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صخمل  

 

 
عندما ومشتقاتها لوظيفة التوزيع الشرطي  في الاعتبار مشكل التقدير المحلي الخطي الأطروحة، نأخذفي هذه               

ويتم  (خضعت للرقابة)تمت ملاحظتها بالكامل أو  الاستجابة عددية ،ذو بعد غير محدود قيمة في فضاء وذ الانحداريكون 

  . أرجوديك سلسلة أوقات وظيفيةملاحظة البيانات على أنها 

 

ظل افتراضات عامة معينة  وندرس فيالتوزيع الشرطي، لوظيفة مقدرا محليا خطيا  التبعيةنبني تحت هيكل  أولا،           

يتم التحقق من ملاءمة المقدر  ، مثل التقارب النقطي شبه الكامل )مع السرعة( والتقارب الطبيعي.المقاربة هخصائص

 المقترح من خلال دراسة المحاكاة.

 

 محليا خطيا للكثافة الشرطية. ثم ندرس التقارب شبه الكامل، مع السرعة، مقدرانبني ثانيا، في ظل نفس الشروط،            

يتم توضيح فائدة نتائجنا  الشرطي. مشابهة للمقدر المحلي الخطي للمنواللهذا المقدر، ونستنتج من ذلك خصائص مقاربة 

ى بيانات حقيقية.عل  

            

نبني مرة أخرى مقدرًا للكثافة خاضع للرقابة.  نقوم بتعميم النتائج التي تم الحصول عليها مسبقاً في سياق أخيرًا،           

.المبنيللمقدر  سرعة التقارب شبه الكامل درسون الشرطية بالطريقة المحلية الخطية    

دالة ، المقدر المحلي الخطي، البيانات الخاضعة للرقابة ،أرجوديكبيانات  البيانات الوظيفية،كلمات مفتاحية:            

التقارب النقطي، التقارب  ه الكامل،تقارب شبال الشرطي، التقدير اللامعلمي، المنوالالتوزيع الشرطي، الكثافة الشرطية، 

     الطبيعي.



Résumé

Dans cette thèse, nous considérons le problème de l’estimation locale linéaire de la fonction
de répartition conditionnelle et de ses dérivées lorsque le régresseur est évalué dans un espace
de dimension infinie, la réponse est un scalaire (complétement observée ou censurée) et les
données sont observées comme séries temporelles fonctionnelles ergodiques.

Tout d’abord, nous construisons sous cette structure de dépendance un estimateur local
linéaire de la fonction de répartition conditionnelle, et nous établissons sous certaines hy-
pothèses générales ses propritées asymptotiques, telles que la convergence uniforme presque
complète (avec taux) et la normalité asymptotique. La pertinence de l’estimateur proposé est
vérifié par une étude de simulation.

Deuxièmement, et sous les mêmes conditions, nous construisons un estimateur local linéaire
de la densité conditionnelle. Ensuite, on établit la convergence presque complète, avec des taux,
de cet estimateur, et on en déduit des propriétées asymptotiques similaires pour un estimateur
linéaire local du mode conditionnel. L’utilité de nos résultats est illustrée sur des données
réelles.

Enfin, nous généralisons les résultats précédemment obtenus dans un contexte de censure.
On construit de nouveau un estimateur de la densité conditionnelle par la méthode locale linéaire
et on établit la vitesse de convergence presque complète de l’estimateur construit.

Mots clés: Données fonctionnelles, données ergodiques, données censurées, estimation lo-
cale linéaire, fonction de répartition conditionnelle, densité conditionnelle, mode conditionnel,
estimation non-paramétrique, convergence presque complète, convergence uniforme, normalité
asymptotique .



Abstract

In this thesis, we consider the problem of the local linear estimation of the conditional cu-
mulative distribution function and its derivatives when the regressor is valued in an infinite
dimensional space, the response is a scalar (completely observed or censored) and the data are
observed as ergodic functional times series.

Firstly, we build under this dependence structure a local linear estimator of the conditional
distribution function, and we establish under a general assumptions its asymptotic properties,
such as the uniform almost complete convergence (with rate) and the asymptotic distribution.
The relevance of the proposed estimator is verified through a simulation study.

Secondly, under the same conditions, we construct a local linear estimator of the conditional
density function. Afterward, we establish the almost-complete convergence, with rates, of this
estimator, and we deduce similar asymptotic properties of the local linear estimator of the con-
ditional mode. The usefulness of our results is illustrated on some real data.

Finally, we generalize the results previously obtained in a censored context. We build again
an estimator of the conditional density by the local linear method and we establish the strong
consistency rate of the constructed estimator.

Key words: Functional data, ergodic data, censored data, local linear estimator, conditional
distribution function, conditional density, conditional mode, nonparametric estimation, almost
complete convergence, uniform convergence, asymptotic normality.
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CHAPTER 1

GENERAL INTRODUCTION

1.1 Parametric versus nonparametric models

A basic problem in statistics is to develop models based on a sample of observations so
that further analysis can be carried out with statistical techniques using the model so developed.
During the past two decades, parametric modeling has been a subject of investigation by various
researchers. A disadvantage of parametric modeling is that it may not be adequate in the sense
that slight infection of the data by observations not following the particular parametric family
might lead to incorrect conclusions. Further, the data might be of such a type that there is no
suitable parametric family that gives a good fit. Specifically, time series have been considered
mainly from the parametric viewpoint. This viewpoint has the advantage that if the observed
time series is sufficiently described by a parametric model; then a relatively small set of struc-
tural parameters serves as tools for interpretation and inference. A disadvantage of this point
of view is a statistical situation where the observed data do not follow a specific parametric
model. A consequence of imposing such a non-appropriate parametric model results in a bias
that dominates the statistical error asymptotically. Under these situations, one might take re-
course to nonparametric modeling. It is the strength of the nonparametric approach to consider
a richer collection of models and functions with general shape rather than a relatively small
set of parameterized curves. Indeed, the nonparametric fits exhibit several benefits compared
to parametric fits and have been widely used as exploratory techniques. It is well known that
methods of nonparametric estimation allow one to analyze and, present data at hand without
any prior opinion about the data. These approaches do not make any assumption about the law
or its parameters. Our knowledge about the model is not precise, which is often the case in
practice. In this situation, it is natural to want to estimate one of the functions describing the
model, usually the distribution function or its derivatives such that the density, the hazard func-
tions, the mode and the quantile; this is the objective of the functional estimation.
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1.2. FUNCTIONAL FRAMEWORK

The literature on the area of nonparametric functional estimation goes back to the 19th cen-
tury, precisely in the middle of the 50s, and it has known a very important development, in
particular on nonparametric density estimation with the famous paper of Rosenblatt [86] who
discussed both the naive estimator and the more general kernel one. Since the appearance of
this paper several methods have been developed for the nonparametric estimation of the density
function (Tukey and Parzen [80]), the distribution functions as well as the regression functions
which, first, considered by Nadaraya [79] then by Watson [91]. While, the failure rate is due to
Rice and Rosenblatt [88]. Recently, Bosq [19] gave some indications about implementation of
nonparametric methods and comparison with parametric ones including numerical results. The
purpose of the book of Györfi et al. [63] was on studying nonparametric smoothing techniques
for time series and to provide mathematical tools for nonparametric estimation under general
dependence assumptions.

1.2 Functional framework

1.2.1 Nonparametric Curve Estimation

Historically, the first developments on continuous/functional variables go back to Deville
[40], Besse and Ramsay [14] and Besse [15] was interested in the approximation of factor anal-
ysis in the functional case; in particular, principal components analysis of curves. Later, in
1997, Ramsay and Silverman [84] treated factor analysis for the regression models. The effec-
tiveness and adaptation of functional regression compared to the vectorial approach was shown
by Besse and Cardot [17].

Functional data analysis take an important place in statistical research. It has experienced very
important development in recent years, this branch of statistics is related to the study of obser-
vations that are not real or vectorial, it is closely associated to the study of data sets appear-
ing in continuous form (curves, images,. . . ) which can be considered as discretized functions
(functions observed on a discretization scale quite fine). This comes back to the technological
progress, particularly concerning computer tools and their storage capacities, which are helping
to record increasingly large amounts of data. The need to consider this type of data, now com-
monly encountered under the name of functional data in the literature, is primarily all a practical
need. Indeed, this kind of data naturally arises in nearly every branch of science, ranging from
engineering to geology, biology, medicine, and chemistry.

The assumption on which Functional Data Analysis is based is that the data to be processed
has a more or less apparent underlying structure, and that the identification and explicit con-
sideration of this structure can be used in order to extend effectively traditional data analysis
techniques. More precisely, Functional Data Analysis applies to data whose structure is cor-

Somia Ayad 2



1.2. FUNCTIONAL FRAMEWORK

rectly represented by one or more functions. This modeling is particularly fruitful in the case
where the data present for example a temporal variability. As Ramsay and Silverman underline
in their book [85], which constitutes an excellent introduction to the field, this area of research
has found a real echo with the community of statisticians, and has therefore been the subject of
numerous works, both theoretical as practical. Indeed, the authors gave a large list of examples
which show the wide application potential of the different methods linked to Functional Data
analysis.

More generally, it should be noted that the monograph of Ramsay and Silverman [87] offered an
excellent and accessible introduction to many topics on functional data analysis. Later on, the
pioneer book of Ferraty and Vieu [54] exposed the characteristics and difficulties of functional
data from a new mathematical point of view. The authors propose a non-parametric approach to
Functional Data Analysis problems. They focused on various statistical topics such as predict-
ing from a functional variable, classifying a sample of functional data and estimation based on
an independent and an α−mixing statistical sample. Furthermore, the authors of this monograph
established the almost complete convergence of the proposed estimators. They also precised the
convergence rates of each estimator which is linked both with the nonparametric model and the
semi-metric.

The pioneer book of Ferraty and Romain [57] contains contributions by leading researchers in
the field which summarize a number of recent developments in FDA and point towards future
research directions. As a more recent work, we can cite the book of Horváth and Kokoszka [64]
which combined between the theoretical and the practical point of view by presenting a general
introduction to the mathematical FDA framework and then branches into several directions with
the most novel exposition pertaining to functional data which exhibit dependence over time or
space. In the same year, Mas [75] derived the minimax rate of convergence for nonparametric
estimation of the regression function with independent and identically distributed covariates.

There is a consistent literature both around nonparametric prediction and functional data. In-
deed, in 2000, new developments have been carried out by Ferraty and Vieu [48] in order to
propose nonparametric statistical methods for dealing with such functional data. Two years lat-
ter, Ferraty et al. [49], proposed an approximation of the functional regression problem using
the fractal dimension.
In [51], the same authors constructed a kernel estimator for the regression operator and obtained
convergence rates for their estimator, thus, a solution to the problem of curse of dimensionality,
this phenomenon well known in nonparametric statistics concerns the considerable degradation
of the quality of the estimation when the dimension increases, so it makes the convergence rates
very low. The probability measure of small balls or the concentration property is the solution
of this problem which intervenes in the rates of convergence. Considering the concentration
on small balls of the functional explanatory variable, Dabo Niang and Rhomani [31] obtained
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1.2. FUNCTIONAL FRAMEWORK

a norm convergence Lp of a kernel estimator of the nonparametric regression. Masry [76]
provided a rigorous treatment of nonparametric regression with α−mixing data in which the
explanatory functional variable lies in a general semi-metric space, establishing the asymptotic
normality of the constructed estimator. This property has been studied for the robust regres-
sion context by Attouch et al. [3], where some numerical studies in chemiometrical real data
are carried out to compare the sensitivity to outliers between the classical and robust regres-
sion. Different approaches have been used for the the study of functional data, including the
nonparametric methods proposed by Müller [78].

1.2.2 Important Fields of application for functional data

Since several decades, many statisticians developed applications allowing the treatment of
functional random variables. On the one hand, this treatment allows the use or development of
high-performance theoretical tools, and on the other hand, it offers enormous potential in terms
of applications (in imaging, agro-industry, geology, econometrics,. . . ). In this thesis, we have
chosen example studies to cover a wide range of fields of application of this important field, and
our aims is to demonstrate how large is the potential scope of functional data analysis.
In food industry: In order to respond to a quality control problem in the agri-food indus-
try, Ferraty and Vieu [49, 50] studied an example that focuses on estimating the fat content of
meat samples based on near-infrared (NIR) absorbance spectra. These data were obtained from
http://lib.stat.cmu.edu/datasets/tecator. Each sample contains finely chopped pure meat with dif-
ferent percentages of the fat, protein, and moisture contents. For each unit i (among 215 pieces
of finely chopped meat), they observed one spectrometric curve, which corresponds to the ab-
sorbance measured at a grid of 100 wavelengths distributed between 850 and 1050 nanometers.
Then, they observe for each piece of meat i, the functional variableXi(t), t ∈ [850,1050] which
is the spectrometric curve of the piece of meat i. Figure 1.1 displays of the original spectromet-
ric curves.
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Figure 1.1: spectrometric curves

Study of the phenomenon of El Nino : An El Nino happens when a huge plate of warm
water accumulates in the central Pacific and moves east, slackening or reversing the northeast
trade winds and bringing warm, humid air to the west coast of South America.
The dataset is composed of sea temperature curves. We have monthly measures covering 54
years. In order to study this time series, one cuts data as (Figure 1.2) and obtains 54 curves.
Each curve corresponds to the temperature evolution during one year. These data and their
description are available on the website of the U.S. Climate Prediction Center: http://www.
cpc.ncep.noaa.gov/data/indices/.
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Figure 1.2: The curves corresponding to the current of the El Niño

Somia Ayad 5

 http://www.cpc.ncep.noaa.gov/data/indices/.
 http://www.cpc.ncep.noaa.gov/data/indices/.


1.2. FUNCTIONAL FRAMEWORK

Economic time series: In the context of dependent data, the second example concerns an
economic time series of annual electricity consumption. More precisely, we dispose of both the
USA monthly electricity consumed by residential and commercial sectors from January 1973
to February 2001 (338 months). Each of the 28 curves (Figure 1.3) is then made up of 12
points representing the readings for each year. These dependent real data and their descriptions
are available on the websites http://www.economagic.com and http://www.eia.
doe.gov/emeu/aer,respectively.
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Figure 1.3: Annual electricity consumption curves in the USA

Biological growth curves: Functional data appears fundamentally in biological systems
that measure some aspect of growth. Consider, for example, the height evolution of subjects
in the famous Berkeley growth data. Figure 1.4 shows the growth patterns of 45 girls between
1 and 18 years old. This example uses a smoothed version of the time-derivative of the height
functions, instead of the height functions themselves, as functional data.
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Figure 1.4: Growth curves for 45 girls

1.2.3 Semi metric and concentration measurement

It is known that the convergence rates obtained are optimal in finite dimension for some
nonparametric conditional models but as soon as the dimension increases, it become relatively
bad. This problem is known in the literature as the curse of dimensionality; introduced, for the
first time, by Geenens [60]. This phenomena reflects the evident difficulties in nonparametric
estimation of infinite-dimensional objects due to extreme data sparsity, resulting in a decrease
in fastest achievable rates of convergence of regression function estimators toward their target
curve as the dimension of the regressor vector increases. Consequently, it is not surprising
to obtain dramatically bad theoretical properties for the nonparametric functional regression
estimators. In most cases, it can be absolutely legitimate to measure the proximity between
two elements of the infinite dimensional space by using a semi-metric, which could prevent
those estimators suffering from the curse of dimensionality. In the finite dimensional case, the
convergence rate is expressed in terms of hd, where h is smoothing parameter and d is the
space dimention. However, in the functional context (the explanatory variable takes its values
in a semi-metric space of infinite dimension (E,d)), the asymptotic results are expressed from
more general quantities called probabilities of small balls and defined by the function φx such
that

φx(h) ∶= P(d(X,x) ≤ h). (1.1)

It can be easily observed in the literature that the convergence rate of the regression estimator
is linked both to the law of the explanatory variable, to the topology under consideration and
consequently, on the manner under which these probabilities decreases to 0. In the literature,
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small ball probabilities of various types are studied and applied to many problems of interest
under different names such as small ball probability, lower tail behaviors, etc. In addition, there
is a fairly large number of probabilistic results that study the manner under which these proba-
bilities tend towards 0 in the case where d is a norm (see for instance, Bogachev [18], Shmileva
[89], Gao and Li [59]). We can cite, also, the survey paper of Li and Shao [71] for Gaussian
processes, together with its extended references, which covers much of the recent progress in
this area.
The problem of small ball measurement P(∣∣X − x∣∣ < h), comes down to the problem of the
measurement of small ball P(∣∣X ∣∣∣ < h) centered in 0. The measurement of this quantity
can be specified in certain situations. Mayer-Wolf and Zeitouni (1993) [77] studied the one-
dimensional case of diffusion processes, under conditions on a point x, they also studied the
non-Gaussian case for the same process.

Examples of continuous time processes:

We will cite some examples of processes, including the property of concentration which is
written in the following form:

P(∣∣X − x∣∣ ≤ h) ≈ Cxh
αexp( −

C

hβ
),

where α,β,Cx and C are positive constants and ∣∣.∣∣ can be the uniform norm, LP . The applica-
tions below show for some functional variables the effect of measuring small balls.

General diffusion processes:

Let us consider the space C ([0,1] ,Rp) and its Cameron–Martin associated space: F =

C ([0,1] ,Rp)
CM

, where the metric d(., .) is still the one associated with the supremum norm.
Let us consider some diffusion process ζDiff that can be written on the following usual form:

ζDifft = ∫

t

0
β (s, ζDiff)ds +wt,

where w is the standard Wiener process and β is such that the solution of the above equation
has an unique solution ζDiff ( examples of such functions β can be found for instance in Dabo-
Niang [30] or in Banon [8] ). In Lipster and Shiryayev (1977), it is shown that if the condition

∫

1

0
β2 (s, ζDiff)dt < ∞, a.s
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holds, then the process ζDiff is absolutely continuous with respect to the Wiener measure PW .

This shows once again that

∀x0 ∈ F , P (ζDiff ∈ B(x0, h)) ≈ Cx0exp(−
C

h2
).

Fractional Brownian Motion:

Let us always consider the space C ([0,1] ,R), endowed with its uniform norm, and let F
be its Cameron-Martin space.
Let ζFBM , the Fractional Brownian Motion 1 of parameter δ, 0 < δ < 2. Li and shao [71] studied
the measurement of small balls for Brownian motion, according to Theorems 3.1 and 4.6 of Li
and shao [71] we have the following property:

∀x0 ∈ F , C
′
x0exp (h

− 2
δ ) ≤ P (ζFBM ∈ B(x0, h)) ≤ Cx0exp (h

− 2
δ ) .

This allows to write:

∀x0 ∈ F , P (ζFBM ∈ B(x0, h)) ≈ Cx0exp (h
− 2
δ ) .

Semi-metrics:

A crucial problem when dealing with functional predictors is the choice of the semi-metric
d, contrary to models with predictors that take values in finite dimensional space, since all norms
are equivalent. This concept fails for functional predictors since they take values in an infinite
dimensional space. Even more, restricting d to be a metric is sometimes too restrictive in the
functional framework. That is why semi-metrics are considered. In other words, the choice of
semi metrics allows to extract as much information possible from the functional variable and
constitutes an alternative to problems related to large dimensions. In general, the choice which
semi-metric to take depends on the shape of the data and the goal of the statistical analysis.
There are three main families of semi-metrics which are more usable, but, of course, others
can be constructed. These three semi-metrics respectively are based on derivation, principal
component analysis (see Jolliffe [62]) and functional index model semi-metrics.

1. Semi-metrics based on derivatives One way of constructing a family of semi metrics be-
tween curves consists in considering a distance between their derivatives. More precisely,

1A Fractional Brownian Motion β of order δ is centered Gaussien process such that

β0 = 0 and∀t ≠ s ∈ [0,1] , E (∣t − s∣) = ∣t − s∣δ
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the semi-metric given two curves X1 and X2 is:

dderivq (X1,X2) =

√

∫ (X
(q)
1 (t) −X

(q)
2 (t))

2
dt q ∈ N,

where X(q) denotes the qth derivative of X . This class of semi metrics is suitable when
we are dealing with smooth data.

2. Semi-metrics based on functional principal components analysis
This family of semi metrics is used for irregular data, it is introduced by Besse et al.

[16]; and it computes proximities between curves based on the functional principal com-
ponents analysis indexed by an integer q indicating the first q eigenvectors of the empirical
covariance operator, associated with the q largest eigenvalues. This method reduces the
functional data in a reduced dimensional space, but, this kind of semi-metric can be used
only if the curves are observed at the same discretized points and in a grid sufficiently
fine. Such semi-metric is then defined by:

dPCAq (X1,X2) =

¿
Á
Á
ÁÀ

q

∑
k=1

(
J

∑
j=1

wj(f1(tj) − f2(tj))⌊vk⌋j)

2

,

where where vk is the kth orthonormal eigenvector of the covariance matrixW = diag(w1, . . . ,wJ)

with quadrature weights, and fi is the score of the principal component ∫ Xiv.

3. Projections type semi-metrics. This kind of semi-metric can be constructed in various
different ways according to the Hilbert space and to its selected orthonormal basis. For
instance, it concerns Fourier basis, as various wavelet bases, as well as the Functional
PCA projection. More precisely,

∀(x,x′) ∈ H ×H, dk (x,x
′) =

¿
Á
ÁÀ

k

∑
j=1

⟨x − x′, ej⟩2,

where H is a separable Hilbert space with inner product ⟨., .⟩ and {ej, j = 1, . . .∞} an
orthonormal basis.

1.3 Ergodic data

The term "ergodic" comes from the Greek words (ergon, odos) which mean (work, path).
Ergodic theory is a fundamental hypothesis of statistical physics, it models the thermodynamic
properties of gases, atoms, electrons or plasmas, this condition is also used in signal processing
and for the study of the evolution of a kinetic gas signal. It has undergone many developments
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closely related to dynamic systems theory and chaos theory. The first one who posed this theory
is Ludwing Boltzmann in 1871 for the needs of his kinetic theory of gases.

