Z_K}{r_{iK}} + \sum_i \sum_{j < i} \frac{1}{r_{ij}} \left| |\chi_1 \dots \chi_n| \right\rangle \right\rangle$$
(1.13)

En appliquant le principe variationnel (¹⁶), la meilleure fonction d'onde ψ décrivant le système doit être celle qui correspond à un minimum E_0 de l'énergie. L'écriture de cette condition d'extremum de l'énergie par rapport à chaque spin orbitale conduit à un ensemble d'équations appelées équations de Hartree-Fock:

$$\forall_i \quad \frac{\partial E}{\partial \chi_i} = \mathbf{0} \iff \forall_i \quad \mathbf{F}(1)\chi_i(1) = \mathbf{e}_i\chi_i(1) \tag{1.14}$$

Inversement, ces équations de Hartree-Fock définissent un ensemble de fonctions parmi les quelles se trouvent des spin orbitales permettant de construire un déterminant de Slater qui approche le mieux la fonction d'onde multiélectronique du système étudiée. Ces équations définissent un opérateur F mono électronique, appelée hamiltonien de Hartree-Fock, qui vérifiée la relation:

$$F(1) = H^{c}(1) + \sum_{i} [J_{i}(1) - K_{i}(1)]$$
(1.15)

Ou

 $H^{c}(1)$ est l'hamiltonien de coeur relatif a un electron ;

¹⁶ Méthode Hartree-Fock Gerald Monard Modélisation Moléculaire -<u>www.monard.info</u>

• *J_i*(1)est un opérateure coulombien défini par:

$$j_i(1) = \int_{(2)} \chi_i^*(2) \frac{1}{r_{12}} \chi_i(2) d\tau_2$$
 (1.16)

• et $K_i(1)$ est un opérateur d'échange défini par son action sur une fonction $\chi_j(2)$:

$$K_i(1)\chi_j(2) = \chi_i(1) \int_{(2)} \chi_i(2)^* \frac{1}{r_{12}}\chi_j(2) d\tau_2$$
 (1.17)

On a alors :

$$E = \sum_{K} e_{K} - \sum_{I>K} [\langle \chi_{K} | J_{I} | \chi_{K} \rangle - \langle \chi_{K} | K_{I} | \chi_{K} \rangle]$$
(1.18)

I.2. Théorie de la fonctionnelle de la densité (DFT)

La DFT est une méthode quantique fondée sur des principes de la physique quantique. C'est une méthode récente, bien connue en chimie quantique et en physique du solide. Le but de la DFT est de déterminer les grandeurs physiques et quantiques d'un système donné (solide, molécule....), afin de définir sa structure électronique, son énergie d'ionisation, son gap.....etc. A l'inverse de l'approximation de Hartree-Fock, la DFT présente l'énergie comme une fonctionnelle de la densité électronique ρ L'équation de Schrödinger est ainsi simplifiée par la DFT. Le fondement de cette théorie consiste à réécrire un problème d'ordre quantique à N particules en un problème mono-particule avec ρ comme seule variable. Avant d'aborder les fondements de la Théorie de la Fonctionnelle de la Densité, il parait essentiel de définir la quantité centrale de cette théorie : la densité électronique (ρ).

I.2.1. Densité électronique

La densité électronique $\rho(\mathbf{r})$ est une fonction positive dépendant uniquement des 3 coordonnées (x, y, z) de l'espace. Cette quantité s'annule à l'infini et vaut N (nombre total d'électrons) lorsqu'elle est intégrée sur tout l'espace.

$$\begin{cases} \rho(r \to \infty) = 0\\ \int \rho(r) dr = N \end{cases}$$
(1.19)

 ρ (*r*) représente donc, par définition, la probabilité de trouver un électron dans un volume unitaire $d\tau$ défini par *r*. Elle est déterminée par la fonction d'onde à N électrons qui dépend, elle même, de 4N variables (3N spatiales et N coordonnées de spin) :

$$\rho(r) = N \sum_{S1} \dots \sum_{SN} \int dr_2 \dots \int |\psi(r_1, s_1, r_2, s_2, \dots, r_N, s_N)|^2 dr_N = \langle \psi | \rho^r | \psi \rangle \quad (1.20)$$

Dans les théories de HF et DFT, la fonction d'onde est typiquement représentée par un déterminant de Slater unique construit à partir des N orbitales ϕ_k avec les occupations correspondantes n_K , la densité se simplifie alors comme suit :

$$\rho(r) = \sum_{k=1}^{N} n_k |\varphi_k(r)|^2$$
 (1.21)

I.2.2. Théorèmes de Hohenberg et Kohn

Le principe de la DFT est fondé sur les deux théorèmes de Hohenberg et Kohn (^{17,18,19}). Après avoir corrigé la théorie de la DFT proposée par Fermi et Thomas (²⁰), ils énoncent dans leur article publié en **1964** ces 2 théorèmes :

I.2.2.1.Premier théorème de Hohenberg et Kohn

Pour tout système de particules en interaction dans un potentiel externe V_{ext} (**r**), le potentiel V_{ext} (**r**) est uniquement déterminé, à une constante additive près, par la densité de la n_0 (**r**) de la particule dans son état fondamental. Le schéma ci-dessous illustre l'apport que fournit le premier théorème de Hohenberg et Khom.

$$V_{ext}(r) \leftarrow n_0(r)$$

$$\downarrow \qquad \uparrow$$

$$\psi_i(r) \rightarrow \psi_0(r)$$

D'après ce schéma, on conclut que : on peut déterminer les différents états électroniques, l'état fondamental et la densité lui correspondant, ce qui signifie que toutes les propriétés du système peuvent être complètement déterminées.

I.2.2.1.Deuxième théorème de Hohenberg-Kohn

Il existe une fonctionnelle universelle $E[\rho(\mathbf{r})]$ exprimant l'énergie en fonction de la densité électronique $\rho(\mathbf{r})$, valide pour tout potentiel externe $V_{ext}(\mathbf{r})$. Pour chaque $V_{ext}(\mathbf{r})$ particulier, l'énergie de l'état fondamental du système est la valeur qui minimise cette fonctionnelle, la densité $\rho(\mathbf{r})$ qui lui est associée correspond à la densité exacte $\rho_0(\mathbf{r})$ de l'état fondamental.

$$\boldsymbol{E} = \boldsymbol{E}[\boldsymbol{\rho}] \tag{1.22}$$

¹⁷ P.Hohenberg and W.Kohn, Inhomogeneous Electron Gas, phys. Rev. 136, B864, 1964

¹⁸ Simone Raoux, Matthias wuttig, Phase Change Materials Science and Applications. P18 20, 22. Spinger Science+Business Media, LLC, 2009.

¹⁹ Soumia Lardjane, Etude des propriétés structurales, électroniques et magnétiques du semi-conducteur magnétique dilué : ZnO dopé0 au Cobalt, Université Abou Bekr Belkaid de Tlemcen, 2013.

²⁰ W. Kohn, L. J. Sham, Self-Consistant Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133, 1965.

Ils ont démontré que la véritable densité de l'état fondamental est celle qui minimise $E[\rho]$ et que les autres propriétés de l'état fondamental sont aussi des fonctions de cette densité électronique de l'état fondamental. Les deux théorèmes exposés par Hohenberg-Kohn permettent de reformuler le problème de la résolution de l'équation de Schrödinger multiélectronique. Cependant, afin de fournir les fondements nécessaires pour pouvoir exploiter de façon effective ces deux théorèmes, nous avons recours à des approximations qui correspondent aux équations de Kohn-Sham.

I-2-3-Equation de Kohn et Sham

L'idée de Walter Kohn et Lu Sham (²¹) en **1965** est de ramener le système de N_e électrons interagissant à un système fictif de N_e électrons indépendants de même densité électronique. L'intérêt vient du fait que les expressions de l'énergie cinétique et de l'énergie potentiel pour ce système fictif sont connues. On passe ainsi d'un problème avec une fonction d'onde $\psi(r)$ à *Ne* électrons à un problème à N_e fonctions d'ondes mono-électroniques $\phi(r)$ appelles états de Kohn Sham. On note $T_{ind} [\rho]$ l'énergie cinétique du système de N_e électrons indépendants et $V_{ind} [\rho]$ l'énergie potentielle classique qui est le terme de Hartree :

$$V_{ind} = \frac{1}{2} \int \frac{\rho(r)\rho(r')}{|r-r'|} dr dr'$$
(1.23)

L'énergie du système devient donc :

$$\mathbf{E}[\boldsymbol{\rho}] = T_{ind}[\boldsymbol{\rho}] + V_{ind}[\boldsymbol{\rho}] + E_{xc}[\boldsymbol{\rho}] + \int V_{e-n}(\mathbf{r})\boldsymbol{\rho}(r)dr$$
(1.24)

Et :

$$F_{HF} = T_{ind}[\rho] + V_{ind}[\rho] + E_{xc}[\rho]$$
(1.25)

Avec $E_{xc}[\rho]$ est la fonctionnelle d'énergie d'échange et de corrélation, qui regroupe tout ce qui n'est pas connu dans le système, à savoir les effets de corrélations dues à la nature quantique des électrons. Ce terme contient tous les effets multiélectroniques.

$$E_{xc}[\rho] = T[\rho] - T_{ind}[\rho] + V[\rho] - V_{ind}[\rho]$$
(1.26)

En définissant cette nouvelle fonctionnelle, l'idée de Kohn et Sham est d'extraire le maximum d'information sur les termes cinétique et potentiel, de ramener tout ce qu'il y a d'inconnu dans une seule contribution que l'on pourra approximer et ainsi minimiser l'erreur sur l'énergie totale. En minimisant (I-12) on obtient l'équation d'Euler :

$$\int \left[\frac{\delta T_{ind}[\rho]}{\delta \rho(r)} + \int \frac{\rho(r')dr'}{|r-r'|} + V_{e-n}(r) + \frac{\delta E_{xc}}{\delta p(r)}\right] \delta \rho(r) = 0$$
(1.27)

²¹ W. Kohn, L. Sham, Phys. Rev., A1133 (1965)140.

Avec le nombre de particules constant, on a :

$$\int \delta \rho(r) dr = 0 \tag{1.28}$$

Le terme entre parenthèses de l'équation (I-15) est donc constant. On peut alors définir un potentiel effectif dans lequel baignent les électrons, c'est la première équation de Kohn-Sham :

$$V_{eff}[\rho(r)] = V_{e-n}(r) + V_{Hartree}(r) + V_{xc}[\rho(r)]$$
(1.29)

Avec le potentiel de Hartree ;

$$\mathbf{V}_{\text{Hartree}}(\mathbf{r}) = \int \frac{\rho(r')dr'}{|r-r'|} d\mathbf{r}'$$
(1.30)

Et le potentiel d'échange et corrélation défini par :

$$V_{xc} = \frac{\delta E_{xc}[\rho]}{\delta \rho(r)} \tag{1.31}$$

Avec (I-15) et (I-17) vient la seconde équation de Kohn-Sham qui est le système des N_e équations de Schrödinger mono-électroniques qui permet de trouver les Ne états Kohn Sham $\Phi i(r)$:

$$\left[-\frac{\hbar}{2m_e}\vec{\nabla}^2 + V_{eff}(\vec{r})\right]\Phi_i(\mathbf{r}) = \varepsilon_i\Phi_i(\mathbf{r}) \quad , i = 1, \dots, N$$
(1.32)

Avec ε i les énergies Kohn Sham. Munis de ces états, il ne reste plus qu'à définir la densité électronique du système. C'est la troisième équation de Kohn Sham :

$$\boldsymbol{\rho}(\boldsymbol{r}) = \sum_{i=1}^{Ne} |\boldsymbol{\Phi}_{i}(\boldsymbol{r})|^{2}$$
(1.33)

Tous les calculs de type DFT sont basées sur la résolution itérative de ces trois équations. Notons que pour la DFT, seules l'énergie totale, l'énergie de Fermi et la densité électronique ont un sens physique. Les états et les énergies de Kohn Sham ne sont que des intermédiaires de calcul. Néanmoins ils sont utilisés dans de nombreux travaux scientifiques, pour calculer certaines grandeurs comme les structures de bandes. Dans de nombreux cas, pour les systèmes ou les électrons sont peu corrélés, les états Kohn Sham représentent une bonne approximation de la fonction d'onde ψ_e de N_e électrons du système.

1.3. Approximations de la fonctionnelle d'échange – corrélation

1.3. 1. Approximations de la densité locale (LDA)

En 1965, Kohn et Sham (²²) proposaient cette approximation. Elle est basée sur le fait que, dans le cas d'un gaz d'électrons homogène, l'énergie d'échange et de corrélation exacte par

²² W. Kohn and L. J. Sham, Phys. Rev. 140, A1133, (1965).

particule peut être déterminée à l'aide de calculs Monte-Carlo quantique et variationnels (²³) c'est une approximation assez radicale, car elle consiste à utiliser directement ce résultat en tant que densité d'énergie dans le cas général, ce qui revient à négliger les effets des variations de la densité. En d'autre terme, elle repose sur l'hypothèse que les termes d'échange-corrélation ne dépendent que de la valeur locale de $\rho(r)$. L'énergie d'échange et de corrélation s'exprime comme suit:

$$E_{xc}^{LDA}[\rho(r)] = \int \rho(r) \varepsilon_{xc}^{hom}(\rho(r)) d^3r$$
(1.34)

Où $\varepsilon_{xc}^{hom}(\rho(r))$ est l'énergie d'échange-corrélation par particule d'un gaz d'électrons homogène, qui a été paramétrisée pour différentes valeurs de la densité électronique, comme par exemple ceux de Vosko, Wilk et Nusair (²⁴) ou encore de Perdew et Zunger (²⁵). Toutes ces fonctionnelles conduisent généralement à des résultats très similaires.

1.3.2. Approximation du Gradient Généralisé (GGA)

Pour aller au-delà de la LDA, on peut considérer un terme d'échange et de corrélation prenant en compte le gradient de la densité en r, c'est ce qu'on appelle l'approximation du gradient généralisé (GGA). La fonctionnelle d'échange et de corrélation s'exprime alors à partir d'une fonction f qui dépend de la densité en r, et du gradient de la densité en r:

$$E_{xc}^{GGA}[\rho(r)] = \int (f\rho(r), [\nabla\rho(r)]) d^3r \qquad (1.35)$$

Comme pour la LDA, en GGA f doit être paramétrée sous forme analytique afin de faciliter les calculs et de même qu'il existe différentes formes de ε_{xc}^{hom} en LDA, il existe différentes paramétrisations de la fonction f en GGA (²⁶,²⁷)

1.4 .Résolution des équations de Kohn-Sham

La résolution des équations de Kohn-Sham (I.23) nécessite le choix d'une base pour les fonctions d'onde que l'on peut prendre comme une combinaison linéaire d'orbitales appelées orbitales de Kohn-Sham écrites sous fourme:

$$\psi_j(\vec{r}) = \sum c_{j\alpha} \varphi_\alpha \tag{1.36}$$

Où: $\varphi_{\alpha}(\vec{r})$ les sont les fonctions de base et les $c_{j\alpha}$ sont les fonctions de l'expansion.

Puisque l'énergie totale est variationelle dans la DFT, la solution auto-cohérente des équations de KS revient à déterminer les $c_{j\alpha}$ pour les orbitales occupées qui minimisent l'énergie totale.

²³ D. M. Ceperly, B. J. Alder, Phys. Rev. Lett 45, 566 (1980).

²⁴ S. J. Vcsko, L. Wilk and M. Nusair, Can. J. Phys 58, 1200 (1980)

²⁵ J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)

²⁶ J. P. Perdew, K. Burke and M. Ernzerhof, Phys Rev lett,77.3865(1996)

²⁷ J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)

La résolution des équations de *KS* pour les points de symétrie dans la première zone de *Brillouin* permet de simplifier les calculs. Cette résolution se fait d'une manière itérative en utilisant un cycle d'itération auto-cohérent illustré par l'organigramme de la figure (I.1). On commence par injecter la densité de charge initiale pour diagonaliser l'équation séculaire:

$$(\mathbf{H} - \boldsymbol{\varepsilon}_j \boldsymbol{s}) \boldsymbol{c}_j = \mathbf{0} \tag{1.37}$$

Avec : H représente la matrice hamiltonienne et S la matrice de recouvrement.

Ensuite, la nouvelle densité de charge ρ_{out} est construite avec les vecteurs propres de cette équation séculaire en utilisant la densité de charge totale qui peut être obtenue par une sommation sur toutes les orbitales occupées. Si les calculs ne concordent pas, on mélange les deux densités ρ_{in} et ρ_{out} de la manière suivante:

$$\rho_{in}^{j+1} = (1 - \alpha)\rho_{in}^{j} + \alpha_{out}^{j}$$
(1.38)

j représente la $j^{\acute{e}me}$ itération et α un paramètre de mixage. Ainsi la procédure itérative peut être poursuivie jusqu'à ce que la convergence soit réalisée.

