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Introduction

Fractional Calculus is the feilds of mathematical analysis which deals
with the investigation and application of the integrals and derivative of arbi-
trery order. The term fractional is misnomer but it is retained following the
prevailing use.

The fractional calculus may be considered an old and yet novel topic.
It is an old topic since, starting from some speculations of G.W. Leibniz
(1695, 1697) and L. Euler (1730), it has been developed up to nowadays. In
fact the idea of generalizing the notion of derivative to non integer order,
in particular to the order 1/2, is contained in the correspondence of Leibniz
with Bernoulli, L’Hopital and Wallis. Euler took the first step by observing
that the resuit of the evaluation of the derivative of the power function has
a meaning for non-integer order thanks to his Gamma function.

A list of mathematicians, who have provided important contributions
up to the middle of the 20-th century, includes P.S. Laplace (1812), J.B.J.
Fourier (1822), N.H. Abel (1823-1826), J. Liouville (1832-1837), B. Riemann
(1847), A.K. Grinwald (1867-1872), P.A. Nekrassov (1888), J. Hadamard
(1892), O. Heaviside (1892-1912), G.H. Hardy and J.E. Littlewood (1917-
1928), H. Weyl (1917), P. Levy (1923), A. Marchaud (1927), H.T. Davis
(1924-1936), A. Erdélyi (1939-1965), H. Kober (1940), D.V. Widder (1941),
M. Riesz (1949), W. Feller (1952).

However, it may be considered a novel topic as well, since only from a
little more than thirty years it has been object of specialized conferences and
treatises. B. Ross organized the First Conference on Fractional Calculus and
its Applications 1974.

Nowadays, to our knowledge, the list of texts in book form devoted to
fractional calculus includes less than 20 titles. In recent years considerable
interest in fractional calculus has been stimulated by the applications that
it finds in different fields of science, including numerical analysis, physics,
biology, economics and finance.

This senior thesis is orgnized as follows. In chapter 1 we develop the
Wiener integration w.r.t fractional Brownian motion. In this chapter we
will give definitions and properties of the needed theory. We briefly recall
some basic notions of the Fractional calculus, then we skim through the Frac-
tional Brownian Motion we review rapidly the basic concepts, then we discuss
Wiener integration with respect to fBm and various relations between differ-
ent "integrable spaces" related to fBm. Finally, we provide new and rather
simple proofs of some basic properties not only for the fractional Brownian
motion. But for Wiener integration w.r.t fractional Brownian motion.
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Next, Chapter 2 is devoted to stochastic integration w.r.t. fractional
Brownian motion and other aspects of stochastic calculus of fBm. There
exist several approaches to stochastic integration w.r.t. fractional Brown-
ian motion: pathwise integration in Sobolev-type spaces, Wick integration,
Skorohod integration and some others that are not mentioned here.



Chapter 1

Wiener Integration with Respect
to Fractional Brownian Motion

In this chapter, we have two linked aims. Define the Wiener integral, and give
some properties of fractional Brownian motion and of integral with respect
to this process. The main references for this chapter are [21], [26], [25].

1.1 The Elements of Fractional Calculus

Definition 1.1.1. Let f be a deterministic real valued function that belongs
to Ly(a,b), where (a,b) is a finite interval of R. Define the Riemann Liouville
left-right sided fractional integration on (a,b) of order o > 0 by

(1o f /f r— ) dt,
(15 f /f (t— 20,

Definition 1.1.2. The Riemann-Liouville fractional integrals on R are de-
fined respectively by

(19 )(x) = ﬁ / " F) e — e,

(12f)(x / F)(t —z)* " at,

and

respectively.

and



8 The Elements of Fractional Calculus

The fonction f € D(IF, ) (respectively D(I{)) if the respective inte-
grals converge for almost all = € (a, b)(respectively = € R).

According to [26], we have inclusion L,(R) € D(I2), 1 < p < . More-
over, the following theorem holds.

Theorem 1.1.1. ([26].) Let 1 < p,q < 00,0 < a < 1. Then the operators
I are bounded from L,(R) to Ly(R) if and only if 1 < p < % and q =
p(1—ap)~t. This means, in particular, that for any 1 < p < é and q = lf’ap,
there exists a constant Cp, 4, such that

([([ 1l a=aar)’ < Cpuallw: (1)
R JR

Fractional integration admits the following composition formulas
ILIf =187f
for f e L,(R),a,f>0and a+ (3 < ]l?.