The ergodic theory constitutes a recent and important research area in the study of stochas-
tic processes. This study has a very wide range of applications, because most of the random
phenomena we encounter around us are not independent. The ergodic processes are a class of
stochastic processes that have the property that one sample of the process represents all the set.
This theory represent now a very fashionable research area. From a practical point of view,
the strongly mixing dependence suffers from many undesirable features. In fact, there are so
many models that have been given in the literature where the mixing properties still need to be
verified or even fail to hold for the processes they induce. Moreover, Davidson [35] and Laïb
and Louani [67] pointed out that it is difficult to verify the strongly mixing condition in practice
as for example, the processes AR(1). Indeed, even very simple autoregressive processes cannot
be strongly mixing for some cases. Chernick [27] and Andrews [2] have given theAR(1) linear
real process with discrete valued random innovation which is not strongly mixing but ergodic.
In the cas of functional data, we can take the example of Xiong and Lin [93], in the example the
authors take H = C[−1,1], which is the space composed of all of the continuous functions de-

fined in [−1,1] and the corresponding semi-metric d(y, z) = ∣∫

1

−1
[y(t) − z(t)]dt∣, ∀y, z ∈ H.

Consider the autoregressive model of order one defined, for any i ∈ Z, by

2Ti+1 = Ti +Ei+1, (1.2)

whereEi+1 = ei+1h, ei+1 is independent of Ti, h ∈ H, h(t) = t2(t ∈ [−1,1]), and the ei are inde-
pendent real random variables with common distribution B(1, 12). Then the stationary solution
of (1.2) is:

Ti =
∞

∑
j=0

2−j−1ei−jt
2, t ∈ [−1,1], i ∈ Z.

It follows from the theorem of ergodic A.3.1 that the process T = {Ti ∶ i ∈ Z} is ergodic. In
addition, (1.2) and the distribution of ei+1 implis that σ(Ti) ⊆ σ(Ti+1). By iteration we get

σ(Ti) ⊆ σ(Tk, k ≥ i + 1),
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thus, we have that the mixing coefficient αn 2

1

4
≥ αn ≥ α (σ(Tt), σ(Tt)) =

1

4
,

which shows that the process T is not strongly mixing.
The literature on the ergodic functional data is still limited. The first intersting result on this sub-
ject was obtained by Laïb and Louani [67]. They considered the regression function estimation
when the data are functional and assumed to be sampled from a stationary and ergodic process,
they established the consistency in probability, with a rate and the asymptotic normality of the
estimator. In (2011) [68], those same authors studied the strong pointwise and uniform consis-
tencies with rates of the same estimator. In the same domain of the ergodic data, Gheriballah
et al.[61] established the asymptotic properties of an alternative estimator of the nonparametric
regression function. Chaouch and Khardani [25] introduced a kernel-type estimator of the con-
ditional quantile function of a randomly censored scalar response variable given a functional
random covariate whenever a stationary ergodic data are considered. The authors established a
strong consistency rate as well as the asymptotic distribution of their estimator. One year later,
a nonparametric M-estimation for right censored regression model with stationary ergodic data
was investigated by Chaouch et al. [26]. They derived under mild assumption the strong consis-
tency (with rate) and the asymptotic distribution of the estimator. In the same year, Benziadi et
al. [11] considered two recursive estimators of the conditionals quantiles when the explanatory
variable is of the ergodic type. Indeed the first one is obtained by using the robust approach
while the second estimator is given by inverting the double-kernel estimate of the conditional
distribution function. The recursive conditional mode was treated by Ardjoun et al. [4].

1.4 Censored data

The existence of incomplete observations is one of the characteristics of survival data such
as in epidemiological surveys, data is often collected incompletely. The censoring scheme is
an important concept and the most common phenomenon in survival analysis in that one can
observe partial information associated with the survival random variable. This is due to some
limitations such as loss to follow-up, drop-out, termination of the study, and others. In all these

2Let T = (Tt, t ∈ Z) be a strictly stationary process, its strong mixing coefficient of order n is defined as

αn = sup
B ∈ σ(Ts, s ≤ t)
C ∈ σ(Ts, s ≥ t + n)

∣P (A ∩B) − P (A)P (B) ∣, n ≥ 1.

For such a process αn does not depend on t. Now T is said to be strongly mixing (or α−mixing) if limαn = 0. A
process (Tt, t ∈ Z) is said to be strongly mixing(or α−mixing if
αn = sup

t∈Z
α (σ(Ts, s ≤ t), σ(Ts, s ≥ t + n)) Ð→n→∞ 0, where the "sup" may be omitted if (Tt) is stationary.
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cases, the exact time of the event is not observed because the event did not occur. Therefore,
censored data arises when a subject’s time until the event of interest is known only to occur in
a certain period of time.
Depending on the direction of the censoring, censored data can be classified into right censored
when the survival time exceeds the observed one, and left censored when the survival time is
less than the observed one. Left censoring is particularly important in studies on infectious
diseases such hepatitis or human immunodeficiency.

Right Censoring

There is right censoring if instead of observing the variables {T1, T2, . . . , Tn} that interests
us, we do not observe Ti that when Ti < C (censorship variable). In the real of right censored
data, a distinction can be made among three different types of censoring:

Type I censorship

The subjects enter the study at the same time, at a given date the study ends and some of
them are lost to follow up or the event is not occurred. This that means, instead of observing the
variables T1, T2, . . . , Tn which interest us, we observe Ti when it is less than a fixed duration C,
otherwise we only know that Ti is greater than C. We therefore observe a variable Yi such that
Yi = min(Ti,C).

This model is often used in epidemiological studies.

Type II censorship:

The subjects enter the study at the same time, the end of the study is not initially fixed and
it is carried on until the event occurs for a certain proportion of subjects. More precisely, this
type of censoring is present when we decide to observe the survival times of n patients until r
of them have died and to stop study at that time.
Let T(i) and Y(i) be the order statistics of the variables Ti and Yi. The censoring date is so Y(r)

and we observe the following variables:
Y(1) = T(1), Y(2) = T(2), . . . , Y(r) = T(r), Y(r+1) = T(r), . . . , Y(n) = T(r).

This model is often used in reliability studies.

Type III censorship (or type I random censorship)

The subjects enter the study at different times. LetC1,C2, . . . ,Cn be i.i.d. random variables.
We observe the variables Ti = Yi⋀Ci and δi = 1I{Ti≤Ci}. Yi is the duration actually observed,
and
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δi =

⎧⎪⎪
⎨
⎪⎪⎩

1 if the event is observed (Ti = Yi)

0 if the individual is censored (Ti = Ci).

Left Censoring

We say that there is left censorship if instead of observing Y1, . . . , Yn, we observe (Ti, δi)

where Ti = max (Yi, δi) and δi = 1I{Ti≥Ci} for i = 1, . . . , n and Ci is a random censoring.

1.5 Conditional models in functional statistics

Generally, prediction of a scalar response given an explanatory variable is obtained by es-
timating the conditional expectation (the regression function). However, this method is not
adequate in some situations. For instance, this the case when the conditional density function is
either unsymmetrical or has several modes. In this cases, a relevant predictor is obtained by the
nonparametric estimation of the conditional mode which is a direct consequence of estimating
the conditional density.

The conditional density presents a good alternative of the regression operator, and it has
know of great interests in statistics, as this functional parameter is involved in the estimators of
the mode, the hazard function ... ect. Moreover, the conditional density provides a very infor-
mative summary on response variables because it allows us to examine the overall shape of the
conditional distribution (see Fan and Yao [47] and references therein).
In the infinite dimensional setting, the behavior of the nonparametric estimators of the con-
ditional density is extensively studied. In particular, the consistency has been investigated by
many authors. The first important results on this topic have been established by Ferraty et al.
[55]. They proved the almost complete convergence of the kernel estimator of the conditional
density and its derivatives. An application of their results to data from the food industry was
presented. The uniform almost complete convergence was studied by Ferraty et al. [33], the
authors specified the rate of convergence. In 2007, Laksaci [69] studied the quadratic error of
this estimator and gave the asymptotic expansion of the exact expression involved in the lead-
ing terms of the quadratic error of the considered estimator. In the same year, Dabo-Niang and
Laksaci [34] added some results on the convergence in Lp norm of the kernel estimator of the
conditional mode in the case where the data are i.i.d. Three years later, Ferraty et al. [58]
established the uniform almost complete convergence of the kernel estimator for some nonpara-
metric conditional parameters, in particular, for the conditional density function. Concerning
the asymptotic normality of kernel estimators of the conditional modes , Many authors were
interested in this asymptotic property, we refer to Ezzahrioui and Ould-saïd [44] who treated
the case i.i.d.
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The estimation of the conditional distribution function plays an important role in the estima-
tion of other functional parameters. In the functional framework, the estimation of this operator
was introduced by Ferraty et al. [55], where they constructed a double kernel estimator of the
conditional distribution function and studied the rate of the almost complete convergence of
the proposed estimator in the case where the observations are independent and identically dis-
tributed. Ferraty et al. [53], Mahiddine et al. [74], Rabhi et al. and Bouchentouf et al. [83, 20]
studied the estimation of conditional distribution function in the case where observations are
functional and α− mixing. On the other hand, several authors treated the estimation of the con-
ditional distribution function as a preliminary study of the estimation of conditional quantiles.
Let us quote for example, Ferraty et al. [53]. In that paper, authors established the convergence
almost complete consistency with a rate of a conditional quantile estimator under α−mixing
conditions. An example of application to prediction via the conditional median, as well as the
determination of prediction intervals was considered in Ferraty et al. [53]. Concerning the
asymptotic normality, Ezzahrioui et Ould-Saïd [42, 43] studied this asymptotic property of the
kernel estimator of the conditional quantile in the both case (i.i.d and dependent).

The hazard function, sometimes called the risk function, is very frequently used in the study
of statistical reliability and it is a functional parameter of great importance in many practical
problems. We note that the use of this parameter is applied to many branches of research
under slightly different names, including reliability analysis (engineering), duration analysis
(economics), and the analysis of the history of the event (sociology). The literature on the
conditional hazard estimation in functional statistics is very restricted. The paper of Ferraty et
al. [56] is a precursor work on the subject. The authors of this paper studied the almost complete
convergence of a kernel estimator of the conditional hazard function as part of i.i.d. complete
data (respectively dependent) data, as well as in the framework of censored i.i.d. (respectively
dependent) data. Quantela-del Rio [81] studied the almost complete convergence and the mean
square error. Ferraty et al. [56] and Quantela-del Rio [81] studied the asymptotic normality
of a kernel estimator of the conditional hazard function. We can also cite the paper of Laksaci
and Mechab [70] on the estimation of the conditional hazard function for spatially dependent
functional data. An other point of view of this functional parameter was studied by Rabhi et
al. [82] by establishing an estimate of the maximum of the conditional hazard function under
dependency conditions.

1.6 Local linear estimation for functional data

The simplicity of the classical kernel estimate and its availability in many statistical software
packages, like R and Matlab make it easy to understand and implement. However, its simplic-
ity leads to some weaknesses, the most obvious of them is boundary bias effect. And it is well
known that among the smoothing procedures, the local polynomial approach has various advan-
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tages over the classical kernel method. This last approach was the subject of an open question
in the monograph Ferraty and Vieu [54], and several authors have tried to provide answers. The
first answer was given by Baìllo and Grané [7], who gave the first functional version of local lin-
ear estimation. This is based on the Hilbert structure of space. Baìllo and Grané [7] introduced a
local linear regression estimator and they determined its asymptotic behavior by determining its
bias as well as its variance. In the same case of Hilbertien space, Berlinet et al. [13] constructed
another local linear estimator of the regression function based on the inverse of the covariance
operator, they proposed a pointwise estimate and they derived its asymptotic mean square error.
Barrientos et al. [9] constructed a fast local linear estimator of the regression operator, they
established their results in semi metric space to establish the almost complete convergence of
their estimator, they have even specified its convergence rate which is very optimal. In 2013,
Demangeot et al. [37] studied the local linear estimation of the conditional density and they
established the pointwise almost complete convergence of the constructed estimator, they also
deduced asymptotic properties of local linear estimator of conditional mode. The case of the
conditional distribution function was addressed by Demongeot et al. [38]. The authors studied
the almost complete consistency as well as the mean square error with rate of the constructed
estimator. All the results which we mentioned have been established in the case when the data
are independent. The case of functional spatially dependent data was studied by Chouaf and
Laksaci [29]. The authors extended the results of Barrientos [9] by giving the almost complete
consistency with rate of the spatial version of the mentioned estimator.
Concerning the asymptotic normality, we can cite the work of Zhou and Lin [94]. In this paper,
the mean squared consistency and the asymptotic normality of the locally modelled regression
estimation is obtained when the data are independent and identically distributed.
Recently, Bouanani et al. [21, 22] established the asymptotic normality of several conditional
models in the both dependent and independent cases. We can cite also, Chikr-Elmezouar et al.

[28] who introduced the Kernel Nearest Neighbor (KNN) method, and presented an estimator
of the conditional density and mode when the co-variables are functional They established the
almost complete convergence of these two functional parameters. Belarbi et al. [10] studied
the robust estimation of the functional local linear regression model and they established the
almost complete convergence as well as the asymptotic normality of the constructed estimator.
In 2017, Xiong et al. [92] studied the asymptotic normality of a local linear estimator of the
conditional density in the case where the observations are alpha-mixing. In the same year, De-
mongeot et al. [39] proposed a local linear estimator of the regression function where the both
variables (response and explanatory) are functional by giving the almost complete convergence
of the proposed estimator, whereas Chahad et al. [24] studied the pointwise and uniform almost
complete convergence of the relative regression estimator when the observations are (i.i.d).
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1.6.1 Construction of the local linear estimator

In the complete data case

LetZi = (Xi, Yi)i=1,...,n be anF×R-valued measurable strictly stationary process, defined on
a probability space (Ω,A,P), where F is a semi-metric space, and d denotes the semi-metric.
Furthermore, we assume that there exists a regular version of the conditional distribution of Y
given X , which is absolutely continuous with respect to the Lebesgue measure on R, and has a
twice continuously differentiable probability density function denoted by fX(Y ).
We focus on the estimation of the conditional distribution( respectively conditional density) of
Y givenX = x via the local linear method. For this purpose, it is well known that the main idea,
in the local linear smoothing, is based on the fact that the function F x(y) ( respectively fx(y))
admits a linear approximation in the neighborhood of the conditioning point. This consideration
is motivated by the fact that the conditional distribution function ( respectively the conditional
density function ) can be expressed as a regression model with the response variable J( ⋅−YhJ )

(respectively 1
hJ
J( ⋅−YhJ )) instead Y , where J is a distribution function( respectively J is a kernel

function ) and hJ = hJ,n is a sequence of positive real numbers under the condition hJ Ð→ 0.

For this aim, we assume that the underlying process Zi is functional stationary ergodic, and we
propose to construct the estimator F̂ x of F x by F̂ x = â0 (respectively f̂x of fx by f̂x = â0 )
which is obtained from the following minimization procedure:

min
(a0,a1)∈R2

n

∑
i=1

(
1

hlJ
J (

y − Yi
hJ

) − a0 − a1ρ(Xi, x))
2

K (
δ(x,Xi)

hK
) , l = 0,1 (1.3)

with ρ(., .) and δ(., .) are known bi-functional operators defined from F2 into R such that
∣δ(x, z)∣ = d(x, z) and ρ(z, z) = 0,∀z ∈ F . hK is the smoothing parameter associated with the
kernel K.
ĝ
(x)
l (y) is the solution of the problem of minimization (1.3) and we have:

ĝ
(x)
l (y) = h−lJ

tu1 (
tQρKQρ)

−1
QρKJ

where tQρ is the matrix defined by:

tQρ =

⎡
⎢
⎢
⎢
⎢
⎣

1 ⋯ 1

ρ (X1, x) ⋯ ρ (Xn, x)

⎤
⎥
⎥
⎥
⎥
⎦

and
J =t [J(

y −Y1

hJ

) , . . . ,J(
y −Yn

hJ

)] and tu1 =
t [1,0] ∈ R2,
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( where At designs the transposed matrix of matrix A).
One designates by K the diagonal weight matrix:

K =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K (
δ(x,X1)

hK
) 0 ⋯ 0

0 K (
δ(x,X2)

hK
) ⋯ 0

⋮ ⋮ ⋱ 0

0 0 ⋯ K (
δ(x,Xn)
hK

)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

To calculate ĝ(x)l (y), we note that:

ρi = ρ(Xi, x),Ki =K (
δ(x,Xi)

hK
) and Jj = J (

y − Yj
hJ

) .

ĝ
(x)
l (y) =

1

hJ
l
(1,0)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎝

1 1 ⋯ 1

ρ1 ρ2 ⋯ ρn

⎞

⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K1 0 ⋯ 0

0 K2 ⋯ 0

⋮ ⋯ ⋱ ⋮

0 0 ⋯ Kn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ρ1

1 ρ2

⋮ ⋮

1 ρn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

−1

×

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 ρ1

1 ρ2

⋮ ⋮

1 ρn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K1 0 ⋯ 0

0 K2 ⋯ 0

⋮ ⋯ ⋱ ⋮

0 0 ⋯ Kn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

J1

J2

⋮

Jn

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

with

(tQρKQρ)
−1
=

⎛
⎜
⎜
⎜
⎝

n

∑
i=1

ρ2iKi

n

∑
i=1

ρiKi

−
n

∑
i=1

ρiKi

n

∑
i=1

Ki

⎞
⎟
⎟
⎟
⎠

n

∑
i=1

n

∑
j=1

ρi (ρi − ρj)KiKj

.

Let
n

∑
i=1

n

∑
j=1

Wij =
n

∑
i=1

n

∑
j=1

ρi (ρi − ρj)KiKj,

thus

tu1 (
tQρKQρ)

−1
=

(
n

∑
i=1

ρ2i Ki, −
n

∑
i=1

ρiKi)

n

∑
i=1

n

∑
j=1

Wij

,
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and

tQρKJ =

⎛
⎜
⎜
⎜
⎝

n

∑
i=1

KiJi
n

∑
i=1

ρiKiJi

⎞
⎟
⎟
⎟
⎠

.

Therefore,

ĝ
(x)
l (y) =

1

hlJ

n

∑
i=1

n

∑
j=1

Wij

(
n

∑
i=1

ρ2iKi −
n

∑
i=1

ρiKi)

⎛
⎜
⎜
⎜
⎝

n

∑
i=1

KiJi
n

∑
i=1

ρiKiJi

⎞
⎟
⎟
⎟
⎠

=
1

hlJ

n

∑
i=1

n

∑
j=1

Wij

[(
n

∑
i=1

ρ2iKi)(
n

∑
i=1

KiJi) − (
n

∑
i=1

ρiKi)(
n

∑
i=1

ρiKiJi)] .

This leads to obtaining the following solution:

ĝ
(x)
l (y) =

n

∑
i=1

n

∑
j=1

WijJj

hlJ

n

∑
i=1

n

∑
j=1

Wij

.

Then, it is obvious that (1.6.1) can be rewritten as

ĝ
(x)
l (y) =

n

∑
j=1

ΓjKjJj

hlJ

n

∑
j=1

ΓjKj

,

with

Γj =K
−1
j (

n

∑
i=1

Wij) =
n

∑
i=1

ρ2iKi − (
n

∑
i=1

ρiKi)ρj.

To obtain the estimator of the conditional distribution function , we take l = 0 and we get :

F̂ x(y) = ĝ
(x)
0 (y) =

n

∑
j=1

ΓjKjJj

n

∑
j=1

ΓjKj

.
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And to obtain the estimator of the conditional density function , we take l = 1 and we get :

f̂x(y) = ĝ
(x)
1 (y) =

n

∑
j=1

ΓjKjJj

hJ
n

∑
j=1

ΓjKj

.

Concerning the estimate Θ̂(x) of the conditional mode Θ(x) by the local linear approach.
We assume that there exist a compact C where the conditional density fx has a unique mode
Θ(x) on C . A natural and usual estimator of Θ(x) is defined as the random variable Θ̂(x)

which maximizes the local linear estimator f̂x(.) of fx(.) that is:

Θ̂(x) = arg sup
y∈C

f̂x(y).

In the censored data case

In the censoring case, we can only observe the triplets (Xi, Ti, δi)1≤i≤n, where

Ti = Yi ∧Ci and δi = 1I{Yi≤Ci} 1 ≤ i ≤ n,

with 1IA denotes the indicator function on a set A and Ci is the censoring random variable with
unknown continous distribution function G.
We assume that (Ci)1≤i≤n and (Xi, Yi)1≤i≤n are independent. Based on the same idea as in
Carbonez et al. [23] and Khardani et al. [66], we give the "pseudo" estimator of fx(y):

f̃x(y) =

n

∑
j=1

δjḠ
−1(Tj)ΓjKjJj

hJ
n

∑
j=1

ΓjKj

.

Since G is unknown in practice, it is not possible to use the estimator (1.6.1), we use the Kaplan
Meier [65] estimator of G given by:

Ḡn(y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n

∏
j

(1 −
1 − δ(j)

n − j + 1
)

1I
{T
(j)≤y}

if y < T(n),

0 otherwise,

where T(1) < T(2) < . . . < T(n) are order statistics of Tj and δ(j) is concomitant with T(j).
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Thus a feasible estimator of fx(y) is given by

f̂x(y) =

n

∑
j=1

δjḠ
−1
n (Tj)ΓjKjJj

hJ
n

∑
j=1

ΓjKj

Then, We assume that there exists a certain compact set CR ⊂ R, such that fx(y) has an
unique mode θ(x) on CR. A natural and usual estimator of θ(x) is defined by:

θ̂(x) = arg sup
y∈CR

f̂x(y).

1.7 Brief presentation of the results

We give in this section a short presentation of the results obtained in this thesis.

1.7.1 Results: The complete case

In this part, we consider a subset CF of F such that CF ⊂
dn

⋃
k=1

B(xk, rn) where xk ∈ F , rn and

dn are two sequences of positive real numbers and B(xk, rn) = {x′k ∈ F/∣δ(x′k, xk)∣ < rn}. For
any fixed y in R, Ny denotes a fixed neighborhood of y and let φx(h1, h2) = P(h2 ≤ δ(X,x) ≤
h1) the small ball probability function.
The following theorems give the uniform almost complete convergence (with rate), then the
asymptotic normality of F̂ x (y) .

Theorem 1.7.1. Under some assumptions, we have

sup
x∈CF

∣F̂ x (y) − F x (y) ∣ = O (hb1K + hb2J ) +O
⎛

⎝

√
log dn
nφ (hK)

⎞

⎠
, a.co.