Figure I.1 : schéma de calcul self consistant de la fonctionnel de la densité

1-5-Fonctionnelles «hybrides »

La troisième génération de fonctionnelles est celle des fonctionnelles « hybrides », basées sur le formalisme de la connexion adiabatique (²⁸). Il s'agit d'utiliser tout ou une partie de l'échange Hartree-Fock dans le formalisme Kohn-Sham. La formule de la connexion adiabatique justifie théoriquement la détermination de l'énergie d'échange HF à partir de l'énergie des orbitales Kohn-Sham. L'utilisation de la partie d'échange HF associée aux fonctionnelles GGA fournit des résultats comparables à ceux de l'approximation des gradients généralisés. La première fonctionnelle de ce type a été proposée par Becke, et contient 50% d'échange HF; c'est la fonctionnelles « half and half» (²⁹). La fonctionnelle hybride actuellement la plus utilisée est celle sous l'acronyme B3LYP (³⁰) .Pour la partie échange, elle contient les fonctionnelles d'échange locale, d'échange de Becke et d'échange HF .Pour la partie corrélation elle utilise les fonctionnelles de corrélation locale (VWN) et corrigée du gradient de Lee, Yang et Parr :

$$E_{xc}^{B3LYP} = E_{xc}^{LSDA} + a_0(E_{xc}^{HF} - \varepsilon_{xc}^D) + a_x(E_x^{B88} - \varepsilon_x^D) + a_c(E_c^{LYP} - E_c^{VWN})$$
(1.39)

où E_x^{B88} est la fonctionnelle d'échange, aussi de type gradient corrigé de Becke. Les valeurs suivantes pour les trois paramètres $a_0 = 0.20$, $a_x = 0.72$, et $a_c = 0.81$ ont été déterminées par optimisation des énergies d'atomisation, énergies d'ionisation, affinités électroniques ou protoniques d'un ensemble de molécules tests. Ces paramètres peuvent également être considérés comme des paramètres variationnels.

Enfin, de nouveaux travaux sont entrepris afin de développer des nouvelles fonctionnelles ab initio sans paramètres, citons la fonctionnelle élaborée par Perdew, Burke et Ernzerhof (PBE) (³¹), qui s'est montrée très efficace pour les calculs de géométries, de fréquences et d'énergies d'excitation électronique.

I.6.Succès et limites de la DFT

Récompensée par un prix Nobel attribué à Walter Kohn en **1998**, la théorie de la fonctionnelle de la densité (DFT) est une méthode de chimie quantique qui connaît un essor spectaculaire depuis une vingtaine d'années. En **2012**, elle a été l'objet de plus de 10 000 publications, dont une part importante concerne des applications en lien avec les expérimentateurs dans des

²⁸ Hrris, J.; Jones, R. O.; *Phys. F : Met. Phys.*; 1974; 4; 1170

²⁹ Becke, A. D.; J. Chem. Phys.; 1993; 98; 1372

³⁰ Becke, A. D.; J. Chem. Phys.; 1993; 98; 5648.

³¹ Perdew, J. P.; Burke, K.; Ernzerhof, M.; Phys. Rev. Lett. ; 1996; 77; 3865.

Concepts théoriques

domaines de recherche très variés.et Les nombreux travaux effectués ses dernières années montrent que les calculs DFT donnent de bons résultats sur des systèmes très divers (métalliques, ioniques, organo-métalliques, métaux de transition ...) pour de nombreuses propriétés (les structures moléculaires, les fréquences de vibration, les potentiels d'ionisation,...)

CHAPITRE II

ETUDE DES PROPRIETES GEOMETRIQUES DE DERIVES DE QUINOLEINE

II.1.1.Historique et définition de la quinoléine

Les quinoléines sont des composés hétérocycliques représentés par deux cycles benzéniques avec un seul cycle benzénique qui comporte un hétéroatome (azote), pouvant être considérés comme étant construits à partir d'un système d'anneau qui comporte un anneau de benzène et un anneau de pyridine fondus par un lien de carbone-carbone. Ces hétérocycles existent aussi bien à l'état naturel qu'en produit de synthèse largement utilisé comme composé biologiquement actif (³²),la structure chimique a été connue en **1908** et la synthèse totale réalisée en **1944**.

Figure II.1. Quinoléine

En **1820**, P. Pellier et J. Caventou ont découvert la quinine qui est le principal alcaloïde extrait de l'écorce de Cinquina, (Arbuste du Pérou). Depuis lors, la quinine a été longtemps utilisée comme fébrifuge et dans le traitement du paludisme. Elle reste, jusqu'à aujourd'hui l'un des antipaludéens les plus utilisés dans le monde.

La quinoléine a été extraite pour la première fois par F. Runge en **1833** du goudron de houille dans lequel elle est naturellement présente. Runge extrait de la houille trois huiles qu'il nomma selon leur coloration à la chaux : le Kyanol ou Blauöl (huile bleue, aniline), le Pyrrol ou Rothöl (huile rouge, pyrrole) et le Leukol ou Weissöl (huile blanche).

Ainsi en **1833**, Henry et Delondre découvrent la quinidine, l'isomère optique de la quinine, qui possède les mêmes propriétés pharmacologiques que cette dernière. Elle appartient à la première classe de la famille des antiarithmiques.

Peu de temps plus tard, en **1842**, Charles Frédéric Gerhardt obtint par distillation alcaline de la quinine une huile incolore qu'il appela d'abord Chinoilin (huile de quinine), puis Chinolein. Celle-ci s'avéra identique au Leukol de Runge et donna par la suite son nom au composé. Comme cette huile pouvait facilement s'obtenir en grandes quantités à partir de la houille, la chimie de synthèse avec pour objet le développement d'analogues de la quinine tels que

³² Chujo ,I ; Masuda ;Bioorganic and medicinal chemistry,2001,1,9,3273-3286.

la chloroquine fut grandement favorisée.**1851**: Anderson découvre la pyridine, **1879**: Koenigs synthétise la quinoléine à partir d'allylaniline (10 ans après élucidation le sa structure, 46 ans après son extraction). **1882**: synthèse de la pyridine par Hantzsch (31 ans après sa découverte). **1886**: synthèse du premier alcaloïde (coniine) par Ladenburg.

La quinoléine est également présente naturellement dans les Rutaceae poussant en Amérique du Sud, ainsi que, fait rarissime dans le monde animal, chez certains phasmes (Insecta - Phasmatodea) comme Oreophoetes peruana, également connu sous le nom de Phasme du Pérou, qui secrète s'il est dérangé un liquide blanc riche en quinoléine par deux glandes située sur le prothorax.

Les quinoléines ont été au centre d'intérêt de la recherche durant plusieurs années car un grand nombre des produits naturels contient ces hétérocycles et elles se trouvent dans de nombreux produits commerciaux comprenant des pharmaceutiques, des parfumes et des colorants (³³).

De nouvelles molécules contenant le noyau quinoléique sont découvertes chaque année (³⁴). Elles peuvent-être d'origine végétale tel que le Glycocitridine qui est extrait des feuilles de Glycosmis citrifolia, microbienne comme le Benzastatine qui est Obtenu à partir du streptomyces nitrosporeus ou animale telle que le N_{α}-quinaldyl-L-arginine qui est obtenu à partir de la coccinelle (³⁵).

Figure II.2. Quelques exemples des dérivés de quinoléine d'origine végétale, microbienne et animale

 ³³Jie-Jack Li; E.G,Corey . Name reactions in heterocyclic chemistry 2005 by John Wiley & Sons.Inc.402.
 ³⁴ I. Tomassoli. Thèse de Doctorat en Sciences de la vie et de la santé. UFR des Sciences Médicales et Pharmaceutiques de Besançon. Cedex, 2010.

³⁵ J.P.Michael. Natural Product Reports, 14, (1997), 605-618.

Figure II.3. Glycosmis

II.1.2. Dérivés de quinoléine

Les quinoléines sont des alcaloïdes d'origine végétale dont l'extraction en faibles quantités ne suffit plus à la demande, il est apparu nécessaire de les synthétiser chimiquement à partir de différents substituts. Une grande variété de structures révélant des activités pharmacologiques diverses ont été obtenus. Cependant beaucoup de cas la préoccupation d'un grand nombre de laboratoire à travers le monde. Beaucoup de produits à base de quinoléine sont fabriqués et commercialisés (³⁶).

Bien que les quinoléines aient été très utilisées comme anti paludiques, anti asthmatiques et anti hypertensifs, elles se sont révélées également très efficaces comme anti-inflammatoires (³⁷), bactéricides (³⁸) et anti tumoraux (³⁹).Certains dérivés naturels de la quinoléine ont montré un profil pharmacologique favorable et un pouvoir bactéricide confirmé sur des souches sensibles. D'autres, ont trouvé leurs applications dans divers domaines comme : herbicides,(⁴⁰)colorants, (⁴¹) antimalariques,(⁴²) antihépatites, (⁴³) antibactériens, (⁴⁴), antifongiques. (⁴⁵) Ils sont utilisés également enteinture tel le jaune de quinoléine. (⁴⁶)

³⁶ Bahoussi Rawiya Imane, Thèse de Doctorat en Génie des Procédés, Université de Mostaganem, 2017.

³⁷ Akranth Marella, Om Prakash Tanwar, Rikta Saha, Mohammad Rahmat Ali, Sandeep Srivastava, Mymoona Akhter, Mohammad Shaquiquzzaman, Mohammad Mumtaz Alam, Saudi Pharmaceutical Journal, 21(1), 2013, Pages 1-12

³⁸ Fouzia Fadel, Soumia Lafquih Titouani, Mohamed Soufiaoui, Hafida Ajamay and Ahmed Mazzah, Tetrahedron Letters 45 (2004) 5905–5908

³⁹ Tim Van de Walle, Maya Boone, Julie Van Puyvelde, Jill Combrinck, Peter J. Smith, Kelly Chibale, Sven Mangelinckx, Matthias D'hooghe, European Journal of Medicinal Chemistry, 198, 2020, 112330

⁴⁰ Mausumi Chattopadhyaya and Md Mehboob Alam, Chemical Physics Letters, 754, 2020, 137582

⁴¹ Bhornrawin Akkachairin, Warabhorn Rodphon, Onrapak Reamtong, Mathirut Mungthin, Jumreang Tummatorn, Charnsak Thongsornkleeb, Somsak Ruchirawat, Bioorganic Chemistry,98, 2020, 103732

⁴² Farhad Shirini, Asieh Yahyazadeh, Kamal Mohammadi, Nader Ghaffari Khaligh, Comptes Rendus Chimie, 17(4), 2014, Pages 370-376

II.1.3. Applications des dérivés quinoléiques.

L'intérêt porté à la famille de la quinoléine (naturelle ou synthétique) résulte de leurs nombreuses propriétés biologiques.

II.1.3.1.Activité antibiotique

Depuis longtemps les quinoléines sont utilisées comme bactéricides car elles pénètrent dans le cytoplasme bactérien par diffusion et inhibent l'ADN-gyrase en formant un complexe ternaire ADN-gyrase-quinolone, il s'en suit une inhibition rapide de la synthèse de l'ADN suivie par la mort de la bactérie (⁴⁷,⁴⁸).

II.1.3.2. Activité anti-malarique

Les infections liées à des parasites de la malaria sont responsables de million de morts chaque année. Plasmodium falciparum et Plasmodium vivax sont les parasites les plus meurtriers de la malaria humaine. Les dérivés quinoléiques tels que la quinine présentent depuis longtemps des activités anti-malariques intéressantes. Pour sa disponibilité, sa bonne efficacité et sa faible toxicité, durant quelques années, la chloroquine a été utilisée comme un bon remède anti-malarique(49 , 50).

II.1.3.3.Activité antitumorale

Le cancer constitue l'une des principales causes de décès dans l'ensemble des pays développés puisqu'il représente la deuxième cause de mortalité après les maladies cardiovasculaires. Il constitue un problème majeur de santé publique. Les quinoléines par leur effet cytotoxique sont de plus en plus utilisées en chimiothérapie anti cancéreuse. Parmi les

⁴³ Claudia A. Costa, Rayssa M. Lopes, Leticia S. Ferraz, Gabriela N.N. Esteves, Juliana F. Di Iorio, Aline A. Souza, Isadora M. de Oliveira, Flavia Manarin, Wagner A.S. Judice, Helio A. Stefani, Tiago Rodrigues, Bioorganic & Medicinal Chemistry, 28(11), 2020, 115511

⁴⁴ Younos Bouzian, Khalid Karrouchi, Yusuf Sert, Chin-Hung Lai, Lhassane Hani, Noureddine Hamou Ahabchane, Ahmed Talbaoui, Joel T. Mague, El Mokhtar Essassi, Journal of Molecular Structure, 1209, 2020, 127940

⁴⁵ B. Sureshkumar, Y. Sheena Mary, C. Yohannan Panicker, S. Suma, Stevan Armaković, Sanja J. Armaković, C. Van Alsenoy, B. Narayana, Arabian Journal of Chemistry, 13(1), 2020, 632-648

⁴⁶ Aleksandra Minić, Tim Van de Walle, Kristof Van Hecke, Jill Combrinck, Peter J. Smith, Kelly Chibale, Matthias D'hooghe, European Journal of Medicinal Chemistry, 187, 2020, 111963

⁴⁷ Fatemeh Jafari, Hedyeh Baghayi, Parirokh Lavaee, Farzin Hadizadeh, Fatemeh Soltani, Hamideh

Moallemzadeh, Salimeh Mirzaei, Sayyed Mohammad Aboutorabzadeh, Razieh Ghodsi, European Journal of Medicinal Chemistry, 164, 2019, Pages 292-303

⁴⁸ Baicun Li, Feifeng Zhu, Fengming He, Qingqing Huang, Tong Wu, Taige Zhao, Yingkun Qiu, Zhen Wu, Yuhua Xue, Meijuan Fang, Bioorganic Chemistry 96, 2020, 103592

⁴⁹ Yan-Tao Yang, Shuzhang Du, Song Wang, Xuedong Jia, Xiaojuan Wang, Xiaojian Zhang, Steroids 151, 2019, 108465

⁵⁰ Xue-Mei Chu, Cong Wang, Wen Liu, Li-Li Liang, Kai-Kai Gong, Cheng-Ying Zhao, Kun-Lai Sun, European Journal of Medicinal Chemistry 161, 2019, Pages 101-117

dérivés des quinoléines anticancéreux il y a le topotécan qui est commercialisé sous le nom d'Hycamtin $\binom{51,52}{7}$.

II.1.3.4.Intérêt dans le domaine de l'agrochimie

Plusieurs composés comportant le noyau de la quinoléine sont utilisés dans le domaine de l'agrochimie. A titre d'exemples, l'imazaquine qui est un herbicide très puissant ayant un large spectre d'action. Le quinacétol et l'halacrinate sont des agents antifongiques très employés en agriculture (⁵³).

II.1.3.5. Activité optique non linéaire

Au cours des dernières années, une attention particulière a été accordée aux matériaux optiques non linéaires organiques (ONL) en raison de leur application potentielle en technologie optoélectronique. Ces composés présentent une grande réponse non linéaire, un temps de commutation extrêmement rapide et des voies d'optimisation commodes par le génie moléculaire par rapport aux matériaux inorganiques connus en littérature tel que le KDP. Les dérivés quinoléiques sont ainsi prometteurs dans le domaine de l'optique non linéaire($^{54}, ^{55}, ^{56}, ^{57}$)

II.1.3.6. Autres activités

La quinoléine est utilisée dans des procédés métallurgiques, dans la synthèse ainsi que dans la fabrication de polymères, de colorants et de produits agrochimiques. Elle est également utilisée comme solvant, comme désinfectant et comme conservateur alimentaire, par exemple E324 (Ethoxyquine) qui est un conservateur et pesticide (⁵⁸).

⁵¹ K.N. Vennila , D. Sunny , S. Madhuri , Samuele Ciattini , Laura Chelazzi , Kuppanagounder P. Elango, Bioorganic Chemistry, 81, 2018, Pages 184-190

⁵² Shweta Jain, Vikash Chandra, Pankaj Kumar Jain, Kamla Pathak, Devendra Pathak, Ankur Vaidya, Arabian Journal of Chemistry, 12(8 2019, 4920-4946

⁵³ N. Belloula. Magister en Chimie Organique. Université Mentouri-Constantine, 2017.

⁵⁴ H. El Ouazzani, S. Dabos–Seignon, D. Gindre, K. Iliopoulos, M. Todorova, R. Bakalska, P. Penchev, S. Sotirov, Ts. Kolev, V. Serbezov, A. Arbaoui, M. Bakasse and B. Sahraoui, Journal of Physical Chemistry C, 2012.

⁵⁵ N. Boukabcha, A. Djafri, Y. Megrouss, Ö.Tamer, D. Avcı, M. Tuna, N. Dege, A. Chouaih, Y. Atalay, A. Djafri, F. Hamzaoui, Journal of Molecular Structure, 1194, 112-123 (2019)

⁵⁶ Nuha A. Wazzan, Ohoud S. Al-Qurashi, Hassan M. Faidalla, Journal of Molecular Liquids, 223, 2016, 29-47

⁵⁷ Rajeev T. Ulahannan, C. Yohannan Panicker, Hema Tresa Varghese, Robert Musiol, Josef Jampilek, Christian Van Alsenoy, Javeed Ahmad War, S.K. Srivastava, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 151, 2015, 184-197

⁵⁸ H. El Ouazzani. Thèse de Doctorat en Physique. Université d'Angers, Angers, France. Université Chouaib Doukkali El Jadida, Maroc. 2012.

II.1.3.7.Sécurité

La quinoléine est toxique. Une exposition courte à ses vapeurs peut entraîner une irritation du nez, des yeux et de la gorge, ainsi que des vertiges et la nausée. Les effets à long terme sont moins bien connus, mais des études ont mis en évidence un lien entre la quinoléine et des affections du foie. Elle pourrait également avoir un effet cancérogène et mutagène.

