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Introduction
Fractional Calculus is the feilds of mathematical analysis which deals

with the investigation and application of the integrals and derivative of arbi-
trery order. The term fractional is misnomer but it is retained following the
prevailing use.

The fractional calculus may be considered an old and yet novel topic.
It is an old topic since, starting from some speculations of G.W. Leibniz
(1695, 1697) and L. Euler (1730), it has been developed up to nowadays. In
fact the idea of generalizing the notion of derivative to non integer order,
in particular to the order 1/2, is contained in the correspondence of Leibniz
with Bernoulli, L’Hôpital and Wallis. Euler took the first step by observing
that the resuit of the evaluation of the derivative of the power function has
a meaning for non-integer order thanks to his Gamma function.

A list of mathematicians, who have provided important contributions
up to the middle of the 20-th century, includes P.S. Laplace (1812), J.B.J.
Fourier (1822), N.H. Abel (1823-1826), J. Liouville (1832-1837), B. Riemann
(1847), A.K. Grûnwald (1867-1872), P.A. Nekrassov (1888), J. Hadamard
(1892), O. Heaviside (1892-1912), G.H. Hardy and J.E. Littlewood (1917-
1928), H. Weyl (1917), P. Levy (1923), A. Marchaud (1927), H.T. Davis
(1924-1936), A. Erdélyi (1939-1965), H. Kober (1940), D.V. Widder (1941),
M. Riesz (1949), W. Feller (1952).

However, it may be considered a novel topic as well, since only from a
little more than thirty years it has been object of specialized conferences and
treatises. B. Ross organized the First Conference on Fractional Calculus and
its Applications 1974.

Nowadays, to our knowledge, the list of texts in book form devoted to
fractional calculus includes less than 20 titles. In recent years considerable
interest in fractional calculus has been stimulated by the applications that
it finds in different fields of science, including numerical analysis, physics,
biology, economics and finance.

This senior thesis is orgnized as follows. In chapter 1 we develop the
Wiener integration w.r.t fractional Brownian motion. In this chapter we
will give definitions and properties of the needed theory. We briefly recall
some basic notions of the Fractional calculus, then we skim through the Frac-
tional Brownian Motion we review rapidly the basic concepts, then we discuss
Wiener integration with respect to fBm and various relations between differ-
ent "integrable spaces" related to fBm. Finally, we provide new and rather
simple proofs of some basic properties not only for the fractional Brownian
motion. But for Wiener integration w.r.t fractional Brownian motion.
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Next, Chapter 2 is devoted to stochastic integration w.r.t. fractional
Brownian motion and other aspects of stochastic calculus of fBm. There
exist several approaches to stochastic integration w.r.t. fractional Brown-
ian motion: pathwise integration in Sobolev-type spaces, Wick integration,
Skorohod integration and some others that are not mentioned here.
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Chapter 1

Wiener Integration with Respect
to Fractional Brownian Motion

In this chapter, we have two linked aims. Define the Wiener integral, and give
some properties of fractional Brownian motion and of integral with respect
to this process. The main references for this chapter are [21], [26], [25].

1.1 The Elements of Fractional Calculus
Definition 1.1.1. Let f be a deterministic real valued function that belongs
to L1(a, b), where (a, b) is a finite interval of R. Define the Riemann Liouville
left-right sided fractional integration on (a, b) of order α > 0 by

(Iα
a+f)(x) :=

1

Γ(α)

∫ x

a

f(t)(x− t)α−1dt,

and

(Iα
b−f)(x) :=

1

Γ(α)

∫ b

x

f(t)(t− x)α−1dt,

respectively.

Definition 1.1.2. The Riemann-Liouville fractional integrals on R are de-
fined respectively by

(Iα
+f)(x) :=

1

Γ(α)

∫ x

−∞
f(t)(x− t)α−1dt,

and
(Iα
−f)(x) :=

1

Γ(α)

∫ ∞

x

f(t)(t− x)α−1dt,

7



8 The Elements of Fractional Calculus

The fonction f ∈ D(Iα
a+(b−)) (respectively D(Iα

±)) if the respective inte-
grals converge for almost all x ∈ (a, b)(respectively x ∈ R).

According to [26], we have inclusion Lp(R) ⊂ D(Iα
±), 1 ≤ p ≤ 1

α
. More-

over, the following theorem holds.

Theorem 1.1.1. ([26].) Let 1 ≤ p, q < ∞, 0 < α < 1. Then the operators
Iα
± are bounded from Lp(R) to Lq(R) if and only if 1 < p < 1

α
and q =

p(1−αp)−1. This means, in particular, that for any 1 < p < 1
α
and q = p

1−αp
,

there exists a constant Cp,q,α such that

(∫

R

(∫

R

|f(u)||x−u|α−1du
)q

dx

) 1
q

≤ Cp,q,α‖f‖Lp(R). (1.1.1)

Fractional integration admits the following composition formulas

Iα
±Iβ

±f = Iα+β
± f

for f ∈ Lp(R), α, β > 0 and α + β < 1
p
.

Integration-by-parts formula for fractional integrals
Let f ∈ Lp(R), g ∈ Lq(R), p > 1, q > 1 and 1

p
+ 1

q
= 1 + α. Then

∫

R

g(x)(Iα
+f)(x)dx =

∫

R

f(x)(Iα
−g)(x)dx. (1.1.2)

Let Cλ(T ) be the set of Hölder continuous functions f : T → R of order λ,
If α > 0 and αp > 1. Then Iα

±(Lp(R)) ⊂ Cλ[a, b] for any −∞ < a < b < ∞
and 0 < λ ≤ α− 1

p
.

Definition 1.1.3. For p ≥ 1, denote by Iα
±(Lp[a, b]) the class of functions

f , that can be presented as Riemann −Liouville integrals. For 0 < α < 1
it coincides for a.a. x ∈ [a, b] with the left-(right-) sided Riemann-Liouville
fractional derivative of f of order α. These derivatives are denoted by

(I−α
a+ f)(x) = (Dα

a+f)(x) :=
1

Γ(1− α)

d

dx

∫ x

a

f(t)(x− t)−αdt,

and

(I−α
a+ f)(x) = (Dα

a+f)(x) :=
−1

Γ(1− α)

d

dx

∫ b

x

f(t)(t− x)−αdt,

respectively.
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Weyl representation of fractional derivatives
Let f ∈ Lp[a, b], the Weyl representation of fractional derivatives holds:

(Dα
a+f)(x) =

1

Γ(1− α)
(f(x)(x−a)−α+α

∫ x

a

(f(x)−f(t))(x−t)−α−1dt).1(a,b)(x),

and

(Dα
b−f)(x) =

1

Γ(1− α)
(f(x)(b−x)−α+α

∫ b

x

(f(x)−f(t))(t−x)−α−1dt).1(a,b)(x),

respectively.

Let f ∈ Iα
±(Lp(R)), 0 < α < 1 and p ≥ 1. Then

Iα
±I−α

± f = f ; (1.1.3)

moreover, for f ∈ L1(R) we have that

I−α
± Iα

±f = f. (1.1.4)

We set I0
±f := f.

The composition formula for fractional derivatives has the form

Dα
a+Dβ

a+f = Dα+β
a+ f, (1.1.5)

where α ≥ 0, β ≥ 0 and f ∈ Iα+β
a+ (L1(R)).

Also, under the assumptions 0 < α < 1, f ∈ Iα
a+(Lp[a, b]) and g ∈ Iα

b−(Lq[a, b]),
1
p

+ 1
q
≤ 1 + α we have the integration-by-parts formula for fractional deriv-

atives
∫ b

a

(Dα
a+f)(x)g(x)dx =

∫ b

a

f(x)(Dα
b−g)(x)dx. (1.1.6)

Lemma 1.1.1. Let H ∈ (0, 1
2
) ∪ (1

2
, 1) and α = H − 1

2
. Then, for all t ∈ R,

we have the equality

(Iα
−1(0,t))(x) =

1

Γ(1 + α)
((t− x)α

+ − (−x)α
+).

Proof. Let H ∈ (1
2
, 1) and, for example, x < 0 < t. Then,

(Iα
−1(0,t))(x) =

1

Γ(α)

∫ ∞

x

1(0,t)(u)(u− x)α−1du
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=
1

Γ(α)

∫ t

0

(u−x)α−1du =
1

Γ(α + 1)
((t−x)α−(−x)α). (1.1.7)

Let H ∈ (0, 1
2
). According to the definition of the fractional derivative and

(1.1.3), we must prove that

∫ ∞

x

((t− u)α
+ − (−u)α

+)(u− x)−α−1du = Γ(−α)Γ(α + 1)1(0,t)(x). (1.1.8)

Let, for example, 0 < x < t. Then the left-hand side of (1.1.8) equals

∫ t

x

(t− u)α(u− x)−α−1du1(0,t)(x)

= B(α + 1,−α)1(0,t)(x) = Γ(−α)Γ(α + 1)1(0,t)(x).

The other cases can be considered similarly.
¤

Definition 1.1.4. The Fourier transform of f is defined as

(Ff)(x) = f̂(x) =

∫

R

eixtf(t)dt.

Theorem 1.1.2. ([26]) (ı) For any 0 < α < 1 and f ∈ L1(R) it holds that

F(Iα
±f)(x) = f̂(x).(∓ix)−α

where (∓ix)−α = |x|αexp
{ ∓απi

2
sign x

}
.

(ıı) For any 0 < α < 1 and f ∈ S(R) it holds that

F(I−α
± f) = f̂(x).(∓ix)α

Definition 1.1.5. f is step function, or elementary function, if there exist
a finite number of points tk ∈ R, 0 ≤ k ≤ n− 1, and ak ∈ R, 1 ≤ k ≤ n, such
that

f(t) =
n∑

k=1

ak1[tk−1,tk)(t).
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1.2 Fractional Brownian Motion

Let (Ω, F, P ) be a complete probability space.

Definition 1.2.1. The (two−sided, normalized) fractional Brownian motion
(fBm) with Hurst index H ∈ (0, 1) is a Gaussian process BH = {BH

t , t ∈ R}
on (Ω,F, P ), having the properties

(i)BH
0 = 0,

(ii)EBH
t = 0, t ∈ R

(iii)EBH
t BH

s = 1
2
(|t|2H + |s|2H − |t− s|2H), t, s ∈ R

Remark 1.2.1. Since E(BH
t − BH

s )2 = |t − s|2H and BH is a Gaussian
process, it has a continuous modification, according to the Kolmogorov theo-
rem( see,[21]).

The characteristic function has the form

ϕλ(t) = Eexp{i
n∑

k=1

λkB
H
tk
} = exp{−1

2
(Ctλ, λ)},

where Ct = E(BH
tk

BH
ti

)1≤i,k≤n. Therefore, it follows from item (iii) of Defini-
tion 1.2.1, that for any β > 0

ϕλ(βt) = exp{−1

2
β2H(Ctλ, λ)}. (1.2.1)

Definition 1.2.2. A stochastic process X = Xt, t ∈ R is called b-self-similar
if

{Xat, t ∈ R} d
= {abXt, t ∈ R}

in the sense of finite-dimensional distributions.

From Definition 1.2.2 and (1.2.1) it follows that BH is H-self-similar.
Note that

E(BH
t −BH

s )(BH
u −BH

v ) =
1

2
(|s−u|2H+|t−v|2H−|t−u|2H−|s−v|2H). (1.2.2)

It follows from (1.2.2) that the process BH has stationary increments . Let
H = 1

2
. Then the increments of BH are non-correlated, and consequently

independent. So BH is a Wiener process which we denote further by B or
W . For H ∈ (0, 1

2
) ∪ (1

2
, 1) and t1 < t2 < t3 < t4, it follows from (1.2.2) for

α = H − 1
2
that

E(BH
t4
−BH

t3
)(BH

t2
−BH

t1
) = 2αH

∫ t2

t1

∫ t4

t3

(u− v)2α−1dudv.
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Furthermore, for any n ∈ Z/{0} the autocovariance function is given by

r(n) := EBH
1 (Bn+1 −BH

n ) = 2αH

∫ 1

0

∫ n+1

n

(u− v)2α−1dudv.

∼ 2αH | n |2α−1, | n |→ ∞.

If H ∈ (0, 1
2
), then

∑
n∈Z |r(n)| ∼ ∑

n∈Z/{0} | n |2α−1< ∞.

If H ∈ (1
2
, 1), then

∑∞
n=1 | r(n) |∼ ∑

n∈Z/{0} | n |2α−1= ∞. In this case
we say that fBm BH has the property of long-range dependence.

1.3 Mandelbrot-van Ness Representation of fBm
Let W = {Wt, t ∈ R} be the two-sided Wiener process, i.e. the Gaussian
process with independent increments satisfying EWt = 0 and EWtWs =
s ∧ t, s, t ∈ R. Evidently, W = B

1
2 . Denote kH(t, u) := (t − u)α

+ − (−u)α
+

where α = H − 1
2
. The following representation is due to Mandelbrot and

van Ness ([19]).

Theorem 1.3.1. The process B
H

= {BH

t , t ∈ R} define by

B
H

t = C
(2)
H

∫

R

kH(t, u)dWu, H ∈ (0,
1

2
) ∪ (

1

2
, 1)

where

C
(2)
H =

(∫

R+

((1 + s)α − sα)2ds +
1

2H

)− 1
2

=
(2H sin πHΓ(2H))1/2

Γ(H + 1/2)

has a continuous modification which is a normalized two-sided fBm.

Proof. Evidently, B
H is a Gaussian process with B

H

0 = 0 and EB
H

t = 0.
Furthermore, it holds that for t > 0,

E(B
H

t )2 =
(
C

(2)
H

)2
(∫ 0

−∞
k2

H(t, u)du +

∫ t

0

(t− u)2αdu

)
= t2H .

For t < 0 we have that

E(B
H

t )2 =
(
C

(2)
H

)2
(∫ t

−∞
k2

H(t, u)du +

∫ 0

t

(−u)2αdu

)
= (−t)2H .
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Furthermore, for h > 0, it holds that

B
H

s+h −B
H

s = C
(2)
H

∫ s

−∞
(kH(s + h, u)− kH(s, u))dWu

+

∫ s+h

s

(kH(s + h, u))dWu =: I1 + I2. (1.3.1)

Note that I1 and I2 are independent, and W has stationary increments.
Therefore,

I1
d
= C

(2)
H

∫ 0

−∞
(kH(h, u)− kH(0, u))dWu, I2

d
=

∫ h

0

(kH(h, u))dWu.

and E(B
H

s+h−B
H

s )2 = E(B
H

h )2 = h2H . By combining these results, we obtain
that

EB
H

s B
H

t =
1

2
(E(B

H

s )2 + E(B
H

t )2 − E(B
H

t −B
H

s )2)

=
1

2
(| t |2H + | s |2H − | t−s |2H). (1.3.2)

The proof follows immediately from Definition 1.2.1 and Remark 1.2.1.
¤

Definition 1.3.1. Define the operator

MH
± f :=

{
C

(3)
H Iα

±f, H ∈ (0, 1
2
) ∪ (1

2
, 1),

f, H = 1
2
,

(1.3.3)

where C
(3)
H = C

(2)
H Γ(H + 1

2
).

Corollary 1.3.1. It follows from Lemma 1.1.1 and Theorem 1.3.1, that for
any H ∈ (0, 1) the process

BH
t =

∫

R

(MH
− 1(0,t))(s)dWs, (1.3.4)

is a normalized fractional Brownian motion.

1.4 Fractional Brownian Motion with H ∈ (1
2, 1)

on the White Noise Space
Definition 1.4.1. Let S(R) denotes the Schwartz space of rapidly decreasing
smooth functions on R, and let Ω = S ′(R) be its dual space ,usually called
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2
, 1) on the White Noise

Space

the space of tempered distributions . Let P be the probability measure on the
σ−algebra of Borel sets F(S ′(R)) definde by the property that

Eexp(i〈f, ω〉) = exp{1

2
‖ f ‖2

L2(R)}, f ∈ S(R) (1.4.1)

where 〈., .〉 denotes the dual operation.

Using (1.4.1) one can prove that

E(〈f, ω〉) = 0, E(〈f, ω〉)2 =‖ f ‖2
L2(R) for all f ∈ S(R), (1.4.2)

from (1.4.1), (1.4.2), it follows that the process Wt = 〈1[0,t], ω〉, is a stan-
dard Brownian motion.

Define two stochastic processes

BH
± (t)(ω) = 〈MH

± 1(0,t), ω〉, t ∈ R.

Then the processes BH
± (t) are Gaussian, EBH

+ (t) = EBH
− (t) = 0. For the

covariance function, it holds that

EBH
± (t)BH

± (s) =

∫

R

(MH
± 1(0,t))(x)(MH

± 1(0,s))(x)dx. (1.4.3)

By considering the sign ′′−′′, we obtain from (1.3.4) that the right-hand side
of (1.4.3) coincides with

EBH
t BH

s =
∫
R
(MH

− 1(0,t))(x)(MH
− 1(0,s))(x)dx

= 1
2
(|t|2H + |s|2H − |t− s|2H).

One obtains the same result if one considers the sign ′′ +′′ .
Therefore, each of the processes BH

± has a modification that is a normal-
ized fBm. The process BH

− (t) =
∫
R
(MH

− 1(0,t))(s)dWs, is called a ′′backward′′

fBm, depends only on the past, i.e. on {Ws, s ∈ (−∞, t)}. where Wt(ω) =
〈1(0,t), ω〉. The process BH

+ (t) is called a ′′forward′′ fBm; it admits the rep-
resentation BH

+ =
∫
R
(M+1(0,t))(s)dWs, and depends on future values of W,

i.e. on {Ws, s ∈ (t, +∞)}.

Consider the linear combinations of the operators MHk± and of fractional
Brownian motions with different Hurst indices

M±f(x) :=
m∑

k=1

σkM
Hk± f(x), σk > 0
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and

BM
± (t) :=

m∑

k=1

σkB
Hk± (t) = 〈M±1(0,t), ω〉. (1.4.4)

Clearly, the operators M± are mutually adjoint in the same way as MH
± .

1.5 Fractional Noise on White Noise Space

Let I be the set of all finite multi-indices α = (α1, . . . , αn) with αi ∈ N0.
Denote |α| = α1 + . . .+αn, α! := α1! . . . αn!. Define the Hermite polynomials
by

hn(x) = (−1)nex2 dn

dxn
(e−x2

)

and Hermite functions

h̃n(x) = π−1/4(n!)−1/22−n/2hn(x)e−x2/2, n ≥ 0.

Define

Hα(ω) :=
n∏

i=1

hαi
(〈h̃i, ω〉),

the product of Hermite polynomials and consider a random variable

F = F (ω) ∈ L2(Ω) := L2(S
′(R),F, P ).