Theorem 1.7.2. Under some assumptions and if the smoothing parameters hK and hJ satisfy
√
nφ (hK) (hb1K + hb2J ) → 0 as n→∞, we have

√
nφ (hK) (F̂ x (y) − F x (y))

D
Ð→ N (0, VJK(x, y)) ,

where
D
Ð→ means the convergence in distribution. Also

VJK(x, y) =
M2

M2
1

F x (y) (1 − F x (y)) ,
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with
Ψ(t) = lim

hK→0

φ(−hK , thK)

φ(hK)
, ∀t ∈ [−1,1].

and

Mc =K
c(1) − ∫

1

−1
(Kc(u))′Ψ(u)du where c = 1,2.

Proof of these results and details of the conditions imposed are given in the Chapter 2.
In the following, we introduce some notations:

For any fixed x in F , Nx denotes a fixed neighborhood of x; and let C be a fixed compact subset
of R.
In this part, we study the almost complete consistency (a.co.) with rates of the local linear
estimator of the conditional density and we derive some asymptotic properties for the local
linear estimator of the conditional mode.
The first Theorem states the pointwise almost complete convergence, whereas the second one
precises the rate of convergence.

Theorem 1.7.3. [6] Under some strictrurel regularity and technical assumptions, we have

sup
y∈C

∣f̂x (y) − fx (y) ∣ = o(1), a.co.

Theorem 1.7.4. [6] Under the same assumption of Theorem 1.7.3 with a little change in the

regularity assumption, we obtain

sup
y∈C

∣f̂x (y) − fx (y) ∣ = O (hb1K) +O (hb2J ) +O
⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x (hK)

⎞
⎟
⎠
, a.co,

where b1, b2 are positive constants linked to the Lipchitz condition andϕx (hK) =
n

∑
i=1

φi,x(hK).

Next, this corollary concerns the almost comlete covergence with rate of the local linear esti-
mator of the conditional mode.

Corollary 1.7.1. [6] Under some assumptions, we have:

∣Θ̂(x) −Θ(x)∣ = O (h
b1
j

K ) +O (h
b2
j

J ) +O
⎛

⎝
(
ϕx (hK) logn

n2hJφ2
x (hK)

)

1
2j⎞

⎠
, a.co.

Proof of these results and details of the conditions imposed are given in the Chapter 3.
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1.7.2 Results: The censored case

We establish the almost complete convergence with rate of the conditional density function
which extends the results established in Ayad et al. [6] to the censored case.

Theorem 1.7.5. Under some assumptions, we have:

sup
y∈CR

∣f̂x (y) − fx (y) ∣ = O (hb1K) +O (hb2J ) +O
⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x (hK)

⎞
⎟
⎠
, a.co.

This result gives the convergence rate of the local linear estimator of the conditional mode.

Theorem 1.7.6. Under some assumptions, we have:

∣θ̂(x) − θ(x)∣ = O (h
b1
2

K ) +O (h
b2
2

J ) +O
⎛

⎝
(
ϕx (hK) logn

n2hJφ2
x (hK)

)

1
4⎞

⎠
, a.co.

Proof of these results and details of the conditions imposed are given in the Chapter 4.

1.8 Structure of the thesis

As in the literature, there are no asymptotic results on the local linear estimation for the
functional and ergodic data, we are interested to study the original results of some conditional
models under the only assumption that the process generating the functional data is stationary
ergodic.
Our asymptotic results are stated in terms of almost complete convergence which is known to
imply both almost sure convergence and the convergence in probability and uniform conver-
gence of the different conditional models.
This thesis is divided into four chapters:

The first chapter is an introductory chapter, where we present the different themes addressed
in our research axis. We start with a brief history on the nonparametric statistic for functional
data. This part was followed by a presentation of some some filds of application of functional
data. We offer numerous bibliographic references. Then, we discuss about the ergodic data and
incomplete data essentially the censored data.
Finally, in this introduction, we expose a brief historical on the local linear method and we have
given the consruction of our local linear estimators.

In the second chapter, we consider the estimation of the conditional distribution function of
a scalar response variable given by a random variable taking values in semi-metric space using
local linear approach. This chapter consists of five sections, we start with an introduction which
is the first section. At first, we construct an estimator of onditional distribution function with
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local linear method. In section three, we present and discuss necessary assumptions and study
the uniform almost-complete convergence (with rate), as well as the asymptotic normality of the
constructed estimator. Detailed proofs of technical lemmas of our main results are given in the
last section. This work has been accepted in the Journal of MATHEMATICAL MODELLING
AND ANALYSIS.

In the third chapter, we consider the local linear estimation of the conditional density for
functional ergodic data when the regressor is valued in a semi-metric space and the response is
a scalar. The organisation of this chapter is as follow. We construct the local linear estimator of
the conditional density. Under ergodicity condition we study the almost complete convergence
of our estimator (with rate). Then, we use the constructed estimator to estimate the conditional
mode estimation and we derive the same asymptotic proprieties. This work has been published
in the Journal METRON.

The fourth chapter consists in extending the previous chapter to the case of censored data.
To do this, we construct a new local linear estimator of the density function in which censorship
effects are taken into account during our observations. The organisation of this chapter is as fol-
low. Section two introduces the construction of our local linear estimator. In the third Section,
we introduce notations and hypothesis, and state the main results. Finally, the detailed proofs of
our theoretical results and all technical lemmas needed are gathered in Appendix. This workhas
been submitted.

Finally, the appendix is devoted to the mathematical tools and techniques used throughout
this thesis. Our thesis, ends with a conclusion and some perspectives of research.
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2.1. INTRODUCTION AND MOTIVATIONS

Local linear modelling of the conditional distribution
function for functional ergodic data.
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Abstract : The focus of functional data analysis has been mostly on independent functional
observations. It is therefore hoped that the present contribution will provide an informative
account of a useful approach that merges the ideas of the ergodic theory and the functional
data analysis by using the local linear approach. More precisely, we aim, in this paper, to esti-
mate the conditional distribution function (CDF) of a scalar response variable given a random
variable taking values in a semi-metric space. Under the ergodicity assumption, we study the
uniform almost complete convergence (with a rate), as well as the asymptotic normality of the
constructed estimator. The relevance of the proposed estimator is verified through a simulation
study. Keywords : Ergodic data, functional data, local linear estimator, conditional distribution
function, nonparametric estimation, Asymptotic properties.
Mathematics Subject Classification: 62G05, 62G08, 62G20, 62G35.
Secondary: 62H12

2.1 Introduction and motivations

Over the almost last two decades, functional data analysis (FDA) has established itself as a
dynamic and important field of statistical research. It has become very broad, with many spe-
cialized directions of research. This statistic area offers effective new tools and has stimulated
novel methodological developments. With the availability of large amounts of data as well as
the development of the computer instruments, (FDA) swept across various fields of applied sci-
ences (for instance biometrics, geophysics and econometrics). There are many nonparametrc
problems for functional data which have attracted a growing interest; one may refer to the fa-
mous work of Ferraty and Romain [17], the monograph of Ferraty and Vieu [16] and the pioneer
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book of Kokoszka and Reimherr [21] as well as the references therein.

Despite the simplicity of the classical kernel estimate and its availability in many statisti-
cal software packages, like R and Matlab make that it easy to understand and implement, its
simplicity leads to some weaknesses; the most obvious of which is boundary bias effect. More-
over, it is well known that among the smoothing procedures, the local polynomial approach
has various advantages over the classical kernel method. In particular, this method has better
properties concerning the bias terms on the other one (cf. Fan and Gijbels [14] for an extensive
discussion).

In the context of the finite dimensional space, the local linear method is well established,
frequently used and it has been the subject of considerable studies, and key references on this
topic are Chen et al. [7], Fan and Yao [15] and references therein. However, before the pioneer
work of Barrientos-Marin et al. [3], only few results are available for the local linear modeling
in the functional statistics setup. Indeed, the first results, in this direction, were established by
Baìllo and Grané [2]. This paper focuses on the local linear estimation of the regression opera-
tor when the explanatory variable takes values in a Hilbert space. The general case, where the
regressors do not belong to a Hilbert space but to a semi-metric space, has been considered not
only by Barrientos-Marin et al. [3] but also by El Methni and Rachdi [12], Demongeot et al.

[11] and Laksaci et al.[24].
Recently, the paper of Bouanani et al. [4] has completed the theoretical advances presented

by Laksaci et al. [24] by establishing the asymptotic normality of the local linear estimates for
several conditional models.

Weak dependencies have been considered by many authors in the context of both discrete
and continuous-time processes. We consider, in this paper, the ergodic framework which is
more general than the weak dependencies. More precisely, we examine the local linear estima-
tor’s properties of the (CDF) when the data of our constructed estimator are ergodic.

In the literature, several real examples have been studied in order to emphasize the useful-
ness of such dependency. For instance, the ergodicity assumption models several phenomena
in physics like the thermodynamic properties of gases, atoms or plasma. In a more general
way, the ergodic theory becomes crucial because there are many phenomena which are neither
independent nor α-mixing either.

In the past three decades, the study of statistical models adapted to such kind of dependency
has been impressively large but mostly restricted to the standard multivariate situation where
both the response and the explanatory variables are real or multivariate (see, Delecroix and
Rosa [8] and Laïb and Ould-Saïd [22]). However, there are very few advances in this direction
when the regressor is functional. One may refer to the work of Laib and Louani [23]. The
authors studied under ergodicity assumption the asymptotic properties of an estimator of the
regression operator. Related works can be found in the paper of Laib and Louani [23] when the
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data are completely observed and Chaouch et al. [6] for the right censored ones.

As it is mentioned above, the main aim of this paper is to construct and study under general
conditions, the uniform almost complete convergence rate as well as the asymptotic normality
of a local linear estimator of the CDF. For this purpose, it is assumed that the covariate takes
its values in an infinite dimensional space and the data are sampled from a stationary ergodic
process. Recall that uniform consistency results have been successfully used in the standard
nonparametric setting (see for instance, Ferraty et al. [18], Ling et al. [25] and Kara-Zaitri et
al. [20]). Each of these papers considers the case of the local constant method. However, in
this contribution, we consider a more efficient estimate of the CDF by the local linear method.

To make this paper as much self-contained as possible, the nonparametric model and its
associated local linear estimator are constructed in Section 2.2. In the same section, we report
some notations required for this contribution. The assumptions, under which the main results
are valid, are stated and discussed in Section 2.3. Then, we derive theoretical results by giving
a deep asymptotic study of the behaviour of the estimate, including the almost complete con-
vergence of the CDF uniformly in the functional argument x as well as the asymptotic gaussian
distribution. The relevance of the proposed estimator is verified through a simulation study in
Section 2.4. Finally, the paper is ended with a technical appendix.

2.2 Local linear estimator construction

Let (Xi, Yi)i=1,...,n be a strictly stationary (in an ergodic sense) process of F ×R-valued ran-
dom elements, where F is a semi-metric space with semi-metric d. We assume that there exists
a regular version of the conditional distribution of Y given X , which is absolutely continuous
with respect to the Lebesgue measure on R.

Interest centers on the conditional behavior of Y given X . To this end it is convenient to
consider

F x(y) = P(Yi ≤ y∣Xi = x),

Since the local linear approach requires a smoothing assumption that allows us to approximate
locally the nonparametric CDF, we estimate the function F x(.) by assuming that it is smoothed
enough to be locally approximated by a linear function. For this aim, we introduce two locating
functions δ and ρ (see Barrientos et al. [3] for more discussion on these bilinear continuous

operators) and we consider a subset CF of F such that for xk ∈ CF ,CF ⊂
dn

⋃
k=1

B(xk, rn) where

rn (resp. dn) is a sequence of positive real (resp. integer) numbers and B(xk, rn) = {x′k ∈

F/∣δ(x′k, xk)∣ < rn}. Such approximation can be expressed, for any z ∈ CF in the neighborhood
of x by:

F z(y) = a0 + a1ρ(z, x) + o(ρ(z, x)). (2.1)
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We assume that the underlying process (Xi, Yi) is functional stationary ergodic. Then the esti-
mator F̂ x of F x can be seen as the solution of the following minimization problem

min
(a0,a1∈R2

n

∑
i=1

(J (
y − Yi
hJ

) − α − βρ(Xi, x))
2

K (
δ(x,Xi)

hK
) , (2.2)

where the bi-functional δ(., .) is lied with the topological structure of the functional space F ,
that means ∣δ(x, z)∣ = d(x, z), whereas, ρ controls the local sharp of the model (see formula
(2.1)). K is a kernel, J is a distribution function and hK = hK,n (respectively hJ = hJ,n) is a
sequence of positive real numbers. More precisely, the functional local linear estimator F̂ x(y)

of F x(y) is then â0 which is the first component of the pair (a0, a1) solution of the minimization
problem (2.2). However, if the bi-functional operator ρ is such that ρ(z, z) = 0,∀z ∈ F , then the
quantity F̂ x (y) is explicitly defined by:

F̂ x(y) =

n

∑
j=1

ΓjK (
δ(x,Xj)

hK
)J (

y − Yj
hJ

)

n

∑
j=1

Γj(x)K (
δ(x,Xj)

hK
)

, (2.3)

with

Γj =
n

∑
i=1

ρ2i (x)Ki(x) − (
n

∑
i=1

ρi(x)Ki(x))ρj(x),

where ρi(x) = ρ(Xi, x), and Ki(x) =K (
δ(x,Xi)

hK
) .

2.3 Main results

2.3.1 Uniform almost complete convergence

Assumptions and notations

First we need to introduce some further notations. For i = 1, . . . , n, let Fi and Gi denote, re-
spectively, the σ-field generated by ((X1, Y1), . . . , (Xi, Yi)), and ((X1, Y1), . . . , (Xi, Yi),Xi+1).

For any fixed y in R, Ny denotes a fixed neighborhood of y. In the sequel, we will also need
to define the small ball probability function by φx(h1, h2) = P(h2 ≤ δ(X,x) ≤ h1) and we
will denote by C and C ′ some strictly positive generic constants. Finally, with some abuse of
notations, we write Jj(y) for J (

y−Yj
hJ

) and we shall write φ instead of φx.
Our consistency results are summarized in Theorem 2.3.1 and relie on the following seven as-
sumptions:

â Structural hypotheses:
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On the ergodic functional variables:
We suppose that the strictly stationary ergodic process (Xi, Yi)i∈N∗ satisfies: For all
r > 0

(H1) ∀x ∈ CF , 0 < Cφ(r) ≤ P(X ∈ B(x, r)) ≤ C ′φ(r). Furthermore ∃ η0 > 0,∀η <

η0, φ′(η) < C, where φ′ denotes the first order derivative of φ.

(H2) For all i = 1, . . . , n, there exist a determinist function φi such that:

i) 0 < Cφi(r) < P(Xi ∈ B(x, r)∣Fi−1) ≤ C ′φi(r),

ii) 1
nφ(r)

n

∑
i=1

φi(r) Ð→ 1a.co.

â Technical and regularity conditions:

(H3) On the regularity of the model:
There exist some positive constants b1 and b2 such that:
∀(x1, x2) ∈ CF ×B(x1, hK) and ∀(y1, y2) ∈ Ny ×Ny:

∣F x1(y1) − F
x2(y2)∣ ≤ C (∣δ(x1, x2)∣

b1 + ∣y1 − y2∣
b2) ,

(H4) On the bi-functional operators ρ and δ:

(i) ∀z ∈ F , C ∣δ (x, z) ∣ ≤ ∣ρ (x, z) ∣ ≤ C ′∣δ (x, z) ∣,

(ii) ∀(x1, x2) ∈ CF × CF ,

∣ρ (x1, x) − ρ (x2, x) ∣ ≤ C ′∣δ(x1, x2)∣.

(H5) On the kernel K and the distribution function J:

(i) K is a nonnegative bounded and Lipschitz kernel on its support [−1; 1].

(ii) The kernel J is a differentiable function such that:

∫
R
∣t∣b2J(1)(t)dt < ∞.

(iii) E(Jj(y)∣Gj−1) = E(Jj(y)∣Xj)

(H6) Taking rn = O (
logn
n

), the sequence dn satisfies:

(logn)2

nφ(hK)
< log dn <

nφ(hK)

logn
and

∞

∑
n=1

d
(1−%)
n < ∞ for some % > 1.

(H7) On the bandwidth hK with respect to ρ and φ :
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i) There is a positive integer n0, such that, ∀n > n0:

−
1

φ(hK)
∫

1

−1
φ(zhK , hK)

d

dz
(z2K(z))dz > C,

ii) lim
n→∞

hK = 0, lim
n→∞

hH = 0, and lim
n→∞

logn

nφ(hK)
= 0

iii) hK ∫
B(x,hK)

ρ (u,x)dP (u) = o(∫
B(x,hK)

ρ2 (u,x)dP (u)) ,

where dP (x) is the cumulative distribution of X.

Comments on the hypotheses

(H1) involves the small ball techniques. It is clearly unrestrictive, since it is the same as that
frequently used in the FDA context.
We precise that the ergodic nature of the data is exploited by (H2) which is a very mild condition
in comparison of that imposed by Laib and Louani [23].
Concerning (H3), this condition is necessary to evaluate the bias term in our asymptotic result.
The constants b1 and b2 control the model’s regularity and the only condition imposed is their
positivity. In other words, this assumption guarantees slower variance of the operator compared
to X . More the parameters b1 and b2 are small, more the curves of the operator’s evolution as a
function of X are smooth, and less the estimate obtained is biased.
Condition (H4)(i) is unrestrictive condition and it is verified if ρ(., .) = δ(., .) (In this special
case, (H7) (iii) means that the local expectation of ρ is small enough with respect to its moment

of second order); or if lim
δ(z,x)→0

∣
ρ(z, x)

δ(z, x)
− 1∣ = 0. Indeed, ∀z ∈ B(x,hK), we have:

∣
ρ(z,x)−δ(z,x)

hK
∣ ≤ ∣

ρ(z,x)
δ(z,x) − 1∣ Ð→ 0 as δ(z, x) → 0.

The Lipschitz condition (H4) (ii) on the locating function ρ is the same used by Barrientos-
Marin et al. [3] and it is typical in the context of local polynomial smoothing.
(H5)(i) could be replaced by another assumption such as the boundness of the kernel K. The
slightly stronger assumption (H5) (i) just makes the proof of uniform convergence simpler.
(H5)(ii) and (iii) are technical conditions imposed for brevity of proofs.
In (H6), the covering hypothesis on the subset CF is linked to the topological structure of our
functional space F . It controls Kolmogorov’s entropy of the set CF . Such consideration has
been discussed and commented by Ferraty et al. [18]. The authors give several examples for
which this condition is satisfied.
The assumption (H7) (i) precise the behaviour of the smoothing parameter hK in relation with
the small ball probabilities and the kernel function K. The local behaviour of ρ which models
the local shape of our model is controlled by (H7)(iii).
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We are now ready to state our first result which is the uniform almost complete convergence of
the estimator F̂ x (y) on the subset CF .

Theorem 2.3.1. As soon as assumptions (H1)–(H7) are fulfilled, we have

sup
x∈CF

∣F̂ x (y) − F x (y) ∣ = O (hb1K + hb2J ) +O
⎛

⎝

√
log dn
nφ (hK)

⎞

⎠
, a.co.

Before starting the proof of this Theorem, we introduce the following further notations:

F̂ x
N(y) ∶=

1

nE (Γ1K1)

n

∑
j=1

ΓjKj(x)Jj, F̄ x
N (y) ∶=

1

nE (Γ1K1)

n

∑
j=1

E (ΓjKj(x)Jj ∣Fj−1) ,

F̂D (x) ∶=
1

nE (Γ1K1)

n

∑
j=1

ΓjKj(x) and F̄D (x) ∶=
1

nE (Γ1K1)

n

∑
j=1

E (ΓjKj(x)∣Fj−1) .

Then, the proof of Theorem 2.3.1 is based on the following decomposition:

F̂ x(y) − F x(y) = Bn(x, y) +
1

F̂D (x)
[(Bn(x, y) + F

x (y))An(x, y) +Rn(x, y)] , (2.4)

where

Bn(x, y) =
F̄ x
N (y)

F̄D (x)
− F x (y) ,

An(x, y) = F̄D (x) − F̂D (x)

and
Rn(x, y) = F̂

x
N (y) − F̄ x

N (y) .

As immediate consequence of the decomposition (2.4), we need to prove the following lemmas:

Lemma 2.3.1. Under the assumptions (H1)–(H5) and (H7), we have

sup
x∈CF

∣Bn(x, y)∣ = O (hb1K + hb2J ) .

Lemma 2.3.2. Under the hypotheses of Theorem 2.3.1, we obtain

sup
x∈CF

∣Rn(x, y)∣ = Oa.co

⎛

⎝

√
log dn
nφ (hK)

⎞

⎠
.

Lemma 2.3.3. Under the assumptions (H1)–(H5) (i), (H6) and (H7), we have

i) sup
x∈CF

∣An(x, y)∣ = Oa.co

⎛

⎝

√
log dn
nφ(hK)

⎞

⎠
.
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ii)
∞

∑
n=1

P( inf
x∈CF

F̂D(x) <
1

2
) < ∞.

Thus, the proof of our main result is based on the previous lemmas combined with Lemma
5 of Ayad et al. [1] and the technical lemma 1 of Laib and Louani [23].

2.3.2 Asymptotic normality

Let us first focus on the supplementary assumptions we need to derive the asymptotic nor-
mality of our estimator.

(B1) The hypothesis (H1) holds and there exists a function Ψ(⋅) such that:

∀t ∈ [−1,1], lim
hK→0

φ(−hK , thK)

φ(hK)
= Ψ(t).

(B2) The hypothesis (H3) holds and for all (x1, x2, y1, y2) ∈ CF × CF ×Ny ×Ny:

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

F ∶ F ×RÐ→ R, lim
∣δ(x1,x2)∣→0

F x1(y) = F x2(y),

and
lim

∣y1−y2∣→0
F x(y1) = F x(y2).

(B3) The hypothesis (H4) holds and

sup
u∈B(x,r)

∣ρ(u,x) − δ(x,u)∣ = o(r)

.

(B4) The hypothesis (H5) holds and the first derivative K ′ of the kernel K satisfies:

K2(1) − ∫
1

−1
(K2(u))′Ψ(u)du > 0.

(B5) The hypothesis (H7) holds and lim
n→∞

(n − 1)khlKφ(hK) = 0, fork = 1,2 and l = 4,5.

