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Abstract

The main inspirational theme for this work is based on building recursive esti-
mators for nonparametric conditional models, extending the works done previously
to the issues recently discussed in nonparametric statistics. Hence, it is articulated
around three main axes: Recursive Estimation, Functional Ergodic context and the
survival data analysis. The Recursive Kernel method of statistics, which the work
in hands focuses on, is presented in detail to assess its efficiency in nonparametric
estimation, from which better conclusions can be drawn. Therefore, the main model
considered here is the conditional distribution function and its derivatives such as:
conditional quantile, density and mode functions, of the scalar response variable Y for
a given random variable X taking its values in semi-metric space, by introducing then
their recursive adaptations for ergodic random variables. The thesis uses appropriate
statistical methodologies and theories to manage basic issues related to the possible
prevalence of outliers and incomplete observations in the sample. Further, given the
power of the recursive method, we continue to ask reasonable question of whether this
method, proposed for evaluating previous models in complete case, can be considered
a useful one and remains a viable alternative if data are incomplete. To this end, the
estimate is extended to the case that observations can be right-censored for discrete
variables.
Keywords: Recursive Estimate, Functional data, Conditional models, Almost sure

convergence, Asymptotic distribution, Ergodic data, Incomplete data.



Résumé

Le principal thème d’inspiration de ce travail est basé sur la construction
d’estimateurs récursifs pour les modèles conditionnels non paramétriques, en étendant
les travaux réalisés précédemment aux questions récemment discutées en statistiques
non paramétriques. Il s’articule donc autour de trois axes principaux: L’estimation
récursive, le contexte ergodique fonctionnel et l’analyse des données de survie. La méth-
ode statistique du noyau récursif, sur laquelle porte le travail en cours, est présentée en
détail pour évaluer son efficacité dans l’estimation non paramétrique, ce qui permet de
tirer de meilleures conclusions. Le modèle principal considéré ici est donc la fonction
de distribution conditionnelle et ses dérivés tels que: les fonctions conditionnelles de
quantile, de densité et de mode, de la variable scalaire de réponse Y pour une variable
aléatoire X donnée prenant ses valeurs dans un espace semi-métrique, en introduisant
ensuite leurs adaptations récursives pour des variables aléatoires ergodiques. La
thèse utilise des méthodologies et des théories statistiques appropriées pour gérer les
problèmes de base liés à la prévalence possible de valeurs aberrantes et d’observations
incomplètes dans l’échantillon. En outre, étant donné la puissance de la méthode
récursive, nous continuons à nous poser la question raisonnable de savoir si cette
méthode, proposée pour évaluer les modèles précédents dans le cas complet, peut être
considérée comme une méthode utile et reste une alternative viable si les données sont
incomplètes. À cette fin, l’estimation est étendue au cas où les observations peuvent
être censurées à droite pour des variables discrètes.
Mots clés: Estimation Récursive, Données fonctionnelles, Modèles conditionnels,
Convergence presque sûre, Distribution asymptotique, Données ergodiques, Données
incomplètes.
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Chapter 1

General Introduction and Literature

Review

1.1 Problem and Motivation

Conventionally, in usual statistical analysis, the identification of the link between
a response variable Y and an explanatory one X is modeled with the so-called
nonparametric regression function (the link function) that provides techniques which
can help to achieve this aim. Thus, the regression model takes usually the form

Y = R(X) + ε (1.1)

where R : x 7→ E(Y |X = x) is unknown in practical applications, known as the
function of minimal L2 risk with respect to Y and must be estimated from the possible
observed sample (Xk, Yk)k≥1. The error terms ε are random and indicate that there
is no exact relationship between it and the explanatory variable X. It is assumed
also, that the disturbance term satisfies E(ε/X = x) = 0 and V ar(ε/X = x) = σ2(x).

Hence, this function is one of the most widely used tools in statistics to predict
the value of the random response variable, based on known values of one or more
covariates (explanatory variables). The application of regression covers most fields
such as biostatistics, economics or environmental sciences, and it is considered as one
of the main solutions for those who try to study this link.
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In a statistical population, the collected data contain what is called outliers 1.
This type of data is generally observed in medical follow-up studies, financial data
(stock market indices) but also in sociological studies. However, in many statistical
applications, a big drawback of the nonparametric regression model is that it is not
efficient in some pathological situations (for instance, the existence of outliers). Notably,
in all these cases, the conditional models such as: conditional density, distribution,
mode and quantile functions are the pertinent ones to explore this relationship and
then predicting certain events or behaviors. In the vast variety of papers, the authors
have used the Nadaraya-Watson techniques as estimation method which is a particular
case of the recursive kernel estimate considered in this thesis.

However, the existence of outliers in the estimation problem of the nonparametric
regression function of the data available in a certain state, is not the only difficulty
encountered. We are often confronted with the presence of incomplete data in the field
of survival analysis. In fact, in observational studies, the data may also be subject
to right-censoring generally and left-truncation sometimes. So that, the specificity of
survival data is that they contain incomplete observations which lead normally to a
loss of information.

1.2 Contribution of the thesis

In this thesis, we describe efforts in our laboratory to estimate models for non
parametric statistics in which we have focused our attention on the conditional models
(the mentioned models above) in the context of functional data analysis (i.e. X ∈ H
where H is an infinite dimensional space) and y ∈ R. Our principal objective is to
study these nonparametric problems with recursive estimation method which extends
the classical one and we present an overview of it. This thesis can be considered in
its entirety as a contribution to the recursive method and its statistical applications.
Whereas, the theory described in this work is based on several assumptions about
functional and ergodic framework, censoring mechanism and continuous time process.

1An observation is said to be an outlier if it is "abnormally" distant from other observations made
on a phenomenon



1.2 Contribution of the thesis 3

The outline of the thesis is briefly presented as follows: After a brief reminder on the
basic mathematical concepts of functional, ergodic and recursive approach in addition
to a general introduction to the area of survival data analysis in the first chapter,
the work of the three thematic research axes mentioned above will be described in
the next three chapters: Chapter 2 deals with the recursive double kernel estimator
of the conditional quantile for functional ergodic data, in Chapter 3 we introduce a
nonparametric recursive model for right-censored conditional mode function in the
same context of ergodic functional data and in Chapter 4 we discuss on continuous
time ergodic data, the recursive kernel estimate of the conditional quantile model.
Finally, a general conclusion on the research perspectives closes this thesis.

In Chapter 2, based on an inverse of the conditional distribution function which is
used as an important tool for modeling and then forecasting time series problems, we
first present the functional non parametric conditional quantile estimation for discrete
variables according to an approach based on the recursive method. Our approach is
motivated by the data-generating functional process. The aim of this chapter is to
confirm the prospect results achieved in Benziadi et al. [9], we study subsequently
its asymptotic normality that dealing with ergodic data, construct the confidence
interval and present a simulation study to illustrate the strong performance of the
method and to validate our theoretical results. Hence, in our comparisons, a basic
requirement is that the errors, i.e., the absolute differences between the function and
its estimate, are small so that we can make the right decision. This chapter is accepted
as a co-authored article for the Journal of Bulletin.

The growing success of this method has prompted us to examine its contribution
to different models estimation, we consider in a next step, working on the estimation
when we have incomplete information grouped in a variable of interest Y. Wherefore,
Chapter 3 discusses the problem of modeling and then estimating the randomly
right-censorship conditional mode function Θ(x). On the one hand, we extend to
the basic concepts of randomly right censored data framework that are generally
different from classical existing theoretical statistics consideration and are useful in the
analysis of the asymptotic properties of our estimates. On the other hand, we focus
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on establishing under additional assumptions on the censoring and lifetime variables,
the pointwise and uniform almost sure consistency (with rates) on a compact set of
the involved nonparametric model (the conditional density as well as the conditional
mode functions) for stationary and ergodic observations with respect to the new kind
of data (censoring). In addition to a simple illustrative simulation to demonstrate the
usefulness of the recursive approach, so that we analyze the effect of the censoring
rates by comparing the performance of the estimator without/ and with censored data.
This illustration is provided just to show in a simplified setting how this approach can
be apply in prevalence of such observations.

As an extension of the previous described results with respect to functional
context, for dependency structure of ergodic type, a slightly modified estimate of
Chapter 2 is forthcoming as a submitted article. The conceptual idea here aims to
consider two continuous time processes (Xt, Yt)t≥0. We describe the implementation of
the estimation procedures and subsequently we establish the almost sure convergence
with rates of the proposed estimator according to an approach based on the recursive
method. Chapter 4 is completed by a discussion of some particular cases.

1.3 Functional data framework

As the advancement of the computer instruments, an ever increasing number of
information are high dimensional vectors produced by estimating a continuous process
on a discrete sampling network. Thus, numerous instances of this kind of information
can be found in several fields such as, time series analysis, medicine, biology and
biomechanics (for instance, growth curves), economic and financial applications and
rural trial data of this sort ought to be broke down as functional information (i.e.
every observation is a function coming from an infinite dimensional space) rather than
a standard multivariate as functional. Indeed, in earlier, it was difficult to access, to
reconstruct the form and then to register these random data for statistics (due to
technological limitations), while, we have witnessed today a wide development and
the ease in monitoring, storing this data and processing large amounts of it.

This thesis focuses significantly on the use of a specific fundamental branch in
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Figure 1.1: Example of functional data (Share index evolution during one hour)

nonparametric statistics that called "functional data analysis". Whereas most of the
works done in the past was always concentrate on the analysis of random scalars
(X ∈ R) and vectors (X ∈ Rp, p ≥ 2). As a simple definition of functional data
analysis, (FDA) is the statistical analysis of data represented by curves (random
functions) or stochastic processes (Xt)t∈I taking values in a semi metric space H of
functions defined on some set I (this latter represents generally an interval of time),
that extends the classical multivariate ones, which necessitates in turn to start with
the development of suitable statistical methods.

Mathematicians have generally some main difficulties when dealing with functional
data analysis (FDA) because of the infinite dimensional space that data belong to. For
example, the non available of a definition for the distribution of a functional random
variable or the definition of distances, whereas in practice one only has sampled curves
observed into a finite set. In this regard, due to its prominence, several solutions have
been proposed, and perhaps the most common of them requires of reducing in advance
the infinite dimensional problem to a finite one by approximating data with elements
belong to some finite dimensional space. Others preferred as a method to put forward,
for any statistical model, a qualitative assumption on the underlying process. On the
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other hand, it consists to define specific distances or differences for functional data.
The study of statistical models in FDA has gained a great importance nowadays,

such as, the non parametric conditional models, functional linear regression, functional
autoregressive models, and so on. In which, the interested reader would find his goal in
many excellent references, the most prominent of which are: the work of Bosq (2000)[12]
for modeling dependent functional random variables, the popular monograph on
functional data of Ramsay and Silverman (2002)[82] developing theory and applications
of FDA. Also, the book of Ferraty and Vieu (2006)[39] on nonparametric models for
functional data containing a review of the most recent contributions on this topic. In
addition to a research group working on functional statistics in Toulouse (STAPH 2)
who have contributed greatly on regression models for functional data. Thus, according
to Ferraty and Vieu (2006)[39], a functional random variable X is a random process
with values in an infinite dimensional functional space H. It is common to use H with
its Borel σ−algebra generated by its open sets. Then, a functional data represents a
set of random variables (X1, X2, . . . , Xn) of X and drawn from the same distribution
as it.

Recently, several researchers have concentrated their efforts to solve non para-
metric problems when the dimension p in his absolute value, is very large or with
respect to the size of some sample drawn from the distribution of X. Therefore, the
study of the models from the functional data i.e. the modeling and the forecasting of
several received problems such as the electricity demand; see, e.g., Ferraty and Vieu
(2006)[39] and Attouch et al. (2010)[5].

1.4 Conditional models estimation in functional

statistics

In the sequel, assume that all random variables are defined on a probability space
(Ω,A,P). Thus, for measuring the dependence between variables, numerous proba-
bilistic tools have been developed, on the one hand mixing assumptions, introduced by
Rosenblatt (1956)[84], on the other hand martingales approximations; that are used

2http://univ-tlse3.fr/STAPH
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to convey different ideas of asymptotic independence. For prediction, the statisticians
have usually considered time series which are dependent by using regression approach.
So kernel estimation was widely investigated under different notions of dependence to
provide on a variety of results that in turn cover several ideas.

For independent samples, in the literature, several outcomes have been recorded
that study conditional models estimate. Then again, researches for dependent samples
should be highlighted, so that it is a question of responding to workable situations in
which the data are not i.i.d. Within a sample, there are several types of dependency
modeling: weak and strong. In fact, there are various popular models of weak
dependency; α−mixing3(Rosenblatt (1956b)[84]), β−mixing4(Volkonskii and Rozanov
(1959)[91]) or φ−mixing5(Ibragimov (1962)[50]) and so on. For a wide view on the
different sorts of mixing and examples we allude to Doukhan (1994)[26]. On the
same path, Doukhan and Louhichi (1999)[27] have introduced a new concept of
weak dependence condition that makes explicit the asymptotic independence between
past and future. The authors have derived almost sure convergence of kernel density
(Doukhan and Louhichi (2001)[28]). Whereas, consistency of kernel regression estimate
has been studied by Ango Nzé et al. (2002)[3].

In our thesis, we focus on one type: ergodic case. The main advantage is that
such a kind of dependence is very easy to verify, is the weakest and therefore the least
restrictive that covers a large class of time series models. Thus, the main contribution

3 Let (Xk)k>0 be a sequence of real random variables. Denote by ℘j
1 the σ−algebra generated by

the Xk, 1 ≤ k ≤ j and ℘∞n+j the ones generated by the Xk, n+ j ≤ k <∞. We define the associated
mixing coefficients between two σ−fields ℘∞n+j and ℘j

1 to the sequence (Xk)k>0 by:

α(n) = sup
j≥1

sup
{
|P(A ∩B)− P(A)P(B)|; A ∈ ℘∞n+j , B ∈ ℘

j
1

}
.

Then, we say that this sequence is α−mixing if α(n)→ 0 when n→∞.
4

β(n) = sup
j≥1

sup

{
1

2

I∑
i=1

S∑
s=1

|P(Ai ∩Bs)− P(Ai)P(Bs)|; Ai ∈ ℘∞n+j , Bs ∈ ℘j
1

}
.

Then, we say that this sequence is β−mixing if β(n)→ 0 when n→∞.
5

φ(n) = sup
j≥1

sup
{
|P(B\A)− P(B)|; A ∈ ℘∞n+j , B ∈ ℘

j
1 and P(A) 6= 0

}
.

Then, we say that this sequence is φ−mixing if φ(n)→ 0 when n→∞.
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provides a pointwise and uniform almost sure convergence as well as the asymptotic
distribution of recursive kernel estimates under weak dependence in the sense of Laib
and Louani (2010)[58]. The results are in fact based on the use of the version of
exponential type inequality for partial sums of unbounded martingale differences (see
Laib and Louani (2011)[59]) to get our results in the framework of ergodic variables.

1.4.1 Reminder of ergodic theory

Before entering the heart of our thesis, we recall some basic definitions of this
theory. So many definitions of what ergodic term is would be, have been suggested
in literature that it is difficult to determine a specific definition due to the use of
many techniques and examples from several areas of mathematics such as probability
and number theory, statistical mechanics as well as dynamical systems and functional
analysis.

The birth and abstract setup of ergodic theory

Origins of Ergodic theory go back to statistical mechanics, particularly, in Maxwell’s
and Gibbs’s theories. Thus, the word ergodic was introduced first by Boltzmann taking
into consideration his hypothesis; which is a mixture of two Greek words "ergon odos"
meaning "energy path". From another perspective, establishing a connection between
the sets typically studied in statistical mechanics and the properties of single systems
evolving in time. More specifically, the study and solve of problems for demonstrating
the equality of infinite time averages and phase averages. Another definition says that;
it is a part of the theory of the long-term statistical behavior of dynamical systems
(at its simplest form, a dynamical system is a function T defined on a set Ω). In other
words, ergodic theory deals with measure preserving actions of measurable maps on a
measure space, usually assumed to be finite.

