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Résumé en Français

Contrubutions à l’étude de quelques classes d’équations différentielles

aléatoires d’ordre fractionnaire

Resumé :

Dans cette thèse, nous considérons l’étude de l’existence des solutions alèatoires et

la stabilité de type Ulam et l’attractivité de quelques classes d’équations différentielles

avec les dérivées fractionnaires de Caputo, Hadamard, Fabrizio et Katugampola dans des

espaces de Fréchet. Les méthodes utilisées sont basées sur la théorie de point fixe et

la mesure de non compacité dans les espaces de Fréchet .Nous avons également montré

l’existence de solutions aléatoires pour certaines classes d’equations différentielles fraction-

naires alèatoires avec retard. De plus, pour la justification de nos résultats, nous donnons

divers exemples ilustratifs.

Mots clés : équation différentielle, équation intégrale, dérivée fractionnaire,

solution aléatoire, espace de Banach, stabilité d’Ulam, point fixe, attractiv-

ité, problème non local, retard fini, retard infini, retard dépendant de l’état,

mesure de non compacité, espace de Fréchet.
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Abstract in English

Contributions to the study of some classes of random differential equations

of fractional order

Abstract :

In this thesis, we consider the study of the existence of random solutions and the Ulam

stability and the attractivity of serveral classes of differential equations with fractional

derivatives of Caputo, Hadamard, Fabrizio and Katugampola in Fréchet spaces. The used

methods are the random fixed point and the technique of the measure non-compactness.

We have also shown the existence of random solutions for certain classes of random frac-

tional differential equations with delay. In addition, for the justification of our results, we

give various examples in each chapter.

Keywords :Differential equation, fractional integral, fractional derivative,

random solution, Banach space, Ulam stability, fixed point, attractivity, non-

local problem, finite delay, infinite delay, state-dependent delay, measure of

non compactness, Fréchet space.



   

 ملخص
 

نأخذ في الاعتبار دراسة وجود الحلول العشوائية واستقرار أولام   الرسالة،في هذه          

  هادامارد، لكابوتو،وجاذبية الفئات الخدمية للمعادلات التفاضلية مع المشتقات الكسرية 

. الطرق المستخدمة هي النقطة الثابتة العشوائية  فريشي فابريزيو وكاتوجامبولا في فضاء 

نا أيضًا وجود حلول عشوائية لفئات معينة من  . لقد أظهرالتراصوتقنية قياس عدم 
نقدم   نتائجنا،لتبرير  ذلك،المعادلات التفاضلية الجزئية العشوائية مع تأخير. بالإضافة إلى 

                                                        أمثلة مختلفة في كل فصل.

  

 عشوائي،حل  كسري،مشتق  كسري،تكامل  تفاضلية،معادلة  الكلمات مفتاحية:             

تأخير    محدود،تأخير  محلية،مشكلة غير  جاذبية، ثابتة،نقطة   أولام،استقرار  باناخ،فضاء 
. فريتشي فضاء ،قياس عدم التراص الحالة،تأخير معتمد على   لانهائي،  
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INTRODUCTION

� This is an apparent paradox from which, one day, useful consequences will

be drawn.�. It is an apparent paradox which will one day have beneficial consequences

Drawn These words are Leibniz’s response to the letter from Hopital in which he was

asked the next question � What if the order will be 1
2
? � .

Several authors consider this letter dated September 30, 1695, as time birth of frac-

tional calculus. So fractional calculus is a mathematical subject dating back over 300

years.

The fractional calculus it its origin in the works by Leibnitz, L’Hopital (1695), Bernoulli

(1697), Euler (1730), and Lagrange (1772). Some years later, Laplace (1812), Fourier

(1822), Abel (1823), Liouville (1832), Riemann (1847), Grünwald (1867), Letnikov (1868),

Nekrasov (1888), Hadamard (1892), Heaviside (1892), Hardy (1915), Weyl (1917), Riesz

(1922), P. Levy(1923), Davis (1924), Kober (1940), Zygmund (1945), Kuttner (1953), J.

L. Lions (1959), and Liverman (1964)... have developed the basic concept of fractional

calculus.

However, fractional calculus can be considered a new topic because only a little over

twenty years old, he was the subject of specialized conferences at his The first lecture is

due to B. Ross who organized this lecture at New Haven University in June 1974 under

the title ”Fractional Calculus and Its Applications” and he published the procedure again,

see [113]. For the first monograph, another merit is attributed to K.B. Oldham and J.

Spanier, see [107], who have started a collaboration in 1968 ,published a work on fractional

calculus in 1974.
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At present, the list of procedures devoted exclusively or partially to fractional calculus

and its applications contain several titles [52], of which the encyclopedia treated by Samko,

Kilbas and Marichev is the most important; In addition, we recall the work of Davis,

Erdèlyi Gelfand and Shilov , Djrbashian , Caputo , Babenko , Gorenflo and Vessella ,

who contain a detailed analysis of certain mathematical or physical aspects of applications

of fractional calculus.

In recent years, there has been considerable interest in nominations fractional deriva-

tives (of non-integer order) in several fields. in the field of interdisciplinary, many systems

can be described by fractional differential equations.

for example :

• Fractional derivatives have been used widely in the mathematical model visco-elastic

materials .

• Electromagnetic problems can be described using the equations fractional integrod-

ifferentials .

• In physicochemistry, the current is proportional to the fractional derivatives of the

voltage when the fractal interface is put between a metal and an ionic medium .

• In the theory of the fractional capacitor, if one of the electrodes of the capacitor has

a rough surface, the current passing through it is proportional to the derivatives of

order, not an integer of its voltage . Also, the existing memory in dioelectric used

in capacitors is justified by the fractional derivative .

• Another example for an element with fractional order pattern is fractionance. Frac-

tance is an electrical circuit with non-integer order impedance , this element has

properties that lie between resistance and capacity; Citing the case of both well-

known examples of fractances: the shaft fractance and the chain .

• The heating of the conductance as a dynamic process can be model both by fractional

order models and by order models integer .

• In biology, it has been deduced that the membranes of cells of biological organism

have fractional order electrical conductance and then is classified into a group of

non-integer order models.
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• In economics, some financial systems can display a dynamic fractional order , ex-

amples on fractional order dynamics.

• In addition, applications of fractional calculus have been reported in several areas

such as:

Signal processing , image processing , automatic control and robotics , these and

many other similar samples clarify perfectly the importance of consideration and

analysis of dynamic systems with the fractional order models...

The study of fractional problems is very topical and several methods are applied to

solve these problems. However, the methods based on the principle of the fixed point play

a big role.

Fixed point theorems are the basic mathematical tools, showing the existence of solutions

in various kinds of equations. The fixed point theory is at the heart analysis nonlinear

since it provides the necessary tools to have theorems existence in many different nonlinear

problems. The development of the fixed point theory, which is the cardinal branch of

analysis nonlinear gave great effects on the advancement of nonlinear analysis, considered

as a stand-alone branch of mathematics, nonlinear analysis was developed in the 1950s by

mathematicians like Felix Browder as a combination of functional analysis and variational

analysis.

The method based inthe approximation is associated with the names of famous math-

ematicians such as Cauchy, Liouville, Lipschitz and above all, Picard. In fact, the pre-

cursors of the theory of the approximate fixed point are explicit in the works of Picard.

However, it is the Polish mathematician Stefan Banach, who is credited with placing an

abstract idea.

The principle of contracting application is one of the few constructive theorems of math-

ematical analysis. It constitutes a great tool fields of application a priori, in the study of

nonlinear equations that play a crucial role in both mathematics and applied science. The

principle is the theorem of the Banach fixed point or that of Picard which ensures the

existence of a single fixed point for a contracting application of a complete metric space

within itself.

The fixed point is the limit of an iterative process defined from an image repetition

by this contracting mapping of an arbitrary starting point in this space. This concept

has been proven in first, by Banach in 1922 then developed by several mathematicians

including us let us cite Brouwer and Schauder in 1930 as well as Krasnoselskii in 1955.

The Schauder’s fixed point theorem, which is by the way, an extension of Brouwer’s in



4

infinite dimension is more topological than that of Banach and asserts that a continuous

map on a convex compact admits a fixed point which is not necessarily unique. It is

therefore not necessary to establish surcharges on the function but simply its continuity.

The measure of non-compactness which is one of the fundamental tools of the theory

nonlinear analysis, was initiated by the pioneering articles of Alvàrez [30], Mönch [104]

and was developed by Banas and Goebel [33] and many researchers in the literature. the

measure of non-compactness has been applied in several works (see [33, 34, 42, 83] and

references).

Byszewski is the first who proved the existence and the uniqueness of the mild solutions

of the non-local Cauchy problems[44, 45, 46]. The non local condition may be more useful

than the standard initial condition to describe some phenomena. Fractional differential

equations with nonlocal conditions have been discussed in [26, 27, 28, 53, 57, 71, 135, 136]

and the references therein.

Probabilistic functional analysis is an important mathematical research due to its

applications to probabilistic models in applied problems. Random operator theory is

needed for the study of various classes of random equations. Indeed,in many cases the

mathematical models or equations used to describe phenomena in the biological, physical,

engineering, and systems sciences contain certain parameters or coefficients which have

specific interpretations, but whose values are unknown. Therefore, it is more realistic to

consider such equations as random operator equations. These equations are much more

difficult to handle mathematically than deterministic equations. Important contributions

to the study of the mathematical aspects of such random equations have been undertaken

in [40, 54, 81, 96, 122] among others.

The importance of random fixed point theory lies in its vast applicability in probabilis-

tic Functional analysis and various probabilistic models. The introduction of randomness

however leads to several new questions of measurability of solutions, probabilistic and sta-

tistical aspects of random solutions. It is well known that random fixed point theorems

are stochastic generalization of classical fixed point theorems what we call as determinis-

tic results. Random fixed point theorems for random contraction mappings on separable

complete metric spaces were first proved by S̃pac̃ek [124] and Hans̃ (see [70]). The survey

article by Bharucha-Reid [41] in 1976 attracted the attention of several mathematicians

and gave wings to this theory. Itoh [81] extended S̃pac̃ek and Hans̃ theorems to multival-

ued contraction mappings. Random fixed point theorems with an application to Random

differential equations in Banach spaces are obtained by Itoh [81]. Sehgal and Waters
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[120] had obtained several random fixed point theorems including random analogue of the

classical results due to Rothe [114]. In recent past, several fixed point theorems including

Kannan type [88] Chatterjeea [49] and Zamfirescu type [138] have been generalized in

stochastic version (see for detail in Joshi and Bose [84], Saha et al. ([117, 118]).

The rondom functional differential equations with delay have many important applica-

tions in mathematical models of real phenomena, and The study of this type of equations

has received much attention in recent years.

On the other hand, the stability of the functional equations was raised by Ulam in 1940

in a talk given at the University of Wisconsin, (for details, see [131]). The first answer to

the problem posed by Ulam was given by Hyers in 1941 in [76]. Subsequently, this type of

stability is called stability in the sense of Ulam-Hyers. In 1978, Rassias [111] provided a

remarkable generalization of stability in the sense of Ulam-Hyers. Considerable attention

has been paid to the study of stability in the sense of Ulam-Hyers and in the sense of

Ulam-Hyers-Rassias differential equations, one can see the monographs of [82].

In addition, there is little work on stability in the Ulam sense of fractional differential

equations. First, stability in the sense of Ulam for the differential equations fractional with

Caputo derivative is proposed by J. Wang et al. [131], while with the Riemann-Liouville

derivative by R.Ibrahim [78]. More details of recent developments such stabilities are

reported in [17, 20, 35, 36, 59, 79, 80, 97, 129].

Thesis overview

This thesis is divided into 6 chapters

Chapter 1: This chapter consists of three Sections. In Section one, we present ”Some

notations and definitions of Fractional Calculus Theory”, and in Section two, we present

some ”Some definitions and proprieties of noncompactness measure”.

Finally, in the last Section, we recall some preliminary : some basic concepts, and useful

famous theorems and results (notations, definitions, lemmas and fixed point theorems)

which are used throughout this thesis.

Chapter 2: In this chapter we investigate the existence of random solutions for the

following class of Caputo-Hadamard fractional differential equation

(HcDr
1u)(t, w) = f(t, u(t, w), w); t ∈ I := [1, T ], w ∈ Ω, (1)
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with the boundary conditionsu(1, w) = u1(w)

u′(T,w) = uT (w)
; w ∈ Ω, (2)

where r ∈ (1, 2], T > 1, f : I × R × Ω → R is a given function, u1, uT : Ω → R, HcDr
1

is the Caputo-Hadamard fractional derivative of order r, and Ω is the sample space in a

probability space (Ω,F).

In Section 2.3, we consider the problem (1)-(2), where f : I × E × Ω → E is a given

function, u1, uT : Ω→ E, and E is a real (or complex) Banach space with a norm ‖ · ‖.
Finally, some examples are given to illustrate the applicability of our main results.

Chapter 3: We establish the existence and the Ulam-Hyers stability results in a class

of fractional random problems in Banach spaces.

Here two results are discussed, the first is based on the existence of random solutions

and the stability of Ulam results for a class of Caputo-Fabrizio random fractional dierential

equations in the form

(CFDα
0 u)(t, w) = f(t, u(t, w), w); t ∈ I := [0, T ], w ∈ Ω,

with the boundary conditions

au(0, w) + bu(T,w) = c(w); w ∈ Ω,

where T > 0, f : I × E × Ω → E is a given function, a, b ∈ R, , c : Ω → E, with

a+ b 6= 0, CFDα
0 is the Caputo–Fabrizio fractional derivative of order α ∈ (0, 1), and Ω is

the sample space in a probability space (Ω,F), and E is a real (or complex) Banach space

with a norm ‖ · ‖.

The second is based on the existence of random solutions and the stability Ulam for a

class of random fractional differential equations of Katugampola

(ρDς
0x)(ξ, w) = f(ξ, x(ξ, w), w); ξ ∈ I = [0, T ], w ∈ Ω,
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with the terminal condition

x(T,w) = xT (w); w ∈ Ω,

where xT : Ω→ E is a measurable function, ς ∈ (0, 1], T > 0, f : I ×E×Ω→ E, ρDς
0 is

the Katugampola operator of order ς, and Ω is the sample space in a probability space.

Our results are based on the theory of the fixed point and random operators. Illustra-

tive examples are presented in each section.

Chapter 4: we study the existence and attractivity for several classes of functional

fractional differential equations.

(CFDr
0u)(t, w) = f(t, u(t, w), w); t ∈ R+ = [0,∞), w ∈ Ω,

with the initial condition

u(0, w) = u0(w); w ∈ Ω,

where T > 0, f : R+ × R × Ω → R is a given function, u0 : Ω → R, CFDr
0 is the

Caputo–Fabrizio fractional derivative of order r ∈ (0, 1), and Ω is the sample space in a

probability space (Ω,F).

An illustrative example is presented in the last section.

Chapter 5: we prove the existence of random solutions and the Ulam stability for

functional differential equations involving the Caputo-Fabrizio fractional derivative in

Fréchet spaces of the from

(CFDr
0u)(t, w) = f(t, u(t, w), w); t ∈ R+ = [0,∞), w ∈ Ω, (3)

with the initial condition

u(0, w) = u0(w); w ∈ Ω, (4)

where u0 : Ω → R, is a measurable function, f : R+ × R × Ω → R is a given function,
CFDr

0 is the Caputo–Fabrizio fractional derivative of order r ∈ (0, 1), and Ω is the sample

space in a probability space (Ω,F).
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Later, we consider the following nonlocal problem(CFDr
0u)(t, w) = f(t, u(t, w), w); t ∈ R+,

u(0, w) +Q(u(·, w)) = u0(w),
w ∈ Ω,

where u0, f are as in problem (3)-(4), Q : Ω×X → R is a given function, and X is the

Fréchet space defined later.

At last, an example is included to show the applicability of our results.

Chapter 6: we prove the existence of random solutions for some classes of Caputo-

Fabrizio random fractional differential equations delay. Our results are based on the

random fixed point theory.

The second section, we investigate the following class of random Caputo-Fabrizio fractional

differential equations with finite delayu(t, w) = ϕ(t, w); t ∈ [−h, 0],

(CFDr
0u)(t, w) = f(t, ut(·, w), w); t ∈ I := [0, T ],

; w ∈ Ω,

where h > 0, T > 0, ϕ ∈ C, f : I × C × Ω→ R is a given function, CFDr
0 is the Caputo-

Fabrizio fractional derivative of order r ∈ (0, 1], and C := C([−h, 0],R) is the space of

continuous functions on [−h, 0].

For any t ∈ I, we define ut(·, w) by

ut(s, w) = u(t+ s, w); for s ∈ [−h, 0], and w ∈ Ω.

In the third section, we investigate the following class of random Caputo-Fabrizio

fractional differential equations with infinite delayu(t, w) = ϕ(t, w); t ∈ R− := (−∞, 0],

(CFDr
0u)(t, w) = f(t, ut(·, w), w); t ∈ I,

; w ∈ Ω,

where ϕ : [−∞, 0] → R, f : I × B × Ω → R are given functions, and B is called a phase

space that will be specified later.

For any t ∈ I, we define ut ∈ B by

ut(s, w) = u(t+ s, w); for s ∈ R−, and w ∈ Ω.
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In the section 6.4 , we investigate the following class of random Caputo-Fabrizio fractional

differential equations with state dependent finite delayu(t, w) = ϕ(t, w); t ∈ [−h, 0],

(CFDr
0u)(t, w) = f(t, uρ(t,ut(·,w))(·, w), w); t ∈ I,

where ϕ ∈ C, ρ : I × C × Ω→ R, f : I × C × Ω→ R are given functions.

Finally, we consider the following class of Caputo-Fabrizio fractional differential equa-

tions with state dependent infinite delayu(t, w) = ϕ(t, w); t ∈ R−,

(CFDr
0u)(t, w) = f(t, uρ(t,ut(·,w))(·,w), w); t ∈ I,

; w ∈ Ω,

where ϕ : R− → R, f : I × B × Ω→ R are given functions.

Finally,an example for each section.



CHAPTER 1

BASIC INGREDIENTS

The main purpose of this chapter is to provided the necessary background material to the

reader. Here we shall introduce definitions, notations and theoretical results that will be

used along this thesis

1.1 Some notations and definitions of fractional cal-

culus theory

Let C(I, E) be the Banach space of all continuous functions from I = [0, T ], T > 0 into

E with the norm

‖u‖∞ = sup{‖u(t)‖ : t ∈ I}.

and L1(I, E) we denote the Banach space of measurable function u : I → E with are

Bochner integrable, equipped with the norm

‖u‖L1 =

∫ T

0

‖u(t)‖dt.

1.1.1 Random Operators

Let βE be the σ−algebra of Borel subsets of E. A mapping v : Ω → E is said to be

measurable if for any B ∈ βE , one has

v−1(B) = {w ⊂ Ω : v(w) ⊂ B} ⊂ A.
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To define integrals of sample paths of random process, it is necessary to define a jointly

measurable map.

Definition 1.1.1 A mapping T : Ω × E → E is called jointly measurable if for any

B ⊂ βE , one has

T−1(B) = {(w, v) ⊂ Ω× E : T (w, v) ⊂ B} ⊂ A× βE

where A× βE is the direct product of the σ−algebras A and βE those defined in Ω and E

respectively.

Lemma 1.1.2 [54] Let T : Ω× E → E be a mapping such that T (·, v) is measurable for

all v ⊂ E, and T (w, ·) is continuous for all w ⊂ Ω. Then the map (w, v) → T (w, v) is

jointly measurable.

