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Résumé :

Dans cette these, nous étudions l'existence et l'unicité de solutions et la
stabilité de type Ulam de certaines classes d'équations différentielles implicites
fractionnaires avec les dérivées de Caputo, Hadamard, Caputo-Fabrizio,
Katugampola, et mentionnons toutes les dérivées. Les problemes étudiés sont
a conditions initiales et aux limites. Les résultats obtenus sont basés sur
qguelques théoremes de point fixe et la mesure de non-compacité dans les

espaces de Banach, fréchet et b-Métrique.

Mots clés : Equation différentielle, ordre fractionnaire, solution, stabilité, implicite,
fixe, retard fini, retard infini, retard dépendant de I'état, mesure de non compacité,
espace de Fréechet, espace de Banach, espace de b-métrique.

Abstract :

In this thesis, we study the existence and uniqueness of solutions and the
Ulam-type stability of some classes of fractional implicit differential equations
with the derivatives of Caputo, Hadamard, Caputo-Fabrizio, Katugampola, and
mention all the derivatives. The problems studied are with initial and boundary
conditions. The results obtained are based on some fixed point theorems and
the measure of non-compactness in the spaces of Banach, fréchet and b-

Metric.

Key words: Differential equation, fractional order, solution, stability, implicit, fixed,
finite delay, infinite delay, state-dependent delay, measure of non compactness,

Fréechet space, Banach space, b-Metric space.



10.

11.

Publications

S. Krim, S. Abbas, M. Benchohra and M.A. Darwish, Boundary value problem
for implicit Caputo—Fabrizio fractional differential equations, Int. J. Difference
Equ. ISSN 0973-6069, 15 (2) (2020), 493-510.

S. Krim, S. Abbas, and M. Benchohra, Caputo-Hadamard implicit fractional
differential equations with delay, Paulo Journal of Mathematical Sciences, 15 (1)
(2021), 463-484.

S. Krim, S. Abbas, M. Benchohra and E. Karapinar, Terminal value problem for
implicit Katugampola fractional differential equations in b-metric spaces, Journal
of Function Spaces 2021, Article ID 5535178, 7 pages.

S. Krim, S. Abbas, and M. Benchohra, Initial value problems for Caputo—
Fabrizio implicit fractional differential equations in b-metric spaces, Bulletin of
the Transilvania University of Bragov, 1 (63) No. 1 - 2021. SeriesIII: Mathemat-
ics, Informatics, Physics,1-13.

S. Krim, S. Abbas and M. Benchohra , Caputo-Hadamard implicit fractional
differential equations with two boundary conditions (submitted).

S. Krim, S. Abbas, M. Benchohra and J.J.Nieto, Implicit Caputo-Fabrizio frac-
tional differential equations with delay (submitted).

S. Krim, S. Abbas and M. Benchohra , Functional Katugampola fractional
differential equations in b-metric spaces (submitted).

S. Krim, S. Abbas and M. Benchohra , Initial value problem for implicit Caputo-
Katugampola fractional differential equations in b-metric spaces (submitted).

S. Krim, S. Abbas and M. Benchohra, Initial value problems for Caputo-Katugampola

implicit fractional differential equations with delay (submitted).

S. Krim, A. Salim, S. Abbas and M. Benchohra , Functional k-generalised /-
Hilfer fractional differential equations in b-metric spaces (submitted).

A. Salim, S. Krim, S. Abbas and M. Benchohra , Random solutions for im-
proved conformable fractional differential equations with retarded and advanced
arguments (submitted).



12.

13.

14.

S. Krim, A. Salim, S. Abbas and M. Benchohra , Conformable fractional differ-
ential equations with delay in b-metric spaces (submitted).

S. Krim, A. Salim, S. Abbas and M. Benchohra , Implicit impulsive Caputo-
Katugampola fractional differential equations with infinite delay (submitted).

A. Salim, M. Benchohra, S. Krim and S. Abbas , Initial value problem for
hybrid improved conformable fractional differential equations with retardation
and anticipation (submitted).



Contents

Introduction 7

1 Basic Ingredients 13

1.1 Notations and Definitions . . . . . . .. . ... ... . ... ...... 13

1.2 Fractional Calculus Theory . . . . . . ... .. .. ... ... ... 13

1.3 b-Metric Spaces . . . . . . . .. 17

1.4 Measure of Noncompactness . . . . . . . . .. .. ... ... ... 18

1.5 Some Fixed Point Theorems . . . . . . . . .. .. ... ... ...... 21

2 Caputo-Hadamard Implicit Fractional Differential Equations 23

2.1 Introduction . . . . . ... ... 23
2.2 Caputo-Hadamard Implicit Fractional Differential Equations with two

Boundary Conditions . . . . . . ... ... oo 24

2.2.1 Existence of Solutions . . . . . ... .. ... ... ... ..., 24

222 AnExample . . .. ... 29

2.3 Caputo-Hadamard Implicit Fractional Differential Equations with Delay 31

2.3.1 Existence of Solutions . . . . . ... .. ... ... ... 32

2.3.2 Some Examples . . . . .. ... oo 44

3 Implicit Caputo-Fabrizio Fractional Differential Equations 48

3.1 Introduction . . . . . . . . ... 48

3.2 Implicit Caputo-Fabrizio Fractional Differential Equations . . . . . . . 48

3.2.1 Existence of Solutions and Ulam Stability Results . . . . . . .. 49

3.2.2 The Scalar Case . . . . . .. .. ... ... .. ... .. ... 52

3.2.3 Results in Banach Spaces . . . . .. . ... ... ... ..... 56

324 AnExamples . . . . . ... 59

3.3 Implicit Caputo-Fabrizio Fractional Differential Equations with Delay 60

3.3.1 Existence of Solutions . . . . .. ... ... ... ... .... 61

3.3.2 Some Examples . . . . . . ... 71

4 Implicit Fractional Differential Equations in b-Metric Spaces 74

4.1 Introduction . . . . . .. ... 74



CONTENTS 6

4.2  Terminal Value Problem for Implicit Katugampola Fractional Differ-
ential Equations in b-Metric Spaces . . . . . . . . . ... ... 74
4.2.1 Existence of Solutions . . . . . ... .. ... ... ... 75
422 AnExample. . . . . ... 80

4.3 Functional Katugampola Fractional Differential Equations in b-Metric
SPaCEes . . . . . 81
4.3.1 Existence of Solutions . . . . . . .. ... .. ... ... ... 82
432 AnExample. . . . . .. ... 86

4.4  Initial Value Problems for Caputo-Fabrizio Implicit Fractional Differ-
ential Equations in b-Metric Spaces . . . . . . . . . ... ... .. 87
4.4.1 Existence of Solutions . . . . .. ... ... ... ... ... 88
442 AnExample. . . . . ... 92

Conclusion and Perspectives 94

Bibliography 94



Introduction

Fractional calculus is a mathematical branch investigating the properties of derivatives
and integrals of non-integer orders (called fractional derivatives and integrals, briefly
differintegrals). In particular, this discipline involves the notion and methods of solving
of differential equations involving fractional derivatives of the unknown function (called
fractional differential equations).

The concept of fractional operators has been introduced almost simultaneously
with the development of the classical ones. The first known reference can be found
in the correspondence of G. W. Leibniz and Marquis de I’Hopital in 1695 where the
question of meaning of the semi-derivative has been raised. In 1730 the subject of
fractional calculus did not escape Eulers attention. J. L. Lagrange in 1772 contributed
to fractional calculus indirectly, when he developed the law of exponents for differential
operators. In 1812, P. S. Laplace defined the fractional derivative by means of integral
and in 1819 S. F. Lacroix mentioned a derivative of arbitrary order in his 700-page long
text, followed by J. B. J. Fourier in 1822, who mentioned the derivative of arbitrary
order. The first use of fractional operations was made by N. H. Abel in 1823 in the
solution of tautochrome problem. J. Liouville made the first major study of fractional
calculus in 1832, where he applied his definitions to problems in theory. In 1867, A.
K. Grunwald worked on the fractional operations. G. F. B. Riemann developed the
theory of fractional integration during his school days and published his paper in 1892.
A. V. Letnikov wrote several papers on this topic from 1868 to 1872. Oliver Heaviside
published a collection of papers in 1892, where he showed the so-called Heaviside
operational calculus concerned with linear generalized operators. In the period of 1900
to 1970 the principal contributors to the subject of fractional calculus were, for example,
H. H. Hardy, S. Samko, H. Weyl, M. Riesz, S. Blair, etc. From 1970 to the present,
they are for instance J. Spanier, K. B. Oldham, B. Ross, K. Nishimoto, O. Marichev,
A. Kilbas, H. M. Srivastava, R. Bagley, K. S. Miller, M. Caputo, 1. Podlubny, and
many others.

In recent years, there has been a significant development in the theory of frac-
tional differential equations. It is caused by its applications in the modeling of many
phenomena in various fields of science and engineering such as acoustic, control the-
ory, chaos and fractals, signal processing, porous media, electrochemistry, viscoelas-
ticity, rheology, polymer physics, optics, economics, astrophysics, chaotic dynam-
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ics, statistical physics, thermodynamics, proteins, biosciences, bioengineering, etc.
Fractional derivatives provide an excellent instrument for the description of mem-

ory and hereditary properties of various materials and processes. See for example
22, 23, 60, 64, 86, 92, 99, 106, 107, 108].

There are two measures which are the most important ones. The Kuratowski
measure of noncompactness «(B) of a bounded set B in a metric space is defined as
infimum of numbers r > 0 such that B can be covered with a finite number of sets of
diameter smaller than r. The Hausdorf measure of noncompactness x(B) defined as
infimum of numbers r > 0 such that B can be covered with a finite number of balls of
radii smaller than r. Several authors have studied the measures of noncompactness in
Banach spaces. See, for example, the books such as [13, 24] and the articles [15, 25,
26, 32, 33, 35, 67, 88, 100, 101, 102], and references therein.

In the theory of ordinary differential equations, of partial differential equations,
and in the theory of ordinary differential equations in a Banach space there are several
types of data dependence . On the other hand, in the theory of functional equations
there are some special kind of data dependence: Ulam-Hyers, Ulam-Hyers-Rassias,
Ulam-Hyers- Bourgin, Aoki-Rassias [98].

The stability of problems with functional equations originated from a question of
Ulam [110, 111] concerning the stability of group homomorphisms: ” Under what con-
ditions does there exist an additive mapping near an approximately additive mapping
?” Hyers [68] gave a first affirmative partial answer to the question of Ulam for Banach
spaces. Hyers Theorem was generalized by Aoki [20] for additive mappings and by
Th.M. Rassias [94] for linear mappings by considering an unbounded Cauchy differ-
ence. A generalization of the Th.M. Rassias theorem was obtained by Gavruta [51].
After, many interesting results of the generalized Hyers-Ulam stability to a number
of functional equations have been investigated by a number of mathematicians; see
6,17, 31, 69, 70, 72, 73, 74, 77, 103, 104, 105, 114, 115, 116] and the books [42, 95, 96]
and references therein.

We have organized this thesis as follows:

Chapter 1: This chapter consists of six sections. In the first section, we present
some "notations and definitions”, in Section 1.2, we present some "notations and defi-
nitions of fractional calculus theory”, in Section 1.3, we present some ” notations and
definitions of b-Metric Spaces” and in Section 1.4, we present some ”definitions and
proprieties of noncompactness measure” .

Finally, in the last Section, we recall some preliminary : some fixed point theorems)
which are used throughout this thesis.

Chapter 2: This chapter consists of two sections. In the first section, we investi-
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gate the existence of solutions for the following class of Caputo-Hadamard fractional
differential equation

("Diu)(t) = f(t.u(t), ("°Diu)(t)), t € I := [1, T, (1)
with the boundary conditions
uw(l) = uy, v'(T) = ur, (2)

where T' > 1, r € (1,2], u,ur € E, f: I x Ex E — FE is a given continuous function,
E is a real (or complex) Banach space with a norm || - ||, ¢D7 is the Caputo-Hadamard
fractional derivative of order r.

In the second Section , first we investigate the existence and uniqueness of solutions
for the following class of boundary value problems of Caputo-Hadamard fractional
differential equations with finite delay:

u(t) = o(t); t €[l —h,1],
("eDiu)(t) = f(t,w, ("°Diu)(t)); t € I := [L, T, (3)
u(T) = ur,
where h > 0, T'> 1, r € (1,2], ur € R, p € C,f : I xC xR — R is a given
continuous function, 7¢D7 is the Caputo-Hadamard fractional derivative of order r,

and C := C([1 — h, 1], R) is the space of continuous functions on [1 — h, 1].
For any t € I, we define u; by

u(s) =u(t+s—1); for s € [1 — h,1].

Next, we investigate the following class of Caputo-Hadamard fractional differential
equations with infinite delay:

u(t) = p(t); t € (—oo, 1],

("eDiu)(t) = f(t,w, ("*Diu)(t)); t € I, (4)
w(T) = ur,
where ¢ : [—00,0] = R, f: I x B xR — R are given continuous functions, and B is

called a phase space that will be specified later.
For any t € I, we define u; € B by

w(s) =u(t+s—1); for s € (—oo, 1].

In the third subsection, we investigate the following class of Caputo-Hadamard
fractional differential equations with state dependent finite delay:

ult) = plt); t € [1—h, 1],
("eDiu)(t) = f(t, up(tu), (T°Diu)(t)); t € 1, (5)
u'(T) = ur,
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where p €C, p: I xC — R, f: I xC xR — R are given continuous functions.

Finally, we consider the following class of Caputo-Hadamard fractional differential
equations with state dependent infinite delay:

u(t) = p(t); t € [~oo,1],
("eDiu)(t) = f(t, uptur), (TDiu)(t)); t €1, (6)
u'(T) = ur,

where ¢ : (—00,0] = R, f: I x B xR — R are given continuous functions.

Chapter 3: This chapter consists of two sections. In the first section, we investigate
the existence of solutions and some Ulam stability results for the following class of
Caputo-Fabrizio fractional differential equation

(“CDgu)(t) = f(t,ult), (“"Dyu)(t)); t € I:=[0,T], (7)
with the boundary conditions
au(0) + bu(T) = ¢, (8)

where T' > 0, f: I xRxR — R is a given continuous function, a, b, ¢ are real constants
with a + b # 0, ¥ D} is the Caputo-Fabrizio fractional derivative of order r € (0, 1).

Next, we discuss the existence of solutions for problem (7)-(8), when f : IXEXE —
E is a given continuous function, ¢ € E, and FE is a real (or complex) Banach space
with a norm || - ||,
In the second Section, first we investigate the the following class of boundary value
problems of Caputo-Fabrizio fractional differential equations with finite delay:

(“"Dgp)(t) = f(t, ou, (T Dip)(1)); t € 1 :=0,T],
where h >0, T >0, C€C, f: I xCxR — R is a given continuous function, ¥ Dy
is the Caputo-Fabrizio fractional derivative of order r € (0,1], and C := C(|—h, 0], R)
is the space of continuous functions on [—h, 0].
For any t € I, we define u; by

or(s) = p(t + s); for s € [—h,0].

Next, we investigate the following class of Caputo-Fabrizio fractional differential
equations with infinite delay:

{p(t) = ((t): £ € (20,0} (10)

(“"Dgp)(t) = f(t, pn (“T"Dgp)(t)): t € 1,
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where ¢ : [-00,0] = R, f: I x B xR — R are given continuous functions, and B is
called a phase space that will be specified later.
For any t € I, we define p, € B by

oi(s) = p(t + s); for s € (—o0,0].

In the third subsection, we investigate the following class of Caputo-Fabrizio fractional
differential equations with state dependent finite delay:

{p(t) — ((t); t € [~h,0),
(CFDy) (1) = F(t, 9p00, (CEDRO)(0); t € 1,

where ( €C, p: I xC — R, f: I xC xR — R are given continuous functions.

(11)

Finally, we consider the following class of Caputo-Fabrizio fractional differential
equations with state dependent infinite delay:

{pm = ((t); t € [~00,0),

(CEDy)(1) = [t ppieons (CFDE)D): £ € 1. (12)

where ¢ : (—00,0] = R, f: 1 x B xR — R are given continuous functions.

Chapter 4: This chapter consists of three sections. In the first section, we discuss
the existence of solutions for the following class of Katugampola implicit fractional
differential equations:

("D 9)(t) = f(t, (1), ("Dgsp)(1)); t € I :=[0,T7, (13)
("Iyi"9)(0) = up € R,

where T,p > 0, f : I x R xR — R is a given continuous function, ?I], is the
Katugampola fractional integral of order » € (0,1], ?Dg, is the Katugampola frac-
tional derivative of order r.

In the second Section, we investigate the existence and uniqueness of solutions for
the following class of initial value problems of Caputo-Fabrizio fractional differential
equations:

{(CFDSu)(t) = f(t.u(t), (" Dju)(1))s t € T:= [0, "

u(0) = uy,

where T >0, f: 1 x R x R — R is a given continuous function, “F D} is the Caputo-
Fabrizio fractional derivative of order r € (0, 1), and ug € R.



INTRODUCTION 12

In the third section, we discuss the existence of solutions for the following class of
Katugampola implicit fractional differential equations:
("Dgsp)(t) = f(t, 9(t), (“Dyrp)(t)); t € I :=1[0,T], (15)
("I, 9)(0) = uo € R,

where T,p > 0, f : I x R x R — R is a given continuous function, ?I], is the
Katugampola fractional integral of order » € (0,1], ?Dg, is the Katugampola frac-
tional derivative of order r.



Chapter 1

Basic Ingredients

In this chapter, we discuss the necessary mathematical tools, notations and concepts
we need in the succeeding chapters. We look at some essential properties of fractional
differential operators. We also review some of the basic properties of measures of
noncompactness and fixed point theorems which are crucial in our results regarding
fractional differential equations.

1.1 Notations and Definitions

Consider the Banach space C(I) := C(I, E) of continuous functions from [ into E
equipped with the usual norm

[ulloo == sup [[u(t)]].
tel
In the case £ = R, we have
[ullc = sup [u(?)].
tel

By L'(I, E) we denote the Banach space of measurable function u : I — E which are
Bochner integrable, equipped with the norm

T
fullr = [ o).
In the case £ = R, we have

T
lullz: = / fu(t)|dt.

1.2 Fractional Calculus Theory

In this section, we recall some definitions of fractional integral and fractional differential
operators that include all we use throughout this thesis. We conclude it by some
necessary lemmata, theorems and properties.