In an attempt by several scientists to understand the long-term statistical or
probabilistic behavior of dynamical systems such as the motions of a billiard ball or
the motions of the Earth’s atmosphere, this theory arises. It mainly focuses on certain
mathematical objects called abstract dynamical systems or measure-preserving flows
so that the main idea is to ignore the related properties of the dynamical system and
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to focus only on summarizing the statistical properties. From mathematical point
of view, abstract dynamical systems are natural objects that arise in many different
contexts (even in areas as far a field as number theory). In fact, the first rigorous
result in mathematics is the famous Poincaré’s Recurrence Theorem appearing in 1890.
However, the development of such theory is considered to have taken place in 1931
when Neumann and G.D. Birkhoff have proved the pointwise ergodic theorems. It is
at this point that ergodic theory became a legitimate mathematical discipline and it
thus entered the framework of functional analysis for sure. Whereas, in practice, the
ergodic framework is more convenient because it does not need to verify any condition
as in the α−mixing case for example.

Characterization of Ergodicity

Definition 1.4.1. (Measure preserving transformations) Let (Ω,B, µ) be a probability
space, and T : Ω→ Ω measurable. The map T is said to be measure preserving with
respect to µ, if µ(T−1A) = µ(A) for any event A ∈ B.

This definition implies that the processes f, f ◦ T, f ◦ T 2,. . . are stationary, for any
measurable function f : Ω → R. Such that, for all Borel sets B1, . . . , Bn and all
integers r1 < r2 < . . . < rn, one have for any k ≥ 1,

µ({x : f(T r1x) ∈ B1, . . . , f(T rnx) ∈ Bn}) = µ({x : f(T r1+kx) ∈ B1, . . . , f(T rn+kx) ∈ Bn}).

Definition 1.4.2. Let T be a measure preserving transformation on a probability
space (Ω,B, µ). The map T is said to be ergodic if every measurable set A satisfying
T−1A = A such that µ(A) = 0 or 1.

Example 1.4.1. The identity application of (Ω,B, µ) is ergodic ⇔ ∀A ∈ B, µ(A) =

0 or 1.

Definition 1.4.3. (Martingale difference) Let (ηt)t≥0 be a sequence of real random
variables and (℘t)t≥0 be a sequence of σ−fields. The sequence (ηt, ℘t)t≥0 is said to be
a martingale difference (or a sequence of martingale increments) if and only if:

1. ℘t ⊂ ℘t+1;
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2. ηt is ℘t−measurable;

3. E|ηt| <∞;

4. E[ηt+1/℘t] = 0.

Remark 1.4.1. Obviously, there is a strong relation between the both terms; martingale
and martingale difference, such that:

1. If (Yt, ℘t)t≥0 is a martingale and η0 = 0, ηt = Yt − Yt−1, then (ηt, ℘t)t≥0 is a
martingale difference and E[ηt+1/℘t] = E[Yt+1/℘t]− E[Yt/℘t] = 0.

2. If (ηt, ℘t)t≥0 is a martingale difference and Yt = η0 +η1 + . . .+ηt, then (Yt, ℘t)t≥0

is a martingale and E[Yt+1/℘t] = E[Yt + ηt+1/℘t] = Yt.

In addition, for continuous time t ≥ 0, the random variable (ηt, ℘t)t≥0 is a martingale
difference from filtration ℘t if ηt is ℘t−measurable and E[ηt/℘t−s] = 0, t ≥ 0, s ≥ 0.

Ergodic Theorem

One of the fundamental results (theorems) of the ergodic theory is the following
theorem known as Birkhoff’s Ergodic Theorem or the Individual Ergodic Theorem
appeared in 1931 and which applies to both stationary and ergodic processes (for
more basic information and proofs on this theorem, the reader is directed to Peskir
(2000)[79] for Birkhoff’s (Pointwise) Ergodic Theorem, Von Neumann’s (Mean) Ergodic
Theorem on the one hand, and Kingman’s (Subadditive) Ergodic Theorem on the other
hand). Indeed, this theorem is a generalization of the Kolmogorov’s (Strong) Law of
Large Numbers (SLLN) which states that for a sequence X = {Xk; k ≥ 1} of i.i.d.
random variables on the probability space (Ω,B, µ), with E|Xk| <∞, one have

1

n

n∑
k=1

Xk −→ E(X1) as n→∞ a.s. (1.2)

The Ergodic Theorem is originally proved by G.D. Birkhoff in 1931 and presented as
follows
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Theorem 1.4.1. (Birkhoff’s (Pointwise) Ergodic Theorem) Let (Ω,B, µ) be a proba-
bility space and T : Ω→ Ω a measure-preserving transformation. Then, for any f in
L1(µ), there exists

1

n

n−1∑
k=0

f(T kx) −→ f ∗(x) µ− a.s., as n→∞

is T−invariant and
∫

Ω
fdµ =

∫
Ω
f ∗dµ. If moreover T is ergodic, then f ∗ is a constant

a.s. and f ∗ =
∫

Ω
fdµ.

Under these assumptions, the temporal and spatial means of the observations are
almost surely equal.

Definition 1.4.4. (Stationary sequence) A process (Xk)k∈U,U = {R+,Z} is said to be
strictly stationary or stationary in the strict sense if the joint laws of (Xk1 , . . . , Xks) and
of (Xk1+h , . . . , Xks+h) are identical for any positive integer s and for all k1, . . . , ks, h ∈
Z.
In other words, for n ∈ N, we say that Xn is stationary process if for all h ≥ 1 we
have

{Xn+h; n ≥ 0} L= {Xn; n ≥ 0}.

Theorem 1.4.2. If (Xk)k≥0 is a stationary real process and X0 is integrable, then

1

n

n∑
k=1

Xk −→ E[X0/℘k] as n −→∞ a.s.

where ℘k is the σ−algebra of invariant sets. If moreover, the process is ergodic, the
limit coincides with the expectation of the variable X0.

Remark 1.4.2. There is an imperative link between stationarity and ergodicity such
that: ergodicity leads to stationarity but the converse is false.
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Definition 1.4.5. (Continuous time process) Let (Xt)t≥0 be a process defined on
(Ω, ℘, (℘t)t≥0,P). The process (Xt)t≥0 is said to be measurable if the following applica-
tion is measurable with respect to B((0,∞))⊗ ℘t,

X : (0,∞)× Ω→ (E, ε)

(t, w) −→ Xt(w)

In addition, the process (Xt)t≥0 is said to be adapted if ∀t ≥ 0, (Xt)t≥0 is
℘t−measurable.

Then, the previous pointwise ergodic theorem is given in the following result

Theorem 1.4.3. (Birkhoff’s ergodic theorem in continuous time). We say that a
stationary continuous random process (Xt)t≥0 is ergodic if

1

T

∫ T

t=0

X(u)du −→ E[X0] as T −→∞ a.s.

1.4.2 Bibliographic context in i.i.d and α−mixing cases

For an infinite dimensional covariate X, the first result refers to the work of
Farraty et al. (2005)[33]. They have studied the almost complete convergence of a
conditional density estimator and have examined an application of forecasting via the
conditional mode defined by the random variable maximizing the conditional density
in the i.i.d. case. On recent developments, by applying the small-ball probability
theory, the authors have generalized this result to the α-mixing case in (2005). In the
same framework of mixing functional observations, Masry (2005)[66] has systematically
showed the asymptotic normality of Ferraty and Vieu’s (2004)[38] estimator for the
regression function.

Subsequently, Ferraty et al. (2006)[34] have constructed a double kernel estimator
for a conditional distribution function and have specified the almost complete conver-
gence with rates of this estimator on the one hand. The contribution of Ferraty et al.
(2006)[34] also extends to functional statistics the estimation of the conditional density
function and its derivatives of real random variable. These latter have assumed a
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probabilistic distribution on functional data and have obtained the almost complete
convergence in the i.i.d. case. On the other hand, Ferraty in collaboration with Vieu
(2006)[39] have established the almost complete convergence’s rates of the conditional
mode kernel estimator. Therefore, the estimation of the conditional distribution func-
tion has been also treated as a preliminary study of conditional quantile estimate. For
example, Ezzahrioui and Ould-Saïd (2005[30], 2006[31]) have studied the asymptotic
normality of this estimator in both cases (i.i.d and α-mixing). The convergence in Lp

norm of the conditional density estimator has been interested obviously by Dabo-Niang
and Laksaci (2007)[21] in both cases of finite and infinite dimensional regressors where
the observations are i.i.d., whose asymptotic results are closely related to the property
of small balls probability measure known as concentration property. While, Ezzahrioui
and Ould-Saïd (2008)[32] gave the asymptotic normality of the conditional mode kernel
estimator in the i.i.d. case. More recently, Ling and Xu (2012)[62] have discussed the
asymptotic properties of semi-parametric conditional density estimate for functional
time series data. They have mainly interested in the asymptotic normality of their
proposed estimator as well as of the conditional mode in case of mixing processes.

Certainly, some work aimed at using the recursive method cannot be ignored.
Given that this method is new, the work in it was rather few. We mention the most
prominent ones: Given α−mixing observations, Amiri (2010)[1] has established the
consistency of the estimators defined above. Bouadjemi (2014)[13] has introduced a
new nonparametric estimator of the conditional cumulative distribution function of a
scalar response variable Y given a functional random variable X. To prove his result
(asymptotic normality), he has hypothesized specific regularity conditions generated
by the functional model. In the context of incomplete information, we mention among
others, Wang and Liang (2004)[93] who have showed the almost sure convergence of
truncated version of recursive estimator under φ−mixing.

1.4.3 Bibliographic context in ergodic case

This part is devoted to a brief presentation of the results already available in
the literature for ergodic data setting. We argue that these contributions are a direct
continuation of the works done in the functional framework of the previous cases.
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Therefore, based on the introduced Collomb and Härdle (1986)[20] estimate of
the auto-regression model, Laib and Ould-Saïd in (2000)[57] have raised the question
whether this estimate is still uniformly consistent for stationary ergodic process and it
is answered positively. Subsequently, in functional statistics, for the same case and
by using the well-known Nadaraya-Watson estimator, Laïb and Louani in (2010)[58]
have considered the regression estimator of a real random variable Y on a functional
one X. They have studied in fact the asymptotic properties of the estimate including
the convergence in probability with rate, as well as the asymptotic normality which
induces a confidence interval for this function, when the considered functional data
are stationary and ergodic.

Sekkal et al. (2013)[88] have interested in extending the results introduced by
Azzeddine et al. (2008)[6] for the estimation of the robust regression, in order to use
them in the derivation of their results for handling different types of models. They
have presented a ψ−regression function estimator using the robust method belongs
to the class of non-parametric M−estimations introduced firstly by Huber in 1964
in the case where the explanatory process is functional. Then, the almost complete
convergence is established in the case when the observations are ergodic. Whereas,
the asymptotic normality of such model is discussed later by Benziadi et al. (2016)[8].

For recursive nonparametric kernel estimation of the conditional quantile of a
scalar response variable Y with ergodic hilbertian explanatory variable X, Benziadi
et al. (2016)[9] have considered two type of estimators: the first one is given by
inverting the double kernels estimate of the conditional distribution function whereas
the second is obtained by using the robust approach. They have achieved the almost
complete consistency as well as the asymptotic normality under a stationary ergodic
process assumption. Also, based on the same kernel method, the estimator of the
conditional mode function is studied simultaneously by Ardjoun et al. (2016)[4].
These authors have considered an alternative estimator of this function when the
explanatory variable is supposed to be functional and then, under the ergodicity
hypothesis, they have quantified the asymptotic properties of their proposed estimate.
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In recent decades, there has been a renewed interest in incomplete data modeling
and statistical analysis in the scientific world. In fact, several studies take into account
the existence of such data, as it cannot be ignored. It certainly has a clear impact on
the approach we use. Moreover, to be more logical, in statistical studies that include
many disciplines, such as lifetime studies and others that include the presence of
samples that can often be incomplete. Statisticians are interested then in finding ways,
methods and solutions to circumvent this difficulty by modeling it and then to see the
extent of its impact. For these reasons, it is interesting to consider another theory,
the theory of this kind of observations. In addition, due to numerous applications in
different fields such as medical, social or economic, great importance is given to the case
where the survival time may present some form of dependency. For example, in clinical
trials, it frequently happens that patients in the same hospital have correlated survival
times due to unmeasured variables such as the quality of the hospital’s equipment. For
more details about dependence in data, we can quote Lipshitz and Ibrahim (2000)[63].

1.5 Foundations of survival analysis theory: some

generalities and main applications

It is well known that survival data analysis or generally speaking event history
analysis is a group of statistical methods, that has been extended to deal with several
fields of application to develop over the last few years in a variety of areas, prepared
to analyze interval data and proposed as a rule to assess time to event data in one or
more groups of individuals, such as: in randomized clinical trials and cohort studies.
Survival theory is used then to evaluate incomplete data and the changes associated
with their occurrence. The theoretical results on the statistical behavior of such
observations allow us to propose a rigorous mathematical framework to perform such
extrapolations. Thus, a survival time is a positive random variable (r.v) that measures
the time from a particular starting point to a particular endpoint of interest i.e. the
elapsed time since a specific event under study occurred and/ or until it occurs. Indeed,
in most prospective studies, individuals are followed for an observation period fixed in
advance.
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For more explanation, the event under study is the irreversible transition between
two states, for instance:

• Start of treatment−→Time of death, Development of functional ability. . .

• Time of marriage−→Birth of the first child, Divorce. . .

Thus, in such a field, the purpose we are interested in is the delay of occurrence of
any well-defined event (i.e. one may want to know how long it takes before a certain
event occurs). In other words, to examine the behavior of a population that experiences
’failures’ over time. For example, this failure could be a part in an automobile wearing
out or a subject in a clinical trial dying. In the biomedical domain, these durations can
also contribute in the context of longitudinal studies such as cohort surveys (following
patients over time: the time to remission or recrudescence of a patient) or therapeutic
trials and the response to a given treatment (evaluating the effectiveness of a drug), the
relapse of a disease or death. In industry, it identifies the time between two successive
breakdowns, while in finance it refers to the inflation time of a stock index. . . and so
on. In demography, it is used to construct life tables. These are used by actuaries
to determine the amount of life insurance and annuities so that to understand many
social and economic problems.

Equally important, the terminal event is not necessarily death: it can be the
onset of a disease, the cure or the breakdown of a machine. . .

Survival function

In survival analysis, one seeks to draw conclusions for the non-negative random
variable of interest Z referred as a lifetime of n objects under study from such
incomplete data. Ordinarily, one of the most important and used function in such
field of application and which best characterizes the distribution of this latter (i.e.
explicit the probability that an individual survives to a given time point z) is the
unknown unconditional survival function K(z) denoted as

K(z) := P(Z > z)

= 1−M(z). (1.3)
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Equivalently, the probability distribution functionM(z) := P(Z ≤ z). In the literature,
several authors have interested in estimating by a parametric or non-parametric
approaches this function or functions that can be deduced from it, such as the
probability density function ξ(z) ≥ 0 defined ∀t ≥ 0 by

ξ(z) = −dK(z)

dz

or the hazard rate function h(z) expressed as

h(z) =
ξ(z)

K(z)
= −d ln[K(z)]

dz

and the cumulative hazard function H(z) that represents a measure of the risk of the
occurrence of an event and given by

H(z) =

∫ z

0

h(u)du = − ln[K(z)].