Then, according to ([12], Theorem 2.2.4), F (ω) admits the representation

F (ω) =
∑

α∈I cαHα(ω), (1.5.1)
and

‖ f ‖2
L2(Ω)=

∑

α∈I

α!c2
α < ∞.

Next, we introduce the following dual spaces.
(i) F ∈ S if the coeffcients from expansion (1.5.1) satisfy

‖ f ‖2
k=

∑

α∈I

α!c2
α(2N)kα < ∞.

for any k ≥ 1, where (2N)γ =
∏m

j=1(2j)
γj , γ = (γ1 . . . γm ∈ I).
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(ii) F ∈ S∗ if F admits the formal expansion (1.5.1) with finite negative
norm

‖ f ‖2
−q=

∑

α∈I

α!c2
α(2N)−qα < ∞.

for at least one q ∈ N(in this case we say that F ∈ S−q). For F =∑
α cαHα ∈ S, G =

∑
α dαHα ∈ S∗, we define

〈〈F,G〉〉 =
∑

α∈I

α!cαdα.

Now we want to present the linear combination BM
± (t) of fBms in terms

of h̃k, k ≥ 1.

Lemma 1.5.1. It holds that

BM
± (t) =

∞∑

k=1

∫ t

0

M∓h̃k(x)dx〈h̃k, ω〉, t ∈ R, ω ∈ S ′(R), (1.5.2)

and the series converges in L2(Ω).

Now, we introduce the fractional noise ḂH as the formal expansion

ḂH
x (ω) =

∞∑

k=1

MH
+ h̃k(x)〈h̃k, ω〉,

and the linear combination of fractional noises as

ḂM
x (ω) =

∞∑

k=1

M+h̃k(x)〈h̃k, ω〉.

Recall, that here we consider only H ∈ [1/2, 1) and that

Ḃx(ω) =
∞∑

k=1

h̃k(x)〈h̃k, ω〉

is white noise.

Lemma 1.5.2. The fractional noise ḂH
x and the linear combination ḂM

x of
such noises belong to S∗ for any x ∈ R.

Proof. (See[21])
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1.6 Wiener Integration with Respect to fBm
Let (Ω,F, P ), an arbitrary complete probability space, and consider LH

2 (R) =
{f : MH

− f ∈ L2(R)} equipped with the norm ‖f‖LH
2 (R) = ‖MH

− f‖L2(R).

Definition 1.6.1. Let f ∈ LH
2 (R). Then the Wiener integral w.r.t. fBm is

defined as

IH(f) :=

∫

R

f(s)dBH
s :=

∫

R

(MH
− f)(s)dWs. (1.6.1)

Here, BH
s and Ws are connected as in (1.3.4).

As a particular case, consider the step function f defined as in definition
1.1.5. Then, from the linearity of the operator MH

− , we have that

IH(f) :=
n∑

k=1

ak

∫

R

MH
− 1[tk−1,tk)(s)dWs =

n∑

k=1

ak(B
H
tk
−BH

tk−1
). (1.6.2)

A question arises: in which sense can we consider formula (1.6.1) as the
extension of the sum (1.6.2)?

Note, that for a step function, it holds that

‖IH(f)‖2
L2(Ω) =

∑n
i,k=1 aiak

∫
R

MH
− 1[tk−1,tk)(x)MH

− 1[ti−1,ti)(x)dx

(1.6.3)
=‖ MH

− f ‖2
L2(R)= 2αH

∫
R2 f(u)f(v) | u− v |2α−1 dudv,

where the last equality holds for H ∈ (1/2, 1) but not for H ∈ (0, 1/2).
Nevertheless, for any 0 < H < 1 we have the following:

Lemma 1.6.1. ([4]) For 0 < H < 1, it holds that the linear span of the set
{MH

− 1(u,v), u, v ∈ R} is dense in L2(R).

Proof. We invite the reader to commet ([21], p.16) for more information
about the proof of this result.

Theorem 1.6.1. The space LH
2 is incomplete for H ∈ (1/2, 1).

Proof. The operator MH
− : LH

2 (R) → L2(R) is isometric. So, LH
2 (R)

can be identified with its image in L2(R). According to Lemma 1.6.1,
LH

2 (R) is dense in L2(R), but in ([21], remark 1.6.1) it was demonstrate that
LH

2 (R) 6= L2(R). Therefore, the image MH
− (LH

2 (R)) and hence LH
2 (R) it self,

is incomplete. ¤
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In spite of the incompleteness of LH
2 (R) for H ∈ (1/2, 1), due to Lemma

1.6.1, we can approximate any f ∈ LH
2 (R) by step functions fn ∈ LH

2 (R).
Then MH

− fn → MH
− f in L2(R), and we have that

IH(f) :=

∫

R

f(x)dBH
s =

∫

R

(MH
− f)(s)dWs

= limn→∞
∫
R
(MH

− fn)(s)dWs = limn→∞
∫
R

fn(s)dBH
s ,

where the convergence is in L2(Ω). Furthermore, for H ∈ (1/2, 1), we
have that

E | IH(f) |2=
∫

R

| (MH
− f)(x) |2 dx

for f ∈ LH
2 (R); however, in general, it does not hold (compare with (1.6.3))

that

E | IH(f) |2= 2αH

∫

R2

f(u)f(v) | u− v |2α−1 dudv, (1.6.4)

even if the last integral is finite. This equality can be obtained only if we can
apply the Fubini theorem or if we can prove that the integral

∫
R2 fn(u)fn(v)|u−

v|2α−1dudv with step functions fn converges to
∫
R2 f(u)f(v)|u− v|2α−1dudv.

Both things need some additional assumptions.
For H ∈ (1/2, 1), define the space of measurable functions by

| RH |:=
{

f : R→ R

∣∣∣∣
∫

R2
+

| f(u) || f(v) || u− v |2α−1 dudv < ∞
}

,

with the norms

‖ f ‖2
|RH |,1= 2αH

∫

R2
+

f(u)f(v) | u−v |2α−1 dudv (1.6.5)

and

‖ f ‖2
|RH |,2= 2αH

∫

R2
+

| f(u) || f(v) || u−v |2α−1 dudv. (1.6.6)

For H ∈ (0, 1), we introduce one more space,

FH :=

{
f : R→ R

∣∣∣∣f ∈ L2(R)

∫

R

| f̂(x) |2| x |−2α dx < ∞
}

,

with the norm

‖f‖2
FH

=

∫

R

|f(x)|2|x|−2αdx. (1.6.7)
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Moreover, consider L2
H(R) with the norm

‖f‖2
LH

2 (R) =

∫

R

|(MH
− f)(x)|2dx. (1.6.8)

Below we study the most important features of these spaces.
Note, at first, that the norms defined in (1.6.5)− (1.6.8) are all generated

by corresponding inner products. Namely,

(f, g)|RH |,1 = 2αH

∫

R2
+

f(u)g(v)|u−v|2α−1dudv, (1.6.9)

(f, g)|RH |,2 = 2αH

∫

R2
+

|f(u)||g(v)||u−v|2α−1dudv, (1.6.10)

(f, g)FH
=

∫

R

f̂(x)ĝ(x)|x|1−2Hdx (1.6.11)

and

(f, g)LH
2 (R) =

∫

R

(MH
− f)(x)(MH

− g)(x)dx. (1.6.12)

Thus, all these spaces are spaces with inner products. Furthermore, (1.6.5)
is indeed a norm on | RH | . Indeed, we can apply the Fubini theorem, use
the following relation from ([11]):

∫ s∧t

−∞
(s− u)α−1(t− u)α−1du = C

(4)
H |t− s|2α−1,

where C
(4)
H = Γ(H−1/2)Γ(1−2α)

Γ(1−α)
, and rewrite (1.6.5) as

2αH

∫

R

f(u)f(v)|u− v|2α−1dudv

= (C
(4)
H )−12αH

∫

R2
+

f(u)f(v)

∫ u∧v

−∞
(u− z)α−1(v − z)α−1dzdudv

= (C
(4)
H )−12αH

∫

R

∫ ∞

z

f(u)(u− z)α−1du

∫ ∞

z

f(v)(v − z)α−1dvdz

= (C
(4)
H )−12Hα(C

(3)
H )−2 ‖ MH

− f ‖2
L2(R)= 2αH(C

(4)
H )−1(C

(3)
H )−2‖f‖2

LH
2 (R).

(1.6.13)

Lemma 1.6.2. We have that the space L1(R) ∩ L2(R) ⊂ L1/H(R) ⊂| RH |
for any H ∈ (1/2, 1).
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Proof. It is enough to prove that for any f ∈ L1(R)∩L2(R) the iterated
integral is finite,

I :=

∫

R

| f(u) |
(∫

R

| f(v) || u− v |2α−1 dv

)
du < ∞.

From Theorem 1.1.1 with α = 2H−1,p = 1
H

and q = p
1−2αp

= 1
1−H

we obtain
that

I ≤
(∫

R

| f(u) | 1
H du

)H
(∫

R

(∫

R

| f(v) || u− v |2H−1 dv

) 1
1−H

du

)1−H

≤‖ f ‖L1/H(R) C1/H,1/1−H,2H−1 ‖ f ‖L1/H(R)= CH ‖ f ‖2
L1/H(R) .

Obviously, L1(R) ∩ L2(R) ⊂ L1/H(R) for H ∈ (1/2, 1), whence the claim
follows.

¤

Lemma 1.6.3. The inclusion L1(R) ∩ L2(R) ⊂ FH is valid if and only if
H ∈ (1/2, 1).

Proof. Assume that H ∈ (1/2, 1). Since |f̂(x)| ≤ ‖f‖L1(R) for any
x ∈ R, we have that

∫

R

|f̂(x)|2|x|−2αdx =

∫

|x|≥1

|f̂(x)|2|x|−2αdx +

∫

|x|<1

|f̂(x)|2|x|−2αdx

≤
∫

R

|f̂(x)|2dx + ‖f‖L1(R)

∫

|x|<1

|x|−2αdx ≤ ‖f‖2
L2(R) + (1−H)−1‖f‖2

L1(R).

Let H ∈ (0, 1
2
). According to ([24]), take the function f(u) = sign u ε−|u|

|u|p with
p ∈ (H, 1

2
). Evidently, f ∈ L1(R) ∩ L2(R). Nevertheless, due to ([10], p.491),

f̂(λ) = 2Γ(1− p)(λ2 + 1)
p−1
2 sin((1− p) arctan λ) ∼ |λ|p−1

as |λ| → ∞, and 2p− 2 > 2α− 1 > −1, which means that ‖f‖FH
= +∞.

¤

Lemma 1.6.4. For any H ∈ (0, 1), we have that FH ⊂ LH
2 (R).
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Proof. For H = 1
2
, the statement is evident and F 1

2
= L2

1
2

(R) = L2(R).

Let H ∈ (1
2
, 1) and f ∈ FH . Then, in particular, f ∈ L2(R), and, therefore,

according to Theorem 1.1.1, the operator Iα
−f is well defined and bounded

from L2(R) to L 1
1−H

(R). Moreover, according to Theorem 1.1.2 and since
∫
R
|f̂(x)|2|x|−2αdx < ∞, it follows that Iα

−f ∈ L2(R). Therefore, f ∈
LH

2 (R). Let H ∈ (0, 1
2
). We must prove, that for any f ∈ L2(R) with∫

R
|f̂(x)|2|x|−2αdx < ∞, there exists ϕ̃ ∈ L2(R), such that

ϕ̃ = MH
− f = C

(3)
H D−α

− f. (1.6.14)

Consider the function ψ(x) = f̂(x) | x |−α CH(x). Since | CH(x) |= 1, ψ ∈
L2(R) and ψ(x) = ψ(−x), we conclude that ψ(x) = ϕ̂(x) for some function
ϕ ∈ L2(R). Now we prove that C

(3)
H ϕ satisfies (1.6.14). Indeed,

f̂(x) = ϕ̂(x) | x |α CH(−x), (1.6.15)

whence |f̂(x)|2 = |ϕ̂(x)|2|x|2α. Since f̂ ∈ L2(R), we have that ϕ ∈ F1−H , and
from Theorem 1.1.2 and (1.6.15), it follows that

f = I−α
− ϕ.

Therefore, ϕ̃(x) = C
(3)
H ϕ(x) satisfies (1.6.14), whence the claim follows. ¤

Lemma 1.6.5. Let 0 < H < 1. Then M1−H
− 1(0,t) ∈ LH

2 (R) for all t ∈ R, and
the underlying Wiener process W admits the representation

Wt = C̃H

∫

R

M1−H1(0,t)(s)dBH
s ,

where C̃H = (C
(3)
H C

(3)
1−H)−1.

Proof. We must check that M1−H
− 1(0,t) ∈ LH

2 (R). Indeed,

MH
− .M1−H

− 1(0,t) = C
(3)
H C

(3)
1−HI

H− 1
2− (I

1
2
−H

− 1(0,t)) = (C̃H)−11(0,t) ∈ L2(R).

Furthermore, according to Definition 1.6.1, it holds that

C̃H

∫

R

(M1−H
− 1(0,t))(s)dBH

s = C̃H

∫

R

(MH
− M1−H

− 1(0,t))(s)dWs

=

∫

R

1(0,t)(s)dWs = Wt. (1.6.16)

¤
Corollary 1.6.1. Any fBm BH admits a Mandelbrot van Ness representation
with respect to the Wiener process W from representation (1.6.16).
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1.7 The Space of Gaussian Variables Gener-
ated by fBm.

Denote
BH = span{BH

t , t ∈ R},
where the closure is taken in L2(Ω).

Theorem 1.7.1. Let I be some class of integrands and let Is ⊂ I be the class
of step functions. Under the assumptions

(i) I is a space with inner product (f, g)I , f, g ∈ I,
(ii) for f, g ∈ Is (f, g)I = EI(f)I(g),
(iii) the set Is is dense in I,

we have the following:

(a) there is an isometry between the space I and a linear subspace of BH

which is an extension of the map f → I(f) for f ∈ Is

(b) I is isometric to BH if and only if I is complete.

Proof. (a) Let f ∈ I. By (iii), there exists fn ∈ Is, such that {fn, n ≥ 1}
is a Cauchy sequence in I with norm ‖ · ‖I= (·, ·)I . According to (ii), I(fn)
is a Cauchy sequence in L2(Ω), hence it converges to some r.v. ξ ∈ L2(Ω).
We set I(f) := ξ. Since I(fn) ∈ BH and BH is a closed subspace of L2(Ω),
we obtain that I(f) ∈ BH . So, we can define the map I : I → BH . For any
f, g ∈ I it holds that

(f, g)I = lim
n→∞

(fn, gn)I = lim
n→∞

EI(fn)I(gn) = EI(f)I(g).

Moreover, ξ does not depend on the choice of the sequence fn → f in I. Since
the map I is linear, we get an isometry between I and some subspace of BH .

(b) Since BH is complete as a closed subspace of the complete space L2(Ω),
it follows that I is complete if I is an isometry between I and BH . Conversely,
let I be complete. Then, for any η ∈ BH , it holds that η = lim ηn, ηn =
I(fn) ∈ span{BH

t , t ∈ R}, fn ∈ Is. So, I(fn) → η in L2(Ω). Therefore, from
(ii) it follows that fn is a Cauchy sequence in I, and from completeness,
fn → f in I, η = I(f). ¤
Corollary 1.7.1. From Lemma 1.6.1, Theorem 1.6.1, and according to ([21],
Remark 1.6.3), we obtain the following: the space I = LH

2 (R) is complete for
H ∈ (0, 1

2
) and incomplete for H ∈ (1

2
, 1). Step functions are dense in LH

2 (R)
for any H ∈ (0, 1). Therefore, LH

2 (R) is isometric to BH for H ∈ (0, 1
2
) and

isometric to a subspace of BH for H ∈ (1
2
, 1).
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1.8 Representation of fBm via the Wiener
Process on a Finite Interval

Sometimes it is convenient to consider a ”one−sided” fBm BH = {BH
t , t ≥

0} and to represent it as a functional of the form BH
t = ϕ(Bs, 0 ≤ s ≤ t), of

some Wiener process B = {Bt, t ≥ 0}, For this purpose consider the kernel

lH(t, s) = C
(5)
H s−α(t− s)−α1{0<s<t},

and

mH(t, s) = C
(6)
H

(
(
t

s
)α(t− s)α − αs−α

∫ t

s

uα−1(u− s)αdu

)
,

where

C
(5)
H =

(
Γ(2− 2α)

2HΓ(1− α)3Γ(1 + α)

) 1
2

, C
(6)
H =

(
2HΓ(1− α)

Γ(1− 2α)Γ(α + 1)

) 1
2

,

and α = H − 1
2
, H ∈ (0, 1). By using the equality

∫ 1

0

t−µ(1−t)−µ | x−t |2µ−1 dt = B(µ, 1−µ), (1.8.1)

that was established in ([22], Lemma 2.2) for any µ ∈ (0, 1), x ∈ (0, 1), we
obtain that for any t > 0

‖ lH(t, ·) ‖|RH |,2

= (C
(5)
H )22Hα

∫ t

0

∫ t

0
(t− u)−α(t− s)−αu−αs−α | u− s |2α−1 duds

= t1−2α(C
(5)
H )22Hα

∫ 1

0
u−α(1− u)−α(

∫ 1

0
s−α(1− s)−α|u− s|2α−1ds)du

= t1−2α(C
(5)
H )22HαB(α, 1− α)B(1− α, 1− α)

= t1−2α Γ(2−2α)Γ(α)Γ(1−α)3

Γ(1−α)3Γ(α)Γ(2−2α)
= t1−2α < ∞.

(1.8.2)
Therefore, we can consider the integral

IH
t (lH) =

∫ t

0
lH(t, s)dBH

s :=
∫
R

lH(t, s)dBH
s

(1.8.3)
=

∫
R
(MH

− lH)(t, ·)(x)dWx,

where W = {Wx, x ∈ R} is the underlying Wiener process. Similarly to
(1.8.2), for any 0 < t < t′, we obtain that

EIH
t (lH)IH

t′ (lH) = (lH(t, ·), lH(t′, ·))|RH |,2
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= (C
(5)
H )22Hα

∫ t

0
(t− u)−αu−α(

∫ t′

0
(t′ − s)−αs−α | u− s |2α−1 ds)du

= (C
(5)
H )22Hαt1−2αB(α, 1− α)B(1− α, 1− α) = t1−2α.

(1.8.4)

From (1.8.3), it follows that {IH
t , t ≥ 0} is a centered Gaussian process.

Moreover, from (1.8.4), we obtain for any 0 < s < t ≤ s′ < t′ that

E(IH
t′ (lH)− IH

s′ (lH))(IH
t (lH)− IH

s (lH)) = 0.