13
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Definition 1.2.1 (Gamma Function [93]) The gamma function I'(z) is defined by

the integral :
+00
['(2) :/ t* e tdt
0

which converges in the right half of the complex plane Re(z) > 0.
One of the basic properties of the gamma function is that it satisfies the following
functional equation:

I'(z+1) =2I'(2)

so, for positive integer values n, the Gamma function becomes I'(n) = (n—1)! and thus
can be seen as an extension of the factorial function to real values.

A useful particular value of the function: F(%) = /7, is used throughout many examples
in this thesis.

Definition 1.2.2 (Hadamard fractional integral [55, 81]|) The Hadamard fractional
integral of order r, of a function h: [1,00) — X is defined as

I"h(t) = F(lr) /j <log é)r_lh(s)%, >0,

provided that the integral exists.

Definition 1.2.3 (Caputo-Hadamard fractional derivative [50, 81]) For at least
n-times differentiable function h : [1,00) — X, the Caputo-type Hadamard derivative
of fractional order r is defined as

R (3 O

n—1<r<mn,

where § =t (%), log(.) = log.(.), and [r| denotes the integer part of the real number r.
Lemma 1.2.4 ([50]) Let u € AC}[a,b] or Cjla,b] and r € R, where
X?a,b) = {h:[a,b] = C: 6" h(t) € X]a,b]}.

Then, one has

n—1

I(D")u(t) = u(t) — 3 Ci (log )"

where ¢; €ER,i=1,2,....n—1, (n=[r] +1).
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Definition 1.2.5 (Caputo-Fabrizio fractional integral[40, 83, 28]) The Caputo-
Fabrizio fractional integral of order 0 < r < 1 for a function h € L*(I) is defined by

C2AL=w) 2 T
GICETh >+M(r)(2—7")/0 h(z)dz, T >0,

where M (r) is normalization constant depending on r.

“EIh(r) =

Definition 1.2.6 (Caputo-Fabrizio fractional derivative [40, 83, 28]) The Caputo-
Fabrizio fractional derivative for a function h € CY(I) of order 0 < r < 1, is defined

by
2—r)M T
CFDrh(T) — ( ’l”) (T)/ exp(— r
2(1—r) o 1—r
Note that (' D")(h) = 0 if and only if h is a constant function.

(1 —x))h (x)dx; 7€ 1.

Definition 1.2.7 (Katugampola fractional integral [75, 82, 29]) The Katugam-
pola fractional integrals of order r >0 and p > 0 of a function y € X?[0,T] is defined

by

1-r  pft p—1
p s ly(s)
PToy(t) = ds, tel. 1.1

O+y< ) F(T) /0 (tp — Sp)l_r s, T & ( )
Definition 1.2.8 (Katugampola fractional derivative [75, 76, 29]) The gener-
alized fractional derivatives of order r > 0 and p > 0 corresponding to the Katugampola
fractional integrals (1.1) defined for any t € I by

T — —p d\"™ n—r
*Dpy(t) = (75) (pqdvm 0N . )
o T—n 1_ n 8 _ s ]
= LS ()" [ el ds,

where n = [r| + 1; if the integrals exist.

Remark 1.2.9 ([75, 76]) As a basic example, we quote for r,p >0 and 0 > —p,

r—1 0
prr (1 + —)
pD6+t9 = P to-re,
r <1 -1+ %)

Giving in particular:
pD6+tp(’"_i) =0, foreachi=1,2,... ,n.

In fact, forr,p >0 and 0 > —p, we have:

T r—n+1 _ n ot 3 .

pD0+t9 = g(nr)( (tl)ﬂ%) fo sPHO=L(0 — 5) s
B pr1T 148 ; o

_ F(1+n——r+p§)[n—r—i—;]..[1—r+/;}t v (1.3)

(14

0—rp
r(1-r+2) :
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If we put i =r — %, we obtain from (1.3):
F'(r—i+1)

P Dy t"070 = ey

(n—i)(n—i—1)...(1 —m)t "

So, for each 1 =1,2,...,n, we have ”D6+tp(r_i) =0, Vr,p> 0.

Theorem 1.2.10 (/76/) Let r,p,c € R, be such that r,p > 0. Then for any f,g €
XP(I), where 1 < p < oo, we have:
Inverse property:

PDGPIN f(t) = f(t), for all r € (0,1]. (1.4)
Linearity property: for all r € (0,1), we have:
{ *Dy (f +g)(t) = Dy, f(t) + Dy g(t). (L5)
Loy (f +9)(t) =F [6+f(t) +7 15+9(t)- .

We state the following generalization of Gronwall’s lemma for singular kernels.

Lemma 1.2.11 (/118]) Let v : [0,T] — [0,400) be a real function and w(-) is a
nonnegative, locally integrable function on [0,T]. Assume that there are constants a > 0
and 0 < o < 1 such that

v(t) <w(t)+ a/o (t —s)"“v(s)ds,

Then, there exists a constant K = K(«) such that
¢
v(t) <w(t) + Ka/ (t — s)"“w(s)ds, for everyt e [0,T].
0

Bainov and Hristova [21] introduced the following integral inequality of Gronwall type
for piecewise continuous functions which can be used in the sequel.

Lemma 1.2.12 Let fort > tqg > 0 the following inequality hold

x(t) §a(t)—|—/ g(t,s)z(s)ds + Z Br(t)x(tr),

to to<tp <t

where B(t)(k € N) are nondecreasing functions for t > to, a € PC([ty,0),R}), a
is nondecreasing and ¢(t,s) is a continuous nonnegative function for t,s > to and
nondecreasing with respect to t for any fived s > to. Then, for t > ty, the following
inequality is valid:

o) < ale) TT (o4 sutoean ([ ate.os).

to<tr<t
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Theorem 1.2.13 [57](theorem of Ascoli-Arzela). Let A C C(J,R), A is relatively
compact (i.e A is compact) if:

1. A is uniformly bounded i.e, there exists M > 0 such that

|f(x)| < M for every f € A and x € J.

2. A is equicontinuous i.e, for every € > 0, there exists 6 > 0 such that for each
x,T € J, |x —T| <6 implies |f(x) — f(T)| <€, for every f € A.

1.3 b-Metric Spaces

The notion of b-metric was proposed by Czerwik [44, 45]. Following these initial papers,
the existence fixed point for the various classes of operators in the setting of b-metric
spaces have been investigated extensively; see [37, 43, 46, 91|, and related references
therein.

Definition 1.3.1 /8, 9/ Letc > 1 and M be a set. A distance functiond : M xM — R¥
is called b-metric if for all p,v,& € M, the following are fulfilled:

o (bM1) d(p,v) =0 if and only if p = v;
o (bM2) d(p,v) = d(v, p);
o (bM3) d(p,€) < cld(p,v) +d(v,€)].
The tripled (M,d,c) is called a b-metric space.
Example 1.3.2 [8, 9] Let d: C(I) x C(I) — R be defined by

d(u,v) = [|(u — v)?||s0 := sup ||u(t) — v(t)||*; for all u,v € C(I).
tel

It is clear that d is a b-metric with ¢ = 2.
Example 1.3.3 [8, 9/ Let X = [0,1] and d : X x X — R’ be defined by
d(x,y) = |2* —y*|; for all z,y € X.
It is clear that d is not a metric, but it is easy to see that d is a b-metric space with

r> 2.

Let ® be the set of all increasing and continuous function ¢ : R} — R satisfying the
property: ¢(cu) < cop(p) < cu, for ¢ > 1 and ¢(0) = 0. We denote by F the family of
all nondecreasing functions A : R% — [0, &) for some ¢ > 1.
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Definition 1.3.4 /8, 9] For a b-metric space (M,d,c), an operator T : M — M s
called a generalized o — ¢— Geraghty contraction type mapping whenever there exists
a: M x M — R, and some L > 0 such that for

D(x,y) = max {d(x, o). d(z, T(z)), dy, T(y)), LT +dly, T(z)) } |

2s

and
N(z,y) = min{d(z,y), d(x, T (x)),d(y, T(y))},
we have
o, V)$(d(T (1), T(v)) < Mo(D () (D (i, v)) + Lp(N(,v); - (1.6)
for all p,v € M, where A € F, ¢ € ®.
Remark 1.3.5 In the case when L =0 in Definition 1.3.4, and the fact that
d(z,y) < D(z,y); for allz,y € M,

the inequality (1.6) becomes

a(p, v)e(Ed(T (), T(v)) < Nd(d(p,v)o(d(p, v)). (1.7)

Definition 1.3.6 /8, 9/ Let M be a non empty set, T : M — M, and o : M x M — R*
be a given mappings. We say that T is a—admissible if for all p,v € M, we have

alp,v) 2 1= a(T(p), Tw)) = 1.

Definition 1.3.7 /8, 9/ Let (M,d) be a b-metric space and let o : M x M — R be
a function. M is said to be a—regular if for every sequence {x,}nen in M such that

(s Tny1) > 1 for all n and x, — x as n — oo, there exists a subsequence {Ty k) }ren
of {xn}n with a(xnmy, ) > 1 for all k.

1.4 Measure of Noncompactness

We define in this Section the Kuratowski (1896-1980) and Hausdorf measures of non-
compactness (MNC for short) and give their basic properties.

Definition 1.4.1 ([79]) Let (X,d) be a complete metric space and B the family of
bounded subsets of X. For every B € B we define the Kuratowski measure of noncom-
pactness a(B) of the set B as the infimum of the numbers d such that B admits a finite
covering by sets of diameter smaller than d.
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Remark 1.4.2 The diameter of a set B is the number sup{d(z,y) : x € B,y € B}
denoted by diam(B), with diam(}) = 0.

It is clear that 0 < a(B) < diam(B) < +oo for each nonempty bounded subset B of X
and that diam(B) = 0 if and only if B is an empty set or consists of exactly one point.

Definition 1.4.3 (/24]) Let E be a Banach space and Qg the bounded subsets of E.
The Kuratowski measure of noncompactness is the map o : Qg — [0, 00| defined by

a(B) =inf{e > 0: B C U, B; and diam(B;) < €}; here B € Qp,

where
diam(B;) = sup{||x — y|| : z,y € B;}.

The Kuratowski measure of noncompactness satisfies the following properties:

Lemma 1.4.4 ([15, 24, 25, 79]) Let A and B bounded sets.

(a) a(B) =0 < B is compact (B is relatively compact), where B denotes the closure
of B.

(b) nonsingularity : « is equal to zero on every one element-set.

(¢) If B is a finite set, then a(B) = 0.

(d) a(B) = a(B) = a(convB), where convB is the convex hull of B.
(e) monotonicity : A C B = a(A) < a(B).

(f) algebraic semi-additivity : (A + B) < a(A) + «(B), where

A+B={z+y:x €A, ye€ B}

(g9) semi-homogencity : a(AB) = |A|a(B); A € R, where A(B) = {\z : x € B}.
(h) semi-additivity : a(A|J B) = mazx{a(A),a(B)}.

(i) a(AN B) = min{a(A),a(B)}.

(j) invariance under translations : a(B + x¢) = a(B) for any zo € E.

Remark 1.4.5 The a-measure of noncompactness was introduced by Kuratowski in
order to generalize the Cantor intersection theorem

Theorem 1.4.6 ([79]) Let (X, d) be a complete metric space and {B,} be a decreasing
sequence of nonempty, closed and bounded subsets of X and lim,, ,o, a(B,) = 0. Then
the intersection By of all B, is nonempty and compact.
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In [67], Horvath has proved the following generalization of the Kuratowski theorem:

Theorem 1.4.7 ([79]) Let (X,d) be a complete metric space and {B;}icr be a family
of nonempty of closed and bounded subsets of X having the finite intersection property.
If inf,c; a(B;) = 0 then the intersection Bo, of all B; is nonempty and compact.

Lemma 1.4.8 ([54]) If V. C C(J, E) is a bounded and equicontinuous set, then

(i) the function t — «(V (t)) is continuous on J, and

au(V) = sup a(V(D)).

0<t<T

(i) (/OT:v(s)ds Lz € v) < /OTQ(V(S))ds,

where
V(s)={z(s):x €V}, se

In the definition of the Kuratowski measure we can consider balls instead of arbitrary
sets. In this way we get the definition of the Hausdorff measure:

Definition 1.4.9 (/79]) The Hausdorff measure of noncompactness x(B) of the set B
is the infimum of the numbers r such that B admits a finite covering by balls of radius
smaller than r.

Theorem 1.4.10 (/79]) Let B(0,1) be the unit ball in a Banach space X. Then
a(B(0,1)) = x(B(0,1)) =0
if X is finite dimensional, and a(B(0,1)) = 2, x(B(0,1)) = 1 otherwise.

Theorem 1.4.11 (/79]) Let S(0,1) be the unit sphere in a Banach space X. Then
a(S(0,1)) = x(5(0,1)) = 0 if X is finite dimensional, and a(S(0,1)) =2, x(S(0,1)) =

1 otherwise.

Theorem 1.4.12 (/79]) The Kuratowski and Hausdorff MNCs are related by the in-
equalities
X(B) < a(B) < 2x(B).

In the class of all infinite dimensional Banach spaces these inequalities are the best
possible.

Example 1.4.13 Let [* be the space of all real bounded sequences with the supremum
norm, and let A be a bounded set in 1°°. Then a(A) = 2x(A).

For further facts concerning measures of noncompactness and their properties we
refer to [13, 24, 25, 79] and the references therein.
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1.5 Some Fixed Point Theorems

In this section we present some fixed point theorems.

Theorem 1.5.1 (Banach’s fixed point theorem (1922) [52]) Let C be a non-empty
closed subset of a Banach space X, then any contraction mapping T of C into itself
has a unique fixed point.

Theorem 1.5.2 (Schauder’s fixed point theorem[52]) Let X be a Banach space,
D be a bounded closed convex subset of X and T : D — D be a compact and continuous
map. Then T has at least one fized point in D.

Theorem 1.5.3 (Schaefer’s fixed point theorem|[52]) Let X be a Banach space,
and N : X — X completely continuous operator.

If the set E ={y € X : y= ANy, forsome X € (0,1)} is bounded, then N has fized
points.

For our purpose we will only need the following fixed point theorem, and the im-
portant Lemma.

Theorem 1.5.4 (Darbo’s Fixed Point Theorem [52]) Let X be a Banach space
and C be a bounded, closed, conver and nonempty subset of X. Suppose a continuous
mapping N : C'— C' is such that for all closed subsets D of C,

a(T(D)) < ka(D), (1.8)

where 0 < k < 1, and « is the Kuratowski measure of noncompactness. Then T has a
fized point in C.

Remark 1.5.5 Mappings satisfying the Darbo-condition (1.8) have subsequently been
called k-set contractions.

Theorem 1.5.6 [8, 9/ Let (M,d) be a complete b-metric space and T : M — M be a
generalized o — ¢p— Geraghty contraction type mapping such that

o (i) T is a—admissible;
o (ii) there exists g € M such that a(po, T (110)) > 1;
e (iii) either T is continuous or M is a—regular.
Then T has a fixed point. Moreover, if
o (i) for all fixed points p,v of T, either a(p,v) > 1 or a(v,pu) > 1,

then T has a unique fixed point.
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Theorem 1.5.7 (M6nch’s Fixed Point Theorem [10, 88]) Let D be a bounded,
closed and convex subset of a Banach space such that 0 € D, and let N be a continuous
mapping of D into itself. If the implication

V =wmoN(V) or V=NV)U{0}= a(V)=0 (1.9)

holds for every subset V' of D, then N has a fixed point.
Here « is the Kuratowski measure of noncompactness.

For more details see [10, 18, 79, 52, 119]



Chapter 2

Caputo-Hadamard Implicit
Fractional Differential Equations

2.1 Introduction

The purpose of this chapter is the study of two results for a class of existence re-
sults for a class of Caputo-Hadamard implicit fractional differential equations with
two boundary conditions and for classes of Caputo- Hadamard implicit fractional dif-
ferential equations with two boundary conditions and delay. The results are based on
some fixed point theorems and the concept of measure of noncompactness.

There are different definitions of fractional derivatives available in the literature.
However, the most commonly used is the Hadamard fractional derivative given by
Hadamard [55]. Butzer et al. [78, 38| studied various properties of Hadamard-type
derivatives which aremore generalized than theHadamard fractional derivatives. In this
context, the readers are also referred to [76] for a detailed study on generalized frac-
tional derivatives and references therein. Caputo introduced another type of fractional
derivative [39] which has an advantage over derivative in a differential equation since it
does not require to define the fractional order initial conditions (see, for example, [16]).
Recently the authors in [71] utilized Caputo-type modification on Hadamard factional
derivatives. Moreover Trujillo et al. in [109] derived Taylor formula with Riemann-
Liouville derivatives, and Odibat and Shawagfeh [90] derived the same based on Caputo
fractional derivative. Gulsu et al. [53] extended the work of previous authors and pro-
posed a numerical scheme to approximate solutions of relaxation oscillation equation
by using the fractional Taylor series. Finally, Fernandez and Baleanu [49] developed
mean value theorem and Taylor theorem for certain fractional differential operators.

23
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2.2 Caputo-Hadamard Implicit Fractional Differen-
tial Equations with two Boundary Conditions

The outcome of our study in section is the continuation of the problem raised recently in
[34], in it, Benchohra et al. investigated existence and Uniqueness Results for Nonlinear
Implicit Fractional Differential Equations with Boundary Conditions:

{(CD”u)(t) = f(t,u(t),(“D"u)(t)), foreacht el =1[0,T], T >0, 1 <r <2,
u(0) = ug, v'(T) = uq,

where D" is the Caputo fractional derivative, f: I x R x R — R is a given function
and ug,u; € R.

In this section we investigate the existence of solutions for the following class of
Caputo-Hadamard fractional differential equation:

("Diu)(t) = f(t,u(t), (""Diu)(t)), t € I :=[1,T], (2.1)
with the boundary conditions:
u(l) = uy, v'(T) = ur, (2.2)

where T'> 1, r € (1,2], uj,ur € E, f: I x Ex E — E is a given continuous function,
F is areal (or complex) Banach space with a norm || - ||, #¢D7 is the Caputo-Hadamard
fractional derivative of order r.

2.2.1 Existence of Solutions

For the existence of solution for the problem (2.1) — (2.2) , we need the following
auxiliary lemmas:

Lemma 2.2.1 Let h € C(I), and « € (1,2]. Then the unique solution of problem

{<HCD;u><t> = h(t); te 1,
u(l) = uy, W(T) = ur,

is given by:
u(t) = uy + Turlogt

o [ (i) Mgy Tt [ (1 TY TR oy
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Proof. Solving the equation
("°Diu)(t) = h(t),

we get
u(t) = ITh(t) + co + c1 log t.