The incompleteness of data is fundamentally due to two principal phenomena that
generate this type of processes: Censoring and Truncation. So that, the right-censored
and left-truncated problems are often the most described in the setup of survival
observations. Whereas, the modeling of incomplete data is an active field of research,
especially because of the importance of their impacts on several fields. In particular,
in recent years, there has been a growing interest in applying survival data theory to
the modeling of such observations. Thus, these two models can be used to address
this issue and also to get explicitly the estimators of the distribution of survival
times (i.e the survival function) in a way that allow us to differentiate between them
respectively or to analyze the way in which explanatory variables modify the survival
functions. Also, as an additional information, traditional statistical tools (developed
in a classical universe) are not adapted to the incomplete behavior: the classical
empirical estimators do not exist in the new theory. So that, it is necessary to shed
light on the problem of estimating this unbiased function in both cases that requires
another approaches.
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Another case is possible, when both left-truncation and right-censoring occur in
the same sample, and this is called the LTRC (Left-Truncated and Right-Censored)
model. It is also a common type in recent years, especially. Thus, we observe the
triplet (Y, T,∆) if and only if

Y ≥ T, with Y = Z ∧W and ∆ = I[Z≤W ]

where Z is the survival time, T the truncation time and W the time of censorship.
In what follows, we discuss these two concepts, provide a brief structured overview

and recall some basic vocabularies used to designate a positive random variable in order
to highlight and understand the difference between them, to derive under monotone
constraints the nonparametric maximum likelihood estimator for the both cases and
to fix notations.

1.5.1 Right-censorship

In survival studies, many scholars have encountered with censored data during
their research. Unfortunately, censored data make analysis more complicated, because
of exact event times are not observed and then the subject is censored. Therefore, the
questions that are constantly and repeatedly asked in these studies are:

1. How to deal with censored data ?

2. What are the approved methods and how are they included in the statistical
framework ?

As is clear and known to most of us, the analysis of incomplete data necessitates
an acclimatized methodology to take into consideration the information contained in
the censoring delay. In fact, when collecting survival data, the censoring is the most
commonly encountered phenomenon which essentially represents censored data, i.e.
observations for which the exact value of an event is not always recognized due to
several facts or if a participant drop out, loss to follow-up or die. Despite this, we still
have partial information that allow us to set a lower limit (right censoring) or an upper
limit (left censoring), i.e. an information of the type Z ≤M or Z ≥ m when we know
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the boundaries of an event. And since in most studies only one of the two bounds
is known, this means that the available information is very pauper, pauper than to
say that Z ∈ [m,M ]. In particular, right-censoring is the most prevalent example of
incomplete observations in survival analysis and here we can define it by the fact that
the individual does not experience the event of interest on his last visit.

Example In clinical trials, there are different reasons for censoring, arise when
studying "time to event" data (the event here is "death". It can be any event of
interest), include:

• Some individuals are still alive at the end of the study or analysis so the event
of interest has not occurred. Therefore we have right censored data.

• Loss to follow-up after time W : patients stop coming to clinic or move away
(care in another hospital) or change of treatment (side effects or ineffectiveness).
Here, W censors Z to the right, since, for them, the survival time Z is unknown
but greater than W : Z > W.

• Deaths from other causes: competing risks.

The development of the proceedings used in such a framework requires several
changes to construct for instance the likelihood function for this type of data. First
of all, we shall present more standard methodologies and re-parametrization of the
observed data as in [18] or [22]. Whereas, the contribution of [48] discusses statistical
methods for the analysis of lifetime data and provides many interesting changes. The
standard and some add-on survival packages in R routine handled with censored data
are developed by [45], [46] and [47] by introducing deferent functions and demonstrating
how it can be used in estimation. Thus, the results produced by these packages are
very satisfactory.

We consider now the case of an observed population of n individuals. For
individual number k = 1, . . . , n; let us consider the random variable Zk its strictly
stationary, non-negative lifetime with the unknown distribution function F (z) and
density ξ(z). Thus, due to the traditional right-censorship problem, we do not observe
(Zk)k≥1 but only observe a censored version consist of n realizations; denoted by



1.5 Foundations of survival analysis theory: some generalities and main
applications 20

{(Yk,∆k), k = 1, . . . , n} with Yk = Zk ∧Wk, k = 1, . . . , n is the actual observed time,
∆k is the nonnegative Bernoulli random variable (the censoring indicator stores the
information) which allows us to know the nature of the observed data Y (i.e. if it is a
true duration Z or if it is a censoring W ) and such that

∆k =

{
1 if Zk ≤ Wk

0 if Zk > Wk

k = 1, . . . , n

i.e. we observe the actual survival time if and only if it is less than Wk. Therefore,
in such case, the observations are uncensored and ∆k = 1. Otherwise, if ∆k = 0, the
observations are said to be right-censored by (Wk)k≥1 which denote the censor points

or detection thresholds (censoring times), with z ∧ w is the minimum of z and w.

Thus, the positive random variables Yk have distribution function H defined by:

H(z) = 1− (1− F (z))(1−G(z)) = 1− F (z)G(z), z ∈ R.

This model assumes also that the positive time W which is caused by the censoring

scenario has an unknown survival function G(z) := P[W > z], z ∈ R. We put now for
any distribution function L, the smallest upper bound of the support denoted by

TL := sup{s, L(s) < 1} ≤ ∞. (1.4)

Through which we can define each boundary of the two functions F and G respectively,
by

TF := sup{s, F (s) < 1}, TG := sup{s,G(s) < 1}.

In general, note that these latter are unknowns too since F and G are unknowns. In
the context of estimation problems when right-censoring mechanism is considered,
such as in the diabetes study, usually, the technical procedures involve the regularity
assumption of the independence between the variables: the possibly observable survival
time Z and the right-censoring time W, (or (X,Z) and W ) which is considered as a
strong and important supposed hypothesis in the formulation of the likelihood. Note
that, if this assumption does not hold, standard survival theory does not apply. Some
prominent examples in the literature such as the cohort studies do not meet this
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necessary condition. Thus, this is what makes it impossible to cover the currently
available status and by all accounts more troublesome to improve on the numerical
issue in the rate of convergence’s analysis and therefore, a proper analysis should be
performed.

Back to the main point now, in case that no censoring arises, by using the
optimal empirical distribution function, one can estimate the distribution function
F (z) := P(Z ≤ z) by:

F̂Z
n (z) :=

1

n

∑
1≤k≤n

I[Zk≤z]. (1.5)

While that this latter is not allowed in practice as one does not observe all the Zks in
the presence of censoring but it is considered as a reference and a strongly uniform
consistent estimate.

Then, we can conclude certainly ŜZn (z) = F̂
Z

n (z) by the relationship 1 − F̂Z
n (z)

which is the main aim of researchers who are not familiar with the topic of survival
analysis before and are asked to estimate it using only the observed data (Yk,∆k)k.
Indeed, they have proposed a first estimator obtained directly from the observations
(Yk)k, by:

ŜY1 (z) =
1

n

∑
1≤k≤n

I[Yk>z].

Whereas, a second estimator is obtained from only the uncensored observations
(Yk,∆k = 1)k, by:

ŜY2 (z) =
1

n

∑
1≤k≤n

I[Yk>z,∆k=1].

However, in both scenarios, this is not the case where censorship is present, because

it involves non observed quantities (the Yk) and then ŜZn (z) is not calculable such
that some simulation experiments have showed that these two naive estimators are
behaved poorly in presence of censored data and are always failed to provide accurate
estimations. In such case, we stress that the first proposed estimate of the survival
function of a positive random lifetime; that generalizes the empirical one for right
censorship, is the famous estimator suggested by Kaplan and Meier in 1958[51], based
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on the effective nonparametric maximum likelihood 6 estimate (NPMLE) and written
as down:

F
Z

n (z) :=


0 ; z ≥ Y(n)
n∏
k=1

(
1− dk

nk

)I
(Y(k)≤z)

; z < Y(n)

(1.6)

where Y(1) < Y(2) < · · · < Y(n) represent the n distinct survival times among

(Y1, . . . , Yn), dk is the number of deaths at Y(k) and nk is the number of individ-

uals still at risk at time Y(k) defined by nk =
n∑
j=1

I(Yj≥Y(k)).

Because that the previous estimator is of very limited interest. Thus, another
equivalent form which will be adopted in the rest of this thesis is presented as follows:

F
Z

n (z) = F
Z

n (z, {(Y1,∆1), . . . , (Yn,∆n)})

:=


0 ; z ≥ Y(n)

n∏
k=1

(
n− k

n− k + 1

)(∆(k)I(Y(k)≤z)

)
; z < Y(n)

(1.7)

in addition to the survival function of the censoring time W,

G
W

n (z) = G
W

n (z, {(Y1,∆1), . . . , (Yn,∆n)})

:=


0 ; z ≥ Y(n)

n∏
k=1

(
n− k

n− k + 1

)((1−∆(k))I(Y(k)≤z)

)
; z < Y(n)

(1.8)

Denoting here Y(1) < Y(2) < · · · < Y(n) the order statistics of (Yk)k∈{1,...,n}, along
with their corresponding concomitant ∆(k). Then, the previous estimators satisfy the
following important properties.

6The maximum likelihood is the most popular and under certain conditions is the most effective
method
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Theorem 1.5.1. (Peterson (1977)[77]) If F and G have no jumps in common, for
all z < TK . One have

Fn(z)− F (z)→ 0 as n→∞ a.s. (1.9)

and
Gn(z)−G(z)→ 0 as n→∞ a.s. (1.10)

On the same path, Stute in collaboration with Wang in 1993 [89] have obtained the
strong consistency for G under certain additional assumptions on the functions F and
G.

Theorem 1.5.2. (Stute and Wang (1993)[89]) Assume that F and G do not have
jumps in common. Then, for n→∞

sup
0≤z≤TK

|Gn(z)−G(z)| → 0 a.s. (1.11)

if and only if P[W = TK ] ≥ 0 and P[Z ≥ TK ] > 0 with TK = TF ∧ TG.

Whereas, the nonparametric estimate of the conditional survival function which
generalizes the kaplan-meier one has been pioneered by Beran (1981)[10] and under
suitable hypotheses on its structure and that Z and W are conditionally independent
given X, Beran (1981)[10] and Dabrowska 1989[23] have showed that this estimate is
weakly and strongly consistent. In such context, Lecoutre and Ould Saïd (1995)[60]
have also established the almost complete uniform convergence of the conditional
Kaplan-Meier estimator under mixing condition on the underlying distribution.

Remark 1.5.1. After researching of the theoretical properties of the nonparametric
Kaplan-Meier’s estimator (NPKME). It is important to stress that:

• It is likewise called a product-limit estimator that is the handiest tailored approach
in non-parametric statistics of estimating survival distribution of a right-censored
r.v Z in practice and it is a very accurate estimator.

• It is not recursive but convenient and using it can slightly reduces the efficiency
of the estimation in terms of computation time.
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• It is not based on the assumption about the underlying probability distribution of
failure times, which makes sense since survival data has a skewed distribution.

• It does not account for confounding or effect modification by other covariates.

1.5.2 Left-truncation

Besides the first type, there is another interesting type related to incomplete
data that is no less important than it; so-called "Left-Truncation". Statistically, the
survival time in some studies is subject to left truncation, where the truncated survival
time is the duration from disease onset to recording time. To be more precise, the
experimental studies that consider lifelong events that must exceed a certain threshold.
Or rather, the variable of interest Y must be greater than a given truncation variable
T in order to be observable, are modeled by the left-truncation model (i.e. a survival
time can be observed if and only if Y ≥ T and then the sampling weight depends on
the underlying truncation time distribution).

Newly, there has been a growing interest in researching ways to make better use of
the information about the truncation time. So that, compared with the type described
in the previous paragraph, it is well known that there is some specific form that the
left-truncation distribution follows. In other word, there is a striking similarity of the
invented definition of the Kaplan-Meier’s product limit estimator related to the case
of right-censored observations to that of Lynden-Bell and Woodroofe’s product limit
estimator related to the left-truncated case. This supports the need for a new theory
and it is worth noticing that there is a strong relationship between the both cases.

Under left truncation model, we observe (Y, T ) if and only if Y ≥ T, so among the
total number in the pooled sample N, we observe the couple {(Yk, Tk), k = 1, . . . , n}
with n ≤ N (n is known compared with N) which has the same joint distribution as
(Y, T ). From the same subject, we impose the usual independent truncation assumption
by assuming that the left truncation variable T is independent with the failure time Y.
This latter condition is identical to that made with right-censoring data and credible
in this case. Thus, for an event time subject to left-truncation, if the truncation
variable has a continuous distribution with support [0, aF ] where aF ∈ (0,∞), then,
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the well known Kaplan-Meier estimator of the law of a positive random variable for
right-censored case is consistently converted after some important modifications as
the approach suggested first by Lynden-Bell (1971)[64], studied then by Woodroofe
(1985)[95], and finally completed by another modification by Tsai, Jewell, and Wang
in the 1980’s [92], [90] and Gu and Lai (1990)[42], Lai and Ying (1991)[56], Gijbels
and Wang (1993)[41] also to become the modified version as follow:

1− Fn(y) =
∏
s≤y

[
1− F ∗n(s)

Kn(s)

]
and 1−Gn(t) =

∏
s>t

[
1− G∗n(s)

Kn(s)

]
.

These latter are then considered as the most widely accepted for estimating the
marginal survival function of the nonterminal phenomenon and may be biased also.
Afterward, Woodroofe (1985)[95] has further established the consistency of these
product-limit estimates and has investigated the cases of decreasing hazard and
discrete versions of the problem.

1.6 Modeling conditional models in the presence of

censoring

In nonparametric regression analysis for such kind of observations, one wants to
construct estimates of Y (the lifetime, from a study of the incomplete data of a series)
after having observed X. Indeed, these estimates all depend on the unknown survival
function G of the censoring time. Thus, the foundation stone is the application of the
theory of these data. In the very recent statistical literature, there are so far published
results that have been highlighted a special attention on analyzing and studying the
convergence of several nonparametric estimates of the conditional models for the
problem intensively posed by these incomplete observations of a series (particularly,
the case where these latter are incomplete by right-censored data), both in a theoretical
framework and application, which show the weak and strong consistency of various
estimates with respect to the censoring mechanism and dependency of the lifetime
and the censoring time. Therefore, the purpose of this part is to display the scope of
the models investigated.
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As far as the author of the present thesis know, Khardani et al. (2010)[52] have
addressed the first nonparametric estimation of conditional mode function when the
observations are subject to right-censoring, given by Θ(x) := arg maxt∈R ζ(t/x) for
a sample of n i.i.d. observations {(Xk, Yk, δk), 1 ≤ k ≤ n}, Yk := min(Tk, Ck) and
δk = I[Tk≤Ck]. Since the definition of the estimate is based on the function G (not F ),
they have replaced G with its Kaplan-Meier estimator Gn to create their estimate and
such that

ζ̂n(t/x) =

n∑
k=1

δkG
−1

n (Yk)L1

(
a−1(x−Xk)

)
L

(1)
2

(
a−1(t− Yk)

)
a

n∑
k=1

L1

(
a−1(x−Xk)

) . (1.12)

Then, under the assumption that Y and C are conditionally independent given X,
they have showed that this estimate is strongly consistent and asymptotically normal.

Inspired by the previous work, in the context of functional stationary ergodic
data, Chaouch and Khardani (2014)[16] have investigated the conditional quantile
estimator of a randomly censored scalar response variable by considering a kernel-based
estimator of F x(t) given by

F̂ x
n (t) =

n∑
k=1

δkG
−1

n (Yk)L1

(
a−1d(x,Xk)

)
L2

(
b−1(t− Yk)

)
n∑
k=1

L1

(
a−1d(x,Xk)

) . (1.13)

They have stated the strong consistency rates as well as the asymptotic distribution
of the latter under the following important assumptions.

(A1) L1 is a nonnegative bounded kernel of class C1 over its support [0, 1] such that

L1(1) > 0 and L(j)
2 satisfies the Lipschitz condition and

∫
|u|νL(1)

2 (u)du <∞.

(A2) For x, x′ ∈ E, Fx(a) = φ(a)f1(x)o(φ(a)) as a→ 0.

(A3) The conditional df F x(t) and its derivative fx(t) satisfy:
∫
R |t|f

x(t)dt <∞ and

|F (j)(t1/x1)− F (j)(t2/x2)| ≤ Cx
(
dβ(x1, x2) + |t1 − t2|ν

)
.
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(A4) For any m ≥ 1 and j = 0, 1, E[(L
(j)
2 (b−1(t − Tk)))

m/Gk−1] = E[(L
(j)
2 (b−1(t −

Tk)))
m/Xk] and supt∈S |E[Lm2 (b−1(t− T1))/X1 = x′]| <∞.