Integration-by-parts formula for fractional integrals
Let f € L,(R),g € L,(R),p>1,¢>1and %—i— % =1+ a. Then

/wmwﬁmm:/ﬂ@mmmm. (11.2)
R R

Let C*(T) be the set of Holder continuous functions f : T'— R of order \,
If a > 0 and ap > 1. Then I¢(L,(R)) C C*a,b] for any —0o < a < b < o
and 0 < A < a — Il).

Definition 1.1.3. For p > 1, denote by I$(L,[a,b]) the class of functions
f, that can be presented as Riemann — Liouville integrals. For 0 < o < 1
it coincides for a.a. x € [a,b] with the left-(right-) sided Riemann-Liouville
fractional derivative of f of order oo. These derivatives are denoted by

(12 0)a) = (DNl = g | FOG =0

and

(120)@) = (D)) = gz [ 1O =)

respectively.
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Weyl representation of fractional derivatives
Let f € Ly[a,b], the Weyl representation of fractional derivatives holds:

(D2 0)) = s a4 [ G- F0) a0 )30 (0),
and
(L)) = rras (-2 [ (@)= F0) =) 1)1 o),
respectively.
Let f € I (L,(R)),0 < a<1and p> 1. Then

s (113
moreover, for f € L1(R) we have that

I“Itf=f. (1.1.4)

We set 19 f := f.
The composition formula for fractional derivatives has the form

D3+D5+f: Dgiﬁ ) (1.1.5)

where o > 0,3 > 0 and f € I°7°(Li(R)).

Also, under the assumptions 0 < a < 1, f € I$, (Lp[a,b]) and g € If* (L4[a, b)),
% + % < 1+ a we have the integration-by-parts formula for fractional deriv-
atives

b b
/ (D2, f)(@)gla)de = / f(2)(D§_g)(x)dz. (1.1.6)

Lemma 1.1.1. Let H € (0,3) U (3,1) and a = H — %. Then, for allt € R,
we have the equality

1

(I220)(x) = I'(1+a)

((t=2)F = (=2)%).
Proof. Let H € (%, 1) and, for example, z < 0 < ¢. Then,

1

(I*400)(@) = a7 | oo ()u =" du
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1 t =Ly = —1 —z)*—(—x)*
:m/o(u—x) = gy (=2 =) (1.1.7)

Let H € (0,1). According to the definition of the fractional derivative and
(1.1.3), we must prove that

/OO((t —uw)? — (—u)%)(u—2) " du = T(—a)T(a + 1)L (). (1.1.8)

Let, for example, 0 < & < t. Then the left-hand side of (1.1.8) equals
t
/ (t = w)(u — )" "dud o) ()

= B(a+1,—a)lgy(z) =T(—a)l(a+ 1)Ly (x).

The other cases can be considered similarly.

Definition 1.1.4. The Fourier transform of f is defined as

~

(Ff)(z) = Flz) = /R et F (1)t

Theorem 1.1.2. (/26]) (2) For any 0 < a < 1 and f € Li(R) it holds that

FULf) (@) = fla).(Fiz)™

where (Fiz)™ = |z|%exp { FLlsign = }.
(12) For any 0 < a <1 and f € S(R) it holds that

~

FUL) = o) (Fix)®

Definition 1.1.5. f is step function, or elementary function, if there exist
a finite number of pointst, € R,0 <k <n—1, and ar, € R,1 < k <n, such
that

f(t) = Zakl[tk—lvtk)(t>'
k=1
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1.2 Fractional Brownian Motion

Let (2,3, P) be a complete probability space.

Definition 1.2.1. The (two—sided, normalized) fractional Brownian motion
(fBm) with Hurst index H € (0, 1) is a Gaussian process BY = {Bl |t € R}
on (2, F, P), having the properties

(i)By' =0,

(ii)EBf =0, teR

(1)) EBE B = S([t|* + [s|* — |t — s|*7), t,seR

Remark 1.2.1. Since E(Bff — Bf)? = |t — s|?" and B"is a Gaussian
process, it has a continuous modification, according to the Kolmogorov theo-
rem( see,[21]).