Thus c
W' () =M 1T h(t) + ?1
From the boundary conditions, we get
— _ H yr—1
co =uy, and ¢; = Tur =7 I{7 h(T).

Hence, we obtain (2.3).
Conversely, if u satisfies the integral equation (2.3), then

{(HCD{u) (t)=ht); tel.
u(l) =wuy, u(T)=ur.

In order to prove the main theorems, we list the following hypotheses:
e (H1) The function f: I x F x F — E is continuous.

o (H2)There exist constants K > 0 and 0 < L < 1 such that
1t w,0) = [t ur,v)]] < Kllu =] + Ljjv = v,
for each u, uy, v, v1 € Eand t € I.

a(f(t, M,N) < Ka(M) + La(N).

Remark 2.2.2 [11] The hypothesis (H2) is equivalent to the following hypothesis:

e (H3) For each bounded sets M, N C E and each t € I,

a(f(t, M,N) < Ka(M) + La(N).

Theorem 2.2.3 Assume that (H1) — (H3) hold. If

K(logT) (1 +rT) <1

CE T ey o

then the problem (2.1)-(2.2) has at least one solution defined on I.

(2.4)
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Proof. In order to prove the existence solutions of the problem (2.1)-(2.2), we consider
the operator F': C(I,FE) — C(I, E) defined by:

(Fu)(t) = uy + Tur logt

1 [ " h(s) Tlogt [T TN\ h(s)
— log — ds — log — —=d 2.5
i), (ont) PPae- g [ (o) e @
where h € C(I, E) be such that

Let R > 0 such that

[ (ogT)" (1 +Tr) + [[lua]| + Tlog Tlur|[U(r + 1)(1 — L)

R > D+ 1)(1— L) — K (logT)" (1 +1T7) |

where

f* = sup Hf(tv O’O)H

tel
Define the ball
BR = {33 € C(IaE)a “:UHOO < R}

The proof will be given in four steps.

Step 1. F is continuous on Bpg.
Let u,, be a sequence such that uw, — u in Bg. For each t € I, we have

[(Fu)(t) = (Fu)D] < w5 f) (log2)"™ [[hn(s) = h(s)[|

O, r—2 s (2'7)
o i (0 D) [lha(s) = h(s)I|2,
where h,,, h € C(I, E) such that

hat) = (L un(8), ha(0)) and (1) = £, u(t), h(0)).
By (H2), we have

[P (t) = R(I] = |Lf(t un(t), ha(t)) — [ (¢ u(t), h(2))]]
< Kljun(t) = u@)|| + Lllha(t) — h(1)]]-
Then
K
1 (8) = RO < T llua(t) = u(B)]].
Since wu,, — u then get h,(t) — h(t) for each ¢ € I. And let b > 0 be such that, for
each t € I we have ||h,(t)|| < b and ||h(t)|| < b. Then, we have

LD (s) = h(s)l “"gf I ha(s) = h(s)]

;lbos_)(uh 2(8)]] + [R(s)]])

IN NN
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Also, we have

Qo2 "2 b (5) — h(s)|
<1°g_(||h ()| + [I1h(s)])

2b(10g )
s

log Lyr—2
L8 )™ )\ h(s) = R(s)||

s

VAN VARVAN

The function s — is integrable on [1,77], and the function s — —2b(10g "

is integrable on [1,¢], then the Lebesgue domination convergence theorem and (2 17)
imply that

2b(log T)T’
s

| F (un)(t) — F(u)(t)]| = 0 as n — 0.

Hence
| E(un) — F(u)]|o = 0 as n — oo.

hence, F' is continuous operator on Bp.

Step 2. F(Bg) C Bg.
Let u € Bg, From (H2), for each t € I we have

IR < [[f(tu(t),h(t) — f(20,0)+ f(,0,0)]
< Klu@)| + L||h@)[| + f*
< Klluljos + L||Aljos + f*
< KR+ L||h|le + f*.
Then KR
Bl < = N
[1h]loe < 1-1
Thus,
[(Fu)t)]| < m fl( og i)™ ||h NEs
+ ?{fgf ( og L)'~ ?|Ih( 1% + [lu|| + Tlog T'||ur|
—1 s o r—2 S
< LT%) e ATl (T (100 T2 is o4 Tlog Tl |
< Ogmﬂ ||u | + Tlog T'||ur||.
Hence

I1F(u)]| < R.
Consequently, F'(Br) C Bg.

Step 3. F(Bg) is equicontinuous
For1 <t <ty <T,and u € By, we have

I(Fu)(t1) = (Fu)(ta)]
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ot i (1o 2)™ = (tog 2)" " h(s) &
+ 7 (log2)" h(s)%

s

(o) O r—2
D 7 (g ) )2 + Tug ot~ o |

i [(os2) (o 2] & 4 g 1 ) 2%

| AT(logts—logty) 10gi2 11)0gt1 f1 ( 8)7’— & 4 T||ur| [logty — logt].

IN

IN

As ty — t; the right-hand side of the above inequality tends to zero, we conclude that
F(Bg) is equicontinuous.

Step 4. Let A € Br and t € I, we have

a((FA)) = a{(Fu)(t), ue A} < & [/ (log?)" ™ {a(h(s)), ue A}
+ 1l [T (log2)" " {a(h(s)), u € A}L,

S

where h € C(I, E) such that h(t) = f(t,u(t), h(t)).
Hypothesis (H3) and Lemma 1.4.4 imply that, for each s € I,

a({h(s), ue A}) = a({f(s,uls),h(s)), u e A})
< Ka({u(s), u e A}) + La({h(s), u € A}).

Thus

a({h(s), uc A}) < i(Loz({V(s), we A}).

Hence

2
=
=
=
IA

t r—1 s
= b (08)"” {a(u(®), we A}
+%TrlogT f1 (log )Tﬁ {a(u(s), u e A}%
logT TK(lo )"
(l—é)lg(rl-l)ac(A) + (1_L)gf‘(r) ac(A>
K(logT)" (14rT) A)
(1-L)F(r+1)  Yeld).

IAIA

This implies that
a.(F(A)) < la.(A).
Therefore, the condition (2.4) implies that F' is a contraction. From Darbo’s fixed

Point theorem, there exists a fixed point u of F' in Bg, which is a solution of problem
(2.1)-(2.2).

The following result is based on Moénch’s fixed point theorem.

Theorem 2.2.4 Assume taht (H1) — (H3) and the condition (2.4) hold. Then the
problem (2.1)-(2.2) has at leat one solution defined on I.

Proof. Consider the operator F': C(I, E) — C(I, E) defined in (2.5). As in the proof
of Theorem 2.2.3, F': B — Bp is continuous, and F(Bg) is bounded and equicontin-
uous.
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Next, For every subset V' of Bg, and each t € I, we have

a(F(V)®) < 5 {5 I} (log) 7 {alu(s))} 2, ue 4}

e} T r—2 s
Jr(1£(L) {Trl(f)T Ji (og &) " H{a(u(s)}L, ue V}

K(log T)" TK (log T)"
< (17L)§(r+1)040<v) + (17L)gF(r) ac(A)
< K(log T)" (14-rT) C(V(t))

(1-L)[(r+1)

That is
a((FV)(t) < La(V(t)).

From Monch condition, we have
a(V(t) < alconv((F(V)) U{0}) = a(F(V)) < la(V ().
Thus
ao(V(t)) < Lae(V (1)),

which implies that
ac(V(t)) =0,

and gives a(V(t)) = 0. for each ¢t € I, and then V(¢) is relatively compact in E. In
view of the Ascoli-Arzela theorem, V is relatively compact in Bg. Hence, from Monch’s
fixed point Theorem, there exists a fixed point u of operator F, which is a solution of
the problem (2.1)-(2.2).

2.2.2 An Example

Let

[o.¢]
It = {u: (ul,u2,...,un,...),Z|un| < oo},

n=1

be the Banach space with the norm

)
lull = ).
n=1

consider the following problem:

9—n
1801+ Jluli)

He D2 (1) sin(un (£))
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27" 3
+ 5 cos <H0Dfun(t)> ;te(lel, (2.8)
60(1 + [[#°D7 ul[nn)
Uy (1) = uy,(e) = 0, (2.9)

Wher3ef: (fl"an""’fns"")’ u= (ugl,ug,...,un,...),

Hep2y = (7eD2uy, ¢ Dy, ... ¢ D2uy,, .. .), and
27" 27"
fa(t,u,v sin(uy, ) + ——————— cos(vy,);
()= 550+ o) ™) G0+ o)
for t € [1,¢] and u,v € I'.
Clearly, the function f is continuous.
For any u,w,v,v € I' and t € [1, ¢], we have
1t u0) = f(Ew,0)]ln = Z | fu(t u,v) = fu(t, @, )|
—u| n
< gt Z 27" sin(uy,) — sin(uy,)|
n=1

+ B 32t cos(v) — con(i)

=] 1 Hv - v||z1 -
—180”22 - Z? -

IN

IN

90““ qul + 30HU le1

Thus ) 1
£t u,v) = f(Eu,0) || < %Hu —ullg + %Hv — 0l

Hence the hypothesis (H?2) is satisfied with

1 1
K=— L= —
gp @ 30°

Next, the condition (2.4) is satisfies with T = e and r = 3. Indeed,

K(logT)"(1+7rT)  g5(1+3e) 143
I-Drr+1) — (-2 29f

Simple computations show that all conditions of Theorem 2.2.3 are satisfied. It follows

that the problem (2.8)-(2.9) has at least one solution defined on [1, e].
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2.3 Caputo-Hadamard Implicit Fractional Differen-
tial Equations with Delay

Functional differential equations with delay have become an active area of research,
and appear frequently in applications as model of equations. Several phenomena in
engineering, physics and life sciences can be described by means of differential equations
with delay [1, 56, 58, 59, 61, 62, 63, 65, 66, 112, 113]. We can cite some papers subject
of fractional differential equations with finite delay [1, 31], infinite delay [3, 58]. The
study of functional differential equations with state-dependent delay has received great
attention in the last year; see for instance [3, 4, 5, 61, 62, 63]. The literature related
to functional differential quations with state-dependent delay is limited, some papers
by Hernédndez werw considered iin the space of Lipschitz functions. In [61, 62, 63], the
authors studied some abstract differential equations with state-dependent delay.

Inspired by the above works, in this section, first we investigate the existence and
uniqueness of solutions for the following class of boundary value problems of Caputo-
Hadamard fractional differential equations with finite delay:

u(t) = p(t); te[1—h1],
("eDiu)(t) = f(t,w, ("°Diu)(t)); t € I := [L, T, (2.10)
u'(T) = ur,
where h > 0, T > 1, r € (1,2], ur € R, p € C,f : I xC xR — R is a given
continuous function, #¢D7 is the Caputo-Hadamard fractional derivative of order r,

and C := C([1 — h, 1], R) is the space of continuous functions on [1 — h, 1].
For any t € I, we define u; by

u(s) =u(t+s—1); for s € [1 —h,1].

Next, we investigate the following class of Caputo-Hadamard fractional differential
equations with infinite delay:

u(t) = (t); t € (—o0,1],

("eDiu)(t) = f(t,w, ("°Diu)(t)); t € I, (2.11)
W(T) = ur,
where ¢ : [—00,0] = R, f: I x Bx R — R are given continuous functions, and B is

called a phase space that will be specified later.
For any t € I, we define u; € B by

ur(s) = u(t +s—1); for s € (—o0, 1].
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In the third subsection, we investigate the following class of Caputo-Hadamard
fractional differential equations with state dependent finite delay:

u(t) = (t); t €[l —=h1],
("eDiu)(t) = f(t up(eu, (Diu)(t)); t € 1, (2.12)
u(T) = ur,

where p € C, p: I xC — R, f: I xC xR — R are given continuous functions.

Finally, we consider the following class of Caputo-Hadamard fractional differential
equations with state dependent infinite delay:

u(t) = p(t); t € [-oo,1],
(TeDiu)(t) = f(t, upuy), (TDiu)(t)); t €1, (2.13)
u'(T) = ur,

where ¢ : (—00,0] = R, f: I x B xR — R are given continuous functions.

In the last section, we present some examples illustrating the presented results.

2.3.1 Existence of Solutions

Consider the Banach space C(I) := C(I,R) of continuous real functions on [ := [1, 7]
equipped with the usual norm

[ulloo == sup [u(t)].
tel
Also, C' := C([1 — h,T]) is a Banach space with the norm

lulle == sup_fu(t)]
te[1—h,T)

As usual, AC(I) denotes the space of absolutely continuous functions from I into R,
and by L'(I) we denote the space of measurable real functions v : I — R which are
Lebesgue integrable with the norm

el = / o(t)dt.

Lemma 2.3.1 Let f: I xC xR — R be a continuous function. Then problem (2.10)
is equivalent to the problem of obtaining the solutions of the integral equation:

u(t) = ¢(t); t €[l —h,1],
g(t) = f(t,u,g(t)); tel,



CHAPTER 2. CAPUTO-HADAMARD IMPLICIT FRACTIONAL DIFFERENTIAL
EQUATIONS 33

with

IR t+7—1\""g(s)
= (1 Tupl -1 _— log ——M8M — —_—
u(1) = p(1) + Turlog(t + 7 —1) + e /1 ( og . ) . ds

Tlog(t+7—1) [T/ T\

Tlog(t+7 )/ log — &s)ds;tef,reu—h,u,
L(r—1) 1 s s

and if g(-) € C(I), is the solution of this equation, then

{Mﬂ—w@%tEH—hJL

u(t) = (1) + Tur logt + ﬁ flt (log ﬁ)ril 9) gg — FT(:,O_glt) [, (log Z)P2 @ds; tel.

S S

Existence of Solutions with Finite Delay

In this subsubsection, we establish the existence results for problem (2.10).

Definition 2.3.2 By a solution of problem (2.10), we mean a function u € C' such
that

Mw:{wmteu—hw,

o(1) + Turlogt + ﬁ flt (log ﬁ)r_l 9) g — % flT (log %)r—2 @ds; tel,

s

where g € C(I) with g(t) = f(t,us, g(t)).

The following hypotheses will be used in the sequel.
o (H;) There exist constantes w; > 0, 0 < wy < 1 such that:
|f(tur,v1) = [t uz, v2)| < wilfur — uallp—p1) + walvr — val,
for any uy,us € C, v1,v2 € R, and each t € I.
e (H3) There exist constants K > 0 and 0 < L < 1 such that
£t u,0)] < Kljullp-na + Liv],
forany u € C, v € R, and each t € I.
Theorem 2.3.3 Assume that the hypothesis (Hy) holds. If

b= wi(1+7T)(logT)"
T (I —w) (L) ’

(2.14)

then problem (2.10) has a unique solution on [1 — h,T].
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Proof. Consider the operator N : C' — (' defined by:

p(t); tel—h1],
(Nu)(t) = < ¢(1) + Turlogt +

Tj‘oglt) fl ( s )

where g € C'(I) such that g(t) = f(t,u, g(t)).

r—1 s
s Ji (log 1) 2ds (2.15)
g(s ds; t €1,

)

Let u,v € C(I). Then, for each t € [1 — h, 1], we have

[(Nu)(t) = (Nv)(8)] =0,

and for each t € I, we have

(Nu)(t) = (No)(®)] < s i (lo gt)“l l9(s) = ()] %
1T(i0g1t fl ( s) lg(s) — h(s)|%,

where g, h € C(I) such that

g9(t) = f(t,ur,g(t)) and  h(t) = f(t,v;, h(t)).

From (H;), we have

lg(t) = h(@) = [f(t,ur, g(£)) — f (£, 00, A1)
< willue = vllpony + welg(t) = h(t)].
This gives,
|g(t) = h(t)] < 1 _1 ; e = vellp—n.-

Thus, for each t € I, we get

[(Nu)(t) — (Nv)(t)] < T)fl( gt) ‘_”;2Hu5 Vslli—n %

+ sl [ (log 2)" 32 g — vl 2

< (Hut—UtH[l h,l])
w logT)" Tlog T(logT) 1

< (e 4 TRaTla ) Jlu— ol
w rT)(log T)"

< s lu—vllo

< Bllu—ve.

Hence, we get
IN(u) = N()[lc < ¢llu—vlc-

Consequently, from Theorem 1.5.1, the operator N has a unique fixed point, which is
the unique solution of our problem (2.10) on [1 — A, T7.
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Theorem 2.3.4 Assume that the hypothesis (Hs) holds. If

K1+ Tr)(logT)"
(1—-L)I(1+r)

Then problem (2.10) has at least one solution on [1 — h,T.

<1,

Proof. Consider the operator N : C' — C be the operator defined in (2.15).
Let R > 0 such that

(2.16)

lo(1)| + T'|ur|log T
R > max { HSOHC([I—h,O],R) | _ KO+Tr)ogT)"
T T (—LD)r(1+r)

Define the ball
Br = {l’ < C(IaR)a ||:L‘||C < R}

We prove that the operator N : Bgr — Bp satisfies all conditions of Theorem 1.5.2.
The proof will be given in three steps.

Step 1. N is continuous .
Let u, be a sequence such that u,, — u in Bg. For each t € [1 — h, 1], we have

|(Nuy)(t) — (Nu)(t)] = 0,
and for each t € I, we have

(Nun)(t) = (Nu)(®)] < 555 1 (log £)™ " gals) — g(s)| 2

. 7 o . (2.17)
+1T(i:glt) fl (log %) |gn(s) — 9<S)|d?7

where g,,, g € C(I,R) such that

gn(t) = f(t, Unt, gu(t)) and g(t) = f(t, s, g(t)).

Since ||u, — ul]|c — 0 asn — oo and f, ¢ and g, are continuous, then the Lebesgue
dominated convergence theorem, implies that

|N(u,) — N(u)||lc =0 asn— oo.
Hence, N is continuous.

Step 2. N(Bgr) C Bg.
Let u € Bg, If t € [1 — h,1] then ||[(Nu)(t)|| < ||l¢llc < R, and from (H), for each
t € I, we have
l9(2)] | (t, e 9(1))]
K|ugllp—ny + Llg(t)|
< Klullo + L|glle
< KR+ L||g/s-

<
<
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Then
lglloo < 22
Jllee =777
Thus,
t r—1 s
(Nu)(B)] < s S (log £) ™ lg(e)
O r—2 S
+ gl [ (og T) 7 lg(0)] % + [@(1)] + Tlog Tur|
h oo r—=1 gs
S H H fl ( s) S 9
+“””;°flng ! (log Z)"" &2 4 [(1)] + Tlur|log T
RK(1+Tr)(lo T
< %w( )| + Tlur|log T
< R.
Hence

IN(u)llc < R.