(A5) (Cn)n≥1 and (Xn, Tn)n≥1 are independent.

(A6) E[(δkG
−1

(Yk)L2 (b−1(t− Yk))− F (t/Xk))
2/Gk−1] = W2(t/Xk) almost surely.

(A7) The df of the censored random variable G has a bounded first derivative G(1).

Theorem 1.6.1. (Chaouch and Khardani (2014)[16]) Assume that conditions (A1)-

(A5) hold true and
log n

nφ(a)
→ 0 as n→∞, then

|q̂n,α(x)− qα(x)| = Oa.s.(a
β + bν) +Oa.s.

(√
log n

nφ(a)

)
.

and

Theorem 1.6.2. (Chaouch and Khardani (2014)[16]) Assume that assumptions (A1)-
(A7) hold true, then we have√

nφ(a) (q̂n,α(x)− qα(x))
D→ N (0, γ2(x, qα(x))),

where γ2(x, qα(x)) =
M2

M2
1 f1(x)

α[G
−1

(qα(x))− α]

f 2(qα(x)/x)
and Mj = Lj1(1)−

∫ 1

0

(Lj1)′τ0(u)du.

For this type of data, that takes values in infinite dimensional space and is α−mixing,
Khardani and Thiam (2016)[54] have interested in the estimation of the classical
conditional mode function defined as

Θ̂n(x) = arg sup
t∈Ω

ζ̂xn(t)

where

ζ̂xn(t) =

1

b

n∑
k=1

δkG
−1

(Yk)L1

(
a−1(‖x−Xk‖)

)
L2

(
b−1(t− Yk)

)
n∑
k=1

L1

(
a−1(‖x−Xk‖)

) .

Such that, under certain conditions that we specify now
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(A1) L1 is a function with support (0, 1) such that c1I(0,1) ≤ L1 ≤ c2I(0,1), c1 > 0, c2 >

0. In addition, L2 is a bounded Lipschitz function such that
∫
R L2(u)du = 1 and∫

R |u|
b2L2(u)du <∞.

(A2) There exist b1 > 0, b2 > 0 such that ∀(t1, t2) ∈ Ω2,∀(x1, x2) ∈ F × F ,

|ζ(t1/x1)− ζ(t2/x2)| ≤ c
(
‖x1 − x2‖b1 + |t1 − t2|b2

)
.

(A3) There exists ε1 ∈ (1/2, 1) such that sup
i 6=j

P[(Xi, Xj) ∈ B2(x, a)] ≤ (φx(a))1+2ε1

and b2φx(a)ε1−1 →∞.

(A4) There exists ε2 ∈ (0, 1) such that ν >
1 + ε2
ε1ε2

and bφx(a) = O(n−ε2).

(A5) (Xn, Tn)n≥1 is a sequence of stationary α−mixing rvs with coefficient α(n) =

O(n−ν), for some ν > 1. Also, (Cn)n≥1 and (Xn, Tn)n≥1 are independent.

They have found that their estimate is almost completely convergence with rates.

Theorem 1.6.3. (Khardani and Thiam (2016)[54]) Assume that (A1)-(A5) hold. In

addition to the condition
log n

nbφx(a)
→ 0 as n→∞. Then, we have

∣∣∣Θ̂n(x)−Θ(x)
∣∣∣ = O

(
a
b1
2

)
+O

(
b
b2
2

)
+O

((
log n

nbφx(a)

)1/4
)
a.c. as n→∞.

As a quantum leap, Khardani and Semmar (2014)[53] are the first authors to consider
recursive estimate in censored data context. They have derived the almost sure uniform
strong consistency with rates of convergence and the asymptotic normality of the
kernel’s recursive conditional density function estimator defined for d−dimensional
co-variate by

φ̂n(t/x) =

n∑
k=1

a
−(d+1)
k δkG

−1

n (Yk)L1

(
a−1
k (x−Xk)

)
L2

(
a−1
k (t− Yk)

)
n∑
k=1

a−dk L1

(
a−1
k (x−Xk)

) :=
ĝn(x, t)

ln(x)
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where g(·, ·) is bounded function twice differentiable, l(·) is twice differentiable and
satisfies a Lipschitz condition with l(x) > Γ for all x ∈ C and Γ > 0 and let C and Ω

be two compact sets of Rd and R respectively. Additionally,

(A) The kernels L1 and L2 are Lipschitz continuous functions and compactly sup-

ported, satisfy
∫
Rd
ulL1(u)du = 0, for l = 1, . . . , d with u = (u1, . . . , ud)

T and∫
R
νL2(ν)dν = 0.

(C1) The bandwidths satisfy lim
n→∞

a+
n +

log n

na−d+1
n

= 0 and lim
n→∞

nβa−n =∞,∀β > 0.

(C2) The variables {(Xk, Tk), k ≥ 1} and {Ck, k ≥ 1} are independent.

(N) lim
n→∞

1

n

n∑
k=1

(
an
ak

)j
= θj, a

(d+1)
n log log n = o(1), lim

n→∞
na(d+1)

n a+4
n = 0 and

lim
n→∞

na(d+1)
n =∞.

Theorem 1.6.4. (Khardani and Semmar (2014)[53]) Under Assumptions (A), (C1),
(C2) and let a−n = inf

k=1,...,n
ak and a+

n = sup
k=1,...,n

ak. We have

sup
x∈C

sup
t∈Ω

∣∣∣φ̂n(t/x)− φ(t/x)
∣∣∣ = O

{
max

((√
log n

na
−(d+1)
n

)
, a+2

n

)}
, a.s. as n→∞.

Theorem 1.6.5. (Khardani and Semmar (2014)[53]) Under Assumptions (A), (C2)
and (N), we have, for any (x, t) ∈ A,

√
na

(d+1)
n

(
φ̂n(t/x)− φ(t/x)

)
D−→ N (0, σ2(x, t))

where D−→ denotes the convergence in distribution and A = {(x, t), σ2(x, t) 6= 0} with

σ2(x, t) = θd+1
φ(t/x)

l(x)G(t)

∫
Rd

∫
R
L2

1(z)L2
2(y)dzdy.



1.7 Nonparametric recursive method 30

These models play a crucial role in nonparametric prediction setup. This is what
makes the method of studying estimators expanded and many scholars tend particularly
to use the recursive method because of its many benefits and practical usefulness.

1.7 Nonparametric recursive method

With the development of present day registering and information securing strate-
gies, voluminous information are gathered in different applied areas including stargaz-
ing, computer networks, remote detecting, climate observing. . . . The study of this
kind of phenomena requires some specific non-parametric procedures to model them.
In fact, popular nonparametric techniques such as the kernel density of Rosenblatt
and the kernel regression of Nadaraya and Watson have been proposed. However,
statisticians suffer from serious computational drawbacks that effectively limit the
relevance of these strategies in applications that contain a lot of information and need
to be updated frequently.

Basically, in statistical frameworks, there are several types of non-parametric
methods for estimating functional relationship between co-variates and a real response.
Of course, these types of techniques have their specific advantages and shortcomings.
Referring to the literature, we note among the most prominent of these methods that
have been proposed; the recursive (termed also the on-line kernel or real-time updating
method) is of undoubted significance in time series investigation, the most popular
and simple one, which allows to achieve under certain conditions this aim. Therefore,
according to Amiri (2010)[1] and Mezhoud et al. (2014)[68], the recursive approach is
more appropriate and simpler type of estimation method in terms of simulation time
and storage space for continuously updated data, i.e. when the sample size is large
and un-prefixed. Here, the statistician should not recalculate the estimate (re-read the
process again) whenever additional observations are obtained, he should just update
the initial estimation via the iterative aspect and compute instantly without resorting
to past data. Thus, this approach, from both practical and theoretical level aims at
reducing the time of calculations, in addition to the good results compared with that
obtained by the classical ones due to its recursive relationship which in turn allows to
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have a good approximation of the reality. Whether or not it is of such, more broad,
importance, the undeniable value of recursive estimation lies not only in its undeniable
elegance and adaptability, but also in its demonstrable practical utility.

Recursive estimation has become common place, taking its position as an essential
component in most degree courses concerned with control and systems theory, signal
and image processing, statistical estimation and econometrics; and it is becoming
increasingly important in other applied science courses, such as the earth and at-
mospheric sciences (e.g. hydrology, oceanography, atmospheric science), as well as
some courses in the social sciences (e.g. psychology, sociology). The algorithm for
recursive estimation is being used increasingly in many applied fields, however, with
a continuous review of the literature, we have seen that the other specialists have
been slower than statisticians to exploit them. An extensive bibliography contains
references to the work of statisticians on recursive estimation and the sources on which
they have relied.

There are as of now colossal measure of distributed papers on asymptotic results of
online kernel density and regression estimators for both i.i.d. and mixing observations.
For an overall view, we carefully present the recursive kernel density and regression
estimators and their asymptotic properties. In this setting, there are plenty of works
using this approach. The first recursive kernel version of the Parzen-Rosenblatt
estimator is developed by Wolverton and Wagner (1969)[94], defined, for all n ≥ 1

and for all x ∈ R, by the form

f̂n(x) = n−1

n∑
k=1

a−1
k L1

(
a−1
k (x−Xk)

)
(1.14)

where ak is the bandwidth sequence and L1(·) is a kernel function. Such that several
scholars have studied this estimator among whom Yamato (1971)[96], Masry (1987)[65],
Gÿorfi and Masry (1990)[43]. Subsequently, the almost sure convergence and the
asymptotic normality are established by Deheuvels (1974)[25] and given in the following
result

Theorem 1.7.1. (Deheuvels (1974)[25]) Suppose that f is derivable with bounded
derivative. If the bandwidth an such that an = n−α with 0 < α < 1. Then, for every
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x ∈ R
lim
n→∞

f̂n(x) = f(x) a.s.

In addition, for 1/5 < α < 1, then, the asymptotic normality is

√
nan

(
f̂n(x)− f(x)

)
L→ N

(
0,
µ2f(x)

(1 + α)

)
.

Another recursive kernel estimator exists in the literature to estimate the density
function given for n ≥ 1 and x ∈ R by Deheuvels (1973)[24] as follows

f̃n(x) = B−1
n

n∑
k=1

L1

(
a−1
k (x−Xk)

)
(1.15)

where Bn =
n∑
k=1

ak. The latter author have established the asymptotic properties for

his estimator as given

Theorem 1.7.2. (Deheuvels (1973)[24]) Suppose that f is derivable with bounded
derivative. If the bandwidth an such that an = n−α with 0 < α < 1. Then, for every
x ∈ R

lim
n→∞

f̃n(x) = f(x) a.s.

In addition, for 1/5 < α < 1, then, the asymptotic normality is

√
nan

(
f̃n(x)− f(x)

)
L→ N

(
0, µ2f(x)

)
.

For the second problem concerning the regression function R(x) = E[Yk/Xk = x], for a
couple (Xn, Yn) arrives sequentially, a preferable estimate is then defined by extending
the classical Nadaraya-Watson estimator (so-called the off-line or batch approach) to
the recursive version (also called the recursive Nadaraya-Watson estimator) and given
for x ∈ R by

R̂n(x) =

n∑
k=1

YkL1

(
a−1
k (x−Xk)

)
/

n∑
k=1

ak

n∑
k=1

L1

(
a−1
k (x−Xk)

)
/

n∑
k=1

ak

=
Jn(x)

ĝn(x)
(1.16)
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where ĝn(x) is the online estimator for the marginal density of Xk with Bn =
n∑
k=1

ak.

Thus, under certain regularity assumptions on the kernel L1 such that
∫ +∞

−∞
L2

1(x)dx =

µ2 < ∞ and
∫ +∞

−∞
x2L1(x)dx = ν2 < ∞, Duflo (1997)[29] in his contribution has

showed some asymptotic properties under mixing assumptions.

Theorem 1.7.3. (Duflo (1997)[29]) We assume that f is bounded, twice derivable
with bounded derivatives. Moreover, we suppose that X admits a density g which is
bounded, twice derivable with bounded derivatives and let 0 < α < 1 with an = n−α. If
the noise is integrable square and of variance σ2 > 0, then for all x ∈ R,

lim
n→∞

R̂n(x) = R(x) a.s.

Moreover, if 1/3 < α < 1 and if εn admits a moment of order greater than 2, then,
for any x ∈ R such that g(x) 6= 0,

√
nan

(
R̂n(x)−R(x)

)
L→ N

(
0,

µ2σ2

(1 + α)g(x)

)
.

The growing success of this method has encouraged many scholars to explore its
contribution to the estimation of some conditional models in several cases. Currently,
work in the field of functional variables has turned into an interesting topic lately,
thanks to its applications; so that we can mention the seminal work of Amiri et al.
(2014)[2] who have addressed this problem first and have studied the asymptotic
properties of the recursive nonparametric kernel estimator of the regression function.
While a recursive estimator of the conditional geometric median is studied by Hervé
Cardot et al. (2012)[15] in Hilbert spaces and they have proved the almost sure
convergence together with L2 rates of convergence. More recently, for independent
and identically distributed observations, Bouadjemi (2014)[13] has introduced a new
estimator of the conditional cumulative distribution function based on a recursive
approach and he has elaborated under certain terms and general conditions a result
on the asymptotic normality of built estimate.
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However, what we are able to clearly notice by reading and looking at some of
the few previous studies in addition to our simple personal study is that this method
is not at all desirable in light of the presence of incomplete observations (censored in
particular) in the studied sample. This is conclusive evidence that this method, despite
its proven efficacy in the analytical framework compared to the classical method in
terms of simulation problems and not consuming longer time, but it is a method that
has its inconvenient as well, and this is evident in most studies so that we do not say
all of them to maintain some honesty.
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Asymptotic Results of a Recursive

Double Kernel Estimator of the

Conditional Quantile for Functional
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Abstract The aim of this chapter is to investigate the estimation of conditional
quantile of a scalar response variable Y given a random variable (rv) X = x taking
values in a semi-metric space. Hence, the asymptotic normality of the proposed
estimator is obtained when the observations are sampled from a functional ergodic
process. The result confirms the prospect proposed in Benziadi et al [3] and as
applications, a comparison study based on a finite-sample behavior of the estimator is
investigated by simulations as well.

Key words and phrases Asymptotic normality, Conditional quantile, Recursive
estimate, Ergodic data, Functional data, Small ball probability.
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2.1 Introduction

In nonparametric statistics, the estimation of conditional quantiles is becoming in-
creasingly an important problem which has been widely studied because of their
importance in several applications such as agronomy, medicine, economic . . . and so
on. Historically, countless works have been documented on this problem: By a direct
method, the estimator of conditional quantile qα(x) is proposed and then studied
firstly by Koenker and Bassett [15] and defined as follow

q̂α(x) = arg min
qα

n∑
i=1

ρα(Yi − qα), for (x, y) ∈ R2

which made many scholars invest in this topic, among whom Cardot et al. [5], Koenker
[14]. Subsequently, in the event that the observations are functional, Gannoun et al.
[13] have proposed a nonparametric conditional median predictor based on the double
kernel method. The asymptotic properties of no-parametric conditional quantile
estimator are established by Ezzahrioui and Ould-Saïd [10]. Laksaci et al. [17] have
studied the almost complete consistency and the asymptotic normality of a generalized
L1−approach for a kernel estimator of conditional quantile with functional regressor.

However, studies of conditional quantile estimation are a significant subject that
has given rise to a large number of contributions, and their applications are very wide
and cover various fields, often involve both prediction setting and in estimation of
regression function. Several works on the regression quantile exist in the literature,
the first idea for this subject, is proposed by Stone [20]. Cardot et al. [5] have proved
the L2−convergence rate of the conditional quantile as a linear regression model for
functional data. Their results have been extended to the kernel case by Ferraty et
al. [11] who have proposed a nonparametric estimator of this model and they have
established the almost complete convergence for the i.i.d case. On the other hand,
the convergence in Lp−norm is stated by Dabo-Niang and Laksaci [8]. The interested
reader can refer also to some of the following additional references [18], [22] and [7] to
expand further on this topic and take an overview.