The characteristic function has the form
S~ 1
o(t) = Eexp{i Z \eBfI} = e:vp{—é(C't)\, A
k=1

where C; = E(B/'B{")1<i p<n. Therefore, it follows from item (i77) of Defini-
tion 1.2.1, that for any g > 0

oA(5t) = exp{— B (CA, V). (1:2.1)

Definition 1.2.2. A stochastic process X = X;,t € R s called b-self-similar
of
{Xatat c ]R,} i {CLbXt,t € R}

in the sense of finite-dimensional distributions.

From Definition 1.2.2 and (1.2.1) it follows that B is H-self-similar.
Note that

E(B{'-B;")(B,/-B}) = %(IS-UIzHﬂLIt—vle—It—UIzH—IS—UIZH)- (1.2.2)
It follows from (1.2.2) that the process By has stationary increments . Let
H = % Then the increments of B are non-correlated, and consequently
independent. So B is a Wiener process which we denote further by B or
W. For H € (0,3) U (3,1) and t; <ty < t3 < ta, it follows from (1.2.2) for
oa=H— % that

to tq
B(B! ~ BB - By =208 [ [ (= op* tdud.
t1 t3
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Furthermore, for any n € Z/{0} the autocovariance function is given by
1 n+1
r(n) .= EBY (B, — BY) = 2aH/ / (u — v)** dudv.
0 n

~2aH |n|*t |n|— co.

If H € (0, %), then ) . |r(n)| ~ ZnEZ/{O} |n 2 1< .

If H € (3,1), then 3%, | r(n) |~ 3, cpqoy | 7 [7*7'= oo. In this case
we say that fBm B has the property of long-range dependence.

1.3 Mandelbrot-van Ness Representation of fBm

Let W = {W,,t € R} be the two-sided Wiener process, i.e. the Gaussian

process with independent increments satisfying EW, = 0 and EW,W, =
1

sAt, s,t € R. Evidently, W = Bz. Denote kg (t,u) := (t —u)% — (—u)

where a = H — % The following representation is due to Mandelbrot and

van Ness ([19]).

Theorem 1.3.1. The process B = {Ef,t € R} define by

_ 1.1
Bf:q&?)/ by (t,w)dW,, H e (0,=)U(=,1)

& 2/ 7 \%
where
o I 1\ (2HsinwHT(2H))"/?
¢ (/m(( +5)" = 5%) S+2H> T(H +1/2)

has a continuous modification which is a normalized two-sided fBm.

Proof. Evidently, B" is a Gaussian process with Eé{ = 0 and EF? = 0.
Furthermore, it holds that for ¢ > 0,

EB)? = (09)2 </; K2 (t, u)du + /Dt@s - u)2adu> — 2t

For t < 0 we have that

BEB)? = (c}?)Q ( / t K2 (t, u)du + /t 0(—u)2"‘du) — (—1)2H,

—00
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Furthermore, for A > 0, it holds that
B, B - 09/ (ki (s + by ) — kgg(s, ) AW,

s+h

Note that I; and I, are independent, and W has stationary increments.
Therefore,

0 h
LZc? / (kg (hyu) — kg (0,w))dW,, I, < / (kg (h, w))dW,.
[e%) 0

and E(B..,—B.)? = E(B,

E(B, )? = h?". By combining these results, we obtain
that
EB, B,

s t

= S(B(B)+E(B')? - E(B, - B

S

=St + s P =T t=s ).

(1.3.2)
The proof follows immediately from Definition 1.2.1 and Remark 1.2.1.
O
Definition 1.3.1. Define the operator
(3) 7
MIf = { Crlif HeQ.DUED, (1.3.3)
f7 H = 29

where C\Y = COT(H + 3).

Corollary 1.3.1. It follows from Lemma 1.1.1 and Theorem 1.3.1, that for
any H € (0,1) the process

BY = [ (" 500)(5).
R

is a normalized fractional Brownian motion.

(1.3.4)

1.4 Fractional Brownian Motion with H € (3, 1)
on the White Noise Space

Definition 1.4.1. Let S(R) denotes the Schwartz space of rapidly decreasing
smooth functions on R, and let Q@ = S'(R) be its dual space ,usually called
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the space of tempered distributions . Let P be the probability measure on the
o—algebra of Borel sets F(S'(R)) definde by the property that

Beap(i(f, ) = eapls || f [Rue), f € S(R) (1.4.1)

where (.,.) denotes the dual operation.