Consequently, N(Bgr) C Bg.

Step 3. N(Bg) is equicontinuous
For1 <t <ty <T,and u € By, we have

[N (u)(t) =

Nl < |k i [(og2) ™ = (log )] g(s)%
+ i (1o f)”g(s)%
- Tlogteoeti) [T (log 2)" ™ g(s) %
—|—TuT [log ty — log t1]|
< @ore L f (IOgt)ril (10g%)ril]%

o I (g
RKT(logt 10 t1) r—2 ds
+ (1Lg2r1g)1f1( s) d?

+T|’LLT| (10g tQ — IOg tl)

As ty — t; the right-hand side of the above inequality tends to zero, we conclude that

N(Bg) is equicontinuous.

As a consequence of the above three steps with the Arzeld-Ascoli theorem, we can
conclude that N is continuous and compact. From an application of Theorem 1.5.2,

we deduce that N has at least a fixed point which is a solution of problem (2.10).

Existence of Solutions with Infinite Delay

In this subsubsection, we establish some existence results for problem (2.11). Let the
space (B, ||-||g) is a seminormed linear space of functions mapping (—oo, 1] into R, and
satisfying the following fundamental axioms which were adapted from those introduced
by Hale and Kato [58] for ordinary differential functional equations:
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(A1) Ifu: (—o00,T] — R, and uy € B, then there are constants L, M, H > 0, such that
for any t € I the following conditions hold:

(1) ug is in B,
(#0) [luells < Kl[ur]ls + M supep g [uls)],
(#0d) [lu(®)]] < Hlwl|s-

(Ag) For the function u(-) in (A1), u; is a B— valued continuous function on 1.
(As) The space B is complete.
Consider the space

Q={u:(—00,T] = R, u|(—oo € B, ul; € C(I)}.

Definition 2.3.5 By a solution of problem (2.11), we mean a continuous function
u €

o(t); t € (—o0, 1],

o(1) + Turlogt (2.18)
t r—1 ¢g(s Tlo T r—2 g(s .

by i (log £)" ¢ = et [ (log §)7 #dss e .

where g € C(I, E) such that g(t) = f(t,u, g(t)).

u(t) =

The following hypotheses will be used in the sequel.
e (Ho1) The function f satisfies the Lipschitz condition:
|f(t ur, v1) = f(t uz, 02)] < biflur — uslls + balor — va,
for any uy,v; € B, us,v2 € R, and each t € I, where b; > 0 and 0 < by < 1.
e (Hp2) There exist constants By > 0 and 0 < By < 1 such that
£ (&, u,0)| < Bi|ulls + Bafvl,
forany u € B, v € R,, and each t € I.

First, we prove an existence and uniqueness result by using the Banach’s fixed point
theorem.

Theorem 2.3.6 Assume that the hypothesis (Hgy,) holds. If

_ Mby(1+7T)(logT)"

A= ATt <t (2.19)

then problem (2.11) has a unique solution on (—oo,T].
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Proof. Consider the operator N; : 2 —  defined by:

p(t); t € (oo, 1],
(Nyu)(t) = ¢ ¢(1) + Turlogt (2.20)

+ﬁ f1t (log é)T_l @ds - FT(ioiglt) f1T (log %)T_z @d‘g; tel,

where g € C'(I) such that g(t) = f(t, us, g(t)).
Let () : (—o0,T] — R be a function defined by

(t); t € (—o0,1],
() = { :2(1) + Turlogt; tel.

Then zg = ¢, For each z € C(I), with 2(0) = 0, we denote by Z the function defined
by
z_{0; tete (—oo,ll,
] =2(8), tel

If u(-) satisfies the integral equation

u(t) = (1) —J:—TUT log_t1 ., B
+ ﬁ I (log é) @ds - % Ji (log %) @ds.

We can decompose u(-) as u(t) = Z(t) + x(t); for t € I, which implies that u, = Z; + 2,
for every t € I, and the function z(-) satisfies

where
g(t) = f(t,Z + x4, 9(t); t € 1.
Set
Co={z € C(I); = =0},
and let || - ||z be the seminorm in Cy defined by

|1zll7 = llz0lls + sup |2(t)] = sup[2(t)[; 2 € Co.
tel tel

Cy is a Banach space with norm || - ||r. Define the operator P : Cy — Cy; by

(P2)(t) = r(lm /1 t (10g E)M gf)ds— Ffrl‘igj) /1 ' (log g)M @ds, (2.21)

where

g(t) = f(t,Ze + x4, g(1)); t € L.
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Thus, the operator N has a fixed point is equivalent to P has a fixed point. We turn
to proving that P has a fixed point. We shall show that P : Cy — Cj is a contraction
map. Let z, 2" € Cp, then we have for each t €

P()(t) = P()O] < oy Ji (10 8)" lgs) — h(s)|%

plost [T 10 Ty 2 g e, )

where g, h € C(I) such that

g(t) = f(t, 2+ 21, 9(t)) and h(t) = f(t, 2" + 1, h(t)).
Since, for each t € I, we have

b

9(6) = (D) < =

b [
2
then, for each t € I; we get

P()(1) = PO < g [ (log ) ]z — 752

FTéioglt) fl ( S)T i bl HZt_ZtHB

log T TlogT(logT) 1
< lﬁle (F(ig) + —£ F((ﬁ ) 1Z: — 24|
logT)” . TlogT(logT) ! = o
< 12 (it + ) Msupiey [2() = (1) s
Mbi(1+rT)(log T)"
< (11 bQ)_F(lJr%” ||z /HT
< MNz—-7|r.

Thus, we get _
1P(2)(t) = P(Z)(O)llr < Az = 2|7

Hence, from Theorem 1.5.1, the operator P has a unique fixed point. Consequently,
N has a unique fixed point which is the unique solution of problem (2.11).

Now, we prove an existence result by using the Scheafer’s fixed point theorem.

Theorem 2.3.7 Assume that the hypothesis (Hyz) holds. Then problem (2.11) has at
least one solution on (—oo, T].

Proof. Let P: Cy — Cp defined as in (2.21), For each given R > 0, we define the ball
Br = {$ < C(), ||£E||T < R}

We prove that the operator P : Cy — Cj satisfies all conditions of Theorem 1.5.3. The
proof will be given in four steps.
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Step 1. P is continuous .
Let z, be a sequence such that z, — z in Cy. For each t € I, we have

|(P2)(t) = (P2)(1)] < b5 i (log )™ gals) — g(s)|%

. T o . (2.23)
+1T(iflt) fl (log %) |gn(s) — 9(5)|d?7

where g,,, g € C(I) such that

gn(t) = f(6,Zn + 20, 90(1)) and - g(t) = f(t,Z + 21, (1)).

Since ||z, — z|lr — 0asn — oo and f,g and g, are continuous, then the Lebesgue
dominated convergence theorem, implies that

|P(u,) — P(u)||]r — 0 asn— oo.

Hence, P is continuous.

Step 2. P(Bg) is bounded.
Let z € Bg, for each t € I, we have

g < |f(tZ 42, 9(t))]
< By||Z: + t||g + Balg(t)]
< Bi||Zills + l|lztll5] + Ballglle
< BIMR+ BiK||¢|5+ Bzl so-
Then
9]l < :
1— B,
Thus,
t 0 S
(P2)(1)] < (log £)"" |g(t)] ﬁ;gf‘ﬁ (log L)" ™ |g(t)|
< t(l )7" 1 ds IIgllooTlong ( )’” 2 ds
— s 1 s s
< [B1MR+BlK||sa||B](1+T7’)(ogT)’"
= (1—B2)(1+7)
= /.
Hence
|P(2)|lr < L.

Consequently, P maps bounded sets into bounded sets in Cj.

Step 3. P(Bg) is equicontinuous.
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For 1<t <ty <T,and z € Bg, we have

PE)() — PEE)] < w1 [ (log2) ™ = (log )] g(s)%
+J2 (log )" g(s)

L) [ (log )" ()2

BiMR+B1K 1+Tr)(logT)" [t r—1 r—11 4s

< B (s ) (o )%
B1MR+B1K||p||g](1+Tr)(log T)" —2 s
+= (O (1 ogl) e

[BiMR+B1K|l¢ll](14+Tr)(logT) T (log ta—logti) T T\T—2 ds
+= : S01(31—1532)F(r—g1) e fl (log Z) s

As ty — t; the rigth-hand side of the above inequality tends to zero, we conclude that
P maps bounded sets into equicontinuous sets in Cj.

As a consequence of Steps 1 to 3 together with the Arzela-Ascoli theorem, we can
conclude that P : Cy — Cj is completely continuous.

Step 4. A priori bounds.
We prove that the set

E={ueCy:u=AP(u); for some X € (0,1)}

is bounded. Let z € Cy. Let u € Cy, such that z = AP(z); for some X € (0,1). Then
for each t € I, we have

z(t) = M(P2)(t) = F()\r) /j <log §>T—1 @ds - % /IT <log g) - %S)ds.

From (Hyy) we have

l9(2)]

|f(t, 2+ 24, 9(1))]

B1||Z: + x4||g + Balg(t)|

Bi[||Zll5 + llzells] + Ballglloo
BiM||z||7 + BiK ||¢lls + Bz 9[-

VA VANRVANIVAN

This gives,
- 1— By
Thus, for each t € I, we obtain

2] < g ff (log 1) g(t)] % + Tl:ggfl (1og%;> “lg(t)] &

r—1 ds ﬁTlogT ds
S + log = <
5élog{“1) E1+Tr)) fl ( )

L(r+1)
0.

= .

(VAN VAN VANRRVAN
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Hence
| 2]lr < .

This shows that the set £ is bounded. As a consequence of Theorem 1.5.3, the operator
N has a fixed point which is a solution of problem (2.11).
Existence Results with State-Dependent Delay (The Finite Delay Case)

In this subsubsection, we establish the existence results for problem (2.12).

Definition 2.3.8 By a solution of problem (2.12), we mean a continuous function
u € C such that

u(t) = {wt); tel—h1,

o(1) + Turlogt + ﬁ ff (log E)T_l @ds — FT(i(}Tlt) flT (log %)T_Q @ds; tel,

where g € C(I) with g(t) = f(t, Upitur), 9(t)).

The following hypotheses will be used in the sequel.
o (Hj) The function f satisfies the Lipschitz condition:
|f(t,ur,v1) = f(t,ug,v2)| < wslluy — ugllp—p) + walvr — val,

for any uy, v, € C([1 — h,1],R), us,ve € R, and each t € I,
where w3 >0, 0 <wy < 1.

e (H,) There exist constants A; > 0 and 0 < Ay < 1 such that
[f (&, 0)] < Auflullp-na + Azlvl,

for any u € C([1 — h,1],R), v € R, and each t € I.

As in Theorems 2.3.3 and 2.3.4, we give without proof, the following results:
Theorem 2.3.9 Assume that the hypothesis (Hs) holds. If

ws(1 4 rT)(logT)"
(1—wy)T(1+7) ’

then problem (2.12) has a unique solution on [1 — h,T].

Theorem 2.3.10 Assume that the hypothesis (Hy) holds. If

A (1 +Tr)(logT)"
(1—A2)L'(1+7) ’

then problem (2.12) has at least one solution on [1 — h,T].
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Existence Results with State-Dependent Delay (The Infinite Delay Case)

Now, we establish the last problem (2.13).

Definition 2.3.11 By a solution of problem (2.13), we mean a continuous u € §)

p(t); t € (=00, 1],
u(t) = < p(1) + Turlogt (2.24)

+ﬁ flt (log E)T_l @ds - FT(i‘fglt) flT (log %)T_Q @ds; tel,

where g € C(I) such that g(t) = f(t, Uptu, 9(1)).

Set
R =R, ={p(t,u):tel, uecBp(tu) <0}

We always assume that p: [ x B — R is continuous and the function ¢ — u, is contin-
uous from R’ into B. We will need the following hypothesis:

(H,) There exists a continuous bounded function L : R~ — (0, 00) such that

leells < L(®)llells, for any t e R

In the sequel we will make use of the following generalization of a consequence of the
phase space axioms.

Lemma 2.3.12 Ifu € () then

luells = (M + L)[ells+ K sup Jlu(d)]],
0€[0,max{0,t}]

where

L' = sup L(t).

teR’
The following hypotheses will be used in the sequel.
e (Hp3) The function f satisfies the Lipschitz condition:

|f(t,ur,v1) — f(t,ug,v2)| < bsllur — usal|p + bavr — v,
for any uy,v1 € B, us,v2 € R, and each t € I, where b3 > 0 and 0 < by < 1.

e (Hps) There exist constants By > 0 and 0 < By < 1 such that
(8w, 0)] < Bs|lulls + Balvl,

for any u € B, v € R, and each t € I.
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As in Theorems 2.3.6 and 2.3.7, we give without proof, the following results:
Theorem 2.3.13 Assume that the hypothesis (Hyz) holds. If

Mbs(1+rT)(logT)"
A—b)T(1+r) b

then problem (2.13) has a unique solution on (—oo,T].

Theorem 2.3.14 Assume that the hypotheses (H,) and (Hoy) hold. Then problem
(2.13) has at least one solution on (—oo, T'.

2.3.2 Some Examples

Example 1. Consider the following problem

u(t)=1+1t*: te[-1,1],

Hey3/2 _ 1 1 .
( Dl u)(t> - 90(1+|ue|) + 30(1+\(H5Df/2u(t))\>’ te [176]7 (225)
u'(e) = 1.
Set ) )
f(t,u,v) = tel,e], ueC, veR.

90 (L + [Juefl) ~ 30(1+ Jol)
Clearly, the function f is continuous. For any u,u € C, v,v € R, and t € [1,¢], we
have

- 1 - 1 -
|f(t,U,U> - f(t7u7v)| S %Hu - uH[l—h,l] + %h} - U|'

Hence hypothesis (H) is satisfied with

1 1
w=— and wy= —.
90 30

Next, condition (2.14) is satisfied with 7' = e and r = 2. Indeed,

w1 (14rT)(log T)" a5 (1+3e)
(I-w2)L(14r) = (1-2)T(2)

< 1

Simple computations show that all conditions of Theorem 2.3.3 are satisfied. It follows
that problem (2.25) has a unique solution defined on [—1, ¢].
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Example 2. Consider now the following problem
u(t) =1t; t € [—o0, 1],
<H6Df/2u)(t) - 180(6’51?:::;(1\\%\\) + eo(ete—t;é?i(g:;f/zu(t))y t€llel, (2.26)
u'(e) = 1.
Let v be a positive real constant and
B, ={ueC((—o0,1],R,): lim e"%u(@) exists in R}. (2.27)

0——o0
The norm of B, is given by

[ull, = sup e’lu(8)].
e (—o0,1]

Let u : (—o0,1] = R be such that uy € B,. Then

limg_s oo €%y () = limg_,_so e?u(t + 60 — 1) = limg_, o, 70D (h)

=D limy_, o 7 @uy(0) < oo,
Hence u, € B,,. Finally we prove that

Juelly < KlJuslly + M sup Ju(s)],
s€[1,t]

where K = M =1 and H = 1. We have
[ (O)|| = [u(t + 6 —1].

Ift+6<1, we get
Jue(B)]] < supJu(s)].

s€(—00,1]

For t + 60 > 1, then we have

[ue(B)|| < sup [u(s)].
s€[1,t]

Thus for all t + 6 € I, we get

[ue(B)| < sup |u(s)| + sup |u(s)].
s€(—00,1] s€[1,t]
Then

[uelly < lJurlly + sup |u(s)].
s€[1,t]
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It is clear that (B,, | - ||) is a Banach space. We can conclude that B, a phase space.
Set

ottt ]
f(t,u,v) = tell,e],ue B,,veR.

180 (e — ) (Lt [ulls,) 60 (e — ) (Lol

For any u,€ B,, v € Rand t € [1,¢], we have

1 1
t < — — .
’f( 7U’7 U)‘ — 180HU‘HB'Y + 60’1}’
Hence hypothesis (Hys) is satisfied with
B — d B L
= an = —.
LT180 2760

Simple computations show that all conditions of Theorem 2.3.7 are satisfied. It follows
that problem (2.26) has at least one solution defined on (—oo, €].

Example 3. We consider the following problem

u(t) =1+1% te[-1,1],

He3/2 _ 1 1 )
(DY u)(t) = ssarer—otm@yn T 30(L+ (7D u()]) t e[l e, (2.28)
u'(e) =1,

where o € C(R,[1,¢]). Set

pt,p) =t —0o(p(0)), (t,¢)€ [l e]xC([-1,1],R),
1 1
f(t,u,v) = + ;tellye]l, uelC, veR.
90(1 + |u(t — o(u(t)))]) ~ 30 (14 [v(t)])
Clearly, the function f is jointly continuous. For any u,u € C, v,v € R and t € [1, €],
we have

o~ ~ 1 - 1 ~
|f(t,U,U> - f(t7u7v)| < %Hu - uH[l—h,l] + %h} - U|'
Hence hypothesis (Hj) is satisfied with

1 1
W3 = % and Wy = %
Next, we can see that the condition

ws(1+7rT)(logT)" -
(1 —wy)(1+ 1) ’

is satisfied with T'=e and r = %
Simple computations show that all conditions of Theorem 2.3.9 are satisfied. It follows
that problem (2.28) has a unique solution defined on [—1, ¢].
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Example 4. Finally, we consider now the following problem

u(t) =t; t € [—o0,1],

He 312\ (1) — —_ulzAu(i)e 7 u(t)e Tt '
( Dl U) (t) o 180(8t—67t)(l—Hu(t—a’(u(t))D + 60(675,6—75)<1+‘(HcDi/zu(t))‘>’ t € []'7 6]7

u'(e) = 1.
(2.29)
Let v be a positive real constant and the phase space B, defined in Example 2.
Define
p(t> 90) =t— /\((10<0))a (tv 50) S [1> 6] X B%
and set
ot P ian
f(t,u,v) = telle],ue B, veR

180 (¢t — ) (11 Julls)  60(ct—e ) (1+]0])

Simple computations show that all conditions of Theorem 2.3.7 are satisfied. It follows
that problem (2.29) has at least one solution defined on (—oo, €].