Definition 1.1.3 [66] A function f : I × E × Ω → E is called random Carathéodory if

the following conditions are satisfied:

• (i) The map (t, w)→ f(t, u, w) is jointly measurable for all u ⊂ E, and

• (ii) The map u→ f(t, u, w) is continuous for almost all t ∈ I and w ⊂ Ω.

Definition 1.1.4 T : Ω × E → E be a mapping. then T is called a random operator

if T (w, u) is measurable in w for all u ⊂ E and it is expressed as T (w)u = T (w, u).

In this case we also say that T (w) is random operator on E. A random operator T (w)

on E is called continuous (resp. compact, totally bounded and completely continuous) if

T (w, u) is continuous (resp. compact, totally bounded and completely continuous)in u for

all w ⊂ Ω. The details of completely continuous random operators in Banach spaces and

their properties appear in Itoh.

Definition 1.1.5 [58] Let P (Y ) be the family of all nonempty subsets of Y and C be a

mapping from Ω into P (Y ). A mapping T : {(w, u) : w ⊂ Ω, y ⊂ C(w)} → Y is called

random operator with stochastic domain C if C is measurable (i.e for all closed A ⊂ Y ,

{w ⊂ Ω, C(w) ∩ A 6= ∅} is measurable) and for all open D ⊂ Y and all u ⊂ Y, {w ⊂
Ω : u ⊂ C(w), T (w, u) ⊂ D} is measurable. T will be called continuous if every T (w) is

continuous. For a random operator T , a mapping u : Ω→ Y is called random (stochastic)

fixed point of T if for P-almost all w ⊂ Ω, u(w) ⊂ C(w) and T (w)u(w) = u(w) and for

all open D ⊂ Y, {w ⊂ Ω : u(w) ⊂ D} is measurable.
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1.1.2 Fractional calculus

Definition 1.1.6 ([93, 110]). The fractional (arbitrary) order integral of the function

f ∈ L1([0, T ],R+) of order α ∈ R+ is defined by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds,

where Γ is the gamma function.

Theorem 1.1.7 [93]. For any f ∈ C([0, T ],R) the Riemann-Liouville fractional integral

satisfies

IαIβf(t) = IβIαf(t) = Iα+βf(t),

for α, β > 0.

Definition 1.1.8 ([92]). For a function f given on the interval [0, T ], the Caputo fractional-

order derivative of order α of h, is defined by

(cDαf)(t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1f (n)(s)ds,

where n = [α] + 1 and [α] denotes the integer part of the real number α.

Lemma 1.1.9 ([103]) Let α ≥ 0 and n = [α] + 1. Then

Iα(cDαf(t)) = f(t)−
n−1∑
k=0

fk(0)

k!
tk.

Remark 1.1.10 ([7, 25, 103])The Caputo derivative of a constant is equal to zero.

We need the following auxiliary lemmas.

Lemma 1.1.11 ([23, 139]) Let α > 0. Then the differential equation

cDαf(t) = 0

has solutions f(t) = c0 +c1t+c2t
2 +· · ·+cn−1t

n−1, ci ∈ R, i = 0, 1, 2, . . . , n−1, n = [α]+1.

Lemma 1.1.12 ([139]) Let α > 0. Then

IαcDαf(t) = f(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, 2, . . . , n− 1, n = [α] + 1.
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Lemma 1.1.13 ([54], Lemma 3.11) Let α > 0, α /∈ N and m = [α]. Moreover assume

that f ∈ Cm[a, b]. Then
cDα

a f ∈ C[a, b]

and
cDα

a f(a) = 0.

Definition 1.1.14 (Hadamard fractional integral)[15]. The Hadamard fractional integral

of order r is defined as

I ς0f(ξ) =
1

Γ(ς)

∫ ξ

1

(
log

ξ

s

)ς−1

f(s)
ds

s
, ς > 0.

Definition 1.1.15 (Hadamard fractional derivative )[15]. The Hadamard fractional deriva-

tive of order r is defined as

Dς
0h(ξ) =

1

Γ(n− ς)

(
ξ
d

dξ

)n ∫ ξ

1

(
log

ξ

s

)n−ς−1

h(s)
ds

s
, ς > 0.

We denote by ACn
δ (I) the space defined by

ACn
δ ([1, T ], E) = {h : [1, T ]→ E : δn−1h(t) ∈ AC(I, E)},

where δ = t d
dt

is the Hadamard derivative and AC(I, E) is the space of absolutely contin-

uous functions on I.

Definition 1.1.16 (Caputo-Hadamard fractional derivative)[13] The Caputo-Hadamard

fractional derivative of order q > 0 applied to the function u ∈ ACn
δ is defined as

(HcDq
1u(x)) = (HIn−q1 δnu)(x).

Definition 1.1.17 [13] The Caputo-type Hadamard derivative of fractional order q is

defined as

Dqf(t) =
1

Γ(n− q)

∫ t

1

(
log

t

s

)n−q−1

δnf(s)
ds

s
,

where n− 1 < q < n, n = [q] + 1, and Γ is the Gamma function.

Lemma 1.1.18 Let u ∈ ACn
δ [1, T ] or Cr

δ [1, T ] and q > 0, then one has

Iq(Dr)u(t) = u(t)−
n−1∑
k=0

Ck (ln t)k ,
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where ck ∈ R, k = 0, 1, . . . , n− 1, (n = [q] + 1).

Definition 1.1.19 [47, 95, 100] The Caputo-Fabrizio fractional integral of order 0 < r <

1 for a function h ∈ L1(I) is defined by

CF Ir0h(τ) =
2(1− r)

M(r)(2− r)
h(τ) +

2r

M(r)(2− r)

∫ τ

0

h(x)dx; τ ≥ 0

where M(r) is normalization constant depending on r.

Definition 1.1.20 [47, 100] The Caputo-Fabrizio fractional derivative for a function h ∈
C1(I) of order 0 < r < 1, is defined by

CFDrh(τ) =
(2− r)M(r)

2(1− r)

∫ τ

0

exp(− r

1− r
(τ − x))h′(x)dx; τ ∈ I.

Note that (CFDr)(h) = 0 if and only if h is a constant function.

Remark 1.1.21 [47, 60, 100] Note that,according to the previous definition,the fractional

integral of Caputo-Fabrizio type of a function of order 0 < r < 1 is an average between

function f and its integral of order one.

Imposing
2(1− r)

(2− r)M(r)
+

2r

(2− r)M(r)
= 1

we obtain an explicit formula for M(r)

M(r) =
2

2− r

Example 1.1.22 [47]

1- For h(t) = t and 0 < r ≤ 1, we have

(CFDrh)(t) =
M(r)

r

(
1− exp

(
− r

1− r
t

))
.

2- For g(t) = eλt, λ ≥ 0 and 0 < r ≤ 1, we have

(CFDrg)(t) =
λM(r)

r + λ(1− r)
eλt
(

1− exp

(
−λ− r

1− r
t

))
.

Definition 1.1.23 (Katugampola fractional integral)[38, 89]. The Katugampola frac-
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tional integrals of order (ς > 0) is defined by

ρI ς0x(t) =
ρ1−ς

Γ(ς)

∫ ξ

0

sρ−1

(ξρ − sρ)1−ς x(s)ds (1.1)

for ρ > 0 and ξ ∈ I.

Definition 1.1.24 (Katugampola fractional derivative)[38, 89]. The Katugampola frac-

tional derivative of order ς > 0 is defined by:

ρDr
0u(t) =

(
t1−ρ

d

dt

)n
(ρIn−r0 u)(t)

=
ρr−n+1

Γ(n− r)

(
t1−ρ

d

dt

)n ∫ t

0

sρ−1

(tρ − sρ)r−n+1
u(s)ds.

We present in the following theorem some properties of Katugampola fractional integrals

and derivatives.

Theorem 1.1.25 [89] Let 0 < Re(ς)1 and 0 < Re(η) < 1 and ρ > 0, for a > 0:

• Index property:

(ρDς
a)(

ρDη
ah)(t) = ρDς+η

a h(t)

(ρIra)(ρIηah)(t) = ρIr+ηa h(t)

• Inverse property:

(ρDr
a)(

ρIrah)(t) = h(t)

• Linearity property:

ρDr
a(h+ g) = ρDr

ah(t) +ρ Dr
ag(t)

ρIra(h+ g) = ρIrah(t) +ρ Irag(t)

and we have

(t1−ρ
d

dt
)Ir0(I1−r

0 )u(s)ds.

Theorem 1.1.26 [89] Let r be a complex number, Re(r) ≥ 0, n = [Re(r)] and ρ > 0.

Then, for t > a;

1. limρ→1(ρIrah)(t) = 1
Γ(r)

∫ t
a
(t− τ)r−1h(τ)dτ .
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2. limρ→0+(ρIrah)(t) = 1
Γ(r)

∫ t
a
(log t

τ
)r−1h(τ)dτ

τ
.

3. limρ→1(ρDr
ah)(t) = ( d

dt
)n 1

Γ(n−r)

∫ t
a

h(τ)
(t−τ)r−n+1dτ.

4. limρ→0+(ρDr
ah)(t) = 1

Γ(n−r)(t
d
dt

)n
∫ t
a
(log t

τ
)n−r−1h(τ)dτ

τ
.

Remark 1.1.27

1. limρ→1(ρIrah)(t) = (RLIrah)(t).

2. limρ→0+(ρIrah)(t) = (HIrah)(t).

3. limρ→1(ρDr
ah)(t) = (RLDr

ah)(t).

4. limρ→0+(ρDr
ah)(t) = (HDr

ah)(t).

Lemma 1.1.28 Let 0 < r < 1. The fractional equation (ρDr
0v)(t) = 0, has as solution

v(t) = ctρ(r−1), (1.2)

with c ∈ R.

Lemma 1.1.29 Let 0 < r < 1. Then

ρIr(ρDr
0u)(t) = u(t) + ctρ(r−1).

Proof. We have

Ir0D
r
0u(t) =

(
t1−p

d

dt

)
Ir+1

0 Dr
0u(t)

= (t1−ρ
d

dt
)

(
ρ−r

Γ(r + 1)

∫ t

0

sρ−1

(tρ − sρ)−r
(ρDr

0u(s))ds

)
=

(
t1−ρ

d

dt

)(
ρ−r

Γ(r + 1)

∫ t

0

sρ−1

(tρ − sρ)−r

[(
s1−ρ d

ds

)
(I1−r

0 u)(s)

]
ds

)
=

(
t1−ρ

d

dt

)(
ρ−r

Γ(r + 1)

∫ t

0

(tρ − sρ)r
[
d

ds
(I1−r

0 u)(s)

]
ds

)
.

Thus, Ir0D
r
0u(t) = I1 + I2, with

I1 =

(
t1−ρ

d

dt

)
ρ−r

Γ(r + 1)

([
(tρ − sρ)rI1−r

0 u(s)
]t

0

)
,

and

I2 =

(
t1−ρ

d

dt

)
ρ−r

Γ(r + 1)

∫ t

0

rρsρ−1(tρ − sρ)r−1I1−r
0 u(s)ds.
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Hence, we get

I1 = ctρ(r−1)

and

I2 =

(
t1−ρ

d

dt

)
ρ1−r

Γ(r)

∫ t

0

sρ−1(tρ − sρ)r−1I1−r
0 u(s)ds

=

(
t1−ρ

d

dt

)
Ir0(I1−r

0 )u(s)ds

= u(t).

Finally we obtain

(Ir0)(Dr
0u)(t) = u(t) + ctρ(r−1).

1.2 Some definitions and proprieties measure of non-

compactness

Now, we give the definition of the concept of a measure of noncompactness.

Definition 1.2.1 ([33]) Let E be a Banach space and ΩE the bounded subsets of E.

The Kuratowski measure of noncompactness is the map α : ΩE → [0,∞) defined by

α(B) = inf{ξ > 0 : B ⊆
n⋃
i=1

Bi and diam(Bi) ≤ ξ};hereB ∈ ΩE,

where diam(Bi) = sup{‖xy‖ : x, y ∈ Bi}

Proposition 1.2.2 ([29, 33, 34, 94])

1. α(B) = 0 ⇔ B is compact (B is relatively compact), where B denotes the closure

of B

2. nonsingularity: α is equal to 0 on every one element-set.

3. α(B) = α(B) = α(convB) , where convB is the convex hull of B

4. monotonocity A ⊂ B ⇒ α(A) ≤ α(B)

5. algebraic semi-additivity:

α(A+B) ≤ α(A) + α(B)
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where A+B = {x+ y : x ∈ A, y ∈ B}

6. semi-homogencity

α(λB) = |λ|α(B), λ ∈ R

where λB = {λx : x ∈ B}

7. semi-additivity: α(A ∪B) = max{α(A), α(B)}.

8. invariance under translations:

α(B + x0) = α(B)

for any x0 ∈ E.

Definition 1.2.3 Let T : X → X be a continuous mapping of Banach space X, them T

is called a k−set contraction if for all A ⊂ X with A bounded, for 0 < K < 1,, T (A) is

bounded and

α(TA) ≤ Kα(A).

If α(TA) ≤ α(A), T called condensing mapping .

Lemma 1.2.4 If {uk}∞k=1 ⊂ L1(I) is uniformly integrable, then α({uk}∞k=1) is measurable

and for each t ∈ I

α(

{∫ t

0

uk(s)ds

}∞
k

) ≤ 2

∫ t

0

α({uk(s)}∞k )ds. (1.3)

Lemma 1.2.5 If Y is bounded subset of a Banach space X, then for each ξ > 0, there is

a sequence {uk}∞k ⊂ Y such that

α(Y ) ≤ 2α({uk}∞k ) + ξ. (1.4)

For further facts concerning measures of noncompactness and their properties we refer

to [29, 31, 33, 34, 94] and the references therein.

1.2.1 Auxiliary Lemmas

We state the following generalization of Gronwall’s lemma for singular kernels.

Lemma 1.2.6 ([137]) Let v : [0, T ] → [0,+∞) be a real function and w(·) is a non-

negative, locally integrable function on [0, T ]. Assume that there are constants a > 0 and

0 < α < 1 such that

v(t) ≤ w(t) + a

∫ t

0

(t− s)−αv(s)ds,
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Then, there exists a constant K = K(α) such that

v(t) ≤ w(t) +Ka

∫ t

0

(t− s)−αw(s)ds, for every t ∈ [0, T ].

Theorem 1.2.7 [68](theorem of Ascoli-Arzela). Let A ⊂ C(J,R), A is relatively

compact (i.e A is compact) if:

1. A is uniformly bounded i.e, there exists M > 0 such that

|f(x)| < M for every f ∈ A and x ∈ J.

2. A is equicontinuous i.e, for every ε > 0, there exists δ > 0 such that for each

x, x ∈ J, |x− x| ≤ δ implies |f(x)− f(x)| ≤ ε, for every f ∈ A.

1.3 Some fixed point theorems

Theorem 1.3.1 [81] Let X be a nonempty, closed convex bounded subset of the separable

Banach space E and let N : Ω×X → X be a compact and continuous random operator.

Then the random equation N(w)u = u has a random solution.

Theorem 1.3.2 [81] Let X be a separable closed convex subset of Banach space, f :

Ω × X → X a condensing random operator. Suppose that for any w ∈ Ω, f(w,X) is

bounded. then there exists a random fixed Point ξ : Ω→ X of f .

Theorem 1.3.3 [65] Let K be a compact convex subset of a Fréchet space X and T :

Ω×K → K be a continuous affine random operator. Then T has a random fixed point.



CHAPTER 2

CAPUTO-HADAMARD RANDOM

FRACTIONAL DIFFERENTIAL

EQUATIONS IN FINITE AND INFINITE

DIMENSIONAL BANACH SPACES

2.1 Introduction and Motivations

The theory of fractional differential equations is a good tool for modeling such phenom-

ena. When our knowledge about the parameters of a dynamic system are of statistical

nature [126], that is, the information is probabilistic, the common approach in mathe-

matical modeling of such systems is the use of random differential equations or stochastic

differential equations [48, 54, 58, 108].

The problem of fixed points for random mappings was initialed by the Prague school

of probability. The first results were obtained in 1955-1956 by S̆pacek and Hans̆ in the

context of Fredholm integral equations with random kernels. In a separable metric space,

random fixed point theorems for contraction mappings were proved by Hans̆ [70], Hans̆

and S̆pacek [69], Mukherjea [105, 106].

Recently, several researchers obtained other results by application of the technique of

measure of noncompactness; see [30, 31, 33, 127], and the references therein.
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This chapter deals with some existence of random solutions for a class of Caputo-

Hadamard random fractional differential equations with two boundary conditions

(HcDr
1u)(t, w) = f(t, u(t, w), w); t ∈ I := [1, T ], w ∈ Ω, (2.1)

with the boundary conditionsu(1, w) = u1(w)

u′(T,w) = uT (w)
; w ∈ Ω, (2.2)

where r ∈ (1, 2], T > 1, f : I × R × Ω → R is a given function, u1, uT : Ω → R, HcDr
1

is the Caputo-Hadamard fractional derivative of order r, and Ω is the sample space in a

probability space (Ω,F).

Next, we consider the problem (2.1)-(2.2), where f : I×E×Ω→ E is a given function,

u1, uT : Ω→ E, and E is a real (or complex) Banach space with a norm ‖ · ‖. Our results

are based on some random fixed point theorems and the measure of noncompactness.

2.2 Random Caputo-Hadamard fractional differen-

tial equations Results

Let C := C(I,R) is assumed to be endowed with the standard norm

‖u‖∞ = sup{|u(t)| : t ∈ I}.

Lemma 2.2.1 A function u ∈ C is a solution of problem
(HcDr

1u)(t) = h(t); t ∈ I := [1, T ]

u(1) = u1

u′(T ) = uT

(2.3)

if and only if u satisfies the following integral equation

u(t) =
1

Γ(r)

∫ t

1

(
ln
t

s

)r−1
h(s)

s
ds− T ln t

Γ(r − 1)

∫ T

1

(
ln
T

s

)r−2
h(s)

s
ds+u1 +TuT ln t. (2.4)

Proof. Solving the equation

(HcDr
1u)(t) = h(t),
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we get

u(t) =H Ir1h(t) + c0 + c1 ln t,

and then

u′(t) =H Ir−1
1 h(t) +

c1

t
.

From the boundary conditions, we get

c0 = u1

c1 = T (uT −H Ir−1
1 h(T ))

hence, we obtain (2.4).

Conversely, if u satisfies the integral equation (2.4), then(HcDr
1u)(t) = h(t); t ∈ I,

u(1) = u1, u′(T ) = uT .

From the above Lemma, we conclude with the following lemma

Lemma 2.2.2 A function u is a random solution of problem (2.1)-(2.2), if and only if u

satisfies the following integral equation

u(t, w) = u1(w) + TuT (w) ln t+
1

Γ(r)

∫ t

1

(
ln
t

s

)r−1

f(s, u(s, w), w)
ds

s

− T ln t

Γ(r − 1)

∫ T

1

(
ln
T

s

)r−2

f(s, u(s, w), w)
ds

s
.

2.2.1 Existence of solutions in the Scalar Case

The following hypotheses will be used in the sequel:

(H1) The function f is random Carathéodory.

(H2) There exist measurable and bounded functions pi : Ω → C(I,R+); i = 1, 2 such

that

|f(t, u, w)| ≤ p1(t, w) + p2(t, w)|u|, for all u ∈ R and t ∈ I,

with

p∗i (w) = sup
t∈I

pi(t, w); i = 1, 2, w ∈ Ω.
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Theorem 2.2.3 Assume that the hypotheses (H1) and (H2) hold. If

p∗2(w)

(
(lnT )r

Γ(r + 1)
+ T

(lnT )r

Γ(r)

)
< 1, (2.5)

then the problem (2.1)-(2.2) has a random solution defined on I × Ω.