Using (1.4.1) one can prove that

E(<f7 w)) =0, E(<f7 w>)2 :H f H%Q(R) forall f € S(R>7 (1'4'2)

from (1.4.1),(1.4.2), it follows that the process W; = (1j94,w), is a stan-
dard Brownian motion.

Define two stochastic processes
B (t)(w) = (Mf]l(oi),w), te R

Then the processes BY(t) are Gaussian, EBY(t) = EBY(t) = 0. For the
covariance function, it holds that

EBY(1)BY (s) = /R (M 00) (@) (ML) (@)de.  (143)

By considering the sign "—", we obtain from (1.3.4) that the right-hand side
of (1.4.3) coincides with

EBEIBE = fIR(Mﬁ:ﬂ_(o,t))(I)(Mfljl(oﬁ))(l’)dl’
= S(PTH P = |t — s,

One obtains the same result if one considers the sign ” +" .

Therefore, each of the processes BY has a modification that is a normal-
ized fBm. The process B (t) = [ (M7 1g))(s)dW;, is called a "backward”
fBm, depends only on the past, i.e. on {Ws, s € (—o0,t)}. where Wy(w) =
(1(0,),w). The process B (t) is called a " forward” fBm; it admits the rep-
resentation BY = [o (M, 1)(s)dWs, and depends on future values of W,
iL.e. on {Wy,s € (t,+00)}.

Consider the linear combinations of the operators M1* and of fractional
Brownian motions with different Hurst indices

Myf(x) =Y oM f(z), op>0
k=1
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and
BY(t) == oxB¥(t) = (ML), w). (1.4.4)
k=1

Clearly, the operators M, are mutually adjoint in the same way as M.

1.5 Fractional Noise on White Noise Space

Let J be the set of all finite multi-indices o = (v, ..., ) with a; € No.
Denote |a| = a1 +...+ap, a! := aq!... @,!. Define the Hermite polynomials
by

22 d" 2

hal) = (—1)"e T (e™™)

and Hermite functions

ho(z) = 7 V4 ()22 2 by (2)e ™2, n > 0.

Define

n

ﬂ{a(w) = H hai(<%i: w>)a

i=1

the product of Hermite polynomials and consider a random variable
F = F(w) € Ly(R) := Ly(S'(R), F, P).

Then, according to ([12], Theorem 2.2.4), F(w) admits the representation

| F(w) = egcaHa(w), (1.5.1)

| f ||%2(Q): ZO‘!CZ < 00.

aed

Next, we introduce the following dual spaces.
(i) F € S if the coeffcients from expansion (1.5.1) satisfy

I f 7= Za!ci(ZD\l)ka < 00.

aeld

for any k > 1, where (2N)” = []7,(25)", v = (11 .- ym € J).
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(ii) F € S* if F admits the formal expansion (1.5.1) with finite negative
norm

I f 2= Za!ci(%\l)_q“ < 00.

aed

for at least one ¢ € N(in this case we say that F' € S_;). For F =
YouCaHa €S, G=>", d.H, € S* we define

(F.G) = Z alcad,.

a€ed

Now we want to present the linear combination B} (t) of fBms in terms
of hy, k> 1.

Lemma 1.5.1. It holds that

BY(t) =Y /Ot Mehy(x)dz(hy,w), t € R, we S'(R), (1.5.2)

and the series converges in Lo(£2).

Now, we introduce the fractional noise B¥ as the formal expansion
B (w) =Y " M{hy(x) (s, w),
k=1
and the linear combination of fractional noises as
BY (@) =) Myhy(a)(hy, ).
k=1
Recall, that here we consider only H € [1/2,1) and that
Bufw) = 3 hul) (. )
k=1

is white noise.

Lemma 1.5.2. The fractional noise BT and the linear combination BM of
such noises belong to S* for any x € R.