Chapter 3

Implicit Caputo-Fabrizio Fractional
Differential Equations

3.1 Introduction

The purpose of this chapter is the study of two results for a class of existence and
Ulam stability results for a class of Boundary Value Problem for Implicit Caputo-
Fabrizio Fractional Differential Equations and for Caputo- Fabrizio implicit fractional
differential equations with two boundary conditions and delay. The results are based
on some fixed point theorems and the concept of measure of noncompactness.

In recent times, a new fractional differential operator having a kernel with exponen-
tial decay has been introduced by Caputo and Fabrizio [40]. This approach of fractional
derivative is known as the Caputo-Fabrizio operator which has attracted many research
scholars due to the fact that it has a non-singular kernel. Several mathematicians were
recently busy in development of Caputo-Fabrizio fractional differential equations, see;
[27, 85, 117, 80], and the references therein.

3.2 Implicit Caputo-Fabrizio Fractional Differential
Equations

The outcome of our study in section is the continuation of the problem raised recently
in [7], in it, Abbas et al. discuss the existence, uniqueness and Ulam-Hyers-Rassias
stability of solutions for the following implicit fractional g—difference equation:

{(CD;u)(t) = f(t.ult), CDru)(1); t € I =10,T],
u(0) = uyp,

48
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where ¢ € (0,1), r € (0,1}, D7 is the Caputo fractional g—difference derivative of
order r and f: 1 x R x R — R is a given function and ug, u; € R.

In this section we investigate the existence of solutions and some Ulam stability
results for the following class of Caputo-Fabrizio fractional differential equation:

(“"Dgu)(t) = f(t,u(t), (“"Dyu)(t); t € I:=10,T], (3.1)
with the boundary conditions:
au(0) + bu(T) = ¢, (3.2)

where T' > 0, f: I xR xR — R is a given continuous function, a, b, ¢ are real constants
with a + b # 0, “¥' Dy is the Caputo-Fabrizio fractional derivative of order r € (0, 1).

Next, we discuss the existence of solutions for problem (3.1)-(3.2), when f : I x
E x E — F is a given continuous function, ¢ € E, and E is a real (or complex) Banach
space with a norm || - ||.

3.2.1 Existence of Solutions and Ulam Stability Results

Let M x denote the class of all bounded subsets of a metric space X.
Lemma 3.2.1 Let h € L'(I,E). A function u € C is a solution of problem

{ (CFDSU)(t) — h(t); tel = [O;T] (3.3)

au(0) + bu(T') =

if and only if u satisfies the following integral equation

u(t) = Co + a.h(t) + b, /t h(s)ds + ab_l:_rb /T h(s)ds. (3.4)

2(1—1) b — 2r
2=r)M@r)" " (2=r)M(r)’
1

a, =

Co = le — ba, (R(T) — h(0))] — a,h(0).

proof. Suppose that u satisfies (3.3). From Proposition 1 in [85]; the equation
(“"Dju)(t) = h(t),

implies that
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Thus,
w(T) = u(0) 4+ a-(h(T) — h(0)) + br/o h(s)ds.

From the mixed boundary conditions au(0) 4+ bu(T) = ¢, we get

au(0) + b(u(0) + a,(h(T) — h(0)) + bT/O h(s)ds) = c.

Hence,
e~ bla(MT) = h(0)) = by [ h(s)ds)
u(0) = a+b '

So; we get (3.4).
Conversely, if u satisfies (3.4), then (FDpu)(t) = h(t); for t € I,
and au(0) + bu(T) = c.

Lemma 3.2.2 A function u is a solution of problem (3.1)-(3.2), if and only if u
satisfies the following integral equation

u(t) = co + arg(t) + b, /Otg(s)ds + ab—?—rb /0 g(s)ds, (3.5)

where g € C, with g(t) = f(t,u(t), g(t)) and

B 1
a+b

Co [¢ = bar(9(T") — 9(0))] — arg(0).

Let € > 0 and ® : I — R, be a continuous function. We consider the following
inequalities

I Dgu)(t) = (¢, u(t), " Diu) ()| <€, t € 1. (3.6)
I Diu) (1) = f(t,u(t), (" Do) ()] < @(t), t€T. (3.7)
I Dgu)(t) — f(t,u(t), (" Do) ()] < e®@(t), t€T. (3-8)

Definition 3.2.3 [2] The problem(3.1)-(3.2) is Ulam—Hyers stable if there exists a real
number cy > 0 such that for each € > 0 and for each solution u € C of the inequality
(3.6), there exists a solution v € C of (3.1)-(3.2) with

Ju(t) = v(t)| < ecs, te I,

Definition 3.2.4 [2] The problem (3.1)-(3.2) is generalized Ulam—Hyers stable if there
exists ¢y € C(Ry,Ry) with ¢(0) = 0 such that for each € > 0 and for each solution
u € C of the inequality (3.6), there exists a solution v € C of (3.1)-(3.2) with

[u(t) = v < esle), el
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Definition 3.2.5 [2] The problem (3.1)-(5.2) is Ulam-Hyers—Rassias stable with re-
spect to @ if there exists a real number cyo > 0 such that for each € > 0 and for each
solution u € C of the inequality (3.8), there ezists a solution v € C of (5.1)-(3.2) with

u(t) — v(t)|| < ecrp®(t), t € 1.

Definition 3.2.6 [2] The problem (5.1)-(3.2) is generalized Ulam-Hyers—Rassias sta-
ble with respect to ® if there exists a real number cyo > 0 such that for each solution
u € C of the inequality (3.7), there exists a solution v € C of (3.1)-(3.2) with

|u(t) —v(t)] < cro®(t), tel.

Remark 3.2.7 A function u € C is a solution of the inequality (5.7) if and only if
there exist a function h € C (which depend on u) such that

Ih(@)] < o),
(T Dyu)(t) = f(t,u(t), (" Dyu)(t)) + h(t), for t € I.

Lemma 3.2.8 If u € is a solution of the inequality (3.7) then u is a solution of the
following integral inequality

t bb T
t) — co — ayg(t) — by ds — —— d
) == arg() = b, [ g(s)as = =55 [ glapas
<l(a+Tb+T 6b O(t), iftel (3.9)
— T T a+b ) Y N

where g € C, with g(t) = f(t,u(t),g(t)) and

- i 2[e = ba,(9(T) = 9(0))] — a,9(0).

Co

Proof. By remark 3.2.7, for ¢t € I we have

ult) = ot anlo(®) + hOL+ b, [ lals) +hiolds + 25 [ lo(s) + hio)lds.

Thus, we obtain

lu(t) — Co—arg(t) - l; Jo 9(s)ds — 25 qu g(s)ds
< a|h@)I + b fy [12(s)llds + 25 [y 1h(s)llds
< (ar + Tb, 4+ T2=) O(t).

Hence, we get (3.9).

Definition 3.2.9 By a solution of problem (3.1)-(3.2), we mean a function u € C such
that

t T
ut) = cotaglt) b [ g@ds+ 2 [ ats)ds

where g € C, with g(t) = f(t,u(t), g(t)) and

o = gl = bar(g(T) = 9(0))]  arg(0).
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3.2.2 The Scalar Case

The following hypotheses will be used in the sequel:

(Hy) There exist a nondecreasing continuous function ¢ : Ry — (0, c0) and continuous
functions p,q : I — R, such that

|f(t,u, )| < p(t)Y(|u]) + q(t)|v], for each t € I u,v € R.

(Hy) There exists a constant R > 0, such that

bb. | p*i(R)
a+b| 1—q’

R>|co| + |ar +Tb. +T (3.10)

where p* = sup,; p(t), and ¢* = sup,¢; q(t), with 0 < ¢* < 1.
(Hj3) There exist constants d; > 0, 0 < dy < 1, such that
(14 |ur — ua|) | f(t,ur,v1) — f(t,ug,v2)| < di®(t)|ur — ua| + dafvy — va,
for each t € I and u;,v; € R; i =1, 2.

(H,) There exists a constant Ag > 0, such that for each ¢t € I we have
T
/ B(1)dt < AaD(L).
0

Remark 3.2.10 From (Hs), for a each t € I, and u € R, we have that
|f<t7u7 U)l < |f(t7 0, 0)| + dlq)<t)|u| + d2|1}|.
So, (Hs) implies (Hy) with

P(z) =1+ z, p(t) = max{d,P(t),|f(¢,0,0)|}, q(t) = da.

Now, we prove an existence result for the problem (3.1)-(3.2) based on Schauder’s fixed
point theorem.

Theorem 3.2.11 Assume that the hypotheses (Hy) and (Hs) hold. Then the problem
(8.1)-(3.2) has a least one solution defined on I.

Proof. Consider the operator N : C — C such that,

(Nu)(t) = co + arg(t) + b, /Otg(s)ds + ab:)_rb /0 g(s)ds, (3.11)
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where g € C, with g(t) = f(t,u(t),g(t)) and

1

co = —— e = bar(g(T) — 9(0))] = arg(0).

Consider the ball Bg := {u € C : ||ul|¢c < R}. Let u € Bg From (H,), for each t € I,
we have
l9(t)] (8, u(t), g(2))]

POV (llulle) + q(t)]g(t)]
p*(R) + ¢ |lgllc-

VAVANEI

Thus, from (Hj) we get
PY(R)
1—q

lgllc < (3.12)

Next, we have

|(Nu)(#)]

T
|co| + arg(£)] + [br ft(fg(S)d8| + 125 f% g(s)ds|
ol + arlg()] +br [y lg(s)lds + 225 [ 19(s)lds

|co| + [aT+TbT+T;’L+Tb]p?f—E?
R.

VANNVANRVANRVAN

Hence
[N (u)lle < R.

This proves that N transforms the ball By into itself.
We shall show that the operator N : By — Bp, satisfies all the assumptions of Theorem
1.5.2. The proof will be given in two steps.

Step 1. N : B — Bpg is continuous.
Let {uy,}nen be a sequence such that u,, — u in Bg. Then, for each ¢t € I, we have

|(WVu)(t) = (Nu)()] < an (ga(t) — g (1))l
+1br Jo (9a(s) — g(s)ds] (3.13)

25 13 (9a(s) = 9(s))ds

where g,, g € C such that

gn(t) = f(t,un(t), gn(t)) and g(t) = f(£,u(t),g(t)).

Since||u, — u|lc — 0asn — oo and f,g and g, are continuous, then the Lebesgue
dominated convergence theorem, implies that

IN(u,) — N(u)|lc =0 asn— oo.

Hence, the operator NN is continuous.
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Step 2. N(Bg) is bounded and equicontinuous.
Since N(Bg) C Bgr and Bp is bounded, then N(Bg) is bounded.

Next, let t1,t, € I, with 0 < t; <ty < T, and let ©u € Bg. Then we have

[(Nu)(t2) — (Nu)(t)| < larg(te) +b Jo> g(s)ds + 25 [ g(s)ds — apg(tr)
—b, [i g(s)ds — 2= [T g(s)ds|

a+b JO

IN

la,g(ta) + b, fo (s)ds — a,g(t1) + b, j; (s)ds|

IN

a,|g(t2) — g(t1)| + b, [, 19(s)|ds

< alg(tz) — g(t)] + b,.(ta — t1)lgllc-

<P'¢)()

Since [|g|lc < in view to (3.12), we obtain

PY(R)
1—q
As ty — t; the continuity of g implies that the right-hand side of the above inequality
tends to zero.

As a consequence of the above two steps, together with the Ascoli-Arzeld theorem,
we can conclude that N : B — By is continuous and compact. From an application

of Theorem 1.5.2, we deduce that N has a fixed point « which is a solution of problem
(3.1)- (3.2).

|(Nu)(t2) — (Nu)(t1)| < arlg(tz) — g(t1)| + b,.(t2 — t1)

Now, we are concerned with the generalized Ulam—Hyers—Rassias stability of prob-
lem (3.1)-(3.2).

Theorem 3.2.12 Assume that the hypotheses (Hs) — (Hy) hold. Then the problem
(3.1)-(3.2) has at least one solution defined on I and it is generalized Ulam-Hyers—
Rassias stable.

Proof. From Remark 3.2.10, there exists a solution v of the problem (3.1)-(3.2). That
1s

v(t) = cp +arg(t) + br/o h(s)ds + o0 /0 h(s)ds,

a+b
where h € C, with h(t) = f(t,v(t), h(t)) and
1
a+b

Let u be a solution of the inequality (3.7), then from Lemma 3.2.8, u is a solution
of the integral inequality (3.9), that is

Cp = [C - bar(h<T) - h(O))] - arh(o)

wh, [T
a+bJ

u(t) — ¢ — ayg(t) — b, / g(s)d g(s)ds
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bb
< <ar +Th, + T—> D(t),

a+b
where g € C, with g(t) = f(t,u(t),g(t)) and

¢y = —le — ban(g(T) = 9(0)] — arg(0).

Thus, for each t € I, we obtain

lu(t,w) —v(t,w)] <

This implies that,

bb,.
— <
lu(t, w) —v(t,w)| < <ar +Th, + Ta m b) (1)

+|%—wu+mw@—wun+mé|m@—h@ww

b,

+ a+b

A 19(s) — h(s)|ds.

On the other hand, from (Hj), for each t € I, we have

9() = RO = I£(E,u(®), 9(2)) - 12, 0(0), D)
< () + dolglt) — b))
which gives
9(6) = h(o)] < T (0) (314
Again,
=il < Ba(lg(T) = (D) +19(0) — h(O)]) + a,]g(0) — h(0)]
< (il + =) o).

Thus, we obtain

bb,
— <
ult, w) — vlt,w)| < QM+TM+TE+b)¢®
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2ba,,d1 (lrdl a,,dl
D(t
b,.d; t
P(s)d
+ 1—d2/0 (s)ds

bb,d; T
(a+0)(1—da) /0 (s)ds.

Hence, from (Hy), we get

b,
lu(t,w) —v(t,w)| < (ar +Tb.+T

a+b
i 2bard1 ardl ardl
(a+b)(1—d2) 1—d2 1—d2
Aob,dy Ao bb,.dy
D(t
M (a+b)(1—d2)) (®)
= nycpq)(t).

3.2.3 Results in Banach Spaces
The following hypotheses will be used in the sequel:

(Hpy) There exist a nondecreasing continuous function ¥ : R, — (0, 00) and continu-

ous functions p,q : I — R such that

IIf(t,u,v)|| <pE)C(||u|) +q(t)||v||, for each t € T u,v € E.

(Hp2) There exists a constant M > 0, such that

bb, | P (M
M > ||co|| + |ar +Tb, +T b (_*),
a+b| 1—7q

where p* = sup,; p(t), and §* = sup,¢; ¢(t), with 0 < g* < 1.

(Hps) For each bounded sets K,L C E and each t € I,

u(f(t, K, L)) < B(t)u(K) +q(t)u(L),

where p is the Kuratowski measure of noncompactness on the space E.

(3.15)

Now, we prove an existence result for the problem (3.1)-(3.2) based on Monch’s

fixed point theorem.
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Theorem 3.2.13 Assume that the hypothesis (Hy) — (Hoz) hold. If

7 Tbb,
= 1 1
pim ( T a+b>< | (3.16)

then the problem (3.1)-(3.2) has a least one solution defined on I.

Proof. Consider the operator N : C — C be the operator defined in (3.11).
Define the ball
By ={z €C, ||z|lc < M}.

Let uw € By, from (Hpy), for each t € I, we have

lg@I < [1f(E,u(t), g(1))]]
< p()¥([lul]) +7()[lg@)]]
< PU(lullc) + 7 llglle
< P ¥(lulle) +7llglle-
This gives
P (M)
lolle < Z2=2.
q
Thus, from (Hpy), we obtain
I(NWON < Neoll + [ar + Tby + TL5] FEED.
< M.
Hence
IN()llc <M.

This proves that N transforms the ball B); into itself.

We shall show that the operator N : Brp — Bp satisfies all the assumptions of
Theorem 1.5.7. We have N(Bg) C Bg, and as in the proof of Theorem 3.2.11, we can
easily show that N : Bgr — Bpg is continuous, and N (Bpg) is equicontinuous.

Next, we prove that Ménch’s condition (1.9)is satisfied.
Let V be a subset of By such that V- C N(V)U{0}, V is bounded and equicontinuous
and therefore the function t — v(t) = p(V (¢)) is continuous on I. From (Hys) and the
properties of the measure pu, for each t € I, we have

o(t) < p((NV)(1) U{0})
p((NV)())

arllo(®) u eV + b [ {ulolo) e Vs

ININA

IN
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b

+a_bfb/0 {n(g(s)) - u € V}ds,

where g € C, with g(t) = f(t,u(t), g(t)).
However, hypothesis (Hp;) implies that for each t € I,

p{g®) cue V) = p({fE u(t),g(t) ueV})
< pu({u) uwe V) + 7 u{g(t) - u eV},

which gives -
W{g(t) ueV)) < Eepfuls):ue V)

P

V(1)

Thus, we get

=X

w0 = 2 e+ v+ 2 [ uvoas)

IN

=%

P t bb T
< T
< 2l o [ oleds + 25 [ polleds

7 Thb,
-+ Tb, .
o (Tt 25 ) ol

IN

Hence
[vlle < pllv]le-

From (3.16), we get ||v||c = 0, that is v(t) = pu(V(t)) = 0, for each ¢ € I, and then
V(t) is relatively compact in E. In view of the Ascoli-Arzela theorem, V' is relatively
compact in Bys. From Ménch’s fixed point Theorem (Theorem 1.5.7), we conclude that
N has a fixed point which is a solution of the problem (3.1)-(3.2).

As in the proof of Theorem 3.2.11, we present (without proof) a result about the
generalized Ulam-Hyers—Rassias stability.

Theorem 3.2.14 Assume that the hypotheses (Ho2), (Hos), (Hy) and the following
hypothesis holds.

(Hoy) There exist constants dy > 0, 0 < dy < 1, such that
(14 Jluy — w2l DI (E, ur, v1) = f(E, ug, v2) || < dy®(8)[lur — ual + dafjor — vall,
for each t € I and u;,v; € E; i =1,2.

Then the problem (3.1)-(3.2) has at least one solution defined on I and it is generalized
Ulam—Hyers—Rassias stable.
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3.2.4 An Examples

Example 1. Consider the Caputo-Fabrizio implicit fractional differential equation

1 1+ In(1+ ¢
(°F Dju)(t) = WA e (317
10(1 + |u(@)] + [(“" Dgu)(@)])
with the boundary conditions
u(0) + 2u(l) = 1. (3.18)

Set
B 1+ In(1+¢%)
flt,u(t),v(t)) = 00+ Ja()] - o @]’ t €[0,1].