Proof. From Lemma 2.2.2 for any w ∈ Ω and each t ∈ I, the problem (2.1)-(2.2) is

equivalent to the operator equation N(w)u = u, where N : Ω × C → C be the operator

defined by

(Nu)(t, w) = u1(w) + TuT (w) ln t+
1

Γ(r)

∫ t

1

(
ln
t

s

)r−1

f(s, u(s, w), w)
ds

s

− T ln t

Γ(r − 1)

∫ T

1

(
ln
T

s

)r−2

f(s, u(s, w), w)
ds

s
. (2.6)

Since the function f is absolutely continuous for all w ∈ Ω and t ∈ I, then u is a solution

for the problem (2.1)-(2.2) if and only if u = N(u)(t, w). Let

R(w) >
|u1(w)|+ T lnT |uT (w)|+ p∗1(w)

(
(lnT )r

Γ(r+1)
+ T (lnT )r

Γ(r)

)
1− p∗2(w)

(
(lnT )r

Γ(r+1)
+ T (lnT )r

Γ(r)

) w ∈ Ω. (2.7)

Define the ball

BR = B(0, R(w)) = {u ∈ C :‖ u ‖≤ R(w)}.

For any w ∈ Ω and each t ∈ I, we have

|(Nu)(t, w)| ≤ |u1(w) + TuT (w) lnT |

+

∣∣∣∣ 1

Γ(r)

∫ t

1

(ln
t

s
)r−1f(s, u(s, w), w)

ds

s

∣∣∣∣
+

∣∣∣∣ T ln t

Γ(r − 1)

∫ T

1

(ln
T

s
)r−2f(s, u(s, w), w)

ds

s

∣∣∣∣
≤ |u1(w)|+ T lnT |uT (w)|

+
(lnT )r

Γ(r + 1)
|f(s, u(s, w), w)|+ T lnT

(lnT )r−1

Γ(r)
|f(s, u(s, w), w)|

≤ |u1(w)|+ T lnT |uT (w)|+ (lnT )r

Γ(r + 1)
(p∗1(w) + p∗2(w)R(w))

+ T
(lnT )r

Γ(r)
(p∗1(w) + p∗2(w)R(w))

≤ R(w).
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This proves that N(w) transforms the ball BR into itself. We shall prove in several steps

that the operator N : Ω×BR → BR satisfies assumptions of Theorem 1.3.1.

Step 1. N(w) is a random operator.

Since f(t, u, w) is random Carathéodory, the map w −→ f(t, u, w) is measurable in view

Definition 1.1.5 and further the integral is a limit of a finite sum of measurable functions

therefore the map

w 7→ u1(w) + TuT (w) ln t+
1

Γ(r)

∫ t

1

(
ln
t

s

)r−1

f(s, u(s, w), w)
ds

s

− T ln t

Γ(r − 1)

∫ T

1

(
ln
T

s

)r−2

f(s, u(s, w), w)
ds

s

is measurable. As a result, N(w) is a random operator.

Step 2. N(w) is continuous.

Let un be a sequence such that un → U in C . Then, for each t ∈ I we have

|(Nun)(t, w)− (Nu)(t, w)|

≤ 1

Γ(r)

∫ t

1

(ln
t

s
)r−1 |f(s, un(s, w), w)− f(s, u(s, w), w)| ds

s

+
T ln t

Γ(r − 1)

∫ T

1

(ln
T

s
)r−2 |f(s, un(s, w), w)− f(s, u(s, w), w)| ds

s

≤
(

(lnT )r

Γ(r+1)
+ T (lnT )r

Γ(r)

)
‖f(·, un(·, w), w)− f(·, u(·, w), w)‖∞.

Since f is of Carathéodory type, then by the Lebesgue dominated convergence theorem,

we get

‖(Nun)(·, w)− (Nu)(·, w)‖∞ → 0 as n→∞.

Since N(w) is a continuous random operator with stochastic domain. We can conclude

that N(w)BR ⊂ BR is bounded.

Step 3. N(w)BR is equicontinuous.
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For 1 ≤ t1 ≤ t2 ≤ T, and u ∈ BR, we have

|(Nu)(t1, w)− (Nu)(t2, w)|

≤ |TuT (w) ln t1 +
1

Γ(r)

∫ t1

1

(
ln
t1
s

)r−1

f(s, u(s, w), w)
ds

s

− T ln t1
Γ(r−1)

∫ T

1

(
ln
T

s

)r−2

f(s, u(s, w), w)
ds

s

− TuT (w) ln t2 − 1
Γ(r)

∫ t2

1

(
ln
t2
s

)r−1

f(s, u(s, w), w)
ds

s

+ T ln t2
Γ(r−1)

∫ T

1

(
ln
T

s

)r−2

f(s, u(s, w), w)
ds

s
|

≤ TuT (w) [ln t2 − ln t1]

+ 1
Γ(r)

∫ t1

1

[(
ln
t2
s

)r−1

−
(

ln
t1
s

)r−1
]
|f(s, u(s, w), w)| ds

s

+

∫ t2

t1

(
ln
t2
s

)r−2

|f(s, u(s, w), w)| ds
s

+ T (ln t2−ln t1)
Γ(r−1)

∫ T

1

(
ln
T

s

)r−2

|f(s, u(s, w), w)| ds
s

≤ TuT (w) [ln t2 − ln t1]

+ 1
Γ(r)

∫ t1

1

[(
ln
t2
s

)r−1

−
(

ln
t1
s

)r−1
]

(P ∗1 (w) + P ∗2 (w) |u|) ds
s

+

∫ t2

t1

(
ln
t2
s

)r−2

(P ∗1 (w) + P ∗2 (w)|u|) ds
s

+ T (ln t2−ln t1)
Γ(r−1)

∫ T

1

(
ln
T

s

)r−2

(P ∗1 (w) + P ∗2 (w)|u|) ds
s

≤ TuT (w)
[
ln
(
t2
t1

)]
+ 1

Γ(r)

∫ t1

1

[(
ln
t2
t1

)r−1

(P ∗1 (w) + P ∗2 (w)R(w))

]
ds

s

+

∫ t2

t1

(
ln
t2
s

)r−2

(P ∗1 (w) + P ∗2 (w)R(w))
ds

s

+ T (ln t2−ln t1)
Γ(r−1)

∫ T

1

(
ln
T

s

)r−2

(P ∗1 (w) + P ∗2 (w)R(w))
ds

s
.

As t2 → t1 the right-hand side of the above inequality tends to zero.

As a consequence of steps 1 to 3 together with the Arzelá-Ascoli theorem, we can conclude

that N : Ω×BR → BR is continuous and compact. From an application of Theorem 1.3.1,

we deduce that the operator equation Nu(w) = u has a random solution.
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2.2.2 Existence Results in Banach Space

In this section we prove the existence of random solutions for our problem in the Banach

space E by using the measure of noncompactness.

Let us introduce the following hypotheses:

(H ′1) The function f is random Carathéodory.

(H ′2) There exist measurable and bounded functions li : Ω → C(I, E) and i = 1, 2 such

that

(1 + ‖u‖)‖f(t, u, w)‖ ≤ l1(t, w) + l2(t, w)‖u‖

for each u ⊂ E and t ∈ I. with

l∗i (w) = sup
t∈I
‖li(t, w)‖; i = 1, 2, w ∈ Ω.

(H ′3) For any bounded B ∈ E and t ∈ I

α(f(t, B, w)) ≤ l2(t, w)α(B).

Theorem 2.2.4 Assume (H ′1)-(H ′3) hold. If

M := 4

[
(lnT )r

Γ(r + 1)
l∗2(w) +

T (lnT )r

Γ(r)
l∗2(w)

]
≤ 1,

then the problem (2.1)-(2.2) has at least one solution defined on I.

Proof. From hypotheses (H ′1) and (H ′2), for each w ⊂ Ω and t ∈ I the problem (2.1)-(2.2)

is equivalent to the Operator N : Ω× C(I, E)→ C(I, E) defined in (2.6).

Since the function f is absolutely continuous for all w ⊂ Ω and t ∈ I. Hence u is a

solution for the problem (2.1)-(2.2) if and only if u = N(u)(t, w) , we shall show that the

operator N satisfied all conditions of Theorem 1.3.2. The proof will be given in several

steps.

Step 1.(N(w)is a random operator)

Since f(t, u, w) is a random Carathéodory, the maps w −→ f(t, u, w) is measurable in

view definition 1.1.5 and further, the integral is a limit of a finite sum of measurable

functions, therefore, the map

w 7→ u1(w) + TuT (w) ln t+
1

Γ(r)

∫ t

1

(
ln
t

s

)r−1

f(s, u(s, w), w)
ds

s
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− T ln t

Γ(r − 1)

∫ T

1

(
ln
T

s

)r−2

f(s, u(s, w), w)
ds

s

is measurable. As a result, N(w) is a random operator.

Step 2. (N(w) is bounded )

‖(Nu)(t, w)‖ ≤ ‖u1(w) + TuT (w) lnT‖

+

∥∥∥∥∥ 1

Γ(r)

∫ t

1

(
ln
t

s

)r−1

f(s, u(s, w), w)
ds

s

∥∥∥∥∥
+

∥∥∥∥∥ T ln t

Γ(r − 1)

∫ T

1

(
ln
T

s

)r−2

f(s, u(s, w), w)
ds

s

∥∥∥∥∥
≤ ‖u1(w)‖+ T lnT‖uT (w)‖

+
(lnT )r

Γ(r + 1)
‖f(s, u(s, w), w)‖+ T lnT

(lnT )r−1

Γ(r)
‖f(s, u(s, w), w)‖

≤ ‖u1(w)‖+ T lnT‖uT (w)‖+
(lnT )r

Γ(r + 1)
(l∗1(w) + l∗2(w))

+ T
(lnT )r

Γ(r)
(l∗1(w) + l∗2(w))

≤ ‖u1(w)‖+ T lnT‖uT (w)‖+ (l∗1(w)

+ l∗2(w))

(
(lnT )r

Γ(r + 1)
+ T

(lnT )r

Γ(r)

)
:= `.

Hence, we conclude that N(w) is bounded.

Step 3.( N(w) is a condensing operator)

For each bounded B of C(I, E), we have

α((N(w)B)(t, w)) = α({u1(w) + TuT (w) ln t

+
1

Γ(r)

∫ t

1

(
ln
t

s

)r−1

f(s, u(s, w), w)
ds

s

− T ln t

Γ(r − 1)

∫ T

1

(
ln
T

s

)r−2

f(s, u(s, w), w)
ds

s
, u ∈ B})

≤ 2α({ 1

Γ(r)

∫ t

1

(
ln
t

s

)r−1

f(s, u(s, w), w)
ds

s

− T ln t

Γ(r − 1)

∫ T

1

(
ln
T

s

)r−2

f(s, u(s, w), w)
ds

s
}) + ξ
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≤ 4[
1

Γ(r)

∫ t

1

(
ln
t

s

)r−1

α({f(s, u(s, w), w)})ds
s

+
T ln t

Γ(r − 1)

∫ T

1

(
ln
T

s

)r−2

α({f(s, u(s, w), w)})ds
s

] + ξ

≤ 4

[
(lnT )r

Γ(r + 1)
l∗2(w) +

T (lnT )r

Γ(r)
l∗2(w)

]
α(B) + ξ

≤ Mα(B) + ξ.

Since ξ > 0 is arbitrary and M ≤ 1, then

α(N(B)) ≤ α(B).

Hence N is a condensing random operator. Consequently, from the above three steps; the

problem (2.1)-(2.2) has a random solution.

2.3 Examples

Let Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of Lebesgue measurable

subsets of (−∞, 0).

Example 1. Consider the random equation of Caputo-Hadamard fractional differ-

ential equations of the from

(HcDr
1u)(t, w) =

cw2

exp(t+ 3)(1 + w2 + |u(t, w)|)
; t ∈ [1, e], w ∈ Ω, (2.8)

with the boundary conditionsu(1, w) = sinw

u′(T,w) = cosw
; w ∈ Ω, (2.9)

where 0 < c < e3
(

1
Γ(r+1)

+ e
Γ(r)

)−1

. Set

f(t, u(t, w), w) =
cw2

exp(t+ 3)(1 + w2 + |u(t, w))|
; t ∈ [1, e], w ∈ Ω,

and u0(w) = sinw

uT (w) = cosw.
(2.10)
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The condition (H2) is satisfied with p1(t, w) = 0 and p2(t, w) = ce−3−t. The condition

(2.5) is satisfies, indeed;

p∗2(w)

(
(lnT )r

Γ(r + 1)
+ T

(lnT )r

Γ(r)

)
= ce−3

(
1

Γ(r + 1)
+

e

Γ(r)

)
< 1.

Consequently, Theorem 2.2.3 implies that the problem (2.8)-(2.9) has at least one random

solution.

Example 2. Let

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}

be the Banach space with the norm

‖u‖E =
∞∑
n=1

|un|.

Consider the random Caputo-Hadamard fractional differential equation

HcDr
1(t, un) =

c(2−n + un)

(1 + w2)(1 + |u(t, w)|)
; t ∈ [1, e], w ∈ Ω, (2.11)

with the boundary conditions

un(1, w) = u′n(exp 1, w) = 0, (2.12)

with

0 < c ≤
(

4

Γ(r + 1)
+

4e

Γ(r)

)−1

, u = (u1, u2, · · · ), f = (f1, f2, · · · ).

Set

fn(t, u, w) =
cw2(2−n + un)

1 + |u(t, w)|
.

The condition (H ′2) is satisfied with l1(t, w) = l2(t, w) = c. Also, the condition M ≤ 1 is

satisfied and we have

M := 4

(
(lnT )r

Γ(r + 1)
l∗2(w) +

T (lnT )r

Γ(r)
l∗2(w)

)
= 4c

(
1

Γ(r + 1)
+

e

Γ(r)

)
≤ 1.

Simple computations show that all conditions of Theorem 2.2.4 are satisfied. Conse-

quently, the problem (2.11)-(2.12) has at least one random solution.



CHAPTER 3

ULAM STABILITIES FOR RONDOM

FRACTIONAL DIFFERENTIAL

EQUATIONS

3.1 Introduction and Motivations

There are different definitions of fractional derivatives. The popular derivatives of frac-

tional order we mention Riemann-Liouville, Caputo, Hadamard, and Hilfer.

Caputo and Fabrizio developed and proposed a new version of fractional derivative

by changing the Kernel (t − s)−α by the function (t, s) 7→ exp( (−α(t−s))
(1−α)

) and 1
Γ(1−α)

by
(2−α)M(α)

2(1−α)
. For more details; see [98]. Katugampola introduced a derivative that is a

generalization of the Riemann-Liouville fractional operators and the fractional integral of

Hadamard in a single

form [89, 90].

The question of stability for functional differential equations was introduced by Ulam

and Hyers. Thereafter; this type of stability is called the Ulam-Hyers stability [82, 116].

In 1978, Rassias provided a remarkable generalization of the Ulam-Hyers stability of

mappings by considering variables of stability for a functional equation arises when we

replace the functional equation by an inequality. For more details; see the monographs

[16, 77, 83, 85], the papers [21, 86, 112, 115, 116, 130, 131, 132], and the references therein
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In one section we investigate the following class of Caputo–Fabrizio fractional differ-

ential equation

(CFDα
0 u)(t, w) = f(t, u(t, w), w); t ∈ I := [0, T ], w ∈ Ω, (3.1)

with the boundary conditions

au(0, w) + bu(T,w) = c(w); w ∈ Ω, (3.2)

where T > 0, f : I × E × Ω → E is a given function, a, b ∈ R, , c : Ω → E, with

a + b 6= 0, CFDα
0 is the Caputo–Fabrizio fractional derivative of order α ∈ (0, 1), and Ω

is the sample space in a probability space (Ω,F), and E is a real (or complex) Banach

space with a norm ‖ · ‖. Next we investigate the following class of Katugampola random

fractional differential equation

(ρDς
0x)(ξ, w) = f(ξ, x(ξ, w), w); ξ ∈ I = [0, T ], w ∈ Ω, (3.3)

with the terminal condition

x(T,w) = xT (w); w ∈ Ω, (3.4)

where xT : Ω → E is a measurable function, ς ∈ (0, 1], T > 0, f : I × E × Ω → E, ρDς
0

is the Katugampola operator of order ς, and Ω is the sample space in a probability space,

and (E, ‖ · ‖) is a Banach space.

3.2 Boundary Value Problem for Caputo–Fabrizio Ran-

dom Fractional Differential Equations

Let C := C(I, E) be the Banach space of all continuous functions from I into E with the

norm

‖u‖∞ = sup{‖u(t)‖ : t ∈ I}.

Lemma 3.2.1 Let h ∈ L1(I, E). A function u ∈ C is a solution of problem{
(CFDα

0 u)(t) = h(t); t ∈ I := [0, T ]

au(0) + bu(T ) = c,
(3.5)

where a, b ∈ R, c ∈ E with a + b 6= 0, if and only if u satisfies the following integral
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equation

u(t) = C0 + aαh(t) + bα

∫ t

0

h(s)ds+
bbα
a+ b

∫ T

0

h(s)ds, (3.6)

aα =
2(1− α)

(2− α)M(α)
, bα =

2α

(2− α)M(α)
,

C0 =
1

a+ b
[c− baα(h(T )− h(0))]− aαh(0).

Proof. Suppose that u satisfies (3.5). From Proposition 1 in [98], the equation

(CFDα
0 u)(t) = h(t) implies that

u(t)− u(0) = aα(h(t)− h(0)) + bα

∫ t

0

h(s)ds.

Thus,

u(T ) = u(0) + aα(h(T )− h(0)) + bα

∫ T

0

h(s)ds.

From the mixed boundary conditions au(0) + bu(T ) = c, we get

au(0) + b(u(0) + aα(h(T )− h(0)) + bα

∫ T

0

h(s)ds) = c.

Hence,

u(0) =
c− b(aα(h(T )− h(0))− bα

∫ T
0
h(s)ds)

a+ b
.

So; we get (3.6).

Conversely, if u satisfies (3.6), then (CFDα
0 u)(t) = h(t); for t ∈ I := [0, T ],

and au(0) + bu(T ) = c.

From the above Lemma, we can conclude the following Lemma:

Lemma 3.2.2 A function u is a random solution of problem (3.1)-(3.2), if and only if u

satisfies the following integral equation:

u(t, w) = C0(w) + aαf(t, u(t, w), w)

+bα

∫ t

0

f(s, u(s, w), w)ds+
bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds,

where

C0(w) =
1

a+ b
[c(w)− baα(f(T, u(T,w), w)− f(0, u(0, w), w))]− aαf(0, u(0, w), w).
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3.2.1 Existence of solutions

Definition 3.2.3 By a random solution of problem (3.1)-(3.2), we mean a function u ∈ C
that satisfies the equation

u(t, w) = C0(w) + aαf(t, u(t, w), w)

+bα

∫ t

0

f(s, u(s, w), w)ds+
bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds,

where

C0(w) =
1

a+ b
[c(w)− baα(f(T, u(T,w), w)− f(0, u(0, w), w))]− aαf(0, u(0, w), w).

The following hypotheses will be used in the sequel:

(H1) The function f is random Carathéodory.

(H2) There exist measurable and bounded functions pi : Ω→ C(I, [0,∞)); i = 1, 2 such

that

‖f(t, u, w)‖ ≤ p1(t, w) + p2(t, w)‖u‖;

for all u ⊂ E and t ∈ I with

p∗i (w) = sup
t∈I

pi(t, w); i = 1, 2, w ∈ Ω.

Now, we prove an existence result for the problem (3.1)-(3.2) based on Itoh’s fixed point

theorem.