In addition, we need to introduce the quantities Mc and N(a, b) which will appear in the com-
putation of E (Kc

j ∣Fj−1) .

Mc =K
c(1) − ∫

1

−1
(Kc(u))′Ψ(u)du where c = 1,2,

and for all a > 0 and b = (2,4), N(a, b) =Ka(1) − ∫
1

−1(u
bKa(u))′Ψ(u)du.
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Theorem 2.3.2. Under assumptions (B1)–(B5), (H1) and (H6) and if the smoothing parameters

hK and hJ satisfy
√
nφ (hK) (hb1K + hb2J ) → 0 as n→∞, We have

√
nφ (hK) (F̂ x (y) − F x (y))

D
Ð→ N (0, VJK(x, y)) ,

where VJK(x, y) =
M2

M2
1

F x (y) (1 − F x (y)) , and
D
Ð→ means the convergence in distribution.

The first step of the proof consists in rewriting the decomposition (2.4) in the following way:

F̂ x(y) − F x(y) = Bn(x, y) +
Cn(x, y) +Qn(x, y)

F̂D (x)
, (2.5)

where

Cn(x, y) = Bn(x, y)An(x, y), and Qn(x, y) = Rn(x, y) + F
x(y)An(x, y).

Then, to state asymptotic normality, we remark that the hypothesis (B2) ensures the asymp-
totic negligence of Bn(x, y). Moreover, according to Lemma 2.3.3 (i), Cn converges almost
completely to zero when n goes to infinity. Consequently, the proof of Theorem 2.3.2 can be
deduced from the following lemmas for which the proofs are relegated to the Appendix.

Lemma 2.3.4. Under assumptions of Theorem 2.3.2, we have

¿
Á
ÁÀ nφ (hK)

VJK(x, y)
Qn(x, y)

D
Ð→ N(0,1).

Lemma 2.3.5. Under assumptions (H1)–(H5) (i), (H6) and (H7), we have

F̂D (x) − 1 = op(1)

2.4 On simulated data

We now conduct a simulation study in which the finite sample performance of the local
linear estimator given in formula (2.3) is compared to the following local constant estimator:

F̃ x(y) =

n

∑
j=1

Kj(x)Jj(y)

n

∑
j=1

Kj(x)

. (2.6)
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Let us use the following regression model:

Y = r(X) + ε,

where the random variable ε is normally distributed with a variance equal to 0.075. The ex-
planatory functional variables are constructed by:

Xi(t) = 2wit
2 +

1

2
cos(πzit) i = 1, . . .200, t ∈ [0,1],

where wi are n independent real random variables uniformly distributed over [0,1] and zi =
1
3zi−1 + ζi. Here ζi are i.i.d. realizations of N(0,1) and are independent from wi and zi, which
is generated independently by z0 ∼ N(0,1). All the curves Xi’s were discretized on the same
grid generated from 200 equispaced measurements in (0,1) and are plotted in Figure 2.1.

Time

0 50 100 150 200

−0
.5

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 2.1: The curves Xi.

On the other hand, the building of the scalar response Y is obtained by considering the
following regression operator:

(∫

1

0
X ′(t)dt)

2

Recall that, the conditional distribution of Y given X = x corresponding to this model is explic-

itly given by the law of εi shifted by (∫

1

0
X ′(t)dt)

2

.

When dealing with smooth curves such as those introduced herein, it is necessary to measure
the proximity by means of a semi-metric based on the L2 norm of some derivative of the curves.
The smoothing parameters hK and hJ are selected through automated cross validation, choos-
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ing a value that minimizes the average error on the withheld data.
The behavior of our estimator is linked to the good choice of the functions δ and ρ. Because of
the smoothness of the curves we take

ρ(x,x′) = ∫
1

0
θ(t)(x(1)(t) − x′(1)(t))dt

and δ(x,x′) = (∫

1

0
(x(1)(t) − x′(1)(t))2dt)

1/2

with the functional index θ is selected among the eigenfunction of the empirical covariance

operator
1

n

n

∑
i=1

(X
(1)
i −X(1))t ((X

(1)
i −X(1))) corresponding to the biggest eigenvalues, where

X =
1

n

n

∑
i=1

Xi.

For both competitors, the kernel K(u) = (1 − u2)11[0,1] is used and the distribution function J
is defined by:

J(u) =
3u

4
(1 −

u2

3
)11[−1,1] +

1

2
.

In this illustration, we have followed the following steps:

• Step 1: We generate m replications of (Xi, Yi)i=1,...,n .

• Step 2: We estimate the conditional local linear distribution (respectively the conditional
kernel distribution).

• Step 3: we compare these estimators to the Gaussian distribution.

In order to eliminate the zero weight, we have removed the negative weighing. The obtained
results are plotting in Figure 2.2.
It is clear that the local linear estimator of the CDF operator convincingly outperforms the local

0 50 100 150 200

0.0
0.2

0.4
0.6

0.8
1.0

local  linear estimator

Time
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Time

Figure 2.2: Comparison between the both estimators.

constant one.
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2.5 Appendix

2.5.1 Preliminary technical lemmas

Firstly, we state the following lemmas which are needed to establish our asymptotic results.

Lemma. A.1 Under assumptions (H1), (H2), (H4)(i), (H5) and (H7), we obtain

i) sup
x∈CF

F̄D(x) = O(1).

ii) inf
x∈CF

F̄D(x) = O(1).

Lemma. A.2 Under assumptions (B1), (H2), (B2)–(B5), we have

(i) hKE (ρj(x)K
a
j (x)∣Fj−1) = o(h

2
Kφj(hK)) for all a > 0.

(ii)
1

nφ(hK)

n

∑
j=1

E (Kc
j (x)∣Fj−1) =Mc + o(1) for c = 1,2.

(iii)
1

nφ(hK)

n

∑
j=1

E (Γ2
jK

2
j (x)∣Fj−1) = (n − 1)2(N(1,2))2h4Kφ

2(hK)M2 + o (h
4
Kφ

2(hK)) .

Proof of Lemma A.1

Before we start the proof of i), it is clear that by using Lemma A.1 of [3], we obtain

nCh2Kφ (hK) ≤ E (Γ1(x)K1(x)) ≤ nC
′h2Kφ (hK) . (2.7)

Then, by considering Lemma 5 of Ayad et al. [1] and (2.7) we get

sup
x∈CF

F̄D(x) = O(1) sup
x∈CF

1

nφ (hK)

n

∑
j=1

φj (hK) .

So, the claimed result i) of this lemma is a direct consequence of Assumption (H2)(ii).
The proof of (ii) is similar to that of (i), and is therefore omitted.

Proof of Lemma A.2

Firstly, the proof of (i) and (ii) are similar to the proof of (b) and (a) of Lemma A.1 in [27].
Secondly, in order to prove (iii), we use the definition of the conditional variance. Indeed,

1

nφ(hK)

n

∑
j=1

E (Γ2
jK

2
j (x)∣Fj−1) =

1

nφ(hK)

n

∑
j=1

(Var (ΓjKj(x)∣Fj−1) + (E (ΓjKj(x)∣Fj−1))
2
) .

(2.8)
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It remains to study each term of (2.8). For the first term on the right hand side of this equation,
we have

Var (ΓjKj(x)∣Fj−1) = (n − 1) (Var (ρ21(x)K1(x)Kj(x)∣Fj−1) +Var (ρ1(x)K1(x)ρj(x)Kj(x)∣Fj−1))

= (n − 1)(E (ρ41(x)K
2
1(x))E (Kj(x)

2∣Fj−1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

T1

−(E (ρ21(x)K1(x))E (Kj(x)∣Fj−1))
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T2

+E (ρ21(x)K
2
1(x))E (ρ2j(x)K

2
j (x)∣Fj−1)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T3

−(E (ρ1(x)K1(x))E (ρj(x)Kj(x)∣Fj−1))
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
T4

).

Then, by using (i) of Lemma A.1 in [3] and (i) of Lemma 5 in [1], we find

n − 1

nφ(hK)

n

∑
j=1

Ti = O ((n − 1)h4Kφ(hK)) for i = 1,2,3,4.

It follows that
1

nφ(hK)

n

∑
j=1

Var (ΓjKj(x)∣Fj−1) Ð→ 0, as n→∞.

On the other side, to complete the proof of (iii), we have to study the first term on the right hand
side of (2.8). For that, we write:

1

nφ(hK)

n

∑
j=1

(E (ΓjKj(x)∣Fj−1))
2

=
1

nφ(hK)

n

∑
j=1

(E(
n

∑
i=1

ρ2i (x)Ki(x)Kj(x)

−
n

∑
i=1

ρi(x)Ki(x)ρj(x)Kj(x)∣Fj−1))

2

= γn1 + γn2 + γn3,

where

γn1 =
(n − 1)

2

nφ(hK)
(E (ρ21(x)K1(x)))

2
n

∑
j=1

(E (Kj ∣Fj−1))
2
,

γn2 =
(n − 1)

2

nφ(hK)
(E (ρ1(x)K1(x)))

2
n

∑
j=1

(E (ρj(x)Kj ∣Fj−1))
2
,

and γn3 = −
2 (n − 1)

2

nφ(hK)
E (ρ21(x)K1(x))E (ρ1(x)K1(x))

n

∑
j=1

E (Kj ∣Fj−1)E (ρj(x)Kj ∣Fj−1)

Concerning the term γn1, by applying Jensen’s Inequality, we have

γn1 ≤
(n − 1)

2

nφ(hK)
(E (ρ21(x)K1(x)))

2
n

∑
j=1

E (K2
j ∣Fj−1) ,
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then, we apply (c) of Lemma A.1 in [27] and (ii) of Lemma A.2 to obtain:

γn1 = (n − 1)
2
((N(1,2))

2
h4Kφ

2(hK)M2 + o (h
4
Kφ

2(hK)) . (2.9)

Concerning γn2, we apply (b) of Lemma A.1 in [27] and (i) of Lemma A.2 to get:

γn2 = o ((n − 1)
2
h4Kφ(hK)) . (2.10)

For the last term, we apply (i) of Lemma A.1 in [3], (i) of Lemma 5 in [1] and (i) of Lemma
A.2 to get:

γn3 = o ((n − 1)
2
h5Kφ(hK)) . (2.11)

Combining (2.9), (2.10) and (2.11) permits to obtain the claimed result.

2.5.2 Proofs of Main results

Proof of Lemma 2.3.1

We start by writing

sup
x∈CF

∣Bn(x, y)∣ =

sup
x∈CF

∣B̃n (x, y) ∣

inf
x∈CF

∣F̄D(x)∣
,

where B̃n (x, y) = F̄ x
N (y) − F x (y) F̄D (x).

First, observe that B̃n (x, y) can be written as

B̃n (x, y) =
1

nE (Γ1K1)

n

∑
j=1

{E (ΓjKj(x)Jj ∣Fj−1) − F
x (y)E (ΓjKj ∣Fj−1)}

=
1

nE (Γ1K1)

n

∑
j=1

{E (ΓjKj(x)E (Jj ∣Gj−1) ∣Fj−1) − F
x (y)E (ΓjKj ∣Fj−1)}

≤
1

nE (Γ1K1)

n

∑
j=1

{E (Γj ∣E [Jj ∣Xj] − F
x (y)∣ ∣Fj−1)} . (2.12)

The last inequality is obtained by using (H5) (iii).
Next, we have directly after integrating by parts, and changing of variables

∣E [Jj ∣Xj] − F
x (y)∣ ≤ ∫

R
J(1) (t) ∣F x (y − hJt) − F

x (y)∣dt.

Thus, from assumptions (H3) and (H5)(i) we get:

11B(x,hk) (Xj) ∣E [Jj ∣Xj] − F
x (y)∣ ≤ ∫

R
J(1) (t) (hb1K + ∣t∣

b2 hb2J )dt.
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Since, J(1) is probability density function, and under the assumption (H5) (ii), we find that:

11B(x,hk) (Xj) ∣E [Jj ∣Xj] − F
x (y)∣ ≤ C (hb1K + hb2J ) . (2.13)

Hence, By combining (2.12) together with (i) of Lemma A.1, we obtain

sup
x∈CF

∣B̃n (x, y) ∣ = O (hb1K + hb2J ) sup
x∈CF

F̄D (x) ,

and the claimed result of this lemma is now checked.

Proof of Lemma 2.3.2

Firstly, by using (H4) (i) and because the kernel K is bounded on [−1,1], it can be easily
seen that

∣Γj(x)∣ ≤ nCh2K + nChK ∣ρj(x)∣. (2.14)

Secondary, for all x ∈ CF , we denote: k(x) = arg min
k∈{1,2,...,dn}

∣δ(x,xk)∣

sup
x∈CF

∣Rn(x, y)∣ ≤ sup
x∈CF

∣F̂ x
N(y) − F̂

xk(x)
N (y)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q1

+ sup
x∈CF

∣F̂
xk(x)
N (y) − F̄

xk(x)
N (y)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q2

+ sup
x∈CF

∣F̄
xk(x)
N (y) − F̄ x

N(y)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
Q3

We will now treat each of the three terms involved in this decomposition. We start by the
consistency of the term Q1. By using (2.7) and the boundeness on K and J , one can write:

Q1 ≤ sup
x∈CF

1

n

n

∑
j=1

∣Jj(y)∣ ∣
1

E (Γ1(x)K1(x))
Γj(x)Kj(x)11B(x,hK)(Xj)

−
1

E (Γ1(xk(x))K1(xk(x)))
Γj(xk(x))Kj(xk(x))11B(xk(x),hK)(Xj)∣

≤ (
C

n2h2Kφ(hK)
sup
x∈CF

n

∑
j=1

∣Γj(x)11B(x,hK)(Xj)∣

× ∣Kj(x) −Kj(xk(x))11B(xk(x),hK)(Xj)∣)

+ (
C

n2h2Kφ(hK)
sup
x∈CF

n

∑
j=1

Kj(xk(x))11B(xk(x),hK)(Xj)

× ∣Γj(x)11B(x,hK)(Xj) − Γj(xk(x))∣)

∶= F1 + F2
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Let us first deal with the term F1. Because the kernel K satisfy the Lipschitz condition, and by
using the inequality (2.14), we have

∣Γj(x)∣11B(x,hK)(Xj)∣Kj(x) −Kj(xk(x))11B(xk(x),hK)(Xj)∣

≤ nCh2K (
rn
hK

11B(x,hK)∩B(xk(x),hK)(Xj)

+ 11B(x,hK)∩B(xk(x),hK)
(Xj))

Which implies that:

F1 ≤
Crn

nhKφ(hK)
sup
x∈CF

n

∑
j=1

11B(x,hK)∩B(xk(x),hK)(Xj)

+
C

nφ(hK)
sup
x∈CF

n

∑
j=1

11B(x,hK)∩B(xk(x),hK)
(Xj)

Concerning the term F2, we have that:

11B(xk(x),hK)(Xj)∣Γj(x)11B(x,hK)(Xj) − Γj(xk(x))∣

≤ 11B(xk(x),hK)∩B(x,hK)(Xj)∣Γj(x) − Γj(xk(x))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

+nCh2K11B(xk(x),hK)∩B(x,hK)
(Xj)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
B

.

Now, we calculate the first part of the right side of this inequality

A = 11B(xk(x),hK)∩B(x,hK)(Xj)∣ (
n

∑
i=1

ρ2i (x)Ki(x) − ρ
2
i (xk(x))Ki(xk(x)))

−((
n

∑
i=1

ρi(x)Ki(x))ρj(x)) − (
n

∑
i=1

ρi(xk(x))Ki(xk(x))ρj(xk(x))) ∣

≤ A1 +A2,

where
A1 = 11B(xk(x),hK)∩B(x,hK)(Xj)∣

n

∑
i=1

ρ2i (x)Ki(x) − ρ
2
i (xk(x))Ki(xk(x))∣,

and A2 = 11B(xk(x),hK)∩B(x,hK)(Xj)∣ ((
n

∑
i=1

ρi(x)Ki(x))ρj(x))

−((
n

∑
i=1

ρi(xk(x))Ki(xk(x)))ρj(xk(x))) ∣
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Let us now examine the terms A1 and A2 by putting

T k,l = 11B(xk(x),hK)∩B(x,hK)(Xj)∣ (
n

∑
i=1

ρki (x)Ki(x))ρ
l
j(x)

− (
n

∑
i=1

ρki (xk(x))Ki(xk(x)))ρ
l
j(xk(x))∣ with k = 1,2 and l = 0,1.

Therefore,
T k,l ≤ T k,l1 + T k,l2 ,

with
T k,l1 = 11B(xk(x),hK)∩B(x,hK)(Xj)(

n

∑
i=1

∣ρki (x)∣Ki(x) × ∣ρlj(x) − ρ
l
j(xk(x))∣),

and

T k,l2 = 11B(xk(x),hK)∩B(x,hK)(Xj)(∣ρ
l
j(xk(x))∣

× ∣
n

∑
i=1

(ρki (x)Ki(x) − ρ
k
i (xk(x))Ki(xk(x))∣),

By the assumption (H4)(ii) for l = 1, we can write:

11B(xk(x),hK)∩B(x,hK)(Xj)∣ρj(x) − ρj(xk(x))∣ ≤ Crn11B(xk(x),hK)∩B(x,hK)(Xj).

So, for l = 0, k = 2

T k,l1 = 0, (2.15)

and for l = 1, k = 1

T k,l1 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj). (2.16)

We now turn to the term T k,l2

T k,l2 ≤ 11B(xk(x),hK)∩B(x,hK)(Xj)(
n

∑
i=1

∣ρlj(xk(x))∣Ki(x) × ∣ρki (x) − ρ
k
i (xk(x))∣)

+11B(xk(x),hK)∩B(x,hK)(Xj)(
n

∑
i=1

∣ρlj(xk(x))∣∣ρ
k
i (xk(x))∣ × ∣Ki(x) −Ki(xk(x))∣) .

Observe that:

11B(xk(x),hK)∩B(x,hK)(Xj)∣ρ
2
i (x) − ρ

2
i (xk(x))∣ ≤ CrnhK11B(xk(x),hK)∩B(x,hK)(Xj),

which implies that for k = 1,2

11B(xk(x),hK)∩B(x,hK)(Xj)∣ρ
k
i (x) − ρ

k
i (xk(x))∣ ≤ Crnh

k−1
K 11B(xk(x),hK)∩B(x,hK)(Xj).
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Therefore, for l = 0, and k = 2

T k,l2 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj), (2.17)

and for l = 1, and k = 1

T k,l2 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj). (2.18)

Then, by Combining (2.15) with (2.17), we find that

A1 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj).

In addition, by combining (2.16) with (2.18), allows us to find

A2 ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj).

Which implies that
A ≤ nCrnhK11B(xk(x),hK)∩B(x,hK)(Xj).

Thus

F2 ≤
Crn

nhKφ(hK)
sup
x∈CF

n

∑
j=1

11B(xk(x),hK)∩B(x,hK)(Xj)

+
C

nφ(hK)
sup
x∈CF

n

∑
j=1

11B(xk(x),hK)∩B(x,hK)
(Xj)

Consequently, we obtain
Q1 ≤ C sup

x∈CF

(Q1.1 +Q1.2 +Q1.3) ,

where

Q1.1 =
C

nφ(hK)

n

∑
j=1

11B(xk(x),hK)∩B(x,hK)
(Xj),

Q1.2 =
Crn

nhKφ(hK)

n

∑
j=1

11B(x,hK)∩B(xk(x),hK)(Xj),

Q1.3 =
C

nφ(hK)

n

∑
j=1

11B(x,hK)∩B(xk(x),hK)
(Xj).
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Now, we evaluate those last terms by an application of the standard inequality for sums of
bounded random variables with Zj identified such that:

Zj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

φ(hK)
[11B(xk(x),hK)∩B(x,hK)

(Xj)] for Q1.1

rn
hKφ(hK)

[11B(x,hK)∩B(xk(x),hK)(Xj)] for Q1.2

1

φ(hK)
[11B(x,hK)∩B(xk(x),hK)

(Xj)] for Q1.3

It is clear that for Q1.1 and Q1.3, we have under the second part of (H1):

Zj = O (
1

φ(hK)
) , E[Zj] = O (

rn
φ(hK)

) and E (Z2
j ) = O (

rn
φ(hK)2

) .

Therefore,

Q1.1 = O (
rn

φ(hK)
) +Oa.co

⎛

⎝

√
rn logn

nφ(hK)2

⎞

⎠
.

With the same manner, assumption (H6) allows to get, for Q1.2:

Zj = O (
rn

hKφ(hK)
) , E[Zj] = O (

rn
hK

) and E (Z2
j ) = O (

r2n
h2Kφ(hK

) .

Which implies that:

Q1.2 = Oa.co

⎛

⎝

√
log dn
nφ(hK)

⎞

⎠
.

To finish the study of the term Q1, we need to put together all the intermediate result and to
employ the second part of (H6) to obtain

Q1 = Oa.co

⎛

⎝

√
log dn
nφ(hK)

⎞

⎠
.

Concerning the term Q2, we have for all ε > 0,

P
⎛

⎝
Q2 > ε

√
log dn
nφ(hK)

⎞

⎠
= P( max

k∈1,...,dn
∣F̂

xk(x)
N (y) − F̄

xk(x)
N (y)∣ > ε)

≤ dn max
k∈1,...,dn

P
⎛

⎝
∣F̂

xk(x)
N (y) − F̄

xk(x)
N (y)∣ > ε

√
log dn
nφ(hK)

⎞

⎠
.

Let
F̂
xk(x)
N (y) − F̄

xk(x)
N (y) =

1

E(Γ1K1)

n

∑
j=1

Sj
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with

Sj = Γj(xk(x))Kj(xk(x))Jj(y) −E (Γj(xk(x))Kj(xk(x))Jj(y)∣Fj−1) ,

where Sj is a triangular array of bounded martingale differences with respect to the sequence
of σ−fields (Fj−1)j≥1 . So, we have

E (S2
j ∣Fj−1) = E ((ΓjKj)

2
J2
j ∣Fj−1) −E ((ΓjKj(x)Jj ∣Fj−1))

2

≤ E ((ΓjKj)
2
J2
j ∣Fj−1) .

As Jj ≤ 1, we deduce that
E (S2

j ∣Fj−1) ≤ E (Γ2
jK

2
j ∣Fj−1) .