Proof. (See|21])
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1.6 Wiener Integration with Respect to fBm

Let (2,7, P), an arbitrary complete probability space, and consider L (R) =
{f: M2f e Ly(R)} equipped with the norm 1l e ) = M fl Ly m)-

Definition 1.6.1. Let f € LY (R). Then the Wiener integral w.r.t. fBm is
defined as

Iy(f) ::/]Rf(s)stH = /R(MHf)(S)dWs. (1.6.1)

Here, B and W are connected as in (1.3.4).
As a particular case, consider the step function f defined as in definition
1.1.5. Then, from the linearity of the operator M, we have that

Iu(f) = Zak/RMﬂ[tkl,tk)(s)dWs => a(B =B ). (162
k=1 k=1

A question arises: in which sense can we consider formula (1.6.1) as the
extension of the sum (1.6.2)7
Note, that for a step function, it holds that

”IH(f)“%Q(Q) = ZZk:l ;0 fR Mf[jl'[tk—lztk)(:L‘)Mflﬂ[tiflyti)(x)dx
(1.6.3)
=[| M f ||%2(IR): 2aH fR2 f)f() | w—wv[**7" dudv,

where the last equality holds for H € (1/2,1) but not for H € (0,1/2).
Nevertheless, for any 0 < H < 1 we have the following:

Lemma 1.6.1. (/4]) For 0 < H < 1, it holds that the linear span of the set
{MH 1), u,v € R} is dense in Ly(R).

Proof. We invite the reader to commet ([21], p.16) for more information
about the proof of this result.

Theorem 1.6.1. The space L is incomplete for H € (1/2,1).

Proof. The operator MY : L (R) — Lo(R) is isometric. So, LI (R)
can be identified with its image in Lo(R). According to Lemma 1.6.1,
LI (R) is dense in Ly(R), but in ([21], remark 1.6.1) it was demonstrate that
LI(R) # Ly(R). Therefore, the image M (LI (R)) and hence L (R) it self,

is incomplete. ([l
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In spite of the incompleteness of L¥ (R) for H € (1/2,1), due to Lemma
1.6.1, we can approximate any f € LZ(R) by step functions f,, € L¥(R).
Then M f, — MY f in Ly(R), and we have that

_ /R F(2)dBY = / (M )(s)dW,

= limy oo [ (MZ f)(s)dW, = limy, oo [ fu(s)dBE,

where the convergence is in Ly(2). Furthermore, for H € (1/2,1), w
have that

E|Iy(f /|MH ) |? da

for f € LI(R); however, in general, it does not hold (compare with (1.6.3))
that

E|Iy(f 2aH/ flu — v |**7 dudv, (1.6.4)
even if the last integral is finite. This equality can be obtained only if we can
apply the Fubini theorem or if we can prove that the integral [p, fi () fn(v)|u—
v[**~!dudv with step functions f, converges to [p. f(u)f(v)u —v[**~dudv.

Both things need some additional assumptions.
For H € (1/2,1), define the space of measurable functions by

Ry | {f:RHR'/RZ | F ) || £ ) o o dudv<oo},

with the norms

| f H|RH|1— 2aH/ fu)f) | u—v **° " dudv (1.6.5)

and

|7 o= 208 [ 1760 170 s (7 o, (160
For H € (0,1), we introduce one more space,

Fy = {f:R—)]R,‘fGLQ(R)/ ]f(x) \2|x\2°‘d:c<oo},
R
with the norm

1712, = /R (@) Pl]**de. (16.7)
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Moreover, consider L%(R) with the norm

g = [ IOV 7)) P (1.6.8)

Below we study the most important features of these spaces.
Note, at first, that the norms defined in (1.6.5) — (1.6.8) are all generated
by corresponding inner products. Namely,

(f, g)|RH1—2aH/ f(u)g(v)u—v** *dudv, (1.6.9)
(f,9)rul2 = 2aH/ u)||g(v)||u—v[**  dudv, (1.6.10)
/f ()| dx (1.6.11)

and
(g = [ V1) (@) (M g) (o) (1.6.12)

Thus, all these spaces are spaces with inner products. Furthermore, (1.6.5)
is indeed a norm on | Ry | . Indeed, we can apply the Fubini theorem, use
the following relation from ([11]):

SNt
/ (s — w)* Mt —u)* du = CP|t — s>,

where C’g) = W, and rewrite (1.6.5) as

2aH/ fu)f(v)|u —v|** *dudv
R

(0(4)) "2a0H f( )f(v )/u U(u —2)* v — 2)* tdzdudv

12aH// Flu)(u — ) 1du/:o F@) (0 — 2)*dvdz

= <c§,>>-12Ha< N2 MEF = 20H(CP) D) 2 f
(1.6.13)

Lemma 1.6.2. We have that the space Li(R) N Ly(R) C Liu(R) C| Ry |
for any H € (1/2,1).
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Proof. It is enough to prove that for any f € L;(R)NLy(R) the iterated
integral is finite,

= [ ([ vt a) s .