Otherwise, considering the recursive conditional models estimate, literary, the first
result on this topic is developed by Wolverton and Wagner [21], they have established



2.1 Introduction 47

the asymptotically optimal discriminant functions for pattern classification. Masry and
Györfi [19] have also treated for weakly dependence stationary process the recursive
estimator of probability density. Recently, Amiri [1] has investigated the asymptotic
properties of the recursive regression estimator with application in the non-parametric
prediction. In the same aim, the almost sure convergence rates of the conditional
geometric median estimator have been proved by Cardot et al. [6] in Hilbert space.
Amiri et al. [2] have obtained the asymptotic properties of the recursive estimator of
the regression function with functional covariate.

In this present work, in regard to the dependence setting, our focus is to use
ergodic variables to allow the maximum possible generality and to estimate the
conditional quantile function in this case. Note here that, the nonparametric kernel
regression estimation for functional stationary ergodic data is considered by Laib and
Louani [16], they have studied the consistency in probability, with a rate, as well as the
asymptotic normality of this estimator. Also, for i.i.d functional data, Bouadjemi [4]
has established the asymptotic normality for the conditional cumulative distribution
function. More recently, Benziadi et al. [3] have studied the almost complete (a.co)
convergence with rates of the functional recursive kernel estimate of the conditional
quantile.

The outline is described as follows: At first, we define the double-kernel recursive
estimator when the covariate X is functional in Section 2.2. We establish then the
asymptotic normality of this model as well as the confidence interval in Sections
2.4 and 2.5 under the assumptions given in 2.3. A computational study is carried
out to evaluate and understand how effective this resulting model is, in Section 2.6.
Finally, in Section 2.7 devoted to appendix, we present the detailed proofs of the
auxiliary results. Indeed, in the setting of ergodic processes, to prove our results, our
methodology is based mainly on the martingale approximation which allows to launch
a systematic study for dependent data.
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2.2 Definition of the model

To fix notation, let (Xk, Yk)k=1,...,n be a sequence of strictly stationary dependent
random variables valued in H × R and observable from the same subject, where
(H, dH) is a semi-metric space. For α ∈ [0, 1], the conditional quantile of order α
defined by the inverse of the conditional distribution function F x(y) of Y given X = x

is denoted qα(x) and such that

qα(x) := F−1(α/x) = inf {y ∈ R : F x(y) ≥ α} .

To estimate it, we use the estimator of the nonparametric function given usually by:

F x(y) = P [Y ≤ y/X = x] . (2.1)

Thus, based on the finding proof of Laksaci et al. [17], we note that this estimator
can be given by:

q̂α(x) = inf
{
y ∈ R : F̂ x(y) ≥ α

}
.

In the sequel, let F̂ x(y) be the recursive estimate of F x(y) defined as:

F̂ x(y) =

n∑
k=1

L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k (y − Yk)

)
n∑
k=1

L1

(
a−1
k dH(x,Xk)

) , ∀y ∈ R (2.2)

where L1 is a kernel distribution defined for x ∈ H, L2 is a strictly increasing function
defined for y ∈ R and (ak) (resp (bk)) is a sequence of positive real numbers such
that lim

n−→∞
an = 0 ( lim

n−→∞
bn = 0). The main advantage of this estimation method is to

update the estimate for each additional observation without resorting to past data.

2.3 General framework and assumptions

The general framework of our contribution is the nonparametric modeling in func-
tional ergodic data. To this aim, in such study, we formulate these data by the
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following notations, for all k = 1, · · · , n, we introduce ℘k the σ-field generated by
((X1, Y1), · · · , (Xk, Yk)) and Bk the σ-field generated by ((X1, Y1), · · · , (Xk, Yk), Xk+1) .

In addition, x will stand from now on for a fixed point in H, C and C ′ de-
note some generic constant in R∗+, Nx denotes the fixed neighborhood of x and
B(x, h) = {x′ ∈ H/dH(x′, x) < h} .

Therefore, our asymptotic results are stated under the following assumptions of
our model that we gathered hereafter for easy reference.

(A.1) The strictly stationary ergodic process (Xk, Yk)k∈N∗ satisfies:

(i) The function φ(x, h) := P(X ∈ B(x, h)) is such thatφ(x, h) > 0, ∀ h > 0.

(ii) For all k = 1, . . . , n, there exists a deterministic function, φk(x, ·) such that
almost surely 0 < P (Xk ∈ B(x, h)/℘k−1) ≤ φk(x, h),∀ h > 0,

and φk(x, h)→ 0 as h→ 0.

(iii) For all sequence (hk)k=1,...n > 0,

n∑
k=1

P (Xk ∈ B(x, hk)/℘k−1)

n∑
k=1

φ(x, hk)

→ 1 a.s.

For a fixed neighborhood Nx of x, we assume that the regular version F x′ of
the conditional distribution function of Y given X = x′ exists for all x′ ∈ Nx
and we suppose that F x has a continuous density ξx with respect to Lebesgue’s
measure over R and is such that:

(A.2) There exists δ > 0, such that ∀(y1, y2) ∈ [qα(x)− δ, qα(x) + δ]2,
∀(x1, x2) ∈ N 2

x and C ′, β1 and β2 ∈ R∗+,

|F x1(y1)− F x2(y2)| ≤ C ′
(
dH(x1, x2)β1 + |y1 − y2|β2

)
and for y ∈ R and C > 0, the conditional density function ξx(y) of Y given
X = x verifies

inf
y∈[qα(x)−δ, qα(x)+δ]

ξx(y) > C.
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(A.3) The positive bandwidths (ak, bk) satisfy: ∀t ∈ [0, 1],

lim
n→∞

φ(x, tan)

φ(x, an)
= βx(t), lim

n→∞

1

nψn(x)

n∑
k=1

(
(caβ1k + c′bβ2k )φ(x, ak)

)2

= 0

and

nψn(x) −→∞ with ψn(x) = n−1

n∑
k=1

φ(x, ak).

(A.4) L1 is a function and having a compact support on (0, 1), such that:

CI(0,1) < L1(x) < C ′I(0,1).

(A.5) The function L2 is of class C1 such that:

{
∀(y1, y2) ∈ R2, |L2(y1)− L2(y2)| ≤ C|y1 − y2|;∫
|t|β2L(1)

2 (t)dt <∞,where β2 is given in (A.2).

2.3.1 Comments on the assumptions

For our model, these assumptions are very usual for estimating the conditional
quantile; condition (A.1)(i) characterizes the property of concentration on small balls
of the probability measure of the underlying explanatory variable. The ergodicity of
functional data in assumption (A.1)(ii) is the same as that classically imposed by
Laib and Louani [16] for infinite-dimensional setting. The assumption (A.2) ensures

the regularity version F x′ of the conditional distribution function of Y given X = x′

for a fixed neighborhood Nx of x, although there are several ways to define this
nonparametric concept. For the semi-metric structure, this latter condition is more
suitable. Condition (A.3) plays a crucial role in the asymptotic normality result: In
other words, the function βx is needed in the study of the variance term and thus
(A.4) is checked for kernel estimation. In order to explicit asymptotically the bias
term, the condition (A.5) is fulfilled.
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2.4 Main results

In the following, we announce the asymptotic result of the double-recursive kernel

estimator q̂α(x) of qα(x), where D−→ denotes the convergence in distribution and N (·, ·)
denotes the gaussian distribution.

Proposition 2.4.1. Suppose that the conditions (A.1)− (A.5) hold true. In addition,
if the following condition is verified

lim
n→∞

log n

nψn(x)
= 0

then, (
nψn(x)

σ2(x)

)1/2

(F̂ x(y)− F x(y))
D−→N (0, 1) as n −→∞.

Theorem 2.4.1. Under the hypotheses of Proposition 2.4.1, we have for any x ∈ A
and α ∈ [0, 1]

(
nψn(x)

σ2(x)

)1/2

(q̂α(x)− qα(x))
D−→N (0, 1) as n −→∞

where

σ2(x) =

(
α(1− α)γ1

(ξx(qα))2γ2
2

)
;

with

γ1 = L2
1(1)−

∫ 1

0

(L2
1(s))(1)βx(s)ds > 0, γ2 = L1(1)−

∫ 1

0

L
(1)
1 (s)βx(s)ds 6= 0

and A = {x/σ2(x) 6= 0}.

Proof of Proposition 2.4.1We will rely on the following notations for the remainder
of this paper: for any (x, y) ∈ H × R and k = 1, · · · , n

L1,k = L1

(
a−1
k dH(x,Xk)

)
and L2,k = L2

(
b−1
k (y − Yk)

)
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and then address the general decomposition used usually in this nonparametric case

F̂ x(y)− F x(y) = B̂n(x, y) +
R̂n(x, y)

F̂D(x)
+
Q̂n(x, y)

F̂D(x)

where

Q̂n(x, y) :=
(
F̂ x
N(y)− F̄ x

N(y)
)
− F x(y)

(
F̂D(x)− F̄D(x)

)
,

B̂n(x, y) :=
F̄ x
N(y)

F̄D(x)
and R̂n(x, y) := −B̂n(x, y)

(
F̂D(x)− F̄D(x)

)
with

F̂ x
N(y) :=

1

nψn(x)

n∑
k=1

L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k (y − Yk)

)
,

F̄ x
N(y) :=

1

nψn(x)

n∑
k=1

E
[
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k (y − Yk)

)
/℘k−1

]
,

F̂D(x) :=
1

nψn(x)

n∑
k=1

L1

(
a−1
k dH(x,Xk)

)
,

F̄D(x) :=
1

nψn(x)

n∑
k=1

E
[
L1

(
a−1
k dH(x,Xk)

)
/℘k−1

]
.

Thus, Proposition 2.4.1 is a consequence of the following intermediate results which
proofs are given in the appendix.

Lemma 2.4.1. Under hypotheses of Proposition 2.4.1, we have for any x ∈ H

(
nψn(x)γ2

2

γ1α(1− α)

)1/2

Q̂n(x, τα(u, x))
D−→N (0, 1) as n −→∞.

Lemma 2.4.2. Under hypotheses (A.1) and (A.4), we have:

F̂D(x)− 1 = ◦p(1).
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Lemma 2.4.3. Under hypotheses (A.1), (A.2) and (A.3), we have:

(
nψn(x)γ2

2

γ1α(1− α)

)1/2

B̂n(x, τα(u, x)) = u+ ◦p(1) as n −→∞.

Lemma 2.4.4. Under hypotheses (A.1), (A.2) and (A.4), we have

(
nψn(x)γ2

2

γ1α(1− α)

)1/2

R̂n(x, τα(u, x)) = ◦(1) as n −→∞.

Proof of Theorem 2.4.1 We define for all u ∈ R, τα(u, x) = qα(x) +

u [nψn(x)]−1/2 σ(x), such that

P
{√

nψn(x)σ−1(x)(q̂α(x)− qα(x)) < u
}

= P (q̂α(x) < τα(u, x))

= P
[
F̂ x(τα(u, x)) > α

]
= P

(
F̂ x(τα(u, x)) > 0

)
.

It follows that

P
(
F̂ x(τα(u, x)) > 0

)
= P

(
0 < B̂n(x, y) +

R̂n(x, y)

F̂D(x)
+
Q̂n(x, y)

F̂D(x)

)
= P

(
−F̂D(x)B̂n(x, τα(u, x))− R̂n(x, τα(u, x))− Q̂n(x, τα(u, x)) < 0

)
= P

(
−F̂D(x)B̂n(x, τα(u, x))− R̂n(x, τα(u, x)) < Q̂n(x, τα(u, x))

)
Thus, the proof of Theorem 2.4.1 is a direct consequence of Lemmas 2.4.1-2.4.4.

2.5 Application to predictive interval

The aim of this section is to construct the confidence band of asymptotic level (1−α)%

for the conditional distribution function estimator where uα/2 is the upper α/2 quantile

of standard normal N (0, 1). So that, the following corollary gives us an asymptotic
approximation
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Corollary 2.5.1. By following the above results, for any x ∈ H and every α, we get[
F̂ x(y)− uα/2

√
σ2(x)

nψn(x)
, F̂ x(y) + uα/2

√
σ2(x)

nψn(x)

]
.

2.6 Computational studies

The highlighted result in this section is an important investigation of a small numerical
study for evaluating the performance of the proposed estimator. More precisely, the
main aim is to compare the efficiency of the double-kernel recursive estimation method,
to the classical kernel one which has been extensively discussed in the previous many
papers. To do that, we consider firstly the following non parametric model for all
k = 1, . . . , n

Yk = R(Xk) + εk (2.3)

where εk are random variables independent of X and follow a normal mixture distri-
bution (1− λ) ∗ N (0, 1) + λ ∗ N (4, 5) and we choose the contamination parameter λ
to be respectively: 0.1, 0.2, 0.5, 0.7 and 0.9 with a sample size n= 100, 200 and 500.

In addition, in order to generate the functional variables (Xk)k=1,...,n, we use
the R-routine simul.far of the far package in R, This routine simulates a functional
autoregressive process with a strong white noise. The simulation experiments used
here considered a sinusoidal basis, with five functional axes, of the continuous functions
from [0, 1] to R. Also, we fix the diagonal matrix (0.45, 0.9, 0.34, 0.45) to define the
linear operator with a perturbation coefficient equal to 0.05. The Xk’s curves are
discretized in the same grid which is composed of 100 points and are plotted in Figure
2.1.

Moreover, the response variables Yk are generated from the following operator:

R(x) = 5

∫ 1

0

exp(x(t))dt.

Using this model permits the determination of the theoretical quantile qα(x) such as
the conditional distribution of Y given X = x is explicitly given by the distribution of
εk shifted by R(x).
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Figure 2.1: A sample of 100 curves

To give a fair comparison between the two methods we must treat each one under
its optimal conditions and specify the different parameters of the both. Unfortunately,
to the best of our knowledge, there is no automatic data-driven method available for
selecting bandwidths when estimating a conditional quantile function with functional
regressors. Thus, for our comparison study we consider a similar bandwidth selector
to that used by Ferraty and Vieu (2006) [12]. Specifically, the bandwidths (ak, bk) in
the recursive method are selected by the following leave-out-one-curve cross-validation
procedure on the k−nearest neighbors

arg min
(ak,bk)∈An×Bn

n∑
j=1

(
Yj − q[−j]

0.5 (Xj, ak, bk)
)2

,

where q[−j]
0.5 (Xj, ak, bk) denotes the double-kernel recursive estimator of the conditional

median in the curve Xj and is computed by the bandwidths (ak, bk), An×Bn denotes a
set of (ak, bk) such that, for ak, the ball centered at Xk with radius ak contains exactly
n neighbors of Xk (resp. for bk, the interval centered at Yk with radius bk contains
exactly n neighbors of Yk). Subsequently, for the kernel method we adapt the R-routine
named funopare.quantile.lcv. We emphasize that, frequently, we consider a quadratic
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kernels defined as L1(u) =
3

2
(1 − u2)I[0,1] on [0, 1], L2(u) =

∫ u

−∞

3

4
(1 − t2)I[−1,1](t)dt

and the L2 semi-metric to measure the distance. Then, we compute the errors to
evaluate the performance of these estimators as follows:

• The case of classical double-kernel method, the mean squared error (MSE) is

MSE(DKM) =
1

n

n∑
k=1

(q̃αKM(Xk)− qα(Xk))
2 .

• The case of recursive double-kernel method, the mean squared error (MSE) is

MSE(RDKM) =
1

n

n∑
k=1

(q̃α(Xk)− qα(Xk))
2 .