By using equation(2.14), (H4)(i) and (H5)(i), we obtain that:

E (S2
j ∣Fj−1) ≤ 2C ′n2h4Kφj (hK) .

Now, we use the exponential inequality of Lemma 1 of [23] (with d2j = C ′n2h4Kφj(hK) to obtain
for all ε > 0,

P
⎛

⎝
∣F̂

xk(x)
N (y) − F̄

xk(x)
N (y)∣ > ε

√
log dn
nφ(hK)

⎞

⎠
= P

⎛

⎝
∣

1

nE (Γ1K1)

n

∑
j=1

Sj ∣ > ε

√
log dn
nφ(hK)

⎞

⎠

≤ 2 exp{−C0ε2 log dn} .

Thus, by choosing ε such that C0ε2 = ς , we get

dn max
k∈{1,...,dn}

P
⎛

⎝
∣F̂

xk(x)
N (y) − F̄

xk(x)
N (y)∣ > ε

√
log dn
nφ(hK)

⎞

⎠
≤ C ′d1−ςn .

Since
∞

∑
n=1

d1−ςn < ∞, we obtain that:

Q2 = Oa.co

⎛

⎝

√
log dn
nφ(hK)

⎞

⎠
.

For the term Q3, clearly we have

Q3 ≤ E(sup
x∈CF

∣F̂
xk(x)
N (y) − F̄

xk(x)
N (y)∣∣Fj−1) .
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Subsequently, we follow the same steps used in studying the term Q1 to find

Q3 = Oa.co

⎛

⎝

√
log dn
nφ(hK)

⎞

⎠
.

This is enough to complete the proof of Lemma 2.3.2.

Proof of Lemma 2.3.3

i) This result can be deduced from Lemma 2.3.2 by taking Jj = 1. In this case, hypothesis
(H5) (ii) and (iii) are not necessary.

ii) It is easy to see that

inf
x∈CF

∣F̂D(x)∣ ≤
1

2
implies that there exist x ∈ CF such that

1 − F̂D(x) ≥ 1
2 Ô⇒ sup

x∈CF

∣1 − F̂D(x)∣ ≥
1

2
.

According to (i) of this Lemma, we have:

P( inf
x∈CF

∣F̂D(x)∣ ≤
1

2
) ≤ P(sup

x∈CF

∣1 − F̂D(x)∣ ≥
1

2
) .

Consequently,
∞

∑
n=1

P( inf
x∈CF

∣F̂D(x)∣ ≤
1

2
) < ∞.

which ends the proof.

Proof of Lemma 2.3.4

For all j = 1, . . . , n, let us denote

ηn,j =

√
nφ (hK)

nE (Γ1K1)
(Jj − F

x(y))ΓjKj,

and define ξn,j = ηn,j −E (ηn,j ∣Fj−1) . It is clear that

√
nφ (hK)Qn(x, y) =

n

∑
j=1

ξn,j. (2.19)

The summands in Equation (2.19) form a triangular array of stationary martingale differences
with respect to the σ−fields Fj−1. Accordingly, the asymptotic normality of Qn(x, y) can be
established by applying the central limit theorem for discrete time arrays of real–valued martin-
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gales. Therefore, to show Lemma 2.3.4, it suffices to prove the following two claims:

n

∑
j=1

E (ξ2n,j ∣Fj−1)
P
Ð→ VJK(x, y), (2.20)

and ∀ε > 0 nE (ξ2n,j11[∣ξn,j ∣>ε]) = o(1) (Lindeberg condition). (2.21)

Let us start the proof of (2.20) by remarking that

E (ξ2n,j ∣Fj−1) = E (η2n,j ∣Fj−1) − (E (ηn,j ∣Fj−1))
2
.

Thus, it suffices to show that

lim
n→∞

n

∑
j=1

(E (ηn,j ∣Fj−1) )
2

= 0 in probability, (2.22)

and
lim
n→∞

n

∑
j=1

E (η2n,j ∣Fj−1) = VJK(x, y) in probability. (2.23)

Concerning the proof of (2.22), by applying Equation (2.13), Equation (2.7) and Lemma 5 of
Ayad et al. [1], we get that

∣E (ηn,j ∣Fj−1) ∣ =

√
nφ (hK)

nE (Γ1K1)
∣E( (Jj − F

x(y))ΓjKj(x)∣Fj−1)∣

≤ C
√
nφ (hK) (hb1K + hb2J )

1

nφ (hK)
φj (hK) .

Thus, by using (H2) (ii), we find

n

∑
j=1

(E (ηn,j ∣Fj−1) )
2

= Oa.co(nφ (hK) (hb1K + hb2J )
2
).

For the proof of Equation (2.23), we use (H5)(iii) to obtain

n

∑
j=1

E (η2n,j ∣Fj−1) =
φ (hK)

n (E (Γ1K1))
2

n

∑
j=1

E (Γ2
jK

2
j (Jj − F

x(y))
2
∣Fj−1)

=
φ (hK)

n (E (Γ1K1))
2

n

∑
j=1

E (Γ2
jK

2
jE [(Jj − F

x(y))
2
∣Xj] ∣Fj−1) .

Next, by using the definition of the conditional variance, we find

E [(Jj − F
x(y))

2
∣Xj] = Var [Jj ∣Xj] + [E (Jj ∣Xj) − F

x(y)]
2

∶= βn1 + βn2
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Concerning the term βn1, we have

Var [Jj ∣Xj] = E (J2
j ∣Xj) − (E (Jj ∣Xj))

2 (2.24)

An integration by part followed by a change of variable with Assumption (B2) permit us to
deduce

E [Jj ∣Xj] = ∫
R
J(1) (t) [F x (y − hJt) − F

x (y)]dt + F x (y)

= F x (y) . (2.25)

Similarly, the first term on the right hand side of Equation (2.24) is treated directly by using
again (B2) combined with an integration by part and a change of variable. It follows that

E [J2
j ∣Xj] = ∫

R
J2 (

y − z

hJ
) fx(z)dz

= ∫
R

2J (t)J(1) (t) [F x (y − hJt) − F
x (y)]dt + ∫

R
2J (t)J(1) (t)F x (y)dt.

Since ∫
R

2J (t)J(1) (t)F x (y)dt = F x (y) , We infer that:

E [J2
j ∣Xj] Ð→ F x (y) , as n→∞. (2.26)

Now, by combining the result (2.25) with (2.26), we arrive directly at the following result:

Var [Jj ∣Xj] = F
x (y) (1 − F x (y)) (2.27)

Concerning the term βn2, we deduce by (2.25) that

βn2 Ð→ 0, as n→∞.

Therefore,
n

∑
j=1

E (η2n,j ∣Fj−1) =
φ (hK)

n (E (Γ1K1))
2

n

∑
j=1

E (Γ2
jK

2
j βn1∣Fj−1) .

Combining (d) of Lemma A.1 [27], (iii) of Lemma A.2 and Equation (2.27) allow to obtain

n

∑
j=1

E (η2n,j ∣Fj−1) Ð→
M2

M2
1

F x (y) (1 − F x (y)) = VJK(x, y), as n→∞

which completes the proof of the claim (2.20).
Concerning the proof of (2.21), the Linderberg condition implies that
nE (ξ2n,j11[∣ξn,j ∣>ε]) ≤ 4nE (η2n,j11[∣ηn,j ∣>

ε
2
]) . By using Markov’s and Hölder’s inequalities, we can
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write for all ε > 0,

E (η2n,j11[∣ηn,j ∣>
ε
2
]) ≤

E (∣ηn,j ∣)
2a

(ε/2)
2a/b

.

Taking a = 1+ δ
2 for any δ > 0, such that Ḡ2+δ = E (∣Jj − F x(y)∣2+δ ∣Xj) is a continuous function.

It follow that

4nE (η2n,j11[∣ηn,j ∣>
ε
2
]) ≤ C (

φ(hK)

n
)

2+δ
2 n

(E (Γ1K1))
2+δ

× E ([∣ (Jj − F
x(y)) ∣ΓjKj]

2+δ
)

≤ C (
φ(hK)

n
)

2+δ
2 n

(E (Γ1K1))
2+δ

× E (∣ΓjKj ∣
2+δ [E (∣Jj − F

x(y)) ∣2+δ ∣Xj])

≤ C (
φ(hK
n

)

2+δ
2 n

(E (Γ1K1))
2+δ

× E (∣ΓjKj ∣
2+δ) Ḡ2+δ

= O ((nφ(hK))
−δ
2 ) Ð→ 0, as n→∞,

and the claimed result is checked.

Proof of Lemma 2.3.5

Observe that
F̂D (x) − 1 = F̂D (x) − F̄D (x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
I1

+ F̄D (x) − 1
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

I2

.

Since I2 Ð→ 0 almost completely as n Ð→ ∞ in view of (H2) (ii), it suffices to show that
I1 = o(1) as nÐ→∞ Indeed, by using Lemma 2.3.3 (i) and hypothesis (H6), we obtain

F̂D (x) − F̄D (x) = o(1) almost completely asn→∞.

Which completes the proof of Lemma 2.3.5.
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3.1. INTRODUCTION AND MOTIVATIONS

On the local linear modelization of the conditional
density for functional and ergodic data.
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Abstract : In this paper, we estimate the conditional density function using the local linear
approach. We treat the case when the regressor is valued in a semi-metric space, the response
is a scalar and the data are observed as ergodic functional times series. Under this dependence
structure, we state the almost complete consistency (a.co.) with rates of the constructed es-
timator. Moreover, the usefulness of our results is illustrated through their application to the
conditional mode estimation.

Keywords : Ergodic data, functional data, local linear estimator, conditional density, nonpara-
metric estimation, conditional mode, ozone concentration.

Mathematics Subject Classification: 62G05, 62G08, 62G20, 62G35.
Secondary: 62H12.

3.1 Introduction and motivations

In recent years, several nonparametric estimators of the conditional models have been pro-
posed in the literature when the explanatory random variables take their values in an infinite
dimensional space (such as a Hilbert or Banach space). This field of research, known as Func-
tional Data Analysis aims to analyze information on curves or surfaces or other complex objects.
Besides, various literature deals with the limit properties of these estimators in both indepen-
dent and dependent cases. For an overview, one may refer to the Oxford handbook of Ferraty
and Romain [17] and to the pioneer work of Ferraty and Vieu [16] and the references therein.
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It has been shown extensively in the literature that the prediction of a scalar response know-
ing an explaining functional variable is obtained by estimating the conditional expectation of
Y given X , or alternatively, by the conditional mode or the conditional median which can be
derived directly from the conditional density function. Moreover, it is well known that various
nonparametric methods can be proposed for estimating these conditional models: kernel, spline
or orthogonal series, among many others. Although, in general, these estimators have several
important advantages, they do not necessarily yield more efficient estimates in practice. As
discussed in Fan [14], the local polynomial estimators, and specially, the local linear ones, have
some good features, such as the significative gain in the bias term with respect the classical
kernel method, their appropriate boundary behaviour and their efficiency in an asymptotic min-
imax sense. For practical applications, local linear fitting is usually the most useful procedure
(see for instance, Ruppert and Wand [24] and Fan and Gijbels [15] in the multivariate case, and
more recently, see Barrientos et al. [3] and Laksaci et al. [22] in the FDA setup among others).
Moreover it is worth mentioning that many recent works ([4],[5], [10] and [19]) followed the
idea of Barrientos et al. [3] to construct the local linear estimates of several conditional models.
In this work, we examine the extent to which the nice properties of the local linear estimator
can be used to study the conditional density function under the only assumption that the process
generating the functional data is stationary ergodic. We attempt to resolve this problem, which
is not fully addressed in the literature yet.

On the other hand, the ergodic theory constitutes a recent and important research area in the
study of stochastic processes. This study has a very wide range of applications, because most of
the random phenomena we encounter around us are not independent. The ergodic processes are
a class of stochastic processes that have the property that one sample of the process represents
all the set. This theory represent now a very fashionable research area.

In the statistical literature, several papers have been devoted to the study of some properties of
the nonparametric stationary ergodic processes estimators (see for instance, Didi and Louani
[13] in the case of complete data and Chaouch et al. ( [6] for right censored ones). This is due
to the fact that despite that a large class of processes satisfies the condition of α-mixing (see
for instance Laïb and Louani [21] and the references therein). However, there is still a great
number of processes where such condition does not hold (as for example, the simple process
AR(1) ∶ Xn = ρXn−1 + εn, where ρ ∈]0,1/2] and εn are i.i.d. with the binomial distribution).
Furthermore, the ergodic assumption permits to avoid the complicated probabilistic calculations
of the mixing condition. It is then essential to consider a general larger dependency framework,
as is the ergodicity.

In this paper, we are concerned with the almost-complete convergence with rates of the local
linear estimator of the conditional density function. For this purpose, it is assumed that the
covariate takes its values in an infinite dimensional space and the data are sampled from a sta-
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tionary ergodic process.

This paper is organized as follows. In Section 3.2, we construct the local linear estimator of the
conditional density function. In section 3.3, we introduce and discuss in detail necessary con-
ditions for establishing the almost-complete convergence of the constructed estimator. Section
3.4 states the main results achieved by the conditional density function estimator. In Section
3.5, we use the obtained results to derive some asymptotic properties for the local linear esti-
mator of the conditional mode. In the same section, and to make our results as accessible as
possible, we illustrate them with an application on real data, in which we demonstrate the prac-
tical performance of the proposed method. Finally, details of technical lemmas and all proofs
are gathered in Appendix.

3.2 Local linear estimator construction

LetZi = (Xi, Yi)i=1,...,n be anF×R-valued measurable strictly stationary process, defined on
a probability space (Ω,A,P), where F is a semi-metric space, and d denotes the semi-metric.
Furthermore, we assume that there exists a regular version of the conditional distribution of Y
given X , which is absolutely continuous with respect to the Lebesgue measure on R, and has a
twice continuously differentiable probability density function denoted by fX(Y ).
We focus on the estimation of the conditional density of Y given X = x via the local linear
method. For this purpose, it is well known that the main idea, in the local linear smoothing, is
based on the fact that the function fx(y) admits a linear approximation in the neighborhood of
the conditioning point. This consideration is motivated by the fact that the conditional density
function can be expressed as a regression model with the response variable 1

hJ
J( ⋅−YhJ ) instead

Y , where J is a kernel function and hJ = hJ,n is a sequence of positive real numbers under the
condition hJ Ð→ 0. (See for instance, Fan [14] in the non-functional case, and Rachdi et al.

[23] in the functional setting).
For this aim, we assume that the underlying process Zi is functional stationary ergodic, and we
propose to construct the estimator f̂x of fx by f̂x = â0 which is obtained from the following
minimization procedure:

min
(a0,a1)∈R2

n

∑
i=1

(
1

hJ
J (

y − Yi
hJ

) − a0 − a1ρ(Xi, x))
2

K (
δ(x,Xi)

hK
) , (3.1)

with ρ(., .) and δ(., .) are known bi-functional operators defined from F2 into R such that
∣δ(x, z)∣ = d(x, z) and ρ(z, z) = 0,∀z ∈ F , (see Barrientos et al. [3] for some examples of
these two locating functions). hK is the smoothing parameter associated with the kernel K.
Such fast version of functional local linear estimation has been proposed by Demongeot et al.

[10] under the strong mixing condition usually assumed in functional time series analysis. They

Somia Ayad 64



3.3. ASSUMPTIONS AND NOTATIONS

showed, by simple algebra, that:

f̂x(y) =

n

∑
i,j=1

Wij(x)J (
y − Yj
hJ

)

hJ
n

∑
i,j=1

Wij(x)

, (3.2)

where

Wij(x) = ρ(Xi, x) (ρ(Xi, x) − ρ(Xj, x))K (
δ(x,Xi)

hK
)K (

δ(x,Xj)

hK
) .

For simplicity of notations, we write ρi = ρ(Xi, x),Ki =K (
δ(x,Xi)

hK
) Jj = J (

y − Yj
hJ

), and

Γj =K
−1
j (

n

∑
i=1

Wij) =
n

∑
i=1

ρ2iKi − (
n

∑
i=1

ρiKi)ρj.

Then, it is obvious that (3.2) can be rewritten as

f̂x(y) =

n

∑
j=1

ΓjKjJj

hJ
n

∑
j=1

ΓjKj

.

Notice that in their paper, Demongeot et al. [11] established the almost complete consistency
(pointwise and uniform) of (3.2). While, the spatial version of this estimator was studied by
Laksaci et al. [22]. Recently, the asymptotic normality of the same estimator was obtained by
Bouanani et al. [4] in the i.i.d. case and by Zhou and Lin [25] in the strong mixing case.

3.3 Assumptions and notations

In order to state our results, we introduce some notations:
For i = 1, . . . , n, let Fi (resp. Gi) be the σ-field generated by ((X1, Y1), . . . , (Xi, Yi)), (resp.
((X1, Y1), . . . , (Xi, Yi),Xi+1)). For any fixed x in F , Nx denotes a fixed neighborhood of x;
and let C a fixed compact subset of R. Moreover, let us denote by φx(r1, r2) = P(r2 ≤ δ(X,x) ≤
r1) the small ball probability function. Furthermore, when no confusion is possible, we will
denote by C and C ′ some strictly positive generic constants.
Our consistency results are summarized in Theorems 3.4.1, 3.4.2 and relies on the following
five assumptions:

(H.1) On the ergodic functional variables:
We suppose that the strictly stationary ergodic process (Xi, Yi)i∈N∗ satisfies:
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i) For all r > 0, φx(r) = P(X ∈ B(x, r)) > 0, where B(x, r) = {x′ ∈ F/∣δ(x′, x)∣ < r}.

ii) For all i = 1, . . . , n there exist a deterministic function φi,x(.) such that
0 < P(Xi ∈ B(x, r)∣Fi−1) ≤ φi,x(r), ∀r > 0,

iii) For any r > 0,
1

nφx(r)

n

∑
i=1

φi,x(r)
P
Ð→ 1 and nφx(r) → ∞ as r → 0.

The first part of this hypothesis is clearly unrestrictive, since it is the same as that classi-
cally used in the infinite-dimensional setting. The reader will be find in Gheriballah et al.

[18] a deeper discussion on (ii). The ergodicity of functional data is exploited together
with condition ((H.1) (iii)) which is less restrictive to the condition imposed by Laib and
Louani [21].

(H.2) On the regularity of the model:
The conditional density function fx will be supposed to verify one of the following con-
straints: ∀x′ ∈ Nx and ∀y′ ∈ C :

i)

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

f ∶ F ×RÐ→ R, lim
∣δ(x,x′)∣→0

fx
′

(y) = fx(y)

and lim
∣y′−y∣→0

fx(y′) = fx(y).

ii) There exist some positive constants b1 and b2 such that:

∣fx(y) − fx
′

(y′)∣ ≤ C (∣δ(x,x′)∣b1 + ∣y − y′∣b2) ,

where C is a positive constant depending on x.

The first part of this condition is a continuity-type constraint, while the second part is
more restrictive and it is based on the Lipchitz-type condition ((H.2)(ii)). The part (i)
is necessary to get pointwise convergence, while the second consideration (ii) is used to
make precise the convergence rate of the estimate.

(H.3) On the locating functions:
The function ρ satisfies the following condition:
∀z ∈ F , C ∣δ (x, z) ∣ ≤ ∣ρ (x, z) ∣ ≤ C ′∣δ (x, z) ∣.

This hypothesis is another regularity-type constraint in order to control the shape of the
locating function ρ in relation with δ.

(H.4) On the kernels:

(i) K is a nonnegative bounded kernel supported on [−1,1].

(ii) The kernel J is a positive, bounded and Lipschitzian continuous function, such that:

∫ ∣t∣b2J(t)dt < ∞ and ∫ J2(t)dt < ∞.
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(iii) E (J(
y−Yj
hJ

)∣Gj−1) = E (J(
y−Yj
hJ

)∣Xj) .

The boundedness of the kernelK in (H.4)(i) is standard and the reader will find in Ferraty
and Vieu [16] some examples of kernels satisfying this hypothesis. (H.4) (ii) and (iii) are
technical conditions for the brevity of proofs.

(H.5) On the bandwidths hK and hJ :

lim
n→∞

hK = 0, lim
n→∞

nαhγJ = ∞withγ = 1,2, andα > 1,

lim
n→∞

ϕx (hK) logn

n2hJφ2
x(hK)

= 0, whereϕx (hK) =
n

∑
i=1

φi,x(hK)

and
hK ∫

B(x,hK)
ρ (u,x)dP (u) = o(∫

B(x,hK)
ρ2 (u,x)dP (u)) ,

where dP (x) is cumulative distribution of X.

The local behaviour of ρ which models the local shape of our model is controlled by this last
assumption and the rest of this assumption is standard.

3.4 Main results

Our first principal result is given in the following theorem which articulates the pointwise
almost complete convergence.

Theorem 3.4.1. Under the assumptions (H.1), (H.2) (i), (H.3)–(H.5) , we have

sup
y∈C

∣f̂x (y) − fx (y) ∣ = o(1), a.co.

So as to bestow a more definite asymptotic result, we replace (H.2)(i) by (H.2) (ii) and we
obtain the following result:

Theorem 3.4.2. Under the assumptions (H.1), (H.2) (ii), (H.3)–(H.5) , we have

sup
y∈C

∣f̂x (y) − fx (y) ∣ = O (hb1K) +O (hb2J ) +O
⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x (hK)

⎞
⎟
⎠
, a.co.

Remark 3.4.1. . We point that the obtained convergence rate has the same structure of the

almost complete convergence rate in nonparametric functional data analysis, in sense that the

dimensionality of the model is explored in this bias term, whereas the functional and the corre-

lation aspects are explored in the dispersion term, through the functions φx and ϕx, respectively.
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In particular the correlation is explored in the nominator of the dispersion term, while the con-

centration of the functional variable is explored in the denominator of the dispersion part. At

this stage our convergence rate is similar to convergence rate obtained by Attouch et al. [1] for

the M -regression of the functional mixing time series case.

Before starting the proof of our main result, it is convenient to denote that:

f̂xk (y) =
1

nhkJE (Γ1K1)

n

∑
j=1

ΓjKjJ
k
j ,

and
f̄xk (y) =

1

nhkJE (Γ1K1)

n

∑
j=1

E (ΓjKjJ
k
j ∣Fj−1) , withk = 0,1.