From Theorem 1.1.1 with o = 2H —1,p = % and ¢ = —2— = —_ we obtain

1—2ap 1-H
that

zg(/Rrﬂu)\édu)H</R(/R\f<v>Hu—vr?H1dv)“1Hdu)

< Flewywery Crpmap—mom—1 | f oy ww=Co [l 112, @) -
Obviously, Li(R) N Ly(R) € Ly/u(R) for H € (1/2,1), whence the claim

follows.

|

Lemma 1.6.3. The inclusion Li(R) N Ly(R) C Fy is valid if and only if
He(1/2.1).

Proof. Assume that H € (1/2,1). Since |f($)| < || fllz,m) for any
x € R, we have that

/R )Pl 2ede = /| Pl nde + / @) Pl 2 de

lz|<1

< /R F@) Pz + 1 ey / e < Uy + (= D)7 e
x|<1

Let H € (0, 3). According to ([24]), take the function f(u) = sign us with

|u|?

p € (H,3). Evidently, f € Li(R) N Ly(R). Nevertheless, due to ([10], p.491),

F(A) = 20(1 — p)(A2 + 1)"= sin((1 — p) arctan A) ~ |A[P~

as |\| — oo, and 2p — 2 > 2ae — 1 > —1, which means that || f||s, = +oo.
O

Lemma 1.6.4. For any H € (0,1), we have that ¥y C L¥(R).
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Proof. For H = 3, the statement is evident and Fi= LA (R) = Ly(R).
2

Let H € (%, 1) and f € Fg. Then, in particular, f € Ly(R), and, therefore,
according to Theorem 1.1.1, the operator I*f is well defined and bounded
from Ly(R) to Lﬁ(]R). Moreover, according to Theorem 1.1.2 and since

fR|f/(;)|2|x|*2°‘dx < o0, it follows that I®f € Ly(R). Therefore, f €
LE(R). Let H € (0,%). We must prove, that for any f € Lo(R) with

12
S [f(@)?|z]7?*dx < oo, there exists § € Ly(R), such that

p=MIf=CyDf. (1.6.14)

Consider the function ¥ (x) = f(:c) | © |7 Cy(z). Since | Cy(z) |= 1,9 €

Ly(R) and ¢(z) = ¢(—x), we conclude that ¢(z) = @(z) for some function
¢ € La(R). Now we prove that C’S’)go satisfies (1.6.14). Indeed,

f@) = @) | 2 |* Cu(—w), (1.6.15)

whence | f(z)]2 = |3(x)|2|z[*. Since f € Ly(R), we have that ¢ € F,_y, and
from Theorem 1.1.2 and (1.6.15), it follows that

f=1"".
Therefore, p(x) = C’g’)gp(x) satisfies (1.6.14), whence the claim follows. O

Lemma 1.6.5. Let 0 < H < 1. Then M "1, € LE(R) for allt € R, and
the underlying Wiener process W admits the representation

Wt = é}_}/ Ml_H]]_(Q’t)(S)dBf,
R

where Cy = (CP'C® )1,
Proof. We must check that M1, € L¥(R). Indeed,

—-H

_ H-1, 1 . _
MY M1 = CP O I3 (12 10) = (C) Mop € La(R),

Furthermore, according to Definition 1.6.1, it holds that

Chr / (M*H14,)(s)dB? = Cyy / (MIMEH104) (8)dW
R R

= / ]].(Qﬂ(S)dWS = Wt. (1.6.16)
R
U

Corollary 1.6.1. Any fBm B admits a Mandelbrot van Ness representation
with respect to the Wiener process W from representation (1.6.16).



22 The Space of Gaussian Variables Generated by fBm.

1.7 The Space of Gaussian Variables (Gener-
ated by fBm.

Denote
By = span{ B t € R},

where the closure is taken in Ly(€2).