Thus, the increments of IH
t (lH) are uncorrelated, and hence independent. It

follows that IH
t (lH) is a martingale w.r.t. its natural filtration

FH
t = σ{IH

s (lH), 0 ≤ s ≤ t},
having angle bracket 〈IH

t (lH)〉 = t1−2α and IH
0 (lH) = 0. By the L’evy theo-

rem, there exists some Wiener process B = {Bt, t ≥ 0} such that

MH
t := IH

t (lH) = α̃

∫ t

0

s−αdBs. (1.8.5)

where α̃ = (1− α)1/2. The process MH is called the Molchan martingale, or
the fundamental martingale.

Theorem 1.8.1. Let BH be an fBm with H ∈ (0, 1), and let

MH
t = IH

t (lH) =

∫ t

0

lH(t, s)dBH
s . (1.8.6)

Then there exists a Wiener process B such that (1.8.5) holds. Moreover,
σ{BH

s , 0 ≤ s ≤ t} = σ{Bs, 0 ≤ s ≤ t}.
The inverse relation can be obtained. For H ∈ (0, 1), and for any t > 0,

the random variable Yt :=
∫ t

0
s−αdBH

s is well defined. Therefore, it holds that

Yt = t−αBH
t + α

∫ t

0

BH
s s−α−1ds,

is an integral equation with respect to {BH
s , 0 ≤ s ≤ t} and its solution

has the form

BH
t = tαYt − α

∫ t

0

sα−1Ysds =

∫ t

0

sαdYs.

Let MH
t = IH

t (lH) be the Molchan martingale. Then, for H ∈ (0, 1
2
),

integration by parts leads to the equality
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MH
t = C

(5)
H

∫ t

0

(t− s)−αs−αdBH
s = −αC

(5)
H

∫ t

0

(t− s)−α−1Ysds,

whence
∫ t

0

(t− u)αMH
u du = −αC

(5)
H

∫ t

0

Ys

(∫ t

s

(t− u)α(u− s)−1−αdu

)
ds

= −αC
(5)
H B(α + 1,−α)

∫ t

0

Ysds,

and

Yt = C
(6)
H α̂

∫ t

0

(t−u)αdMH
u , (1.8.7)

where α̂ = (1− α)−1/2. Therefore,

BH
t = α̂C

(6)
H

(
tα

∫ t

0
(t− u)αdMH

u

−α
∫ t

0
sα−1

(∫ s

0
(s−u)αdMH

u

)
ds

)
=

∫ t

0
mH(t, s)dBs. (1.8.8)

Let H ∈ (1
2
, 1). Then, by using Theorem 1.8.1, we obtain that

∫ t

0
(t− u)αdMH

u = α
∫ t

0
(t− u)α−1MH

u du

= C
(5)
H α

∫ t

0
(t− u)α−1

∫ u

0
(u− s)−αs−αdBH

s du
(1.8.9)

= C
(5)
H α

∫ t

0

(∫ t

s
(t− u)α−1(u− s)−αdu

)
s−αdBH

s

= C
(5)
H αB(α, 1− α)Yt = (C

(6)
H )−1α̃Yt,

i.e. we have (1.8.7) and obtain (1.8.8). In this case the kernel mH(t, s)

can be simplified to mH(t, s) = αC
(6)
H s−α

∫ t

s
uα(u− s)α−1du.

1.9 The Inequalities for the Moments of the
Wiener Integrals with Respect to fBm

In this section we introduce the estimates for the moments of the Wiener
integrals with respect to fBm. For details one can refer to ([20]).
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Theorem 1.9.1. (i) Let H ∈ (0, 1
2
). Then LH

2 (R) ⊂ L 1
H

(R) and there exists
a constant CH > 0 such that for any f ∈ LH

2 (R), it holds that

‖ f ‖L 1
H

(R)≤ CH ‖ f ‖LH
2 (R) . (1.9.1)

(ii) Let H ∈ (1
2
, 1). Then L 1

H
(R) ⊂ LH

2 (R) and there exists a constant
CH > 0 such that for any f ∈ L 1

H
(R).

‖ f ‖LH
2 (R)≤ CH ‖ f ‖L 1

H
(R) . (1.9.2)

Proof. (i) Let f ∈ LH
2 (R), this means that MH

− (R) = C
(3)
H D−α

− f ∈
L2(R). Evidently, f = Iα

−D−α
− f and from the Hardy-Littlewood theorem

(Theorem 1.1.1 with q = 1
H

, p = 2 and α = 1
2
−H), it follows that

‖ f ‖L 1
H

(R)=‖ Iα
−D−α

− f ‖L 1
H

(R)≤ C2, 1
H

,−α ‖ D−α
− f ‖L2(R)= CH ‖ f ‖LH

2 (R) .

(ii) We directly apply the Hardy-Littlewood theorem with p = 1
2
, α = H − 1

2

and q = 2:
‖ f ‖LH

2 (R)=‖ MH
− f ‖L2(R)≤ CH ‖ f ‖L 1

H
(R) .

¤

Corollary 1.9.1. Let f ∈ LH
2 (R). Then there exists I(f) =

∫
(R)

f(s)dBH
s

and E|I(f)|2 =‖ f ‖2
LH

2 (R)
. Therefore, we have for H ∈ (0, 1

2
) that E|I(f)|2 ≥

C−2
H ‖ f ‖2

L 1
H

(R) and, for H ∈ (1
2
, 1), it holds that E|I(f)|2 ≤ C2

H ‖ f ‖2
L 1

H
(R) .

Since I(f) is a Gaussian random variable, we obtain the following inequalities
for the moments of the Wiener integrals with respect to fBm: for any r > 0,
there exists a constant C(H, r), such that for H ∈ (1

2
, 1)

E|I(f)|r ≤ C(H, r) ‖ f ‖r
L 1

H
(R)

and such that for H ∈ (0, 1
2
), we have that

‖ f ‖r
L 1

H
(R)≤ C(H, r)E|I(f)|r.

Corollary 1.9.2. Let H ∈ (1
2
, 1) and f ∈ L 1

H
(R). Then it follows from

Theorem 1.9.1, (ii), (1.6.7) and (1.6.13), that

‖ f ‖|RH |,2≤ C ‖ f ‖L 1
H

(R) .
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Corollary 1.9.3. Let f ∈ L 1
H

[a, b] and f = 0 outside (a, b). Then we obtain
the following estimates: for any r > 0, there exists a constant C(H, r), such
that for H ∈ (1

2
, 1), it holds that

E

∣∣∣∣
∫ b

a

f(s)dBH
s

∣∣∣∣
r

≤ C(H, r) ‖ f ‖r
L 1

H
[a,b]

and

E

∣∣∣∣
∫ b

a

f(s)dBH
s

∫ b

a

g(s)dBH
s

∣∣∣∣
r

≤ C(H, r) ‖ f ‖r
L 1

H
[a,b]‖ g ‖r

L 1
H

[a,b] .

Furthermore, for H ∈ (0, 1
2
) the opposite inequality holds:

‖ f ‖r
L 1

H
[a,b]≤ C(H, r)E

∣∣∣∣
∫ b

a

f(s)dBH
s

∣∣∣∣
r

.

Remark 1.9.1. Let H ∈ (1
2
, 1) and f ∈ |RH |. Then, from Hölder inequality,

we obtain the estimate

‖f‖2
|RH |,2 =

∫

R

|f(s)|
(∫

R

|f(u)| |(s− u)|2α−1 du

)
ds

≤
(∫

R

|f(s)| 1
H ds

)H
(∫

R

ds

(∫

R

|f(u)| |(s− u)|2α−1 du

) 1
1−H

)1−H

.

Further, from theorem (1.1.1) with α = 2H − 1, q = 1
1−H

and p = 1
H

, we
obtain that

(∫

R

ds

(∫

R

|f(u)| |(s− u)|2α−1 du

) 1
1−H

)1−H

≤ CH‖f‖L 1
H

(R).

Therefore,
‖f‖|RH |,2 ≤ CH‖f‖L 1

H
(R).

1.10 The Conditions of Continuity of Wiener
Integrals with Respect to fBm

Let H ∈ (1
2
, 1). As mentioned in ([21], p.41), let f ∈ L 1

H
[0, T ]. and consider

on [0, T ] the semi-metric ρI generated by the process I, i.e.

ρ2
I(s, t) = E(It − Is)

2 = E

∣∣∣∣
∫ t

s

f(u)dBH
u

∣∣∣∣
2

.
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Where It(f) =
∫ t

0
f(s)dBH

s . For any ε > 0 denote by N([0, T ], ε) the metric
ε-capacity of ([0, T ], ρ). Also, let H([0, T ], ε) := logN([0, T ], ε) be the metric
ε-entropy of this interval in ρI , and let D(T, ε) =

∫ ε

0
H([0, T ], u)1/2du be the

Dudley integral.
According to ([18]), a suficient condition for the continuity of separa-

ble modification of It(f) on [0, T ] is the finiteness of the Dudley integral∫ ε

0
H([0, T ], u)

1
2 du. But in our case, from ([21], Theorem 1.10.3) with ε in-

stead of σ
2
it follows that

∫ ε

0

H([0, T ], u)1/2du ≤
∫ ε

0

(
log(1 + u−

1
H C̃H

∫ T

0

|f(u)| 1
H du)

) 1
2 du

≤
∫ ε

0

u−
1

2H du · (C̃H

∫ T

0

|f(u)| 1
H du

) 1
2 < ∞.

This means that the separable modification of the Wiener integral w.r.t. fBm
with H ∈ (1

2
, 1) is continuous if f ∈ L 1

H
[0, T ].

Now, let H ∈ (0, 1
2
). Then, according to ([21], Theorem 1.10.4) with ε

instead of σ
2
, we have that

∫ ε

0
H([0, T ], u)1/2du. is finite for any f ∈ Lp[0, T ]∩

DH
p [0, T ], p > 1

H
. So, for such f a separable modification of It(f) is continuous

on [0, T ].

1.11 Stochastic Fubini Theorem for the Wiener
Integrals w.r.t fBm

Consider only the case H ∈ (1/2, 1). Let PT = [0, T ]2.

Theorem 1.11.1. Let the measurable function f = f(t, s) : PT → R satisfy
the conditions

∫

[0,T ]3
|f(t, u)||f(t, s)||s−u|2α−1ds du dt < ∞ (1.11.1)

and
∫

[0,T ]4
|f(t1, u)||f(t2, s)||s−u|2α−1ds du dt1 dt2 < ∞. (1.11.2)

Then both the repeated integrals I1 :=
∫ T

0
(
∫ T

0
f(t, s)dt)dBH

s and
I2 :=

∫ T

0
(
∫ T

0
f(t, s)dBH

s )dt exist and I1 = I2 with probability 1.
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Proof. The existence of the integral I1 is evident, due to (1.11.2). As to
I2,

∫ T

0
f(t, s)dBH

s exists , and according to (1.11.1), it holds that

E

∫ T

0

∣∣∣∣
∫ T

0

f(t, s)dBH
s

∣∣∣∣dt ≤ T 1/2

(
E

∫ T

0

∣∣∣∣
∫ T

0

f(t, s)dBH
s

∣∣∣∣
2

dt

)1/2

≤ (T2αH

∫

[0,T ]3
|f(t, s)||f(t, u)||s− u|2α−1du ds dt)1/2 < ∞.

We consider at first only the measurable and bounded functions. Let
f ∗ := sup(t,s)∈[0,T ]2 |f(t, s)| < ∞. Then there exists the sequence of simple
and totally bounded functions fn = fn(t, s), such that fn → f uniformly
on PT . The statement of the theorem is evident for fn. Further, denote
gn(t, s) := f(t, s)− fn(t, s) and obtain the estimate

|I1 − I2| ≤
∣∣∣∣
∫ T

0

(∫ T

0

gn(t, s)dt
)
dBH

s

∣∣∣∣ +

∣∣∣∣
∫ T

0

(∫ T

0

gn(t, s)dBH
s

)
dt

∣∣∣∣

=: I1n + I2n.

Furthermore,

E|I1n|2 = 2αH

∫

PT

(∫ T

0

gn(t1, s)dt1

)(∫ T

0

gn(t2, s)dt2

)
|s− u|2α−1dsdu

≤ 2αHT 2 sup
(t,s)∈[0,T ]2

|gn(t, s)|2
∫

PT

|s− u|2α−1dsdu

= T 2H+2 sup
(t,s)∈PT

|gn(t, s)|2 → 0,

and

E|I2n|2 ≤ T

∫ T

0

E

∣∣∣∣
∫ T

0

gn(t, s)dBH
s

∣∣∣∣
2

dt ≤ sup
(t,s)∈PT

|gn(t, s)|2T 2H+2 → 0,

as n −→ ∞, and we obtain the proof for bounded f . Now, let f satisfy
(1.11.1) and (1.11.2). For fn(t, s) = f(t, s)1{|f(t,s)|≤n}, n ≥ 1 the theorem is
already proved. Define

Cn = {(t, s, u) ∈ [0, T ]3/|f(t, s)| ≥ n}, fn = f − fn.
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Then for any n ≥ 1 we have that

|I1 − I2| ≤
∣∣∣∣
∫ T

0

(∫ T

0

f(t, s)1{|f(t,s)|>n}dt
)
dBH

s

∣∣∣∣

+

∣∣∣∣
∫ T

0

(∫ T

0

f(t, s)1{|f(t,s)|>n}dBH
s

)
dt

∣∣∣∣ =: I ′1n + I ′2n.

Furthermore, we have that

E|I ′1n|2 = 2αH

∫

[0,T ]2

(∫ T

0

fn(t1, s)dt1

)(∫ T

0

fn(t2, s)dt2

)
|s− u|2α−1ds du

≤ 2αH

∫

[0,T ]4
|fn(t1, s)||fn(t2, s)||s− u|2α−1ds du dt1 dt2 → 0,

as n −→∞, according to (1.11.2), and

E|I ′2n|2 ≤ T2αH

∫

[0,T ]3
|fn(t, s)||fn(t, u)||s− u|2α−1ds du dt → 0,

as n −→∞, according to (1.11.1). ¤

1.12 Martingale Transforms and Girsanov The-
orem for Long-memory Gaussian Processes

In this section we consider long-memory Gaussian processes that can be
presented as integrals Vt =

∫ t

0
h(t− s)ϕ(s)dWs with some Wiener process Wt

and establish the conditions allowing us to transform these processes, into
square-integrable martingales, similarly to

MH
t := C

(5)
H

∫ t

0

s−α(t− s)−αdBH
s

Where Bt := α̂
∫ t

0
sα dMH

s , is a Wiener process. In turn
BH

t = C
(6)
H

∫ t

0
mH(t− s)−αdBs Moreover, the process

Yt = C
(6)
H

∫ t

0

(t− s)αs−αdBs (1.12.1)
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has the property that MH
t = C

(5)
H

∫ t

0
(t− s)−αdYs is square-integrable martin-

gale. Let (Ω,F, P ) be a complete probability space with F = F∞ :=
∨

t≥0 FW
t .

Define the convolution of two measurable integrable functions ϕ1 and
ϕ2 : R+ → R by (ϕ1 ∗ ϕ2)(t) =

∫ t

0
ϕ1(t − s)ϕ2(s)ds, t ∈ R+. Let h and ϕ

satisfy the assumption

ϕ ∈ L2(0, t), (h2∗ϕ2)t < ∞, t > 0. (1.12.2)

Let FX
t = σ{Xs, 0 ≤ s ≤ t} and HX

t = H{Xs, 0 ≤ s ≤ t} be, cor-
respondingly, σ-fields and Gaussian subspaces, generated by the process X
on the interval (0, t], X = W,V. It follows from ([7], Proposition 15) that
FV

t = FW
t , t ∈ R+ if and only if HV

t = HW
t . A necessary and suficient condi-

tion for this coincidence can be formulated as

the only function f such that ∀t ∈ R+

f ∈ L2(0, t) and ((f ·ϕ) ∗h)t = 0 is the zero function. (1.12.3)

Denote by L2(V ) = L2(W ) = L2(Ω,F∞, P ) the space of F∞-measurable
ξ with Eξ2 < ∞. Let H(V ) be the closed subspace of L2(V ) consisting
of linear functionals of V. Suppose that the function R : R2

+ → R has a
bounded variation |R|t := varPtR on any rectangle Pt, t → R2

+, and consider
the measurable function g : R+ → R such that

∫

P(s,t)

|g(s−u)||g(t− v)|d|R|uv < ∞, s, t ∈ R+. (1.12.4)

As stated by ([13]), let I(f) =
∫
R

fdV ∈ H(V ), and let

Mt :=

∫ t

0

g(t− u)dVu := I(g̃),

where g̃(s) = g(t − s)1{s≤t}, t ≥ 0. Then {Mt,F
W
t , t ≥ 0} is a Gaussian

process and

EMsMt =

∫

P(s,t)

g(s− u)g(t− v)dRuv.

Moreover, under the condition:
the double Riemann integral

∫
P(s,t)

g(s− u)g(t− v)dRuv exists, (1.12.5)

the process Mt can be considered for any t ≥ 0 as a limit of Riemann
sums in the mean-square sense. Note that the following condition is suficient
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for (1.12.5): the derivative h′(s), s > 0, exists, h(0) = 0, and Ruv admits a
representation

Ruv =

∫

P(u,v)

[∫ u1∧v1

0

h′(u1−z)h′(v1−z)ϕ2(z)dz

]
du1dv1 (1.12.6)

and

∫

P(s,t)

|g(s− u)||g(t− v)|
[∫ u∧v

0

h′(u− z)h′(v − z)ϕ2(z)dz

]
dudv < ∞.

Now we are in a position to study conditions on ϕ, h and g supplying
martingale properties of Mt.

Definition 1.12.1. Gaussian process V is called (g)-transformable if the
process

Mt :=

∫ t

0

g(t− s)dVs

is a martingale.

Denote U = {f : R+ → R
∣∣(f ∗ q)t = 0, t ∈ R+, for such q :

R+ → R that (|f | ∗ |q|)t < ∞, t ≥ 0 if and only if q = 0}
AC[0, t] = {f : R+ → R

∣∣f(s) =
∫ s

0
f ′(u)du; 0 ≤ s ≤ t with

∫ t

0
|f ′(u)|du <

∞}.
Theorem 1.12.1. 1) Let ϕ, h, g satisfy conditions (1.12.2), (1.12.3), (1.12.6)
and

(|g|∗|h′|)t < ∞, t > 0, (1.12.7)
(g∗h′)t = C0, t > 0 forsome C0 ∈ R. (1.12.8)

Then Vt is (g)-transformable and 〈Mt〉 = C2
0

∫ t

0
ϕ2(s)ds.