Next, the proof of Theorems 3.4.1 and 3.4.2 is based on the following decomposition:

f̂x(y) − fx(y) = (
f̄x1 (y)

f̄x0 (y)
− fx (y)) +

1

f̂x0
[(
f̄x1 (y)

f̄x0 (y)
− fx (y)) (f̄x0 (y) − f̂

x
0 (y))

+ ((f̂x1 (y) − f̄x1 (y)) − fx (y) (f̂x0 (y) − f̄x0 (y)))]

(3.3)

and the following lemmas for which proofs are given in the appendix.

Lemma 3.4.1. Under assumptions (H.1), (H.2) (i), (H.3) and (H.4), we have:

sup
y∈C

∣(
f̄x1 (y)

f̄x0 (y)
− fx (y))∣ = o(1). (3.4)

If we substitute (H.2) (i) by (H.2) (ii), we have:

sup
y∈C

∣(
f̄x1 (y)

f̄x0 (y)
− fx (y))∣ = O (hb1K) +O (hb2J ) . (3.5)

Lemma 3.4.2. Under the assumptions (H.1), (H.3)–(H.5), we have

f̂x0 (y) − f̄x0 (y) = Oa.co

⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2φ2
x (hK)

⎞
⎟
⎠
.

Lemma 3.4.3. Under the same assumptions of lemma 3.4.2, we have

∃C > 0 such that
∞

∑
n=1

P (f̂x0 (y) < C) < ∞.
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Lemma 3.4.4. Under the assumptions (H.1),(H.2) (ii), (H.3)–(H.5) , we have

sup
y∈C

∣f̂x1 (y) − f̄x1 (y) ∣ = Oa.co

⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x (hK)

⎞
⎟
⎠
.

3.5 Application to conditional mode

The purpose of this section is to study the nonparametric estimate Θ̂(x) of the conditional
mode Θ(x) by the local linear approach. Recall that these questions in infinite dimension are
particularly interesting, not only for the fundamental problemmas they formulate, but also for
many applications, (see for instance Dabo and Laksaci [8] and Dabo et al. [7]).
We assume that the conditional density fx has a unique mode Θ(x) on C . A natural and usual
estimator of Θ(x) is defined as the random variable Θ̂(x) which maximizes the local linear
estimator f̂x(.) of fx(.) that is:

Θ̂(x) = arg sup
y∈C

f̂x(y).

So, in addition to the assumptions introduced along the previous section, we need the following
one:

(H.6) (i) There exists some integer j > 1 such that ∀x ∈ Nx, the function fx is j-times contin-
uously differentiable on the topological interior of C with respect to y.

(ii) fx(l)(Θ(x)) = 0 if 1 ≤ l < j.

(iii) fx(j)(.) is uniformly continuous on C such that 0 < ∣fx(j)(Θ(x))∣ < ∞,

where fx(j) stands for the jth-order derivative of the conditional density fx.

Then, from Theorem 3.4.2, we deduce the consistency of Θ̂ which is summarizing in the fol-
lowing corollary.

Corollary 3.5.1. Suppose that assumptions of Theorem 3.4.2 are satisfied. In addition, if (H.6)

holds, one gets:

∣Θ̂(x) −Θ(x)∣ = O (h
b1
j

K ) +O (h
b2
j

J ) +O
⎛

⎝
(
ϕx (hK) logn

n2hJφ2
x (hK)

)

1
2j⎞

⎠
, a.co.

3.5.1 A real data application

The main aim of this computational part is to examine the easy implementation of the condi-
tional mode estimator Θ̂(x). Moreover, we highlight the superiority of the local linear approach
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compared to the kernel method for which the conditional mode is estimated by

Θ̃(x) = sup
y∈C

f̃x(y)

where

f̃x(y) =

h−1J

n

∑
i=1

K(h−1K d(x,Xi))J(h
−1
J (y − Yi))

n

∑
i=1

K(h−1K d(x,Xi))

.

To do that we constructed an ergodic functional time series by cutting a continuous time process.
Recall that one of the most usual example of functional time series prediction is the estimation
of the future characteristic of continuous time process given its whole past observed in the
continuous path. Formally, assume that we observe a continuous time process (Zt)t∈[0,b[ and we
aim to estimate Y = F (Zb+s) given future characteristic of the process (Zt)t∈[0,b[. To do that, we
suppose that s is small enough to build N < b

s functional random variables (Xi)i=1,...,N defined
by:

∀t ∈ [0, b[, Xi(t) = Z((i−1)b+t)/N .

In this context the random variables Θ̂(XN) and Θ̃(XN) are the best approximation of the
quantity F (Zb+s). The latter is obtained by using the N − 1 pairs of random variables (Xi, Y =

F (Z(ib/N)+s))i=1,...,N−1.
Now, we apply this idea to the problem of ozone concentration forecasting. Of course, there ex-
ist several interesting ozone characteristics which can be predicted one day ahead , such as the
mean, the peak, the total or for fixed hour in the day. In this real data example, we focus in the
prediction the total ozone in one day ahead using the conditional mode estimation. Precisely,
we consider the the ozone data collected in Marylebone road monitoring site. The geographical
locations of this site are 51.522530 (latitude) , -0.154611 (longitude). This site is an impor-
tant thoroughfare within the Westminster city. This road is highly congested. Specifically, it is
frequented by 90.000 vehicles per day. In this application study we focus on the hourly mea-
surements of this polluting gas during the 2018-year. The data of this example is provided by
the website https://www.airqualityengland.co.uk/.

Notice that the ozone gas is formed by a reaction between nitrogen oxides and the organic com-
pounds. Undoubtedly this polluting gas is harmful for human health and its forecasting has
been the subject of several studies in functional data analysis. The most of the previous works
consider the ozone data as functional autoregressive model (see, Damon and Guillas [9]). Such
common treatment motivates the use of this data as ergodic functional time series such as linear
process. In this context, we apply the local linear mode estimation to predict the total ozone
concentration in one day ahead the whole daily curves (one day before). Indeed, according to
the previous algorithm , Zt designs the ozone concentration for 8736 hours between 01/01/2018
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and 31/12/2018. We cut this functional time series in N + 1 = 364 pieces Xi of 24 hours (one
day). These functionals variables Xi are presented by the following figure (Figure 3.1 )

Figure 3.1: Hourly ozone concentration of the year 2018.

The scalar response variable Y is defined by Yi =
23

∑
h=0

Xi+1(h). For this comparison study

we compute both estimators in its optimal conditions. In particular, we choose the optimal
bandwidths (hK , hJ ) locally by the cross-validation method on the k-nearest neighbors with
respect the following MSE-criterion

MSE(Ker) =
1

n

n

∑
i=1

(Yi − Θ̃−i(Xi))
2, and MSE(LL) =

1

n

n

∑
i=1

(Yi − Θ̂−i(Xi))
2

where Θ̃−i (resp. Θ̂−i) designs the leave-one-out kernel (resp. local linear) estimator of the
conditional mode. The behavior of the two estimators is also linked to the choice of the func-
tions ρ, δ and d. Regarding the Figure 3.1, it appears the ACP metric is more adapted of these
discontinuous curves. Thus, we have opted to take

ρ(x, z) = δ(x, z) = dPCA(x, z).

dPCA is the semi-metric based on the m = 3 first eigenfunctions of the empirical covariance
operator associated to the m = 3 greatest eigenvalues (see Ferraty and Vieu [16] for more
discussion). The following quadratic kernel was selected:

J(x) =K(x) =
3

4
(1 − x2)1I[0,1].

Now, in order to compare both methods we split our data into two subsets I1 and I2. The 244
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observations (Xj, Yj)j∈I1 will be our statistical sample from which are calculated the estimators
and the 120 remaining observations (Xi, Yi)i∈I2 are considered as the testing sample. Next, we
use the following algorithm:

• Step 1. For each curve Xj in the input sample we approximate the associated response
variable Yj by

Ŷj = Θ̃(Xj)

and
Ŷj = Θ̂(Xj).

• Step 2. For each Xnew in the testing sample, we put

i∗ = arg min
j∈I1

d(Xnew,Xj).

• Step 3. For each Xnew we put

hK = the optimal bandwidth parameter associated to X∗
i

and
hJ = the optimal bandwidth parameter associated to Y ∗

i

• Step 4. We predict Ynew by
Ŷnew = Θ̃(Xnew)

and
Ŷnew = Θ̂(Xnew).

• Step 5. We calculate the prediction error expressed by

1

120
∑
i∈I1

(Yi − T̂ (Xi))
2,

where T̂ means either the kernel estimator or the local linear one.

• Step 6. We divide again our observations in the two subsets I1 and I2 and we repeat the
step 1-5.

• Step 7. We repeat the Step 6 several times.

• Step 8. We end this analysis by plotting the box-plot of the mean square errors of each
method.
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The comparisons study is carried out by repeating the algorithm 60 times with random splitting
of the observations between training and testing sample. In conclusion we point out that the
scatter-plots indicates that the local linear method is significantly better than the kernel method.
This statement confirms the superiority of the local linear approach over the kernel method.
In the other hand, the errors results are really comparable with those obtained by Aneiros et
al. (2004). Of course the small error differences is only due to the difference of the climatic
conditions of the geographic areas under study.

0.
0

0.
5

1.
0

1.
5

2.
0

Local linear method, Kernel method

Figure 3.2: Comparison of the Ozone concentration prediction between the kernel method and
the local linear approach

3.6 Appendix

3.6.1 Preliminary technical lemmas

Firstly, we state the following technical lemmas which are needed to establish our asymp-
totic results.

Lemma 3.6.1. Under the assumptions (H.1),(H.3) and (H.4)(i), we have:

∀(k, l) ∈ N∗ ×N,

(i) E (Kk
j ∣ρj ∣

l∣Fj−1) ≤ ChlKφj,x (hK)
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(ii) E (ΓjKj ∣Fj−1) = O (nh2Kφj,x (hK))

(iii) E (Γ1K1) = O (nh2Kφx (hK))

Proof.

(i) One starts by using (H.3) followed by using (H.4), we get

Kk
j ∣ρj ∣

lh−lK ≤ CKk
j ∣δ (Xj, x) ∣

lh−lK

≤ C ∣δ (Xj, x) ∣
lh−lK11[−1,1] (δ(Xj, x)) ,

and thereby, we have

E (Kk
j ∣ρj ∣

lh−lK ∣Fj−1) ≤ CP (Xj ∈ B(x,hK)∣Fj−1) ,

≤ Cφj,x (hK) ,

which is the claimed result.

(ii) Recall that the fact that the kernel K is bounded on [−1,1] and under (H.3), we have

∣Γj ∣ ≤ nCh2K + nChK ∣ρj ∣.

So, by using (i), we find

E (ΓjKj ∣Fj−1) ≤ nCh2Kφj,x (hK) + nCh2Kφj,x (hK)

≤ nC ′h2Kφj,x (hK) .

(iii) Combining (H.1)(iii) with part (ii) of the same lemma, and by considering Fj as the trivial
σ− filed, part (iii) is directly verified.

Lemma 3.6.2. Under the assumptions of lemma (3.6.1), we have

lim
n→∞

f̄x0 (y) = O(1).

Proof.

We start by applying parts (ii) and (iii) of lemma 3.6.1 to get

lim
n→∞

f̄x0 (y) = O(1) lim
n→∞

1

nφx (hK)

n

∑
j=1

φj,x (hK) .
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Finally, we just have to use part (iii) of assumption (H.1) to obtain the claimed result.

3.6.2 Proofs of main results:

Proof of Lemma 3.4.1

Observe that

f̄x1 (y)

f̄x0 (y)
− fx (y) =

1

nhJE (Γ1K1) f̄x0 (y)

n

∑
j=1

{E (ΓjKjJj ∣Fj−1) − hJf
x (y)E (ΓjKj ∣Fj−1)}

=
1

nhJE (Γ1K1) f̄x0 (y)

n

∑
j=1

{E (ΓjKjE (Jj ∣Gj−1) ∣Fj−1) − hJf
x (y)E (ΓjKj ∣Fj−1)}

≤
1

nhJE (Γ1K1) f̄x0 (y)

n

∑
j=1

{E (ΓjKj ∣E [Jj ∣Xj] − hJf
x (y)∣ ∣Fj−1)} .

The last inequality is obtained by (H.4) (iii). Next an integration par parts and the change of
variable allow to get

E (Jj ∣Xj) = hJ ∫
R
J (t) fx (y − hJt)dt, (3.6)

thus, we have

∣E [Jj ∣Xj] − hJf
x (y)∣ ≤ hJ ∫

R
J (t) ∣fx (y − hJt) − f

x (y)∣dt.

On one side, if we use the assumption (H.2)(i) followed by (H.4) (ii) and lemma 3.6.2, we obtain
the part (3.4) of lemma 3.4.1.
And on the other side, if we replace (H.2) (i) by (H.2) (ii) we obtain

11B(x,hk) (Xj) ∣E [Jj ∣Xj] − hJf
x (y)∣ ≤ hJ ∫

R
J (t) (hb1K + ∣t∣

b2 hb2J )dt.

Hence, we get

f̄x1 (y) − fx (y) f̄x0 (y) = (O (hb1K) +O (hb2J )) ×
1

nE (Γ1K1)

n

∑
j=1

E (ΓjKj ∣Fj−1)

= (O (hb1K) +O (hb2J )) × f̄x0 (y).

Finally, making use lemma 3.6.2 allows us to obtain the part (3.5) of lemma 3.4.1.
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Proof of Lemma 3.4.2

Before proving this lemma let us start by writing that:

f̂xk (y) − f̄
x
k (y) =

1

nhkJE (Γ1K1)

n

∑
j=1

(ΓjKjJ
k
j −E (ΓjKjJ

k
j ∣Fj−1))

=∶
1

nhkJE (Γ1K1)

n

∑
j=1

Tj,withk = 0,1,

and where Tj is a triangular array of martingale differences according to the σ- fields(Fj−1)j .
In view that E (ΓjKjJkj ∣Fj−1) is Fj−1 measurable, it follows that

E (T 2
j ∣Fj−1) = E ((ΓjKj)

2
J2k
j ∣Fj−1) −E ((ΓjKjJ

k
j ∣Fj−1))

2

≤ E ((ΓjKj)
2E (J2k

j ∣Gj−1) ∣Fj−1)

≤ E ((ΓjKj)
2E (J2k

j ∣Xj) ∣Fj−1) .

Now using (3.6) and by assumptions (H.2)(ii) and (H.4) (ii), we get

E (J2k
j ∣Xj) = O (hkJ) .

So,
E (T 2

j ∣Fj−1) ≤ Ch
k
JE (Γ2

jK
2
j ∣Fj−1) .

Thus,

E (T 2
j ∣Fj−1) ≤ 2ChkJ

⎛

⎝
E
⎛

⎝
(
n

∑
i=1

ρ2iKi)

2

K2
j ∣Fj−1

⎞

⎠
+E

⎛

⎝
(
n

∑
i=1

∣ρi∣Ki)

2

ρ2jK
2
j ∣Fj−1

⎞

⎠

⎞

⎠
.

≤ 2ChkJ (Cn2h4KE (K2
j ∣Fj−1) +Cn

2h2KE (ρ2jK
2
j ∣Fj−1)) .

This last inequality is obtained under (H.3) and (H.4) (i).
Next, applying of lemma 3.6.1 (i) allows us to get

E (T 2
j ∣Fj−1) ≤ 2C ′n2hkJh

4
Kφj,x (hK) .

Now, we use the exponential inequality of Lemma 1 in [21] (with d2j = C ′n2hkJh
4
Kφj,x(hK) to

obtain for all ε > 0,

P (∣f̂xk (y) − f̄
x
k (y)∣ > ε) = P(∣

1

nhkJE (Γ1K1)

n

∑
j=1

Tj ∣ > ε)

≤ 2 exp{−
ε2n2h2kJ (E (Γ1K1))

2

2 (Dn +CεnhkJE (Γ1K1))
} .
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Taking ε = ε0

¿
Á
ÁÀϕx (hK) logn

n2hkJφ
2
x(hK)

, then

P
⎛

⎝
∣f̂xk (y) − f̄

x
k (y)∣ > ε0

¿
Á
ÁÀϕx (hK) logn

n2hkJφ
2
x(hK)

⎞

⎠

≤ 2 exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

n2h2kJ (E (Γ1K1))
2
ε20
ϕx (hK) logn

n2hkJφ
2
x(hK)

2
⎛

⎝
Dn +CnhkJE (Γ1K1) ε0

¿
Á
ÁÀϕx (hK) logn

n2hkJφ
2
x(hK))

⎞

⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Now using lemma 3.6.1 (iii), allows us to write

P
⎛

⎝
∣f̂xk (y) − f̄

x
k (y)∣ > ε0

¿
Á
ÁÀϕx (hK) logn

n2hkJφ
2
x(hK)

⎞

⎠

≤ 2 exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

n2h2kJ (O (nh2Kφx(hK)))
2
ε20
ϕx (hK) logn

n2hkJφ
2
x(hK)

2nhkJh
2
Kϕx (hK)

⎛

⎝
C ′nh2K +O (nφx(hK)) ε0

¿
Á
ÁÀ logn

n2hkJφ
2
x(hK)ϕx (hK)

⎞

⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

≤ 2 exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

n2h2kJ (O (nh2Kφx(hK)))
2
ε20
ϕx (hK) logn

n2hkJφ
2
x(hK)

2nhkJh
2
Kϕx (hK)

⎛

⎝
C ′nh2K +O(1)ε0

¿
Á
ÁÀ logn

hkJϕx (hK)

⎞

⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Now using the fact that, under (H.1) (ii) and (iii), for all n we have ϕx (hK) ≥ Cnφx(hK) which
implies that

logn

hkJϕx (hK)
≤ C ′ϕx (hK) logn

n2hkJφ
2
x(hK)

.

Therefore, under (H.5) , we have:

lim
n→∞

logn

hkJϕx (hK)
= 0.

It follows that

P
⎛

⎝
∣f̂xk (y) − f̄

x
k (y)∣ > ε0

¿
Á
ÁÀϕx (hK) logn

n2hkJφ
2
x(hK)

⎞

⎠
≤ 2n−C0ε

2
0 ,

where C0 is a positive constant.
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Consequently, using Borel-Cantelli’s lemma and by choosing ε0 large enough, we can deduce
that:

f̂xk (y) − f̄
x
k (y) = Oa.co

⎛

⎝

¿
Á
ÁÀϕx (hK) logn

n2hkJφ
2
x(hK)

⎞

⎠
. (3.7)

Finally, taking k = 0, this last result finish the proof of lemma 3.4.2.

Proof of Lemma 3.4.3

Remarked that, under (H.1)(iii) and (H.4), we have

0 <
C

nφx(hK)

n

∑
j=1

P (Xj ∈ B (x,hK) ∣Fj−1) ≤ f̄
x
0 (y) ≤ ∣f̂x0 (y) − f̄

x
0 (y) ∣ + f̂x0 (y).

Therefore,

P(f̂x0 (y) ≤
C

2
) ≤ P(

C

nφx(hK)

n

∑
j=1

P (Xj ∈ B (x,hK) ∣Fj−1) <
C

2
+ ∣f̂x0 (y) − f̄

x
0 (y) ∣)

≤ P(∣
C

nφx(hK)

n

∑
j=1

P (Xj ∈ B (x,hK) ∣Fj−1) − ∣f̂x0 (y) − f̄
x
0 (y) ∣ −C ∣ >

C

2
) .

It is obvious that lemma 3.4.2 and (H.1) (iii) allow to obtain

∑
n

P(∣
C

nφx(hK)

n

∑
j=1

P (Xj ∈ B (x,hK) ∣Fj−1) − ∣f̂x0 (y) − f̄
x
0 (y) ∣ −C ∣ >

C

2
) < ∞,

which gives the result.

Proof of Lemma 3.4.4

The compactness of C permits us to deduce that there exists a sequence of real numbers
(yk)k=1,...,dn such that:

C ⊂
dn

⋃
k=1

Ck, whereCk = (yk − ln, yk + ln),

with ln = n−1−α and dn = O(l−1n ).

We start our proof with the following decomposition:

sup
y∈C

∣f̂x1 (y) − f̄
x
1 (y)∣ ≤ sup

y∈C
∣f̂x1 (y) − f̂

x
1 (z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S1

+ sup
y∈C

∣f̂x1 (z) − f̄
x
1 (z)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S2

+ sup
y∈C

∣f̄x1 (z) − f̄
x
1 (y)∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S3

.
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Now, we establish the three terms.
On the one side, for the term S1, by using assumption (H.5), we obtain:

S1 ≤ sup
y∈C

∣
1

nhJE (Γ1K1)

n

∑
j=1

ΓjKj ∣Jj(y) − Jj(z)∣∣,

≤ sup
y∈C

C ∣y − z∣

hJ
(∣

1

nhJE (Γ1K1)

n

∑
j=1

ΓjKj ∣) ,

≤ C
ln
h2J

∣f̂x0 (y)∣.

Thus, using lemma 3.4.3, we get :

S1 ≤ C
ln
h2J
.

Since ln = n−1−α, we obtain:

ln
h2J

= o
⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠
.

So, for n large enough, we find a η > 0 such that

P
⎛
⎜
⎝
S1 > η

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠
= 0. (3.8)

Similarly, for the term S3, we obtain

S3 ≤ C
ln
h2J

∣f̄x0 (y)∣.

Therefore, lemma 3.6.2 allows us to write:

S3 ≤ C
ln
h2J
.

Using analogous arguments as S1, we can found for n large enough:

P
⎛
⎜
⎝
S3 > η

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠
= 0. (3.9)

On the other side, to complete the proof of this lemma, we need to prove that:

S2 = Oa.co

⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠
.
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By using (3.7) for k = 1, we get for η > 0 and for all z ∈ Ck ∶

P
⎛
⎜
⎝
∣f̂x1 (z) − f̄

x
1 (z)∣ > η

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠
≤ C ′n−C0η

2

.

Thus, we have

P
⎛
⎜
⎝

sup
y∈C

∣f̂x1 (z) − f̄
x
1 (z)∣ > η

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠

≤ P
⎛
⎜
⎝

max
z∈Ck

∣f̂x1 (z) − f̄
x
1 (z)∣ > η

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠

≤ 2dn max
z∈Ck

P
⎛
⎜
⎝
∣f̂x1 (z) − f̄

x
1 (z)∣ > η

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠

≤ C ′n−C0η
2+1+α.