Theorem 3.2.4 Assume that the hypotheses (H1)− (H2) hold. If(
aα + Tbα + T

bbα
a+ b

)
p∗2(w) < 1, (3.7)

then the problem (3.1)-(3.2) has at least one random solution defined on I.

Proof. From Lemma 3.2.2 for any w ∈ Ω and each t ∈ I, the problem (3.1)-(3.2) is equiva-

lent to the operator equation (Nw)u = u, where N : Ω×C → C be the operator defined by

(Nu)(t, w) = C0(w) + aαf(t, u(t, w), w)
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+bα

∫ t

0

f(s, u(s, w), w)ds+
bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds. (3.8)

Since the function f is absolutely continuous for all w ∈ Ω and t ∈ I, then u is a random

solution for the problem (3.1)-(3.2) if and only if u = (Nu)(t, w). Set

R(w) >
‖C0(w)‖+

[
aα + Tbα + T bbα

a+b

]
p∗1(w)

1−
[
aα + Tbα + T bbα

a+b

]
p∗2(w)

w ∈ Ω. (3.9)

Define the ball

BR = B(0, R(w)) := {u ∈ C : ‖u‖ ≤ R(w)}.

For any w ∈ Ω and each t ∈ I, we have

‖(Nu)(t, w)‖ ≤ ‖C0(w)‖+ ‖aαf(t, u(t, w), w)‖

+

∥∥∥∥bα ∫ t

0

f(s, u(s, w), w)ds

∥∥∥∥+

∥∥∥∥ bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds

∥∥∥∥
≤ ‖C0(w)‖+ aα‖f(t, u(t, w), w)‖

+ bα

∫ t

0

‖f(s, u(s, w), w)‖ds+
bbα
a+ b

∫ T

0

‖f(s, u(s, w), w)‖ds

≤ ‖C0(w)‖+

[
aα + Tbα + T

bbα
a+ b

]
(p∗1(w) + p∗2(w)R(w))

≤ R(w).

This proves that N(w) transforms the ball BR into itself. We shall prove in three steps

that the operator N : Ω×BR → BR satisfies all the assumptions of Theorem 1.3.1.

Step 1. N(w) is a random operator.

Since f(t, u, w) is random Carathéodory, the map w −→ f(t, u, w) is measurable in view

Definition 1.1.5 and further the integral is a limit of a finite sum of measurable functions

therefore the map

w 7→ C0(w) + aαf(t, u(t, w), w)

+ bα

∫ t

0

f(s, u(s, w), w)ds+
bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds,

is measurable. As a result, N(w) is a random operator.

Step 2. N(w) is continuous and bounded.

Let un be a sequence such that un → U in C. Then, for each t ∈ I we have

‖(Nun)(t, w)− (Nu)(t, w)‖ ≤ ‖aα(f(t, u(t, w), w)− f(t, un(t, w), w))‖
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+

∥∥∥∥bα ∫ t

0

(f(t, u(t, w), w)− f(t, un(t, w), w))ds

∥∥∥∥
+

∥∥∥∥ bbα
a+ b

∫ T

0

(f(t, u(t, w), w)− f(t, un(t, w), w))

∥∥∥∥
≤ aα‖f(t, u(t, w), w)− f(t, un(t, w), w)‖

+ bα

∫ t

0

‖f(t, u(t, w), w)− f(t, un(t, w), w)‖ds

+
bbα
a+ b

∫ T

0

‖f(t, u(t, w), w)− f(t, un(t, w), w)‖ds.

Since f is Carathéodory, then by the Lebesgue dominated convergence theorem, we get

‖(Nun)(·, w))− (Nu)(·, w)‖∞ → 0 as n→∞.

Since N(w) is a continuous random operator with stochastic domain. We can conclude

that N(w)BR ⊂ BR is bounded.

Step 3. N(w)BR is equicontinuous.

For 1 ≤ t1 ≤ t2 ≤ T, and u ∈ BR, we have

‖(Nu)(t2, w) − (Nu)(t1, w)‖ ≤
∥∥∥aαf(t2, u(t2, w), w) + bα

∫ t2
0
f(s, u(s, w), w)ds

+
bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds− aαf(t1, u(t1, w), w)

− bα

∫ t1

0

f(s, u(s, w), w)ds− bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds

∥∥∥∥
≤ aα‖f(t2, u(t2, w), w)− f(t1, u(t1, w), w)‖

+ bα

∫ t2

t1

‖f(s, u(s, w), w)ds‖

≤ aα‖f(t2, u(t2, w), w)− f(t1, u(t1, w), w)‖

+ bα(t2 − t1)(p∗1(w) + p∗2(w)R(w))

→ 0 as t2 → t1.

As a consequence of the above steps and the Arzelá-Ascoli theorem, we can conclude that

N : Ω×BR → BR is continuous and compact. From an application of Theorem 1.3.1, the

operator equation Nu(w) = u has a random solution.
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3.2.2 Ulam-Hyers Rassias stability

Now, we are concerned with the generalized Ulam-Hyers-Rassias stability of our problem

(3.1)-(3.2).

Let ε > 0 and Φ : I × Ω → R+ be a measurable function. We consider the following

inequalities

‖(CFDα
0 u)(t, w)− f(t, u(t, w), w)‖ ≤ ε; t ∈ I, w ∈ Ω. (3.10)

‖(CFDα
0 u)(t, w)− f(t, u(t, w), w)‖ ≤ Φ(t, w); t ∈ I, w ∈ Ω. (3.11)

‖(CFDα
0 u)(t, w)− f(t, u(t, w), w)‖ ≤ εΦ(t, w); t ∈ I, w ∈ Ω. (3.12)

Definition 3.2.5 [16] The problem(3.1)-(3.2) is Ulam-Hyers stable if there exists a real

number cf > 0 such that for each ε > 0 and for each solution u(·, w) ∈ C(I) of the

inequality (3.10), there exists a solution v() ∈ C(I) of (3.1)-(3.2) with

‖u(t)− v(t)‖ ≤ εcf ; t ∈ I.

Definition 3.2.6 [16] The problem (3.1)-(3.2) is generalized Ulam-Hyers stable if there

exists cf ∈ C(R+,R+) with cf (0) = 0 such that for each ε > 0 and for each solution

u(w) ∈ C(I) of the inequality (3.10), there exists a solution v ∈ C(I) of (3.1)-(3.2) with

‖u(t)− v(t)‖ ≤ cf (ε); t ∈ I.

Definition 3.2.7 [16] The problem (3.1)-(3.2) is Ulam-Hyers-Rassias stable with respect

to φ if there exists a real number cf,φ > 0 such that for each ε > 0 and for each solution

u(w) ∈ C(I) of the inequality (3.12), there exists a solution v ∈ C(I) of (3.1)-(3.2) with

‖u(t)− v(t)‖ ≤ εcf,φφ(t, w); t ∈ I.

Definition 3.2.8 [16] The problem (3.1)-(3.2) is generalized Ulam-Hyers-Rassias stable

with respect to φ if there exists a real number cf,φ > 0 such that for each solution u ∈ C(I)

of the inequality (3.11), there exists a solution v(w) ∈ C(I) of (3.1)-(3.2) with

‖u(t)− v(t)‖ ≤ cf,φφ(t, w); t ∈ I.

Remark 3.2.9 A function u(·, w) ∈ C is a solution of the inequality (3.11) if and only if
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there exist a function g(·, w) ∈ C (which depend on u) such that

‖g(t, w)‖ ≤ Φ(t, w),

and

(CFDα
0 u)(t, w) = f(t, u(t, w)) + g(t, w); for t ∈ I, and w ∈ Ω.

The following hypotheses will be used in the sequel.

(H3) Φ(·, w) ∈ L1(R+), and there exists a measurable and bounded function

q : Ω→ C(I, [0,∞)); such that

(1 + ‖u− v‖)‖f(t, u(t, w), w)− f(t, v(t, w), w)‖ ≤ q(t, w)Φ(t, w)‖u− v‖;

for all u, v ∈ E and each t ∈ I, with

q∗(w) = sup
t∈I

q(t, w); w ∈ Ω.

(H4) There exists a constant λΦ > 0, such that for any w ∈ Ω, and each t ∈ I we have∫ T

0

Φ(t, w)dt ≤ λΦΦ(t, w).

Remark 3.2.10 From (H3), for any w ∈ Ω, and each t ∈ I, and u ∈ E, we have that

‖f(t, u, w)‖ ≤ ‖f(t, 0, w)‖+ q(t, w)Φ(t, w)‖u‖.

So, (H3) implies (H2), with p1(t, w) = ‖f(t, 0, w)‖, and p2(t, w) = q(t, w)Φ(t, w),

Lemma 3.2.11 If u ∈ C is a solution of the inequality (3.11) then u is a solution of the

following integral inequality

‖u(t, w)− C0(w)− aαf(s, u(s, w), w)− bα
∫ t

0

f(s, u(s, w), w)ds

− bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds‖ ≤
(
aα + λΦbα + λΦ

bbα
a+ b

)
Φ(t, w); t ∈ I; w ∈ Ω. (3.13)

Proof. By Remark 3.2.9; for any w ∈ Ω and each t ∈ I, we have

u(t, w) = C0(w) + aα[f(s, u(s, w), w) + g(s, w)]
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+ bα

∫ t

0

[f(s, u(s, w), w) + g(s, w)]ds

+
bbα
a+ b

∫ T

0

[f(s, u(s, w), w) + g(s, w)]ds.

Thus, we get

‖u(t, w) − C0(w)− aαf(s, u(s, w), w)− bα
∫ t

0

f(s, u(s, w), w)ds

− bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds‖

≤ aα‖g(s, w)‖+ bα

∫ t

0

‖g(s, w)‖ds+
bbα
a+ b

∫ T

0

‖g(s, w)‖ds

≤
(
aα + λΦbα + λΦ

bbα
a+ b

)
Φ(t, w).

Theorem 3.2.12 Assume that the hypotheses (H1), (H3), (H4) and the condition (3.7)

hold. Then the problem (3.1)-(3.2) has at least one solution on I and it is generalized

Ulam-Hyers-Rassias stable.

Proof. From Remark 3.2.10, there exists a random solution v of the random problem

(3.1)-(3.2). That is

v(t, w) = C0(w) + aαf(t, v(t, w), w)

+ bα

∫ t

0

f(s, v(s, w), w)ds+
bbα
a+ b

∫ T

0

f(s, v(s, w), w)ds.

Let u be a solution of the inequality (3.11), then from Lemma 3.2.11, for any w ∈ Ω, and

each t ∈ I, we have

‖u(t, w) − C0(w) + aαf(t, u(t, w), w)− bα
∫ t

0

f(s, u(s, w), w)ds

− bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds

∥∥∥∥ ≤ (aα + λΦbα + λΦ
bbα
a+ b

)
Φ(t, w).

Then, for any w ∈ Ω, and each t ∈ I, we obtain

‖u(t, w)− v(t, w)‖ ≤ ‖u(t, w)− C0(w)− aαf(t, u(t, w), w)− bα
∫ t

0

f(s, u(s, w), w)ds

− bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds+ aαf(t, u(t, w), w)
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+ bα

∫ t

0

f(s, u(s, w), w)ds+
bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds

− aαf(t, v(t, w), w)− bα
∫ t

0

f(s, v(s, w), w)ds

− bbα
a+ b

∫ T

0

f(s, v(s, w), w)ds‖.

This implies that,

‖u(t, w)− v(t, w)‖ ≤ ‖u(t, w)− C0(w)− aαf(t, u(t, w), w)− bα
∫ t

0

f(s, u(s, w), w)ds

− bbα
a+ b

∫ T

0

f(s, u(s, w), w)ds‖

+ ‖aαf(t, u(t, w), w) + bα

∫ t

0

f(s, u(s, w), w)ds− aαf(t, v(t, w), w)

− bα

∫ t

0

f(s, v(s, w), w)ds− bbα
a+ b

∫ T

0

f(s, v(s, w), w)ds‖

≤
(
aα + λΦbα + λΦ

bbα
a+ b

)
Φ(t, w)

+ aα‖f(t, u(t, w), w)− f(t, v(t, w), w)‖

+ bα

∫ t

0

‖f(s, u(s, w), w)− f(s, v(s, w), w)‖ds

+
bbα
a+ b

∫ T

0

‖f(s, u(s, w), w)− f(s, v(s, w), w)‖ds.

Thus,

‖u(t, w)− v(t, w)‖ ≤
(
aα + λΦbα + λΦ

bbα
a+ b

)
Φ(t, w)

+ aαq
∗(w)Φ(t, w)

‖u(t, w)− v(t, w)‖
1 + ‖u(t, w)− v(t, w)‖

+ bα

∫ t

0

q∗(w)Φ(t, w)
‖u(s, w)− v(s, w)‖

1 + ‖u(s, w)− v(s, w)‖
ds

+
bbα
a+ b

∫ T

0

q∗(w)Φ(t, w)
‖u(s, w)− v(s, w)‖

1 + ‖u(s, w)− v(s, w)‖
ds

≤
(
aα + λΦbα + λΦ

bbα
a+ b

)
Φ(t, w)

+ aαq
∗(w)Φ(t, w) + bαq

∗(w)

∫ t

0

Φ(t, w)ds

+
bbαq

∗(w)

a+ b

∫ T

0

Φ(t, w)ds.
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Hence, from (H4), we get

‖u(t, w)− v(t, w)‖ ≤
(
aα + λΦbα + λΦ

bbα
a+ b

)
Φ(t, w) + aαq

∗(w)Φ(t, w)

+

(
bαq
∗(w) +

bbαq
∗(w)

a+ b

)∫ T

0

Φ(s, w)ds

≤
(
aα + λΦbα + λΦ

bbα
a+ b

)
(1 + q∗(w))Φ(t, w)

:= cf,ΦΦ(t, w).

This conclude that our problem (3.1)-(3.2) is generalized Ulam-Hyers-Rassias stable.

3.3 Dynamics and Stability for Katugampola Ran-

dom Fractional Differential Equations

3.3.1 Existence of solutions

By C(I) := C(I, E) we denote the Banach space of all continuous functions x : I → E

with the norm

‖x‖∞ = sup
t∈I
‖x(ξ)‖,

Let Cς,ρ(I) be the weighted space of continuous functions defined by

Cς,ρ(I) = {x : (0, T ]→ R : ξρ(1−ς)x(ξ) ∈ C(I)},

with the norm

‖x‖C := sup
ξ∈I
‖ξρ(1−ς)x(ξ)‖.

Lemma 3.3.1 The problem{
(ρDr

0x)(t) = h(t); t ∈ I := [0, T ]

x(T ) = xT
(3.14)

has the following solution

u(t) =
ρ1−r

Γ(r)

∫ t

0

sρ−1

(tρ − sρ)1−rh(t)ds− Ctρ(r−1) (3.15)

where

C =
1

T ρ(r−1)

(
ρ1−r

Γ(r)

∫ T

0

sρ−1

(T ρ − sρ)1−rh(T )ds− uT
)
.
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Proof. Solving the equation

(ρDr
0u)(t) = h(t),

we get

u(t) =ρ Ir0h(t)− ctρ(r−1).

From the condition, we get

C =
ρIr0h(T )− uT

T ρ(r−1)

hence, we obtain (3.15).

Lemma 3.3.2 u is a random solution of (3.3)-(3.4), if and only if it satisfies

x(ξ, w) =
ρ1−ς

Γ(ς)

∫ ξ

0

sρ−1

(ξρ − sρ)1−ς f(ξ, x, w)ds− C(w)ξρ(ς−1) (3.16)

where

C(w) =
1

T ρ(ς−1)

(
ρ1−ς

Γ(r)

∫ T

0

sρ−1

(T ρ − sρ)1−ς f(T, x, w)ds− xT (w)

)
.

Definition 3.3.3 By a random solution of problem (3.3)-(3.4), we mean a measurable

function x(w, ·) ∈ Cς,ρ(I) such that

x(t, w) =
ρ1−ς

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς f(t, x, w)ds− C(w)tρ(ς−1), (3.17)

where

C(w) =
1

T ρ(r−1)

(
ρ1−ς

Γ(ς)

∫ T

0

sρ−1

(T ρ − sρ)1−ς f(T, u, w)ds− uT (w)

)
.

We shall make use of the following hypotheses:

(H1) f is a random Carathéodory function.

(H2) There exist measurable and essentially bounded functions li : Ω → C(I); i = 1, 2

such that

‖f(t, x, w)‖ ≤ l1(t, w) + l2(t, w)tρ(1−r)‖x‖,

for all x ∈ E and t ∈ I with

l∗i (w) = sup
t∈I

li(t, w); i = 1, 2, w ∈ Ω.
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Theorem 3.3.4 If (H1) and (H2) hold, and

ρ−ςT ρ

Γ(1 + ς)
l∗2(w) < 1, (3.18)

then there exists a random solution for (3.3)-(3.4).

Proof. Let N : Ω× Cς,ρ(I)→ Cς,ρ(I) be the operator defined by

(Nx)(t, w) =
ρ1−ς

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς f(s, x(s, w), w)ds− C(w)tρ(ς−1), (3.19)

and set

R(w) >
‖C(w)‖+ ρ−ςT ρ

Γ(1+ς)
l∗1(w)

1− ρ−ςT ρ

Γ(1+ς)
l∗2(w)

; w ∈ Ω, (3.20)

and define the ball

BR = B(0, R(w)) := {x ∈ Cς,ρ(I) : ‖x‖C ≤ R(w)}.

For any w ∈ Ω and each t ∈ I, we have

‖tρ(1−ς)(Nx)(t, w)‖ ≤ ‖C(w)‖+ ‖ρ
1−ςT ρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς f(s, x(s, w), w)ds‖

≤ ‖C(w)‖+
ρ1−ςT ρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς ‖l1(s, w)‖ds

+
ρ1−ςT ρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς ‖s
ρ(1−ς)l2(s, w)x(s, w)‖ds

≤ ‖C(w)‖+
ρ1−ςT ρ(1−ς)

Γ(ς)

T ςρ

ςρ
l∗1(w)

+
l∗2(w)ρ1−ςT ρ(1−ς)

Γ(r)

∫ t

0

sρ−1

(tρ − sρ)1−ς ‖s
ρ(1−ς)x(s, w)‖ds

≤ ‖C(w)‖+
ρ−ςT ρ

Γ(1 + ς)
l∗1(w) +

ρ−ςT ρ

Γ(1 + ς)
l∗2(w)‖x‖C

≤ ‖C(w)‖+
ρ−ςT ρ

Γ(1 + ς)
l∗1(w) +

ρ−ςT ρ

Γ(1 + ς)
l∗2(w)R(w)

≤ R(w).

Thus

‖N(w)(u‖C ≤ R(w).

Hence N(w)(BR) ⊂ BR. We shall prove that N : Ω×BR → BR satisfies the assumptions
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of Theorem 1.3.1.

Step 1. N(w) is a random operator.

From (H1), the map w −→ f(t, x, w) is measurable and further the integral is a limit of

a finite sum of measurable functions therefore the map

w 7→ ρ1−ς

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς f(s, x(s, w), w)ds− C(w)tρ(r−1),

is measurable.

Step 2. N(w) is continuous.

Consider the sequence (xn)n such that xn → u in Cς,ρ.

Set

vn(t, w) = tρ(1−ς)(Nxn)(t, w), and v(t, w) = tρ(1−ς)(Nx)(t, w).

Then

‖vn(t, w)− v(t, w)‖

≤
∥∥∥∥ρ1−ςT ρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς (f(s, xn(s, w), w)− f(s, x(s, w), w))ds

∥∥∥∥
≤ ρ1−ςT ρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς ‖f(s, xn(s, w), w)− f(s, x(s, w), w))‖ds.