The hypothesis (H3) is satisfied with

~ 1+In(2)
10
Simple computations show that all conditions of Theorems 3.2.11 and 3.2.12 are sat-

isfied. Hence problem (3.17)-(3.18) has a solution, and it is generalized Ulam—Hyers—
Rassias stable.

d1:d2

Example 2. Let

9]
E:ll: {u:(ul,ug,...,un,...),zwn] <OO},
n=1

be the Banach space with the norm

oo

lulls =3 fual.

n=1
Consider the Caputo—Fabrizio fractional differential equation

C(27 + up (1))

CF o, — .
B [ 10 (3 N e
with the boundary conditions
w(0) +u(l) = (274272,...,27", ). (3.20)
Set f=(f1,fa s frr--1),
£l ut), v(t)) = 27" + un(h)) teo].

exp(t + 3)(1 + |u(t)] + [v(2)])’
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Simple computations with a good choice of the constant ¢, show that all conditions of
Theorem 3.2.13 are satisfied. Consequently, Theorem 3.2.13 implies that the problem
(3.19)-(3.20) has at least one solution defined on [0, 1].

Also, hypothesis (Hy) is satisfied with Ag = e — 1. Indeed
T T
/ O(t,w)dt = / eldt =1—e ' < Ape™ = Ne®(t,w), t €]0,1].
0 0

Consequently, Theorem 3.2.14 implies that problem (3.19)-(3.20) is generalized-Ulam-—
Hyers—Rassias stable.

3.3 Implicit Caputo-Fabrizio Fractional Differen-
tial Equations with Delay

Motivated by the works mentioned in the Introduction of the section 2.3, in this section,
first we investigate the the followig class of boundary value problems of Caputo-Fabrizio
fractional differential equations with finite delay:

p(t) = ((t); t € [~h,0],
{(CFDSW)(ZS) = f(tv £t (CFDSW)(t)), tel .= [07T]7 (321)

where h >0, T>0, (€C, f:IxC xR — Ris a given continuous function, ¥ Dy is
the Caputo-Fabrizio fractional derivative of order r € (0,1], and C := C([—h,0],R) is
the space of continuous functions on [—h, 0].

For any t € I, we define u; by

oi(s) = p(t+ s); for s € [—h,0].

Next, we investigate the following class of Caputo-Fabrizio fractional differential equa-
tions with infinite delay:

p(t) = C(t); t € (—o0,0], (3.22)
(“FDyp)(t) = f(t, o1, (T D) (1)); t €1,
where ¢ : [-00,0] = R, f: I x B xR — R are given continuous functions, and B is

called a phase space that will be specified later.
For any t € I, we define p, € B by

oi(s) = p(t+ s); for s € (—o0,0].
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In the third subsection, we investigate the following class of Caputo-Fabrizio fractional
differential equations with state dependent finite delay:

{p@>=<axte[—m0L

(CFDO) () = F(t optepn (F Do) (B): t € 1. (3:29)

where ( €C, p: I xC — R, f:IxC xR — R are given continuous functions.

Finally, we consider the following class of Caputo-Fabrizio fractional differential
equations with state dependent infinite delay:

{Mﬂzcw;ﬂﬂ—wﬂL

CEDRONE) = £t opn: (CFDE)D): T € 1. (3.24)

where ( : (—00,0] = R, f: I x B xR — R are given continuous functions.

3.3.1 Existence of Solutions

Let AC(I) denotes the space of absolutely continuous real functions on I, and by L'(T)
we denote the space of measurable real functions on I which are Lebesgue integrable
with the norm

Mhzlwmﬁ

Lemma 3.3.1 [80] Let h € L*(I). Then the linear problem

{ g(g)pip;)g) = h(t); te I:=10,T] (3.25)

has a unique solution given by

o(t) = po — a,h(0) + a.h(t) + b, /Ot h(s)ds, (3.26)

where 0-r) , _
2-r)M@r) " 2-r)M(r)

a, =

Existence of Solutions with Finite Delay

In this subsubsection, we establish the existence results for problem (3.21).
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Definition 3.3.2 By a solution of problem (3.21), we mean a function u € C' such
that
. O !
Y ¢(0) = arg(0) + arg(t) + b, [y g(s)ds; t € 1,
where g € C(I) with g(t) = f(t, p¢, g(t)).

The following hypotheses will be used in the sequel.
e (H;) There exist constantes w; > 0, 0 < wy < 1 such that:
|f(t,01,81) — f(t, 02, F2)| S willpr — g2l [=n0 + wa|S1 — o,
for any @1, 02 € C, &1, € R, and each t € .
e (Hy) For any bounded set B C C, the set:
{t = [t o, ("DiO)(L)) s p € Bl
is equicontinuous in C.
Theorem 3.3.3 If (H;) holds, and

2a, + Tb,
(= M <1, (3.27)
1 — W2

then problem (3.21) has a unique solution on [—h,T).

Proof. Consider the operator N : C' — C defined by:

C(t); t e [=h,0],

¢(0) — arg(0) + arg(t) + b, [ g(s)ds; t €I, (3.28)

(Np)(t) = {
where g € C(I) such that g(t) = f(t, g1, g(t)).
Let w,v € C(I). Then, for each t € [—h, 0], we have
[(Np)(t) = (NS)(#)] = 0,
and for each t € I, we have
(No)(t) = (NS)(B)] < a,|g(0) = h(0)] + avlg(t) — h(t)| + b, fy lg(s) — h(s)|ds
where g, h € C(I) such that

9(t) = f(t,91,9(t)) and  h(t) = (L, 31, h(1)).
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From (H;), we have

lg(t) = h(t)| = |f(t, 00, 9(t) — f(t, 3, h(1))]
< wilpr — Sill—h0) + w2lg(t) — h(t)].
This gives,
w
l9(t) = h(t)] < 1 _1w2 lor = Selli=n,0-

Thus, for each t € I, we get

[(Np)(t) = (NS) ()] < arlfi,% ot = Sill-no) + ar 72 lor — Sill-ng
+b fo 1:1‘,2 Hps - %s”[fh,o]ds
< 20,5 l0 — So + ThzEflp — Sle
w1 (2a,+Tby) o~
< =7 e —Sle
< Lo -Slec-

Hence, we get
IN(p) = N(S)lle < Llp —Sc-

Since ¢ < 1, the Banach contraction principle implies that problem (3.21) has a unique
solution.

Theorem 3.3.4 If (Hy) and (Hy) hold, and

%]

2a, +Tb,) <1,
1_w2(a+ )

then problem (3.21) has at least one solution on [—h,T).

Proof. Consider the operator N : C' — C defined in (3.28).
Let R > 0 such that

(3.29)

CO)] + 155 (2a, + Tbr)
R> maX{HCHC([h,ODv = ’

1 — 1#-(2a, +Tb,)
where f*:=sup|f(¢,0,0)]|.

tel

Define the ball
BR = {l’ € C(IaR)a ||:L‘||C S R}

Step 1. N is continuous .
Let {gn}n be a sequence such that p, — p on Bg. For each t € [—h, 0], we have

[(Npn)(t) — (Np)(t)] = 0,

and for each t € I, we have

[(Npn)(t) = (Ne)(®)] < ar[gn(0) = g(0)] + ar|gn(t) — g(t)])

+br Ji 1gn(s) — g(s)]ds. (3.30)
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where g,, g € C(I,R) such that
gn(t) = [(t, one; gn(t)) and  g(t) = f(t, ot g(t)).

Since ||p, — p|lc = 0asn — oo and f,g and g, are continuous, then the Lebesgue
dominated convergence theorem, implies that

IN(pn) — N(p)|lc = 0 asn — co.

Hence, N is continuous.

Step 2. N(Bg) C Bg.

Let p € Bg, If t € [—h,0] then ||(Np)(@)|| < ||{|lc < R. From (H,), for each t € I,

we have
g = [t e g(t))]
< |f(£,0,0) 4+ wil[@efl-no) + w2|g(t)]
< frtwllplle +wallglleo
< ffHwR+ w9
Then
f +W1R
g ”°°——1—w2
Thus,

(Ne)(B)] < 1¢(0) = arg(0) + arg(t) + by [y g(s)ds|
< [¢(0)] + a,lg(0)] + arlg(t)] + by Jy 1g(s)|ds
< [G(0)] + L2 (2a, + b, [y ds)
< 1¢(0)] + 5L (2a, + Tb,)
< R.

Hence

IN(p)llc < R.

Consequently, N(Bg)
anglesubset Bg.

Step 3. N(Bg) is equicontinuous
For1 <t <ty <T,and u € Bg, we have

IN(p) (1) = N(p)(t2)| < arlg(ts) = g(t)] + b, [ |g(s)|ds]
< arlglts) — g(t)] + 258 (1, — 1,).

RKb

Thus, from (Ha), a,|g(t2) — g(t1)
equicontinuity of N(Bg).

= (ty —t1) — 0; as t; — t;. This gives the

From the above steps and the Arzela-Ascoli theorem, we conclude that N is contin-
uous and compact. Consequently, from Schauder’s theorem we deduce that problem
(3.21) has at least one solution.
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Existence of Solutions with Infinite Delay

In this subsubsection, we establish some existence results for problem (3.22). Let the
space (B, ||+ ||g) is a seminormed linear space of functions mapping (—oo, 1] into R, and
satisfying the following fundamental axioms which were adapted from those introduced
by Hale and Kato [58] for ordinary differential functional equations:

(A1) fu : (—o00, T] — R, and uy € B, then there exist constants L, M, H > 0, such
that for each t € I; we have:

(1) ¢ isin B,
(i0) llpells < Kllgills + M supgepo  [9(s)];
(1) @ < Hlells-

(Ag) For the function p(-) in (A1), u; is a B— valued continuous function on I.
(As) The space B is complete.
Consider the space

Q={p: (-0, T] =R, plr_ € B, plr € C(I)}.

Definition 3.3.5 By a solution of problem (3.22), we mean a continuous function
u e

(t); teR_,
olt) = { ¢(0) — a,g(0) + a,g(t) + b, [y g(s)ds; t € 1, (3:31)

where g € C' such that g(t) = f(t, o, 9(t)).

Let us introduce the following hypotheses:
e (Hp1) The function f satisfies the Lipschitz condition:
[f(t, 91, S1) = f(E, 92, F2)] < billpr — g2l + b2|S1 — 2,
for any @1, € B, 02,32 € R, and each t € I, where by > 0 and 0 < by < 1.
e (Hopg) For any bounded set By C €2, the set:
{t = ft o, (“"Dip)(1)) s p € Bi}s

is equicontinuous in €.

First, we prove an existence and uniqueness result by using the Banach’s fixed point
theorem.



CHAPTER 3. IMPLICIT CAPUTO-FABRIZIO FRACTIONAL DIFFERENTIAL
EQUATIONS 66

Theorem 3.3.6 Assume that the hypothesis (Hgy) holds. If

b
A::(2m~+7%ﬁi—%g<<l, (3.32)
— U2

then problem (3.22) has a unique solution on (—oo,T].
Proof. Consider the operator N; : 2 —  defined by:

((t); te R,

¢(0) — a,g(0) + a,g(t) + b, fotg(S)ds; tel (3.33)

(Nip)(t) = {

where g € C(I) such that g(t) = f(t, pt, g(t)).
Let z(-) : (—o0,T] — R be a function defined by

Ct); teR.,
xwz{g@—teL

Then zy = (, For each z € C(I), with z(0) = 0, we denote by Z the function defined
by

> — 0; teteR_,
] z(t), tel

If p(-) satisfies the integral equation

p(t) = ¢(0) = arg(0) +arg(t) + b, [5 g(s)ds.

We can decompose p(-) as p(t) = Z(t) + z(t); for ¢t € I, which implies that g, = Z; + 4
for every t € I, and the function z(-) satisfies

2(t) = —a,g(0) + a,g(t) + b, / g(s)ds,

where
g(t) = f(t,Z + a4, 9(t); t € 1.

Set
Co={z€C(I); z =0},

and let || - ||z be the norm in Cy defined by
|zll7 = llz0lls + sup |2(t)] = sup[2(t)[; 2 € Co.
tel tel

Cy is a Banach space with norm || - ||7. Define the operator P : Cy — Cy; by

(P2)(t) = —a,g9(0) + a,g(t) + b, /Otg(s)ds, (3.34)
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where
g(t) = f(t,Z + x4, 9(t)); t € 1.

We shall show that P : Cy — C is a contraction map. Let z, 2’ € Cj, then we have for
each t €

[P()(1) = P(Z)®)] < arlg(0) = h(0)] + a,|g(t) — h(£)] + b, [5 g(s) — h(8)|6<l§735)
where g, h € C(I) such that ‘

g(t) = f(t,Z +24,9(t)) and h(t) = f(ta?t + 24, h(1)).

Since, for each t € I, we have

by
1— by

12 — 2| 3-

lg(t) — h(t)] <
Then, for each t € I; we get

|P(2)(t) — P(2')(1)] (20, + b, [y ds) g2 (17 — 7]l
<2G7« -+ T—Vbr)lﬁ—%2 ’Et — Z/tHB

Mz =27

I IA A

Thus, we get -
1P(2)(t) = P(Z)()llr < Az = 2]z

Hence, from the Banach contraction principle, the operator P has a unique fixed
point. Consequently, N has a unique fixed point which is the unique solution of problem
(3.22).

Now, we prove an existence result by using Schaefer’s fixed point theorem.

Theorem 3.3.7 Assume that the hypotheses (Hoy) and Hoy hold. Then problem (3.22)
has at least one solution on (—oo,T].

Proof. Let P: Cy — C defined as in (3.34), For each given R > 0, we define the ball
Bg = {r € Cy, |z[lr < R}.

Step 1. N is continuous .
Let z, be a sequence such that z, — z in Cy. For each t € I, we have

(Pz)(t) = (P2)(8)] < arlga(0) = g(0)] + arlgn(t) = g(O)] + by fy lgn(s) — 9(5)<|§l§6)
where g,, g € C(I) such that '

gn(t) = [t Zn + 20, 90(1)) and - g(t) = f(t,Z + 21, (1)),
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Since ||z, — z|[|r = 0 as n — oo and f, g and g, are continuous, then
|P(pn) — P(p)[lr = 0 asn— oco.

Hence, P is continuous.

Step 2. P(Bg) is bounded.
Let z € Bg, for each t € I, we have

l9(1)] |f(t, 20 4 24, 9(1))]

|f(£,0,0)] + b1z + 24| + b2|g(2)]
T+ 00 [lIZel s + [l 8] + b2l glloo
[+ 0 MR+ b K[C]|5 + ba|g]|oo-

IN

VANIVANRVAN

Then
ff+b MR+ blKHCHZg

ol < S22

Thus,

"U
)

|(P2)()]

arlg(0)] + alg(t)| +b, I¥19(s)|ds
2a, + b, f d f +b1 MR+01 K||¢||5

(
( .+ Th )f +b1MR+b:1LK‘fC”B
/.

iIA A IA

Hence

1P(2)|lr < ¢

Consequently, P maps bounded sets into bounded sets in Cj.

Step 3. P(Bg) is equicontinuous.
For 1 <ty <ty <T, and z € Bg, we have

|P(2)(t1) — P(2)(t2)] < alg(t2) — g(t)| + b, [ |g(s)lds

< adg(ts) — g(tr)| + by(ty — ty) LM EEKICls

By (Hp2), as ty — t; the right-hand side of the above inequality tends to zero, we

conclude that P maps bounded sets into equicontinuous sets in Cj.

Step 4. The priori bounds.
We prove that the set

E={pe€Cy:3=AP(p); for some X € (0,1)}

is bounded. Let z € Cy. Let u € Cy, such that z = AP(z); for some A € (0,1). Then

for each t € I, we have

2(t) = M(P2)(t) = A(0) + Aa,(g(t) — g(0)) + Ab, /Otg(s)ds.
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From (Hy;) we have

g < 1f(tZ 4 2, 9(1))]
< P2+ x|+ b2g(2)|
< [0 (lZds + [2lls] + b2llglloo
< [+ 0Mzlr + b K| Cls + balg oo
This gives,
[+ buMlzllr + WK (s
19]lo0 < =1

1 — by
Thus, for each t € I, we obtain

2] < 1C0)] + arlg(0)] + arg(t) + b, [y lg(s)|ds
< [€(0)] +n(2a, + Tb,)
= 7.

Hence
2]z <.

This shows that the set £ is bounded. As a consequence of Schaefer’s theorem [?], the
operator N has a fixed point which is a solution of problem (3.22).

Existence Results with State-Dependent Delay (The Finite Delay Case)

In this subsubsection, we establish the existence results for problem (3.23).

Definition 3.3.8 By a solution of problem (3.23), we mean a continuous function
u € C such that

¢y te[-hn0],
o= {<<o> — arg(0) + arg(t) + by fy g(s)ds; t €T,

where g € C(T) with g(t) = £(t, 9pep0r 9(8)).
e (H;) The function f satisfies the Lipschitz condition:
[f (£, 01,31) = [t 92, F2)| < wsllpr — pall—n0) + wal S1 — S,

for any 1,31 € C([—h,0],R), 02,32 € R, and each t € I,
where w3 >0, 0 < wy < 1.

e (Hj;) For any bounded set By C C, the set:

{t = f(t, 01, (CFDSKJ)(t)) tp € Bk

is equicontinuous in C.
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As in Theorems 3.3.3 and 3.3.4, we give without proof, the following results:

Theorem 3.3.9 Assume that the hypothesis (Hy) holds. If

ws

(2a, +T,) <1,

then problem (3.22) has a unique solution on [—h,T).
Existence Results with State-Dependent Delay (The Infinite Delay Case)

Now, we establish the last problem (3.24).
Definition 3.3.10 By a solution of problem (3.24), we mean a continuous u € §)
C(t); te R,
p(t) = ' ' (3.37)
¢(0) — a,g(0) 4+ a,g(t) + b, [, g(s)ds; t €1,
where g € C(I) such that g(t) = f(t, Pp,e0): 9(t))-

Set
R :=R_={plt,p):tel, peBpltyp) <0}

We always assume that p : I x B — R is continuous and the function ¢ — ¢, is con-
tinuous from R’ into B. We will need the following hypothesis:

(H¢) There exists a continuous bounded function L : R~ — (0, 00) such that

IGells < L(B) IS5, for any t € K.
Lemma 3.3.11 If p € Q) then

loills = (M + L)|IClls+ K sup [[p(0)],
0e[0,max{0,t}]

where
L' = sup L(t).

teR!

e (Hos) The function f satisfies the Lipschitz condition:
|f(t 01, S1) = f(t, 02, 32)| < bsl|p1 — palls + 041 — S
for any 1,31 € B, 02,32 € R, and each t € I, where b3 > 0 and 0 < by < 1.
o (Hps) For any bounded set By C €2, the set:
{t = f(t. o1, (“"Dip)()) : u € B}

is equicontinuous in €.
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As in Theorems 3.3.6 and 3.3.7, we give without proof, the following results:

Theorem 3.3.12 Assume that the hypothesis (Hoy) holds. If

bs
2 Th,)—— <1
(2a, + br)l_b4< )

then problem (3.24) has a unique solution on (—oo,T].