Therefore, by choosing η such that C0η2 = 2 + 2α, we find

P
⎛
⎜
⎝

sup
y∈C

∣f̂x1 (z) − f̄
x
1 (z)∣ > η

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠
≤ C ′n−1−α. (3.10)

Finally, lemma 3.4.4 can be deduced directly from (3.8), (3.9) and (3.10).

Proof of Corollary 3.5.1

The unimodality of fx and assumption (H.6) (ii) permit us to write that fx(l)(Θ(x)) =

fx(l)(Θ̂(x))) = 0. Furthermore, by a Taylor expansion of the function fx at Θ(x), we have:

fx(Θ̂(x)) = fx(Θ(x)) +
1

j!
fx(j)(Θ∗(x)) (Θ̂(x) −Θ(x))

j
, (3.11)

where Θ∗(x) is between Θ(x) and Θ̂(x).

Next, by simple manipulation we show that

∣fx(Θ̂(x)) − fx(Θ(x))∣ ≤ 2 sup
y∈C

∣f̂x(y) − fx(y)∣. (3.12)

To end the proof of Corollary 3.5.1, we only need to show the following claim.
Claim

lim
n→∞

∣Θ̂(x) −Θ(x)∣ = 0. a.co.
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Proof. By the continuity of the function fx, it follows that:

∀ε > 0,∃δ(ε) > 0, ∣fx(y) − fx(Θ(x)∣ ≤ δ(ε) ⇒ ∣y −Θ(x)∣ ≤ ε.

Then, this last consideration implies that:

∀ε > 0,∃δ(ε) > 0,P (∣Θ̂(x) −Θ(x)∣ > ε) ≤ P (∣fx(Θ̂(x)) − fx(Θ(x))∣ > δ(ε)) . (3.13)

Lastly, the claimed result can be deduced by combining (3.13) with the the statement (3.12) and
Theorem 3.4.2.

Now, we return to the proof of Corollary 3.5.1.
Since fx(j)(Θ∗(x)) → fx(j)(Θ(x)) and by using (H.6)(iii) , we obtain

∃c > 0,
∞

∑
n=1

P (∣fx(j)(Θ∗(x))∣ < c) < ∞. (3.14)

Therefore, we have

∣Θ̂(x) −Θ(x)∣j = O (sup
y∈C

∣f̂x (y) − fx (y) ∣) , a.co.

We find this last result by combining the statements (3.11) and (3.12) with (3.14).
Finally, the proof of Corollary 3.5.1 can be easily deduced from Theorem 3.4.2
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ON LOCAL LINEAR ESTIMATION OF THE CONDITIONAL

DENSITY FUNCTION FOR FUNCTIONAL ERGODIC DATA

UNDER RANDOM CENSORSHIP MODEL.
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4.1. INTRODUCTION AND MOTIVATIONS

On local linear estimation of the conditional density
function for functional ergodic data under random

censorship model.
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Abstract : In this paper, we estimate the conditional density function of a randomly censored
scalar response variable given a functional random variable. Furthermore, we suppose that the
data are sampled from stationary ergodic process. We introduce a local linear type estimator of
the conditional density function, and, we state the almost complete convergence with explicit
rates of the constructed estimator. Moreover, the usefulness of our results is illustrated through
their application to the conditional mode estimation.
Keywords : Ergodic data, functional data, censored data, local linear estimator, conditional
density function, nonparametric estimation, Asymptotic properties.

Mathematics Subject Classification: 62G05, 62G08, 62G20, 62N01, 62N02.

4.1 Introduction and motivations

The nonparametric methods are the practical way to deal with the functional data. There are
many fields where functional data are collected such as medicine, econometrics and environ-
ments.

In the last decade, many statistical researchers preferred to use the kernel method for study-
ing nonparametric functional data due to its easiness of implementation. We can refer to the
pioneer work of Ferraty and Vieu [18]. In this context, the authors of this monograph estab-
lished the almost complete convergence of several estimators, they precise their convergence
rates in the case when the observations are i.i.d. However, they have the feeling that in most

Somia Ayad 86



4.1. INTRODUCTION AND MOTIVATIONS

conditional models some ideas of local polynomial smoothing could be extended to the func-
tional context. Literature attention has focused on their famous question "How can the local
polynomial ideas be adapted to infinite dimensional settings?". It has received special atten-
tion in the literature by several scenarios. Firstly and exactly in 2009, Baillo and Grané [2]
constructed a local linear estimator for the regression operator in the case where the covariate
takes its values in a Hilbert space. One year later, that question has been responded by the same
authors who asked it in collaboration with Barrientos-Marin [3]. They have introduced an esti-
mator of the regression function considering the case of a polynomial of order one called local
linear approach which is flexible and more general than the kernel method. They studied the
almost complete convergence with a rate of the proposed estimator. The case of the conditional
distribution function was addressed by Demongeot et al. [11]. In this work, the authors studied
the almost complete convergence as well as the mean square error with rates of the constructed
estimator in the i.i.d case. Recently Bouanani et al. [5] and [6] established the asymptotic nor-
mality of several conditional models in the both cases: α−mexing and independent. Because
there are some differences from one method to another, Berlinet et al. [4] introduced another
local linear estimator when the explanatory variable belongs in a Hilbert space. In all the papers
which we mentioned, the results have been established in the case when the data are functional
with complete observed response.

In the local constant approach when the data are functional but incomplete observed such
as missing at random or censored, Khardani et al. [26] studied the almost sure and asymp-
totic normality of the kernel estimate of the conditional mode when the data are censored and
independent. However, in the dependent case Horrigue and Ould Saïd [24] established the uni-
form strong consistency with rates of a kernel conditional quantile estimator. The asymptotic
normality of the previous estimator was studied by the same authors in [24]. Ling et al. [31]
constructed a kernel estimator of the regression operator for functional stationary ergodic data
with the fact that the responses are missing at random and they established the convergence
with rate in probability and the asymptotic normality of the constructed estimator. The case
when the response variable is subject to left-truncation by another random variable was studied
by Derrar et al. [13]. The asymptotic properties studied were the almost complete convergence
and the asymptotic normality of their estimator. Recently, Fetitah et al. [21] established asymp-
totic properties of a kernel estimator of the relative error regression for randomly censored data.
Concerning the local linear approach for incomplete data, there are few results such as Chahad
et al. [8]. It should be noted that, to the best of our knowledge, no asymptotic results have
been available in the literature for local linear conditional density fitting neither in the special
framework considered in this paper nor for the general case of polynomial fitting for functional
covariate when data are randomly censored and assumed to be sampled from a stationary and
ergodic process. Moreover, as will become clear from the following sections, establishing the
almost complete convergence for the functional local linear fitting estimators is technically more
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involved than for the classical kernel method.
In this work, we construct a new local linear estimator of the conditional density function

which extends previous results established by Ayad et al. [1] to the censored case.
This paper is organized as follow. Section 4.2 introduces the construction of our local linear

estimator. In Section 4.3, we introduce some notations and hypotheses which are needed to
obtain our main results. The later is stated in the same section with an application of the con-
ditional mode function. Finally, the detailed proofs of our theoretical results and all technical
lemmas needed are gathered in the Appendix.

4.2 Local linear estimator construction

Let (Xi, Yi)i=1,...,n be a sequence of stationary and ergodic functional random samples iden-
tically distribution as (X,Y ), where X takes its values in a semi metric space F equipped with
a semi metric d and Y takes its values in R. In the case of complete data, it is well known that
the local linear estimator of the conditional density fX(Y ) (See ayad et al. [1] ) is explicitly
given by:

f̂xn(y) =

n

∑
j=1

ΓjKjJj

hJ
n

∑
j=1

ΓjKj

, (4.1)

where

Γj =
n

∑
i=1

ρ2iKi − (
n

∑
i=1

ρiKi)ρj,

where ρi = ρ(Xi, x),Ki =K (
δ(x,Xi)

hK
) , Jj = J (

y − Yj
hJ

)

with the convention 0/0 ∶= 0, ρ(., .) and δ(., .) are known bi-functional operators defined from
F2 into R , where the bi-functional δ(., .) is lied with the topological structure of the functional
space F , that means ∣δ(x, z)∣ = d(x, z). The bi-functional operator ρ controls the local shape of
our model. The functions K and J are kernels, where the first one is a density function and the
second one is a distribution function. hK = hK,n (resp. hJ = hJ,n) is a sequence of positive real
numbers called the smoothing parameter.

In the censoring case, we can only observe the triplets (Xi, Ti, δi)1≤i≤n, where

Ti = Yi ∧Ci and δi = 1I{Yi≤Ci} 1 ≤ i ≤ n,

with 1IA denoting the indicator function on a set A and Ci is the censoring random vari-
able with unknown continuous distribution function G and a survival function Ḡ defined by
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Ḡ(y) = 1 − G(y). In the same way, (Yi)1≤i≤n is a sequence representing the survival time
which has a common unknown continuous distribution function L, (∀y ∈ R, L(y) = P(Y ≤ y)).
L̄(y) = 1 − L(y) is its survival function. Furthermore, Let τL = sup{y, L(y) < 1} (resp.
τG = sup{y, G(y) < 1}) is the upper endpoint of L̄ ( resp. Ḡ).
We assume that (Ci)1≤i≤n and (Xi, Yi)1≤i≤n are independent. The "pseudo" estimator of fx(y)
is defined by:

f̃x(y) =

n

∑
j=1

δjḠ
−1(Tj)ΓjKjJj

hJ
n

∑
j=1

ΓjKj

∶=
f̂x1 (y)

f̂x0 (y)
, (4.2)

where
f̂xl (y) =

1

nhlJE (Γ1K1)

n

∑
j=1

δljḠ
−l(Tj)ΓjKjJ

l
j for l = 0,1

Since G is unknown in practice, it is not possible to use the estimator (4.2). Thus, in order
to obtain the following explicit formula of our local linear estimator, we use the Kaplan Meier

[25] estimator of G given by:

Ḡn(y) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

n

∏
j

(1 −
1 − δ(j)

n − j + 1
)

1I
{T
(j)≤y}

if y < T(n)

0 Otherwise
,

where T(1) < T(2) < . . . < T(n) are order statistics of Tj and δ(j) is concomitant with T(j).
Thus a feasible estimator of fx(y) is given by

f̂x(y) =

n

∑
j=1

δjḠ
−1
n (Tj)ΓjKjJj

hJ
n

∑
j=1

ΓjKj

∶=
f̂x1,n (y)

f̂x0 (y)
, (4.3)

where
f̂x1,n (y) =

1

nhJE (Γ1K1)

n

∑
j=1

δjḠ
−1
n (Tj)ΓjKjJj.

Then, We assume that there exists a certain compact set CR ⊂ R, such that fx(y) is unimodal
and its conditional unique mode is denoted by Θ(x) on CR. A natural and usual estimator of
Θ(x) is defined by:

Θ̂(x) = arg sup
y∈CR

f̂x(y).
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4.3 Assumptions and main results

4.3.1 Pointwise almost complete convergence:

The main aim of this section is to establish the pointwise almost complete convergence of
the estimator f̂x(y) under some mild regularity conditions. Note that we only give the main
results; detailed proofs can be found in the Appendix.
Throughout this paper, when no confusion is possible, we will denote by C and C ′ some strictly
positive generic constants and we fixe a point x in F , (respectively, a compact CR ∈ R). More-
over, for i = 1, . . . , n, let Fi be the σ-field generated by ((X1, Y1), . . . , (Xi, Yi)), and Gi the one
generated by ((X1, Y1), . . . , (Xi, Yi),Xi+1).

We assume that Θ(x) ∈ CR ⊂ (−∞, τ] where τ < τG ∧ τL and φx(r1, r2) = P(r2 ≤ δ(X,x) ≤ r1)
is the small ball probability function.
To state our results we need the following hypotheses:

(H.1) We suppose that the strictly stationary ergodic process (Xi, Yi)i∈N∗ satisfies:

i) For all r > 0, φx(r) = P(X ∈ B(x, r)) > 0, where B(x, r) = {x′ ∈ F/∣δ(x′, x)∣ < r}.

ii) For all i = 1, . . . , n there exist a deterministic function φi,x(.) such that
0 < P(Xi ∈ B(x, r)∣Fi−1) ≤ φi,x(r), ∀r > 0,

iii) For any r > 0,
1

nφx(r)

n

∑
i=1

φi,x(r)
P
Ð→ 1 and nφx(r) → ∞ as r → 0.

(H.2) i) ∃b1 > 0 and b2 > 0, ∀x′ ∈ Nx and ∀y′ ∈ CR :

∣fx(y) − fx
′

(y′)∣ ≤ C (∣δ(x,x′)∣b1 + ∣y − y′∣b2) .

ii) fx(.) is twice differentiable, its second derivative fx(2)(.) is continuous on a neigh-
borhood of Θ(x), fx(1)(Θ(x)) = 0 and fx(2)(Θ(x)) < 0.

(H.3) The function ρ satisfies the following condition:
∀w ∈ F , C ∣δ (x,w) ∣ ≤ ∣ρ (x,w) ∣ ≤ C ′∣δ (x,w) ∣.

(H.4) (i) K is a nonnegative bounded kernel supported on [−1,1].

(ii) J is a positive kernel, bounded and Lipschitzian continuous function, such that:

∫ ∣v∣b2J(v)dv < ∞ and ∫ J(2)(v)dv < ∞.

(iii) E (J(
y−Yj
hJ

)∣Gj−1) = E (J(
y−Yj
hJ

)∣Xj) .

(H.5) The bandwidths hK and hJ satisfy:

lim
n→∞

hK = 0, lim
n→∞

nαhγJ = ∞withγ = 1,2, andα > 1,

Somia Ayad 90



4.3. ASSUMPTIONS AND MAIN RESULTS

lim
n→∞

ϕx (hK) logn

n2hJφ2
x(hK)

= 0, whereϕx (hK) =
n

∑
i=1

φi,x(hK)

and
hK ∫

B(x,hK)
ρ (u,x)dP (u) = o(∫

B(x,hK)
ρ2 (u,x)dP (u)) ,

where dP (x) is cumulative distribution of X.

Remarks on the hypotheses:

Firstly, hypothesis (H.1) is the same (H.1) in [1], then hypotheses (H.2) and (H.3) are mild
regularity hypotheses on the conditional density function. Finally, conditions (H.4) and (H.5)
are technical assumptions for the brevity of proofs.

Theorem 4.3.1. Under the assumptions (H.1), (H.2) (i), (H.3)–(H.5), we have

sup
y∈CR

∣f̂x (y) − fx (y) ∣ = O (hb1K) +O (hb2J ) +O
⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x (hK)

⎞
⎟
⎠
, a.co.

Proof of Theorem 4.3.1

In order to prove Theorem 4.3.1, we introduce the following decomposition:

f̂x (y) − fx (y) = f̂x (y) − f̃x (y) + f̃x (y) − fx (y) . (4.4)

Next, for a sake of simplicity the following notation is needed:

¯̂
fxl (y) =

1

nhlJE (Γ1K1)

n

∑
j=1

E (δljḠ
−l(Tj)ΓjKjJ

l
j ∣Fj−1) , with l = 0,1.

Then, we can write:

f̃x (y) − fx (y) =
⎛

⎝

¯̂
fx1 (y)
¯̂
fx0 (y)

− fx (y)
⎞

⎠
+

1

f̂x0 (y)

⎡
⎢
⎢
⎢
⎢
⎣

⎛

⎝

¯̂
fx1 (y)
¯̂
fx0 (y)

− fx (y)
⎞

⎠
(

¯̂
fx0 (y) − f̂x0 (y) )

+ ((f̂x1 (y) −
¯̂
fx1 (y)) − fx (y) (f̂x0 (y) −

¯̂
fx0 (y)))] .

(4.5)
Thus, the proof of Theorem 4.3.1 is a direct consequence of Lemma 1 of Louani and Laib

[27], Lemmas 3 and 5 of Ayad et al. and the following auxiliary results which play a main role
and for which proofs are given in the appendix.
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Lemma 4.3.1. Assume that (H.1), (H.2)(i), (H.3) and (H.4) are satisfied. then, we have

sup
y∈CR

RRRRRRRRRRR

⎛

⎝

¯̂
fx1 (y)
¯̂
fx0 (y)

− fx (y)
⎞

⎠

RRRRRRRRRRR

= O (hb1K) +O (hb2J ) .

Lemma 4.3.2. Under the assumptions (H.1), (H.3)–(H.5), we have

f̂x0 (y) −
¯̂
fx0 (y) = Oa.co

⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2φ2
x (hK)

⎞
⎟
⎠
. (4.6)

And

sup
y∈CR

∣(f̂x1 (y) −
¯̂
fx1 (y))∣ = Oa.co

⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x (hK)

⎞
⎟
⎠
. (4.7)

Lemma 4.3.3. Under the conditions (H.1), (H.2)(i), (H.3)–(H.5), we have

sup
y∈CR

∣f̂x (y) − f̃x (y)∣ = Oa.co

⎛

⎝

√
log logn

n

⎞

⎠
.

4.3.2 Application to conditional mode

In addition to the assumptions introduced along the previous section, we need the following
conditions to establish the consistency of the conditional mode estimator:

(H.6) There exists Θ(x) ∈ CR, such that fx(y) < fx(Θ(x)), for all y ≠ Θ(x), y ∈ CR

Theorem 4.3.2. Assume that (H.1)–(H.6) hold, we have

∣Θ̂(x) −Θ(x)∣ = O (h
b1
2

K ) +O (h
b2
2

J ) +O
⎛

⎝
(
ϕx (hK) logn

n2hJφ2
x (hK)

)

1
4⎞

⎠
, a.co.

Proof of Theorem 4.3.2

Before starting the proof of this last Theorem, the following lemma is necessary:

Lemma 4.3.4.
lim
n→∞

∣Θ̂(x) −Θ(x)∣ = 0. a.co.

Proof. Since fx(.) is uniformly continuous on CR, it is easy to see that (H.6) implies that:

∀ε > 0,∃η(ε) > 0, ∣fx(y) − fx(Θ(x)∣ ≤ η(ε) ⇒ ∣y −Θ(x)∣ ≤ ε.

Which implies that:

∀ε > 0,∃η(ε) > 0,P (∣Θ̂(x) −Θ(x)∣ > ε) ≤ P (∣fx(Θ̂(x)) − fx(Θ(x))∣ > η(ε)) . (4.8)
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Then, by a simple algebra, we get

∣fx(Θ̂(x)) − fx(Θ(x))∣ ≤ 2 sup
y∈CR

∣f̂x(y) − fx(y)∣. (4.9)

Finally, the almost complete convergence of Θ̂(x) to Θ(x) can be deduced from the latter
together with (4.8) and Theorem 4.3.1.

Next, since fx(1)(Θ(x)) = fx(1)(Θ̂(x)) = 0 and by a Taylor expansion of the function fx,
we have:

fx(Θ̂(x)) = fx(Θ(x)) +
1

2
fx(2)(Θ∗(x)) (Θ̂(x) −Θ(x))

2
, (4.10)

where Θ∗(x) is between Θ(x) and Θ̂(x). So, by using (H.2)(ii), we obtain

∃c > 0,
∞

∑
n=1

P (∣fx(2)(Θ∗(x))∣ < c) < ∞. (4.11)

Therefore, by combining the statements (4.9), (4.10) and (4.11) we obtain:

∣Θ̂(x) −Θ(x)∣2 = O (sup
t∈CR

∣f̂x (y) − fx (y) ∣) , a.co.

Thus, the proof of Theorem 4.3.2 can be deduced from Theorem 4.3.1.

4.4 Appendix

4.4.1 Proof of Lemma 4.3.1

Firstly, remind that

¯̂
fx1 (y)
¯̂
fx0 (y)

− fx (y) =
¯̂
fx1 (y) −

¯̂
fx0 (y) fx (y)
¯̂
fx0 (y)

,

(H.4)(iii) combined with the property of the conditional expectation with respect to the σ-fields
Gj−1 and Yj with the fact that 1IYj<Cjψ(Tj) = 1I{Yj<Cj}ψ(Yj), we obtain

¯̂
fx1 (y) =

1

nhJE (Γ1K1)

n

∑
j=1

E (δjḠ
−1(Tj)ΓjKjJj ∣Fj−1)

=
1

nhJE (Γ1K1)

n

∑
j=1

E (ΓjKjE (δjḠ
−1(Tj)Jj ∣Gj−1, Yj) ∣Fj−1)

=
1

nhJE (Γ1K1)

n

∑
j=1

E (ΓjKjḠ
−1(Tj)JjE (1I{Yj<Cj}∣Xj, Yj) ∣Fj−1)

=
1

nhJE (Γ1K1)

n

∑
j=1

E (ΓjKjJj ∣Fj−1) (4.12)
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Furthermore, a double conditioning with respect to Gj−1 leads to

¯̂
fx1 (y) −

¯̂
fx0 (y) fx (y) =

1

nhJE (Γ1K1)
¯̂
fx0 (y)

n

∑
j=1

E (ΓjKj ∣E [Jj ∣Xj] − hJf
x (y)∣ ∣Fj−1) .

Then, using an integration by parts followed by a change of variable, permits to get

E (Jj ∣Xj) = hJ ∫
R
J (u) fx (y − hJu)du, (4.13)

thus, we have

∣E [Jj ∣Xj] − hJf
x (y)∣ ≤ hJ ∫

R
J (u) ∣fx (y − hJu) − f

x (y)∣du.

Using (H.2)(i) permits us to find:

11B(x,hK) (Xj) ∣E [Jj ∣Xj] − hJf
x (y)∣ ≤ hJ ∫

R
J (u) (hb1K + ∣y∣

b2 hb2J )du.

Hence, by assumption (H.4) (ii) and Lemma 6 of [1], we can obtain

¯̂
fx1 (y) −

¯̂
fx0 (y) fx (y) = (O (hb1K) +O (hb2J )) ×

1

nE (Γ1K1)

n

∑
j=1

E (ΓjKj ∣Fj−1)

= O (hb1K) +O (hb2J ) .