Theorem 1.7.1. Let J be some class of integrands and let I, C J be the class
of step functions. Under the assumptions

(1) J is a space with inner product (f,q)r, f,g €9,

(“’) fOT f)g S JS (f7 g)[ = E[(f)j(g)7

(i) the set Js is dense in J,
we have the following:

(a) there is an isometry between the space I and a linear subspace of By
which is an extension of the map f — I(f) for f € I,
(b) J is isometric to By if and only if I is complete.

Proof. (a) Let f € J. By (iii), there exists f,, € Jg, such that {f,,,n > 1}
is a Cauchy sequence in J with norm || - [[s= (-,);. According to (i), I(f,)
is a Cauchy sequence in Ly(£2), hence it converges to some r.v. & € Ly(1).
We set I(f) := &. Since I(f,) € By and By is a closed subspace of Ly(£2),
we obtain that I(f) € By. So, we can define the map I : J — By. For any
f,g € J it holds that

(f.9)9 = lim (fug0)s = lim EI(f,)I(g,) = EI(f)I(9)

Moreover, £ does not depend on the choice of the sequence f, — f in J. Since
the map [ is linear, we get an isometry between J and some subspace of By.

(b) Since By is complete as a closed subspace of the complete space Ly(€2),
it follows that J is complete if [ is an isometry between J and B . Conversely,
let J be complete. Then, for any n € By, it holds that n = limn,,n, =
I(f,) € span{B,t € R}, fn € Js. So, I(f,) — 1 in Ly(Q). Therefore, from
(77) it follows that f, is a Cauchy sequence in J, and from completeness,

fo— findn=I(f). U

Corollary 1.7.1. From Lemma 1.6.1, Theorem 1.6.1, and according to ([21],
Remark 1.6.3), we obtain the following: the space J = LY (R) is complete for
H € (0, 3) and incomplete for H € (1,1). Step functions are dense in LE (R)
for any H € (0,1). Therefore, L (R) is isometric to Byfor H € (0,1) and
1sometric to a subspace of By for H € (%, 1).
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1.8 Representation of fBm via the Wiener
Process on a Finite Interval

Sometimes it is convenient to consider a "one — sided” fBm B? = {BH t >

0} and to represent it as a functional of the form Bff = ¢(B,, 0 < s <t), of
some Wiener process B = {B;, t > 0}, For this purpose consider the kernel

ln(t,s) = Ci's™(t = 5) “Lyocacy,

and
t
my(t,s) = C'g;) ((—

S

R | e — s>adu>,

where

5 (2 - 20) P e 2HT(1-—a) \?
Oy = (2HP(1 —a)3T(1 + a)) - O = (r(1 —2a)T (o + 1)) ’

and o = H — %, H € (0,1). By using the equality

1
/ tH(1=t)* | z—t P71 dt = B(u, 1—p), (1.8.1)
0

that was established in ([22], Lemma 2.2) for any p € (0,1),z € (0,1), we
obtain that for any ¢ > 0

[ L (t ) [l1Ra 2

= (CS))QQHOC fg f(f(t —u)"(t —s)um % | u — s |27 duds
= 12OV 22Ha [ u (1 —u)~(fy s*(1 — s)"u — s[>~ ds)du

= 1-2(CY)22HaB(a,1 - a)B(1 —a,1 — a)
A-2a L2200 (@)l (1=0)® _ 41-2a
F(1—a)3T(a)l'(2—2a)

< Q0.
(1.8.2)
Therefore, we can consider the integral

() = [ lu(t,s)dBI = [, lu(t, s)dBY
(1.8.3)
= fR(Mle)(t )(I)dWm

where W = {W,,z € R} is the underlying Wiener process. Similarly to
(1.8.2), for any 0 < t < t/, we obtain that

EL ()1 (L) = (La(t, ), lu ()Rl
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= (CF)2Ha [yt —u)=oue(fy (' = 5)"%s™ [u— s [*~1 ds)du

= (C)2Hat'"B(a,1 — a)B(1 — a,1 — @) = 122,
(1.8.4)

From (1.8.3), it follows that {I[1 ;¢ > 0} is a centered Gaussian process.
Moreover, from (1.8.4), we obtain for any 0 < s <t < s’ <t that

E(Iy (i) — I (1)) (I (L) — L' (1)) = 0.