II.2.Description de la structure théorique

Du point de vue général, la détermination de structures géométriques moléculaires est très intéressant pour l'étude de toutes les propriétés physico-chimiques, ces structures géométriques sont optimisées au niveau de méthode la théorie de la fonctionnelle de la densité. Par ailleurs, le choix de la méthode de calcul est un outil important pour attester les résultats expérimentaux ou encore pour offrir des données satisfaisantes à l'application mais le choix de la base d'orbitales atomiques est une étape importante à ne pas négliger.

Les principaux objectifs de la modélisation moléculaire sont :

- Visualisation infographique et dessin des molécules à partir des données structurales.
- Obtention d'informations sur les mouvements des molécules et sur leurs énergies.
- Détermination des géométries moléculaires.
- Reproduction et prédiction qualitative des propriétés des molécules et des macromolécules.
- Corrélation entre les propriétés et les structures.

L'optimisation géométrique en utilisant le logiciel GAUSSIAN $09(^{59})$ a été effectuée avec la base d'orbitale atomique 6-31G (d,p) qui décrit une orbitale atomique par la combinaison de six fonctions gaussiennes par orbitale de cœur, de trois autres pour la description des électrons de valence et d'une dernière pour description des électrons de valence les plus éloignés du noyau.

L'objective de cette partie du travail consiste à faire un calcul théorique basé sur la théorie de la fonctionnelle de densité DFT pour déterminer les conformations moléculaires de dérivés de quinoléiques (CH3-QU (8-Hydroxy-2-methylquinoline) (⁶⁰), NH2-QU (8-Hydroxy-2-aminoquinoline), SCH3-QU ((8-Hydroxy-2-methylsulfanylquinoline))). Les calculs sont faits

⁵⁹ Frisch, M. J., Trucks, G. W., and al, Gaussian, Inc., Wallingford CT, Gaussian 09, Revision, A.02, (2009).

⁶⁰ Yousef Fazaeli, Mostafa M. Amini, Shan Gao and Seik Weng Ng, Acta Cryst. (2008). E64, o97

en utilisant trois fonctionnelles **BPV86**, **B3PW91**et **B3LYP**, en utilisant dans les trois cas la même base (6-31G (d,p)). Nous effectuons nos calculs au moyen du code Gaussien 09.

II.2.Etude des propriétés géométriques des dérivés de Quinoléine II.2.1.Conformation moléculaire calculée à partir de la DFT

La géométrie la plus stable pour la molécule CH3-QU correspond aux énergies minimales de formation :-516.52,-516.30 et -516.50 (u.a) obtenues à partir des calculs de la DFT avec les fonctionnelles **BPV86, B3PW91**et **B3LYP**, respectivement. La géométrie la plus stable pour la molécule NH2-QU correspond aux énergies minimales de formation :-529.63,-529.39 et -529.59 (u.a) obtenues à partir des calculs de la DFT avec les fonctionnelles **BPV86, B3PW91**et **B3LYP**, respectivement. La géométrie la plus stable pour la molécule SCH3-QU correspond aux énergies minimales de formation :-909.92,-909.61 et -909.86 (u.a) obtenues à partir des calculs de la DFT avec les **BPV86, B3PW91**et **B3LYP**, respectivement. Les meilleurs résultats de l'étude conformationnelle ont été obtenus par la méthode DFT en utilisant la méthode**B3PW91**.

II.2.2.Analyse des données géométrique

Généralement une structure est décrite par les différentes positions des atomes qui la constituent. A partir des positions atomiques il est possible de calculer les distances interatomiques, les angles de valence et les angles de torsion d'un composé. Nous présentons ci-dessous la description des structures du CH3-QU, NH2-QU et SCH3-QU.

Figure II.4. Numérotation des atomes des molécules CH3-QU, NH2-QU et SCH3-QU

II.2.2.1.Longueurs des liaisons

Les liaisons entre les atomes dans un édifice moléculaire ont souvent tendance à s'allonger ou à se contracter (figure II-5).

Figure II.5. Elongation entre deux atomes

Les paramètres géométriques trouvés par nos analyses des résultats de calcul sont donnés dans les tableaux (II.1), (II.2),(II.3), dans lesquelles nous avons représenté les longueurs de liaison, obtenus à partir par la méthode DFT (Pour la numérotation des atomes, voir la figure II.4). Comme l'illustre le tableau. **II.1**, les distances optimales obtenues par les trois fonctionnelles **BPV86**, **B3PW91**et **B3LYP** avec la base de calcul 6-31G (d,p) sont identiques. Nous remarquons d'abord que la plus grande différence notée est de l'ordre de 0,047 Å (**N11-C1**) pour quelques distances seulement et pour le reste des distances la différence varie entre 0,000 et 0,029 Å. Les longueurs des liaisons du CH3-QU calculées par la fonctionnelle **B3PW91** sont légèrement plus courtes par rapport à celles trouvées par la fonctionnelle **B3PV86** et **B3LYP**.

	BPV86	B3PW91	B3LYP	RX
O12—C2	1.355	1.344	1.350	1.355
N11-C9	1.334	1.320	1.322	1.319
N11-C1	1.367	1.320	1.362	1.367
C1—C6	1.432	1.420	1.423	1.409
C1—C2	1.436	1.427	1.429	1.417
C2—C3	1.392	1.380	1.381	1.364
C3—C4	1.419	1.411	1.414	1.393
C4—C5	1.390	1.379	1.380	1.361
C5—C6	1.423	1.416	1.418	1.412
C6—C7	1.425	1.418	1.420	1.413
C7—C8	1.384	1.372	1.374	1.352
C8—C9	1.430	1.423	1.425	1.415
C9—C10	1.509	1.502	1.507	1.494

Tab. II.1 Valeurs des longueurs de liaisons (Å) obtenues par DFT de molécule de CH3-QU

Comme l'illustre le tableau. II.2, et qui représentent les longueurs de liaisons de la molécule NH2-QU montrent que la différence entre les valeurs obtenues par la **BPV86, B3PW91**et **B3LYP** ne dépasse pas 0.02 Å ce qui confirme que les résultats obtenus par les trois fonctionnelles sont similaires. les distances optimales obtenues par les deux fonctionnelles **BPV86 et B3PW91** avec la base de calcul 6-31G (d,p) sont identiques. Les longueurs des liaisons calculées par la fonctionnelle **B3LYP** sont légèrement plus courtes.

	BPV86	B3PW91	B3LYP
O11—C2	1.377	1.367	1.372
N10-C9	1.346	1.331	1.332
N10-C1	1.375	1.365	1.369
C1—C6	1.424	1.413	1.416
C1—C2	1.434	1.424	1.425
C2—C3	1.391	1.379	1.379
C3—C4	1.421	1.413	1.415
C4—C5	1.392	1.380	1.381
C5—C6	1.426	1.417	1.419
C6—C7	1.432	1.425	1.426
C7—C8	1.380	1.369	1.369
С8—С9	1.441	1.434	1.435
C9—N20	1.371	1.362	1.366

Tab. II.2 Valeurs des longueurs de liaisons (Å) obtenues par DFT de molécule de NH2-QU

Tab. II.3 Valeurs des longueurs de liaisons(Å) obtenues par DFT de molécule de SCH3-QU

	BPV86	B3PW91	B3LYP
O11—C2	1.375	1.364	1.369
N10-C9	1.330	1.316	1.316
N10-C1	1.381	1.371	1.374
C1—C6	1.428	1.416	1.419
C1—C2	1.432	1.422	1.423
C2—C3	1.392	1.380	1.381
C3—C4	1.419	1.411	1.412
C4—C5	1.393	1.382	1.382
C5—C6	1.424	1.415	1.417
C6—C7	1.433	1.425	1.427
C7—C8	1.384	1.372	1.373
С8—С9	1.428	1.420	1.422
C9-S10	1.840	1.825	1.837
S10-C11	1.902	1.883	1.897

Comme l'illustre le tableau. II.3, et qui représentent les longueurs de liaisons de la molécule SCH3-QU montrent que la différence entre les valeurs obtenues par la **BPV86, B3PW91**et **B3LYP** ne dépasse pas 0.02 Å ce qui confirme que les résultats obtenus par les trois fonctionnelles sont similaires. les distances optimales obtenues par les deux fonctionnelles

BPV86 et B3PW91 avec la base de calcul 6-31G (d,p) sont identiques. Les longueurs des liaisons calculées par la fonctionnelle **B3LYP** sont légèrement plus courtes.

II.2.2.2.Déformation des angles de valence

La fluctuation des atomes autour de leur position d'équilibre engendre une déformation des angles de valence. Les valeurs des angles de valence obtenues par diffraction des rayons X et calculs théoriques sont présentées dans les tableaux(II.4), (II.5), (II.6),

Figure II.6. Déformation des angles de valence

Tab. II.4 Valeurs des angles de valence en (°) obtenus par DFT de molécule de CH3-QU

	BPv86	B3PW91	B3LYP	RX
C9—N11—C1	118.57	118.85	118.88	118.15
N11-C1-C6	124.34	124.07	123.92	123.48
N11—C1—C2	115.50	115.94	116.21	117.72
C6-C1-C2	120.16	119.99	119.87	118.79
O12—C2—C3	122.62	122.24	121.93	118.90
O12—C2—C1	117.74	118.09	118.32	121.06
C3—C2—C1	119.64	119.67	119.76	120.04
C2—C3—C4	119.60	119.75	119.80	120.50
C5—C4—C3	122.07	121.91	121.81	121.4
C4—C5—C6	119.46	119.43	119.50	119.38
C1—C6—C5	119.07	119.25	119.26	119.80
C1—C6—C7	115.58	115.72	115.79	116.30
C5—C6—C7	125.35	125.03	124.95	123.90
C8—C7—C6	119.88	119.85	119.88	119.93
С7—С8—С9	120.19	120.03	120.03	120.10
N11-C9-C8	121.44	121.48	121.50	121.96
N11-C9-C10	117.85	118.05	118.01	117.50
C8—C9—C10	120.72	120.47	120.50	120.53

Les résultats regroupés dans le tableau II.4 et qui représentent les angles de liaison de la molécule CH3-QU montrent que la différence entre les valeurs obtenues par la **BPV86**, **B3PW91**et **B3LYP** ne dépasse pas 4° ce qui confirme que les résultats obtenus par les trois fonctionnelles sont similaires .La fonctionnelle qui donne les meilleurs résultats de les angles de liaison est la fonctionnelle **BPV86**.

Les résultats regroupés dans le tableau II.5 et qui représentent les angles de liaison de la molécule NH2-QU montrent que la différence entre les valeurs obtenues par la DFT/BPV86,
la DFT/ **B3PW91 et DFT**/ **B3LYP** ne dépasse pas 3° ce qui confirme que les résultats obtenus par les trois fonctionnelles sont similaires.

	BPv86	B3PW91	B3LYP
C9-N10-C1	118.31	118.78	118.81
N10-C1-C6	124.60	124.21	124.03
N10-C1-C2	114.67	115.34	115.67
C6-C1-C2	120.73	120.45	120.30
O11—C2—C3	124.72	124.04	123.52
O11—C2—C1	116.11	116.64	117.05
C3—C2—C1	119.17	119.32	119.42
C2—C3—C4	119.94	120.07	120.12
C5—C4—C3	121.79	121.56	121.47
C4—C5—C6	119.35	119.35	119.44
C1—C6—C5	119.02	119.24	119.25
C1—C6—C7	115.54	115.66	115.74
C5—C6—C7	125.45	125.10	125.01
C8—C7—C6	120.46	120.45	120.48
С7—С8—С9	119.79	119.66	119.64
N10-C9-C8	121.31	121.23	121.31
N10-C9-N20	117.84	118.12	118.08
C8—C9—N20	120.84	118.36	120.62

Tab. II.5 Valeurs des angles de valence en (°) obtenus par DFT de molécule de NH2-QU

Tab. II.6 Valeurs des angles de valence en (°) obtenus par DFT de molécule de SCH3-QU

	BPv86	B3PW91	B3LYP
C9-N10-C1	117.96	118.45	118.55
N10-C1-C6	123.72	123.34	123.14
N10-C1-C2	115.25	115.88	116.21
C6-C1-C2	121.03	120.78	120.65
O11—C2—C3	124.05	123.39	122.92
011—C2—C1	116.97	117.51	117.90
C3—C2—C1	118.97	119.10	119.18
C2—C3—C4	119.91	120.04	120.10
C5—C4—C3	121.99	121.79	121.69
C4—C5—C6	119.31	119.29	119.38
C1—C6—C5	118.79	119.00	119.00
C1—C6—C7	116.03	116.16	116.23
C5—C6—C7	125.18	124.84	124.77
C8—C7—C6	120.18	120.17	120.21
С7—С8—С9	119.05	118.97	118.96
N10-C9-C8	123.05	122.89	122.92
N10-C9-S19	120.05	120.10	120.08
C8—C9—S19	116.90	117.01	117.00
C9—S19—C22	99.14	99.35	99.37

Les résultats regroupés dans le tableau **II.6** et qui représentent les angles de liaison de la molécule SCH3-QU montrent que la différence entre les valeurs obtenues par la DFT/**BPv86**,

la DFT/ **B3PW91 et DFT**/ **B3LYP**ne dépasse pas 1° ce qui confirme que les résultats obtenus par les trois fonctionnelles sont similaires.

II.2.2.2.Déformation des angles dièdres

Elle concerne l'angle dièdre formé par les atomes A-B-C-D. Elle rend notamment compte de la structure 3D de la molécule. L'angle dièdre correspond à l'angle entre les liaisons AB et CD, donc à la rotation autour de la liaison BC. Les tableaux (II.7), (II.8), (II.9), regroupe les angles de torsion obtenus par diffraction X et calcul théorique.

Figure II.7. Déformation des angles dièdres

Tab. II.7 Valeurs des angles de torsion en (°) obtenus par DFT de molécule de CH3-QU

	BPV86	B3PW91	B3LYP	RX
C9—N11—C1—C6	0.003	0.000	0.000	-1.7
C9—N11—C1—C2	179.998	180.000	-179.999	179.80
N11-C1-C2-01	0.004	0.001	-0.002	-6.1
C6-C1-C2-012	179.999	-180.000	179.999	175.38
N11—C1—C2—C3	-179.998	-180.000	179.999	174.58
C6—C1—C2—C3	-0.003	0.000	0.000	-3.9
O12—C2—C3—C4	-179.998	180.000	-179.999	-176.79
C1—C2—C3—C4	0.004	0.000	0.000	2.5
C2—C3—C4—C5	-0.004	0.000	0.000	0.7
C3—C4—C5—C6	0.003	0.000	0.000	-2.5
N11—C1—C6—C5	179.996	180.000	-179.999	-176.28
C2-C1-C6-C5	0.001	0.000	0.000	2.2
N11-C1-C6-C7	-0.005	0.000	0.002	3.0
C2-C1-C6-C7	-180.000	-180.000	-180.000	-178.55
C4—C5—C6—C1	-0.001	0.000	0.000	1.0
C4—C5—C6—C7	-180.000	180.000	180.000	-178.21
C1—C6—C7—C8	0.001	0.000	-0.001	-1.5
С5—С6—С7—С8	-180.000	-180.000	180.000	177.73
С6—С7—С8—С9	0.004	0.000	-0.001	-1.0
C1—N11—C9—C8	0.002	0.000	-0.002	-1.0
C1—N11—C9—C10	179.989	179.998	-179.999	179.00
C7—C8—C9—N11	-0.006	0.000	0.003	2.4
С7—С8—С9—С10	-179.992	-179.998	180.000	-177.6

	BPV86	B3PW91	B3LYP
C9—N10—C1—C6	-0.004	-0.004	-0.011
C9—N10—C1—C2	179.996	-179.996	-179.995
N10-C1-C2-01	0.003	-0.014	-0.022
C6-C1-C2-O1	-179.997	179.994	179.993
N10-C1-C2-C3	-179.998	179.991	179.985
C6—C1—C2—C3	0.002	-0.001	0.000
O11—C2—C3—C4	179.998	-179.991	-179.989
C1—C2—C3—C4	-0.002	0.003	0.003
C2—C3—C4—C5	0.000	-0.004	-0.005
C3—C4—C5—C6	0.002	0.003	0.003
N10-C1-C6-C5	179.999	-179.991	-179.986
C2-C1-C6-C5	-0.001	0.000	-0.002
N10-C1-C6-C7	-0.002	0.010	0.014
C2-C1-C6-C7	179.998	-179.999	179.998
C4—C5—C6—C1	-0.001	-0.001	0.000
C4—C5—C6—C7	-180.000	179.998	-180.000
C1—C6—C7—C8	0.004	-0.008	-0.007
C5—C6—C7—C8	-179.997	179.992	179.993
C6—C7—C8—C9	-0.001	0.002	-0.002
C1—N10—C9—C8	0.008	-0.003	0.000
C1-N10-C9-N20	-179.995	179.989	-179.995
C7—C8—C9—N10	-0.005	0.004	0.006
C7—C8—C9—N20	179.997	-179.987	-179.999

Tab. II.8 Valeurs des angles de torsion en (°) obtenus par DFT de molécule de NH2-QU

	BPV86	B3PW91	B3LYP
C9—N10—C1—C6	-0.001	0.005	-0.003
C9—N10—C1—C2	179.998	-179.997	179.998
N10-C1-C2-011	0.001	0.001	-0.003
C6-C1-C2-011	180.000	179.999	179.998
N10-C1-C2-C3	180.000	179.994	179.998
C6—C1—C2—C3	-0.001	-0.008	-0.001
O11—C2—C3—C4	179.999	179.999	-179.998
C1—C2—C3—C4	0.000	0.006	0.001
C2—C3—C4—C5	0.001	-0.001	-0.001
C3—C4—C5—C6	0.000	-0.001	0.000
N10-C1-C6-C5	-180.000	-179.997	-179.998
C2-C1-C6-C5	0.002	0.005	0.001
N10-C1-C6-C7	0.004	0.005	0.004
C2-C1-C6-C7	-179.994	-179.993	-179.997
C4—C5—C6—C1	-0.001	-0.001	0.000
C4—C5—C6—C7	179.995	179.997	179.998
C1—C6—C7—C8	0.000	-0.006	0.000
C5—C6—C7—C8	-179.996	179.996	-179.999
C6—C7—C8—C9	-0.006	-0.002	-0.003
C1—N10—C9—C8	-0.007	-0.015	-0.001
C1-N10-C9-S19	179.997	-179.995	179.997
C7—C8—C9—N10	0.011	0.013	0.004
C7—C8—C9—S19	-179.993	179.994	-179.994

Tab. II.9 Valeurs des angles de torsion en (°) obtenus par DFT de molécule de SCH3-QU

II.2.2.3.Interprétation des résultats

A l'issue de ce travail, nous rapportons une étude comparative entre la géométrie obtenue à partir des données expérimentales et la géométrie optimisée prédite à partir de la méthode de calcul théorique DFT à l'état fondamental. En général, un bon accord a été observé entre les résultats obtenus à partir de l'étude expérimentale et les résultats des calculs théoriques. Donc La comparaison des paramètres géométriques, obtenus par la méthode théorique DFT, montre de légères fluctuations au niveau des distances de liaison en passant d'un calcul à l'autre. D'après les résultats obtenus pour la molécule quinoléine, on peut noter que les paramètres sont voisins en trois bases (**BPV86, B3PW91**et **B3LYP**). Mais en **B3PW91**, les liaisons sont plus courtes qu'en **BPV86** et **B3LYP**.