4.4.2 Proof of Lemma 4.3.2

For all l = 0,1, we have

f̂xl (y) −
¯̂
fxl (y) =

1

nhlJE (Γ1K1)

n

∑
j=1

δljḠ
−l(Tj)ΓjKjJ

l
j(y) −E (δljḠ

−l(Tj)ΓjKjJ
l
j(y)∣Fj−1)

=
1

nhlJE (Γ1K1)

n

∑
j=1

Lj(x, y),

where Lj(x, y) is a triangular array of martingale differences according to the σ- fields(Fj−1)j .
Similar to the proof of Lemma 2 of [1] and under (H.1), (H.3) and (H.4), we can write

E (L2
j(x, y)∣Fj−1) ≤ 2C ′n2hlJh

4
Kφj,x (hK) .

Then, we apply the exponential inequality of Lemma 1 in [27] (with d2j = C ′n2hlJh
4
Kφj,x(hK)

to obtain for ε > 0:
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P
⎛

⎝
∣f̂xl (y) −

¯̂
fxl (y) > ε

¿
Á
ÁÀϕx (hK) logn

n2hlJφ
2
x(hK)

⎞

⎠

≤ P
⎛

⎝
∣Lj(x, y)∣ > nεh

l
JE (Γ1K1)

¿
Á
ÁÀϕx (hK) logn

n2hlJφ
2
x(hK)

⎞

⎠

≤ 2 exp

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−

n2h2lJ (E (Γ1K1))
2
ε2
ϕx (hK) logn

n2hlJφ
2
x(hK)

2
⎛

⎝
Dn +CnhlJE (Γ1K1) ε

¿
Á
ÁÀϕx (hK) logn

n2hlJφ
2
x(hK))

⎞

⎠

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Then, using Lemma 5(iii) of [1] leads:

P
⎛

⎝
∣f̂xl (y) −

¯̂
fxl (y) ∣ > ε

¿
Á
ÁÀϕx (hK) logn

n2hlJφ
2
x(hK)

⎞

⎠
≤ 2n−C

′ε2 .

Therefore, by using Borel-Cantelli’s Lemma and by choosing ε large enough, we find:

f̂xl (y) −
¯̂
fxl (y) = Oa.co

⎛

⎝

¿
Á
ÁÀϕx (hK) logn

n2hlJφ
2
x (hK)

⎞

⎠
. (4.14)

Finally, the proof of the first part of Lemma 4.3.2 can be deduced by replacing l by 0 in Equation
(4.14).

Now, if we use the compactness of CR, we can write CR ⊂
dn

⋃
k=1

Ck, where

Ck = (yk − ln, yk + ln), with ln = n−1−α and lndn = O(1).

Thus, we obtain

sup
y∈CR

∣f̂x1 (y) −
¯̂
fx1 (y) ∣ ≤ sup

y∈CR

∣f̂x1 (y) − f̂x1 (z) ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C1

+ sup
y∈CR

∣f̂x1 (z) −
¯̂
fx1 (z) ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C2

+ sup
y∈CR

∣
¯̂
fx1 (z) −

¯̂
fx1 (y) ∣

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
C3

.
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For the term C1, by using assumptions (H.4)(ii) and (H.5), we obtain:

C1 ≤ sup
y∈CR

∣
1

nhJE (Γ1K1)

n

∑
j=1

δjḠ
−1(Tj)ΓjKj ∣Jj(y) − Jj(z)∣∣,

≤ sup
y∈CR

C ∣y − z∣

hJ
(∣

1

nhJE (Γ1K1)

n

∑
j=1

Ḡ−1(Tj)ΓjKj ∣) ,

≤ C
ln
h2J

∣f̂x0 (t)∣.

Next, using Lemma 3 of [1] allows to have:

C1 ≤ C
ln
h2J
.

Since ln = n−1−α and by using the first part of (H.5), we obtain:

ln
h2J

= o
⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠
.

So, for n large enough, we have

C1 = Oa.co

⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x (hK)

⎞
⎟
⎠
. (4.15)

Similarly, for C3, by using Formula (4.12) we obtain:

C3 ≤ C
ln
h2J

∣f̄x0 (t)∣.

Therefore, by using Lemma 6 of [1], we get:

C3 ≤ C
ln
h2J
.

Using similar arguments as C1, we can obtain for n large enough:

C3 = Oa.co

⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x (hK)

⎞
⎟
⎠
. (4.16)

Concerning C2, by using (4.14) for l = 1, we get for ε0 > 0 and for all z ∈ Ck:

P
⎛
⎜
⎝
∣f̂x1 (z) −

¯̂
fx1 (z) ∣ > ε0

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠
≤ C ′n−C1ε

2
0
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Therefore, we have

P
⎛
⎜
⎝

sup
y∈CR

∣f̂x1 (z) −
¯̂
fx1 (z) ∣ > ε0

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠

≤ P
⎛
⎜
⎝

max
z∈Ck

∣f̂x1 (z) −
¯̂
fx1 (z) ∣ > ε0

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠

≤ 2dn max
z∈Ck

P
⎛
⎜
⎝
∣f̂x1 (z) −

¯̂
fx1 (z) ∣ > ε0

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠

≤ C ′n−C1ε
2
0+1+α.

By choosing ε0 such that C0ε20 = 2 + 2α, we find

P
⎛
⎜
⎝

sup
y∈CR

∣f̂x1 (z) −
¯̂
fx1 (z) ∣ > η

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x(hK)

⎞
⎟
⎠
≤ C ′n−1−α.

Then, by Borel-Cantelli’s Lemma, we get

C2 = Oa.co

⎛
⎜
⎝

¿
Á
ÁÀϕx (hK) logn

n2hJφ2
x (hK)

⎞
⎟
⎠
. (4.17)

Finally, The second part of Lemma 4.3.2 can be deduced directly from the results(4.15), (4.16)
and (4.17).

4.4.3 Proof of Lemma 4.3.3

From the explicit formulas (4.2) and (4.3) and by using Lemma 4.3.2, we have

sup
y∈CR

∣f̂x (y) − f̃x (y)∣ ≤ sup
y∈CR

∣
1

nhJE (Γ1K1)

n

∑
j=1

δjΓjKjJj (
1

Ḡn(Tj)
−

1

Ḡ(Tj)
)∣

≤

sup
y∈CR

∣Ḡn(y) − Ḡ(y)∣

Ḡn(τ)
∣

1

nhJE (Γ1K1)

n

∑
j=1

δjΓjKjJjḠ
−1(Tj)∣

=

sup
y∈CR

∣Ḡn(y) − Ḡ(y)∣

Ḡn(τ)
∣f̃ (x, y)∣

Since Ḡ(τ) > 0, in conjunction with the strong law of large numbers and the law of the iterated
logarithm on the censoring law (see formula (4.28) in Deheuvels and Einmahl [12], 2000), the
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result is an immediate consequence of Lemmas 4.3.1 and 4.3.2.
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GENERAL CONCLUSION AND PROSPECTS

Conclusion

This thesis completes the recent advances existing in the local linear estimation for func-
tional data, by giving not only the rates of convergence of the estimates but also the exact
expressions of the constant terms involved in these rates which are expressed by means of some
functional probability function such as the small ball probability function and its variation func-
tion. These theoretical results deal with the pointwise and uniform almost complete consistency
as well as the asymptotic normality of several estimators related to the conditional cumulative
distribution when the response is a scalar (censored or not) and the data are observed as ergodic
functional times series.

The treatment of a dependence structure is of particular interest in the nonparametric es-
timation because of the possible applications in time series analysis and prediction problems.
Although the widely use of the strong mixing condition and its variants to measure the depen-
dency, it involves complicated probabilistic calculations. Moreover, several models which are
given in the literature where mixing properties are still to be verified or even fail to hold for the
process they induce. Therefore, we consider in the present thesis, the ergodic property to allow
the maximum possible generality with regard to the dependence setting.

The main source of difficulty when dealing with local linear estimators consists in the fact
that they are not written directly as one or more sums of independent and identically distributed
variables. It is worth noting that the technical proofs for studying this kind of estimators (in the
finite dimensional setup) are different; so we have opted for a "direct" way of giving relatively
complex decompositions (for the consistence and the normality) of our estimators as sums of
independent and identically distributed variables. These decompositions allow us to prove our
results by a very traditional way. Moreover, the fast and the practical method introduced in this
work is given by defining an optimization problem over real space which can be seen as the
easiest estimation method. This is due to the fact that the other functional approaches are based
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on an optimization problem in a functional space. However, in our work, we established our
asymptotic results by optimization problems over a real space. This highlights another advan-
tage of our method. As already mentioned above, this has been achievedbecause of the good
choice of the decomposition, the assumptions that are detailed in Chapters 2, 3, 4; and the use
of some basic probabilistic tools and the central limit theorems cited in the Appendix A.
It is well known that local polynomial fitting is an attractive method both from theoretical and
practical point of view. This is confirmed by the different results obtained in the present thesis.
Moreover, our practical studies confirm the superiority of our method on the kernel approach.

As it can be seen through the proofs presented in this thesis that the almost complete con-
vergence has double advantages; it is in some sense easier to state than the almost sure one.
Moreover, this mode of convergence implies other standard modes of convergence. This is why
it became quite usual for many statisticians to express their asymptotic results in terms of com-
plete convergence (pointwise or uniform).

On the other hand, our results validate the use of the asymptotic normality in the implemen-
tation of hypotheses tests and confidence interval estimation.

Prospects

To conclude the work of this thesis, we present in the following, some possible future de-
velopments in order to improve and extend our results.

• Hight order of the polynom: Our results confirm the superiority of the local linear method
over the classical kernel method. Indeed, the kernel method provides a bias of orderO(h),
whereas it is of order O(h2) for the local linear method. A naturel prospect of the present
work is the functional local polynomial estimation of the conditional distribution function
and its derivatives. Such a generalization can be obtained by reenforcing the regularity
conditions of the model under study in order to approximate locally this function by a
polynomial operator. Therefore, this estimate increases the gain in bias term over the
classical kernel method. The explicit determination of the estimator can be obtained by a
straightforward modification of the present approach.

• Other models and/or other methods:

– Estimation of the conditional quantile: Unlike to the classical functional Nadaraya-
Watson estimator, the local linear estimator of the conditional cumulative distribu-
tion function is not, necessarily, an increasing function. So, its inverse is very diffi-
cult to achieve in practice. In order to overcome the problem raised above we think
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that it is possible to built an alternative estimator of the conditional quantile which
is based on the L1 approach. The constructed estimator will keep the robustness of
the quantile regression function and advantages of the local linear method.

– The robust regression function and the relative error: The methodology is general,
so, (except the quantile), it can be applied to any model, where a predictor X is
functional, a response Y is scalar, and the data are observed as ergodic functional
times series. So, it would be very important, in the future, to investigate the local
linear estimation, particularly, of the robust regression function and the relative error.

– It is possible to generalize our results using other models such as the additive model,
the semi-functional partial linear model, or the simple functional index model.

• Data-driven automatic bandwidth selection: The selection of the bandwidth parameter
hK and then hJ plays a crucial role. Indeed, a too large smoothing under-parametrizes the
model (the CDF, the conditional density. . . ), causing a large modelling bias, while a too
small smoothing parameter over-parametrizes the unknown function and results in noisy
estimates. Optimal theoretical choice of this parameter is obtained by minimizing the
conditional Mean Squared Error (MSE). However, this theoretical choice is not directly
practically usable since it depends on unknown quantities. Finding a practical technique
for selecting the bandwidth parameter is one of the most important tasks. Furthermore, in
our practical studies, the optimal bandwidths were chosen by the cross-validation proce-
dure. One possible approach is to substitute the unknown quantities by pilot estimators,
leading to so-called "plug-in" type bandwidth selectors. Another alternative approach for
selecting the smoothing parameter is the functional version of wild bootstrapping ideas
(see for instance Ferraty et al. [57]).

• Missing data: In a missing-data setting, we estimate the mean of a scalar outcome, based
on a sample in which an explanatory variable is observed for every subject while re-
sponses are missing by happenstance for some of them. This situation is pervasive in
most data samples, there is a need to extend our results to this kind of data.
It is quite possible to generalize our results in the case when the data are uncomplete
(truncated).
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APPENDIX A

SOME PROBABILISTIC TOOLS

A.1 Martingale differences sequence

Definition A.1.1. [72]

A sequence of random variables (Zn)n≥1 is said to be a sequence of martingale differences

(MDS) with respect to the sequence of σ− fields (F)n≥1 whenever Zn is Fn measurable and

E (Zn∣Fn−1) = 0, a.co.

The MDS is an extremely useful construct in modern probability theory because it implies
much milder restrictions on the memory of the sequence than independence, yet most limit the-
orems that hold for an independent sequence will also hold for an MDS.

All along this thesis, we need an exponential inequality for partial sums of unbounded martin-
gale differences that we use to derive asymptotic results for the local linear estimate built upon
functional ergodic data. This inequality is given in the following Lemma.

Lemma A.1.1. [72]

Let (Zn)n≥1 be a sequence of real martingale differences with respect to the sequence of σ−fields

(Fn = σ(Z1, . . . , Zn))n≥1, where σ(Z1, . . . , Zn) is the σ−field generated by the random vari-

ables Z1, . . . , Zn. Set Sn =
n

∑
i=1

Zi. For any p ≥ 2 and any n ≥ 1, assume that there exist some

nonnegative constants C and dn such that

E (Zp
n∣Fn−1) ≤ C

p−2p!d2n almost surely. (A.1)

Then for any ε > 0, we have

P (∣Sn∣ > ε) ≤ 2 exp{−
ε2

2 (Dn +Cε)
},
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A.2. USEFUL INEQUALITIES

where Dn =
n

∑
i=1

d2i .

Theorem A.1.1. ( Martingal Central Limit Theorem ) [67]

For each n, let {Mn,m}m≥0 be a MG in L2 with respect to filtration {Fn,m}m≥0 with correspond-

ing MG differences Zn,m =Mn,m −Mn,m−1 and conditional variance σ2
n,m = E (Z2

n,m∣Fn,m−1) .

Assume that, for each n,Mn,m and Γn,m ≡
m

∑
r=1

σ2
n,r converge a.s to a finite limit when n Ð→ ∞.

suppose that

1) Γn,m ≡
∞

∑
m=1

σ2
n,m Ð→ 1 in probability asnÐ→∞.

2) ∀ε > 0, lim
nÐ→∞

∞

∑
m=1

E (Z2
n,m; ∣Zn,m∣ > ε) = 0.

Then

Zm,∞ ≡
∞

∑
m=1

Zn,m Ð→ N (0,1) , asnÐ→∞.

A.2 Useful inequalities

Theorem A.2.1. (Jensen’s inequality)[84]

Let X be a real random variable and ϕ a convex function. Then

ϕ (E (X)) ≤ E (ϕ (X))

Theorem A.2.2. (Hölder’s inequality)[86]

Let X and Y be two random variables such that X ∈ Lp (ω;A;P) and Y ∈ Lq (ω;A;P) with
1

r
=

1

p
+

1

q
and p ≥ 1, q ≥ 1, then

E (∣XY ∣
1
r ) ≤ (E(∣X ∣)

p

)

1
p

(E(∣Y ∣)
q

)

1
q

.

Theorem A.2.3. (Markov’s inequality)[61]

Let X be a real random variable. Then, for all a > 0,

P (∣X ∣ > a) <
E (∣X ∣)

a
.

Now, we state the celebrated Borel Cantelli Lemma which is a useful technique in probabil-
ity theory.

Lemma A.2.1. (Borel Canteli’s Lemma)[89]

Let B1,B2, . . . be a sequence of events in some probability space. The Borel-Cantelli Lemma

states:
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A.3. ERGODIC THEOREM AND RELATED CONCEPTS

i) If, for any sequence B1,B2, . . . of events,
n

∑
i=1

P (Bn) < ∞, then P (Bn i.o.) = 0, where

i.o. is an abbreviation for "infinitively often".

ii) If
n

∑
i=1

P (Bn) = ∞, and B1,B2, . . . are independent events, then P (Bn i.o.) = 1.

A.3 Ergodic Theorem and related concepts

Theorem A.3.1. (Birkhoff’s ergodic Theorem)
Let {Zi}∞−∞ be a stationary and ergodic process with E (∣Z1∣) < ∞. Then

lim
nÐ→∞

1

n

n

∑
i=1

Zi = E (Z1) , almost surely. (A.2)

Definition A.3.1. Let {Xn, n ∈ Z} be a stationary sequence. Consider the backward field

Bn = σ(Xk;k ≥ n) and the forward field Hm = σ(Xk;k ≥m). The sequence is ergodic if

lim
nÐ→∞

1

n

n−1

∑
k=0

∣P (A ∩ τ−kB) − P (A)P (B) ∣ = 0, (A.3)

where τ is the time-evolution or shift transformation.

Remark A.3.1. A stationary and strongly mixing process is a stationary and ergodic process.

And there are some examples of stationary and ergodic processes which are not strongly mixing.

A.4 Almost complete convergence

Definition A.4.1. [55]

One says that (Xn)n∈N converges almost completely (a.co) to some r.r.v.X , if and only if

∀ε > 0, ∑
n∈N

P (∣Xn −X ∣ > ε) < ∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by

lim
nÐ→∞

Xn =X, a.co.

Definition A.4.2. [55] One says that the rate of almost complete convergence of (Xn)n∈N to X

is of order un if and only if

∃ε0 > 0, ∑
n∈N

P (∣Xn −X ∣ > ε0un) < ∞,
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A.4. ALMOST COMPLETE CONVERGENCE

and we write

Xn −X = Oa.co(un).

Proposition A.4.1. [55]

Assume that Xn −X = Oa.co(un), we have:

i) Xn −X = Op(un),

ii) Xn −X = Oa.s(un).

Corollary A.4.1. [55]

i) If ∃M < ∞, ∣Z1∣ ≤M, and denoting σ2 = EZ2
1 , we have

∀ε ≥ 0,P(∣
n

∑
i=1

Zi∣ > εn) ≤ exp

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

−
ε2n

2σ2 (1 + ε
M

σ2
)

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

.

ii) Assume that the variables depend on n (that is, Zi = Zi,n) and are such that ∃M =

Mn < ∞, ∣Z1∣ ≤M and define σ2
n = EZ2

1 . If un = n−1σ2
n logn verifies lim

nÐ→∞
un = 0, and if

M/σ2
n < C < ∞, then we have

1

n

n

∑
i=1

Zi = Oa.co (
√
un) .

Definition A.4.3. (Kolmogorov’s entropy)[59]

Let S be a subset of a semi-metric space F , and let ε > 0. A finite set of points x1, x2, . . . , xn

in F is called an ε−net for S if S ⊂
N

⋃
k=1

B (xk, ε). The quantity log (Nε (S)), where Nε (S) is

the minimal number of open balls in F of a radius ε which is necessary to cover S , is called

Kolmogorov’s ε−entropy of the set S .
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صخلم  
في هذه الأطروحة، نأخذ في الاعتبار مشكل التقدير المحلي الخطي لوظيفة التوزيع الشرطي ومشتقاتها عندما يكون الانحدار ذو        

قيمة في فضاء ذو بعد غير محدود، الاستجابة عددية )تمت ملاحظتها بالكامل أو خضعت للرقابة( ويتم ملاحظة البيانات على أنها 

  ك.أرجوديسلسلة أوقات وظيفية 

أولا، نبني تحت هيكل التبعية مقدرا محليا خطيا لوظيفة التوزيع الشرطي، وندرس في ظل افتراضات عامة معينة خصائصه        

المقاربة، مثل التقارب النقطي شبه الكامل )مع السرعة( والتقارب الطبيعي. يتم التحقق من ملاءمة المقدر المقترح من خلال دراسة 

 المحاكاة.

انيا، في ظل نفس الشروط، نبني مقدرا محليا خطيا للكثافة الشرطية. ثم ندرس التقارب شبه الكامل، مع السرعة، لهذا المقدر، ث       

الشرطي. يتم توضيح فائدة نتائجنا على بيانات حقيقية. للمنوال ة مشابهة للمقدر المحلي الخطيونستنتج من ذلك خصائص مقارب  

النتائج التي تم الحصول عليها مسبقاً في سياق خاضع للرقابة. نبني مرة أخرى مقدرًا للكثافة الشرطية أخيرًا، نقوم بتعميم        

   بالطريقة المحلية الخطية وندرس سرعة التقارب شبه الكامل للمقدر المبني.

Résumé 
        Dans cette thèse, nous considérons le problème de l'estimation locale linéaire de la fonction de 

répartition conditionnelle et de ses dérivées lorsque le régresseur est évalué dans un espace de 
dimension infinie, la réponse est un scalaire (complètement observé ou censuré) et les données sont 

observées comme séries temporelles fonctionnelles ergodiques. 

        Tout d'abord, nous construisons sous cette structure de dépendance un estimateur local linéaire de 
la fonction de répartition conditionnelle, et nous établissons sous certaines hypothèses générales ses 

propriétés asymptotiques, telles que la convergence uniforme presque complète (avec taux) et la 

normalité asymptotique. La pertinence de l’estimateur proposé est vérifiée par une étude de 

simulation. 
         Deuxièmement, et sous les mêmes conditions, nous construisons un estimateur local linéaire de 

la densité conditionnelle. Ensuite, on établit la convergence presque complète, avec des taux, de cet 

estimateur, et on en déduit des propriétés asymptotiques similaires de l’estimateur linéaire local du 
mode conditionnel. L'utilité de nos résultats est illustrée sur des données réelles. 

         Enfin, nous généralisons les résultats précédemment obtenus dans un contexte censuré. On 

construit à nouveau un estimateur de la densité conditionnelle par la méthode locale linéaire et on 

établit la vitesse de convergence presque complète de l’estimateur construit.  

Abstract  
        In this thesis, we consider the problem of the local linear estimation of the cumulative 

distribution function and its derivatives when the regressor is valued in an infinite dimensional space, 

the response is scalar (completely observed or censored) and the data are observed as ergodic 
functional times series.  

         Firstly, we build under this dependence structure a local linear estimator of the distribution 

function, and we establish under general assumptions its asymptotic properties, such as the uniform 
almost complete convergence (with rate) and the asymptotic distribution.  The relevance of the 

proposed estimator is verified through a simulation study. 

         Secondly, under the same conditions, we construct a local linear estimator of the conditional 
density function. Afterward, we establish the almost complete convergence, with rates, of this 

estimator, and we deduce similar asymptotic properties of the local linear estimator of the conditional 

mode. The usefulness of our results is illustrated on some real data. 

         Finally, we generalize the results previously obtained in a censored context. We build again an 
estimator of the conditional density by the local method and we establish the strong consistency rate of 

the constructed estimator. 
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