2) Let ϕ, h, g satisfy conditions (1.12.2), (1.12.3), (1.12.6) and (1.12.7), h ∈
U, ϕ 6= 0(modλ) (λ is the Lebesgue measure ), (g ∗h′)t ∈ C(0,∞), Vt be (g)-
transformable. Then (g ∗ h′)t = C0, t > 0, for some C0 ∈ R.

Theorem 1.12.2. 3) Let ϕ and h satisfy (1.12.2) and (1.12.3), ϕ 6= 0(modλ), g
satisfies (1.12.5) and

g ∈ AC[0, t], t ≥ 0, g(0) = 0, (1.12.9)
(|g′|∗(h2∗ϕ2)1/2)t < ∞, t > 0, (1.12.10)

(g′∗h)t = C0, t > 0 forsome C0 ∈ R. (1.12.11)
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Then Vt is (g)-transformable and 〈Mt〉 = C2
0

∫ t

0
ϕ2(s)ds.

4) Let ϕ and h satisfy (1.12.2), (1.12.3), ϕ 6= 0 a.e. (modλ), the process Vt

is (g)-transformable with g satisfying (1.12.9), (1.12.10), (g′ ∗h)t ∈ C(0,∞).
Then (g′ ∗ h)t = C0, t > 0 for some C0 ∈ R.

Proof . 3) Under condition (1.12.5) the integral Mt is a mean-square
limit of Riemann sums, and condition (1.12.9) permits us to transform the
sum:

Mt = lim|λN |→0

∑N−1
i=0 g(t− si)(Vsi+1

− Vsi
)

= lim|λN |→0

∑N−1
i=0 V (si+1)(g(si+1)− g(si))

=
∫ t

0
g′(t− s)Vsds =

∫ t

0
g′(t− s)

(∫ s

0
h(s− z)ϕ(z)dWz

)
ds,

where |λN | = max0≤i≤N−1 |g(si+1)−g(si)|, and the last integral is the limit
of Riemann sums in the mean-square sense. Further, condition (1.12.10),
according to ([25], p. 160) or ([17]), permits to apply to Mt the stochastic
Fubini theorem, and we obtain from (1.12.11) that

Mt =
∫ t

0
ϕ(z)

(∫ t

z
g′(t− u)h(u− z)du

)
dWs = C0

∫ t

0
ϕ(z)dWz. (1.12.12)

4) If the process Mt is a square-integrable martingale, then from (1.12.12)
it follows that for any 0 ≤ s ≤ t

0 = E(Mt −Ms/F
W
s ) =

∫ s

0

ϕ(z)η(z)dWz,

where

η(z) = (g′ ∗ h)t−z − (g′ ∗ h)s−z.

Hence
∫ s

0
ϕ2(z)η2(z)dz = 0, and, arguing similarly to the completion of the

proof of Theorem 1.12.4, part 2), ( see[21] ,p. 64), we obtain that

(g′ ∗ h)t = C0

for some C0 ∈ R. ¤

Now, let Vt be equal to Yt from (1.12.1). Recall that BH
t =

∫ t

0
sαdVs

is an fBm with Hurst index H, and in this case BH
t can be presented as

BH
t =

∫ t

0
mH(t, s)dBs, where B is a Wiener process and the kernel mH(t, s)

is defined in Section 1.8. Consider general conditions on function ψ : R+ → R

for the process Nt :=
∫ t

0
ψsdVs to be presented in a similar way.
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Theorem 1.12.3. Let conditions (1.12.2), (1.12.3) hold and also

lim
ε↓0

ψ2(ε)

∫ ε

0

h2(ε−u)ϕ2(u)du = 0; (1.12.13)

the Riemann integral
∫
[0,(s,t)]

ψ(u)ψ(v)dRuv exists, s, t > 0; (1.12.14)

there exists a derivative ψ′(s), s > 0 and

(h2∗ϕ2)1/2ψ′ ∈ L1(0, t), (|h|∗|ψ′|)t < ∞, t > 0. (1.12.15)

Then ∫ t

0

ψ(s)dVs =

∫ t

0

m(t, s)ϕ(s)dWs, t > 0, a.s.,

where

m(t, s) = ψ(t)h(t− s)−
∫ t

s

h(u− s)ψ′(u)du,

W is a Wiener process. If (1.12.15) is strengthened to

(h2 ∗ ϕ2)1/2ψ′ ∈ L2(0, t), t > 0, (1.12.16)

then E(
∫ t

0
ψ(s)dVs)

2 < ∞.

Proof. Under (1.12.13)−(1.12.15), we can consider the integral
∫ t

0
ψ(u)dVu

as a mean-square limit of Riemann sums, and integrating by parts, we obtain
the following limits in the mean-square sense

∫ t

0
ψ(u)dVu = limε↓0

∫ t

ε
ψ(u)dVu

= ψ(t)V (t)− limε↓0 ψ(ε)V (ε)− ∫ t

0
ψ′(u)V (u)du

= ψ(t)V (t)− ∫ t

0
ψ′(u)

(∫ u

0
h(u− s)ϕ(s)dWs

)
du.

Due to (1.12.15), the stochastic Fubini theorem can be applied to the last
integral, and we obtain
∫ t

0

ψ(u)dVu =

∫ t

0

ψ(t)h(t− s)ϕ(s)ds−
∫ t

0

ϕ(s)
(∫ u

0

h(u− s)ψ′(u)du
)
dWs

=

∫ t

0

m(t, s)ϕ(s)dWs.

The second statement is evident. ¤

Now let P and P̂ be two probability measures on (Ω,F). Denote by Pt(P̂t)

the restriction of P (P̂ ) on Ft and suppose that P̂
loc¿ P. Consider the density
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process Zt = E(Xt) := exp{Xt − 1/2〈Xc〉t}
∏

0≤s≤t(1 +4Xs)e
−4Xs , X is a

local martingale.
As before, we consider the Gaussian process Vt =

∫ t

0
h(t− s)ϕ(s)dWs and

suppose that Vt is (g)-transformable by the function g; moreover, the condi-
tions (1.12.7)− (1.12.8) or (1.12.9)− (1.12.11) hold. Let Mt = C0

∫ t

0
ϕ(s)dWs

with C0 depending on g. Since Mt has continuous modification, the process
[M,X] has P -locally bounded variation (see ([14], Lemma 3.14)). Denote
by At := 〈M, X〉t the P -compensator of [M, X]. Suppose further that the
function ψ satisfies conditions (1.12.13)− (1.12.15) of Theorem 1.12.3.

Lemma 1.12.1. The integral
∫ t

0
m(t, s)dAs exists for any t > 0 P− and

P̂ − a.s.

Proof. Since m(t, s) = ψ(t)h(t − s) − ∫ t

s
h(u − s)ψ′(u)du, we consider∫ t

0
h(t − s)dAs and

∫ t

0

(∫ t

s
h(u − s)ψ′(u)du

)
dAs individually. From Kunita’s

inequality and (1.12.2),

∫ t

0

|h(t− s)|d|A|s ≤
(∫ t

0

|h(t− s)|2d〈M〉s · 〈X〉t
) 1

2

= C0

(∫ t

0

|h(t− s)|2ϕ2(s)ds〈X〉t
) 1

2

< ∞

P and P̂ − a.s.
Similarly, ∫ t

0

∣∣∣∣
∫ t

s

ψ′(u)h(u− s)du

∣∣∣∣d|A|s

≤ C0

(∫ t

0

∣∣∣∣
∫ t

s

ψ′(u)h(u− s)du

∣∣∣∣
2

ϕ2(s)ds · 〈X〉t
) 1

2

≤ C0

(∫ t

0

(h2 ∗ ϕ2)u|ψ′(u)|2du · 〈X〉t
) 1

2

< ∞,

P and P̂ − a.s. ¤

Theorem 1.12.4. Let Vt be (g)-transformable with g satisfying (1.12.7) −
(1.12.8) or (1.12.9)− (1.12.11), ψ satisfying (1.12.13)− (1.12.15), ϕ 6= 0 a.e.

Then N̂t := Nt − C−1
0

∫ t

0
m(t, s)dAs is a Gaussian process w.r.t. P̂ and

admits the representation N̂t =
∫ t

0
m(t, s)ϕ(s)dŴs, where Ŵt is a Wiener

process w.r.t. P̂ .
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Proof. According to the classical Girsanov theorem, M̂t := Mt−〈M, X〉t
is a P̂ -local martingale with the angle bracket 〈M̂〉t = 〈M〉t = C2

0

∫ t

0
ϕ2(s)ds.

Therefore, M̂t is a continuous square-integrable P̂− martingale. Since ϕ 6=
0 a.e.(modλ), we obtain from the Lévy theorem that M̂t = C0

∫ t

0
ϕsdŴs, Ŵ

is P̂ -Wiener process. According to Theorem 1.12.2, B̂t = C−1
0

∫ t

0
z(t, s)d(Ms−

〈M,X〉s) = C−1
0

∫ t

0
m(t, s)dM̂s =

∫
0
m(t, s)ϕ(s)dŴs. ¤

According to the Theorem 1.12.4, we obtain that the drift has the form
Dt := C−1

0

∫ t

0
m(t, s)dAs in the case when the density process Zt is known.

Consider also the question: what "drifts" are admissible?

Theorem 1.12.5. Let (1.12.13)− (1.12.15) and one of the following sets of
conditions hold:

1) conditions (1.12.2), (1.12.3), (1.12.6)−(1.12.8) and ϕ 6= 0 a.e. (modλ);
2)

∫ t

s
|h′(v − s)||ψ′(v)|dv < ∞, 0 ≤ s ≤ t a.s;

3) a process {Dt,F
W
t , t = 0} has a.s. bounded variation |D|t = var[0,t]D, t >

0, D0 = 0;
4)ψ 6= 0, the integral

∫ t

0
|g(t− s)||ψ−1(s)|d|D|s < ∞ a.s., t > 0, and we

have a representation

∫ t

0

g(t− s)ψ−1(s)dDs =

∫ t

0

δsds, where

∫ t

0

|δs|ds < ∞ a.s.

E

∫ t

0

ϕ−2
s δ2

sds < ∞, t > 0;

5)EE(Xt) = 1 where

Xt = C−1
0

∫ t

0

ϕ−1
s δsdWs, E(Xt) = exp{Xt − 1

2
〈X〉t};

or
6) conditions (1.12.2), (1.12.3), (1.12.5), (1.12.9)− (1.12.11);
7) conditions 3)− 5);
8) a process Et =

∫ t

0
m(t, s)δsds has bounded variation and

∫ t

0

|g(t− s)||ψ−1(s)|d|E|s < ∞, a.s., t > 0;

9) g′ ∈ U.

Then the process B̂t = Bt − Dt is Gaussian and admits the representation

B̂t =
∫ t

0
m(t, s)ϕ(s)dŴs under the measure P̂

loc¿ P such that d bP
dP

∣∣
FW

t
= E(Xt).
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1.13 Nonsemimartingale Properties of fBm; How
to Approximate Them by Semimartingales

A process {Xt, Ft, t ≥ 0} is called semimartingale, if it admits the represen-
tation Xt = X0 + Mt + At, where M is an Ft-local martingale with M0 = 0,
A is a process of locally bounded variation, X0 is F0-measurable. Evidently,
any semimartingale has locally bounded quadratic variation; if X is contin-
uous, then M and A are continuous. Let Xt = BH

t with H ∈ (0, 1/2). Then
its quadratic variation is infinite, therefore, it is not a semimartingale. If
H ∈ (1/2, 1) then the quadratic variation of X is zero, and if we suppose
that X is semimartingale, then the quadratic variation of Mt = Xt−X0−At

is zero, and M is zero. But Xt 6= At since X has unbounded variation.
Therefore, Xt = BH

t is not a semimartingale for any H 6= 1/2. Nevertheless,
there are many approaches to how to approximate fBm by a sequence of
semimartingales.

1.13.1 Approximation of fBm by Continuous Processes
of Bounded Variation

We follow here the approach of ([1],[2]). According to (1.8.5) and (1.8.9), we
can represent {BH

t , t ≥ 0} with , H ∈ (1/2, 1) as

BH
t =

∫ t

0

sαdYs,

where

Yt = C
(8)
H

∫ t

0

(t− s)αs−αdBs,

and C
(8)
H = C

(6)
H α̃. We can rewrite Yt as

Yt = C
(8)
H α

∫ t

0

(∫ t

s

(u−s)α−1du

)
s−αdBs. (1.13.1)

If we formally apply the stochastic Fubini theorem to the right-hand side of
(1.13.1), we obtain that

Yt = C
(8)
H α

∫ t

0

(∫ u

0

(u−s)α−1s−αdBs

)
du. (1.13.2)

But the right-hand side of (1.13.2) does not exist, since the variance of interior
integral is infinite, ∫ u

0

(u− s)2α−2s−2αds = ∞.
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Thereupon, we introduce the "truncated" process for β ∈ (0, 1),

Y β
t = C

(8)
H α

∫ t

0

(∫ βs

0

(s− u)α−1u−αdBu

)
ds,

and

BH,β
t =

∫ t

0

sαdY β
s = C

(8)
H α

∫ t

0

sα

(∫ βs

0

(s− u)α−1u−2αdBu

)
ds (1.13.3)

is a process of bounded variation which will serve as an approximation of
BH

t .

Theorem 1.13.1. We have that

E(BH
t −BH,β

t )2 ≤ c1t
2H(1− β)2α,

where c1 = c1(H) is some constant, independent of t and β.

Proof. First, we want to change the limits of the integration in (1.13.3)
and consider the process

Zβ
t := αC

(8)
H

∫ βt

0

(∫ t

u/β

(s− u)α−1ds

)
u−αdBu

= C
(8)
H

(∫ βt

0

(t−u)αu−αdBu

(
1− β

β

)α

Bβt

)
. (1.13.4)

We cannot apply here the stochastic Fubini theorem ([25], Theorem IV.4.5),
because it is valid if the integral

∫ βt

0

∫ t

u/β
(s− u)2α−2u−2αdsdu is finite but it

is infinite. Therefore, we must go an indirect way. We consider the integral

Y β,ε
t = D

∫ t

ε

(∫ βs

βε
(s − u)α−1u−αdBu

)
ds, where D = αC

(8)
H , and the Fubini

theorem ensures the equality

Y β,ε
t = Zβ,ε

t := D

∫ βt

βε

(

∫ t

u/β

(s− u)α−1ds)u−αdBu.

Furthermore,

E|Y β,ε
t − Y β

t | ≤ D

(∫ ε

0

(∫ βs

0

(s− u)2α−2u−2αdu

)1/2

ds
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+

∫ t

ε

(∫ βε

0

(s− u)2α−2u−2αdu

)1/2

ds

)
≤ D

(∫ ε

0

u−1/2du

(∫ β

0

(1− u)2α−2

×u−2αdu

)
+ α̂(βε)1/2−α

∫ t

ε

(s− βε)α−1ds

)
→ 0

and

E|Zβ,ε
t − Zβ

t |2 ≤ D2

∫ βε

0

(∫ t

u/β

(s− u)α−1ds

)2

u−2αdu ≤ CD2βε1−2α → 0

as ε → 0, where C > 0 is some constant. This means that Y β
t = Zβ

t a.s.
for any t ∈ [0, T ]. Therefore, for 1/2 < β < 1

E(Yt−Y β
t )2 = (C

(8)
H )2E

(∫ t

βt

(t−u)αu−αdBu+

(
1− β

β

)α

Bβt

)2

≤ 2(C
(8)
H )2

∫ t

βt

(t−u)2αu−2αdu+2(C
(8)
H )2

(
1− β

β

)2α

βt

≤ H−1(C
(8)
H )2(βt)−2αt2H(1−β)2H+2(C

(8)
H )2

(
1− β

β

)2α

βt

≤ c2t(1− β)2α with c2 = (C
(8)
H )2 · 22α−1(H−1 + 2). (1.13.5)

Integration by parts gives us

BH
t −BH,β

t = tα(Yt − Y β
t )− α

∫ t

0

(Ys − Y β
s )sα−1ds

whence we obtain from (1.13.5) that

E(BH
t −BH,β

t )2 ≤ 2t2αE(Yt − Y β
t )2 + 2α2t

∫ t

0

E(Ys − Y β
s )2s2α−2ds

≤ 2c2t
2H(1− β)2α + 2α2t

∫ t

0

s2α−1ds · c2(1− β)2α,

and we can put c1 = 2c2(α + 1). ¤



40 Convergence BH,β → BH in Besov space W λ[a, b]

1.13.2 Convergence BH,β → BH in Besov space W λ[a, b]

For λ ∈ (0, 1/2) define the Besov space W λ[a, b] as the space of measurable
functions f : [a, b] → R such that

‖f‖a,b,λ :=

∫ b

a

|f(s)|
(s− a)λ

ds +

∫ b

a

∫ s

a

|f(s)− f(y)|
(s− y)λ+1

dyds < ∞.

Theorem 1.13.2. For any λ ∈ (0, 1/2), H ∈ (1/2, 1) and any [a, b] ⊂ [0, T ]

E‖BH −BH,β‖a,b,λ ≤ c1(H, λ, T )(1− β)α.

Proof. Denote B
H,β

t := BH
t −BH,β

t . We have

E‖BH,β‖λ = E

∫ b

a

|BH,β

s |
(s− a)λ

ds + E

∫ b

a

∫ s

a

|BH,β

s −B
H,β

y |
(s− y)λ+1

dyds. (1.13.6)

From Theorem 1.13.1,

E

∫ b

a

|BH,β

s |
(s− a)λ

ds ≤
∫ b

a

(E(B
H,β

s )2)1/2

(s− a)λ
ds ≤ c

1/2
1 (1− β)α

∫ b

a

sH

(s− a)λ
ds

≤ c1(H,λ, T )(1− β)α, (1.13.7)

with c1(H,λ, T ) = c
1/2
1 ·TH−λ+1 · (H −λ + 1)−1. Consider the second term in

the right-hand side of (1.13.6). Rewrite the difierence in the numerator as

B
H,β

s −B
H,β

y = (BH
s −BH,β

s )− (BH
y −BH,β

y )

=

∫ s

y

uαd(Yu − Y β
u ) =

∫ s

y

uαdY
β

u, (1.13.8)

where Y
β

u = Yu − Y β
u . Equality (1.13.8) and integration by parts give us the

estimates

∫ b

a

∫ s

a

|BH,β

s −B
H,β

y |
(s− y)λ+1

dyds

=

∫ b

a

∫ s

a

(s− y)−λ−1
∣∣sαY

β

s − yαY
β

y + α

∫ s

y

Y
β

uuαdu
∣∣dyds

≤
∫ b

a

∫ s

a

(s− y)−λ−1sα|Y β

s − Y
β

y |dyds
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+

∫ b

a

∫ s

a

(s− y)−λ−1(sα − yα)|Y β

y |dyds

+α

∫ b

a

∫ s

a

(s− y)−λ−1
(∫ s

y

|Y β

u|uα−1du
)
dyds

=: I1(β) + I2(β) + αI3(β).