A partir de tout ce qui précède, nous déduisons que les résultats obtenus par la fonctionnelle **BPV86, B3PW91**et **B3LYP** sont comparables. Ces résultats montrent que le changement de la fonctionnelle de calcul n'a pas une grande influence sur les paramètres géométriques. Lorsque en comparant les valeurs théoriques à celles obtenues par l'expérience, quelques écarts apparaissent au niveau des paramètres géométriques (Distances, Angle, Angles de torsion). Cet écart est dû au fait que dans les calculs, on considère la molécule isolée dans son

état fondamental, alors que dans l'analyse par rayons X, la molécule est décrite en tenant compte des interactions intermoléculaires telles que les liaisons hydrogène, les interactions de Van Der Waals, les interactions de type π - π ..., qui peuvent avoir lieu avec les molécules voisines dans le système cristallin.

Chapitre III

Analyse vibrationnelle des Dérivés de Quinoléine

III.1. Aspects théoriques de la spectroscopie de vibration dans l'infrarouge

Les mouvements des atomes d'une molécule peuvent être classés en trois catégories : les translations, les rotations et les vibrations. De nos jours, les études par spectroscopie vibrationnelle sont, de plus en plus, complétées par des calculs de chimie quantique (${}^{61},{}^{62}$). Dans ce cas, l'apport de la modélisation moléculaire est très important pour comprendre des mécanismes réactionnels ou avoir accès à des propriétés chimiques. En effet, les méthodes de la chimie quantique permettent de modéliser un très grand nombre de grandeurs caractéristiques des systèmes atomiques ou moléculaires ou de simuler une grande variété de processus réactionnels. Aussi, la combinaison de ces deux techniques se révèle très puissante pour expliquer à l'échelle moléculaire des détails mécanistiques (63).

Le but principal de la spectroscopie vibrationnelle est la détermination des fréquences de vibration d'une molécule. Ces fréquences dépendent de la masse des atomes impliqués dans le mode normal de vibration ainsi que de la force des liaisons interatomiques. En conséquent, des informations précisent sur la structure d'une molécule peuvent être déduites à partir d'un spectre vibrationnel $\binom{64,65}{5}$.

Les vibrations moléculaires ont lieu à différentes fréquences (v_{vib}) qui dépendent de la nature des liaisons ainsi que de leur environnement. Ces fréquences correspondent au domaine infrarouge du rayonnement électromagnétique (⁶⁶).

III.1.1.spectroscopie infrarouge

La spectroscopie infrarouge est une classe de spectroscopie moléculaire, permet d'identifier la nature de liaisons chimiques présentes dans les molécules organiques et de déterminer les groupes fonctionnels. Elle est considérée comme un moyen de diagnostic non destructif (l'échantillon peut être récupéré).

La spectroscopie infrarouge repose sur l'absorption du rayonnement électromagnétique par l'échantillon, il est possible de déterminer la partie du rayonnement que l'échantillon absorbe en mesurant ce qui à été transmis. Cette radiation électromagnétique est découverte en **1800** par Frédéric Wilhelm Herschel, le domaine infrarouge s'étend de 0,8 à 1000 µm (10 à 12500

⁶¹E.B. Wilson, Molecular vibrations: the theory of infrared and Raman vibrational spectra, Courier Dover Publications, 1955.

⁶² X. Zhou; L. Wang; P. Qin, J. Comput. Theor. Nanosci 9 (2012) 814.

⁶³ É. Biémont, Spectroscopie moléculaire: structures moléculaires et analyse spectrale, De Boeck Supérieur, 2008.

⁶⁴ I. Taleb, Apport de la spectroscopie vibrationnelle, infrarouge et Raman, Reims, 2013.

⁶⁵ A. CHEDIN; Z. CIHLA, Cahiers de Physique. 21 (1966) 129

⁶⁶ M. Dalibart, Spectroscopie Dans I'infrarouge, Ed. Techniques Ingénieur, 2000.

cm⁻¹). Il est situé entre la région du spectre visible et micro-onde, peut être divisé en trois catégories selon les longueurs d'onde :

- Le proche infrarouge entre 0,8 et 2,5 μ m (4000 12500 cm⁻¹).
- Le moyen infrarouge entre 2,5 et 25 μ m (400 4000 cm⁻¹).
- Le lointain infrarouge entre 25 et 1000 μ m (10 400 cm⁻¹).

Fréquences (énergies) décroissantes

Figure III.1. Domaines de l'IR dans le spectre électromagnétique

Suivant ces régions, des phénomènes différents sont observés en spectroscopie IR (⁶⁷):

- En proche infrarouge le plus énergétique peut provoquer les vibrations complexes (harmoniques, combinaisons);
- Le moyen infrarouge peut être utilisé pour étudier les vibrations et les rotations des molécules, cette région la plus riche en informations sur les structures des composés examinés ;
- L'infrarouge lointain, faible énergie, peut être utilisé pour étudier les rotations des molécules.

Le rayonnement IR émis par la source polychromatique n'est généralement pas assez énergétique pour provoquer des transitions électroniques, mais il induit des transitions entre les niveaux d'énergie vibrationnelle et rotationnelle (68).

⁶⁷ Céline Daher, Thèse de doctorat, Université Pierre et Marie Curie. Paris, 2012.

⁶⁸ Emil Biémont. Spectroscopie moléculaire, structures moléculaires et analyse spectrale. De Boeck Université. Bruxelles, 2008.

III.1.2. Principe de la spectroscopie IR

L'échantillon est soumis à un rayonnement électromagnétique dans la gamme de longueur d'onde du milieu infrarouge (2,5 μ m< λ < 50 μ m). Le champ électrique induit par l'onde électromagnétique peut interagir avec un moment dipolaire d'une entité moléculaire présente dans le matériau. Lorsque la fréquence de champ coïncide avec la fréquence de vibration d'un mode propre de la molécule, l'interaction créée engendre la vibration de certaines liaisons et l'absorption de l'énergie de l'onde excitatrice correspondante. La fréquence à laquelle est absorbé le rayonnement dépend de la nature des liaisons, de la masse des atomes concernés et de l'environnement proche du groupement considéré. Par convention, les spectres infrarouges obtenus expérimentalement ne sont pas indexés en longueur d'onde ou en fréquence mais en nombre d'onde exprimé en cm⁻¹ (⁶⁹, ⁷⁰).

Figure III.2. Vibration d'une molécule sous l'effet des radiations

III.2. Aspects théoriques

III.2.1. Modes de vibration interne

Les vibrations moléculaires dépendent de la géométrie de la molécule, des atomes qui la composent et de la nature des liaisons entre les atomes. Une vibration moléculaire se produit lorsque les atomes d'une molécule sont dans un mouvement périodique pendant que la molécule dans son ensemble subit un mouvement de translation et de rotation. La fréquence du mouvement périodique est appelée fréquence de vibration. Une vibration est un

⁶⁹ M. Borella. Thèse de Doctorat. Institut national polytechnique de Lorraine. Nancy (2006). 37

⁷⁰ D. Bertrand. Chimiomètrie, Bioinformatique : la spectroscopie infrarouge. INRA, Nantes. (2008). 7

mouvement oscillatoire, donc on peut modéliser la molécule comme un ensemble d'oscillateurs liés les uns aux autres. Tous les atomes de la molécule vibrent avec une fréquence autour de leur position d'équilibre. Chacune de ces vibrations est appelée mode normal de vibration. On sait qu'une molécule non linéaire possède N atomes, elle a donc 3 N degrés de liberté, 3 correspond à la translation de la molécule et 3 à sa rotation autour de son centre d'inertie. Il y a donc 3N-6 modes normaux de vibration soit 3N-6 fréquences de vibration possible (au maximum), alors qu'une molécule linéaire n'en possède que 3N-5, puisque la rotation autour de son axe moléculaire ne peut être observée.

Tab.	III.1	Degrés	de	liberté	moléculaire
------	-------	--------	----	---------	-------------

	Degrés de liberté	Translation	Rotation	Vibration
Atome	3	-	-	-
Molécule linéaire	3N	3	2	3N-5
(N atomes)				
Molécule non linéaire	3N	3	3	3N-6
(N atomes)				

III.2.2.Classification des modes de vibrations

Les vibrations peuvent être classées en deux catégories : dans le plan et hors du plan $(^{71}, ^{72})$

- Dans le plan : on distingue l'élongation (v) et la déformation angulaire (δ) qui peuvent être soit symétrique (δ_s et v_s), soit antisymétrique (δ_{as} et v_{as}). Les déformations angulaires symétriques et antisymétriques correspondent à des mouvements de cisaillement ou de rotation de trois atomes formant l'angle θ (figure III.3).
- Hors du plan : il s'agit des déformations angulaires hors d'un plan moléculaire qui peuvent induire un mouvement collectif de la molécule correspondant à des mouvements de torsion (τ) ou de balancement (γ).

⁷¹ Y. Morino; K. Kuchitsu, The Journal of Chemical Physics. 20 (1952) 1809

⁷² Z. Konkoli; D. Cremer, International journal of quantum chemistry. 67 (1998) 1

Figure III.3. Mouvements associés aux modes normaux de vibration d'une molécule contenant 3 atomes

Dans le cas des composés organiques usuels comportant un très grand nombre d'atomes, l'interprétation complète est très délicate en raison de sa complexité. On remarque cependant que certains groupes d'atomes donnent des absorptions dont la fréquence varie peu en fonction du reste de la nature de la molécule. On les appelle bandes caractéristiques du groupe. C'est assez compréhensible si on considère la relation donnant la fréquence.

III.2.3.Fréquence de vibration

La fréquence fondamentale de vibration v est donnée par la relation (loi de Hooke) :

$$\nu = \frac{1}{2\pi c} \sqrt{\frac{K}{\mu}}$$

c est la vitesse de la lumière(en cm. s^{-1})

K est la constante de force de la liaison (en dyne.cm -1) et μ est la masse réduite définie comme suit:

$$\mu = \frac{m_1 m_2}{m_{1+m_2}}$$

ou m_1 et m_2 sont les masses des atomes attachés à la liaison de constante de force K. Cette fréquence dépend de k et de μ .

Effet de k

On peut remarquer que la fréquence augmente avec la force de la liaison (k), et diminue quand la masse des atomes augmente .La fréquence de vibration est proportionnelle a la constante de force k.

Figure III.4. Fréquence de vibration est proportionnelle a la constante de force k

> Effet de μ

L'augmentation de la masse réduite μ déplace logiquement La fréquence de vibration ν vers les basses fréquences.

Figure III.5. Fréquence de vibration est inversement proportionnelle a la masse réduite µ

III.2.4. Fréquence de vibration caractéristique

Malgré la complexité apparente des spectres IR, due au nombre important de bandes d'absorption, il existe des absorptions a des nombres d'onde caractéristiques qui permettent d'identifier les différents groupements d'une molécule.

On peut distinguer quatre régions principales :

- ♦ 4000-2500 cm-1 : Elongations X-H (O-H , N-H, C-H)
- ✤ 2500-1900-cm-1 : Elongations des triples liaisons C=C et C=N et des doubles liaisons cumulées X=Y=Z (allènes, iso cyanates....)
- ◆ 1900-1500 cm-1 : Elongations des doubles liaisons (C=O, C=N, C=C, NO2)
- ◆ 1500-200 cm-1 : Elongations de simples liaison (C-N (NO2 : forte a ≈ 1350 cm-1) ; C-O : forte entre 1000 et 1300 cm-1...). Cette zone, appelée région des empreintes digitales, est utilisée pour identifier avec certitude un compose et attester de sa pureté.

Figure III.6. Fréquences caractéristiques en IR

III.2.5.Application de la spectroscopie de vibration dans l'infrarouge III.2.5.1.Analyse fonctionnelle

La spectroscopie infrarouge permet de faire l'analyse fonctionnelle d'une molécule c'est-adire de décrire précisément l'ensemble des groupes chimiques qui la constitue. Il reste a assembler les morceaux du puzzle quand cela est possible.

Vibrations d'élongation des liaisons O-H et N-H

En phase gazeuse, les vibrations d'élongation des liaisons O-H et N-H se présentent sous la forme d'une bande fine, respectivement entre 3590 et 3650 cm⁻¹ et 3862,94 cm⁻¹. En solution ou en liquide pur, les hydrogènes sont engagés dans des liaisons H, ce qui a pour effet, d'une part d'affaiblir la liaison (baisse du nombre d'onde) et d'autre part de provoquer un élargissement des raies par effet de solvatation.

Vibrations d'élongation des liaisons C-H

Les bandes de vibration d'élongation des liaisons C-H s'étendent sur une plage allant de 2850 à 3100 cm⁻¹. Un des intérêts principaux est que les vibrations des liaisons C-H dépendent largement de l'atome de carbone portant l'hydrogène : les hydrogènes liés à un carbone saturé présentent leurs bandes de vibration en deçà de 3000 cm-1, alors que dans le cas d'un carbone insaturé, ces bandes sont au-delà de 3000 cm⁻¹.

Vibrations d'élongation des liaisons C=O

La vibration d'élongation de la liaison C=O absorbe entre 1973 et 1951 cm⁻¹, région peu sollicitée par d'autres absorptions, et est donc facilement reconnaissable. De nombreuses informations peuvent être obtenues à partir de la position de la bande d'absorption.

Vibrations de déformations angulaires dans les composés aromatiques

Les vibrations de déformation ont en général une fréquence d'absorption plus basse et une intensité plus faible que les vibrations d'élongation, ce qui amène les bandes dans la zone d'empreinte digitale et rend leur repérage et leur analyse délicate. Toutefois, dans le cas des composés aromatiques, les bandes de déformation hors du plan, situées entre 680 et 900 cm⁻¹, sont intenses et permettent de déterminer les différentes substitutions du cycle aromatique.

III.3.Résultats et discussions

III.3.1.Calcul analytique des spectres IR

Les constantes de force permettent le calcul des fréquences vibrationnelles harmoniques. Elles sont obtenues en coordonnées cartésiennes à partir des dérivées secondes analytiques de l'énergie par rapport aux coordonnées nucléaires $(\frac{\partial^2 E}{\partial x^2}, \frac{\partial^2 E}{\partial x^2}, \frac{\partial^2 E}{\partial x \partial y}, \dots)$, déterminées pour chaque géométrie optimisée en utilisant la technique de différenciation analytique grâce au programme Gaussian 09. Ces constantes de force cartésiennes sont ensuite transformées en constantes de force exprimées en coordonnées internes pour chaque mode de vibration par le programme VEDA 4 (Vibrational Energy Distribution Analysis version 4) (⁷³). Outre les fréquences vibrationnelles, un calcul de modes normaux permet aussi d'obtenir les distributions d'énergie potentielle PED qui donnent des informations sur les contributions relatives (exprimées en %) des constantes de force à l'énergie potentielle d'un mode normal de vibration. La PED est une donnée importante qui constitue la seule indication permettant de savoir si une fréquence calculée est conforme ou non à l'attribution en termes de vibration de groupe. Les calculs de la PED et des vecteurs propres ont été effectués pour chaque mode de vibration à partir des constantes de force exprimées en coordonnées locales de symétrie grâce au programme VEDA 4.