By (H1) we obtain

‖vn(·, w)− v(·, w)‖C → 0 as n→∞,

Consequently, N(w) : BR ⊂ BR is continuous.

Step 3. N(w)BR is equicontinuous.

For 1 ≤ t1 ≤ t2 ≤ T, and x ∈ BR, we have

‖tρ(1−ς)
2 (Nx)(t2, w)− tρ(1−ς)

1 (Nx)(t1, w)‖
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≤
∥∥∥∥ρ1−ς tρ(1−ς)2

Γ(ς)

∫ t2

0

sρ−1

(tρ2 − sρ)1−ς f(s, x(s, w), w)ds

− ρ1−ς t
ρ(1−ς)
1

Γ(ς)

∫ t1

0

sρ−1

(tρ1 − sρ)1−ς f(s, x(s, w), w)ds

∥∥∥∥
≤

∥∥∥∥ρ1−ς tρ(1−ς)2

Γ(r)

∫ t2

t1

sρ−1

(tρ2 − sρ)1−ς f(s, x(s, w), w)ds

− ρ1−ς t
ρ(1−ς)
1

Γ(ς)

∫ t1

0

sρ−1

(tρ1 − sρ)1−ς f(s, x(s, w), w)ds

+
ρ1−ς t

ρ(1−ς)
2

Γ(ς)

∫ t1

0

sρ−1

(tρ2 − sρ)1−ς f(s, x(s, w), w)ds

∥∥∥∥
≤ ρ1−ςT ρ(1−ς)

Γ(ς)

∫ t2

t1

sρ−1

(tρ2 − sρ)1−ς ‖f(s, x(s, w), w)‖ds

+ ρ1−ςT ρ(1−ς)

Γ(ς)

∫ t1

0

sρ−1

(tρ1 − sρ)1−ς ‖f(s, x(s, w), w)‖ds

+ ρ1−ςT ρ(1−ς)

Γ(ς)

∫ t1

0

sρ−1

(tρ2 − sρ)1−ς ‖f(s, x(s, w), w)‖ds

≤ tςρ2 + tςρ1 + 2(tρ2 − t
ρ
1)ς

ρςΓ(1 + ς)
T ρ(1−ς)(l∗1(w) + l∗2(w)R(w))

→ 0; as t2 → t1.

Arzelá-Ascoli theorem implies that N : Ω×BR → BR is continuous and compact. Hence;

from Theorem 1.3.1, we deduce the existence of random solution to problem (3.3)-(3.4).

3.3.2 Ulam-Hyers Rassias stability

we prove a result concerning the generalized Ulam-Hyers-Rassias stability of (3.3)-(3.4).

Let ε > 0 and Φ : Ω × I → R+ be a jointly measurable function. We consider the

following inequality

‖(ρDr
0x)(ξ, w)− f(ξ, u(ξ, w), w)‖ ≤ Φ(ξ, w); for ξ ∈ I, and w ∈ Ω. (3.21)

Definition 3.3.5 [16] The problem (3.3)-(3.4) is generalized Ulam-Hyers-Rassias stable

with respect to Φ if there exists cf,φ > 0 such that for each solution x(·, w) ∈ Cς,ρ(I) of

the inequality (3.21), there exists y(·, w) ∈ Cς,ρ(I) satisfies (3.3)-(3.4) with

‖ξρ(1−ς)x(ξ, w)− ξρ(1−ς)y(ξ, w)‖ ≤ cf,φφ(ξ, w); ξ ∈ I; w ∈ Ω.

We introduce the following additional hypotheses:

(H3) For any w ∈ Ω, Φ(t, ·) ⊂ L1[0,∞), and there exists a measurable and essentially
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bounded function q : Ω→ C(I, [0,∞)); such that

(1 + ‖x− y‖)‖f(t, x(t, w), w)− f(t, y(t, w), w)‖ ≤ q(t, w)Φ(t, w)tρ(1−ς)‖x− y‖.

(H4) There exists λΦ > 0 such that

ρI ς0Φ(t, w) ≤ λΦΦ(t, w).

Remark 3.3.6 Hypothesis (H3) implies (H2) with

l1(w, t) = f(t, 0, w), l2(w) = q(t, w)Φ(t, w).

Set

Φ∗(w) = sup
t∈I

Φ(t, w), q∗(w) = sup
t∈I

q(t, w); w ∈ Ω.

Theorem 3.3.7 If (H1), (H3), (H4) and

ρ−ςT ρ

Γ(1 + ς)
Φ∗(w)q∗(w) < 1, (3.22)

hold. Then the problem (3.3)-(3.4) has random solutions defined on I, and it is generalized

Ulam-Hyers-Rassias stable.

Proof. From (H1), (H3) and Remark 3.3.6; the problem (3.3)-(3.4) has at least one

random solution y. Then, we have

y(t, w) =
ρ1−ς

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς f(s, y(s, w), w)ds− C(w)tρ(ς−1).

Assume x be a random solution of (3.21). We obtain

‖tρ(1−ς)x(t, w) − ρ1−ςtρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς f(s, v(s, w), w)ds+ C(w)‖

≤ T ρ(1−ς)(ρI ς0Φ)(t, w).

From hypotheses (H3) and (H4), we have

‖tρ(1−ς)x(t, w)− tρ(1−ς)y(t, w)‖

≤ ‖tρ(1−ς)x(t, w)− ρ1−ςtρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς f(s, x(s, w), w)ds+ C(w)‖
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+ ‖ρ
1−ςtρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς f(s, x(s, w), w)ds− C(w)

− ρ1−ςtρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς f(s, y(s, w), w)ds+ C(w)‖

≤ T ρ(1−ς)(ρI ς0Φ)(t, w)

+
ρ1−ςT ρ(1−ς)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς ‖f(s, x(s, w), w)− f(s, y(s, w), w)‖ds

≤ T ρ(1−ς)(ρI ς0Φ)(t, w)

+
ρ1−ςT ρ(1−r)

Γ(ς)

∫ t

0

sρ−1

(tρ − sρ)1−ς q
∗(w)Φ(s, w)sρ(1−ς) ‖x− y‖

1 + ‖x− y‖
ds

≤ T ρ(1−ς)λΦΦ(t, w) + T 2ρ(1−ς)λΦΦ(t, w)q∗(w).

Thus, we get

‖tρ(1−ς)x(t, w)− tρ(1−ς)y(t, w)‖ ≤ (1 + T ρ(1−ς)q∗(w))T ρ(1−ς)λΦΦ(t, w)

:= cf,ΦΦ(t, w).

Hence, problem (3.3)-(3.4) is generalized Ulam-Hyers-Rassias stable.

3.4 Examples

Let Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of Lebesgue measurable

subsets of (−∞, 0), and

E = l1 =

{
u = (u1, u2, . . . , un, . . .),

∞∑
n=1

|un| <∞

}

be the Banach space with the norm

‖u‖E =
∞∑
n=1

|un|.

Example 1. Consider the Caputo-Fabrizio fractional differential equation

(CFDα
0 un)(t, w) =

cw2(2−n + un(t, w))

exp(t+ 3)(1 + w2 + |un(t, w)|)
; t ∈ [0, 1], w ∈ Ω, (3.23)
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with the boundary conditions

un(0, w) + un(1, w) =
1

1 + w2
; w ∈ Ω. (3.24)

Set 0 < c < 2
2aα+3bα

, and

f(t, u(t, w), w) =
cw2(2−n + un(t, w)))

exp(t+ 3)(1 + w2 + |u(t, w)|)
; t ∈ [0, 1], w ∈ Ω.

The hypothesis (H2) is satisfied with p1(t, w) = p2(t, w) = cw2

1+w2 e
−t,

and then p∗1(w) = p∗2(w) = c. The condition (3.7) is satisfied. Indeed;(
aα + Tbα + T

bbα
a+ b

)
p∗2(w) = c

(
aα +

3bα
2

)
< 1,

Consequently, Theorem 6.2.2 implies that the problem (3.23)-(3.24) has at least one ran-

dom solution defined on [0, 1].

Example 2. Consider now the Caputo-Fabrizio fractional differential equation

(CFDα
0 un)(t, w) =

cw22−n

exp(t+ 3)(1 + w2 + |un(t, w)|)
; t ∈ [0, 1], w ∈ Ω, (3.25)

with the boundary conditions

un(0, w) + un(1, w) =
w

1 + w2
; w ∈ Ω. (3.26)

Set

f(t, u(t, w), w) =
cw22−n

exp(t+ 3)(1 + w2 + |u(t, w)|)
; t ∈ [0, 1], w ∈ Ω.

The hypothesis (H3) is satisfied with q(t, w) = cw2

1+w2 and Φ(t) = e−t. The condition (3.7)

is satisfied with a good choice of the constant c.

Also; the hypotheses (H4) is satisfied with λΦ = e− 1. Indeed;∫ T

0

Φ(t, w)dt =

∫ T

0

e−tdt = 1− e−1 ≤ λΦe
−t = λΦΦ(t, w); t ∈ [0, 1].

Consequently, Theorem 3.2.12 implies that the problem (3.25)-(3.26) has at least one

random solution and it is generalized-Ulam-Hyers-Rassias stable.
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Example 3. Let Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of

Lebesgue measurable subsets of (−∞, 0), and let

l1 =

{
x = (x1, x2, . . . , xn, . . .),

∞∑
n=1

|xn| <∞

}

be the Banach space with the norm

‖x‖ =
∞∑
n=1

|xn|.

Consider the Katugampola random fractional differential equation

(ρDr
0+xn)(t, w) = fn(t, x(t, w), w); t ∈ [0, 1], w ∈ Ω, (3.27)

with the terminal condition

x(T,w) = ((1 + w2)−1, 0, 0, · · · ); w ∈ Ω, (3.28)

with x = (x1, x2, . . . , xn, . . .), f = (f1, f2, . . . , fn, . . .),

ρDr
0+x = (ρDr

0+x1, . . . ,
ρDr

0+xn, . . .),

and

fn(t, x(t, w), w) =
w2tρ(1−r)(2−n + xn(t, w))

2(1 + w2)(1 + ‖x‖)

(
e−7−w2

+
1

et+5

)
; t ∈ [0, 1], w ∈ Ω.

We have

‖f(t, x, w)− f(t, y, w)‖ ≤ (e−7−w2

+ e−t−5)
w2tρ(1−r)‖x− y‖

1 + ‖x− y‖
.

Hence, hypotheses (H3) and (H4) are satisfied with

q(t, w) = e−7−w2

+ e−t−5, Φ(t, w) = w2.

Hence by theorems 3.3.4 and 3.3.7, problem (3.27)-(3.28) admits a random solution, and

is generalized Ulam-Hyers-Rassias stable.



CHAPTER 4

EXISTENCE AND ATTRACTIVITY FOR

CAPUTO–FABRIZIO RANDOM

FRACTIONAL DIFFERENTIAL

EQUATIONS

4.1 Introductions and Motivations

Fractional differential equations have recently been applied in various areas of scientific

disciplines, see; [9, 126]. In recent years, several works and development of fractional

differential equation and inclusions are cited to the monographs [9, 15, 16, 18, 91, 98, 119,

140], the papers [11, 104] and the reference therein.

The physical constants and parameters in formulating differential equations; may be

considered to be random variables whose values are determined by some probability distri-

bution or law. Random differential equations, as natural extensions of deterministic ones,

arise in many applications and have been investigated by many mathematicians. We re-

fer the reader to the monographs [40, 121, 123, 128], the papers [99, 100, 125], and the

references therein. The initial value problems of ordinary random differential equations

have been studied in the literature on bounded as well as unbounded intervals [43, 141].

Recently, fractional random differential equations is largely studied by many authors, see

for example [2, 3, 24, 141].
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In [1, 9, 12, 14, 18], Abbas et al. studied the existence and attractivity for several

classes of functional fractional differential equations. In this paper we investigate the

following class of Caputo–Fabrizio fractional differential equation

(CFDr
0u)(t, w) = f(t, u(t, w), w); t ∈ R+ = [0,∞), w ∈ Ω, (4.1)

with the initial condition

u(0, w) = u0(w); w ∈ Ω, (4.2)

where T > 0, f : R+ × R × Ω → R is a given function, u0 : Ω → R, CFDr
0 is the

Caputo–Fabrizio fractional derivative of order r ∈ (0, 1), and Ω is the sample space in a

probability space (Ω,F).

4.2 Existence and attractivity of solutions

Let I := [0, T ]; T > 0. Denote by C := C(I,R) the Banach space of all continuous

functions from I into R with the norm

‖u‖∞ = sup
t∈I
|u(t)|.

Let BC := BC(R+,R) be the Banach space of all real continuous and bounded functions

on R+ with the norm

‖u‖BC = sup
t∈R+

|u(t)|.

Let ∅ 6= Λ ⊂ BC, and let G : Λ→ Λ and consider the solution of the random equation

G(w)u(t) = u(t, w). (4.3)

Inspired by the definition of the attractivity of solutions of integral equations, we introduce

the following concept of attractivity of solutions for the random equation (4.3).

Definition 4.2.1 Solutions of equation (4.3) are locally attractive if there exists a ball

B(u0, η) in the space BC such that, for arbitrary solutions v = v(t, w) and z = z(t, w) of

equation (4.3) belonging to B(u0, η) ∩ Λ, we have

lim
t→∞

(v(t, w)− z(t, w)) = 0. (4.4)

When the limit (4.4) is uniform with respect to B(u0, η) ∩ Λ, solutions of equation (4.3)
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are said to be uniformly locally attractive (or equivalently that solutions of (4.3) are locally

asymptotically stable).

Definition 4.2.2 [32] The solution v = v(t, w)of equation (4.3) is said to be globally

attractive if (4.4) holds for each solution z = z(t, w) of (4.3). If condition (4.4) is satisfied

uniformly with respect to the set Λ, solutions of equation (4.3) are said to be globally

asymptotically stable (or uniformly globally attractive).

Lemma 4.2.3 [50] Let D ⊂ BC. Then D is relatively compact in BC if the following

condition hold:

1. D is uniformly bounded in BC;

2. The functions beloning to D are almost equicontinuous on R+

i.e., equicontinuous on every compact subset of R+;

3. The functions from D are equiconvergent, that is, given ε > 0 there corresponds

T (ε, w) > 0 such that

|u(t, w)− lim
t→∞

u(t, w)| < ε;

for any t ≥ T (ε, w) and u ∈ D.

Lemma 4.2.4 Let h ∈ L1(I). A function u ∈ C is a solution of problem{
(CFDr

0u)(t) = h(t); t ∈ I := [0, T ]

u(0) = u0,
(4.5)

if and only if u satisfies the following integral equation

u(t) = C + arh(t) + br

∫ t

0

h(s)ds. (4.6)

ar =
2(1− r)

(2− r)M(r)
, br =

2r

(2− r)M(r)
,

C = u0 − arh(0).

From the above Lemma, we can conclude the following Lemma:

Lemma 4.2.5 A function u is a random solution of problem (4.1)-(4.2), if and only if u

satisfies the following integral equation

u(t, w) = C(w) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds (4.7)
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where

C(w) = u0(w)− arf(0, u(0, w), w).

Definition 4.2.6 By a random solution of problem (4.1)-(4.2), we mean a function u :

Ω→ BC that satisfies the integral equation

u(t, w) = C(w) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds

where

C(w) = u0(w)− arf(0, u(0, w), w).

The following hypotheses will be used in the sequel:

(H1) The function f is random Carathéodory.

(H2) There exist measurable, positive and bounded functions pi : Ω→ BC; i = 1, 2; such

that

|f(t, u, w)| ≤ p1(t, w) + p2(t, w)|u|;

for any w ∈ Ω, and for each t ∈ R+ and u ∈ R, with

lim
t→∞

pi(t, w) = 0, and lim
t→∞

∫ t

0

pi(s, w)ds = 0.

Set

p∗i (w) = sup
t∈R+

pi(t, w); w ∈ Ω, and p̃i(w) = sup
t∈R+

∫ t

0

pi(s, w)ds; i = 1, 2, w ∈ Ω.

Now,we prove an existence result for the problem (4.1)-(4.2) based on the Itoh’s fixed

point theorem.

Theorem 4.2.7 Assume that the hypotheses Assume that the hypotheses (H1) and (H2)

hold. Then the problem (4.1)-(4.2) has at least one random solution defined on R+.

Proof. From Lemma 4.2.5 for any w ∈ Ω and each t ∈ R+, the problem (4.1)-(4.2) is

equivalent to the operator equation (Nw)u = u(w), where N : Ω × BC → BC be the

operator defined by

(Nu)(t, w) = C(w) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds.
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Since the function f is continuous for all w ∈ Ω, and the indefinite integral is continuous on

R+, then u is a random solution for the problem (4.1)-(4.2) if and only if u = (Nu)(t, w).

We shall show that N : Ω×BC → BC satisfies the conditions of Theorem 1.3.3. The proof

will be given in serval steps.

Step 1. N(w) is a random operator.

Since f(t, u, w) is random Carathéodory, the maps w −→ f(t, u, w) and w −→
∫ t

0
f(s, u, w)ds

are measurable in view Definition 1.1.5. Therefore the map w 7→ (Nu)(t, w) is measurable.

As a result, N(w) is a random operator on Ω× BC → BC.

Step 2. N(w) is continuous.

Let un be a sequence such that un → u in BC. Them, for each t ∈ R+, we have

|(Nun)(t, w)− (Nu)(t, w)| ≤ |ar(f(t, u(t, w), w)− f(t, un(t, w), w))|

+ |br
∫ t

0

(f(t, u(t, w), w)− f(t, un(t, w), w))ds|

≤ ar|(f(t, u(t, w), w)− f(t, un(t, w), w))|

+ br

∫ t

0

|(f(s, u(s, w), w)− f(s, un(s, w), w))|ds

≤ arp1(t, w)‖un − u‖BC

+ br

∫ t

0

p2(s, w)‖un − u‖BCds.

Thus

‖(Nun)(t, w)− (Nu)(t, w)‖ ≤
(
arp1(t, w) + br

∫ t

0

p2(s, wds

)
‖un − u‖BC . (4.8)

Claim 1. If t ∈ [0, T ], T > 0, then since un → u as n→∞, (4.8) implies that

‖(Nun)(·, w))− (Nu)(·, w)‖BC → 0 as n→∞.

Claim 2. If t ∈ [T,∞); T > 0, then, since un → u as n→∞ and t→∞, then from

(H2), (4.8) implies that

‖(Nun)(·, w))− (Nu)(·, w)‖BC → 0.

Step 3. N(w) is uniformly bounded for each bounded set.

For any w ∈ Ω, and each t ∈ R+ and u ∈ BC, there exists R(w) > 0, such that ‖u‖BC ≤
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R(w), and

|(Nu)(t, w)| ≤
∣∣∣∣C(w) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds

∣∣∣∣
≤ ‖C(w)‖+ ar|f(t, u(t, w), w)|+ br

∫ t

0

|f(s, u(s, w), w)|ds

≤ |C(w)|+ ar(p1(t, w) + p2(t, w)‖u‖BC)

+ br

∫ t

0

(p1(s, w) + p2(s, w)‖u‖BC)ds

≤ |C(w)|+ ar(p
∗
1(w) + p∗2(w)R(w) + br(p̃1(w) + p̃2(w)R(w))

:= `(w).

Hence, (Nu)(w) ∈ BC for any w ∈ Ω, and each u ∈ BC.

Step 4. N(w) maps bounded sets into equicontinuous sets on every compact subset

[0, T ] ⊂ R+; T > 0.