Now we estimate I2(β) :

EI2(β) ≤ α

∫ b

a

∫ s

a

yα−1(s− y)−λ(E(Y
β

y )2)1/2dyds

≤ c
1/2
2 α

∫ b

a

∫ s

a

yα−1(s− y)−λy1/2dyds · (1− β)α

≤ c2(H, λ, T )(1− β)α, (1.13.9)

where c2(H,λ, T ) = c
1/2
2 αT 1−λ.

EI3(β) ≤ ∫ b

a

∫ s

a
(s− y)−λ−1

(∫ s

y
(E(Y

β

u)2)1/2uα−1du
)
dyds

(1.13.10)

≤ c
1/2
2

∫ b

a

∫ s

a
(s− y)−λ−1

(∫ s

y
uα−1/2du

)
dyds · (1− β)α

≤ c3(H, λ, T )(1− β)α,

where c3(H,λ, T ) = c
1/2
2

T H−λ+1

H(H−λ)(H−λ+1)
. Now we use the representation

(1.13.4) to estimate I1(β) :

|Y β

s − Y
β

y | ≤ C
(8)
H

∣∣∣∣
∫ s

βs

(s− u)αu−αdBu −
∫ y

βy

(s− u)αu−αdBu

∣∣∣∣

+ C
(8)
H

(
1− β

β

)α

|Bβs −Bβy|,

therefore

I1(β) ≤ C
(8)
H

∫ b

a

∫ s

a
(s− y)−λ−1sα

×
∣∣∣∣
∫ s

βs
(s − u)αu−αdBu −

∫ y

βy
(s − u)αu−αdBu

∣∣∣∣dyds

(1.13.11)
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+C
(8)
H

(
1−β

β

)α ∫ b

a

∫ s

a
sα(s− y)−λ−1|Bβs −Bβy|dyds

=: I1(β) + I2(β).

Further,

EI2(β) ≤ C
(8)
H

(
1−β

β

)α ∫ b

a

∫ s

a
sα(s− y)−λ−1/2dydsβ1/2

(1.13.12)
= c4(H, λ, T )(1− β)α,

where c4(H,λ, T ) = C
(8)
H 2α · T H−λ+1

1/2−λ
.(Here we see that indeed λ must be

less than 1/2.) Next, we decompose I1(β) into two integrals

I1(β) = C
(8)
H

∫ b

a

∫ (βs)∨a

a

+C
(8)
H

∫ b

a

∫ s

(βs)∨a

=: I3(β) + I4(β).

EI3(β) ≤ C
(8)
H

∫ b

a

∫ (βs)∨a

a

(s− y)−λ−1sα

×
(

E

(∫ s

βs

(s− u)αu−αdBu −
∫ y

βy

(y − u)αu−αdBu

)2)1/2

dyds

≤
√

2C
(8)
H

∫ b

a

∫ (βs)∨a

a

(s− y)−λ−1sα

×(∫ s

βs

(s− u)2αu−2αdu +

∫ y

βy

(y − u)2αu−2αdu
)1/2

dyds

≤ 2αH−1/2C
(8)
H

∫ b

a

∫ (βs)∨a

a

(s− y)−λ−1(s + y)1/2sαdyds · (1− β)H

≤ c(H, λ, T )(1− β)H−λ

(1.13.13)

with c(H,λ, T ) = 2HT 1+H−λ

λ(1−λ)H1/2 . Finally,

EI4(β) ≤ C
(8)
H

∫ b

a

∫ s

(βs)∨a

(s− y)−λ−1sα × (
E

∣∣
∫ s

0

((s− u)αu−α1(βs,s)(u)

−(y − u)αu−α1(βy,y)(u))dBu

∣∣2)1/2
dyds
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= C
(8)
H

∫ b

a

∫ s

(βs)∨a

(s− y)−λ−1sα

(∫ s

0

((s− u)α1(βs,s)(u)

−(y − u)α1(βy,y)(u))2u−2αdu

)1/2

dyds

The interior integral equals
∫ y

βs

((s− u)α − (y − u)α)2u−2αdu +

∫ s

y

(s− u)2αu−2αdu

+

∫ βs

βy

(y − u)2αu−2αdu =: I5(β),

and via some routine calculations can be estimated as

I5(β) ≤ CH(1− β)2α(s− y),

where CH = 1 + 22α + α
1−2α

. Therefore

EI4(β) ≤ C
(8)
H (CH)1/2(1− β)α

∫ b

a

sα

∫ s

(βs)∨a

(s− y)−λ−1/2dyds

≤ C
(8)
H (CH)1/2(1− β)α

∫ b

a

sH−λds

∫ 1

β

(1− y)−λ−1/2dy

≤ C(H,λ, T )(1− β)H−λ (1.13.14)

with C(H, λ, T ) = C
(8)
H (CH)1/2 T H−λ+1

(H−λ+1)(1/2−λ)
. Summarizing (1.13.9), and

(1.13.10), (1.13.12)− (1.13.14), we obtain the proof. ¤

We obtain another approximation, considering the "truncated" process
of the form

Y β
t := C

(8)
H α

∫ t

0

(∫ (s−β)+

0

(s− u)α−1u−αdBu

)
ds

and

BH,β
t =

∫ t

0

sαdY β
s , t ≥ 0, H ∈ (1/2, 1). (1.13.15)

Evidently, we intend to obtain the approximation while β → 0.
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1.14 Hölder Properties of the Trajectories of
fBm and of Wiener Integrals w.r.t. fBm

Let {ξt, t ∈ [0, T ]} be a separable modification of Gaussian process, ρ2
ξ(s, t) =

E(ξs − ξt)
2, G = G(x) : R+ → R+ be a continuous increasing function,

G(0) = 0, D(T, ε) =
∫ ε

0
H(T, u)1/2du be the Dudley integral, ρ(s, t) be some

semi-metric in [0, T ].

Definition 1.14.1. A function Θ = Θ(x) : R+ → R+ is called a modulus of
continuity if Θ(0) = 0 and for any x1, x2 ≥ 0

Θ(x1) ≤ Θ(x1 + x2) ≤ Θ(x1) + Θ(x2).

Definition 1.14.2. Let g : [0, T ] → R be some function. The function

∆ρ(g, ε) := sup
ρ(s,t)≤ε
s,t∈[0,T ]

|g(s)− g(t)|

is called a modulus of uniform continuity of the function g with respect to the
semi-metric ρ.

Definition 1.14.3. A modulus Θ(·) is called a uniform modulus of a Gaussian
process ξ with respect to the semi-metric ρ if for a.a. ω ∈ Ω

lim sup
ε→0

∆ρ(ξ(ω), ε)/Θ(ε) < ∞.

Theorem 1.14.1. ([18]) 1. Let for any s, t ∈ [0, T ]

ρξ(s, t) ≤ G(ρ(s, t)) · (1.14.1)

Then the function Θ(ε) := D(T, G(ε)) is a uniform modulus of the Gaussian
process ξ with respect to the semi-metric ρ.

2. Under assumption (1.14.1) with ρ(s, t) = |s− t|, the function

Θ(ε) =

∫ ε

0

| log r|1/2dG(r)

is a uniform modulus of the Gaussian process ξ with respect to ρ.

Definition 1.14.4. We say that the function f : [0, T ] → R belongs to the
space Cβ−[0, T ] if f ∈ Cγ[0, T ] for any γ < β.
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Let ξt = BH
t be an fBm with Hurst index H ∈ (0, 1). Then, evidently,

we can take G(x) = xH , so from the second statement of previous theorem,
the function Θ(ε) ∼ εH | log ε|1/2 will be a uniform modulus of BH on any
[0, T ]. In particular, |BH

t − BH
s | ≤ c(ω)|t − s|H−β for any 0 < β < H, i.e.

BH ∈ CH−[0, T ] for a.a. ω and any T > 0.

Now, let ξt = It(f) =
∫ t

0
f(s)dBH

s with f ∈ LH
2 [0, t] for any 0 ≤ t ≤

T, H ∈ (1/2, 1). We can take ρ(s, t) =
∫ t

s
|f(u)| 1

H du,G(x) = CHxH ,

∆ρ(I, ε) = sup
0≤s<t≤T :R t

s |f(u)| 1
H du<ε

|ξt − ξs|,

D(T, G(ε)) =
∫ CHεH

0
H(T, u)1/2du. Then, according to the first statement of

Theorem 1.14.1 and from ([21], Theorem 1.10.3)

lim sup
ε→0

∆ρ(I, ε)/D(T, G(ε)) < ∞.

Now we simplify the situation supposing that f is essentially bounded on
[0, T ], f ∗T := ess sup0≤t≤T |f(t)| < ∞. Then we can take ρ(s, t) = |s −
t|, G(x) = CHf ∗T · xH ,and Θ(ε) ∼ CHf ∗T εH | log ε|1/2 will be a uniform mod-
ulus of I(f) on [0, T ].

1.15 Estimates for Fractional Derivatives of fBm
via the Garsia-Rodemich-Rumsey Inequal-
ity

Consider for any T > 0 the random variable that is the right-sided Riemann-
Liouville fractional derivative of order β of fBm BH , where 1−H < β < 1/2
and H ∈ (1/2, 1)

Gt :=
1

Γ(β)
sup

0≤s<z≤t
|D1−β

z− BH
z−(s)|, t ∈ [0, T ].

Lemma 1.15.1. For any 1−H < β < 1/2 and any p > 0

EGp
t < ∞.

Proof. By the Garsia-Rodemich-Rumsey inequality ([9]), for any p ≥ 1
and ρ > p−1 there exists a constant Cρ,p > 0 such that for any continuous
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function f on [0, T ] and for all s < z ≤ t ∈ [0, T ]

|f(z)− f(s)|p ≤ Cρ,p|z − s|ρp−1

∫ z

0

∫ z

0

|f(x)− f(y)|p
|x− y|ρp+1

dxdy.

Choose ε < β − (1−H) and put ρ = H − ε
2
, p = 2

ε
and f(t) = BH

t .

|BH
z −BH

s | ≤ CH,ε|z − s|H−εξt,ε,

where

ξt,ε =

(∫ t

0

∫ t

0

|BH
x −BH

y |
2
ε

|x− y| 2H
ε

dxdy

) ε
2

, 0 < ε < H. (1.15.1)

Since BH
x − BH

y is a Gaussian random variable, and E|BH
x − BH

y |2 =
|x− y|2H , we have that for the random variable ξt,ε for any q > 1

E|ξt,ε|q = E

(∫ t

0

∫ t

0

|BH
x −BH

y |
2
ε

|x− y| 2H
ε

dxdy

)q ε
2

≤ Cq,H,T

∫ T

0

∫ T

0

E|BH
x −BH

y |q
|x− y|Hq

dxdy ≤ Cq,H,T

which means that all moments of ξt,ε are finite. Further, for ε < β− (1−H)

Gt ≤ Cβ sup
0≤s<z≤t

( |BH
z −BH

s |
|z − s|1−β

+

∫ z

s

|BH
s −BH

y |
|s− y|2−β

dy

)

≤ Cβ,H,ε sup
0≤s<t

(t− s)H−ε−1+βξt,ε ≤ Cβ,H,εξt,ε,

so, EGp
t < ∞ for any p > 0. ¤

Remark 1.15.1. 1) It is easy to see that the random process {Gt, t ∈ [0, T ]}
is dominated, up to a constant, by ξt,ε.

2) Evidently, all moments of the random variable GT are finite.
3) It follows immediately from Corollary 1.9.3 that the same conclusions hold
for a Wiener integral w.r.t. fBm with a bounded integrand and H ∈ (1/2, 1).
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1.16 Power Variations of fBm and of Wiener
Integrals w.r.t. fBm

Consider for fBm {BH
t , t ≥ 0} with H ∈ (0, 1) and for p > 0 the sums

Sn,p(t) =
2n∑

j=1

|BH
jt
2n
−BH

(j−1)t
2n

|p · 2n(pH−1), (1.16.1)

and

S̃n,p(t) = 2−n

2n∑
j=1

|BH
jt −BH

(j−1)t|p.

Then Law(Sn,p(t)) = Law(S̃n,p(t)), due to the self-similarity property of

BH : (Law(BH
ct , t > 0) = Law(cHBH

t , t > 0)).

The sequence (BH
k −BH

k−1)k∈N is stationary. Therefore, from the ergodic
theorem

S̃n,p(t) → E|BH
t |p =: Cpt

pH as n →∞
with probability 1 and in L1(P ), whence

Sn,p(t)
d→ Cpt

pH , n →∞, (1.16.2)

so Sn,p(t)
P→ Cpt

pH , n →∞.
From (1.16.1)-(1.16.2)

2n∑
j=1

|BH
jt
2n
−BH

(j−1)t
2n

|p P→




0, p > 1
H

,
+∞, p < 1

H
,

E|BH
t |1/H , p = 1

H
.

(1.16.3)

Now, consider the interval [0, 1]; let {πk, k ≥ 1} be a sequence of refining
partitions and Π(δ) be the set of all partitions π of [0, 1] with |π| < δ.
Evidently, from (1.16.3) we obtain that

lim
δ→0

sup
π∈Π(δ)

S(|x|p, π, BH) = +∞

with probability 1, where p < 1
H

and

S(ψ(x), π,X) :=
∑
tj∈π

ψ(Xtj −Xtj−1
).
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Theorem 1.16.1. Let Xt, 0 ≤ t ≤ 1 be a centered Gaussian process with con-
tinuous trajectories such that

E|Xt −Xs|2 ≤ σ2(|t− s|),

where {σ(t), 0 ≤ t ≤ 1} is a continuous function with σ(0) = 0. Let {ψ(t), 0 ≤
t ≤ 1} be a non-decreasing regular varying function with exponent α > 0
satisfying

ψ(σ(t)) = tγ(t) for 0 ≤ t ≤ 1 and lim
t↓0

γ(t) = 0.

Then limδ→0 supπ∈Π(δ) S(ψ(x), π,X) = constant (including ∞) holds with
probability 1.

Put Xt = BH
t , σ2(t) = t2α+1, ψ(t) = t

1
H

+ε for some ε > 0 (recall that
a function is regularly varying if ψ(xt)

ψ(t)
→ ρ(x) as t → ∞ and in this case

ρ(x) = xβ for some β ≥ 0). Then ψ(σ(t)) = t1+Hε and all the assumptions of
Theorem 1.16.1 are satisfied. So, limδ→0 supp→Π(δ) S(|x|p, π, BH) = const for
any p > 1

H
. Evidently, this constant is zero since for any p′ > p > 1

H

S(xp′ , π, BH) ≤ sup
0≤t<t′≤t+δ≤1

|BH
t −BH

t′ |p
′−p · S(xp, π, BH),

and the first factor tends to zero a.s. as δ → 0.
Now, let H ∈ (0, 1

2
). In this case we can use the following theorem for the

case p = 1
H

.

Theorem 1.16.2. ([15])
1) Let the following assumptions hold:
(a) E|Xs −Xt|2 ≤ σ2(|t− s|);
(b) σ(t) is a non-decreasing regular varying function;
(c) the function σ(t)

√
2 log log 1

t
is strictly increasing near the origin.

Let ˜Π(k) be the set of all partitions such that min |tj − tj−1| ≥ 1
k
. Then

lim sup
k→∞

sup
π∈Π̃(k)

S(σ−1(x), π, X)

Φ( 1
k
)

≤ 1,

with probability 1, where

Φ(t) = sup
s≥t

σ−1
(
σ(s)

√
2 log log 1

s

)

s
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2) Let the assumption (b) hold and also
(d)E|Xs −Xt|2 ≤ σ2(|t− s|);
(e) σ2(t)−σ2(t−h) ≤ Cσ2(h) for some C > 0, any small t and 0 ≤ h ≤ t.

Then lim infk→∞ supπ∈Π̃(k)
S(σ−1(x),π,X)

Φ( 1
k
)

≥ 1, with probability 1.

Put σ(t) = tH , Xt = BH
t . Then conditions (a), (b), (c) and (d) hold. More-

over, for H ∈ (0, 1
2
), σ2(t) − σ2(t − h) = t2α+1 − (t − h)2α+1 ≤ h2α+1 for all

0 ≤ h ≤ t ≤ 1. The function Φ(t) now has the form Φ(t) = (2 log log 1
t
)

1
H ,

whence limk→∞ supπ∈eΠ(k)
S(|x| 1

H ,π,BH)

(2 log log k)
1

2H
= 1 or, in other words,

limk→∞ supπ∈eΠ(k)

P
tj∈π |BH

tj
−BH

tj−1
| 1
H

(2 log log k)
1

2H
= 1

For (H ∈ 1
2
, 1) we have no assumption (e), so, give only upper bounds.

Namely, from the first statement of Theorem 1.16.2, we can deduce that

lim
k→∞

sup
π∈eΠ(k)

∑
tj∈π |BH

tj
−BH

tj−1
| 1

H

(2 log log k)
1

2H

≤ 1

Moreover, the following result holds.

Theorem 1.16.3. Under assumptions (a)− (c)

lim
δ→0

sup
π∈Π(δ)

S(ψ(x), π, X) ≤ 1,

with probability 1, where ψ(x) is the inverse function to σ(t)
√

2 log log 1
t
near

the origin.

In our case it means that

lim
δ→0

sup
π∈Π(δ)

∑
tj∈π

ψ(|BH
tj
−BH

tj−1
|) ≤ 1,

where ψ(t) is the inverse function to tH
√

2 log log 1
t
.

Definition 1.16.1. For any p > 0 define p−variation of the function f on
the interval [a, b]as

vp(f) = sup
π∈Π

S(|x|p, π, f).

Also, let p-variation index of the function f be v(f) := inf(p : vp(f) < ∞).
The last relations mean that v(BH) = 1

H
with probability 1, and, moreover,

vp(B
H) < ∞ for p >

1

H
and = ∞ for p <

1

H
.
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Now consider the Gaussian process Xt = It(f) =
∫ t

0
f(s)dBH

s . Let
H ∈ (1

2
, 1) and the function f is essentially bounded on [0, 1], let f ∗ =

ess sup0≤t≤1 |f(t)|. Then, according to ([21], Theorem 1.10.3), E|Xt−Xs|2 ≤
σ2(|t − s|), where σ2(t) = CH(f ∗)2t2α+1, therefore from Theorem 1.16.1
limδ→0 supπ∈Π(δ) S(|x|p, π, I) = 0 for any p > 1

H
and from Theorems 1.16.2

and 1.16.3

lim sup
k→∞

sup
π∈eΠ(k)

S(|x| 1
H , π, I)

Φ( 1
k
)

≤ 1 P − a.s., (1.16.4)

lim
δ→∞

sup
π∈eΠ(δ)

S(ψ(x), π, I) ≤ 1 P − a.s. (1.16.5)

where ψ(x)is the inverse to C
1/2
H f ∗tH

√
2 log log 1

t
near the origin.