III.2. Etude vibrationnelles des dérives de Quinoléine

L'objectif recherché dans notre travail de la spectroscopie IR est de mettre en évidence et séparer les divers types de mouvement de la molécule. A chacun des mouvements de la molécule correspond une fréquence de vibration. Les calculs théoriques de ces modes de vibration ont été faits après optimisation de la molécule à partir de la mécanique quantique en s'aidant de la DFT. C'est donc dans le but de collecter les fréquences relatives aux mouvements moléculaires et d'attribuer les symétries correspondantes aux différents modes

⁷³ M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.

normaux de la molécule que nous avons réalisé des mesures d'absorption IR sur des dérives de Quinoléine. Le calcul des modes normaux de vibration dérivés de quinoléiques notée (CH3-QU), (NH2-QU), (SCH3-QU), a été effectué à l'aide du programme de calcul quantique Gaussian 09. Les calculs théoriques aux niveaux DFT ont permis de déterminer les nombres d'onde de vibration, l'intensité infrarouge. Les composés étudiés sont constituées de 21 atomes, qui subissent 57 modes de vibration normaux pour (CH3-QU), 20 atomes qui subissent 54 modes de vibration normaux pour (NH2-QU) et 22 atomes qui subissent 60 modes de vibration normaux pour (SCH3-QU). Nous avons observé que toutes les valeurs de fréquences calculées obtenues à partir de la DFT sont positives, donc il n'ya pas des fréquences imaginaires, ce qui explique le bon choix des énergies et les fonctionnelles utilisées dans notre étude. Les assignations des modes vibratoires ont été effectuées à l'aide de la distribution d'énergie potentielle (PED) en utilisant le programmeVEDA4.

Les spectres IR calculés pour les dérivés de quinoléiques aux niveaux B3PW91, BPV86et B3LYP avec la base 6-31G (d,p) sont présentés sur les figures III.7 III.8 III.9 III.10III.11 III.12 III.13 III.14 et III.15. Les intensités IR calculés pour les dérivés de quinoléiques aux niveaux B3PW91, BPV86 et B3LYP avec la base 6-31G (d,p) sont rassemblés dans les tableaux III.2, III.3, III.4.

	B3PW91	BPV86			B3LYP	Prédiction de modes de vibration	
mode	Fréquences	IR	Fréquence	IR	Fréquence	IR	
			S		S		
57	3618	108.88	3385	106.22	3611	97.96	ν OH (100)
56	3229	7.58	3143	9.8 7	3216	9.55	ν CH (86)+ ν CH(11)
55	3213	21.48	3126	27.73	3200	24.29	ν CH (12) + ν CH(21)+ ν CH (17)+ ν CH(46)
54	3212	14.95	3124	17.21	3199	17.91	νCH (23)+ νCH (33)+ νCH (29)
53	3196	1.74	3109	2.20	3184	1.73	ν CH(53)+ ν CH(43)
52	3192	4.86	3104	6.09	3180	5.15	νCH (75)+ νCH (24)
51	3173	6.77	3089	7.88	3156	8.26	νCH(84)
50	3119	12.22	3034	13.48	3098	15.44	νCH (50)
49	3054	19.14	2975	22.23	3043	21.57	ν CH (16)+ ν CH(42)
48	1698	3.23	1634	4.24	1686	3.06	$\nu CC (37) + \nu CC (11)$
47	1669	37.71	1603	23.83	1658	35.42	$\nu CC (31) + \nu CC (14)$
46	1640	51.54	1572	54.26	1625	46.92	$\nu NC (22) + \nu CC (20)$
45	1567	114.77	1516	100.56	1559	99.03	δНСС(10)
44	1534	72.11	1479	55.70	1525	65.73	$\nu NC (21) + \nu OC (10)$
43	1489	13.58	1448	6.66	1496	6.17	δНОС (11)+ δНСС (11)+ δНСН (18)
42	1489	7.38	1448	26.42	1491	36.50	δНСН (39)+ δНСН(38)
41	1477	51.62	1432	48.15	1477	41.69	δНСН (26)
40	1459	31.72	1417	29.24	1447	24.47	νCC (14)+ νCC(19)+ δHCC (10)
39	1429	34.80	1386	35.08	1418	1.37	$\nu CC(21) + \nu NC(16) + \delta HOC(17)$
38	1411	4.86	1367	7.90	1414	27.60	δHCH(27)+ δHCH(31)
37	1378	68.48	1333	60.72	1368	66.15	$\nu NC(21) + \nu CC(10)$
36	1327	11.65	1293	4.90	1316	8.43	νCC (12)+ νOC(20)+ δHCC(14)+ δHCC(10)
35	1302	131.16	1268	120.40	1299	144.26	δHOC(23)+ δHCC(10)
34	1264	5.50	1231	5.92	1255	6.51	ν NC (17)+ ν CC(14)+ ν CC (11)+ ν CC(16)
33	1244	31.92	1212	23.31	1241	37.21	νCC(11)+ δHOC(11)+ δHCC (10)+ δHCC (17)
32	1197	11.92	1164	7.26	1199	10.10	δHCC(22)+ δHCC (18)+ δHCC(21)
31	1170	1.88	1138	2.60	1171	1.16	νCC (17)+ δHCC (27)+ δHCC(28)

Tab. III.2 Nombres d'onde (cm⁻¹), intensités IR calculés aux niveaux B3PW91, BPV86 et B3LYP avec la base 6-31G (d,p) du (CH3-QU)

30	1122	15.28	1087	15.03	1119	17.08	νΟC(10)+ δCCC(18)+ δHCC (10)+ δHCC(12)+ δCCN (11)
29	1079	1.83	1049	1.51	1077	1.34	$\nu CC(11) + \nu CC(35) + \delta HCC(25)$
28	1054	5.22	1049	4.63	1059	4.13	δHCH (12)+ τHCCC(26)+ τHCCC (17)
27	1017	7.07	986	7.53	1020	7.40	δ HCH (11)+ τHCCC (20)
26	993	0.74	949	0.73	994	0.66	τ HCCC(44)+ τ HCCC(30)+ τ CCCC(14)
25	971	0.47	927	0.31	971	0.45	τ HCCC(57)+ τ HCCC(17)+ τ CCCC(10)
24	936	0.02	908	0.02	932	0.03	ν CC(11)+ δ CCC (24)+ δ CCC (10)
23	888	0.28	855	4.53	889	0.24	τ HCCC(52)+ τ HCCC(29)
22	882	4.65	848	0.00	881	4.72	$\delta CCC(10) + \delta CCC(17) + \delta CCC(10)$
21	847	43.01	816	35.99	849	37.04	τ HCCC(21)+ τ HCCC(43)
20	794	0.10	763	0.13	795	0.02	$\tau CNCC(21) + \beta CCCC(11)$
19	764	29.26	735	20.75	767	25.35	τ HCCC (13)+ τ HCCC (21)+ τ HCCC (35)
18	741	15.78	719	13.46	739	16.22	$\nu CC(13) + \nu CC(10) + \nu CC(14)$
17	707	0.72	702	95.40	705	0.78	ν CC(19)+ δ CCC(10)+ δ CCC(23)
16	684	55.39	687	0.85	677	15.73	τ HOCC(37)+ τ CCCC (13)+ βOCCC(16)
15	667	48.27	649	1.85	654	86.49	τHOCC(54)
14	591	0.34	570	0.12	591	0.36	τ CCCC(10)+ β OCCC (28)+ β CCCC(27)
13	566	0.51	550	0.41	566	0.52	ν CC (10)+ δ CCC (11)+ δ CCC(10)+ δ CCC (15)
12	554	3.73	539	3.10	555	3.38	$\delta CCC(15) + \delta CCC(18) + \delta CCC(11) + \delta CCN(12) + \delta OCC(15)$
11	516	1.07	498	1.24	518	0.67	$\tau CCCC(12) + \tau CCCN(13) + \beta CCNC(20)$
10	501	2.80	487	2.53	503	2.79	ν CC (11)+ δ CCC(13)+ δ CCC (14)+ δ OCC(11)
9	440	5.08	427	4.85	440	4.92	σ NC(10)+ νCC(15)+ δCNC(11)+ δCCC (10)+ δOCC (10)
8	431	1.07	416	0.73	433	0.73	τ HCCC(14)+ τ CCCC (26)+ τ CNCC(29)+ βOCCC (11)
7	365	11.54	356	11.96	366	10.59	$\delta OCC(24) + \delta CCN(43)$
6	321	0.01	311	0.01	322	0.02	$\tau CCCC (15) + \tau CCCC (25) + \beta CCNC (19)$
5	226	0.63	219	0.58	226	0.44	$\tau CCCC (12) + \tau CCCC (18) + \tau CCCC (33)$
4	222	0.68	215	0.85	223	0.61	$\delta CCC(20) + \delta OCC(19) + \delta CCN(23)$
3	172	2.15	167	2.03	173	1.83	$\tau CCCC(54) + \beta CCCC(18)$
2	109	0.25	106	0.23	110	0.21	$\tau CCCC(12) + \tau CCCN(42)$
1	75	0.45	75	0.50	76	0.41	τHCCC (18)+ τHCCC (32)+ βCCNC (11)

mode de vibration du CH3-QU et que nous avons calculé par la méthode (B3LYP/6-31G (d,p)).

Mode $N^{\circ}52$ à 3180 cm⁻¹: mode de vibration asymétrique

Mode N°32 à 1199 cm⁻¹: mode de vibration Cisaillement

Figure III.7. Représentation de quelques modes de vibration et la Spectre I.R. théorique de QU-CH3 obtenue par (B3LYP/6-31G (d,p))

mode de vibration de CH3-QU que nous avons calculé par la méthode (B3PW91/6-31G (d,p)).

Mode N°55 à 3213 cm⁻¹: Le mode de vibration symétrique

Mode N°01 à 76 cm⁻¹: le mode de vibration de rotation

Figure III.8 Représentation de quelques modes de vibration et la Spectre I.R. théorique de CH3-QU obtenue par (B3PW91/6-31G (d,p))

 mode de vibration du cycle quinoléine que nous avons calculé par la méthode (BPV86/6-31G (d,p)).

Mode N°51 à 3089 cm⁻¹ : Le mode de vibration balancement

Mode $N^{\circ}26$ à 949 cm⁻¹ : le mode de vibration de torsion

Figure III.9 Représentation de quelques modes de vibration et la Spectre I.R. théorique de QU-CH3 obtenue par (**BPV86**/6-31G (d,p)).

	B3PW91		BPV86		B3LYP		
54	Fréquences	Ι	Fréquences	Ι	Fréquences	I	Prédiction de modes de vibration
53	3585	109.95	3478	94.43	3557	94.31	ν NH (59)+ ν NH(41)
52	3252	101.86	3158	9.17	3258	86.06	νCH(90)
51	3243	1.25	3135	17.73	3235	4.55	νCH (30)+ νCH(60)
50	3223	13.90	3133	19.52	3214	16.34	$\nu CH (44) + \nu CH (39)$
49	3219	19.13	3115	1.24	3210	21.70	νCH (41)+ νCH(49)
48	3201	1.91	3114	3.18	3193	3.12	νCH (62)+ νCH (29)
47	3200	2.35	2964	103.26	3191	1.75	νOH (97)
46	1683	237.13	1632	278.26	1680	283.94	δHNH 83)
45	1681	124.65	1619	2.64	1672	0.02	$\nu CC (42) + \nu CC (11) + \delta HOC (15)$
44	1658	72.62	1596	98.02	1648	115.50	νCC (33)
43	1605	98.91	1540	112.52	1592	93.68	νCC (12)+ νNC (13)+ δHCC (17)
42	1565	94.72	1518	80.78	1558	93.55	δССС (10)+ δНСС (11)+ δНСС (10)
41	1528	86.04	1476	85.58	1522	81.34	νNC (13)+ δHOC (13)+ δHCC (17)+ δHCC (14)
40	1497	59.26	1446	67.71	1493	76.94	δHCC (14)+ δHCC (12)
39	1475	60.46	1437	24.77	1469	38.85	νCC (13)+ δHOC (22)+ δHCC (20)
38	1439	48.22	1391	43.48	1423	71.28	νCC (17)+ νCC (19)+ δHCC (13)
37	1395	95.87	1352	86.27	1384	84.30	νCC (10)+ δHNC (11)+ δHCC (12)+ δCCC (10)
36	1360	34.18	1317	35.04	1352	36.10	νNC (36)+ δHCC (24)
35	1323	44.19	1282	48.44	1316	48.11	νCC (11)+ δHCC (17)
34	1298	151.18	1268	118.83	1290	159.44	νCC (12)+ νOC (20)+ δHOC (13)+ δ HCC (27)
33	1252	34.86	1226	18.90	1242	30.87	$\nu CC (11) + \nu CC (21) + \nu CC (18)$
32	1237	1.11	1200	0.05	1236	1.19	νCC (11)+ δ HCC (14) +δHCC (31) +δHCC (16)
31	1211	10.13	1177	10.73	1211	6.15	νCC (17)+ δHCC (27)+ δHCC (26)
30	1124	22.69	1087	21.54	1119	24.93	νΟC (13) +δCCC (14)
29	1106	2.97	1071	1.29	1103	3.07	νCC (17)+ δHNC (23+ δHCC (12)
28	1069	4.74	1036	3.31	1066	5.21	νCC (10)+ νCC (22)+ δ HNC (18)
27	1023	1.26	968	1.86	1022	1.20	τHCCC 10)+ τHCCC (22)+ τHCCN (14)+ τCCCC (13)+

Tabl. III.3 Nombres d'onde (cm-1), intensités IR calculés aux niveaux B3PW91, BPV86 et B3LYP avec la base 6-31G (d,p) du (NH2-QU)

							τCCCC (12)
26	1014	4.18	961	2.92	1013	3.59	τ HCCC (23)+ τ HCCC (15) + τ HCCN (12)+ τ CCCC
							$(10) + \tau CCCC (14)$
25	939	0.04	910	0.14	939	2.48	νCC (10)+ δHNC (10)+ δCCC (17)+ δCCC (21)
24	939	2.73	890	2.54	935	0.01	τHCCC (43)+ τHCCC +(29) +βOCCC (12)
23	912	2.78	872	2.17	911	2.76	δCNC (11) +δCCC (11)+ δCCC (10)
22	901	2.18	868	2.45	900	2.40	βCCCC (18)+ βNCCC (28)
21	873	122.70	831	105.06	871	103.35	τHCCC (37) +τHCCN (44)
20	784	25.30	788	103.56	785	29.56	τHOCC (82)
19	771	98. 77	748	51.35	763	50.81	τ HCCC (15) + τ HCCC(33) + τ HCCC (40)
18	753	6.83	730	4.97	752	7.13	ν CC (13) + ν NC(12) + δ CNC (17)+ δ CCC (15)
17	735	63.94	721	0.17	730	13.29	βNCNC (44)
16	733	13.18	709	10.73	717	100.19	νCC (15)+ νNC(11)+ δCNC (15) +δNCC (11)
15	617	0.58	593	0.30	617	0.36	τ CCCC (12) + β OCCC (24) + β CCCC (16)
14	588	17.46	565	2.30	587	12.47	ν OC (11) + δ CCC(13)+ δ CCC (26)
13	582	2.41	565	9.10	581	2.47	τ HNCC (11) + τ HCCC(14)+ τ CCCC (11) + β NCNC
							(22)+ β NCCC (10)
12	566	3.80	549	2.98	565	3.59	δ CCC (11) + δ CCC (21)+ δ NCC (18) + δ OCC (16)
11	525	2.14	509	1.78	526	2.22	ν CC (12)+ δ CCC(14) + δ CCC (13)
10	504	105.92	483	68.05	497	73.73	τΗΝCC (74)
9	451	4.97	437	5.08	451	4.75	ν CC (15)+ δ CCC(14)+ δ OCC (10)
8	446	10.44	430	4.38	447	8.72	τ HCCC (13) + τ CCCC(20)+ β CCCC(11)+ β NCCC (19)
7	391	196.57	375	21.23	385	18.59	δNCN (46)+ δOCC(23)
6	385	20.62	350	216.87	365	200.63	τΗΝCC (81)
5	346	5.89	332	20.93	345	28.63	$\tau CCCC(25) + \tau CCCC(20) + \tau CCCC(14)$
4	245	2.79	236	2.63	244	2.69	τ CNCC (26) + τ CCCC (15)+ τ CCCC(13) + β OCCC (13)
3	230	1.01	225	1.01	231	0.79	δCCC (18)+ δCCC(10)+ δNCN (14) +δOCC (23)
2	175	4.25	168	3.99	175	3.65	τ CCCC (11)+ τ CNCC(24)+ τ CCCC(19)+ βCCCC (19)
1	117	2.88	113	2.97	117	2.64	$\tau CCCC (17) + \tau CCCC (13) + \tau CNCC (17) + \tau CCCC (28)$

mode de vibration du NH2-QU que nous avons calculé par la méthode (B3LYP/6-31G (d,p)).

Mode N°52 à 3258 cm⁻¹, Mouvement élongation de liaison O-H

Mode N°53 à 3557 cm⁻¹, Mouvement élongation de liaison N-H

Figure III.10 Représentation de quelques modes de vibration et la Spectre I.R. théorique de NH2-QU obtenue par (B3LYP/6-31G (d,p))

 mode de vibration du cycle quinoléine que nous avons calculé par la méthode (BPV86/6-31G (d,p)).