Consider the bounded set B ⊂ BC. For any w ∈ Ω, and each 0 ≤ t1 ≤ t ≤ t2 ≤ T, and

u ∈ B, then there exists R(w) > 0, such that ‖u‖BC ≤ R(w), and

|(Nu)(t2, w)− (Nu)(t1, w)| ≤ |arf(t2, u(t2, w), w) + br
∫ t2

0
f(s, u(s, w), w)ds

− arf(t1, u(t1, w), w)− br
∫ t1

0
f(s, u(s, w), w)ds|

≤ ar|f(t2, u(t2, w), w)− f(t1, u(t1, w), w)|
+ br

∫ t2
t1
|f(s, u(s, w), w)ds|

≤ ar|f(t2, u(t2, w), w)− f(t1, u(t1, w), w)|
+ br(t2 − t1)(p∗1(w) + p∗2(w)‖u‖BC)

≤ ar|f(t2, u(t2, w), w)− f(t1, u(t1, w), w)|
+ br(t2 − t1)(p∗1(w) + p∗2(w)R(w).

Since f is Carathéodory, then as t2 → t1 the right-hand side of the above inequality tends

to zero.

Step 5. N(w)B is equiconvergent for each bounded set B ⊂ BC.
Let u ∈ B, then for any w ∈ Ω, and each t ∈ R+ there exists R(w) > 0, such that

‖u‖BC ≤ R(w), and

|(Nu)(t, w)| ≤
∣∣∣∣C(w) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds

∣∣∣∣
≤ |C(w)|+ ar|f(t, u(t, w), w)|+ br

∫ t

0

|f(s, u(s, w), w)|ds

≤ |C(w)|+ ar(p1(t, w) + p2(t, w)‖u‖BC)
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+ br‖u‖BC
∫ t

0

(p1(s, w) + p2(s, w))ds

≤ |C(w)|+ ar(p1(t, w) + p2(t, w)R(w)

+ brR(w)

∫ t

0

(p1(s, w) + p2(s, w))ds.

Then, from (H2) we deduce that, for any w ∈ Ω and each t ∈ R+, we get

|(Nu)(t, w)| → ‖C(w)‖ as t→∞.

Hence

|(Nu)(t, w)− (Nu)(∞, w)| → 0 as t→∞.

As a consequence of steps 1 to 5 together with the lemma 4.2.3, we can conclude that

N is continuous and compact random operator. Theorem 1.3.3 implies that the operator

equation (Nw)u = u has a random solution.

Now, we are concerned with the attractivity of problem (4.1)-(4.2). The following

hypothesis will be used in the sequel:

(H3) There exists a measurable, positive and bounded function q : Ω → BC; i = 1, 2;

such that

(1 + |u− v|)|f(t, u, w)− f(t, v, w)| ≤ q(t, w)|u− v|;

for any w ∈ Ω, and for each t ∈ R+ and u, v ∈ R, with

lim
t→∞

q(t, w) = 0, and lim
t→∞

∫ t

0

q(s, w)ds = 0.

Moreover, we assume that for any w ∈ Ω, the function t 7→ f(t, 0, w) is bounded on

R+, with lim
t→∞
|f(t, 0, w)| = 0.

Set

q∗(w) = sup
t∈R+

q(t, w), and q̃(w) = sup
t∈R+

∫ t

0

pi(s, w)ds; w ∈ Ω.

Remark 4.2.8 We can easily verify that (H3) implies (H2) with p1(t, w) = |f(t, 0, w)|
and p2(t, w) = q(t, w).

Theorem 4.2.9 Assume that the hypotheses (H1) and (H3) hold. Then all solution of

the problem (4.1)-(4.2) are globally asymptotically stable.
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Proof. From Remark 4.2.8 and Theorem 4.2.7, our problem (4.1)-(4.2) has at least one

random solution v defined on R+. Thus for any w ∈ Ω, and each t ∈ R+ we have

v(t, w) = C(w) + arf(t, v(t, w), w) + br

∫ t

0

f(s, v(s, w), w)ds.

Consider the ball B(v,Rη(w)) := {u ∈ BC : ‖u − v‖BC ≤ η(w)}. Take u ∈ B(v,Rη(w)),

then for any w ∈ Ω, and each t ∈ R+ we have

|(Nu)(t, w)− v(t, w)| = |(Nu)(t, w)− (Nv)(t, w)|

= |arf(t, u(t, w), w) + br

∫ t

0

f(t, u(t, w), w)ds

− arf(t, v(t, w), w)− br
∫ t

0

f(t, v(t, w), w)ds|

≤ ar|f(t, u(t, w), w)− f(t, v(t, w), w)|

+ br

∫ t

0

|f(s, u(s, w), w)− f(s, v(s, w), w)|ds

≤ arq(t, w)|u(t, w)− v(t, w)|

+ br

∫ t

0

q(s, w)|u(s, w)− v(s, w)|ds

≤ (arq
∗(w) + brq̃(w))Rη(w).

Thus N(w) is a continuous operator such that N(w)(B(v,Rη(w))) ⊂ B(v,Rη(w)).

Moreover, if u is a solution of problem (4.1)-(4.2), then from (H3) for any w ∈ Ω, and

each t ∈ R+ we have

|u(t, w)− v(t, w)| = |(Nu)(t, w)− (Nv)(t, w)|

≤ ar|f(t, u(t, w), w)− f(t, v(t, w), w)|

+ br

∫ t

0

|f(s, u(s, w), w)− f(s, v(s, w), w)|ds

≤ arq(t, w)
|u(t, w)− v(t, w)|

1 + |u(t, w)− v(t, w)|

+ br

∫ t

0

q(s, w)
|u(s, w)− v(s, w)|

1 + |u(s, w)− v(s, w)|
ds

≤ arq(t, w) + br

∫ t

0

q(s, w)ds.

Hence, we deduce that

|u(t, w)− v(t, w)| → 0 as t→∞.
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Consequently, all solutions of problem (4.1)-(4.2) are globally asymptotically stable.

4.3 An Example

Let Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of Lebesgue measurable

subsets of (−∞, 0). Consider the Caputo-Fabrizio fractional differential equation

(CFD
1
4
0 u)(t, w) =

w2(1− tw2)e−tw
2
(1 + sin(u(t, w)))

(1 + t)(1 + w2 + |u(t, w)|)
; t ∈ R+, w ∈ Ω, (4.9)

with the initial condition

u(0, w) =
1

1 + w2
; w ∈ Ω. (4.10)

Set

f(t, u(t, w), w) =
w2(1− tw2)e−tw

2
(1 + sin(u(t, w)))

(1 + t)(1 + w2 + |u(t, w)|)
; t ∈ R+, w ∈ Ω.

For any w ∈ Ω, and for each t ∈ R+ and u, v ∈ R, we have

|f(t, u, w)− f(t, v, w)| ≤ |1− tw2|e−tw2t |u− v|
1 + |u− v|

;

Hence, the hypothesis (H3) is satisfied with

q(t, w) = |1− tw2|e−tw2

.

So; we have

lim
t→∞

q(t, w) = 0, and lim
t→∞

∫ t

0

q(s, w)ds = lim
t→∞

te−tw
2

= 0.

Moreover, for any w ∈ Ω, the function

t 7→ f(t, 0, w) =
w2(1− tw2)e−tw

2

(1 + t)(1 + w2)

is bounded on R+, with lim
t→∞
|f(t, 0, w)| = 0.

Simple computations show that all conditions of Theorem 4.2.9 are satisfied. Hence

problem (4.9)-(4.10) has random solutions, and all solutions are globally asymptotically

stable.



CHAPTER 5

RANDOM CAPUTO-FABRIZIO

FRACTIONAL DIFFERENTIAL

EQUATIONS IN FRÉCHET SPACES

5.1 Introductions and Motivations

In recent years, Caputo and Fabrizio [47] introduced a new approach of fractional deriva-

tive having a kernel with exponential decay known as the Caputo-Fabrizio operator. Sev-

eral rechearchers were recently busy in development of Caputo-Fabrizio fractional differ-

ential equations, see; [51, 62, 63, 64, 100, 133], and the references therein.

The initial value problems of ordinary random differential equations have been studied

in the literature on bounded as well as unbounded intervals [43, 141]. Recently, fractional

randon differential equations is largely studied by many authors, see for example [2, 3, 24,

141].

Considerable attention has been given to the study of the Ulam-Hyers-Rassias stability

of all kinds of functional equations, see; the monographs [16, 87], and the papers [4, 5, 6,

19, 22]. More details from historical point of view, and developments of such stabilities

are reported in [82, 86, 109, 112, 115].

Fractional differential equations in Fréchet spaces have studied by many mathemati-

cians; see [4, 6, 10, 55, 56]. In this article we investigate the following class of Caputo–
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Fabrizio random fractional differential equation

(CFDr
0u)(t, w) = f(t, u(t, w), w); t ∈ R+ = [0,∞), w ∈ Ω, (5.1)

with the initial condition

u(0, w) = u0(w); w ∈ Ω, (5.2)

where u0 : Ω → R, is a measurable function, f : R+ × R × Ω → R is a given function,
CFDr

0 is the Caputo–Fabrizio fractional derivative of order r ∈ (0, 1), and Ω is the sample

space in a probability space (Ω,F).

Nonlocal problems are used to represent mathematical models for evolution of various

phenomena, such as nonlocal neural networks, nonlocal pharmacokinetics, nonlocal pollu-

tion and nonlocal combustion, see for example [44, 53, 102, 134, 135]. In our next results,

we discuss the existence of random solutions the Ulam stability for the nonlocal problem

of fractional differential equations(CFDr
0u)(t, w) = f(t, u(t, w), w); t ∈ R+,

u(0, w) +Q(u(·, w)) = u0(w),
w ∈ Ω, (5.3)

where u0, f are as in problem (5.1)-(5.2), Q : Ω ×X → R is a given function, and X is

the Fréchet space defined later.

5.2 Existence of Random Solutions and Ulam stabil-

ity

Let I := [0, T ]; T > 0. Denote by C(I) := C(I,R) the Banach space of all real continuous

functions on I with the norm

‖u‖∞ = sup
t∈I
|u(t)|.

Let X be a Fréchet space with a family of semi-norms {‖ · ‖n}n∈N∗ . We assume that the

family of semi-norms {‖ · ‖n} verifies :

‖x‖1 ≤ ‖x‖2 ≤ ‖x‖3 ≤ ... for every x ∈ X.

Let Y ⊂ X, we say that Y is bounded if for every n ∈ N, there exists Mn > 0 such that

‖y‖n ≤Mn for all y ∈ Y.
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To X we associate a sequence of Banach spaces {(Xn, ‖ · ‖n)} as follows: For every n ∈ N,

we consider the equivalence relation ∼n defined by : x ∼n y if and only if ‖x−y‖n = 0 for

x, y ∈ X. We denote Xn = (X|∼n , ‖ · ‖n) the quotient space, the completion of Xn with

respect to ‖ · ‖n. To every Y ⊂ X, we associate a sequence {Y n} of subsets Y n ⊂ Xn as

follows : For every x ∈ X, we denote [x]n the equivalence class of x of subset Xn and we

defined Y n = {[x]n : x ∈ Y }. We denote Y n, intn(Y n) and ∂nY
n, respectively, the closure,

the interior and the boundary of Y n with respect to ‖ · ‖n in Xn. For more information

about this subject see [61].

For each p ∈ N\{0}, we set Ip := [0, p], we consider following set, Cp = C([0, p]), and

we define in X := C(R+) the semi-norms by

‖u‖p = sup
t∈[0,p]

|u(t)|.

Then X is a Fréchet space with the family of semi-norms {‖u‖p}.

Lemma 5.2.1 Let h ∈ L1(I). A function u ∈ C is a solution of problem{
(CFDr

0u)(t) = h(t); t ∈ I := [0, T ]

u(0) = u0,
(5.4)

if and only if u satisfies the following integral equation

u(t) = C + arh(t) + br

∫ t

0

h(s)ds. (5.5)

ar =
2(1− r)

(2− r)M(r)
, br =

2r

(2− r)M(r)
,

C = u0 − arh(0).

Now, we consider the Ulam stability for the problem (5.1)-(5.2). Let ε > 0 and Φ :

Ω× Ip → R+; p ∈ N be a measurable and continuous function. We consider the following

inequalities

|(CFDr
0u)(t, w)− f(t, u(t, w), w)| ≤ ε; t ∈ Ip, w ∈ Ω. (5.6)

|(CFDr
0u)(t, w)− f(t, u(t, w), w)| ≤ Φ(t, w); t ∈ Ip, w ∈ Ω. (5.7)

|(CFDr
0u)(t, w)− f(t, u(t, w), w)| ≤ εΦ(t, w); t ∈ Ip, w ∈ Ω. (5.8)

Definition 5.2.2 [16] The problem(5.1)-(5.2) is Ulam-Hyers stable if there exists a real

number cf > 0 such that for each ε > 0 and for each solution u(·, w) ∈ X of the inequality
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(5.6), there exists a solution v(·, w) ∈ X of (5.1)-(5.2) with

|u(t, w)− v(t, w)| ≤ εcf ; t ∈ Ip, w ∈ Ω.

Definition 5.2.3 [16] The problem (5.1)-(5.2) is generalized Ulam-Hyers stable if there

exists cf ∈ C(R+,R+) with cf (0) = 0 such that for each ε > 0 and for each solution

u(·, w) ∈ X of the inequality (5.6), there exists a solution v(·, w) ∈ X of (5.1)-(5.2) with

|u(t, w)− v(t, w)| ≤ cf (ε); t ∈ Ip, w ∈ Ω.

Definition 5.2.4 [16] The problem (5.1)-(5.2) is Ulam-Hyers-Rassias stable with respect

to Φ if there exists a real number cf,Φ > 0 such that for each ε > 0 and for each solution

u(·, w) ∈ X of the inequality (5.8), there exists a solution v(·, w) ∈ x of (5.1)-(5.2) with

|u(t, w)− v(t, w)| ≤ εcf,ΦΦ(t, w); t ∈ Ip, w ∈ Ω.

Definition 5.2.5 [16] The problem (5.1)-(5.2) is generalized Ulam-Hyers-Rassias stable

with respect to Φ if there exists a real number cf,Φ > 0 such that for each solution u(·, w) ∈
X of the inequality (5.7), there exists a solution v(·, w) ∈ X of (5.1)-(5.2) with

|u(t, w)− v(t, w)| ≤ cf,ΦΦ(t, w); t ∈ Ip, w ∈ Ω.

Remark 5.2.6 A function u(·, w) ∈ X is a solution of the inequality (5.7) if and only if

there exist a function g(·, w) ∈ C(Ip) (wich depend on u) such that

|g(t, w)| ≤ Φ(t, w),

(CFDr
0u)(t, w) = f(t, u(t, w), w) + g(t, w); for t ∈ Ip, and w ∈ Ω.

Let us introduce the following hypotheses.

(H1) The function f : Ip×R×Ω 7→ f(t, u, w) ∈ R is random Carathéodory on Ip×R×Ω,

and affine with respect to u,

(H2) There exists a measurable and bounded function ` : Ω→ C(Ip,R+), such that

|f(t, u, w)− f(t, v, w)| ≤ `(t, w)|u− v|; for a.e. t ∈ Ip, and each u, v ∈ R, w ∈ Ω,
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(H3) There exists λΦ > 0 such that for each t ∈ Ip, and w ∈ Ω, we have

(CF Ir0Φ)(t, w) ≤ λΦΦ(t, w),

(H4) The function Q : Ω × X → R is jointly measurable, affine with respect to u, and

there exists a measurable function ν : Ω→ R+, such that

(1 + ‖u(·, w)− v(·, w)‖p)|Q(u(·, w))−Q(v(·, w))|

≤ Φ(t, w)ν(w)‖u(·, w)− v(·, w)‖p; for each u(·, w), v(·, w) ∈ X.

For any p ∈ N, we set `∗p(w) = sup
t∈Ip

`(t, w), Φ∗(w) = sup
t∈Ip

Φ(t.w),

and f ∗p (w) = sup
t∈Ip
|f(t, 0, w)|.

5.2.1 The Initial Value Problem

In this section, we are concerned with the existence and Ulam stability results of the

problem (5.1)-(5.2).

Definition 5.2.7 By a random solution of problem (5.1)-(5.2), we mean a measurable

function u(·, w) ∈ X; w ∈ Ω that satisfies the integral equation

u(t, w) = c(w) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds,

where

c(w) = u0(w)− arf(0, u(0, w), w).

Now, we shall prove the following theorem concerning the existence of random solutions

and the generalized Ulam-Hyers-Rassias stability of problem (5.1)-(5.2).

Theorem 5.2.8 Assume that the hypotheses (H1) and (H2) hold. If

`∗p(w)(ar + pbr) < 1, (5.9)

for any w ∈ Ω, then problem (5.1)-(5.2) has at least one random solution in the space X.

Furthermore, if the hypothesis (H3) holds, then problem (5.1)-(5.2) is generalized Ulam-

Hyers-Rassias stable.
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Proof. Define a mapping N : Ω×X → X by:

(N(w)u)(t) = c(w) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds. (5.10)

The map w → c(w) is measurable for all w ∈ Ω. Again, as the function f is a random

Carathéodory, the map w → f(t, u, w) is measurable in view of Definition ??. Similarly,

the integral is measurable, then N(w) is a random operator on X, and defines a mapping

N : Ω × X → X. Thus the random solutions of problem (5.1)-(5.2) are random fixed

points of the random operator N.

Next, for each p ∈ N\{0} and any w ∈ Ω, we can show that N(w) transforms the ball

BR = {u ∈ X : ‖u‖p ≤ Rp(w)} into itself, where

Rp(w) ≥
|c(w)|+ (ar + pbr)f

∗
p (w)

1− `∗p(w)(ar + pbr)
.

Indeed, for any w ∈ Ω, and each u ∈ BR and t ∈ Ĩp, we have

|(Nu)(t, w)| ≤
∣∣∣∣c(w) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds

∣∣∣∣
≤ |c(w)|+ ar|f(t, u(t, w), w)|+ br

∫ t

0

|f(s, u(s, w), w)|ds

≤ |c(w)|+ ar(|f(t, 0, w)|+ `(t, w)|u(t)|)

+br

∫ t

0

(|f(s, 0, w)|+ `(s, w)|u(s)|)ds

≤ |c(w)|+ ar(f
∗
p (w) + `∗p(w)|u(t)|)

+br

∫ t

0

(f ∗p (w) + `∗p(w)|u(s)|)ds

≤ |c(w)|+ (ar + pbr)(f
∗
p (w) + `∗p(w)Rp(w))

≤ Rp(w).

Thus

‖N(w)u‖p ≤ Rp(w). (5.11)

The proof of Theorem 5.2.8 be given in two steps.

Step 1. The operator N : Ω×BR → BR has a random fixed point.

We shall show that the operator N : Ω×BR → BR satisfies all the assumptions of Theo-
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rem 1.3.3.

Since N(w) is a random operator on Ω × BR into BR, it remains for us to demonstrate

that N(w) is continuous and affine. The proof will be given in two claims.

Claim 1. N(w) is continuous.

Let un be a sequence such that un → u in BR Them, for each t ∈ Ip, and w ∈ Ω, we have

|(Nun)(t, w)− (Nu)(t, w)| ≤ ar|f(t, u(t, w), w)− f(t, un(t, w), w)|

+ br

∫ t

0

|f(t, u(t, w), w)− f(t, un(t, w), w)|ds

≤ ar`p(w)(t, w)‖un − u‖p + pbr`p(w)‖un − u‖p.

Hence

‖(Nun)(·, w))− (Nu)(·, w)‖p → 0 as n→∞.