Let f∗ := ess inf0≤t≤1 f(t) > 0. Then

E|It − Is|2 = CH

∫ t

s

∫ t

s

f(u)f(v)|u− v|2α−1dudv ≥ CHf 2
∗ |t− s|2α+1,

whence S(|x|p, π, I)
P→∞ as |π| → 0 and p < 1

H
, and together with Theorem

1.16.1 it means that

lim
δ→0

sup
π∈Π(δ)

S(|x|p, π, I) = ∞ P − a.s., p <
1

H
.

For H ∈ (0, 1
2
) and f with f∗ > 0 we can immediately conclude from

Theorem 1.9.1 that

E|It − Is|2 ≥ CH‖f‖2
L 1

H
[s,t] ≥ CHf 2

∗ |t− s|2α+1,

whence S(|x|p, π, I)
P→ ∞ as |π| → 0 and p < 1

H
. Let f ∈ Cβ[0, 1]. Then we

can deduce from ([21], Remark 1.10.7), that

E|It − Is|2 ≤ CH‖f‖Cβ([0,1])((t− s)2α+1 + (t− s)2H+2β),

whence (1.16.4)-(1.16.5) follow for H ∈ (0, 1
2
).



Chapter 2

Stochastic Integration with
Respect to fBm and Related
Topics

The aim of this chapter is to provide a comprehensive overview of stochastic
calculus with respect to fractional Brownian motion. For further details
concerning the theory of stochastic integration with respect to fractional
Brownian motion, we refer to [12], [16], [21], [23].

2.1 Pathwise Stochastic Integration

2.1.1 Pathwise Stochastic Integration in the Fractional
Sobolev-type Spaces

In this subsection we consider pathwise integrals
∫ T

0
f(t)dBH

t for processes
f from the fractional Sobolev type spaces Iα

a+(Lp) for some p > 1. This
approach was developed by Zähle [30], [31].

Consider two deterministic functions f, g : [a, b] → R such that the limits
f(u+) = limδ→0 f(u + δ) and g(u−) = limδ→0 g(u− δ), a ≤ u ≤ b, exist. Put

fa+(x) = (f(x)− f(a+))1(a,b)(x), gb−(x) = (g(b−)− g(x))1(a,b)(x). Sup-
pose also that fa+ ∈ Iα

a+(Lp[a, b]), and gb− ∈ I1−α
b− (Lp[a, b]) for some p, q ≥

1, 1/p + 1/q ≤ 1, and 0 ≤ α ≤ 1.

Definition 2.1.1. The generalized fractional Lebesgue-Stieltjes integral is
defined as
∫ b

a

f(x)dg(x) :=

∫ b

a

(Dα
a+fa+)(x)(D1−α

b− gb−)(x)dx + f(a+)(g(b−)− g(a+)).

51
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Spaces

Remark 2.1.1. The definition of generalized Lebesgue-Stieltjes integral does
not depend on the possible choice of α.

Let αp < 1. Then fa+ ∈ Iα
a+(Lp[a, b]) if and only if f ∈ Iα

a+(Lp[a, b]) and
in this case we can simplify the formula for the generalized integral:∫ b

a
f(x)dg(x) =

∫ b

a

(
(Dα

a+f)(x)− 1
Γ(1−α)

· f(a+)
(x−a)α

)
(D1−α

b− gb−)(x)dx

(2.1.1)

+f(a+)(g(b−)− g(a+)) =
∫ b

a
(Dα

a+f)(x)(D1−α
b− gb−)(x)dx

−f(a+)I1−α
b− (D1−α

b− g)(a) + f(a+)(g(b−)− g(a+))

=
∫ b

a
(Dα

a+f)(x)(D1−α
b− gb−)(x)dx

Lemma 2.1.1. Let gb− ∈ I1−α
b− (Lq[a, b]) ∩ C[a, b] for some q > 1

1−α
and

0 < α < 1. Then for any a < c < d < b

∫ b

a

(Dα
a+1[c,d))(x)(D1−α

b− gb−)(x)dx = g(d)− g(c). (2.1.2)

Proof. We have that

(Dα
a+1[c,d))(x) =





0, x ≤ c,
(x−c)−α

Γ(1−α)
, c < x ≤ d,

(x−c)−α−(x−d)−α

Γ(1−α)
, d ≤ x ≤ b.

Therefore, by using (2.1.1), we obtain for αp < 1, or q > 1
1−α

, that

∫ b

a
(Dα

a+1[c,d))(x)(D1−α
b− gb−)(x)dx = 1

Γ(1−α)

∫ b

c
(x− c)−α(D1−α

b− gb−)(x)dx

− 1
Γ(1−α)

∫ b

d
(x− d)−α(D1−α

b− gb−)(x)dx = I1−α
b− (D1−α

b− gb−)(c)

−I1−α
b− (D1−α

b− gb−)(d) = g(d)− g(c). ¤

Corollary 2.1.1. For any step function fπ(x) =
∑n−1

k=0 ck1[xk,xk+1)(x) with
a = x0 < . . . < xn = b and g satisfying the conditions of Lemma 2.1.1, we
have that

∫ b

a

f(x)dg(x) =
n−1∑

k=0

ck(g(xk+1)− g(xk)).

Denote by BV [a, b] the class of functions of bounded variation on [a, b],
and suppose that g(b−) = g(b) and g(a+) = g(a).
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Lemma 2.1.2. Let the functions fa+ ∈ Iα
a+(Lp[a, b]), gb− ∈ I1−α

b− (Lq[a, b]) ∩
BV [a, b] with p ≥ 1, q ≥ 1, 1/p + 1/q ≤ 1 and

∫ b

a

Iα
a+(|(Dα

a+f)|)(x)|g|(dx) < ∞. (2.1.3)

Then ∫ b

a

f(x)dg(x) = (L− S)

∫ b

a

f(x)dg(x)

Proof. We have that
(L−S)

∫ b

a
f(x)dg(x) = (L−S)

∫ b

a
Iα
a+(Dα

a+f)(x)dg(x)
(2.1.4)

= 1
Γ(1−α)

(L− S)
∫ b

a
(
∫ x

a
(x− y)α−1(Dα

a+f)(y)dy)dg(x).

Condition (2.1.3) together with Fubini theorem permits us to change the
order of integration:

(L− S)
∫ b

a
(
∫ x

a
(x− y)α−1(Dα

a+f)(y)dy)dg(x)

=
∫ b

a
(Dα

a+f)(y)(
∫ b

y
(x− y)α−1dg(x))dy (2.1.5)

= (α− 1)
∫ b

a
(Dα

a+f)(y)(
∫ b

y
(
∫∞

x
(z − y)α−2dz)dg(x))dy.

Further, if y ∈ (a, b) is the point of continuity of function g, then∫ b

y
(
∫∞

x
(z − y)α−2dz)dg(x) =

∫ b

y
(
∫ z

y
dg(x))(z − y)α−2dz

+
∫∞

b
(
∫ b

y
dg(x))(z − y)α−2dz =

∫ b

y
g(z)−g(y)
(z−y)2−α dz (2.1.6)

+ g(b)−g(y)
(α−1)(b−y)α−1 = Γ(α)

α−1
(D1−α

b− gb−)(y).

Taking (2.1.4)−(2.1.6) together, we obtain the proof. ¤

Now we consider the case of Hölder functions f and g. The existence of
(R − S)

∫ b

a
fdg for f ∈ Cλ[a, b], g ∈ Cµ[a, b] with λ + µ > 1 was established

by Kondurar [16].

Let f ∈ Cλ[a, b] for some 0 < λ ≤ 1 and |f(x)−f(y)| ≤ c(λ)|x−y|λ, x, y ∈
[a, b]. Consider the following step function:

fπ(x) =
n−1∑

k=0

f(xk)1[xk,xk+1)(x)
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where the partition π = {a = x0 < x1 < . . . < xn = b}.

Evidently, lim|π|→0 supπ ‖fπ − f‖L∞[a,b] = 0.

Theorem 2.1.1. 1) For any 0 < α < λ

lim
|π|→0

sup
π
‖(Dα

a+fπ)− (Dα
a+f)‖L1[a,b] = 0.

2) Let f ∈ Cλ([a, b]), g ∈ Cµ[a, b] with λ + µ > 1, then (R − S)
∫ b

a
fdg

exists and
∫ b

a

fdg = (R− S)

∫ b

a

fdg.

Proof.
1) It is sufficient to prove that

∫ b

a
|fπ(x)−f(x)|

(x−a)α dx → 0 and∫ b

a

∫ x

a
(x− y)−α−1|fπ(x)− f(x)− fπ(y) + f(y)|dydx → 0 as |π| → 0. But

|fπ(x)− f(x)| ≤ |f(xk)− f(x)| ≤ c(λ)|π|λ for x ∈ [xk, xk+1).

A(x) =
∫ x

a
(x− y)−α−1|fπ(x)− f(x)− fπ(y) + f(y)|dy

≤ 2c(λ)|π|λ (x−xk)−α

1−α
+ c(λ) (x−xk)λ−α

λ−α

≤ 3c(λ) |π|
λ−α

λ−α

which means that
∫ b

a
A(x)dx → 0 as |π| → 0.

2) We take 1 − µ < α < λ, then the fractional derivatives Dα
a+f(x) and

(D1−α
b− g)b−(x) exist, and, moreover,

|(D1−α
b− g)b−(x)| ≤ 1

Γ(1−α)

( |g(b)−g(x)|
(b−x)1−α + (1− α)

∫ b

x
|g(y)−g(x)|
(y−x)2−α dy

)

≤ 1
Γ(1−α)

· c(λ)(b− x)µ+α−1
(
1 + 1−α

µ+α−1

) ≤ C

for some constant C. Therefore, according to part 1) of the proof,
∣∣∫ b

a
fπdg − ∫ b

a
fdg

∣∣ ≤ ∫ b

a
|(Dα

a+fπ)(x)− (Dα
a+f)(x)||(D1−α

b− g)b−(x)|dx

≤ C
∫ b

a
|(Dα

a+fπ)(x)−(Dα
a+f)(x)|dx → 0,

(2.1.7)
as |π| → 0. Furthermore, according to Corollary 2.1.1,

∫ b

a

fπdg =
n−1∑

k=0

f(xk)(g(xk+1)− g(xk)) → (R−S)

∫ b

a

fdg, (2.1.8)

and from (2.1.7)−(2.1.8) we obtain the desired equality. ¤
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Proposition 2.1.1. Some elementary properties of generalized Lebesgue-
Stieltjes integrals are:

(i)
∫ b

a
1(s,t)fdg =

∫ t

s
fdg, if both integrals exist in the sense of generalized

Lebesgue-Stieltjes integrals.
(ii)

∫ t

s
fdg +

∫ u

t
fdg =

∫ u

s
fdg for a ≤ s < t < u ≤ b, if all the integrals

exist as generalized Lebesgue-Stieltjes integrals.

2.2 Wick Integration with Respect to fBm with
H ∈ [1/2, 1) as S∗-integration

2.2.1 Wick Products and S∗-integration

Recall (Sections 1.4 - 1.5), that the random variable F on the probability
space S ′(R) belongs to S∗ if F admits the formal expansion (1.5.1) with
finite negative norm

‖F‖2
−q =

∑

α∈I

α!c2
α(2N)−qα < ∞

for at least one q ∈ N. Introduce the following notations:
(i) Let the function Z : R → S∗, and for any F ∈ S we have that

〈〈Z(t), F 〉〉 ∈ L1(R) as a function of t ∈ R.
(ii) In this case, define

∫
R

Z(t)dt as the unique element of S∗ such that
〈〈∫

R

Z(t)dt, F

〉〉
=

∫

R

〈〈Z(t), F 〉〉dt,

and say that Z is integrable in S∗.

Definition 2.2.1. The Wick products of two fractional stockastic fonction
F (ω) =

∑
α cαHα(w), G(ω) =

∑
β dβHβ(w), is defined as

(F♦G)(ω) =
∑

α,β

cαdβHα+β(w).

According to the ([12]), the wick product is commutative associative and
distributive with respect to addition

Theorem 2.2.1. Let the process Y (t) ∈ S∗ and admit an expansion Y (t) =∑
α cα(t)Hα(ω), t ∈ R, with the coeficients, satisfying the inequality

K = sup
α
{α!‖cα‖2

L1(R)(2N)−qα} < ∞
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for some q > 0.
Then the Wick product Y (t)♦ḂM

t is S∗-integrable, and, moreover,
∫

R

Y (t)♦ḂM
t dt =

∑

α,k

∫

R

cα(t)M+h̃k(t)dt·Hα+εk
(ω). (2.2.1)

Proof. Consider only ḂH
t and for ḂM

t the proof is the same. Since
〈h̃k, ω〉 = Hεk

(ω), we have that the Wick product Y (t) ♦ ḂH
t ∈ S∗ and

equals
∑

α,k cα(t)MH
+ h̃k(t)Hα+εk

(ω). According to ([12], Lemmas 2.5.6 and
2.5.7), the S∗-integrability of Y (t)♦ḂH

t follows from the inequality

∑

β∈I

β!

∥∥∥∥
∑

α,k:α+εk=β

cα(t)MH
+ h̃k(t)

∥∥∥∥
2

L1(R)

(2N)−pβ < ∞

for some p > 0. According to ([21], lemma 1.5.2)
∫

R

|cα(t)MH
+ h̃k(t)|dt ≤ Ck5/12‖cα‖L1(R)

for k ≥ 1, C > 0, and
∥∥∥∥

∑

α,k:α+εk=β

cα(t)MH
+ h̃k(t)

∥∥∥∥
2

L1(R)

≤ C

( ∑

α,k:α+εk=β

k5/12‖cα‖L1(R)

)2

.

Consider

S =
∑

β∈I

β!

( ∑

α,k:α+εk=β

k5/12‖cα‖L1(R)

)2

(2N)−pβ

≤
∑

β∈I

β!(l(β))5/6

( ∑

α,k:α+εk=β

‖cα‖L1(R)

)2

(2N)−pβ,

where l(β) is the length of the index β. Further, for any α, β there exists k,
such that α + εk = β. Therefore,

( ∑

α,k:α+εk=β

‖cα‖L1(R)

)2

≤ l2(β)
∑

α,k:α+εk=β

‖cα‖2
L1(R).

It means that

S ≤
∑

α,k

(α + εk)!(l(α + εk))
17/6‖cα‖2

L1(R)(2N)−pα−pεk
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≤ K
∑

α,k

(α + εk)!

α!
(l(α + εk))

3(2N)−(p−q)α−pεk

≤ K
∑

α,k

(|α|+ 1)42−|α|(p−q)k−p < ∞,

for p > q + 1, we have established the S∗−integrability of Y (t)♦ḂH
t . Now,

for any F =
∑

β,k dβ,kHβ+εk
(ω) ∈ S, we have from the definition of the

S∗−integral and of Wick product, that
〈〈∫

R

Y (t)♦ḂH
t dt, F

〉〉
=

∫

R

〈〈∑

α,k

cα(t)MH
+ h̃k(t)Hα+εk

(ω), F

〉〉
dt

=

∫

R

∑

α,k

(α + εk)!cα(t)dα,kM
H
+ h̃k(t)(ω)dt. (2.2.2)

Note that ∑

α,k

(α + εk)!|dα,k|(2N)2q(α+pεk) = Cq < ∞

for any q ∈ N. Therefore

∑

α,k

∫

R

(α + εk)!|cα(t)||dα,k||MH
+ h̃k(t)|dt ≤

∑

α,k

∫

R

(α + εk)!|dα,k|k5/6‖cα‖L1(R)

≤
(

CqK
∑

α,k

k5/6βk!

α!
(2N)−q|α|k−2q

)1/2

< ∞

for q > 11/12, βk = α+εk, because
∑

α
βk!
α!

(2N)−q|α| ≤ ∑
α(|α|+1)2−q|α| < ∞.

So, we can change the signs of sum and integral in (2.2.2) and obtain
〈〈∫

R
Y (t)♦ḂH

t dt, F

〉〉
=

∑
α,k(α + εk)!dα,k +

∫
R

cα(t)MH
+ h̃k(t)(ω)dt

=

〈〈∑
α,k

∫
R

cα(t)MH
+ h̃k(t)(ω)dt, F

〉〉

whence (2.2.1) follows. ¤

Corollary 2.2.1. Let Y (t) =
∑

α cα(t)Hα(ω) ∈ S∗ be a process such that∫ T

0
EY 2(t)dt < ∞ for some T > 0. Then

∑
α α!

∫ T

0
c2
α(t)dt =

∫ T

0
EY 2(t)dt <

∞ whence K = supα{α!‖c̄α‖2
L1(R)(2N)−qα} < ∞ for any q > 0, ( hereafter

we put c̄α = cα(t)1[0,T ](t)).
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2.2.2 Comparison of Wick and Pathwise Integrals for
"Markov" Integrands

In this subsection we consider the probability space (Ω, F, P ), the coordinate
process B : Ω → R defined as,

Bt(ω) = ω(t), ω ∈ Ω

is the Wiener process.
(i) Recall the notion of a stochastic derivative. Let F be a square-

integrable random variable, and suppose that

lim
β→0

1

β

(
F (ω· + β

∫ ·

0

h(s)ds)− F (ω·)
)

exists in L2(P )

for any h ∈ L2(R). Then this limit is called the directional derivative
DhF.

(ii) If the directional derivative DhF, h ∈ L2(R), is absolutely continuous
w.r.t. the measure h(x)dx, i.e.

DhF =

∫

R

dDhF

dh
(x) · h(x)dx,

and (dDh(F ))/(dh) does not depend on h, then this derivative is called
the stochastic derivative of F and is denoted by DxF.

(iii) Recall the notion of the class D1,2 , obtained as a completion
of the set P0 of smooth functionals F = f(Bt1 , . . . Bti), w.r.t. the norm
‖F‖1,2 = ‖F‖L2(P ) + ‖Dx‖F‖HS‖L1(P ) , where F ∈ P0, and ‖ · ‖HS denotes
the Hilbert-Schmidt norm.

Denote LM
2 (R) = {f : R→ R :

∫
R
|M−f(x)|2dx < ∞}.