Therefore, the obtained results of mean squared error are summarized in Table 2.1,
Table 2.2 and Table 2.3 for the different sample sizes n = (100, 200, 500), while, Figure
2.2 simultaneously plots side by side, the estimated conditional quantiles by the RDKM
and the ones estimated by the DKM.

e λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.7 λ = 0.9

Q1 4.9110 5.4123 6.9100 7.9121 8.9010
MSE(DKM) Q2 2.4420 2.9413 4.4401 5.4410 6.4321

Q3 4.2511 4.7515 6.2501 1.2552 2.2002

Q1 2.1302 2.3812 3.13402 3.6305 4.1328
MSE(RDKM) Q2 1.6920 1.9401 2.6955 3.1921 3.6921

Q3 2.2924 2.5443 3.2945 3.8421 4.3421

Table 2.1: Mean Squared Error Results for n = 100
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λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.7 λ = 0.9

Q1 4.7801 5.2800 6.7843 7.7736 8.7718
MSE(DKM) Q2 2.3110 2.8109 4.3121 5.3102 6.3155

Q3 4.1220 4.6202 6.1201 1.1201 2.0761

Q1 2.0030 2.2500 3.0012 3.5050 4.0021
MSE(RDKM) Q2 1.5610 1.8191 2.5643 3.0667 3.5631

Q3 2.1609 2.4181 3.1661 3.7108 4.2157

Table 2.2: Mean Squared Error Results for n = 200

λ = 0.1 λ = 0.2 λ = 0.5 λ = 0.7 λ = 0.9

Q1 4.3900 4.8901 5.7991 7.3865 8.3864
MSE(DKM) Q2 1.9210 2.4267 3.9267 4.9200 5.9101

Q3 3.7373 3.7201 3.7333 0.7343 1.6823

Q1 1.6101 1.8661 2.6113 2.6670 3.6753
MSE(RDKM) Q2 1.1702 0.9107 2.1787 2.6708 3.1702

Q3 1.7777 2.0266 2.7768 3.3252 3.8294

Table 2.3: Mean Squared Error Results for n = 500

Conclusion Table 2.1 (respectively Table 2.2 and Table 2.3) presents the MSE
values of both estimates of the quartiles Q1(α = 0.25), Q2(α = 0.5) and Q3(α = 0.75).

This simulation involves two interpretations: The first is that Table 2.1 (respectively
Table 2.2 and Table 2.3) is clearly showed that the proposed recursive double kernel
method gives better results than the classical double kernel one in most of the studied
situations. As can be seen from the Figure 2.2 as well. The second is that the MSE
values increase more substantially (with respect to the value of λ) in the kernel method
than in the recursive one and it decrease as the sample size n increases.
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Figure 2.2: Conditional quantiles (Q1, Q2 and Q3) estimation by RDKM (on the left)
versus DKM (on the right)

2.7 Appendix

Proof of Lemma 2.4.1 We use the same ideas as in Laib and Louani [16]. For all
k = 1, . . . , n, we start by defining

ηnk =

(
ψn(x)γ2

2

γ1α(1− α)

)1/2

(L2,k(τα(qα(x)))− F x(τα(qα(x))))
L1,k(x)

nψn(x)
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and then ξnk = ηnk − E(ηnk/℘k−1). Subsequently, it is easily seen that

(
nψn(x)γ2

2

γ1α(1− α)

)1/2

Q̂n(x, τα(tα(x)) =
1√
n

n∑
k=1

ξnk .

As ξnk is a triangular array of martingale differences according the σ−fields ℘k−1, we
are in position to apply the central limit theorem based on unconditional lindeberg

condition to prove the asymptotic normality of Q̂n(x). Thus, it suffices to establish
the following two parts:

(a)
1

n

n∑
k=1

E(ξ2
nk
/℘k−1) −→ 1 in probability;

(b)
1

n

n∑
k=1

E(ξ2
nk
Iξnk>εn) −→ 0 holds for any ε > 0 (lindeberg condition).

Proof of part (a) The first part can be easily written as follows

E(ξ2
nk
/℘k−1) = E((ηnk − E(ηnk/℘k−1))2/℘k−1)

= E(η2
nk
/℘k−1)− E2(ηnk/℘k−1).

Thus, we need to prove the validity of the following two statements resulting from (a):

1. lim
n−→∞

1

n

n∑
k=1

E2(ηnk/℘k−1) = 0p;

2. lim
n−→∞

1

n

n∑
k=1

E(η2
nk
/℘k−1) = 1p.
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For the first convergence, we have

E(ηnk/℘k−1) =
1

ψn(x)

(
ψn(x)γ2

2

γ1α(1− α)

)1/2

E
[[

(L2,k(τα(qα(x)))− F x(τα(qα(x))))L1,k(x)
]
/℘k−1

]
|E (ηnk/℘k−1) | =

1

ψn(x)

(
ψn(x)γ2

2

γ1α(1− α)

)1/2 ∣∣∣E[[(E(L2,k(τα(qα(x)))/Bk−1))

−F x(τα(qα(x)))L1,k(x)
]
/℘k−1

]∣∣∣
=

1

ψn(x)

(
ψn(x)γ2

2

γ1α(1− α)

)1/2 ∣∣∣E[[(E(L2,k(τα(qα(x)))/Xk))

−F x(τα(qα(x)))L1,k(x)
]
/℘k−1

]∣∣∣.
Then, under (A.1) and (A.4), we have:

Cφk(x, ak) ≤ E(L1,k(x)/℘k−1) ≤ C ′φk(x, ak).

After that, an integration by parts and a change of variable allow to get

E(L2,k((τα(qα(x)))/Xk)) =

∫
R
L

(1)
2 (t)FXk(y − bkt)dt

and under (A.2), we have

|E(L2,k(τα(qα(x)))/Xk)− F x(τα(qα(x)))| ≤ caβ1k + c′bβ2k .

Combining now these results, we have

|E(ηnk/℘k−1)| ≤ C ′
(

ψn(x)γ2
2

γ1α(1− α)

)1/2 (
caβ1k + c′bβ2k

) φk(x, ak)
ψn(x)

.

Then, under (A.3), we obtain

1

n

n∑
k=1

E(ηnk/℘k−1)2 ≤ C ′2
(

γ2
2

γ1α(1− α)

) n∑
k=1

(
caβ1k + c′bβ2k

)2 φ2
k(x, ak)

nψn(x)
= op(1)
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Now, we treat the convergence (2). Indeed, we observe that

1

n

n∑
k=1

(
E(η2

nk
/℘k−1)

)
=

1

nψ2
n(x)

(
ψn(x)γ2

2

γ1α(1− α)

) n∑
k=1

E
[(
L2,k(τα(qα(x)))

−F x(τα(qα(x)))
)2

L2
1,k(x)/℘k−1

]
=

1

nψ2
n(x)

(
ψn(x)γ2

2

γ1α(1− α)

) n∑
k=1

[
E
(
L2

2,k(τα(qα(x)))L2
1,k(x)/℘k−1

)
−2F x(τα(qα(x)))E

(
L2,k(τα(qα(x)))L2

1,k(x)/℘k−1

)
+(F x(τα(qα(x))))2E

(
L2

1,k(x)/℘k−1

) ]
.

We put:

I1 =
n∑
k=1

E
(
L2

2,k(τα(qα(x)))L2
1,k(x)/℘k−1

)
I2 =

n∑
k=1

E
(
L2,k(τα(qα(x)))L2

1,k(x)/℘k−1

)
I3 =

n∑
k=1

E
(
L2

1,k(x)/℘k−1

)
.

We write:

I1 = F x(τα(qα(x)))
n∑
k=1

E
[
L2

1,k(x)/℘k−1

]
+

n∑
k=1

E
[
L2

2,k(τα(qα(x)))L2
1,k(x)/℘k−1

)
]

− F x(τα(qα(x)))
n∑
k=1

E
[
L2

1,k(x)/℘k−1

]
= F x(τα(qα(x)))

n∑
k=1

E
[
L2

1,k(x)/℘k−1

]
+

n∑
k=1

E
[
(E(L2

2,k(τα(qα(x)))/Xk)L
2
1,k(x))/℘k−1

)
]

− F x(τα(qα(x)))
n∑
k=1

E
[
L2

1,k(x)/℘k−1

]
≤

n∑
k=1

E
[
(E(L2

2,k(τα(qα(x)))/Xk)L
2
1,k(x))/℘k−1

)
]− F x(τα(qα(x)))

n∑
k=1

E
[
L2

1,k(x)/℘k−1

]
.
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Using the same argument as those used in proof of part (a), then we have:

1

nψn(x, ak)
I2 = ◦(1).

For I3, we use the same ideas as in Ferraty et al (2009) to get:

E
[
L2

1,k(x)/℘k−1

]
= L2

1(1)φk(x, ak)−
∫ 1

0

(L2
1(u))′φk(x, uak)du

and

E [L1,1(x)/℘k−1] = L1(1)φk(x, ak)−
∫ 1

0

(L1(u))′φk(x, uak)du

so under (A.1), we have:

1

nψn(x, ak)

n∑
k=1

E
[
L2

1,k(x)/℘k−1

]
=

L2
1(1)

nψn(x, ak)

n∑
k=1

φk(x, ak)

−
∫ 1

0

(L2
1(u))′

1

nψn(x, ak)

n∑
k=1

φk(x, uak)du

= L2
1(1)−

∫ 1

0

(L2
1(u))′βx(u)du+ op(1) = γ2 + op(1)

and
1

nψn(x, ak)
E [L1,1(x)/℘k−1] = γ1 + op(1)

we deduce that lim
n−→∞

1

n

n∑
k=1

E(η2
nk
/℘k−1) = 1 which complete the proof of part (a).

Proof of part (b) The lindeberg condition implies that

E
[
ξ2
nk
Iξnk>nε

]
≤ 4E

[
η2
nk
Iηnk>nε/2

]
.

Let a > 1 and b > 1 such that
1

a
+

1

b
= 1. Making use now the hölder and markov

inequalities, one can write for all ε > 0

E
[
η2
nk
Iηnk>nε/2

]
≤ E (ηnk)

2a

(nε/2)2a/b
.
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Taking C0 ∈ R∗+ and 2a = 2 + δ for some δ > 0, such that E
(
|Yk|2+δ

)
< ∞ and

E
(
|L2,k − F x|2+δ/Xk = u

)
= W 2+δ(u) is a continuous function, to get the following

4E
[
η2
nk
Iηnk>nε/2

]
≤ C0

(
ψn(x, ak)γ

2
1

γ2(α(1− α))

)(2+δ)
1

(ψn(x, ak))2+δ

[
(|L2,k − F x|2+δL2+δ

1,k (x))2+δ
]

≤ C0

(
ψn(x, ak)γ

2
1

γ2(α(1− α))

)(2+δ)
1

(ψn(x, ak))2+δ
E
[
E
[
|L2,k − F x|2+δL2+δ

1,k (x)/Xk

]]
≤ C0

(
ψn(x, ak)γ

2
1

γ2(α(1− α))

)(2+δ)
1

(ψn(x, ak))2+δ
E
[
L2+δ

1,k (x)W 2+δ(Xk)
]

≤ C0

(
ψn(x, ak)γ

2
1

γ2(α(1− α))

)(2+δ)
1

(ψn(x, ak))2+δ
E

[
L2+δ

1,k (x)|W 2+δ(Xk)−W 2+δ(x)|

+|W 2+δ(x)E(L2+δ
1,k (x))|

]

≤ C0

(
γ2

1

γ2(α(1− α))

)(2+δ) (
E(L2+δ

1,k (x))
(
|W 2+δ(x)|+ ◦(1)

))
.

Consequently
1

n

n∑
k=1

E
[
ξ2
nk
Iξnk>nε

]
−→ 0 as n −→ ∞ which completes the proof of

this lemma.

Proof of Lemma 2.4.2 Observe that:

F̂D(x)− 1 =
1

nψn(x, ak)

n∑
k=1

[
[L1,k(x)− E(L1,k(x)/℘k−1)] + [E(L1,k(x)/℘k−1)]− 1

]
=

1

nψn(x, ak)

n∑
k=1

[L1,k(x)− E(L1,k(x)/℘k−1)]︸ ︷︷ ︸
T1

+
1

nψn(x, ak)

n∑
k=1

[E(L1,k(x)/℘k−1)]− 1︸ ︷︷ ︸
T2

.

The proof of this lemma follows then if we can show that:

1. T1 = ◦(1) as n −→∞;

2. T2 −→ 0 in probability as n −→∞.
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For T2, under (A.1) and (A.3) we prove that:

1

nψn(x, ak)

n∑
k=1

[E(L1,k(x)/℘k−1)] = ◦(1) as n −→∞.

So, it is easily seen that

T2 −→ 0 in probability as n −→∞.

For the first term T1, observe that T1(x) =
n∑
k=1

Lnk(x) where {Lnk(x)} is a triangular

array of martingale differences with respect to the σ−field ℘k−1. Combining next the
Burkholder inequality (see P.Hall and C.Heyde 1980) and Jensen inequality (see Laib
and Louani 2011), we obtain for any ε > 0, there exists a constant C0 > 0 such that

P (|T1| > ε) ≤ C0

E
(
L2

1,1(x)
)

ε2n(ψn(x, ak))2
= ◦

(
1

ε2nψn(x)
+ ◦(1)

)
.

Since nψn(x) −→∞, we conclude then that T1(x) = ◦(1) in probability as n −→∞
which completes the proof of Lemma 2.4.2.

Proof of Lemma 2.4.3 We have

B̂n(x, τα(qα(x))) =
FN(x, τα(qα(x)))

FD(x, τα(qα(x)))
.

Thus, we write

|B̂n(x, τα(qα(x)))| =
1

n∑
k=1

E(L1,k(x)/℘k−1)

n∑
k=1

[
E [L1,k(x)E [L2,k(τα(qα(x)))/Bk−1] /℘k−1]

−F x(τα(qα(x)))E [L1,k(x)/℘k−1]
]

=
1

n∑
k=1

E(L1,k(x)/℘k−1)

n∑
k=1

[E [L1,k(x)E [L2,k(τα(qα(x)))/Xk] /℘k−1]

−F x(τα(qα(x)))E [L1,k(x)/℘k−1]].
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Where

|B̂n(x, τα(qα(x)))| ≤ 1
n∑
k=1

E(L1,k(x)/℘k−1)

n∑
k=1

E
[
L1,k(x)|E [L2,k(τα(qα(x)))/Xk]

−F x(τα(qα(x)))|/℘k−1

]
.

Next, an integration by parts and a change of variable allow to get:

E [L2,k(τα(qα(x)))/Xk] =

∫
R
L

(1)
2 (t)FXk(τα(qα(x))− bkt)dt.

Thus, we have

|E [L2,k(τα(qα(x)))/Xk]−F x(τα(qα(x)))| ≤
∫
R
L

(1)
2 (t)|FXk((τα(qα(x)))−bkt)−F x(τα(qα(x)))|dt

(2.4)
Under (A.2), we obtain that

IB(x,ak)(Xk)|E [L2,k(τα(qα(x)))/Xk]− F x(τα(qα(x)))| ≤ C

∫
R
L

(1)
2 (t)(aβ1k + |t|β2bβ2k )dt

(2.5)
and under (A.4), we prove easily that

1

n

n∑
k=1

E [L1,k(x)/℘k−1] = ◦(1). (2.6)

As a final step, combining the statements (2.5) and (2.6) and we achieve the proof of
our lemma.

Proof of Lemma 2.4.4 We put t = τα(qα(x)) and we write

R̂n(x, t) = −
(
B̂n(x, t)− F x(t)

)(
F̂N(x, t)− FN(x, t)

)
= −

(
FN(x, t)− F x(t)FD(x, t)

FD(x, t)

)(
F̂N(x, t)− FN(x, t)

)
.

Clearly, it is suffices to show that:
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1.
(
FN(x, t)− F x(t)FD(x, t)

FD(x, t)

)
= ◦(1);

2.
(
F̂N(x, t)− FN(x, t)

)
= ◦(1).

The proof of the first part uses arguments similar to those used in the proof of Lemma
2.4.3. While the second part will be established if these two following insertions are
checked

(i) E
(
F̂N(x, t)− FN(x, t)

)
= 0;

(ii) var
(
F̂N(x, t)− FN(x, t)

)
−→ 0 as n −→∞.

For all k = 1, · · · , n, we put

4k(x, t) =
1

nψn(x, ak)
[L1,k(x)L2,k(t)− E [L1,k(x)L2,k(t)/℘k−1]]

where 4k(x, t) is a triangular array of martingale differences according to the σ−
fields ℘k−1. Next, by (A.1)(ii) and (A.4) we obtain

F̂N(x, t)− FN(x, t) =
n∑
k=1

4k(x, t).