Theorem 3.3.13 Assume that the hypotheses (H¢), (Hos) and (Hos) hold. Then
problem (3.24) has at least one solution on (—oo,T).

3.3.2 Some Examples

Example 1. Consider the following problem

o(t)=1+1% te[-1,0],

CFPY2 Ny — < | _ (3.38)
D" 0)t) = sown + so(mer oy’ | € 02
where ¢ < ﬁ.
Set c .
[(t,9,9) = telle, peC, SER.

901 +lell) = 301 +[3])

Clearly, the function f is continuous. For any p,p € C, p,p € R, and ¢ € [0, 2], we
have

X S ~ 1 =
t ) — t )| < — _ _ — | — .
|f( 7@7‘5) f( 7@,\9”_ 90||@ @H[ 170}+30|‘5 ‘5|
Hence hypothesis (H) is satisfied with

S 1
W =— and wy= —.
90 30

Next, condition (3.27) is satisfied with 7' = 2 and r = 1. Indeed,

2a1+2b
w1 (2ar+Tb7‘) . C( a% %)
1—wo - 87
< 1.

Theorem 3.3.3 implies that problem (3.38) has a unique solution defined on [—1, 2].

Example 2. Consider now the following problem

pt) =t te R,

CEP2/3 \(4) — e 1+ p(t)e 1+ . (3.39)
( DO p)@) T 180(et—et) (14| p¢l]) + 60(etfe*t)<1+|(CFD(2]/3p(t))|)’ te [07 1]
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Let v be a positive real constant and

B, ={pecC((—o0,1],R,): lim () exists in R}. (3.40)

60— —o0

The norm of B, is given by

lolly = sup  e|p(0)].

e (—o00,1]
Let p : R — R be such that gy € B,. Then

limg_—o0 €90, (0) = limg_,_o e p(t + 6 — 1) = limg_, _o 70D 5(0)

=D limgy,_ o 7D (0) < 0.
Hence g, € B,. Finally we prove that

ol < Klloally + M sup |o(s)],
s€0,t]

where K = M =1 and H = 1. We have

lor(O)]] = [p(t + 0)].

Ift+6<1, we get
lp:(B)]] < sup [p(s)|.

sER_
For t + 6 > 0, then we have

lo:(B)]| < sup [p(s)]-

s€[0,t]

Thus for all t + 6 € I, we get

lpe(B)Il < sup [p(s)| + sup |p(s)|.

seR_ s€[0,t]
Then
lo:lly < llpolly + sup [p(s)]-
s€[0,¢]

It is clear that (B,, || - ||) is a Banach space. We can conclude that B, a phase space.
Set

A o=ttt
[t 0,9) tel0,1], pe B,, IR

180 (e' — ") (L + llplls,) 60 (e" —e=) (1+[S)
We can verify that the hypothesis (Hy;) is satisfied with

1

d By— —.
and 2=

B =——
180
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Theorem 3.3.7 ensures that problem (3.39) has a solution defined on (—oo, 1].

Example 3. We consider the following problem

o(t)=1+1% te[-1,0],

("D 0)(t) = srrrtewm + 30(1+|(CF}3/2M)‘>% te01], (3.41)
where o € C(R, [0, 1]). Set
p(t,¢) =t —0o(¢(0), (t,¢)€[0,¢e] x C([~1,0R),
ft,0,3) = L + ! ctelle], pel, SER.

~90(L+ [t —a(p®))) 30 (1+[S(®)])’

Clearly, the function f is jointly continuous. For any g, p € C, S, SeRandte [0, 1],
we have

- 1 1 -
t S t O )| < — A B ¥ = .
Hence hypothesis (Hy4) is satisfied with
1 1

w3:% and w4:%.

From Theorem 3.3.9, problem (3.41) has a unique solution on [—1,1].
Example 4. Consider now the problem
p(t) =t te R,

CF UL ) (p) — —_9l=Mp()e p(H)e+ ,
(“U Dy p)(t) = 180(et—e— 1) (1+|p(t—o(e(0)]) 60(et_e,t)(H'(CFD(%/%@)‘), t €0, 3].

3.42
Let v be a positive real constant and the phase space B., defined in Example 2. ( )
Define
p(t, Q) =t = A(C(0)), (t,¢) €[0,3] x By,
and set
ottt o+
f(t,0,9) 0,3], p € By, I ER.

T 180(d —e ) L+ lplla) 60 —e @+ Q) © [

By Theorem 3.3.7, problem (3.42) has a solution defined on (—o0, 3].



Chapter 4

Implicit Fractional Differential
Equations in b-Metric Spaces

4.1 Introduction

The purpose of this chapter is the study of three results for a class of existence results
for a class of Terminal Value Problem for Katugampola implicit fractional differential
equations in b-metric spaces, Caputo-Fabrizio implicit fractional differential equations
in b-Metric Spaces with initial conditions, implicit Katugampola fractional differential
equations in b-metric spaces and for Caputo-Katugampola implicit fractional differen-
tial equations in b-metric spaces. The results are based on the ae — ¢-Geraghty type
contraction and the fixed point theory.

The Katugampola fractional differential operator has been introduced in [75, 76].
It is a generalization of the Caputo and the Caputo-Hadamard fractional derivatives.
Some fundamental properties of this operator are presented in [14, 19], and the refer-
ences therein.

4.2 Terminal Value Problem for Implicit Katugam-
pola Fractional Differential Equations in b-Metric
Spaces

The outcome of our study in section is the continuation of the problem raised recently
in [19], in it, Arioua et al. study in a general manner, the existence and uniqueness of
solutions of nonlinear fractional differential equations:

("Dg-u)(t) = f(t,u(t), ("Dyu)(t)); t € 1:=1[0,T],
u(0) =0,

74



CHAPTER 4. IMPLICIT FRACTIONAL DIFFERENTIAL EQUATIONS IN B-METRIC
SPACES 75

where 0 <r <1, p>0T < (pc)ﬁ for any 1 < p < oo, ¢ > 0, is a finite positive
constant, ?D{, is the the Katugampola fractional derivative and f : I x R xR — R is
a given function.

In this section, we discuss the existence of solutions for the following class of ter-
minal value problems of Katugampola implicit fractional differential equations:

{<ng+u><t> = f(t,u(t), ("D u)(t)); t € I:=1[0,T],

w(T) = ur € R, (4.1)

where 7' > 0, f: I xR — R is a given continuous function, ?D{, is the Katugampola
fractional derivative of order r € (0, 1].

4.2.1 Existence of Solutions

Let C, ,(I) we denote the weighted space of continuous functions defined by
Crp(I) = {u: (0,T] = R: tr"uy(t) € C(I)},

with the norm
]l := sup |7 u(t)]].
tel

Lemma 4.2.1 ([76]) Letr,p > 0. Ifu € C(I), then the fractional differential equation
PDjsu(t) = 0, has a unique solution

u(t) = Cot?T= 4 CutPrD 4 CPr),

where C; € R withi1=1,2,...,n.

Proof. Let r,p > 0. from Remark 1.2.9, we have
pDSJ”(T_i) =0, foreachi=1,2,... n.

Then the fractional equation ?Df, u(t) = 0, has a particular solution as follows:

u(t) = CitP"9, C; € R, for eachi=1,2,...,n. (4.2)
Thus, the general solution of ”Df, u(t) = 0 is a sum of particular solutions (4.2) , i.e.

u(t) = CotPT Y 4 CoptPD 4 L Ot G eR; (1=1,2,...,n).
Lemma 4.2.2 Let r,p > 0. If u,” Dju € C(I) and 0 <1 <1 then
PIN P Db u(t) = u(t) + ct?" ), (4.3)

for some constant ¢ € R.
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Proof. Let ?Dj,u € C(I) be the fractional derivatives (1.2) of order 0 < r < 1. If we
apply the operator ?D{, to ?I ?Df u(t) — u(t), and use the properties (1.4) and (1.5),
we get
oDELPIL DY u(t) —u(t)] = PDLPITPDr u(t) —° Dr, u(t)
= PDiiu(t) =" Dy,u(t) = 0.

From the proof of Lemma 4.2.1 we deduce that there exists ¢ € R, such that:
PINPDb u(t) — u(t) = ct?" Y,
which implies (4.3).

Lemma 4.2.3 Let h € L*(I,R), and 0 <r <1 and p > 0. A function u € C(I)

{S(?%Jﬁ)i? = h(t); tel, (4.4)

if and only if u satisfies the following integral equation

p(r—1) 1—r gt
u(t) = (up =* I h(T)) <%> + 1€<T) /0 sP7HtP — sP) L h(s)ds. (4.5)

Proof. Let r,p > 0. and 0 < r < 1, Suppose that u satisfies (4.4). Applying the
operator I, to the both sides of the equation

("Dgru)(t) = h(t), (4.6)

we obtain
PIG+P Dyru(t) = 154 h(t).

From Lemma 4.2.2, we get
u(t) 4 ct?"Y =P I h(t). (4.7)
for some ¢ € R. If we use the terminal condition u(7T") = ur in (4.7), we find
w(T) = up =" I} h(T) — TP,

which shows,
¢ =PI} W(T) — up)TPU=").

So; we get (4.5).
Conversely, if u satisfies (4.5), then ("D, u)(t) = h(t); for t € I and u(t) = up.

As in the proof of the above lemma, we can show the following one
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Lemma 4.2.4 A function u is a solution of problem (4.1), if and only if u satisfies
the following integral equation:

1—r

p(r—1) t
) = (or = Bog(r) () 4 [ e

where g € C(I), and g(t) = f(t,u(t),g(t)).

Let (C,,(I),d,2) be the complete b-metric space with ¢ = 2, such that
d: Crp( ) x Cy.,(I) = R is given by:

d(u,v) = ||(u —v)?||c := sup t”(l_’q)\u(t) —o(t)|.
tel
Then (C, ,(I),d,2) is a b-metric space.

Definition 4.2.5 By a solution of the problem (4.1) we mean a function v € C, ,(I)
that satisfies

u(t) = (ur — [og(T)) (%)W—D L [ gt

where g € C(I), and g(t) = f(t,u(t), g(t)).
The following hypotheses will be used in the sequel.

(Hy) There exist ¢ € &, p: C(I) x C(I) — (0,00) and ¢ : I — (0,1) such that for
each u,v,uy,v; € G, (), and t € 1

f(tuv) = f(t o)) < ECplu,0)fu — | + q(t)|o — v,

2
r— (u,v)
with H fo sPH(TP — sP) 1%6&9”()

1—r t 2
P / Sp_l(tp - Sp)r—lp(uv U) ds
T(r) Jo 1 — gx

C

< o(ll(w—v)*lle).

i

(Hy) There exist puo € C,,(I) and a function 0 : ;. ,(I) x C, ,(I) = R, such that

p(r—1) 1—r ot
e<uo<t>,<uT i) (1) i [ sp*(tﬂ—spy-lg(s)ds) >0,

where g € C(I), with g(t) = f(¢t, uo(t), g(t)).
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(H3) Foreacht e I, and u,v € C,,(I), we have:
O(u(t),v(t)) >0

implies

0 (Ip“(;; /0 sP7H(tP — 5P g (s)ds, I'f(;; /0 sPH(tP — sp)r_lh(s)ds> >0,
where g, h € C(I), with g(t) = f(t,u(t),g(t)) and h(t) = f(t,v(t), h(t)).

Hy) If uypeny € C(1) with u, — v and 6(uy,, u,q) >, then
€

O(tp,u) > 1.

Theorem 4.2.6 Assume that hypotheses (Hy) — (Hy) hold. Then the problem (4.1)
has a least one solution defined on I.

Proof. Consider the operator N : C, ,(I) — C, ,(I) defined by

p(r—1) 1—r t
00 = ar = eg@) (1) + 8 [ -y gteas

where g € C(I), with g(t) = f(t,u(t), g(t)).
By using Lemma 4.2.4, it is clear that the fixed points of the operator N are solutions
of (4.1).

Let a: G, ,(1) x C,. (1) — (0,00) be the function defined by:

{ alu,v) =1; if O(u(t),v(t)) >0, t €1,

alu,v) =0; elese.

First, we prove that N is a generalized a-¢-Geraghty operator:
For any w,v € C(I) and each t € I, we have

D (Nu)(E) = I (N0 < 0D Eg (g = BT (5)

S }t{f D L(te — 52)™ Y g(s) — h(s)|ds

where g, h € C(I), with
9(t) = f(t,ult), g(t)),
and

h(t) = f(t,v(t), h(t)).

From (H;) we have

l9(t) = R(®)] = [f(tu(t), 9(t)) — f(t,0(t), h(1))]
p(u, )2 u(t) — v(t)] + q(t)lg(t) — h(t)]

)t
p(u, 0) (0 u(t) — v(t)[2)2 + q(t)lg(t) — h(t)].

I/\ I/\ I
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Thus,

where ¢* = sup,¢; |q(t)]-
Next, we have

[##0D (Nu)(8) — 70 (Nw) (2)]

_r r (r—1)
< PIPLL (g - N () 1
1—ryp(l—r) r— , =
£ Jo o e — ) TR (= 0P s
1—r (1 T r— w,v =
< Lfo TP — 5 = )2 s
1 T (1 T) r— w, =
+ g Jo T = TR (= 0 eds,
Thus
o(u, )|t/ (Nu)(t) — /0= (N) ()] )
< =0 llcalu,v)||#57 Jo (T = syt eas|
1—r t _ r— u,v
+ u—v)?||lca(u,v) pF(T) Jo 8”7 H(tP — sP) ”1( q*)ds
< (u=v)lled(l(u—v)?llc)
Hence

a(u, v)¢(2°d(N (u), N(v)) < M@(d(u,v))¢(d(u, v)),
where A € F, ¢ € ®, with A(t) = it, and ¢(t) =
So, N is generalized a-¢-Geraghty operator.
Let u,v € C, ,(I) such that
a(u,v) > 1.

Thus, for each t € I, we have

This implies from (H3) that

which gives
Hence, N is a a-admissible.
Now, from (Hs), there exists 19 € C,.,(I) such that

a(po, N(po)) = 1.

Finally, from (Hy), If pn,cny C M with p, = g and a(pn, ftns1) > 1, then

a(fin, p) > 1.

From an application of Theorem 1.5.6, we deduce that N has a fixed point u which is

a solution of problem (4.1).
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4.2.2 An Example

Let (C,,([0,1]),d,2) be the complete b-metric space, such that
d: Cp,([0,1]) x Crp([0,1]) = RY is given by:

d(u,v) = [|(u = v)*[lc.

Consider the following fractional differential problem

{(PD6+u)(t) = f(t,u(t,) (D5 u)(t); t € [0,1], (49)

u(l) =2,

where

B tg(l_r)(l + sin(|u(t)])) et .
ST A ) ey O

Let t € (0,1], and u,v € C, ,([0,1]). If |u(t)| < |v(t)|, then

F(t,ult), v(t))

1+ sin(Ju(t)|) 14 sin(Jo(t)])

U U1 — , UIT), U1 =20
|f (& u(t), ur(t)) — f(E0(t),0i(t))| = ¢ A1+ u@))) 40 +]®))

RO m@)] T 20+ )] ‘
£(1-7) £(1-r)

< S )] = o]+ I sin(u(d)]) — sin(le(o)]
2(1-r)

£ S () sin(o(t)]) — Jo(6) sin(u(o)|

b () - w)

t%(lfr) t%(lfr)
< B0 — o1+ S sin(luto)) — i)
s(1-r)
+ D @l sin(o(o)) — Joto)] sinu)
+ ()~ n()
t%(lfr) t%(lfr)
= B0 — o)+ T o) (o) — sinlo(o))
() — )
t50=7) t5(0=r)
< B0 o)+ B o)

an (L= Y| 0100



CHAPTER 4. IMPLICIT FRACTIONAL DIFFERENTIAL EQUATIONS IN B-METRIC 81
SPACES

eft

s (t) - v
t%(l—?”) —t

< @ @Du(t) - u(@)] +€7lul(t) —ui(t)].

The case when |v(t)| < |u(t)], we get

2(1-r) —t

7t w(8)) = Flt (O] € =@+ [u(®)llu(t) = o(@)] + -l (6) = i (0)].

Hence

|f ()= f(E,v(t)] < min{2+[u(t)], 2+ |v(t) [Hu(t) —v(t )!+—!u1( )—ui(t)].
Thus, hypothesis (H;) is satisfied with
T50-7)

T50-7)

p(u,v) = min{2 + [u(t)], 2 + [o(®)[},

and
q(t) = e,

Define the functions A(t) = &t, ¢(t) =t, o : C, ([0, 1]) x C;.,([0,1]) — R*. with
{a(u,m = 15 if S(u(t), v(1) 2 0, tE 1,

a(u,v) = 0; else,
and d : C;. ([0, 1]) x C,.,([0,1]) = R with 0(u,v) = ||[u — v]|¢.
Hypothesis (Hs) is satisfied with po(t) = ug. Also, (H3) holds from the definition of the

function 6. Hence by Theorem 4.2.6, problem (4.9) has at least one solution defined on
[0, 1].

4.3 Functional Katugampola Fractional Differential
Equations in b-Metric Spaces

Motivated by the works mentioned in the Introduction of the section 4.2 , in this
section, we discuss the existence of solutions for the following class of Katugampola
implicit fractional differential equations:

{(”Dlﬁgo)() F(t, 0(t), "Dy p)(t)); t € 1:=10,T), (4.10)
(P17 9)(0) = ug € R,

where T,p > 0, f : I x R x R — R is a given continuous function, ?I], is the
Katugampola fractional integral of order r € (0, 1], ?Dj, is the Katugampola fractional
derivative of order r.
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4.3.1 Existence of Solutions

Let C, ,(I) we denote the weighted space of continuous functions defined by
Crp(1) ={p: (0,T] = R: t"""p(t) € C(1)},

with the norm
pllc = sup [t*p(t)]].
tel

Lemma 4.3.1 Let h € LY(I,R), and 0 <r <1 and p > 0. A function u € C(I)

(PDy, o) (t) = h(t); t €1, (4.11)
(I o)1) = oo |

if and only if u satisfies the following integral equation

popl—r p(r—1 pTT
p(t) = Wt 0 (PIgh)(). (4.12)

Proof. Let r,p > 0. and 0 < r < 1, Suppose that p satisfies (4.11). Applying the
operator Ij, to the both sides of the equation

("Dg+)(t) = h(t), (4.13)

we obtain
P15+ D (t) =" Ig: h(t).