Lemma 2.2.1. Let F ∈ D1,2, f ∈ LM
2 (R). Suppose that the integrals

∫

R

(M−f)(s) ·DsFds and F ·
∫

R

(M−f)(s)dBs = F ·
∫

R

f(s)dBM
s

belong to L2(P ). Then F♦
∫
R

f(s)dBM
s exists and

F♦
∫

R

f(s)dBM
s =

∫

R

(F ·M−f)(s)δBs

= F ·
∫

R

f(s) dBM
s −

∫

R

(M−f)(s) ·DsFds (2.2.3)
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Proof. By using ([12], Corollary 2.5.12) and ([23], Theorem 3.2), we
obtain for nonrandom f that

F♦
∫

R

f(s)dBM
s = F♦

∫

R

(M−f)(s)dBs

=

∫

R

(F♦M−f)(s)δBs =

∫

R

(F ·M−f)(s)δBs

= F ·
∫

R

(M−f)(s)δBs −
∫

R

(M−f)(s) ·DsFds

= F ·
∫

R

f(s)dBM
s −

∫

R

(M−f)(s) ·DsFds.

Note that according to ([23], Theorem 3.2), the Skorohod integral∫
R

F · (M−f)(s)δBs exists if and only if the difference F · ∫
R
(M−f)(s)dBs

−∫
R
(M−f)(s)·DsFds belongs to L2(P ). ¤

Lemma 2.2.2. Let ϕ ∈ C1(R), Ft = ϕ(BH
t ), f(s) = 1[t,t+h](s), t, h > 0. If

ϕ′(BH
t ) and Ft · (BH

t+h −BH
t ) belong to L2(P ), then

Ft♦(BH
t+h −BH

t ) = F · (BH
t+h −BH

t )

−Hϕ′(BH
t )t2αh + c(ω)(t2α−1h2 + h2H),

where c(ω) is a.s. finite and independent of t and h.

Proof. According to equation (2.2.3), we can rewrite formally the left-
hand side of the previous equality:

Ft♦(BH
t+h −BH

t ) = Ft · (BH
t+h −BH

t )

−
∫

R

(MH
− 1[t,t+h])(s)Dsϕ(BH

t )ds. (2.2.4)

Further, according to ( [21], lemma 2.3.5), it holds that

Dsϕ(BH
t ) = ϕ′(BH

t )DsB
H
t ,

and
DsB

H
t = Ds

∫

R

(MH
− 1[0,t])(u)dBu = (MH

− 1[0,t])(s).
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Therefore,

Ft♦(BH
t+h −BH

t ) = Ft · (BH
t+h −BH

t )

−ϕ′(BH
t )

∫

R

(MH
− 1[t,t+h])(s) = (MH

− 1[0,t])(s)ds,

and under the conditions of the lemma the right-hand side of equation (2.2.4)
is well-defined. Finally,

∫

R

(MH
− 1[t,t+h])(s)(M

H
− 1[0,t])(s)ds = E(BH

t+h −BH
t )BH

t

=
1

2
((t+h)2H − t2H −h2H) = Ht2αh+2Hαθ2α−1h2−h2H

where θ ∈ (t, t + h). The lemma is proved. ¤

Now,fix some T > 0 and consider the sequence

πn = {0 = tn0 < . . . < tnn = T} of partitions of [0, T ], such that πn ⊂ πn+1

and |πn| → 0 as n →∞. Suppose that

ϕ′(BH
t ) ∈ L2(P ), ϕ(BH

t ) ∈ L2+ε(P ), t ∈ [0, T ] (2.2.5)

for some ε > 0. According to Lemma 2.2.2, we can write

n∑
i=1

ϕ(BH
tni−1

)♦∆BH
i,n =

n∑
i=1

ϕ(BH
tni−1

)∆BH
i,n

−H

n∑
i=1

ϕ′(BH
tni−1

)(tni−1)
2α∆ti,n + Rn(T ),

where ∆ti,n = tni − tni−1, ∆BH
i,n = BH

tni
−BH

tni−1
. Here Rn(T ), is a remainder

term and Rn(T ) → 0 a.s. as n →∞. Furthermore, the process Ct := ϕ(BH
t )

is Hölder continuous up to order H. Also, by Theorem 2.1.1, part 2), the
sum

∑n
i=1 ϕ(BH

tni−1
)∆BH

i,n converges a.s. as n → ∞ to the pathwise integral∫ T

0
ϕ(BH

s )dBH
s . Clearly,

n∑
i=1

ϕ′(BH
tni−1

)(tni−1)
2α∆ti,n →

∫ T

0

ϕ′(BH
s )s2αds a.s.
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Therefore,

lim
n→∞

n∑
i=1

ϕ(BH
tni−1

)♦∆BH
i,n =

∫ T

0

ϕ(BH
s )dBH

s −H

∫ T

0

ϕ′(BH
s )s2αds a.s.

Moreover, under assumption (2.2.5) and

E

∫ T

0

(ϕ(BH
s ))2ds < ∞ (2.2.6)

there exists the Wick integral
∫ T

0
ϕ(BH

s )♦dBH
s . And from ([21], Theoreme

2.3.7)

∫ T

0

ϕ(BH
s )♦dBH

s = lim
n→∞

n∑
i=1

ϕ(BH
tni−1

)♦∆BH
i,n. (2.2.7)

Theorem 2.2.2. Under conditions (2.2.5) and

E sup
s≤T

(ϕ(BH
s ))2 +E sup

s≤T
(ϕ′(BH

s ))2 < ∞ (2.2.8)

equality (2.2.6) and (2.2.7), consequently, the equality

∫ T

0

ϕ(BH
s )♦dBH

s =

∫ T

0

ϕ(BH
s )dBH

s −H

∫ T

0

ϕ′(BH
s )s2αds

holds a.s.

Proof. We invit the reader to commet ([21], p.149) for the proof of this
theorem.

2.2.3 Reduction of Wick Integration w.r.t. Fractional
Noise to the Integration w.r.t. White Noise

Recall that for nonrandom integrands f ∈ LH
2 (R)

∫

R

f(t)dBH
t =

∫

R

(MH
− f)(t)dBt.

In this subsection we reduce
∫
R

Xt♦ḂH
t dt to the corresponding integral∫

R
(MH

− f)(t)♦Ḃtdt w.r.t. white noise.
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Theorem 2.2.3. Let the following conditions hold:

E

∫

R

|Xt|2dt < ∞ and E

∫

R

((MH
− |Xt|(t))2dt < ∞.

Then
∫

R

Xt♦ḂH
t dt =

∫

R

(MH
− Xt)(t)♦Ḃtdt a.s

Proof. According to Theorem 2.2.1 and Corollary 2.2.1, the condition
E

∫
R
|Xt|2dt < ∞ supplies the equality

∫

R

Xt♦ḂH
t dt =

∑

α,k

∫

R

cα(t)MH
+ h̃k(t)dt ·Hα+εk

(ω). (2.2.9)

First, replace the operator MH
+ in the last equality. Evidently,

∫

R

f(t)MH
+ g(t)dt =

∫

R

MH
− f(t)g(t)dt (2.2.10)

for f ∈ Lp(R), g ∈ Lq(R) with p > 1, q > 1 and 1
p

+ 1
q

= 1 + α = H + 1/2.

Moreover, h̃k ∈ Lq(R) for any q > 1. Since E
∫
R
|Xt|2dt =

∑
α α!

∫
R

c2
α(t)dt <

∞, we can take p = 2, q = 1
H

and obtain from (2.2.10) that
∫

R

cα(t)MH
+ h̃k(t)dt =

∫

R

(MH
− cα)(t)h̃k(t)dt. (2.2.11)

Further,consider the formal expansion Yt =
∑

α(MH
− cα)(t)Hα(ω). Again,

from Corollary 2.2.1, the condition

E

∫

R

Y 2
t dt =

∑
α

α!

∫

R

|(MH
− cα)(t)|2dt < ∞ (2.2.12)

ensures the equality
∫

R

Yt♦Ḃtdt =
∑

α,k

∫

R

(MH
− cα)(t)h̃k(t)dtHα+εk

(ω). (2.2.13)

So, we want to know when (2.2.12) holds and we need the equality Yt =
(MH

− X)(t). This follows from the equalities

((MH
− X)(t), Hα(ω))L2(P ) = (MH

− cα)(t) = MH
− (Xt, H(ω))L2(P ), (2.2.14)
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if they hold for any α ∈ I. Equalities (2.2.14) can be reduced to
∫

Ω

(∫ ∞

t

(x− t)α−1Xx(ω)dx

)
Hα(ω)dP

=

∫ ∞

t

(x−t)α−1

(∫

Ω

Xx(ω)Hα(ω)dP

)
dx (2.2.15)

for a.a. t ∈ R. In turn, the Fubini theorem can be applied to (2.2.15) in the
case when

E

(∫ ∞

t

(x− t)α−1|Xx(ω)|dx

)2

< ∞ for a.a. t ∈ R. (2.2.16)

because EH2
α(ω) = α! < ∞. Evidently, the condition E

∫
R
((MH

− |X|)(t))2dt <
∞ ensures both (2.2.12) and (2.2.16). The proof now follows from (2.2.9),
(2.2.11), (2.2.13) and (2.2.14). ¤

2.3 Skorohod, Forward, Backward and Sym-
metric Integration w.r.t. fBm.

Taking into account the definition of the integral for nonrandom function
w.r.t. fBm:

∫
R

f(t)dBH
t =

∫
R
(MH

− f)(t)dBt, and Theorem 2.2.3, it is desir-
able to define the integral

∫
R

f(t)dBH
t for stochastic integrands in a similar

way, for more information we refer the reader to ([28]). Let the stochastic
process Xt = Xt(ω) be such that

EX2
t < ∞ for all t ∈ R.

Then Xt admits a Wiener-Itô chaos expansion

Xt =
∞∑

n=0

∫

Rn

fn(s1, . . . , sn, t)dB⊗n(s1, . . . , sn),

where the functions fn(·) ∈ L2(R
n) and are symmetric in variables

(s1, . . . , sn), for n = 0, 1, 2, . . . , t ∈ R. Let f̂n(s1, . . . , sn, sn+1) be the sym-
metrization of fn(s1, . . . , sn, sn+1) w.r.t (n + 1) variables s1, . . . , sn, sn+1.

Definition 2.3.1. Assume that
∞∑

n=0

(n + 1)!‖f̂n‖L2(Rn+1) < ∞.
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fBm.

Then we say that the process X is Skorohod integrable, write
X ∈ Dom(δ), denote the Skorohod integral as

∫
R

XtδBt, and define it as∫
R

XtδBt =
∑∞

n=0

∫
Rn+1 f̂n(s1, . . . , sn+1)dB⊗(n+1)(s1, . . . , sn+1). The Skorohod

integral belongs to L2(P ),

E

∫

R

XtδBt = 0, and E|
∫

R

XtδBt|2 =
∞∑

n=0

(n + 1)!‖f̂n‖L2(Rn+1).

Definition 2.3.2. ([3]) Let the stochastic process Xt = Xt(ω) be such that
(MH

− X)(t) exists and belongs to Dom(δ). Then we define the Skorohod inte-
gral with respect to fBm BH as

∫

R

XtδB
H
t =

∫

R

(MH
− X)(t)δBt

for the underlying Wiener process B.

Theorem 2.3.1. Let MH
− X ∈ Dom(δ), E

∫
R
|Xt|2dt < ∞ and

E
∫
R
((MH

− |X|)(t))2dt < ∞. Then
∫

R

XtδB
H
t =

∫

R

Xt♦ḂH
t dt.

Proof. According to ([12], Theorem 2.5.9), the condition MH
− X ∈ Dom(δ)

ensures the existence of
∫
R
(MH

− X)(t)♦Ḃtdt and
∫

R

(MH
− X)(t)♦Ḃtdt =

∫

R

(MH
− X)(t)δBt =

∫

R

XtδB
H
t .

Further, according to Theorem 2.2.4,

∫

R

(MH
− X)(t)♦Ḃtdt =

∫

R

Xt♦ḂH
t dt

Whence the proof follows. ¤

Definition 2.3.3. Let H ∈ (0, 1). Let (ut)t∈[0,T ] be a process with integrable
trajectories. The symmetric integral of u with respect to BH

t is defined as

∫ t

0

usdBH,◦
s = P − lim

ε→0
(2ε)−1

∫ t

0

us(B
H
(s+ε)∧t −BH

(s−ε)∧t)ds,
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Definition 2.3.4. Let H ∈ (0, 1). Suppose that (ut)t∈[0,T ] is a process with
integrable trajectories. The forward integral of ut with respect to BH

t is defined
as

∫ t

0

usdBH,−
s = P− lim

ε→0
(ε)−1

∫ t

0

us(B
H
(s+ε)∧t−BH

(s))ds. (2.3.1)

The backward integral is defined as
∫ t

0

usdBH,+
s = P − lim

ε→0
(ε)−1

∫ T

0

us(B
H
(s−ε)∧t −BH

(s))ds.

Note that it is mentioned in ([21]) that, for u ∈ Cβ[0, T ] with β + H > 1
all the integrals, symmetric, forward, backward, and pathwise coincide.

2.4 Stochastic Fubini Theorem for Stochastic
Integrals w.r.t. Fractional Brownian Mo-
tion

In this section we prove the generalization of stochastic Fubini theorem for
the Wiener integrals with respect to fBm .

Definition 2.4.1. The nonrandom function f : R → R is called piecewise
Hölder of order α on the interval [T1, T2] ⊂ R(f ∈ Cα

pw[T1, T2]), if there exists
a finite set of disjoint subintervals {[ai, bi), 1 ≤ i ≤ N |⋃N

i=1[ai, bi] ∪ T2 =
[T1, T2]} and the function f ∈ Cα[ai, bi) for 1 ≤ i ≤ N.

As before, we denote

‖f‖Cα[ai,bi) = sup
ai≤t<bi

|f(t)|+ sup
ai≤s<t<bi

|f(t)− f(s)|
|t− s|α .

Definition 2.4.2. For f ∈ Cα
pw[T1, T2], let

‖f‖Cα
pw[T1,T2] = max

1≤i≤N
‖f‖Cα[ai,bi).

Let f ∈ Cα[a, b], g ∈ Cβ[a, b], with α + β > 1. Then we know that the
Riemann-Stieltjes integral exists, where

∫ b

a

f(t)dg(t) := lim
|πn|→0

kn−1∑

k=0

f(tnk)∆g(tnk), (2.4.1)
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where , πn = {a = t0k < t1k < . . . < tkn
k = b}, ∆g(tnk) = g(tnk+1) − g(tnk), πn ⊂

πn+1.
Moreover, according to ([8], Theorem 2.1), there exist the sequences

{fn, gn} ⊂ C(1)[a, b] such that ‖fn − f‖Cα[a,b] → 0, n →∞.
We shall use some bounds for integrals involving Hölder functions. They

are proved in [21].

Lemma 2.4.1. Let f ∈ Cα[a, b], g ∈ Cβ[a, b], α + β > 1, fm, gm ∈ C1[a, b],
m ≥ 1 and ‖fm − f‖Cα[a,b] → 0, ‖gm − g‖Cβ [a,b] → 0, as m →∞. Then

1)
∫ b

a
f(t)dg(t) = limm→∞

∫ b

a
fm(t)g′m(t)dt;

2) the following estimate holds:
∣∣∣∣
∫ b

a

f(t)dg(t)

∣∣∣∣ ≤ C‖f‖Cα[a,b] · ‖g‖Cβ [a,b] · ((b− a)1+ε ∨ (b− a)β);

3) if f(a) = 0, then
∣∣∣∣
∫ b

a

f(t)dg(t)

∣∣∣∣ ≤ C‖f‖Cα[a,b] · ‖g‖Cβ [a,b] · (b− a)1+ε, (2.4.2)

where 0 < ε < α + β − 1, C > 0 is a constant not depending on α and β.

Lemma 2.4.2. Let f be piecewise Hölder of order β > 1−H on the interval
[a, b]. Then there exists the Riemann-Stieltjes integral

∫ b

a

f(u)dBH
u =

N∑
i=1

∫ bi

ai

f(u)dBH
u

and for an arbitrary sequence πn of partitions of [a, b] it can be represented
as a limit ∫ b

a

f(u)dBH
u = lim

|πn|→0

kn∑

k=1

f(un
k)∆BH

un
k

(We suppose that
⋃N

i=1[ai, bi) = [a, b), [ai, bi) are disjoint and f ∈ Cα[ai, bi)).

Proof. Put πi
n := [ai, bi) ∩ πn. Evidently, |πi

n| ≤ |πn|. It follows from
boundedness of f and continuity of BH that

∑

j:un
j ∈πi

n

f(un
j )∆BH

un
j
→

∫ bi

ai

f(u)dBH
u

even in the case when πi
n does not contain ai or(and) bi.
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Therefore,
∑

k:un
k∈πn

f(un
k)∆BH

un
k

=
∑N

i=1

∑
k:un

k∈πi
n
f(un

k)∆BH
un

k

→ ∑N
i=1

∫ bi

ai
f(u)dBH

u =
∫ b

a
f(u)dBH

u , as |πn| → 0. ¤

Let 0 < T1 < T2, Φ = Φ(t, u, ω) : PT := [T1, T2]
2 × Ω → R be the random

function measurable in all the variables.

Theorem 2.4.1. Let there exist the set Ω′ ⊂ Ω such that P (Ω′) = 1 and let
for any ω ∈ Ω′ the function Φ(s, u, ω) satisfy the conditions:
1) ∀s ∈ (T1, T2)Φ(t, ·, ω) is piecewise Hölder of order β > 1−H in u ∈ [T1, T2],
and there exists C = C(ω) > 0 such that ‖Φ(t, ·, ω)‖Cβ

pw[T1,T2] ≤ C

2) the function
∫ T2

T1
Φ(s, u, ω)dBH

u is Riemann integrable in the interval [T1, T2].
Then there exist the repeated integrals

I1 =

∫ T2

T1

(∫ T2

T1

Φ(t, u, ω)dBH
u

)
dt and I2 =

∫ T2

T1

(∫ T2

T1

Φ(t, u, ω)dt

)
dBH

u

I1 = I2 P − a.s.

Proof. We fix ω ∈ Ω′ and omit ω throughout the proof. The in-
tegral

∫ T2

T1
Φ(t, u)dBH

u exists according to Lemma 2.4.2 and condition 1);
the repeated integral I1 exists according to condition 2). Since Φ(t, ·) is
piecewise Hölder, then from the evident bound

∫ T2

T1
|Φ(t, u1) − Φ(t, u2)|ds ≤

C(T2−T1)|u1−u2|α we obtain that
∫ T2

T1
Φ(t, u)ds is piecewise Hölder of order

α in u ∈ [T1, T2]. Further, since BH is Hölder up to order H > 1/2 and
α + H > 1, the integral I2 also exists. The integral I1 can be presented as a
limit of integral sums,

I1 = lim
|πn|→0

kn−1∑

k=0

∫ T2

T1

Φ(tnk , u)dBH
u ∆tnk . (2.4.3)

For any point tnk ∈ πn, according to condition 1), there exists a finite number
of points {u1,k < u2,k < . . . < ul(k),k} such that Φ(·, u) is Hölder between
them. Denote

{T1 = u0 < u1 < u2 < . . . < uL(n) = T2}

:=
kn⋃

k=1

{u1,k < u2,k < . . . < ul(k),k} ∪ {T1, T2}.