By definition of 4k(x, t), E(4k(x, t)) = 0. For (ii), we have by Burkholder’s inequality

E

[
n∑
k=1

(4k(x, t))

]2

≤
n∑
k=1

E
[
42
k(x, t)

]
.

Furthermore, by Jensen inequality we have:

E [42
k(x, t)] ≤

1

(nψn(x, ak))2
E
[
L2

1,k(x)L2
2,k(t)/℘k−1

]
≤ 1

(nψn(x, ak))2
E
[
L2

1,k(x)/℘k−1

]
≤ 1

(nψn(x, ak))2
P (Xk ∈ B(x, ak)/℘k−1)

≤ 1

(nψn(x, ak))2
φk(x, ak).
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Likewise, we get

n∑
k=1

E
[
42
k(x, t)

]
≤

n∑
k=1

φk(x, ak)

n2ψ2
n(x, ak)

.

Thence, since (A.1)(ii) is verified, we deduce that

var
(
F̂N(x, t)− FN(x, t)

)
−→ 0 as n −→∞.
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Abstract In this chapter, as an extension of some recent works that are essential
references for this current contribution, we provide a recursive nonparametric approach
to estimate the conditional mode function Θ(x) of the conditional density of a scalar
positive random variable Z given an Hilbertian explanatory process X = x, denoted by
ξx(z), based on the randomly right-censorship model which is the new and main factor
here. Our nonparametric model takes into account the fact that the response variable
Z referred as a survival time is right-censored by another variable W independent of
(Z,X). Afterwards, we establish, under stationary and ergodic conditions, by using
an adaptive exponential inequality to this context, some theoretical properties of the
resulting estimator including the uniform almost sure convergence (with rates), after
establishing the pointwise ones. Finally, an application based on simulated data is
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conducted to illustrate our results.

Key words and phrases Recursive nonparametric estimate, Conditional mode,
Right-censoring, Functional data, Ergodic process, Almost sure convergence, Martingale
differences.

3.1 Introduction

The problem of modeling and then estimating the relationship between two variables,
a covariate X and a real survival response variable Z which is assumed to be affected
by a right-censorship phenomenon, has taken great attention in statistics and this
has required the development of some statistical methods in this context. A quick
look at the nonparametric literature shows that studying conditional models in the
prevalence of incomplete information occupies an important space in major fields of
application such as medicine, industrial sciences, sociology and others; and it has
recorded a significant footprint in the last recent decade. The emergence of such
incomplete samples is imperative in most experiments of a statistical nature. The
right censorship is a key analytical problem, is the most popular type of incomplete
data and is the result of competing failure modes. This is the case in survival studies,
for example, when keeping track of the influence of a treatment on chronic diseases
(alcoholic disease, diabetic, cancer,. . . ). Two cases are then possible: when the patient
is lost from the follow-up or withdraws or rather the study ends before the event
has occurred. The use of such a kind of data is advisable, as there are, in reality,
companies and institutions that have the task of processing the data before making it
available to the public.

The core focus in this type of problems has always been to obtain results that
are less sensitive to outliers. The conditional mode Θ(x) = arg max

−∞<y<∞
ξx(y) is

one of the appropriate and widely studied models in the right-censoring case which
provides a robust statistical modeling. Literally, a great deal of recent works provides a
comprehensive look on this topic, within the use of uncensored observations. This has
been recorded for the estimation of the conditional mode function for both i.i.d. and
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α−mixing cases, including Dabo-Niang et al. (2014)[9], Didi and Louani (2014)[12]
for the finite dimension and Dabo-Niang and Laksaci (2007)[8], Ezzahrioui and O.Saïd
(2008(a) [13], 2010[14]), Ferraty et al. (2010)[17], Attaoui et al. (2011)[2] and Ling et
al. (2016)[27] for the infinite dimension.

For the other case, when the response variable is right-censored, a specific method-
ology for this type of data is essential. This problem has been developed by O.Saïd
and Cai (2005)[30] who have used a new smooth kernel estimator of the conditional
mode function and have established the uniform strong consistency with the rates. A
similar approach is discussed by Khardani et al. (2010)[20] who have investigated some
asymptotic properties including the almost sure convergence as well as the asymptotic
normality. On the other hand and quite recently, under the α-mixing condition,
Khardani and Thiam (2016)[23] have proved the almost complete convergence when
the process takes values in some functional space by using the Fuk-Nagaev inequality
to get such results. In such a stationary mixing context, Baek in collaboration with
Li-Niu (2016)[3] has proposed an estimator of this conditional model for the random
left truncated and right censored (LTRC) type consisting of three components Y, T
and W. He has obtained over a compact set its uniform strong consistency with rates
and its asymptotic normality, and this expresses several ideas close to our approach.
According to this framework, and despite the already obtained outcomes, most of the
existing studies treat the finite case where the explanatory process is a scalar or a
vector (Rp, p ≥ 1).

In the functional data framework, no results have been recorded for the recursive
nonparametric estimation combining incomplete (i.e censored) and ergodic data. The
main idea is inspired from the previous study of Khardani and Semmar (2014)[22],
which is considered as the first and most recent work that treats a recursive estimate
for censored observations. Our principal goal here is to prove, under the condition of
ergodicity and from such an incomplete data, that the proposed estimate is uniformly
consistent by adopting the recursive kernel version. Indeed, it is essential to note
that our investigation is an extension of the recent result developed in Ardjoun et al.
(2016)[1] from a general setting (the case where the response of interest is complete)
to the case where such a variable is subject to random right-censoring. According to
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Ardjoun et al. (2016)[1], the nonparametric recursive kernel estimate of the conditional
density is given by

ξ
x

n(y) =

n∑
k=1

b−1
k L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k (y − Yk)

)
n∑
k=1

L1

(
a−1
k dH(x,Xk)

) (3.1)

and therefore
Θn(x) = arg max

y∈R
ξ
x

n(y) (3.2)

where L1 and L2 are two kernels, ak (resp. bk) is a sequence of positive real numbers
tending to 0 as n→∞.

In an effort to arrange the remaining paper’s ideas, Section 3.2 sets a description of
the proposed model as well as its estimator in the context of right-censored data. The
necessary assumptions with a brief discussion are also given in Section 3.3. Section 3.4
states the pointwise and uniform consistencies of this estimator with some particular
cases which provide a better coverage of our study. In Section 3.6, a small numerical
study highlights this factor’s effects on the behavior of the estimator, and gives more
efficiency to our results from a practical point of view. In terms of calculation, (under
some additional conditions) there is no much difference between the modified estimator
even by taking into account the "statistically right-censored" data and the above
estimate, and this is detailed in Section 3.5 to make reading easier.

3.2 Construction of the estimator under random-

censoring scheme

We consider on the probability space (Ω,A,P) a nonnegative stationary and er-
godic random sequence Γk = {(Xk, Zk), k = 1, . . . , n} with a common joint probability
distribution function ϕ(X,Z). We also assume that this observed sequence (Xk, Zk)

distributed as the couple (X,Z) such that Xk takes values in an infinite dimensional
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space H (whose distance is defined by dH(x,Xk) = ‖x−Xk‖), whereas Zk represents
a real-valued random variable.

3.2.1 Randomly censored framework

First of all, under the randomly right-censored (RRC) model, there are some
basic concepts and formal vocabularies which are fundamentally different from those
usually encountered in statistics that we must highlight to better understand the
structure of these data. For a random sample of n subjects, we don’t observe the
unknown variable Zk which interests us, but we observe the triplet of data incorporating
{(Xk, Yk,∆k), k = 1, . . . , n}. Therefore, the time actually observed is defined as a
minimum of two deadlines, such that

{
Yk := Zk ∧Wk

∆k = I[Zk≤Wk]

k ∈ {1, . . . , n}

where (Zk)1≤k≤n represents a sample of lifetime random variables under study,
(Wk)1≤k≤n a sample of right censoring times, with the associated unknown continuous

distribution functions (f.d.r.) FZ and GW respectively, ∆k the censoring status mark-
ing either occurrence or censorship (Bernoulli r.v, in other references) and which is
worth 0 if the survival time is right-censored (Zk > Wk) and 1 otherwise (Zk ≤ Wk).

Here, we can add that in case of an uncensored framework, we have Yk = Zk and
∆k = 1.

However, in most cases, the problem is that the used survival functions FZ and

G
W remain generally unknown. This requires a modification of the latter two taking

into account the presence of censoring, by replacing them with their non-parametric
consistent Kaplan-Meier estimates (KME also called product-limit estimates) intro-
duced in [19] and which generalize the empirical ones to the censored case, respectively

F
Z

n (z) = 1− FZ
n (z) =


0 ; z ≥ Y(n)
n∏
k=1

(
1−

∆(k)

n− k + 1

)I
(Y(k)≤z)

; z < Y(n)
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and

G
W

n (z) = 1−GW
n (z) =


0 ; z ≥ Y(n)
n∏
k=1

(
1−

1−∆(k)

n− k + 1

)I
(Y(k)≤z)

; z < Y(n)

Denoting Y(1) < Y(2) < · · · < Y(n) the order statistics of (Yk)k∈{1,...,n}, along with
their corresponding concomitant ∆(k). Under certain regularity conditions, and as

a basic result, this latter estimator converges almost surely and uniformly to GW

(see for instance Kohler et al (2002)[24]). In what follows, the generating process
(Xk, Zk)k∈{1,...,n} assumed for the right-censored structure satisfies the ergodic property.
The data which achieve this property are abundant.

3.2.2 Estimating conditional mode function from ergodic cen-

sored data using recursive method

Given the covariate X = x, we assume that the conditional distribution function
of Z exists and is often expressed as

FZ/X(z/x) = E
[
I(Z≤z)/X = x

]
, ∀z ∈ R.

In this situation, if the purpose is the conditional mode which estimator is defined as

a random variable Θ̂n(x) maximizing ξ̂xn(z), then, one wants to set for any fixed x, a
continuously differentiable real function ξx(z)

ξx(z) =
∂FZ/X
∂z

(z/x).

Thus, we suppose in the framework of ergodic rightly-censored data the uniqueness of

Θ̂n(x) on a compact of R, such that

Θ̂n(x) = arg max
z∈R

ξ̂xn(z) (3.3)

Similar to the construction of the above estimator (3.1), and on the same way of
Carbonez et al. (1995)[6] and more recently Khardani and Semmar (2014)[22], one can
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define, given X = x, the new estimator ξ̂xn(z) based on the recursive kernel technique
of the conditional density function of Z for censored data as follow

ξ̂xn(z) =
ϕ̂n(x, z)

γ̂n(x)
=

n∑
k=1

∆k

bkG
W

n (Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k (z − Yk)

)
n∑
k=1

L1

(
a−1
k dH(x,Xk)

) , (3.4)

where

ϕ̂n(x, z) = (χn(x, ak))
−1

n∑
k=1

∆k

bkG
W

n (Yk)
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k (z − Yk)

)
.

Here, ϕ(X,Z)(·, ·) is assumed to be continuous and bounded and γX(·) is the marginal

density of the explicative variable X which verifies γX(x) > µ for all x ∈ H and
µ > 0. According to our knowledge, this kind of estimate has been extensively studied
over the past few years in many papers, combining censored and finite-dimensional
processes.

3.3 Main assumptions

To prove that our estimate is strongly consistent, we have chosen to use the key
notations often introduced in the literature, ℘k the σ−field generated by {(Xs, Zs); 1 ≤
s < k} and Bk the one generated by {(Xs, Zs), (Xr), 1 ≤ s < k; k ≤ r ≤ k + 1}.
On the other hand, let S and I be respectively two compact sets of H and R. We

will set also TFZ := sup{z ∈ R : F
Z

(z) > 0} < ∞ (TFZ := sup{z ∈ R : F
Z

(z) < 1})

and TGW := sup{z ∈ R : G
W

(z) > 0} the support right endpoints with clarification

F
Z

(z) = P(Z > z) and GW
(z) = P(W > z). Moreover, to simplify the presentation of

our main results and their proofs, we need to set the next regularity assumptions.

(A.1) On the hilbertian variable: there is a ball B of radius h > 0 centered at x such
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that

(i) ∀x ∈ S, 0 < φx(h) ≤ P[X ∈ B(x, h)] and φx(h)→ 0 as h→ 0;

(ii) A deterministic function φk(x, .) exists for all k ∈ {1, . . . , n} such that
P[dH(x,Xk) ≤ h/℘k−1] ≤ φk(x, h) where lim

h→0
φk(x, h) = 0 a.s;

(iii) (χn(x, hk))
−1

n∑
k=1

P[Xk ∈ B(x, hk)/℘k−1]→ 1, almost surely as n→∞.

(A.2) On the nonparametric model: ∀(z1, z2) ∈ I2, ∀(x1, x2) ∈ N 2
x , ξ

x(z) satisfies the
lipschitz condition

|ξx1(z1)− ξx2(z2)| ≤ C1 (dν1H (x1, x2) + |z1 − z2|ν2) , with C1 > 0, ν1 > 0, ν2 > 0.

(A.3) L1 is a measurable non-negative continuous bounded function on its compact
support (0, 1). Also, it is supposed to be Hölderian of order β1 for β1 > 0.

(A.4) L2 is an increasing, continuous and bounded function satisfying:

(i) ∀(z1, z2) ∈ I2, |L2(z1)− L2(z2)| ≤ C2|z1 − z2| ,
∫
L2(h)dh = 1

and

∫
R
|h|ν2L2(h)dh <∞;

(ii) For any p ≥ 2 and j = 0, 1; there exists a continuous bounded function lp(·)
in the neighborhood of x such that E

[(
L

(j)
2

(
b−1
k (z − Zk)

))p
/Xk

]
< lp(x) <∞.
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(A.5) On the bandwidths: ak and bk satisfy the following conditions:

(i) lim
n→∞

an = lim
n→∞

bn = 0 and lim
n→∞

nrbn =∞ for any r > 0;

(ii) lim
n→∞

log n

bnχn(x, an)
= 0 and lim

n→∞

log n

χn(x, an)
= 0;

(iii) χn(x, an)→∞ such that χn(x, an) = nψn(x, an) =
n∑
k=1

φk(x, ak)

with ψn(x, an) = E
[
L1

(
a−1
k dH(x,X1)

)]
.

(A.6)

(i) (Wn)n≥1 and the sequence (Zn, Xn)n≥1 are independent and

I[Zk≤Wk]Φ(Yk) = I[Zk≤Wk]Φ(Zk);

(ii) TFZ ≤ TGW with G
W

(TFZ ) > 0.

Comments on the assumptions The above conditions are not included in vain;
they are important to prove the theorems below and are arranged along the same
framework of the complete recursive estimation. From a theoretical point of view,
the ergodicity context in the functional framework requires us to set the unchanged
assumption (A.1) to guarantee the flexibility of our studied model (see Laïb and
Louani (2011)[26] or Benziadi et al. (2016)[4]) and to show that the distribution of
the process X is expressed in terms of small ball probabilities.

The condition (A.2) is formally correct and implies that the function ξx(z), with
respect to the random elements x and z respectively, satisfies the Lipschitz condition.
In most cases, the use of such a condition marks an important advantage to prove the
almost sure consistency of the estimator.

Usually, in the non censoring recursive kernel estimation, the regularity-type
hypotheses (A.3) and (A.4) on the kernels L1 and L2 are used extensively to specify
the convergence rates of the estimate. These two conditions are essentially used for
the boundedness and they often follow the condition (A.2). The smoothness condition
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(A.5) concerning the bandwidths an and bn is stated in order to balance bias and
variance terms and it characterizes the functional space of our model.

Let us finally point out, as it is known in this type of variables, that a strong
additional condition which plays a crucial role to derive the results given for censored
variables is stated in (A.6)(i) (see for instance Kohler et al. (2002)[24] for the non-
functional case). It is considered as a key hypothesis and the primary engine for
classical survival analysis models. Nearly all usual studies that take censorship into
consideration assume almost always the independence of (X,Z) and the censorship
variable W so as to manage the problem of the non-identifiability of the model that
can appear (see also Guessoum and O. Saïd (2008)[18]). Otherwise, if this assumption
is not verified, biased results will be obtained. In other hand, the fact that the
observations are incomplete leads to a loss of information. Thus, it is not clear if we
could deduce the law of Z and W by knowing the law of the elementary data. So as a
solution to this problem, the independence in (A.6)(ii) of the latter random variables
between them prove that the law of Z is identifiable from the couple (Y,∆).