From Lemma 4.2.2, we get
olt) = CHr D 1 (I h)(1), (4.14)
for some C' € R. If we use the condition (°I;"p)(t) = o in (4.14), we find

prr(r)

0 = CW’

which shows,

So; we get (4.12).
Conversely, if p satisfies (4.12), then (? Dy, p)(t) = h(t); for t € I, and (°I3"p)(t) = 0.

As in the proof of the above lemma, we can show the following one
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Lemma 4.3.2 A function u is a solution of problem (4.10), if and only if u satisfies
the following integral equation

1—r

~ pop' ptr—1) | P tSp—l P _ PV Lo(s)ds
olt) = et 4 £ [t — oy sy, (1.15)

where g € C(I), and g(t) = f(t, o(t), 9(t)).
Let (C,,(I),d,2) be the complete b-metric space with ¢ = 2, such that
d: Crp( ) x Cy,(I) = R is given by:

d(9,3) = (9= 3)*llc = sup "o (t) — (8]
€

Then (C, ,(I),d,2) is a b-metric space.

Definition 4.3.3 By a solution of the problem (4.10) we mean a function v € C, ,(I)
that satisfies

1—r

1—r t

_ Kop (r-1) , P p—1(1p pyr—1

o(t) = ———t” +—/s (tF —s g(s)ds,
" L(r) L(r) Jo ) )

where g € C(I), and g(t) = f(L, p(t), 9(1)).
The following hypotheses will be used in the sequel.

(Hy) There exist ¢ € &, p: C(I) x C(I) — (0,00) and ¢ : I — (0,1) such that for
each p, ¥, 01,81 € C,,(I), and t € [

£t 0,3) — f(t,01,31)] < t2p(p, R)|p — pi1] + q(t)|S — 3],

with
1—r

t
p p—1(4p r— ]_p(p? )
tr — —d
F(r)/o A ") 1 — g* s

where g, h € C(I)

< o(l(p = 3)*le),

C

(H3) There exist p € C,,(I) and a function 6 : C, ,(I) x C,.,(I) = R, such that

pop' " (r—1) P 1 1
0 t), ———t"\"" 4+ —— P=2(tP — sP)" " g(s)ds | >
(Mo( ), ™) ™) /0 sP7( s”) (s) 3) >0,

where g € C(I), with g(t) = f(¢, uo(t), g(t)).
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(H3) Foreacht e I, and u,v € C,,(I), we have:

implies
1—r 1—r t
£op r—1 P -1 r—1
0 ( =l / s (17 = s7)"g(s)ds,
L(r) I'(r) Jo
i\foplfr _ plir ! — -
tP(T 1) + sP l(tp — SP)T 1h<8)d8 > O,
I'(r) I'(r) Jo

where g, h € C(I), with g(t) = f(t, p(t), g(t)) and h(t) = f(t,3(t), h(t)).

(Hy) If pppen € C(I) with g, — v and 0(pp, pp+1) >, then
0(pn, 0) = 1.

Theorem 4.3.4 Assume that hypotheses (Hy) — (Hy) hold. Then the problem (4.10)
has a least one solution defined on I.

Proof. Consider the operator N : C, ,(I) — C, ,(I) defined by

(Np)(t) = Mtr)(r—l) + ﬂ /t 3”_1(75” _ s”)"_lg(s)ds
I(r) I'(r) Jo ’
where g € C(I), with g(t) = f(t, p(t), g(t)).
By using Lemma 4.3.2, it is clear that the fixed points of the operator N are solutions
of (4.10).
Let a: G, ,(1) x C,. (1) — (0,00) be the function defined by:

a(p, ) =1; if 0(p(t),3(t) 20, tel,
alp,F) =0; elese.

First, we prove that N is a generalized a-¢-Geraghty operator:
For any o, € C(I) and each t € I, we have

1—r4p(1—7) t
1207 (N ) (£) — 0D (NS) (1) < % / 1 — sy g(s) — h(s)|ds,
with
g(t) = (. 0(t), g(t)),
and
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From (H;) we have,

l9(2) — h(t)] t), g(t)) — f(t,3(t), h(t))]
2Uo(t) — (O] + a(t)]g(t) — h(t)]

t
(0 p(t) = SOP)7 + a(t)lg(t) — h(t)].

Thus,
(o, S

Next, we have
\tp“*”(N@)(t) — (N1

1 r (1 T) r— S 1
< S s s )RS | (6 — §)22ds
1—7r (1 T) r— Ry 3
< ge— ;{;) I 1<t s) RS — §)?|2.ds.
Thus . " )
a(p, )P (Np)(t) — t7=") (NS) ()]
< o - 9Pllcale. 9)||55 f 97119 — sty el |
< e — 2ol (p - 9)? Ho)
Hence

alp, 3)o(2°d(N (), N(3)) < Ae(d(p, I))e(d(p, 3)),

where A € F, ¢ € ®, with A(t) = 4t, and ¢(t) =
So, N is generalized a-¢-Geraghty operator.
Let p, 3 € C,,(I) such that

Thus, for each t € I, we have

This implies from (H3) that
O(Np(t), NS(t) = 0,

which gives
a(N(p), N(S)) = 1.

Hence, N is a a-admissible.
Now, from (H,), there exists py € C, ,(I) such that

a(po, N(po)) = 1.
Finally, from (Hy), If {ptntnen € M with p, — p and a(pn, pin1) > 1, then
a(pn, p) > 1.

From an application of Theorem 1.5.6, we deduce that N has a fixed point u which is
a solution of problem (4.10).
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4.3.2 An Example

Let (C,,([0,1]),d,2) be the complete b-metric space, such that
d: C, (0, ]) x Cy,([0,1]) — R is given by:

d(p, ) = [|(p = 3)*c.
Consider the following fractional differential problem

{(pDzm(t) F(t,0(t), ("Dp. o) (t)); ¢ € [0,1],

(PI,7"9)(0) = 0, (4.16)

where

t20 (1 + sin(|p(t)])) L
41+ [p@)) 2(1+ [S())]
Let t € (0,1], and o, € C,,([0,1]). If |p(t)] < |v(t)], then

ft, (1), (1)) =

; tel0,1].

)

L +sin(|p(t)]) 1+ sin(|(
t

(5 0001, (1) = F(1,S(0), $1(0)] = 15077 | P i — SR

et et
|

21+ e (D)) 2(1+ (1)
t%(l—r) t50=r)
@) — SO + | sin(|p(?)]) — sin(|S(¢)))]

lp@)|sin(|S@)]) = 3@ sin(|p)])]

- Tww—%l(tm

tg(lfT’) t%(l*?") ) ]
p(t) — S(O)] + | sin(|p(t)]) — sin(|S(¢)])]
t50=r)

+ 1 [ISO[sin(IS@)]) = [S()]sin([p)])]

e—t

+ —|@1( ) — S1(t))]

t)]
)

IN

tp(l r)

p(l r) (1 r)
B o) - <>|+t (1+13(1)])

o (2520 (1 2)

IN

X
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eft
+ 7|@1(t) — 34(2)]
tg(l—r) t

< (2+I%(f)l)lp(t)—%‘(t)lJr%!m(t)—%l(t)L

4
The case when [(t)| < |p(t)], we get

2(1-7) ot
[t 0(t) = f(t, SO < —— 2+ lp®)llp(t) = SO + —-lea(t) = ().
Hence
T%(l—r) t

(£, 0(8)=f(t,S(1)] < min{2+(p(?)], 2+\C3(t)|}|@(t)—%(t)l+%Ipl(t)—%l(t)l‘

Thus, hypothesis (H;) is satisfied with

720
- I{IEIP{Q—F lp(t)],2 +|S(1)|},

p(p, S

and
q(t) = 5e".

Define the functions A(t) = £t, ¢(t) =t, o : C,,([0,1]) x C; ,([0,1]) — R%. with
alp,3) = 1; if 3(p(1),3(t) =2 0, t e 1,
a(p,J) = 0; else,

and d : C;. ([0, 1]) x C,.,([0,1]) — R with 6(p, ) = [|p — Flc-

Hypothesis (H,) is satisfied with po(t) = po. Also, (H3) holds from the definition of the
function 6. Hence by Theorem 4.3.4, problem (4.16) has at least one solution defined
on [0, 1].

4.4 Initial Value Problems for Caputo-Fabrizio Im-
plicit Fractional Differential Equations in b-Metric
Spaces

Motivated by the works mentioned in the Introduction of the section 3.2 , in this
section, we investigate the existence and uniqueness of solutions for the following class
of initial value problems of Caputo-Fabrizio fractional differential equations:

{<C(Z)DEU)(75) = f(t.u(t), (“"Dgu)(t)); t € 1:=[0,T], (4.17)

where T'> 0, f:I xR xR — R is a given continuous function, ¥ Dy is the Caputo-
Fabrizio fractional derivative of order r € (0, 1), and ug € R.
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4.4.1 Existence of Solutions

Lemma 4.4.1 Let h € L*(I,R). A function u € C(I) is a solution of problem

(“FDyu)(t) = h(t); tel:=][0,T]
{ Lo it (4.18)
if and only if u satisfies the following integral equation

t
w(t) = C + arh(t) + b, / h(s)ds. (4.19)

0

21 =7) b — 2r
T R-nME) T @M
C = ugp — a,h(0).

proof. Suppose that u satisfies (4.18). From Proposition 1 in [?]; the equation
(“"Dgu)(t) = h(t),
implies that
u(t) — u(0) = a,(h(t) — h(0)) + b, /Ot h(s)ds.

Thus from the initial condition u(0) = ug, we get
t
u(t) = u(0) + a,h(t) — ah(0) + bT/ h(s)ds.
0

So; we get (4.19).
Conversely, if u satisfies (4.19), then (¥ Dju)(t) = h(t); for t € I,
and u(0) = uy.

We can conclude the following lemma:

Lemma 4.4.2 A function u is a solution of problem (4.17), if and only if u satisfies
the following integral equation

u(t) = c+a,g(t) + br/o g(s)ds,

where g € X, with g(t) = f(t,u(t),g(t)) and

c = up — a,g(0).
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Let (C(I),d,2) be the complete b-metric space with ¢ = 2, such that d : C(I)x C(I) —
R? is given by:
d(u,v) = [|(u = v)?|lo := Sup [u(t) —v(t).

Then (C(I),d,2) is a b-metric space.
In this section, we are concerned with the existence results of the problem (4.17).

Definition 4.4.3 By a solution of the problem (4.17) we mean a function u € C(I)
that satisfies

w(t) = ¢+ apg(t) + br /0 ' o(s)ds, (4.20)
where g € C(I), with g(t) = f(t,u(t),g(t)) and
c=ug — a,g(0).
The following hypotheses will be used in the sequel.

(Hy) There exist p : C(I) x C(I) — (0,00) and g : I — (0,1) such that for each
w,v,up,v; € C(I)and t € [

|f(t,u,v) — f(t,ur,v1)] < plu,v)|u—ui| + q(t)|v —vq,
with . )
H1 N 2aﬂi<ﬁ—’;j i br/O fi(ﬁ—’;’jdsHoo < o(ll(u— 01,

(Hs) There exist ¢ € ® and ug € C(I) and a function 6 : C'(I) x C(I) — R, such that

t
0 (,uo(t), c+aqg(t) + bT/ g(s)ds) >0,
0
where g € C(I), with g(t) = f(t, o(t), 9(t)),
(H3) For each t € I, and u,v € C(I), we have:
O(u(t),v(t)) >0
implies
t t
7 (c +a.g(t) + br/ g(s)ds,c+ a-h(t) + br/ h(s)ds) >0,
0 0
where g, h € C(I), with

g(t) = f(t,u(t), g(1)) and h(t) = f(L,v(t), h(1)).
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(Hy) If uppeny € C(I) with w, — u and 0(u,, u,+1) > 1, then

0(un,u) > 1,

(Hs) For all fixed solutions z,y of problem (4.17), either

0(x(t), y(t)) = 0,

O(y(t), z(t)) = 0.

Theorem 4.4.4 Assume that the hypotheses (Hy) — (Hy) hold. Then the problem
(4.17) has a least one solution defined on I. Moreover, if (Hs) holds, then we get a
unique solution.

Proof. Consider the operator N : C(I) — C(I) such that,

(Vu)(t) = ¢+ a,9(0) + b | g(s)as,

where g € C(I), with g(t) = f(t,u(t),g(t)) and
c = up — a,g(0).

Using Lemma 4.4.2, it is clear that the fixed points of the operator N are solutions of
our problem (4.17).
Let a: C(I) x C(I) —]0,00) be the function defined by:

{ alu,v) =1; if O(u(t),v(t)) >0, t €1,
a(u,v) =0; eles.

First, we prove that N is a generalized a-¢-Geraghty operator:
For any w,v € C(I) and each t € I, we have

((Na)(t) = (NO)(0)] < ley = el + arl(t) |+b/m (5)lds
where g, h € C(I), with g(t) = f(t,u(t), g(t)) and h(t) = (1)).
From (H;) we have
lg(t) = h(t)] = [f (£ u(t )|

g(t)) = f(t,v(t), h(t
t) — h(t)l

< plu ) lu(0) — o] + 0o

< plu, o) (Jult) — o)) + g(Olg(t) — h(t)].
Thus,

o — Al < 200 — 22,
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where ¢* = sup,¢; |q(t)]-
Next, we have

(Nu)(t) — (No)(B)] < [~ 0)?]1% + 20,22 u — )|

1 q*
b f) HE (- )2 ds.
Thus
alu, v)|(Nu)(t) — (No)(t)* < [[(u —v)?||scc(u, )
1+ 20,558 5, ftp“ds‘oo
< l(w = 0)? lae@([[(u = v)?] o)
Hence

a(u,v)¢(2°d(N (u), N(v)) < Mo(d(u, v))¢(d(u, v)),

where A € F, ¢ € ®, with A(t) = it, and ¢(t) =
So, N is generalized a-¢-Geraghty operator.
Let u,v € C(I) such that
a(u,v) > 1.

Thus, for each t € I, we have
O(u(t), v(t)) = 0.

This implies from (H3) that

which gives

Hence, N is a a-admissible.
Now, from (Hs), there exists o € C(I) such that

a(po, N (o)) > 1.

Finally, From (Hy), If pin,eny € M with p,, — p and o, fins1) > 1, then

a(pin, 1) > 1.

From an application of Theorem 1.5.6, we deduce that N has a fixed point u which is
a solution of problem (4.17).

Moreover, (Hj), implies that if x and y are fixed points of N, then either 8(z,y) > 0
or O(y,x) > 0. This implies that either a(z,y) > 0 or a(y,x) > 0.
Hence; problem (4.17) has the uniqueness.
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4.4.2 An Example

Consider the Caputo-Fabrizio fractional differential problem

{@mewzﬂmwmmbmwmtemu

w0~ (4.21)

where 1+ sin[u)
+ sin(|u
t,u,v) = ;e |0,1].
fwo) == T aagey fE 0
Let (C([0,1]),d,2) be the complete b-metric space, such that d : C([0,1]) x C([0, 1]) —
R? is given by:

d(u,v) = ||(u = v)*[loc := sup |u(t) —v(t)].
te(0,1]
For each u,v € C([0,1]), we have Let ¢t € (0,1], and u,v,u,v € C([0,1]). If |u(t)] <
|v(t)], then

W) G) — o). 5 1+ sin(|u(t)|) B 1+ sin(|u(t)])
000,80 = JE 02O = 30 ]+ o@D~ 40+ p]+ 2@
L la) o)
4
< @) = oIl + lsin(lu(d)]) — sinlo(e))
+ [l sin(o(0)]) = o) sin(fu(e) )
. lo) o0
< Jult) ~ v(t)| + 3l sin(u(t)]) — sin(lo(e))
o0
+ @l sin(le)]) — [o(0)] sinu(r))
= Ju(t) — v(t)| + (1+ o)) sin (D)) — sin(lo()])
a(t) — o(t)

+

< u(t) —o(t)| + %(1 + [u(®)])

. u(@)] = |v(t)] ()] + [v()]|
RS
< @+ [l — vl + 1= Vs

The case when |v(t)| < |u(t)], we get

[z = vlloo
4

|F(tu(t), a(t)) = [t 0(),0(1))] < (2 + [[ufleo) lu = vl +



CHAPTER 4. IMPLICIT FRACTIONAL DIFFERENTIAL EQUATIONS IN B-METRIC
SPACES 93

Hence

||ﬂ _@”oo

[f(E u(t), u(t)) = £(t,0(t), 0(t))] < min2 + [lufloe, 2+ [Jv]looHu = vl +

Thus, hypothesis (Hs) is satisfied with

. 1
p(u,v) = min{2 + f[ulloc, 2+ [[v]|oc}, and q(t) = 7.

Define the functions A(t) = &t, ¢(t) = ¢, a = C((0,1]) x C([0, 1]) — R% with

a(u,v) =05 else,

{a(u,v) —1; if o(u(t),v(t)) >0, t eI,

and 0 : C([0,1]) x C([0,1]) = R with d(u,v) = [|[u — V|-
Hypothesis (Hs) is satisfied with po(t) = wug. Also, (Hs3) holds from the definition of
the function J.

Simple computations show that all conditions of Theorem 4.4.4 are satisfied. Hence,
we get the existence of solutions and the uniqueness for problem (4.21).



Conclusion and Perspectives

In this thesis, we have presented some results to the theory of the existence of solu-
tions and uniqueness and the Ulam-type stability of some classes of fractional implicit
differential equations with the derivatives of Caputo, Hadamard, Caputo-Fabrizio,
Katugampola, and mention all the derivatives. The problems studied are with initial
and boundary conditions. The results obtained are based on some fixed point theorems
and the measure of non-compactness.

In future research, we plan to study some fracional differential and integral equa-
tions and inclusions with impulses (instantaneous and not instantaneous) in Banach
and fréchet spaces.
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