Thus, the increments of I7(Iy) are uncorrelated, and hence independent. It
follows that I(l5) is a martingale w.r.t. its natural filtration

FH =o{I"(ly),0 < s < t},
having angle bracket (I (Ig)) = t172® and If!(l) = 0. By the L’evy theo-
rem, there exists some Wiener process B = {By,t > 0} such that

t
M =1 () = a/ s “dB,. (1.8.5)
0

where @ = (1 — a)'/2. The process M ¥ is called the Molchan martingale, or
the fundamental martingale.

Theorem 1.8.1. Let BY be an fBm with H € (0,1), and let

t
M = 1F(1y) :/ lg(t,s)dBY. (1.8.6)
0

Then there exists a Wiener process B such that (1.8.5) holds. Moreover,
o{BH 0<s<t}=0{B,0<s<t}

The inverse relation can be obtained. For H € (0,1), and for any ¢ > 0,
the random variable Y; := f; s~*dBH is well defined. Therefore, it holds that
t
Y, =t*Bf + a/ BHs~"qs,
0

is an integral equation with respect to {BX 0 < s < ¢} and its solution
has the form

t t
BgH =tY, — a/ s VWids = / s4dYs.
0 0

Let MH = I(ly) be the Molchan martingale. Then, for H € (O,%),
integration by parts leads to the equality
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t t
M = CS)/ (t —s) s *dB! = —aC’g’)/ (t —s) " Y.ds,
0 0

whence

¢ t ¢
/ (t —u)* MY du = —aCS) / Y, (/ (t—u)*(u— s)ladu> ds
0 0 s

t
= —aCWB(a+1, —a)/ Yds,
0
and

t
Y, = C}f)d/ (t—u)*d MM, (1.8.7)
0

~1/2

where & = (1 — a))~ /2. Therefore,

BE = acy (ta ot —u)*dMH
—« fot sa_l(fos(s—u)o‘de)ds) = fg my(t, s)dBs. (1.8.8)
Let H € (%, 1). Then, by using Theorem 1.8.1, we obtain that
[t —uw)dMI = [ (t —u)* M du
= C’S)a f(f(t —u)>! fou(u —8) % *dBdu
(1.8.9)
- C’S)a f(f (fst(t —u)* Hu — 3)*°‘du> s~*dBH
= CPaB(a,1 - )Y, = (C\)tay,

i.e. we have (1.8.7) and obtain (1.8.8). In this case the kernel my(¢, s)
can be simplified to mg(t,s) = O[CS)S_O‘ f; u®(u — 5)* 'du.

1.9 The Inequalities for the Moments of the
Wiener Integrals with Respect to fBm

In this section we introduce the estimates for the moments of the Wiener
integrals with respect to fBm. For details one can refer to ([20]).
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Theorem 1.9.1. (i) Let H € (0,3). Then LY¥(R) C L1 (R) and there exists
a constant Cy > 0 such that for any f € LE(R), it holds that

HF ey o= Cr Il f oy ey - (1.9.1)

(i1) Let H € (3,1). Then L1 (R) C LY¥(R) and there ezists a constant
Cy > 0 such that for any f € L1 (R).

T~ =l

I legwys Cr Il £ lley oo - (1.9.2)

Proof. (i) Let f € LE(R), this means that MH(R) = CWD-f ¢

Ly(R). Evidently, f = I°D-°f and from the Hardy-Littlewood theorem
(Theorem 1.1.1 with ¢ = %,p =2and a = % — H), it follows that

1 £ e o=l FD=F ls, 1< Cop oo | D=F llay=Cot | £ lusrcey -
H H H

N[ —=

(17) We directly apply the Hardy-Littlewood theorem with p = %, oa=H—
and g = 2:
I e ay=Il M2 f |y < Cur || f ||L%(R) :

g

Corollary 1.9.1. Let f € Lj/(R). Then there exists I(f) = [, f(s)dB{

and E|I(f)]? =|| f ”%5(]}1) . Therefore, we have for H € (0, 1) that E|I(f)|* >

Ci I £ 1], oy and, Jor H € (3, 1), it holds that E\(1) < C | £ 2, my-
Since I(f) is a Gaussian random variable, we obtain the following inequalities

for the moments of the Wiener integrals with respect to fBm: for any r > 0,
there exists a constant C(H,r), such that for H € (%, 1)

EII(NI" < CH) L,

and such t