Claim 2. N(w) is affine.

We use the fact that f(t, u, w) is affine with respect to u, for each u, v ∈ BR, t ∈ Ip, and

any λ ∈ (0, 1) and w ∈ Ω, we have

N(w)(λu+ (1− λ)v) = c(w) + arf(t, (λu(t, w)) + (1− λ)v)(t, w), w)

+br
∫ t

0
f(s, (λu(s, w) + (1− λ)v)(s, w), w)ds

= λc(w) + λarf(t, u(t, w), w) + λbr
∫ t

0
f(s, u(s, w), w)ds

+(1− λ)c(w) + (1− λ)arf(t, v(t, w), w)

+(1− λ)br
∫ t

0
f(s, v(s, w), w)ds

= λN(w)(u) + (1− λ)N(w)(v).

Hence N(w) is affine.

As a consequence of the above claims, together with the Theorem 1.3.3, we deduce

that N has a random fixed point v which is a random solution of the problem (5.1)-(5.2).

Step 2. The generalized Ulam-Hyers-Rassias stability.

Let u be a random solution of the inequality (5.7), and let us assume that v is a random
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solution of problem (5.1)-(5.2). Thus, we have

v(t, w) = c(w) + arf(t, v(t, w), w) + br

∫ t

0

f(s, v(s, w), w)ds.

From the inequality (5.7) for each t ∈ Ip, and w ∈ Ω, we have

|u(t, w)− c(w)− arf(t, u(t, w), w)− br
∫ t

0

f(s, u(s, w), w)ds| ≤ (CF Ir0Φ)(t).

From hypotheses (H2) and (H3), for each t ∈ Ip, and w ∈ Ω, we get

|u(t, w)− v(t, w)| ≤ ‖u(t, w)− c(w)− arf(t, u(t, w), w)

− br

∫ t

0

f(s, u(s, w), w)ds|

+ ar|f(s, u(s, w), w)− f(s, v(s, w), w)|

+ br

∫ t

0

|f(s, u(s, w), w)− f(s, v(s, w), w)|ds

≤ (CF Ir0Φ)(t, w)

+ ar`
∗
p(w)|u(s, w)− v(s, w)|+ br`

∗
p(w)

∫ t

0

|u(s, w)− v(s, w)|ds

≤ λΦΦ(t, w)

+ ar`
∗
p(w)|u(s, w)− v(s, w)|+ br`

∗
p(w)

∫ t

0

|u(s, w)− v(s, w)|ds.

Thus, we get

|u(t, w)− v(t, w)| ≤ λΦ

1− ar`∗p(w)
Φ(t, w) +

br`
∗
p(w)

1− ar`∗p(w)

∫ t

0

|u(s, w)− v(s, w)|ds.

By applying the classical Gronwall lemma, we obtain

|u(t, w)− v(t, w)| ≤ λΦ

1− ar`∗p(w)
Φ(t, w) exp

(
br`
∗
p(w)

1− ar`∗p(w)

∫ t

0

ds

)

≤ λΦ

1− ar`∗p(w)
exp

(
pbr`

∗
p(w)

1− ar`∗p(w)

)
Φ(t, w)

:= cf,ΦΦ(t, w).

Hence, our problem (5.1)-(5.2) is generalized Ulam-Hyers-Rassias stable.
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5.2.2 The Nonlocal Problem

Now, we are concerned with the nonlocal problem (5.3).

Definition 5.2.9 By a random solution of problem (5.3), we mean a measurable function

u(·, w) ∈ X; w ∈ Ω that satisfies the integral equation

u(t, w) = c(w)−Q(u(·, w)) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds.

Theorem 5.2.10 Assume that the hypotheses (H1), (H2), (H4), and the condition (5.9)

hold. Then problem (5.3) has at least one random solution in the space X. Furthermore,

if the hypothesis (H3) holds, then problem (5.3) is generalized Ulam-Hyers-Rassias stable.

Proof. Define a mapping G : Ω×X → X by:

(G(w)u)(t) = c(w)−Q(u(·, w)) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds. (5.12)

The map w → c(w) is measurable for all w ∈ Ω, and the map w → Q(u(·, w)) is

measurable. Again, as the function f is a random Carathéodory, the map w → f(t, u, w)

is measurable in view of Definition 1.1.5. Similarly, the integral is measurable, then G(w)

is a random operator on X, and defines a mapping G : Ω × X → X. Thus the random

solutions of the nonlocal problem (5.3) are random fixed points of the random operator

G.

Next, for each p ∈ N\{0} and any w ∈ Ω, we can show that G(w) transforms the ball

Bρ = {u ∈ X : ‖u‖p ≤ ρp(w)} into itself, where

ρp(w) ≥
|c(w)|+ |Q(0)|+ Φ∗(w)ν(w) + (ar + pbr)f

∗
p (w)

1− `∗p(w)(ar + pbr)
.

Indeed, for any w ∈ Ω, and each u ∈ Bρ and t ∈ Ĩp, we have

|(Gu)(t, w)| ≤
∣∣∣∣c(w)−Q(u(·, w)) + arf(t, u(t, w), w) + br

∫ t

0

f(s, u(s, w), w)ds

∣∣∣∣
≤ |c(w)|+ |Q(u(·, w))|+ ar|f(t, u(t, w), w)|+ br

∫ t

0

|f(s, u(s, w), w)|ds

≤ |c(w)|+ |Q(0)|+ Φ∗(w)ν(w)‖u‖p
1 + ‖u‖p

+ ar(|f(t, 0, w)|+ `(t, w)|u(t)|)

+br

∫ t

0

(|f(s, 0, w)|+ `(s, w)|u(s)|)ds
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≤ |c(w)|+ |Q(0)|+ Φ∗(w)ν(w) + ar(f
∗
p (w) + `∗p(w)|u(t)|)

+br

∫ t

0

(f ∗p (w) + `∗p(w)|u(s)|)ds

≤ |c(w)|+ |Q(0)|+ Φ∗(w)ν(w) + (ar + pbr)(f
∗
p (w) + `∗p(w)ρp(w))

≤ ρp(w).

Thus

‖G(w)u‖p ≤ ρp(w). (5.13)

The proof of Theorem 5.2.10 be given in two steps.

Step 1. The operator N : Ω×BR → BR has a random fixed point.

Since G(w) is a random operator on Ω × BR into BR, and Q is jointly measurable and

affine, then as in the proof of Theorem 6.2.2, we can demonstrate that G(w) is continuous

and affine. Hence the operator G : Ω×BR → BR satisfies all the assumptions of Theorem

1.3.3, and then we deduce that G has a random fixed point v which is a random solution

of the problem (5.3).

Step 2. The generalized Ulam-Hyers-Rassias stability.

Let u be a random solution of the inequality (5.7), and let us assume that v is a random

solution of problem (5.3). Thus, we have

v(t, w) = c(w)−Q(v(·, w)) + arf(t, v(t, w), w) + br

∫ t

0

f(s, v(s, w), w)ds.

From the inequality (5.7) for each t ∈ Ip, and w ∈ Ω, we have

|u(t, w)− c(w) +Q(u(·, w))− arf(t, u(t, w), w)− br
∫ t

0

f(s, u(s, w), w)ds| ≤ (CF Ir0Φ)(t).

From hypotheses (H2)− (H4), for each t ∈ Ip, and w ∈ Ω, we have

|u(t, w)− v(t, w)| ≤ |u(t, w)− c(w) +Q(u(·, w))− arf(t, u(t, w), w)

− br

∫ t

0

f(s, u(s, w), w)ds|

+ |Q(u(·, w))−Q(v(·, w))|+ ar|f(s, u(s, w), w)− f(s, v(s, w), w)|

+ br

∫ t

0

|f(s, u(s, w), w)− f(s, v(s, w), w)|ds.
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Then, we obtain

|u(t, w)− v(t, w)| ≤ (CF Ir0Φ)(t, w) + ν(w)Φ(t, w)

+ ar`
∗
p(w)|u(s, w)− v(s, w)|+ br`

∗
p(w)

∫ t

0

|u(s, w)− v(s, w)|ds

≤ λΦΦ(t, w) + ν(w)Φ(t.w)

+ ar`
∗
p(w)|u(s, w)− v(s, w)|+ br`

∗
p(w)

∫ t

0

|u(s, w)− v(s, w)|ds.

Thus, we get

|u(t, w)− v(t, w)| ≤ λΦ + ν(w)

1− ar`∗p(w)
Φ(t, w) +

br`
∗
p(w)

1− ar`∗p(w)

∫ t

0

|u(s, w)− v(s, w)|ds.

By applying the classical Gronwall lemma, we obtain

|u(t, w)− v(t, w)| ≤ λΦν(w)

1− ar`∗p(w)
Φ(t, w) exp

(
br`
∗
p(w)

1− ar`∗p(w)

∫ t

0

ds

)

≤ λΦν(w)

1− ar`∗p(w)
exp

(
pbr`

∗
p(w)

1− ar`∗p(w)

)
Φ(t, w)

:= c∗f,ΦΦ(t, w).

Hence, our problem (5.3) is generalized Ulam-Hyers-Rassias stable.

5.3 An Example

Let Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of Lebesgue measurable

subsets of (−∞, 0). As an application of our results, we consider the following problem(CFD
1
4
0 u)(t, w) = f(t, u(t, w), w); t ∈ [0,∞),

u(t)|t=0 = 1,
w ∈ Ω, (5.14)

where 
f(t, u, w) =

cp(1 + u) sin t

(1 +
√
t)(1 + w2)(1 + w2 + |u|)

; t ∈ (0,∞), u ∈ R,

f(0, u, w) = 0; u ∈ R,
w ∈ Ω,
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for each t ∈ [0, p], where 0 < cp <
1

a 1
2

+pb 1
2

; p ∈ N− {0}.
The hypothesis (H2) is satisfied with

`p(t, w) =
cp| sin t|

(1 +
√
t)(1 + w2)

; t ∈ (0, p],

`p(0, w) = 0,

w ∈ Ω.

The hypothesis (H2) is satisfied with `∗p(w) = cp. Also, we can easily verify the condition

(5.9). Indeed; for any p ∈ N− {0}, we have `∗p(w)(ar + pbr) <
1

a 1
2

+pb 1
2

(ar + pbr) = 1.

Again; the hypotheses (H3) is satisfied with Φ(t, w) = w2et, and λΦ = 8
7M( 1

4
)
. Indeed;

for each t ∈ [0, p],

CF I
1
4
0 Φ(t, w) =

6

7M(1
4
)
w2et +

2w2

7M(1
4
)

∫ t

0

esds

≤ 8

7M(1
4
)
w2et

:= λΦΦ(t, w).

Simple computations show that conditions of Theorem 5.2.8 are satisfied. Hence, prob-

lem (5.14) has at least one random solution defined on R+. Moreover, problem (5.14) is

generalized Ulam-Hyers-Rassias stable.



CHAPTER 6

CAPUTO-FABRIZIO FRACTIONAL

DIFFERENTIAL EQUATIONS WITH

DELAY AND RANDOM EFFECTS

6.1 Introduction and Motivations

The functional differential equations with finite delay, infinite delay , and state-dependent

delay have received a lot of attention in recent years, the study of this type of equations

were carried out by Abbas et al. [8, 14, 15, 16],and the papers [37, 67, 71, 72, 73, 74].

The functional differential equations with random effects are differential equations

with a stochastic process, they play a very important fundamental role in the theory of

random dynamic systems, in addition they are used in various branches of science and

engineering. We refer the reader to the monographs [54, 58, 101, 106] and their references.

In this chapter, first we investigate the the following class of random Caputo-Fabrizio

fractional differential equations with finite delayu(t, w) = ϕ(t, w); t ∈ [−h, 0],

(CFDr
0u)(t, w) = f(t, ut(·, w), w); t ∈ I := [0, T ],

; w ∈ Ω, (6.1)

where h > 0, T > 0, ϕ ∈ C, f : I × C × Ω→ R is a given function, CFDr
0 is the Caputo-

Fabrizio fractional derivative of order r ∈ (0, 1], and C := C([−h, 0],R) is the space of
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continuous functions on [−h, 0].

For any t ∈ I, we define ut(·, w) by

ut(s, w) = u(t+ s, w); for s ∈ [−h, 0], and w ∈ Ω.

Next, we investigate the following class of random Caputo-Fabrizio fractional differential

equations with infinite delayu(t, w) = ϕ(t, w); t ∈ R− := (−∞, 0],

(CFDr
0u)(t, w) = f(t, ut(·, w), w); t ∈ I,

; w ∈ Ω, (6.2)

where ϕ : (−∞, 0] → R, f : I × B × Ω → R are given functions, and B is called a phase

space.

For any t ∈ I, we define ut ∈ B by

ut(s, w) = u(t+ s, w); for s ∈ R−, and w ∈ Ω.

In the third section, we investigate the following class of random Caputo-Fabrizio frac-

tional differential equations with state dependent finite delayu(t, w) = ϕ(t, w); t ∈ [−h, 0],

(CFDr
0u)(t, w) = f(t, uρ(t,ut(·,w))(·, w), w); t ∈ I,

(6.3)

where ϕ ∈ C, ρ : I × C × Ω→ R, f : I × C × Ω→ R are given functions.

and fractional differential equations with state dependent infinite delayu(t, w) = ϕ(t, w); t ∈ R−,

(CFDr
0u)(t, w) = f(t, uρ(t,ut(·,w))(·,w), w); t ∈ I,

; w ∈ Ω, (6.4)

where ϕ : R− → R, f : I × B × Ω→ R are given functions.

6.2 Existence of Random Solutions with Finite Delay

In this section, we establish some existence results for problem (6.1).
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Definition 6.2.1 By a solution of problem (6.1), we mean a function u ∈ C such that

u(t, w) =

ϕ(t, w); t ∈ [−h, 0],

ϕ(0, w)− arf(0, u0, w) + arf(t, ut, w) + br
∫ t

0
f(s, us, w)ds; t ∈ I.

We shall make use of the following hypotheses:

(H1) f is a random Carathéodory function.

(H2) The function t 7→ ϕ(t, w) is continuous on [−h, 0].

(H3) There exist measurable and essentially bounded functions l, l̃ : Ω→ C(I) such that

|f(t, u, w)| ≤ l(t, w) + l̃(t, w)‖u‖[−h,0], for all u ∈ C, t ∈ I.

(H4) For any bounded set B ⊂ C, the set:

{t 7→ f(t, ut, w) : u ∈ B};

is equicontinuous in C.

Set

l∗(w) = sup
t∈I

l(t, w); w ∈ Ω.

l̃∗(w) = sup
t∈I

l̃(t, w).

Theorem 6.2.2 Assume that hypotheses (H1)− (H4) hold. If

(2ar + Tbr)l̃
∗(w) < 1, (6.5)

then the problem (6.1) has at least one solution on [−h, T ].

Proof. Let N : Ω× C → C be the operator defined by

N(w)u(t) =

ϕ(t, w); t ∈ [−h, 0], w ∈ Ω

ϕ(0, w)− arf(0, u0, w) + arf(t, ut, w) + br
∫ t

0
f(s, us, w)ds; t ∈ I,

(6.6)
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and set

R(w) ≥ max

{
‖ϕ‖C([−h,0],R),

|ϕ(0, w)|+ (2ar + Tbr)l
∗(w)

1− (2ar + Tbr)l̃∗(w)

}
. (6.7)

Define the ball

BR := {x ∈ C(I,R) : ‖x‖C ≤ R(w)}.

Let u ∈ BR and t ∈ [−h, 0], then

‖N(w)u(t)‖ ≤ ‖ϕ‖C ≤ R(w).

For any w ∈ Ω and each t ∈ I, we have

|N(w)u(t)| ≤ |ϕ(0, w)|+ ar|f(0, u0, w)|+ ar|f(t, ut, w)|+ br
∫ t

0
|f(s, us, w)|ds

≤ |ϕ(0, w)|+ 2ar(l(t, w) + l̃(t, w)‖ut‖[−h,0])

+br(l(t, w) + l̃(t, w)‖ut‖[−h,0])
∫ t

0
ds

≤ |ϕ(0, w)|+ 2ar(l
∗(w) + l̃∗(w)‖u‖C) + br(l

∗(w) + l̃∗(w)‖u‖C)
∫ t

0
ds

≤ |ϕ(0, w)|+ 2ar(l
∗(w) + l̃∗(w)R(w)) + br(l

∗(w) + l̃∗(w)R(w))
∫ t

0
ds

≤ |ϕ(0, w)|+ (2ar + Tbr)(l
∗(w) + l̃∗(w)R(w))

≤ R(w).

Thus

‖N(w)u‖C ≤ R(w).

Hence N(w)(BR) ⊂ BR. We shall prove that N : Ω×BR → BR satisfies the assumptions

of Theorem 1.3.1.

Step 1. N(w) is a random operator.

The map w −→ f(t, ut, w) is measurable, and then the map

w 7→ ϕ(0, w)− arf(0, u0, w) + arf(t, ut, w) + br

∫ t

0

f(s, us, w)ds,

is measurable. Hence N is a random operator on Ω× C into C.

Step 2. N(w) is continuous.

Let un be a sequence such that un → u in BR. For each t ∈ [−h, 0], we have

|N(w)un(t)−N(w)u(t)| = 0,
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and for each t ∈ I, we have

|N(w)un(t)−N(w)u(t)| ≤ ar|fn(0, u0, w)− f(0, u0, w)|
+ar|fn(t, ut, w)− f(t, ut, w)|
+br

∫ t
0
|fn(s, us, w)− f(s, us, w)|ds,

(6.8)

we obtain

‖un(·, w)− u(·, w)‖C → 0 as n→∞,

then the Lebesgue dominated convergence theorem implies that

‖N(un)−N(u)‖C → 0 as n→∞.

Consequently, N(w) is continuous.

Step 3. N(w)BR is equicontinuous.

For 1 ≤ t1 ≤ t2 ≤ T, and u ∈ BR, we have

|(Nu)(t1, w)− (Nu)(t2, w)| ≤ ar|f(t2, ut2 , w)− f(t1, ut1 , w)|+ br
∫ t2
t1
|f(s, us, w)|ds

≤ ar|f(t2, ut2 , w)− f(t1, ut1 , w)|+ br(l(t, w)

+l̃(t, w)‖ut‖[−h,0])
∫ t2
t1
ds

≤ ar|f(t2, ut2 , w)− f(t1, ut1 , w)|+ br(l
∗(w)

+l̃∗(w)R(w))(t2 − t1).

Thus, from (H4), as t2 → t1 the right-hand side of the above inequality tends to zero.

Arzelá-Ascoli theorem implies that N : Ω×BR → BR is continuous and compact. Hence;

from Theorem 1.3.1, we deduce the problem (6.1) has at least one solution on [−h, T ].

6.3 Existence of Random Solutions with Infinite De-

lay

In this section, we establish some existence results for problem (6.2). Let the space

(B, ‖ · ‖B) as a seminormed linear space of functions mapping R− into R, and satisfying

the following fundamental axioms which were adapted from those introduced by Hale and

Kato [67] for ordinary differential functional equations.

(A1) If u : (−∞, T ] → R, and u0 ∈ B, then there are constants L,M,H > 0, such that

for any t ∈ I the following conditions hold:

(i) ut is in B,
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(ii) ‖ut‖B ≤ K‖u1‖B +M sups∈[0,t] |u(s)|,

(iii) ‖u(t)‖ ≤ H‖ut‖B.

(A2) For the function u(·) in (A1), ut is a B− valued continuous function on I.

(A3) The space B is complete.

Consider the space

∆ = {u : (−∞, T ]→ R : u|R− ∈ B, u|I ∈ C(I)}.