Mode N°40 à 1446 cm⁻¹, Mouvement élongation de liaison C-H(Cisaillement)

Mode N°38 à 1391 cm⁻¹, Mouvement élongation de liaison C=C

Figure III.11 Représentation de quelques modes de vibration et la Spectre I.R. théorique de NH2-QU obtenue par (**BPV86**/6-31G (d,p)).

mode de vibration du cycle quinoléine que nous avons calculé par la méthode (B3PW91/6-31G (d,p)).

Mode N°43 à 1605 cm⁻¹, Mouvement élongation de liaison C=C

Mode N°47 à 3200 cm⁻¹, Mouvement élongation de liaison C-H

Figure III.12 Représentation de quelques modes de vibration et la Spectre I.R. théorique de NH2-QU obtenue par (B3PW91/6-31G (d,p)).

	B3PW91		BPV86		B3LYP		
Mode	Fréquences		Fréquences	Ι	Fréquence	Ι	Prédiction de modes de vibration
60	3318	105.34	3177	13.55	3315	89.07	νOH (99)
59	3248	2.74	3166	8.92	3239	4.23	ν CH(91)
58	3229	1.66	3153	30.19	3231	2.52	ν CH (91)
57	3223	14.82	3142	5.29	3214	18.08	ν CH (44)+ν CH (48)
56	3210	2.21	3139	6.02	3203	3.37	ν CH (48) +ν CH (52)
55	3208	3.58	3137	7.94	3200	4.46	ν CH (81)
54	3207	2.63	3134	1.99	3199	3.83	ν CH (64)+ν CH (20)+ν CH (16)
53	3206	0.71	3020	12.13	3197	0.57	ν CH (41)+ν CH (46)+ ν CH (10)
52	3100	7.19	2968	114.26	3099	8.33	ν CH(36)+ν CH (32)+ν CH (32)
51	1679	6.62	1648	2.05	1669	6.97	$\nu CC (42) + \nu CC (12) + \delta HOC (11)$
50	1632	45.47	1605	25.12	1622	46.57	νCC (35)+νCC (14)+νCC (13)
49	1595	131.80	1570	142.38	1582	123.93	νNC (19)+νCC (12)+δNCC (12)
48	1548	70.39	1522	85.63	1544	62.46	ν CC (11)+ δ HCC (13)+ δ HCC (11)
47	1528	25.11	1478	37.48	1534	22.58	δHCH (10)+ δHCH (11)+ δHCH (48)+ β HCSC (12)+ β HCSC (11)
46	1520	14.45	1466	40.96	1527	11.92	δ HCH (38)+ δ HCH (36)+ β HCSC (16)
45	1509	62.27	1458	13.02	1504	61.71	$\nu NC (22) + \delta HCC (16)$
44	1488	24.43	1456	4.11	1488	34.79	δ HCC(18)+ δ HCC (16)+ δ HCC (21)
43	1455	28.82	1433	42.94	1448	18.28	νCC (10)+νCC (11)+δHOC (26)+δHCC (16)
42	1414	33.87	1412	58.23	1394	25.03	$\nu CC (13) + \nu CC (35) + \nu CC (10)$
41	1391	2.72	1339	18.56	1389	4.89	δHCH (33)+δHCH (24)
40	1343	75.81	1329	78.90	1337	71.14	ν NC (24)+ δ HCC (18)+ δ NCC (10)
39	1323	6.82	1303	6.75	1316	2.61	ν CC (13)+OC(12)+ δ HCC (15)
38	1291	108.01	1275	86.59	1282	125.41	νNC (17)+OC (10)+δHOC (17)+δHCC (13)
37	1244	33.13	1244	19.44	1239	5.44	$\nu CC (12) + \delta HCC (26)$
36	1233	48.20	1197	2.98	1227	68.70	ν CC (13)+ δ HOC (11)+ δ HCC (21)+ δ HCC (15)
35	1204	2.31	1167	3.29	1202	0.12	ν CC (19)+ δ HCC (33)+ δ HCC (21)
34	1158	134.27	1125	143.81	1150	131.33	$\nu CC (31)$
33	1119	27.45	1090	22.94	1113	31.76	ν OC (17)+ δ CCC (21)+ δ HCC (13)+ δ CNC (10)
32	1080	0.91	1058	2.02	1076	1.04	$\nu CC (13) + \nu CC (37) + \delta HCC (16)$
31	1041	0.17	985	3.20	1039	0.21	β HCCC (34)+ β HCCS (40)+ β CCCN (13)
30	1026	4.97	977	1.81	1026	4.29	β HCCC (13)+ β HCCC (41)+ β HCCC (13)+ β CCCC (10)
29	1014	3.89	974	5.52	1010	3.35	δ HCH (17)+ β HCSC (34)+ β HCSC (34)

Tab. III.4 Nombres d'onde (cm-1), intensités IR calculés aux niveaux B3PW91, BPV86 et B3LYP avec la base 6-31G (d,p) du(SCH3-QU)

28	1004	7.58	956	0.53	999	6.50	δ HCH (13)+ δ HCH (13)+ β HCSC (42)+ β HCSC (15)+ β HCSC (15)
27	944	2.60	893	11.90	944	2.35	β HCCC(43)+ β HCCC (30)
26	924	10.76	877	0.30	923	9.76	β HCCC (11)+ β CCCC (12)+ τ NCCC (29)
25	922	9.48	849	8.93	920	9.04	δ CCC (15)+ δ CCN (18)
24	877	8.70	835	0.21	874	10.13	δ CCC (30)+ δ CCC (14)+ δ CCN (11)
23	870	67.05	826	172.44	868	57.75	β HCCC(41) + β HCCS (32)
22	788	45.41	781	0.55	789	38.20	β HCCC (11) + β HCCC (28)+ β HCCC (41)
21	745	30.29	748	33.84	739	14.23	β HOCC (19)+ β CCCN (18)+ β CCNC (10)+ τ OCCC (14)+ τ SCNC (11)
20	735	16.36	717	14.11	733	16.21	δ CCC (11)+ δ CNC (10)+ δ CCN (14)
19	708	92.37	667	0.32	691	106.43	β HOCC (69)+ β CCCN (10)
18	674	4.68	644	5.06	658	6.22	vSC (76)
17	643	2.09	620	1.79	637	1.29	νCC (10)+νSC (14)+νSC (18)+δCCC (11)+δCNC (13)
16	618	1.78	574	0.51	618	1.38	β CCCC (16)+ β CCCC (25)+ β CCCC (20)+ τ OCCC (16)
15	570	2.55	553	1.94	570	2.26	δ CCC (11)+ δ CCC (25) + δ CCC (21)+ δ NCC (10)
14	552	0.54	529	6.99	553	0.32	β HCCC (15)+ β CCCC (21)+ τ SCNC (22)+ τ NCCC (15)
13	548	6.65	510	0.71	547	6.70	δ CNC (14)+ δ CCC (27)
12	497	9.91	481	9.20	496	9.83	δ CCC (14)+ δ OCC (24)
11	452	3.93	419	0.51	453	3.32	β HCCC (11)+ β CNCC (10)+ β CCCN (16)+ β CCNC (31)
10	380	4.13	371	5.02	377	4.31	ν SC (14)+ δ SCN (17)+ δ CSC (27)
9	341	14.05	332	14.36	338	12.94	ν SC (32)+ δ OCC (20)
8	327	0.98	304	0.31	327	0.76	β CCCC (15)+ β CCCC (20)+ τ OCCC (18)+ τ SCNC (22)
7	234	4.75	236	3.71	236	4.14	δ NCC (12)+ δ OCC (18)+ δ CSC (41)
6	230	0.00	213	0.01	229	0.03	β CCCC (26)+β CCCC (37)+τ SCNC (10)
5	179	3.86	167	0.57	179	3.21	β CNCC (59)+ τ NCCC (12)
4	144	0.06	165	3.32	135	0.04	β HCSC (34)+ β HCSC (27)+ β HCSC (27)
3	133	2.09	133	1.73	133	1.97	δ SCN (51)+ δ CSC (22)
2	97	0.55	95	1.17	96	0.55	β CCCC (14)+ β CCNC (19)+ β CSCC (14)+ τ SCNC (15)+ τ NCCC (13)
1	57	3.65	61	3.01	56	3.46	β CSCC (79)

mode de vibration du cycle quinoléine que nous avons calculé par la méthode (B3LYP/6-31G (d,p)).

Mode N°17 à 637 cm⁻¹, Mouvement élongation de liaison C=C

Mode N°60 à 3315 cm⁻¹, Mouvement élongation de liaison O-H

- **Figure III.13** Représentation de quelques modes de vibration et la Spectre I.R. théorique de SCH3-QU obtenue par (B3LYP/6-31G (d,p))
 - mode de vibration du cycle quinoléine que nous avons calculé par la méthode (BPV86/6-31G (d,p)).

Mode N°35 à 1167cm-1 , Mouvement élongation de liaison C-H(Cisaillement)

Mode N°18 à 644cm-1, Mouvement élongation de liaison S-C

Figure III.14 Représentation de quelques modes de vibration et la Spectre I.R. théorique de SCH3-QU obtenue par (**BPV86**/6-31G (d,p)).

mode de vibration du cycle quinoléine que nous avons calculé par la méthode (B3PW91/6-31G (d,p)).

Mode N°18 à 674cm⁻¹, Mouvement élongation de liaison S-C

Mode N•52 à 3100 cm⁻¹, Mouvement élongation de liaison C-H

Figure III.15 Représentation de quelques modes de vibration et la Spectre I.R. théorique de SCH3-QU obtenue par (B3PW91/6-31G (d,p))

Chapitre IV

Etude Des Proprietes Physico-Chimie Des Dérivés De Quinoléine
IV.1. Propriétés électroniques moléculaires

IV.1.1. Orbitales moléculaires frontières HOMO-LUMO

Une combinaison linéaire des orbitales atomiques donnent naissance aux orbitales moléculaires différentes (OM). En **1952**, le chimiste japonais Ken'ichi Fukui (⁷⁴) a montre l'existence d'une corrélation entre la densité électronique des orbitales moléculaires frontières et la réactivité chimique des hydrocarbures aromatiques. Ce résultat conduit un groupe de théoriciens a formuler une théorie de la réactivité, l'étendant progressivement a des composes très varies et développant ainsi le concept d'orbitale frontière.

A partir de **1970**, Fukui s'intéressait au déroulement des réactions chimiques, il visualise le rôle des orbitales frontières en décrivant les diagrammes de leur transformation. D'après Fukui, les premières orbitales concernées dans une interaction chimique sont la dernière orbitale occupée HOMO (Highest Occupied Molecular Orbitals) et la première Orbitale inoccupée LUMO (Lowest Unoccupied Molecular Orbitals). Ces deux orbitales qualifiées de « frontières » sont séparées par une énergie appelée bande interdite (« gap » en anglais). Ces orbitales présentent un réel intérêt puis qu'elles contribuent dans le transport de charge lors d'une réaction chimique a contrôle frontalier. Le caractère donneur et accepteur d'électron peut être déduit a partir des valeurs de l'énergie des orbitales moléculaires (HOMO, LUMO).

- HOMO : traduit le caractère électro-donneur (nucléophile) de la molécule. Plus l'énergie de cette OM est élevée, plus la molécule cédera facilement des électrons.
- LUMO : traduit le caractère électro-accepteur (électrophile) de la molécule. Plus l'énergie de cette OM est faible, plus la molécule acceptera facilement des électrons.

Figure IV.1 Diagramme énergétique des orbitales moléculaires frontières

⁷⁴ Fukui, K., J. Chem. Phys., 1952,20 722.

Ces deux orbitales jouent un rôle particulier dans les mécanismes réactionnels. L'un des exemples les plus courants pour illustrer l'importance des interactions entre ces orbitales est la réaction de Diels-Alder. Le premier à mettre en évidence le rôle de ces orbitales dans les mécanismes réactionnels en chimie fut le chimiste K.Fukui.

La théorie des OMF affirme que la réactivité entre deux composants est déterminée par la plus petite différence en énergie entre la HOMO d'un des réactifs et la LUMO de l'autre. Plus petite est la différence d'énergie, plus les interactions frontières seront stabilisantes et une réactivité chimique plus élevée (la réaction rapide et facilitée).

IV.1.2. Energies des orbitales moléculaires HOMO-LUMO des dérives de Quinoléine

La valeur du l'écart énergétique HOMO-LUMO(le gap énergétique (ΔE) est la différence entre les deux niveaux HOMO et LUMO) joue un rôle intéressant dans les propriétés électriques et optiques. Quand l'écart énergétique HOMO-LUMO (ΔE) est élevé, l'écoulement des électrons à l'état d'énergie plus élevée est difficile (stable), ce qui rend la molécule dure et moins réactif. D'autre part, le gap énergétique HOMO-LUMO (ΔE) plus faible, a pour conséquence un écoulement facile des électrons, ce qui rend la molécule molle, ceci gouverné par le principe de HSAB (Hard Soft Acide and Bas) (⁷⁵).

Tous les calculs sont effectués par la série de programme Gaussian 09. L'optimisation géométrique à été réalisée par la théorie de la fonctionnelle de la densité en utilisant les fonctionelles **B3PW91**, **BPV86** et **B3LYP** avec la base 6-31G (d,p) présente les paramètres énergétiques des molécules tels que la HOMO (orbitale moléculaire plus haut occupée), LUMO (orbitale moléculaire plus bas vacante) et la différence ΔE (le gap énergétique) entre les énergies des orbitales HOMO et LUMO.

Les valeurs énergétiques des orbitales moléculaires HOMO et LUMO permettent de prévoir et d'expliquer les différents types de réaction dans les molécules conjugués. Les énergies des orbitales moléculaires frontières (FMO) sont très utiles pour déterminer plusieurs propriétés moléculaires, tels que le potentiel d'ionisation (*I*), l'affinité électronique (*A*),

⁷⁵ G.L. Missler, D.A. Tar, inorganic Chemistry, 2 nd edition ,Prentice –Hallupper Saddle River,NJ,USA,1999.

l'indice électrophile (ω), potentiel chimique électronique (μ) (⁷⁶), l'électronégativité (χ) définie par Mulliken (⁷⁷) et la dureté globale (η) (^{78,79,80}) Avec :

$$I = -EHOMO$$
(IV.1)

Potentiel d'ionisation C'est l'énergie nécessaire pour arracher un électron d'un système.

$$\boldsymbol{A} = -\boldsymbol{E}\boldsymbol{L}\boldsymbol{U}\boldsymbol{M}\boldsymbol{O} \qquad (\mathbf{IV.2})$$

Affinité électronique C'est l'énergie gagnée par un système lorsqu'il capte un électron.

$$\omega = \frac{\mu^2}{2\eta}$$
 (IV.3)

L'indice électrophile (ω) exprime la capacité d'un électrophile d'acquérir une charge électronique supplémentaire.

$$\mu = -\frac{[I+A]}{2} = -\chi \qquad (IV.4)$$

potentiel chimique mesure la tendance des électrons à s'échapper d'une molécule. C'est une constante caractéristique de la molécule.

$$S = \frac{1}{2\eta}$$
(IV.5)

La dureté (η , Hardness) absolue exprime la résistance d'un système au changement de son nombre d'électrons.

Les figures (IV.2, IV.3, IV.4) montrent la présentation HOMO et LUMO de la molécule CH3-QU, NH2-QU et SCH3-QU. Les énergies de ces niveaux sont calculées par les méthodes **BPV86, B3PW91** et **B3LYP** dans la base 6-31G (d,p).

⁷⁶ 59J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, Electrophilicity-based charge transfer descriptor. J. Phys. Chem. A 111.1358–1361 (2007)

⁷⁷ R.S. Mulliken, J. Chem. Phy. 2,782 (1934)

⁷⁸ R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

⁷⁹ R.G. Parr, W. Yang, Density functional theory for atoms and molecules, Oxford University Press,New York (1982)

⁸⁰ R.G. Parr, L. von Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922-1924 (1999)

Figure IV.2 Orbitales moléculaires de CH3-QU

Figure IV.3 Orbitales moléculaires de NH2-QU

Figure IV.4 Orbitales moléculaires de SCH3-QU

Nous avons regroupé les résultats de gap énergétique (ΔE) obtenus dans le tableau IV.1 .On remarque que la valeur de (ΔE) est comprise entre 2.6892 eV et 4.29948 eV.

Il apparaît clairement que la plus grande valeur de (ΔE) est obtenue en utilisant fonctionnelle B3LYP et B3PW91. D'après les résultats obtenus on remarque que la molécule CH3-QU présente le gap énergétique plus élevé entre l'HOMO-LUMO, donc il est le plus stable et le moins actif chimiquement (tableau IV.1). Dans le cas du la composé NH2-QU présent le plus faible gap énergétique HOMO-LUMO, donc il est le moins stable et le plus actif chimiquement. Nous notons que l'effet de substituant SCH3 est augmenté l'énergie de la HOMO et celle de la LUMO.

On résulte que :

(ΔE) _{CH3-QU}> (ΔE) _{SCH3-QU}> (ΔE) _{NH2-QU}

La valeur du gap énergétique HOMO-LUMO du la composé NH2-QU est généralement associée à une réactivité importante de la molécule, traduisant une interaction importante par transfert de charge au sein de la molécule, ce qui favorise la bioactivité de la molécule.