For any interval [ui, ui+1] we consider the sequence of partitions πi,r, r ≥ 1 of
the form

πi,r = {ui = u
(0)
i,r < u

(1)
i,r < . . . < u

(mr)
i,r = ui+1}, |πi,r| → 0, r →∞.
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Then π̃r =
⋃L(n)−1

i=0 πi,r ∪ {T1, T2} = {T1 = u
(0)
r < . . . < u

(Nr)
r = T2} is a

partition of interval [T1, T2] w.r.t. argument u, its diameter

|π̃r| = max1≤i≤L(n)−1 |π|i,r, and |π̃r| → 0, r →∞. Estimate the difference
|I1 − I2|

|I1 − I2| ≤
∣∣∣∣∣I1 −

kn−1∑

k=0

Nr−1∑
j=0

Φ(tnk , u
(j)
r )∆BH

u
(j)
r

∆tnk

∣∣∣∣∣

+

∣∣∣∣∣I2 −
Nr−1∑
j=0

kn−1∑

k=0

Φ(tnk , u(j)
r )∆tnk∆BH

u
(j)
r

∣∣∣∣∣ = ∆n,r
1 +∆n,r

2 . (2.4.4)

Further,

∆n,r
1 ≤

∣∣∣∣∣I1 −
kn−1∑

k=0

∫ T2

T1

Φ(tnk , u)dBH
u ·∆tnk

∣∣∣∣∣

+
kn−1∑

k=0

∣∣∣∣∣
∫ T2

T1

Φ(tnk , u)dBH
u −

Nr−1∑
j=0

Φ(tnk , u
(j)
r )∆BH

u
(j)
r

∣∣∣∣∣ ∆tnk .

Since Φ is piecewise Hölder, then, according to Lemma 2.4.2,

∣∣∣∣∣
∫ T2

T1

Φ(tnk , u)dBH
u −

Nr−1∑
j=0

Φ(tnk , u
(j)
r )∆BH

u
(j)
r

∣∣∣∣∣ → 0, r →∞.

According to (2.4.3),
∣∣∣I1 −

∑kn−1
k=0

∫ T2

T1
Φ(tnk , u)dBH

u ·∆tnk

∣∣∣ → 0, r →∞.

Therefore,

lim
n→∞

lim
r→∞

∆n,r
1 = 0. (2.4.5)

Further,

∆n,r
2 ≤

∣∣∣∣∣I2 −
Nn−1∑
j=0

∫ T2

T1

Φ(t, u(j)
r )dt ·∆BH

u
(j)
r

∣∣∣∣∣ .

(2.4.6)

+

∣∣∣∣∣
Nn−1∑
j=0

kn−1∑

k=0

∫ tnk+1

tnk

(Φ(t, u(j)
r )− Φ(tnk , u(j)

r ))dt ·∆BH

u
(j)
r

∣∣∣∣∣ .
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The second term can be expanded as

∣∣∣∣∣
kn−1∑

k=0

∫ tnk+1

tnk

Nn−1∑
j=0

(Φ(t, u(j)
r )− Φ(tnk , u

(j)
r ))∆BH

u
(j)
r

dt

∣∣∣∣∣ (2.4.7)

=

∣∣∣∣∣∣

kn−1∑

k=0

L(N)−1∑
i=0

∫ tnk+1

tnk

∑

u
(j)
r ∈πi,r

(Φ(t, u(j)
r )− Φ(tnk , u

(j)
r ))∆BH

u
(j)
r

dt

∣∣∣∣∣∣
.

Since the function Φ(s, u) − Φ(tnk , u) is Hölder on any interval [ui, ui+1) we
have that

lim
|πi,r|→0

∑

u
(j)
r ∈πi,r

(
Φ(t, u(j)

r )− Φ(tnk , u(j)
r )

)
∆BH

u
(j)
r

=

∫ ui+1

ui

(Φ(t, u)− Φ(tnk , u)) dBH
u (2.4.8)

Moreover, ∀0 ≤ i ≤ L(n) − 1 the sequence f r
i (t, tnk) =

∑
u
(j)
r ∈πi,r

(Φ(t, u
(j)
r ) −

Φ(tnk , u
(j)
r ))∆BH

u
(j)
r

has the integrable dominant. Indeed, we can use the
bounds from ([8], Corollary 20), Lemma 2.4.1 and the boundedness of Hölder
norms, and obtain that

|f r
i (t, tnk)| ≤

∣∣∣∣∣f
r
i (t, tnk)−

∫ u
(j)
r+1

u
(j)
r

(Φ(t, u)− Φ(tnk , u))dBH
u

∣∣∣∣∣

+

∣∣∣∣∣
∫ u

(j)
r+1

u
(j)
r

(Φ(t, u)− Φ(tnk , u))dBH
u

∣∣∣∣∣

≤ C|πi,r|ε · ‖Φ(t, ·)− Φ(tnk , ·)‖C[u
(j)
r ,u

(j)
r+1]

β′ · ‖BH‖
C[u

(j)
r ,ur+1]H

′

+

∣∣∣∣∣
∫ u

(j)
r+1

u
(j)
r

(Φ(t, u)− Φ(tnk , u)) dBH
u

∣∣∣∣∣ .

(2.4.9)

≤ C +

∣∣∣∣∣
∫ u

(j)
r+1

u
(j)
r

(Φ(t, u)− Φ(tnk , u)) dBH
u

∣∣∣∣∣ ,
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where β′ < β, H ′ < H and β′ + H ′ > 1. Using the second statement of
Lemma 2.4.1 and condition 1) of this theorem, we obtain the bound

∣∣∣∣∣
∫ u

(j)
r+1

u
(j)
r

(Φ(t, u)− Φ(tnk , u)) dBH
u

∣∣∣∣∣
≤ C‖Φ(t, ·)−Φ(tnk , ·)‖Cα′

pw[T1,T2] · ‖BH‖CH′ [T1,T2] ≤ C. (2.4.10)

Estimates (2.4.9) and (2.4.10) mean that we can use the Lebesgue dominant
convergence theorem and obtain that

lim
r→∞

∫ tnk+1

tnk

f r
i (t, tnk)dt =

∫ tnk+1

tnk

∫ ui+1

ui

(Φ(t, u)− Φ(tnk , u)) dBH
u dt

where the integrand
∫ ui+1

ui
(Φ(t, u)− Φ(tnk , u)) dBH

u is measurable and bounded
in t.
Therefore,

lim
r→∞

kn−1∑

k=0

L(n)−1∑
i=0

∫ tnk+1

tnk

∑

u
(j)
r ∈πi,r

(
Φ(t, u(j)

r )− Φ(tnk , u(j)
r )

)
∆BH

u
(j)
r

dt

=
kn−1∑

k=0

∫ tnk+1

tnk

∫ T2

T1

(Φ(t, u)− Φ(tnk , u)) dBH
u dt

=

∫ T2

T1

(∫ T2

T1

Φ(t, u)dBH
u

)
dt−

kn−1∑

k=0

∫ T2

T1

Φ(tnk , u)dBH
u ∆tnk . (2.4.11)

According to condition 2) of this theorem, the integral
∫ T2

T1
Φ(t, u)dBH

u is
Riemann integrable in t, therefore

lim
n→∞

kn−1∑

k=0

∫ T2

T1

Φ(tnk , u)dBH
u ∆tnk =

∫ T2

T1

(∫ T2

T1

Φ(t, u)dBH
u

)
dt. (2.4.12)

From Lemma 2.4.1,
∣∣∣∣∣∣
I2 −

L(n)−1∑
r=0

∫ T2

T1

Φ(t, u(j)
r )dt ·∆BH

u
(j)
r

∣∣∣∣∣∣
→ 0, as n →∞. (2.4.13)

Now the proof follows from (2.4.4)− (2.4.13). ¤
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2.5 The Itô Formula for Fractional Brownian
Motion

2.5.1 The Simplest Version

First, we present a very elegant proof of the Itô formula involving fBm from
([27]).

Lemma 2.5.1. Let BH be an fBm with H ∈ (1/2, 1), F ∈ C2(R). Then for
any t > 0

F (BH
t ) = F (0) +

∫ t

0

F ′(BH
u )dBH

u .

Proof. The Taylor formula with the reminder term in the integral form
gives us

F (x) = F (y) + F ′(y)(x− y) +

∫ x

y

F ′′(u)(x− u)du.

Let the sequence of partitions πn = {0 = tn0 < tn1 < . . . < tnkn
= t}

, |πn| → 0, n → ∞. Then F (BH
t ) − F (0) =

∑kn
k=1[F (tnk) − F (tnk−1)] =

∑kn
k=1 F ′(BH

tnk−1
)(BH

tnk
−BH

tnk−1
)+Rn

t , where Rn
t =

∑kn
k=1

∫ BH
tn
k

BH
tn
k−1

F ′′(u)(BH
tnk
−u)du.

Further, sup0≤u≤t |F ′′(BH
u )| < ∞ a.s. and for H ∈ (1/2, 1), and

P − lim
n→∞

kn∑

k=1

|BH
tnk
−BH

tnk−1
|2 = 0.

Therefore |Rn
t | ≤ 1

2
sup0≤u≤t |F ′′(BH

u )|∑kn
k=1

∣∣∣BH
tnk
−BH

tnk−1

∣∣∣
2 P→ 0. Even if we

do not know that the limit of integral sums
∑kn

k=1 F ′(BH
tnk−1

)(BH
tnk
− BH

tnk−1
)

exists (but we know it from Theorem 2.1.3) we can obtain this existence now
and moreover

F (BH
t )− F (0) =

∫ t

0

F ′(BH
u )dBH

u .

¤

2.5.2 The Itô Formula in Terms of Wick Integrals

The next result is a direct consequence of ([21], Theorems 2.3.8 and 2.7.3.)
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Theorem 2.5.1. Let the function F = F (t, x) : R+ × R → R be con-
tinuously differentiable in t and twice continuously differentiable in x. Let
Yt =

∑m
i=1 σiB

Hi
t , E|∂F

∂x
(t, Yt)|2+ε < ∞, t > 0 for some ε > 0,

E sup0≤s≤t

[(
∂F
∂x

(s, Ys)
)2

+
(

∂2F
∂x2 (s, Ys)

)2
]

< ∞, t > 0. Then

F (t, Yt)− F (0, 0) =

∫ t

0

∂F

∂t
(s, Ys)ds +

∫ t

0

∂F

∂x
(s, Ys)♦dYs

+
m∑

i,k=1

σiσkC̃Hi,Hk
(Hi+Hk)

∫ t

0

∂2F

∂x2
(s, Ys)s

Hi+Hk−1ds. (2.5.1)

2.5.3 The Itô Formula for H ∈ (0, 1/2)

We use the integral representation of fbm via the underlying Wiener process
B on the finite interval [0, t] :

BH
t =

∫ t

0

mH(t, s)dBs

= C
(6)
H tα

∫ t

0

u−α(t− u)αdBu − C
(6)
H α

∫ t

0

sα−1

(∫ s

0

u−α(s− u)−αdBu

)
ds.

Let the fonction F ∈ C3(R) and we want to expand F (BH
t ). Note that

BH
t = BH

t,t where for 0 < z < t, BH
z,t = C

(6)
H zα

∫ z

0
u−α(t− u)αdBu

−C
(6)
H α

∫ z

0
sα−1

(∫ s

0
u−α(s− u)−αdBu

)
ds. Therefore

F (BH
t ) = F (0) +

∫ t

0

F ′(BH
z,t)dzBH

z,t +
1

2
(C

(6)
H )2

∫ t

0

F ′′(BH
z,t)(t− z)2αdz

= F (0) + αC
(6)
H

∫ t

0

F ′(BH
z,t)z

α−1

∫ z

0

u−α(t− u)αdBudz

+C
(6)
H

∫ t

0

F ′(BH
z,t)(t− z)αdBz

−αC
(6)
H

∫ t

0

F ′(BH
z,t)z

α−1

(∫ z

0

u−α(t− u)−αdBu

)
dz.

+
1

2
(C

(6)
H )2

∫ t

0

F ′′(BH
z,t)(t− z)2αdz (2.5.2)
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further

BH
z,t = BH

z + αC
(6)
H zα

∫ z

0

u−α

∫ t

z

(v − u)α−1dvdBu.

= BH
z + αC

(6)
H zα

∫ t

z

∫ z

0

u−α(v − u)α−1dBudv (2.5.3)

whence

F ′(BH
z,t) = F ′(BH

z ) +

∫ t

z

F ′′
(

BH
z + αC

(6)
H zα

∫ r

z

∫ z

0

u−α(v − u)α−1dBudv

)
.

×αC
(6)
H zα

∫ z

0

u−α(r − u)α−1dBudr = F ′(BH
z ) + φ(F ′′, z, t), (2.5.4)

and similar relation holds for F ′′(BH
z , t). But

∫ r

z

∫ z

0

u−α(v−u)α−1dBudv =
1

α

∫ z

0

u−α[(r−u)α−(z−u)α]dBu. (2.5.5)

Substituting (2.5.3)− (2.5.5) into (2.5.2), we obtain the following result.

Theorem 2.5.2. Let H ∈ (0, 1/2), BH be an fBm with Hurst index H, repre-
sented as BH

t =
∫ t

0
mH(t, s)dBs. Denote Yr,z := C

(6)
H

∫ z

0
u−α(r − u)αdBu, 0 ≤

z ≤ r, Yz := Yz,z. Then

F (BH
t ) = F (0) +

∫ t

0

F ′(BH
z )αzα−1Yt,zdz + C

(6)
H

∫ t

0

F ′(BH
z )(t− z)αdBz

−α

∫ t

0

F ′(BH
z )zα−1Yt,zdz +

1

2
(C

(6)
H )2

∫ t

0

F ′′(BH
z )(t− z)2αdz + Rt,

where

Rt = α

∫ t

0

φ(F ′′, z, t)αzα−1Yt,zdz + C
(6)
H

∫ t

0

φ(F ′′′, z, t)(t− z)αdBz

−α

∫ t

0

φ(F ′′, z, t)zα−1Yt,zdz +
1

2
(C

(6)
H )2

∫ t

0

φ(F ′′′, z, t)(t− z)2αdz,

2.6 The Girsanov Theorem for fBm
Consider the kernel lH(t, s) = C

(5)
H s−α(t − s)−α, 0 < s < t. Let Ft =

σ{BH
s , 0 ≤ s ≤ t} = σ{Bs, 0 ≤ s ≤ t}, where B is underlying Wiener

process in the representation

MH
t =

∫ t

0

lH(t, s)dBH
s , Bt = α̂

∫ t

0

sαdMH
s .
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Assume that the random process {φt, t ≥ 0} is adapted to filtration Ft and
satisfies

∫ t

0

lH(t, s)|φs|ds < ∞, t > 0, P − a.s. (2.6.1)

Assume also that we have the representation
∫ t

0

lH(t, s)φsds = α̂

∫ t

0

δsds, t > 0 (2.6.2)

with some Ft-adapted process δ satisfying
∫ t

0

|δs|ds < ∞, P − a.s., t > 0, (2.6.3)

and

E

∫ t

0

s2αδ2
sds < ∞, t > 0. (2.6.4)

Define a square-integrable martingale L by Lt :=
∫ t

0
sαδsdBs.

Theorem 2.6.1. Assume that we have (2.6.1) − (2.6.4) and the martingale
L satisfies

E exp{Lt − 1/2〈L〉t} = 1, t > 0.

Then the process B̃H
t := BH

t − ∫ t

0
φsds is an fBm with respect to measure Q,

where the measure Q, is defined by

dQ

dP

∣∣∣∣
Ft

= exp

{
Lt − 1

2
〈L〉t

}
.

Proof. Note first that the integral

M̃H
t =

∫ t

0

lH(t, s)dB̃H
s =

∫ t

0

lH(t, s)dBH
s −

∫ t

0

lH(t, s)φsds (2.6.5)

exists, since both integrals exist as pathwise integrals (the first integral was
studied in Section 1.8 and (2.6.2) ensures the existence of the second integral).
Moreover, from (2.6.2) it follows that

M̃H
t = MH

t − α̃

∫ t

0

δsds = α̃

(∫ t

0

s−αdBs −
∫ t

0

δsds

)
.



The Girsanov Theorem for fBm 75

Evidently,
[
M̃H

]
t

:= P − lim|π|→0

∑
ti∈π(M̃H

ti
− M̃H

ti−1
)2 exists and equals[

M̃H
]

t
= t1−2α. Therefore, for any θ ∈ R we have for M̂H

t = α̂M̃H
t that

θM̂H
t − θ2

2

[
M̂H

]
t
+ Lt − 1

2
〈L〉t = θ

∫ t

0

s−αdBs − θ

∫ t

0

δsds− θ2

2

t1−2α

1− 2α

+

∫ t

0

sαδsdBs − 1

2

∫ t

0

s2αδ2
sds =

∫ t

0

(θs−α + sαδs)dBs

−1

2

∫ t

0

(θ2s−2α− 2δsθ + δ2
ss

2α)ds =: Rt− 1

2
〈R〉t, (2.6.6)

where R is a square-integrable martingale given by Rt :=
∫ t

0
(θs−α+sαδs)dBs.

But (2.6.6) means that the process

Kt := exp

{
θM̂H

t − θ2

2

[
M̂H

]
t
+ Lt − 1

2
〈L〉t

}

is a local P− martingale. This implies, in turn, that the process
exp

{
θM̂H

t − θ2

2

[
M̂H

]
t

}
is a local Q-martingale. From ([21], p.192), we can

conclude that M̂H is a local Q-martingale with the angle bracket 〈M̂H〉t =∫ t

0
s−2αds and so M̃t = α̃

∫ t

0
s−αdB̃s ,where B̃ is a standard Brownian motion

with respect to Q (and is obtained from B by subtracting a drift). This
means that

∫ t

0

lH(t, s)dB̃H
s = α̃

∫ t

0

s−αdB̃s. (2.6.7)

Now, using two representations for B̃H , (2.6.5) and (2.6.7), we can obtain
(1.8.8) for B̃H and then conclude from ([21], Remark 1.8.2) that it is the fBm
with respect to the measure Q. ¤
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