Definition 6.3.1 The problem (6.2) is equivalent to the integral equation

u(t, w) =

ϕ(t, w); t ∈ R−,

ϕ(0, w)− arf(0, u0, w) + arf(t, ut, w) + br
∫ t

0
f(s, us, w)ds; t ∈ I.

(6.9)

The following hypotheses will be used in the sequel.

(H01) f is a random Carathéodory function.

(H02) The function t 7→ ϕ(t, w) is continuous and bounded on R−.

(H03) There exist measurable and essentially bounded functions m, m̃ : Ω→ C(I); such

that

|f(t, u, w)| ≤ m(t, w) + m̃(t, w)‖u‖B, for all u ∈ B, t ∈ I.

(H04) For any bounded set B1 ⊂ ∆, the set:

{t 7→ f(t, ut, w) : u ∈ B1};

is equicontinuous in ∆.

Set

m∗(w) = sup
t∈I

m(t, w); w ∈ Ω,

m̃∗(w) = sup
t∈I

m̃(t, w).

Theorem 6.3.2 Assume that the hypotheses (H01)− (H04) hold. If

(2ar + Tbr)Mm̃∗(w) < 1, (6.10)



6.3. EXISTENCE OF RANDOM SOLUTIONS WITH INFINITE DELAY 76

then problem (6.2) has at least one random solution on (−∞, T ].

Consider the operator N1 : Ω×∆→ ∆ defined by:

(N1u)(t, w) =

ϕ(t, w); t ∈ R−,

ϕ(0, w)− arf(0, u0, w) + arf(t, ut, w) + br
∫ t

0
f(s, us, w)ds; t ∈ I.

(6.11)

Let x(·, w) : (−∞, T ]× Ω→ R be a function defined by

x(t, w) =

{
ϕ(t, w); t ∈ R−,
ϕ(0, w) t ∈ I.

Then v0 = ϕ, For each z continuous on I with z(0, w) = 0, we denote by z the function

defined by

z(t, w) =

{
0; t ∈ R−, w ∈ Ω,

z(t, w), t ∈ I.

If u(·, w) satisfies the integral equation

u(t, w) = ϕ(0, w)− arf(0, u0, w) + arf(t, ut, w) + br
∫ t

0
f(s, us, w)ds.

We can decompose u(·, w) as u(t, w) = z(t, w) + x(t, w); for t ∈ I, which implies that

ut = zt + xt for every t ∈ I, and w ∈ Ω and the function z(·, w) satisfies

z(t, w) = −arf(0, z0 + x0, w) + arf(t, zt + xt, w) + br

∫ t

0

f(s, zs + xs, w)ds.

Set

C0 = {z ∈ C(I); z0 = 0},

and let ‖ · ‖T be the norm in C0 defined by

‖z‖T = ‖z0‖B + sup
t∈I
|z(t)| = sup

t∈I
|z(t)|; z ∈ C0.

C0 is a Banach space with norm ‖ · ‖T .
Let the operator P : C0 → C0; defined by

(Pz)(t, w) = −arf(0, z0 + x0, w) + arf(t, zt + xt, w) + br

∫ t

0

f(s, zs + xs, w)ds. (6.12)
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For each given R(w) > 0, we define the ball

BR = {x ∈ C0, ‖x‖T ≤ R(w)}.

Let z ∈ BR, for each t ∈ I, and w ∈ Ω we have

|(Pz)(t, w)| ≤ ar|f(0, z0 + x0, w)|+ ar|f(t, zt + xt, w)|+ br
∫ t

0
|f(s, zs + xs, w)|ds

≤ 2ar(m(t, w) + m̃(t, w)‖zt + xt‖B)

+ br(m(t, w) + m̃(t, w)‖zt + xt‖B)
∫ t

0
ds

≤ (2ar + Tbr)(m
∗(w) + m̃∗(w)[‖zt‖B + ‖xt‖B])

≤ (2ar + Tbr)(m
∗(w) + m̃∗(w)[MR(w) +K‖ϕ‖B])

:= `(w).

Hence

‖P (z)‖T ≤ `(w).

We prove that the operator P : C0 → C0 satisfies all conditions of Theorem 1.3.3.

The proof will be given in several steps.

Step 1. P (w) is a random operator.

Since the map w −→ f(t, ut, w) is measurable, we obtain that the map

w 7→ −arf(0, zt + xt, w) + arf(t, z0 + x0, w) + br

∫ t

0

f(s, zs + xs, w)ds,

is measurable, and hence P (w) is a random operator on Ω× C0 into C0.

Step 2. P (w) is continuous .

Let zn be a sequence such that zn → z in C0. For each t ∈ I, we have

|(Pzn)(t, w)− (Pz)(t, w)| ≤ ar|f(0, z0 + x0, w)− f(0, z0 + x0, w)|
+ ar|f(t, znt + xt, w)− f(t, zt + xt, w)|
+ br

∫ t
0
|f(s, zns + xs, w)− f(s, zs + xs, w)|ds.

(6.13)

Since ‖zn − z‖T → 0 as n→∞ and f is Carathéodory, the Lebesgue dominated conver-

gence theorem, implies that

‖P (un)− P (u)‖T → 0 as n→∞.

Hence, P (w) is continuous.
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Step 3. P (BR) is equicontinuous.

For 1 ≤ t1 ≤ t2 ≤ T, and z ∈ BR, we have

|(Pz)(t2, w)− (Pz)(t1, w)|
≤ ar|f(t2, zt2 + xt2 , w)− f(t1, zt1 + xt1 , w)|

+br

∫ t2

t1

|f(s, zs + xs, w)|ds

≤ ar|f(t2, zt2 + xt2 , w)− f(t2, zt2 + xt2 , w)− f(t1, zt1 + xt1 , w)|
+ br(t2 − t1)(m∗(w) + m̃∗(w)[MR(w) +K‖ϕ‖B]).

By (H04), as t2 → t1 the right-hand side of the above inequality tends to zero, we conclude

that P maps bounded sets into equicontinuous sets in C0. Hence problem (6.2) has at least

one solution.

6.4 Existence Results with State-Dependent Delay

In this section, we establish some existence of random solutions for problems (6.3) and

(6.4).

6.4.1 Existence of Soluions In Finite Delay Case

Definition 6.4.1 By a solution of problem (6.3), we mean a function u ∈ C such that

u(t, w) =


ϕ(t, w); t ∈ [−h, 0],

ϕ(0, w)− arf(0, uρ(0,u0), w) + arf(t, uρ(t,ut(t,w)), w)

+br
∫ t

0
f(t, uρ(s,us(s,w))(s, w), w)ds; t ∈ I.

We shall make use of the following hypotheses:

(H5) There exist measurable and essentially bounded functions l1, l̃1 : Ω → C(I); such

that

|f(t, u, w)| ≤ l1(t, w) + l̃1(t, w)‖u‖[−h,0], for all u ∈ C, t ∈ I.

(H6) For any bounded set B2 ⊂ C, the set:

{t 7→ f(t, ut, w) : u ∈ B2};

is equicontinuous in C.
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Set

l∗1(w) = sup
t∈I

l1(t, w); w ∈ Ω.

l̃∗1(w) = sup
t∈I

l̃1(t, w).

Theorem 6.4.2 Assume that the hypothesis (H1), (H2), (H5) and (H6) hold. If

(2ar + Tbr)l̃
∗
1(w) < 1, (6.14)

then problem (6.3) has at least one solution on [−h, T ].

6.4.2 Existence of Solutions In Infinite Delay Case

Definition 6.4.3 The problem (6.4) is equivalent to the integral equation

u(t, w) =


ϕ(t, w); t ∈ R−,

ϕ(0, w)− arf(0, uρ(0,u0), w) + arf(t, uρ(t,ut(t,w)))

+br
∫ t

0
f(t, uρ(s,us(s,w))(s, w), w)ds; t ∈ I.

(6.15)

Set

R′ := R′ρ−(w){ρ(t, u, w) : t ∈ I, u ∈ B, w ∈ Ω, ρ(t, u, w) < 0}.

We always assume that ρ : I × B × Ω → R is continuous and the function t → ut is

continuous from R′ into B. We will need the following hypothesis:

(Hϕ) There exists a continuous bounded function L : R′ρ− → (0,∞) such that

‖ϕt‖B ≤ L(t)‖ϕ‖B, for any t ∈ R′.

In the sequel we will make use of the following generalization of a consequence of the

phase space axioms.

Lemma 6.4.4 If u ∈ ∆ then

‖ut‖B = (M + L′)‖ϕ‖B +K sup
θ∈[0,max{0,t}]

‖u(θ)‖,
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where

L′ = sup
t∈R′

L(t).

The following hypotheses will be used in the sequel.

(H05) There exist measurable and essentially bounded functions m1, m̃1 : Ω → C(I);

such that

|f(t, u, w)| ≤ m1(t, w) + m̃1(t, w)‖u‖B, for all u ∈ B, t ∈ I.

(H06) For any bounded set B2 ⊂ ∆, the set:

{t 7→ f(t, ut, w) : u ∈ B2}

is equicontinuous in ∆.

Set

m∗1(w) = sup
t∈I

m1(t, w); w ∈ Ω.

m̃∗1(w) = sup
t∈I

m̃1(t, w).

Theorem 6.4.5 Assume that the hypotheses (Hϕ), (H01), (H02), (H05) and (H06) hold.

Then problem (6.4) has at least one solution on (−∞, T ].

6.5 Some Examples

Let Ω = (−∞, 0) be equipped with the usual σ-algebra consisting of Lebesgue measurable

subsets of (−∞, 0).

Example 1. Consider now the following random problemu(t, w) = 2w2

t2+1
; t ∈ [−1, 0],

(CFDr
0u)(t, w) = w2d(w)

e2t+1(1+‖ut‖) ; t ∈ [0, 1],
(6.16)

where d(w) < e3

(2ar+br)w2 .

Set

f(t, u, w) =
w2d(w)

e2t+1 (1 + ‖ut‖)
; t ∈ [0, 1], u ∈ C.
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Clearly, the function f is continuous. For any u ∈ C and t ∈ [0, 1], we have

|f(t, u, w)| ≤ w2d(w)

e3
‖u‖[−1,0].

Hence hypothesis (H3) is satisfied with

l∗(w) = 0 and l̃∗(w) =
w2d(w)

e3
.

Next, condition (6.5) is satisfied with T = 1.Indeed,

(2ar + Tbr)l̃
∗(w) = w2d(w)

e3
(2ar + br)

< 1.

Simple computations show that all conditions of Theorem 6.2.2 are satisfied. It follows

that problem (6.16) has a solution defined on [−1, 1].

Example 2. Consider now the following problemu(t, w) = t sinw; t ∈ R−,

(CFDr
0u)(t, w) = c(w)w2ute−γt+t

(et−e−t)(1+w2)(1+‖ut‖) ; t ∈ [0, 1],
(6.17)

where c(w) < 1
2ar+br

. Let γ be a positive real constant and

Bγ = {u ∈ C((−∞, 1],R, ) : lim
θ→−∞

eγθu(θ) exists in R}. (6.18)

The norm of Bγ is given by

‖u‖γ = sup
θ∈(−∞,1]

eγθ|u(θ)|.

Let u : R− → R be such that u0 ∈ Bγ. Then

lim
θ→−∞

eγθut(θ) = lim
θ→−∞

eγθu(t+ θ − 1) = lim
θ→−∞

eγ(θ−t+1)u(θ)

= eγ(−t+1) lim
θ→−∞

eγ(θ)u1(θ) <∞.

Hence ut ∈ Bγ. Finally we prove that

‖ut‖γ ≤ K‖u1‖γ +M sup
s∈[0,t]

|u(s)|,
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where K = M = 1 and H = 1. We have

‖ut(θ)‖ = |u(t+ θ|.

If t+ θ ≤ 1, we get

‖ut(β)‖ ≤ sup
s∈R−
|u(s)|.

For t+ θ ≥ 0, then we have

‖ut(β)‖ ≤ sup
s∈[0,t]

|u(s)|.

Thus for all t+ θ ∈ I, we get

‖ut(β)‖ ≤ sup
s∈R−
|u(s)|+ sup

s∈[0,t]

|u(s)|.

Then

‖ut‖γ ≤ ‖u0‖γ + sup
s∈[0,t]

|u(s)|.

It is clear that (Bγ, ‖ · ‖) is a Banach space. We can conclude that Bγ a phase space.

Set

f(t, u, w) =
c(w)w2e−γt+t

(et − e−t) (1 + w2)
(
1 + ‖u‖Bγ

) ; t ∈ [0, 1], u ∈ Bγ.

For any u,∈ Bγ and t ∈ [0, 1], we have

|f(t, u, w)| ≤ c(w)w2

1 + w2
‖u‖Bγ .

Hence hypotheses (H01)− (H03) are satisfied with

m̃∗(w) =
c(w)w2

1 + w2
and m∗(w) = 0.

Next we obtain
(2ar + Tbr)Mm̃∗(w) = c(w)w2

1+w2 (2ar + br)

< 1.

It follows from Theorem 6.3.2 that problem (6.17) has at least one solution defined on

(−∞, 1].
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Example 3. We consider the following problemu(t, w) = 2w2

t2+1
; t ∈ [−1, 0],

(CFDr
0u)(t, w) = w2

e2t+1(1+|u(t−σ(u(t)))|) ; t ∈ [0, 1],
(6.19)

where σ ∈ C(R, [0, 1]). Set

ρ(t, ϕ, w) = t− σ(ϕ(0, w)), (t, ϕ, w) ∈ [0, e]× C([−1, 0],R)× Ω.

f(t, u, w) =
w2

e2t+1(1 + |u(t− σ(u(t)))|)
; t ∈ [0, 1], u ∈ C

Clearly, the function f is jointly continuous. For any u ∈ C and t ∈ [0, 1], we have

|f(t, u, w)| ≤ w2

e3
‖u‖[−1,0].

Hence hypothesis (H05) is satisfied with

m̃∗(w) =
w2

1 + w2
and m∗(w) = 0.

It follows from Theorem 6.4.2 that problem (6.19) has a solution defined on [−1, 1].

Example 4. Consider now the problemu(t, w) = t2

w2+2
; t ∈ R−,

(CFDr
0u)(t, w) = u(t−λ(u(t)))e−γt+t

w2(et−e−t)(1+|u(t−σ(u(t,w),w)|) ; t ∈ [0, 2].
(6.20)

Let γ be a positive real constant and the phase space Bγ defined in Example 2.

Define

ρ(t, ϕ, w) = t− λ(ϕ(0, w)), (t, ϕ) ∈ [0, 2]×Bγ × Ω,

and set

f(t, u, w) =
e−γt+t

w2 (et − e−t)
(
1 + ‖u‖Bγ

) ; t ∈ [0, 2], u ∈ Bγ.

Simple computations show that all conditions of Theorem 6.4.5 are satisfied. It follows

that problem (6.20) has at least one solution defined on (−∞, 2].



CONCLUSION AND PERSPECTIVES

In this thesis, we have presented some results.

The fisrt result is based on the existence of random solutions for the following class of

Caputo-Hadamard fractional differential equation

(HcDr
1u)(t, w) = f(t, u(t, w), w); t ∈ I := [1, T ], w ∈ Ω,

with the boundary conditionsu(1, w) = u1(w)

u′(T,w) = uT (w)
; w ∈ Ω,

The second is based on the existence of random solutions and the stability of Ulam

results for a class of Caputo-Fabrizio random fractional dierential equations in the form

(CFDα
0 u)(t, w) = f(t, u(t, w), w); t ∈ I := [0, T ], w ∈ Ω,

with the boundary conditions

au(0, w) + bu(T,w) = c(w); w ∈ Ω,

and the existence of random solutions and the stability Ulam for a class of random
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fractional differential equations of Katugampola

(ρDς
0x)(ξ, w) = f(ξ, x(ξ, w), w); ξ ∈ I = [0, T ], w ∈ Ω,

with the terminal condition

x(T,w) = xT (w); w ∈ Ω,

In chapter 4 we study the existence and attractivity for several classes of functional

fractional differential equations.

(CFDr
0u)(t, w) = f(t, u(t, w), w); t ∈ R+ = [0,∞), w ∈ Ω, (6.21)

with the initial condition

u(0, w) = u0(w); w ∈ Ω, (6.22)

and in chapter 5 we are proved the existence and the Ulam stability results in Fréchet

spaces of the problem (6.21)-(6.22).

We have presented the following nonlocal problem(CFDr
0u)(t, w) = f(t, u(t, w), w); t ∈ R+,

u(0, w) +Q(u(·, w)) = u0(w),
w ∈ Ω,

We have also proved the existence of random solutions for some classes of Caputo-

Fabrizio random fractional differential equations delay.

Our results are based on the random fixed point theory.

In future research we plan to investigate a some problems for random implicit fractional

differential equations, thus problems with and without impulses (instantaneous and not

instantaneous).
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Equations, Springer, New York, 2012.

[16] S. Abbas, M. Benchohra and G. M. N’Guérékata, Advanced Fractional Differential
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Abstract : 

In this thesis, we consider the study of the existence of random solutions and the Ulam stability 

and the attractivity of serveral classes of differential equations with fractional derivatives of 

Caputo, Hadamard, Fabrizio and Katugampola in Fréchet spaces. The used methods are the 

random fixed point and the technique of the measure non-compactness. We have also shown the 

existence of random solutions for certain classes of random fractional 

differential equations with delay. In addition, for the justification of our results, we give various 

examples in each chapter. 

Keywords :Differential equation, fractional integral, fractional derivative, random solution, 

Banach space, Ulam stability, fixed point, attractivity, nonlocal problem, finite delay, infinite 

delay, state-dependent delay, measure of non compactness, Fréchet space. 
 

Resumé : 

Dans cette thèse, nous considérons l’étude de l’existence des solutions aléatoires et la stabilité 

de type Ulam et l’attractivité de quelques classes d’équations différentielles avec les dérivées 

fractionnaires de Caputo, Hadamard, Fabrizio et Katugampola dans des espaces de Fréchet. Les 

méthodes utilisées sont basées sur la théorie de point fixe et la mesure de non compacité dans 

les espaces de Fréchet .Nous avons également montré l’existence de solutions aléatoires pour 

certaines classes d’équations différentielles fractionnaires aléatoires avec retard. De plus, pour 

la justification de nos résultats, nous donnons divers exemples illustratifs. 

Mots clés : équation différentielle, équation intégrale, dérivée fractionnaire, solution aléatoire, 

espace de Banach, stabilité d’Ulam, point fixe, attractivité, problème non local, retard fini, retard 

infini, retard dépendant de l’état, mesure de non compacité, espace de Fréchet. 

 
                                                                                                                  

    الملخص

في هذه الرسالة، نأخذ في الاعتبار دراسة وجود الحلول العشوائية واستقرار أولام وجاذبية           
كاتوجامبولا في  الفئات الخدمية للمعادلات التفاضلية مع المشتقات الكسرية لكابوتو، هادامارد، فابريزيو و

لتراص. لقد أظهرنا  فضاء فريشي. الطرق المستخدمة هي النقطة الثابتة العشوائية وتقنية قياس عدم ا
أيضًا وجود حلول عشوائية لفئات معينة من المعادلات التفاضلية الجزئية العشوائية مع تأخير. بالإضافة  

                                       إلى ذلك، لتبرير نتائجنا، نقدم أمثلة مختلفة في كل فصل

كسري، مشتق كسري، حل عشوائي، فضاء باناخ، استقرار أولام،   معادلة تفاضلية، تكاملالكلمات مفتاحية:              

نقطة ثابتة، جاذبية، مشكلة غير محلية، تأخير محدود، تأخير لانهائي، تأخير معتمد على الحالة، قياس عدم التراص، فضاء 
 فريتشي
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