L'indice d'électrophilicité est aussi un descripteur chimique de réactivité qui représente la stabilisation de l'énergie de système lorsque la molécule reçoit une charge supplémentaire. Les valeurs associés à ce paramètre indiqué dans le Tableau IV.1 nous on permet de faire un

classement selon l'ordre suivant : ω SCH3-QU > ω CH3-QU > ω NH2-QU (BPV86 et B3PW91)

Tab. IV.1 Energie de gap ΔE (eV), potentiel d'ionisation *I* (eV), affinité électronique *A* (eV), potentiel chimique μ (eV), électronégativité χ (eV) , la dureté η (eV), et l'indice d'électrophile ω (eV) des dérivés de quinoléine calculés par DFT au niveau 6-31G(d,p)

SCH ₃ -QU		E(au)	E _{HOMO}	E _{LUMO}	ΔΕ	μ	χ	η	S	ω	Ι	Α
	BPV86	-909.921	-4.968	-2.223	<mark>2.745</mark>	-3.596	3.596	1.373	0.686	4.709	4.968	2.223
	B3PW91	-909.614	-5.800	-1.552	4.248	-3.676	3.676	2.124	1.062	3.181	5.800	1.552
	B3LYP	-909.857	-5.677	-1.424	4.253	-3.550	3.550	2.127	1.063	2.964	5.677	1.424
CH ₃ -QU	BPV86	-516.522	-4.926	-2.116	<mark>2.809</mark>	-3.521	3.521	1.405	0.702	4.413	4.926	2.116
	B3PW91	-516.300	-5.679	-1.380	4.299	-3.530	3.530	2.150	1.075	2.898	5.679	1.380
	B3LYP	-516.495	-5.582	-1.285	4.297	-3.433	3.433	2.149	1.074	2.743	5.582	1.285
NH ₂ -QU	B3LYP	-529.586	-5.126	-0.935	4.191	-3.030	3.030	2.096	1.048	2.191	5.126	0.935
	B3PW91	-529.389	-5.250	-1.059	4.191	-3.154	3.154	2.096	1.048	2.374	5.250	1.059
	BPV86	-529.626	-4.417	-1.728	<mark>2.689</mark>	-3.073	3.073	1.345	0.672	3.511	4.417	1.728

IV-2 Propriétés optiques non linéaires

L'apparition de l'optique comme discipline des sciences non linéaires ne date que de **1962**. Cela faisait déjà longtemps que les phénomènes non linéaires étaient étudiés dans d'autres domaines de la physique, mécanique, acoustique, dynamique des fluides, électronique, ou de la chimie. L'optique non linéaire (ONL) étant constituée de l'ensemble des phénomènes qui résultent de la non-linéarité de la réponse d'un milieu matériel à l'action d'une onde électromagnétique du domaine optique, Les phénomènes optiques que nous percevons dans notre vie quotidienne, relèvent d'interactions entre la lumière et la matière. Les interactions classiques comme la diffusion, la réfraction, la réflexion s'effectue dans le domaine de l'optique linéaire. Cela n'est plus vérifié pour de fortes intensités lumineuses comme celles produites par les lasers. Les propriétés optiques peuvent alors varier en fonction du carré, du cube ou des puissances supérieures de l'intensité de l'onde incidente: il s'agit du domaine de l'optique non linéaire (ONL).

Les molécules présentant des propriétés optiques non linéaires(ONL) sont des molécules avec des électrons facilement polarisables c'est-à-dire des électrons π . Ce non linéarité optique caractérise les molécules organiques conjuguées qui contiennent un groupe accepteur

d'électrons et un groupe donneurs. En effet Davydov (⁸¹) a montré que les propriétés ONL moléculaires provenaient des interactions donneur-accepteur. Les paramètres ONL (μ , α et β) cités en dessus sont calculé à l'aide des équations bien définie sont comme suit :

• Le moment dipolaire total peut être calculé par l'équation suivante:

$$\mu = \left(\mu_x^2 + \mu_y^2 + \mu_z^2\right)^{1/2}$$
 (V.6)

• L'équation correspondante au calcul de la polarisabilité est comme suit:

$$\alpha_{tot} = \frac{\alpha_{xx} + \alpha_{yy} + \alpha_{zz}}{3}$$
(V.7)

L'hyper polarisabilité est calculé par le logiciel gaussian 09 suivant la matrice 6x3 réduite à 10 diagonalisée a cause de la symétrie sont comme suit (⁸²)

•
$$\beta_{tot} = \left(\beta_x^2 + \beta_y^2 + \beta_z^2\right)^{1/2}$$
 (V.8)

D'où;

- $\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$
- $\beta_y = \beta_{yyy} + \beta_{xxy} + \beta_{yzz}$
- $\beta_z = \beta_{zzz} + \beta_{xxzz} + \beta_{yyz}$

Cependant, les valeurs de β et de α sont exprimées en unités atomiques (a.u), avec :

- $\alpha : 1 a. u = 0.1482 * 10^{-24} esu$
- $\beta : 1 a. u = 8.6393 * 10^{-33} esu$

IV-2-1 Propriétés optiques non linéaires des dérives de Quinoléine

Dans notre travail nous avons étudié les propriétés optiques non linéaires des dérives de Quinoléine. La détermination de ces propriétés (ONL) avec précision reste difficile et demande une attention particulière notamment pour le choix de la base. Les géométries ont été obtenues par la méthode DFT avec la base 6-31G (d,p). Le choix de cette méthode est justifié par le fait qu'elle donne des bons résultats en ce qui concerne les paramètres géométriques moléculaires. La valeur maximale du moment dipolaire a été obtenue avec la fonctionnelle **BPV86** (4.6162D) pour **NH2-QU**, par contre la plus basse valeur a été obtenue par la fonctionnelle **B3LYP** (1.2249D) pour SCH3-QU.

⁸¹ B.L. Davydov, L.D. Dekacheva, V.V. Dunina, M.E. Zhabotinski, V.F. Zolin, L.G. Korenevaet M.A. Samokhina. JETP Lettres, 12, 16 (1970).

⁸² Bruce F. Milne, Fernando Nogueira, Cláudia Cardoso, dalton Trans. 2013. 423695.

Tab. IV.2Moment dipolaire μ_{tot} (D) des dérives de Quinoléine calculés par DFT au niveau6-31G (d,p)

		μ_x	μ_y	μ_z	μ_{tot}
CH3-QU	BPv86	1.7258	-1.9702	0.0003	2.6192
	B3PW91	-1.7843	-2.1067	0.0001	2.7608
	B3IYP	1.7399	-2.0920	0.0004	2.7210
NH2-QU	BPv86	-4.3888	-1.4311	0.0014	4.6162
	B3PW91	-4.2277	-1.6871	-0.0002	4.5519
	B3IYP	-4.1397	-1.6291	0.0007	4.4487
SCH3-QU	BPv86	0.0744	-1.5498	0.0022	1.5516
	B3PW91	-0.0199	-1.2643	0.0023	1.2644
	B3IYP	-0.0674	-1.2230	0.0024	1.2249

Figure IV.5 Variation du moment dipolaire de CH3-QU, NH2-QU et SCH3-QU obtenus au niveau B3LYP, B3PW91 et BPV86

Généralement, l'activité optique non linéaire est directement liée aux valeurs de la polarisabilité α_{tot} et de l'hyperpolarisabilité de premier ordre β_{tot} . A partir des géométries optimisées, les composantes du tenseur de polarisabilité sont obtenues en calculant les

dérivées premières, et secondes de l'énergie par rapport aux coordonnées cartésiennes du champ électrique. Nous avons regroupé les résultats des propriétés ONL obtenus dans les tableaux IV.3 et IV.4. On remarque que la valeur de la polarisabilité α_{tot} est comprise entre 1.5119×10^{-23} (esu) et 1.958×10^{-23} (esu).

Figure IV.6 Variation du polarisabilités de **CH3-QU**, **NH2-QU** et **SCH3-QU** obtenus au niveau B3LYP, B3PW91 et BPV86

Tab. IV.3 Polarisabilités $\alpha_{tot} \times 10^{-23}$ (esu) des dérives de Quinoléine calculés par DFT au niveau 6-31G (d,p)

		α_{xx}	α_{xy}	α_{yy}	α_{xz}	α_{yz}	α_{zz}	α (au)	a(esu)
	B3LYP	174.310	0.199	123.351	0.002	-0.009	44.367	114.009	1.690
CH3-QU	B3PW91	173.820	-0.182	123.081	-0.002	0.002	44.680	113.860	1.687
	BPV86	182.544	0.080	128.702	0.003	-0.011	45.242	118.829	1.761
	B3LYP	167.313	-3.562	113.886	0.002	-0.001	25.547	102.098	1.513
NH2-QU	B3Pw91	166.584	-3.462	113.434	0.001	-0.001	25.772	101.930	1.511
	BPV86	175.271	-3.429	118.973	-0.002	-0.001	26.282	106.842	1.583
	B3LYP	201.494	-0.425	137.110	-0.008	0.0002	39.541	126.048	1.868
SCH3-QU	B3PW91	201.043	-0.578	136.391	-0.007	-0.001	39.872	125.769	1.864
	BPV86	213.425	-0.612	142.308	-0.009	0.000	40.590	132.108	1.958

Chapitre IV Etude des propriétés physico-chimie des dérives de Quinoléine

Il apparaît clairement que la plus grande valeur de l'hyperpolarisabilité est obtenue en utilisant la fonctionnelle **BPV86** (7.657×10⁻³⁰ (esu)). L'urée (μ (1,3732 Debye) et β (0,3728×10– 30esu)) est l'une des molécules prototypiques utilisées dans l'étude des propriétés NLO des systèmes moléculaires et elle a été utilisée comme une valeur seuil pour faire la comparaison. L'hyperpolarisabilité du premier ordre de l'urée calculée par H. Tanak et al (⁸³) est considéré comme une référence qui est utilisée dans l'étude des propriétés ONL des systèmes moléculaires.

Figure IV.7 Variation d' Hyperpolarisabilités de CH3-QU, NH2-QU et SCH3-QU obtenus au niveau B3LYP, B3PW91 et BPV86

⁸³ H. Tanak, Y. Köysal, Ş. Işık, H. Yaman, V. Ahsen, Korean Chem. Soc, Vol. 32, 2 673, (2011).

Tab.IV.4 Hyperpolarisabilités $\beta_{tot} \times 10^{-30}$ (esu) des dérives de Quinoléine calculés par DFT au niveau 6-31G (d,p)

		Bxxx	βxxy	βхуу	Вууу	Bxxz	Bxyz	βyyz	βxzz	βyzz	βzzz	βtot (a,u)	βtot
CH3-QU	B3LYP	170.936	-59.229	-5.158	-174.390	-1.785	-1.387	-0.862	38.776	-4.997	-0.761	314.311	2.715
	B3PW91	-165.048	-60.759	9.241	-177.000	2.061	1.042	-0.762	-38.390	-4.851	-1.109	310.761	2.685
	BPV86	168.695	-74.883	-10.643	-190.018	-3.696	-1.180	-1.851	42.230	-4.547	-1.006	335.794	2.901
NH2-QU	B3LYP	188.316	-175.542	13.357	-201.981	0.576	1.137	0.563	-3.210	-3.686	0.053	429.778	3.713
	B3PW91	183.366	-175.438	13.533	-199.431	0.697	0.225	-1.092	-3.407	-1.915	0.075	423.563	3.659
	BPV86	171.887	-170.291	9.128	-206.058	-0.169	0.121	0.253	-2.863	-3.832	0.096	419.851	3.627
	B3LYP	-599.803	-157.800	-13.324	-168.262	0.785	0.385	-0.227	-3.922	15.341	0.053	690.866	5.969
SCH3-QU	B3PW91	-623.302	-165.042	-13.296	-170.039	0.554	0.365	-0.172	-3.800	16.038	0.155	715.470	6.181
	BPV86	-794.900	-187.116	-16.176	-177.558	1.433	0.266	-0.323	-4.063	16.675	-0.027	886.316	7.657

V. 3. Potentiel électrostatique

Le potentiel électrostatique moléculaire (MEP) est lié à la densité électronique. Ce dernier est un descripteur très utile pour déterminer les sites électrophiles et nucléophiles (^{84, 85}) ainsi que les interactions de la liaison hydrogène (^{86, 87}) Pour connaitre les sites réactifs d'attaque électrophile ou nucléophile pour notre composé, le MEP a été évalué en utilisant la méthode B3LYP/ 6-31G. La figure V.3, montrant le MEP de dérivée de quinoléine **SCH3-QU, NH3-QU et CH3-QU**, a été visualisée à l'aide du programme GaussView 09. Les différentes valeurs de la surface MEP sont représentées par différentes couleurs: la couleur rouge représente les régions du potentiel électrostatique le plus électropositif (pauvre en électron) et la couleur verte montre les régions où le potentiel est nul. Ces cartes ont été représentées entre $-5,659e^{-2}a.u$ (rouge le plus profond) et $5,659e^{-2}a.u$ (le bleu le plus profond).pour SCH3-QU, $[-7,967e^{-2}_7,967e^{-2}]$ pour NH2-QU et, $[-4,811e^{-2}_4,811e^{-2}]$ Pour CH3-QU.

Figure V-8 potentiel électrostatique théorique dans les dérivées de la molécule étudiée SCH3-QU_NH2-QU_CH3-QU Couleur bleu : contour équipotentiel positif, Couleur rouge : contour équipotentiel négatif

⁸⁴ P Politzer, R. Patricia Laurence, K. Jayasuriya, Environ. Health Perspect.61,191 202 (1985).

⁸⁵ A. Pullman, B. Pullman, R. Lavery, J. Mol. Struct. 93, 85–91 (1983).

⁸⁶ H. Roohi, A.R. Nowroozi, E. Anjomshoa, Comput. Theor.Chem. 965, 211–220 (2011).

⁸⁷ P. Munshi, T.N. Guru Row, ActaCrystallogr. B62, 612–626 (2006).

Le modèle résultant présente simultanément la taille et la forme moléculaires ainsi que les régions de potentiel électrostatique positif, négatif et neutre en termes de gradation de couleur. La région négative maximale préférait le site de couleur rouge pour les indications d'attaque électrophile et la région positive maximale préférait le site de couleur bleue pour les attaques nucléophiles. Comme on peut le voir dans la figure, cette molécule a un site d'attaque électrophile. Une région de potentiel moins négative est observée autour des atomes d'oxygène, soufre et l'azote. Les régions positives maximales (région bleue) sont localisées sur l'atome H, ce qui indique des sites possibles pour une attaque nucléophile où le bleu indique l'attraction la plus forte et le rouge indique la plus forte répulsion. Ces résultats fournissent des informations concernant la région où le composé peut avoir une interaction intra- ou intermoléculaire et une liaison hydrogène.

Selon Les résultats obtenus, les cartes MEP montrent que les sites potentiels moins négatifs sont situés sur les atomes d'azote (N10). Par contre les sites potentiels positifs sont localisés autour des atomes d'hydrogène pour les trois molécules, Ces sites donnent des informations sur les régions à partir desquelles le composé peut avoir des interactions intermoléculaires. La figure. V.3 confirme l'existence d'une interaction de type N...HO

Conclusion Générale

Nous avons effectué une étude théorique des propriétés géométriques, propriétés Vibrationnelles de CH3-QU (8-Hydroxy-2-methylquinoline), NH2-QU (8-Hydroxy-2-aminoquinoline), SCH3-QU. Pour ce faire, nous avons utilisé la théorie de la fonctionnelle de la densité (DFT) avec les fonctionnelles B3PW91, BPV86 et B3LYP avec la base 6- 31G (d, p). Les calculs d'optimisation de géométrie de ces molécules ont été effectués en utilisant le logiciel Gaussian 09. Les fréquences de vibration sont étudiés en utilisant la méthode DFT avec la base 6-31G (d, p) .Chaque fréquence de vibration est attribuée sur la base de la distribution d'énergie potentielle (PED). Un objectif sous-jacent de notre étude est la détermination des propriétés physique chimique et les propriétés optique non linaire moléculaires de drivée de quinoléine telles que : le moment dipolaire, polarisabilité, l'hyperpolarisabilités, les orbitales moléculaires frontières ainsi que le gap énergétique, L'ensemble de ces propriétés permettra de mettre en évidence le transfert de charge au sein de ces dérivés.

Nous pouvons dire que la DFT reste la méthode la plus appropriée pour ce type de paramètres. Par conséquent, ces résultats montrent que ces composés présentent une délocalisation électronique importante et ils peuvent avoir des applications diverses en relation avec le transfert d'électrons. Ces simulations numériques permettent néanmoins d'obtenir des informations fiables sur le rôle de la structure géométrique, et de la nature des substituant sur les propriétés ONL. Elles constituent un outil précieux pour prédire l'évolution des caractéristiques moléculaires, et permettent ainsi d'optimiser le choix des molécules, avant de les synthétiser. Il pourrait être intéressant de synthétiser les composés ayant le plus grand valeur de β et la plus petite valeur de l'écart énergétique

¹G. Y. Lesher, F. Grutt, M.D. Bailer, J.H. Brumalage, J. R. Med. Chem., 1962, 5, 1063.

²N. L. Allinger, M. P. Cava, D. C. De Jongh, C. R. Johnson, N. A. Lebel, C. L. Stevens " Chimie Organique" ed. Mc Graw-Hill Tome3, 1983, 774.

³ W. Solomon, V. N. Ronihold, Ed. S. W. Pelletie "The Chemistry of Alkaloïdes" New York, 1970, 301.

⁴D. Barton, D. Ollis, Comprehensive organic Chemistry, the synthesis and reactions of organic compound, ed. Lst, 1e ed., 1979, Vol IV, 160.

⁵D. Kaminsh, R. Murayama, R. I. J. Med. Chem, 1968, 11, 160.

⁶O. Meth-Cohn, Heterocycles, 1993, 35, 539.

⁷R. A. Katrizky, W. C. Rees, E.F.V. Scriven " Comprehensive Heterocycle.Chemistry " 1e ed., 1994, Vol V, 294.

⁸G. D. Claylon, F. E. Clayton, "Patty's Industrial Hygiene and Toxicology, Part Toxicology" Vol II, 4e éd. John, Wiley & Sons, New York, 1994, 3394.

⁹C. R. Worthing, "The pesticide manual" 8e éd., British Crop Protection council, BCPC, U.K, 1987, 405.

¹⁰Yassir Filali Baba, Youssef Kandri Rodi, Nada Kheira Sebbar, Sonia Hayani, Khalid Misbahi, Fouad Ouazzani Chahdi, El Mokhtar Essassi, J.MAR.CHIM.HETEROCYCL., 2018, 17(1), 83.

¹¹Chen, C. H. & Shi, J. M. Coord. Chem. Rev. 171, 161–174, (1998).

¹²Kulkarni, A. P., Tonzola, J., Babel, A. & Jenekhe, S. A. Chem. Mater. 16, 4556–4573, (2004).

¹³ Barış Seçkin Arslan, Seda Nur Ülüş, Merve Gezgin, Burcu Arkan, Emre Güzel, Davut Avcı, Mehmet Nebioğlu Ilkay Şişman, Optical Materials, 106, 2020, 109974

¹⁴ Muhammad Khalid, Muhammad Adeel, Malik Aman Ullah, Muhammad Usman Khan, Muhammad Nawaz Tahir, Ataualpa Albert Carmo Braga, <u>Journal of Saudi Chemical Society</u>, <u>23 (5)</u>, 2019, Pages 546-560

¹⁵ E. Schrödinger, Ann.physik, 79, 361, 1926.

¹⁶ Méthode Hartree-Fock Gerald Monard Modélisation Moléculaire -<u>www.monard.info</u>

¹⁷ P.Hohenberg and W.Kohn, Inhomogeneous Electron Gas, phys. Rev. 136, B864, 1964

¹⁸ Simone Raoux, Matthias wuttig, Phase Change Materials Science and Applications. P18 20,
22. Spinger Science+Business Media, LLC, 2009.

¹⁹ Soumia Lardjane, Etude des propriétés structurales, électroniques et magnétiques du semiconducteur magnétique dilué : ZnO dopé0 au Cobalt. Université Abou Bekr Belkaid de Tlemcen, 2013.

²⁰ W. Kohn, L. J. Sham, Self-Consistant Equations Including Exchange and Correlation Effects, Phys. Rev. 140, A1133, 1965.

- ²¹ W. Kohn, L. Sham, Phys. Rev., A1133 (1965)140.
- ²² W. Kohn and L. J. Sham, Phys. Rev. 140, A1133, (1965).
- ²³ D. M. Ceperly, B. J. Alder, Phys. Rev. Lett 45, 566 (1980).
- ²⁴ S. J. Vcsko, L. Wilk and M. Nusair, Can. J. Phys 58, 1200 (1980)

²⁵ J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)

²⁶ J. P. Perdew, K. Burke and M. Ernzerhof, Phys Rev lett, 77.3865(1996)

²⁷ J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)

²⁸ Hrris, J.; Jones, R. O.; *Phys. F : Met. Phys.*; 1974; 4; 1170

²⁹ Becke, A. D.; *J. Chem. Phys.*; 1993; 98; 1372

³⁰ Becke, A. D.; J. Chem. Phys.; 1993; 98; 5648.

³¹ Perdew, J. P.; Burke, K.; Ernzerhof, M.; Phys. Rev. Lett. ; 1996; 77; 3865.

³²Chujo ,I ; Masuda ;Bioorganic and medicinal chemistry,2001,1,9,3273-3286.

³³Jie-Jack Li; E.G,Corey . *Name reactions in heterocyclic chemistry 2005* by John Wiley & Sons.Inc.402.

³⁴ I. Tomassoli. Thèse de Doctorat en Sciences de la vie et de la santé. UFR des Sciences Médicales et Pharmaceutiques de Besançon. Cedex, 2010.

³⁵ J.P.Michael. Natural Product Reports, 14, (1997), 605-618.

³⁶ Bahoussi Rawiya Imane, Thèse de Doctorat en Génie des Procédés, Université de Mostaganem, 2017.

³⁷ Akranth Marella, Om Prakash Tanwar, Rikta Saha, Mohammad Rahmat Ali, Sandeep Srivastava, Mymoona Akhter, Mohammad Shaquiquzzaman, Mohammad Mumtaz Alam, Saudi Pharmaceutical Journal, 21(1), 2013, Pages 1-12

³⁸Fouzia Fadel, Soumia Lafquih Titouani, Mohamed Soufiaoui, Hafida Ajamay and Ahmed Mazzah, Tetrahedron Letters 45 (2004) 5905–5908

³⁹ Tim Van de Walle, Maya Boone, Julie Van Puyvelde, Jill Combrinck, Peter J. Smith, Kelly Chibale, Sven Mangelinckx, Matthias D'hooghe, European Journal of Medicinal Chemistry, 198, 2020, 112330

⁴⁰ Mausumi Chattopadhyaya and Md Mehboob Alam, Chemical Physics Letters,754, 2020, 137582

⁴¹ Bhornrawin Akkachairin, Warabhorn Rodphon, Onrapak Reamtong, Mathirut Mungthin, Jumreang Tummatorn, Charnsak Thongsornkleeb, Somsak Ruchirawat, Bioorganic Chemistry,98, 2020, 103732

⁴² Farhad Shirini, Asieh Yahyazadeh, Kamal Mohammadi, Nader Ghaffari Khaligh, Comptes Rendus Chimie, 17(4), 2014, Pages 370-376

⁴³ Claudia A. Costa, Rayssa M. Lopes, Leticia S. Ferraz, Gabriela N.N. Esteves, Juliana F. Di Iorio, Aline A. Souza, Isadora M. de Oliveira, Flavia Manarin, Wagner A.S. Judice, Helio A. Stefani, Tiago Rodrigues, Bioorganic & Medicinal Chemistry, 28(11), 2020, 115511

⁴⁴ Younos Bouzian, Khalid Karrouchi, Yusuf Sert, Chin-Hung Lai, Lhassane Hani, Noureddine Hamou Ahabchane, Ahmed Talbaoui, Joel T. Mague, El Mokhtar Essassi, Journal of Molecular Structure, 1209, 2020, 127940

⁴⁵ B. Sureshkumar, Y. Sheena Mary, C. Yohannan Panicker, S. Suma, Stevan Armaković, Sanja J. Armaković, C. Van Alsenoy, B. Narayana, Arabian Journal of Chemistry, 13(1), 2020, 632-648

⁴⁶Aleksandra Minić, Tim Van de Walle, Kristof Van Hecke, Jill Combrinck, Peter J. Smith, Kelly Chibale, Matthias D'hooghe, European Journal of Medicinal Chemistry, 187, 2020, 111963

Bíbliographies

⁴⁷ Fatemeh Jafari, Hedyeh Baghayi, Parirokh Lavaee, Farzin Hadizadeh, Fatemeh Soltani, Hamideh Moallemzadeh, Salimeh Mirzaei, Sayyed Mohammad Aboutorabzadeh, Razieh Ghodsi, European Journal of Medicinal Chemistry, 164, 2019, Pages 292-303

⁴⁸ Baicun Li, Feifeng Zhu, Fengming He, Qingqing Huang, Tong Wu, Taige Zhao, Yingkun Qiu, Zhen Wu, Yuhua Xue, Meijuan Fang, Bioorganic Chemistry 96, 2020, 103592

⁴⁹ Yan-Tao Yang, Shuzhang Du, Song Wang, Xuedong Jia, Xiaojuan Wang, Xiaojian Zhang, Steroids 151, 2019, 108465

⁵⁰ Xue-Mei Chu, Cong Wang, Wen Liu, Li-Li Liang, Kai-Kai Gong, Cheng-Ying Zhao, Kun-Lai Sun, European Journal of Medicinal Chemistry 161, 2019, Pages 101-117

⁵¹ K.N. Vennila , D. Sunny , S. Madhuri , Samuele Ciattini , Laura Chelazzi , Kuppanagounder P. Elango, Bioorganic Chemistry, 81, 2018, Pages 184-190

⁵² Shweta Jain, Vikash Chandra, Pankaj Kumar Jain, Kamla Pathak, Devendra Pathak, Ankur Vaidya, Arabian Journal of Chemistry, 12(8 2019, 4920-4946

⁵³ N. Belloula. Magister en Chimie Organique. Université Mentouri-Constantine, 2017.

⁵⁴ H. El Ouazzani, S. Dabos–Seignon, D. Gindre, K. Iliopoulos, M. Todorova, R. Bakalska, P. Penchev, S. Sotirov, Ts. Kolev, V. Serbezov, A. Arbaoui, M. Bakasse and B. Sahraoui, Journal of Physical Chemistry C, 2012.

⁵⁵ N. Boukabcha, A. Djafri, Y. Megrouss, Ö.Tamer, D. Avcı, M. Tuna, N. Dege, A. Chouaih, Y. Atalay, A. Djafri, F. Hamzaoui, Journal of Molecular Structure, 1194, 112-123 (2019)

⁵⁶ Nuha A. Wazzan, Ohoud S. Al-Qurashi, Hassan M. Faidalla, Journal of Molecular Liquids, 223, 2016, 29-47

⁵⁷ Rajeev T. Ulahannan, C. Yohannan Panicker, Hema Tresa Varghese, Robert Musiol, Josef Jampilek, Christian Van Alsenoy, Javeed Ahmad War, S.K. Srivastava, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 151, 2015, 184-197

⁵⁸ H. El Ouazzani. Thèse de Doctorat en Physique. Université d'Angers, Angers, France. Université Chouaib Doukkali El Jadida, Maroc. 2012.

⁵⁹Frisch, M. J., Trucks, G. W., and al , Gaussian, Inc., Wallingford CT, Gaussian 09, Revision, A.02, (2009).

⁶⁰ Yousef Fazaeli, Mostafa M. Amini, Shan Gao and Seik Weng Ng, Acta Cryst. (2008). E64, 097

⁶¹ E.B. Wilson, Molecular vibrations: the theory of infrared and Raman vibrational spectra, Courier Dover Publications, 1955.

⁶² X. Zhou; L. Wang; P. Qin, J. Comput. Theor. Nanosci 9 (2012) 814.

⁶³ É. Biémont, Spectroscopie moléculaire: structures moléculaires et analyse spectrale, De Boeck Supérieur, 2008.

⁶⁴ I. Taleb, Apport de la spectroscopie vibrationnelle, infrarouge et Raman, Reims, 2013.

⁶⁵ A. CHEDIN; Z. CIHLA, Cahiers de Physique. 21 (1966) 129

⁶⁶ M. Dalibart, Spectroscopie Dans l'infrarouge, Ed. Techniques Ingénieur, 2000.

⁶⁷ Céline Daher, Thèse de doctorat, Université Pierre et Marie Curie. Paris, 2012.

⁶⁸ Emil Biémont. Spectroscopie moléculaire, structures moléculaires et analyse spectrale. De Boeck Université. Bruxelles, 2008.

Bíbliographies

⁶⁹ M. Borella. Thèse de Doctorat. Institut national polytechnique de Lorraine. Nancy (2006).
37

⁷⁰ D. Bertrand. Chimiomètrie, Bioinformatique : la spectroscopie infrarouge. INRA, Nantes. (2008). 7

- ⁷¹ Y. Morino; K. Kuchitsu, The Journal of Chemical Physics. 20 (1952) 1809
- ⁷² Z. Konkoli; D. Cremer, International journal of quantum chemistry. 67 (1998) 1
- ⁷³ M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.
- ⁷⁴ Fukui, K., J. Chem. Phys., 1952,20 722.

⁷⁵ G.L. Missler, D.A. Tar, inorganic Chemistry, 2 nd edition ,Prentice –Hallupper Saddle River,NJ,USA,1999.

⁷⁶ 59J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, Electrophilicitybased charge transfer descriptor. J. Phys. Chem. A 111.1358–1361 (2007)

⁷⁷ R.S. Mulliken, J. Chem. Phy. 2,782 (1934)

⁷⁸ R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

⁷⁹ R.G. Parr, W. Yang, Density functional theory for atoms and molecules, Oxford University Press,New York (1982)

⁸⁰ R.G. Parr, L. von Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922-1924 (1999)

⁸¹ B.L. Davydov, L.D. Dekacheva, V.V. Dunina, M.E. Zhabotinski, V.F. Zolin, L.G. Korenevaet M.A. Samokhina. JETP Lettres, 12, 16 (1970).

⁸² Bruce F. Milne, Fernando Nogueira, Cláudia Cardoso, dalton Trans. 2013. 423695.

⁸³ P Politzer, R. Patricia Laurence, K. Jayasuriya, Environ. Health Perspect.61,191 202 (1985).

⁸⁴ A. Pullman, B. Pullman, R. Lavery, J. Mol. Struct. 93, 85–91 (1983).

⁸⁵H. Roohi, A.R. Nowroozi, E. Anjomshoa, Comput. Theor.Chem. 965, 211–220 (2011).

⁸⁶ P. Munshi, T.N. Guru Row, ActaCrystallogr. B62, 612–626 (2006).

Résumé

Ce travail porte sur une étude théorique de dérivés de quinoléine , Les calculs théoriques ont été réalisées à l'aide de la théorie de la fonctionnelle de la densité BPV86, B3PW91et B3LYP avec les bases 6-31G (d, p). Les résultats de calcul réalisés par (DFT) avec la Fonction B3LYP et la base 6-31G (d,p) conduit à des résultats similaires dans les angles et longueurs de liaison par rapport à l'expérience. Les calculs de spectroscopie IR ont permis d'attribuer des fréquences aux différents modes de vibration de la molécule. Ces calcules théorique a été effectué par les mêmes méthodes et la même base de calcul utilisées lors de l'optimisation de la structure. Les assignations des modes vibratoires ont été effectuées à l'aide de la distribution d'énergie potentielle (PED) en utilisant le programme VEDA4. Les propriétés moléculaires permettront de mettre en évidence le transfert de charge au sein de ces dérivés, tels que le moment dipolaire, polarisabilité, l'hyperpolarisabilités, les orbitales moléculaires frontières HOMO, LUMO ainsi que le gap énergétique. Le potentiel électrostatique moléculaire (MEP) est déterminé afin de trouver les sites les plus réactifs pour les attaques électrophiles et nucléophiles.

Mots clés : DFT, Dérivée de Quinoléine, ONL, HOMO, LUMO

Abstract

This work relates to a theoretical study of quinoléine derivatives, The theoretical calculations were carried out using the density functional theory BPV86, B3PW91 and B3LYP with bases 6-31G (d, p). The calculation results carried out by (DFT) with the B3LYP function and the bases 6-31G (d, p) leads to similar results in the angles and lengths of connection compared to the experiment. These theoretical calculations were carried out using the same methods and the same calculation basis used during the optimization of the structure. The vibration mode assignments were made using potential energy distribution (PED) using the VEDA4 program. The molecular properties will make it possible to demonstrate the transfer of charge within these derivatives, such as dipole moment, polarizability, hyperpolarizability, border molecular orbitals HOMO, LUMO as well as the energy gap. The molecular electrostatic potential (MEP) is determined in order to find the most reactive sites for electrophilic and nucleophilic attacks.

Key words: DFT, Quinoline Derivatives, ONL, HOMO, LUMO

ملخص يتعلق هذا العمل بدراسة نظرية لمشتقات الكينولين ،تم إجراء الحسابات النظرية باستخدام نظرية الكثافة الوظيفية B3LYP و B3PW9 و B3PW6 مع القاعدة (c,c) 31G-6(d,p) مع وظيفة B3LYP و القاعدة (c,c) 31G-6(d,p) مع القاعدة (c,c) قي الزوايا وأطوال الاتصال فيما يتعلق بالتجربة جعلت حسابات التحليل الطيفي للأشعة تحت الحمراء من الممكن تعيين الترددات لمختلف أنماط اهتزاز الجزيء. تم إجراء هذه الحسابات النظرية باستخدام نفس الأساليب وأساس الحساب نفسه المستخدم أثناء تحسين البنية. تم إجراء هذه الحسابات النظرية باستخدام نوزيع الطاقة المحتملة (PED) باستخدام برنامج VEDA4. تم إجراء تعيينات وضع الاهتزاز باستخدام توزيع الطاقة المحتملة (PED) باستخدام برنامج VEDA4. سوف تجعل الخصائص الجزيئية من الممكن إثبات نقل الشحنة داخل هذه المشتقات. مثل عزم ثنائي القطب ، الاستقطاب ، الاستقطاب المفرط ، المدارات الجزيئية الحدودية HOMO, LUMO وكذلك فجوة الطاقة. يتم تحديد الجهد الكهروستاتيكي الجزيئي (MEP) من أجل العثور على أكثر المواقع تفاعلاً للهجمات الكهربية والنيوكليوفيلية. DFT, ONL, HOMO, LUMO