3.4 Some asymptotic results

3.4.1 Pointwise convergence with rates

To reduce the complication in analyzing such data, we assume that W is inde-
pendent of the process Γ and we start by investigating first the pointwise almost sure
convergence with rates of the conditional density; this will be useful to derive the

asymptotic behavior of the conditional mode function estimate Θ̂n(x) for censored
data as stated in the following

Proposition 3.4.1. Suppose that the assumptions (A.1)-(A.6) hold true. For n large
enough, if χn(x, an) −→∞ as n→∞, then, we have

sup
z∈I

∣∣∣ξ̂xn(z)− ξx(z)
∣∣∣ a.s.=O

{
(aν1n + bν2n ) +

(
log n

bnχn(x, an)

)1/2
}
.



3.4 Some asymptotic results 81

Theorem 3.4.1. Maintaining the same assumptions used in Proposition 3.4.1, we
have ∣∣∣Θ̂n(x)−Θ(x)

∣∣∣ a.s.=O

{(
aν1/2n + bν2/2n

)
+

(
log n

bnχn(x, an)

)1/4
}
.

Remark 3.4.1. If censoring does not occur i.e P (W = +∞) = 1, our results can be
seen as extensions of what already exists in the literature

1. Classical estimation

• Keeping in mind the functional data and by introducing another topological
structure upon Kolmogorov’s ε-entropy, the uniform almost complete con-
vergence with rates of the conditional mode estimator is proved by Ferraty
et al. (2010)[17] and presented for some integer j > 1 as

sup
x∈SF
|Θ̂(x)−Θ(x)|j = O(hb1K) +O(hb2H) +Oa.co.



√√√√√ψSF

(
log n

n

)
n1−γφ(hK)

 .

• In the stationary and ergodic setting, for a real continuous time process
(Xt, Yt)t∈R+ , Didi and Louani (2014)[12] establish consistency results of the
kernel estimator of the conditional mode using an extension of Bernstein
inequality to the case of ergodic variables. The rate of convergence is given
by the following

sup
x∈C
|ΘT (x)−Θ(x)| a.s.=O(a

β/2
T +a

ν/2
T )+O

{(
log T

TadT

)1/4
}

+O

{(
log T

Tad+1
T

)1/4
}

2. Recursive estimation
This is the case realized in Ardjoun et al’s paper (2016)[1] in order to demonstrate
that the functional modal regression defined in (3.2) is consistent under ergodic
dependence. Roughly the same conditions are used in this complete data case to
obtain rates identical to that of Theorem 3.4.1.
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3.4.2 Uniform convergence with rates

Under the previous conditions, we present in this subsection the almost sure
convergence with rates of the resulting model uniformly on a fixed compact sets of
H×R dealing with stationary ergodic random variables. Complementary assumptions
are therefore needed which imply the uniform uniqueness of the conditional mode as
mentioned in Ould Saïd and Cai (2005)[30].

(A.7) For any ε > 0 and any function r(x), there exists a ς > 0 such that

sup
x∈S
|Θ(x)− r(x)| ≥ ε⇒ sup

x∈S
|ξx(Θ(x))− ξx(r(x))| ≥ ς.

(A.8) inf
x∈S

γX(x) > 0.

Note that the other conditions used for the uniform consistency are the same as for
the pointwise case. As a preliminary result, we have

Proposition 3.4.2. Assume that the assumptions (A.1)-(A.6) are verified, then

sup
x∈S

sup
z∈I

∣∣∣ξ̂xn(z)− ξx(z)
∣∣∣ a.s.=O

{
(aν1n + bν2n ) +

(
log n

bnχn(x, an)

)1/2
}
, as n→∞.

Then, the uniform almost sure convergence without/ with rates of Θ̂n(x) is provided
in the following theorem

Theorem 3.4.2. Under the conditions of Proposition 3.4.2 and if (A.7), (A.8) hold,
we have for all fixed x of S

(i)

sup
x∈S
|Θ̂n(x)−Θ(x)| → 0 almost surely as n→∞.

(ii)

sup
x∈S

∣∣∣Θ̂n(x)−Θ(x)
∣∣∣ a.s.=O

{(
aν1/2n + bν2/2n

)
+

(
log n

bnχn(x, an)

)1/4
}
.
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Remark 3.4.2. To remind the reader and to provide a clearer picture of our study,
we present the theoretical results linked with the un-functional case (when H = R and
more generally Rp)

1. Classical case
Using some different assumptions, Khardani et al. (2010)[20] establish the
uniform almost sure consistency of the classical kernel estimator of the conditional
mode function under the i.i.d. random model. What differs from the studied
functional case in this paper is that we do not need to impose hypotheses on the
probability of small balls and we summarize the condition (A.1) for p ≥ 1 to

φx(h) = hpf(x) + O(hp) as h → 0 and P[dH(x,Xk) ≤ h/℘k−1] = f
℘k−1

k (x)hp +

O(hp), such that

sup
x∈I

∣∣∣Θ̂n(x)−Θ(x)
∣∣∣ a.s.=O

{
max

((
log n

nhp+1
n

)1/4

, hn

)}
, as n→∞.

2. Recursive case
ξ̂xn(z) reduces to the recursive kernel estimator of the conditional density previ-
ously studied by Khardani and Semmar (2014)[22] for the i.i.d. observations.
Noting that they achieved under the independence condition between (Wk)k and
(Xk, Zk)k the rate of uniform strong consistency, using the same bandwidth pa-
rameter hk for both kernels, and thinner arguments for simplification. These
results were extended to the strong mixing data case by the same authors.

3.5 Proofs of the theoretical results

Right censoring being one novelty change related to the estimator, its influence
appears in the first part of these proofs and for the sake of shortness we set the
following notation throughout the rest of this section

Z̃k =
∆kL2

(
b−1
k (z − Yk)

)
G
W

(Yk)
.
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It is worth being noted that the tools used to demonstrate the strong consistency of
this estimate are analogous to those relating to the recursive estimate without the
term of censorship. For that, we start by introducing the following decomposition so
that our elements are well defined

ξ̂xn(z)− ξx(z) = ξ̂xn(z)− ξ̃xn(z) + ξ̃xn(z)− ξx(z),

and as is common in most of the reference papers in terms of censored processes, we
have to set a "pseudo-estimator" of ξx(z) for a continuous function GW (.) presented
as follow

ξ̃xn(z) :=
ϕ̃n(x, z)

γ̃n(x)
=

n∑
k=1

Z̃k
bk
L1

(
a−1
k dH(x,Xk)

)
n∑
k=1

L1

(
a−1
k dH(x,Xk)

) , (3.5)

with

ϕ̃n(x, z) := (χn(x, ak))
−1

n∑
k=1

Z̃k
bk
L1

(
a−1
k dH(x,Xk)

)
and

γ̃n(x) := (χn(x, ak))
−1

n∑
k=1

L1

(
a−1
k dH(x,Xk)

)
respectively.

In this proof, we will clearly rely on the following decomposition

ξ̃xn(z)− ξx(z)−Bn(x, z) =
1

γ̃n(x)
{Qn(x, z)−Bn(x, z)[γ̃n(x)− γ̈n(x)]} (3.6)

where the two main terms are expressed for all couple (x, z) ∈ S × I by

Qn(x, z) = [ϕ̃n(x, z)− ϕ̈n(x, z)]− ξx(z)[γ̃n(x)− γ̈n(x)], (3.7)

Bn(x, z) =
ϕ̈n(x, z)

γ̈n(x)
− ξx(z). (3.8)
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3.5.1 Proof of Theorem 3.4.1

Obviously, the proof of Theorem 3.4.1 is a consequence of Proposition 3.4.1 and that
is through

∑
n>1

P
[∣∣∣Θ̂n(x)−Θ(x)

∣∣∣ > ε
]
≤
∑
n>1

P
[
sup
z∈I

∣∣∣ξ̂xn(z)− ξx(z)
∣∣∣ > β

]
,

which is based primarily on the decomposition (3.6), valid for any z ∈ I

sup
z∈I
|ξ̃xn(z)− ξx(z)| ≤ sup

z∈I
|Bn(x, z)|+ 1

γ̃n(x)

{
sup
z∈I
|ϕ̃n(x, z)− ϕ̈n(x, z)|

+

(
µ−1λ+ sup

z∈I
|Bn(x, z)|

)
|γ̃n(x)− γ̈n(x)|

}
.

According to that, other functions must be defined

ϕ̈n(x, z) := (χn(x, ak))
−1

n∑
k=1

E

[
Z̃k
bk
L1

(
a−1
k dH(x,Xk)

)
/℘k−1

]
(3.9)

and

γ̈n(x) := (χn(x, ak))
−1

n∑
k=1

E
[
L1

(
a−1
k dH(x,Xk)

)
/℘k−1

]
. (3.10)

Then, the proof of Theorem 3.4.1 is a direct result of Lemmas 3.5.1-3.5.3 below
extending Ardjoun et al’s (2016)[1] results to the censored setting

Lemma 3.5.1. Under Assumptions (A.1)-(A.3), (A.5) and (A.6), for n → ∞ we
have

sup
z∈I
|Bn(x, z)| = O {aν1n + bν2n } .

Lemma 3.5.2. Under Assumptions (A.1) and (A.3)-(A.6), for n→∞ we have

sup
z∈I
|ϕ̃n(x, z)− ϕ̈n(x, z)| = O

{(
log n

bnχn(x, an)

)1/2
}

a.s.
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Lemma 3.5.3. Under Assumptions (A.1) and (A.3), for n→∞ we have

γ̃n(x)− 1 = O

{(
log n

χn(x, an)

)1/2
}

a.s.

3.5.2 Proof of Theorem 3.4.2

(i) The key argument in this proof comes from the definition (3.3) of the conditional

mode function Θ̂n(x). In addition, by using the inequality expressed for n large enough
as follows

sup
x∈S

∣∣∣ξx(Θ̂n(x))− ξx(Θ(x))
∣∣∣ ≤ 2 sup

x∈S
sup
z∈I

∣∣∣ξx(z)− ξ̂xn(z)
∣∣∣ (3.11)

which details given in the article by Didi and Louani (2014)[12]. Next, by the fact

that sup
x∈S

sup
z∈I

∣∣∣ξx(z)− ξ̂xn(z)
∣∣∣ converges almost surely to 0 as n→∞ (we can go back

to Ezzahrioui and O.Saïd (2010)[14] or others) the proof of this part has therefore
been verified.

Fortunately, to prove (ii) of Theorem 3.4.2, it is enough to study the uniform

almost sure convergence of ξ̂xn(z) shown in Proposition 3.4.2, from which we deduce

the asymptotic results available for the estimator Θ̂n(x), such that

sup
x∈S

sup
z∈I

∣∣∣ξ̂xn(z)− ξx(z)
∣∣∣ = sup

x∈S
sup
z∈I

∣∣∣ξ̂xn(z)− ξ̃xn(z)
∣∣∣+ sup

x∈S
sup
z∈I

∣∣∣ξ̃xn(z)− ξx(z)
∣∣∣

Then, for the second term of the equality, we use the boundedness of the joint density
ϕ described above and the fact that γ(x) > µ to present in a simpler form the
decomposition below for any (x, z) ∈ S × I

sup
x∈S

sup
z∈I
|ξ̃xn(z)− ξx(z)| ≤ sup

x∈S
sup
z∈I
|Bn(x, z)|+ 1

inf
x∈S

γ̃n(x)

{
sup
x∈S

sup
z∈I
|ϕ̃n(x, z)− ϕ̈n(x, z)|

+

(
µ−1λ+ sup

x∈S
sup
z∈I
|Bn(x, z)|

)
sup
x∈S
|γ̃n(x)− γ̈n(x)|

}
.

To accomplish the proof of Theorem 3.4.2, we put the following auxiliary lemmas
which correspond to the uniform versions of Lemmas 3.5.1-3.5.3
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Lemma 3.5.4. Under the same assumptions as those of Lemma 3.5.1, we have

sup
x∈S

sup
z∈I
|Bn(x, z)| = O {aν1n + bν2n } .

Lemma 3.5.5. Assume that (A.1)-(A.6) and (A.7) hold true, for any x ∈ S, we have

∑
n≥1

P
{

sup
x∈S

sup
z∈I
|ϕ̃n(x, z)− ϕ̈n(x, z)| > η

}
<∞ a.s.

Lemma 3.5.6. Assume that (A.1) and (A.3)-(A.4) hold, for any x ∈ S, we have

∑
n≥1

P
{

sup
x∈S
|γ̃n(x)− γ̈n(x)| > ς

}
<∞ a.s.

Lemma 3.5.7. Under Assumptions (A.1)-(A.7), then for n large enough, we are able
to get

P

{
sup
x∈S

sup
z∈I

∣∣∣ξ̂xn(z)− ξ̃xn(z)
∣∣∣ = Oa.s.

((
log2 n

n

)1/2
)}

= 1.

3.6 Applications on simulated data

A simple computational study is realized in this short section in order to assess and
compare the performance of the new proposed recursive kernel conditional mode

function estimator Θ̂n(x) when the data are right-censored and ergodic as defined
in (3.3) with that given in (3.2). However, compared to the classical estimations,
the effectiveness of recursive methods on simulated data is already confirmed in a
number of recent numerical studies (Khardani and Semmar (2014)[22], Ardjoun et al.
(2016)[1], Benziadi et al. (2016)[4] and others) comparing several conditional models.

We implement here two separate algorithms: as a first step, let us consider for
k = 1, . . . , n the classical regression model Yk = R(Xk) + εk in absence of censored
data and using the R-routine simul.far to generate an n-sample of functional autore-
gressive covariate {(Xk(t)), t ∈ [0, 1], k = 1, . . . , n} (this specimen is used for the two
methods). Figure 3.1 shows the curves Xk(t), the time is discretized into 50 points.
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Figure 3.1: A sample of simulated curves of {Xk(t), t ∈ [0, 1]}.

On the other hand, we try to test the effect of the (randomly-right) censored
mechanism (Xk, Yk,∆k)k≥1 on the consistency of our estimator when the data are
simultaneously functional and ergodic, through variable parameters that include both
various observed sample sizes n=200, 400 and 600 and censoring percentages CR=0.2,
0.4 and 0.6. For k = 1, . . . , n, we also need to simulate the censoring variables (Wk)k

through an exponential distribution of parameter λ = 0.5, which values are chosen
according to the desired percentages of censored observations. Moreover, we simulate
the censored regression model Zk = R(Xk) + εk in order to deduce Yk = min(Zk,Wk),

the censoring indicator ∆k = I[Zk≤Wk] and the Kaplan-Meier estimator of the survival
function which curve is plotted in Figure 3.2. For both simulations, we take the same

operator R(Xk) =

∫ 1

0

exp(Xk(t))dt with the errors εk which are independent of Xk

and are generated according to a Gaussian distribution N (0, 1), without forgetting to
highlight that our processes verify the required condition (ergodicity). Throughout
the experiences, we choose to use the standard quadratic kernels and the semi-metric
"deriv" in H. Our original data of sizes n are divided into two subsets: a training
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Figure 3.2: Kaplan-Meier curve.

sample I to build the functional recursive estimator of Θ(x) for both complete and
censored cases and a testing sample J containing the last 50 observations from the
total sample size n. Thence, the accuracy of the both estimators of the conditional
mode is compared according to the MSE (Mean Squared Error) criterion:

The case of complete data

MSE(COMPLETE) =
1

n

n∑
k=1

(
Θn(Xk)−Θ(Xk)

)2

The case of censored data

MSE(CENSORED) =
1

n

n∑
k=1

(
Θ̂n(Xk)−Θ(Xk)

)2

The box-plot of the mean squared errors obtained by both cases considering various
CR is then illustrated in Figure 3.3. Whereas, the obtained results under the randomly
right-censorship for various sample sizes n are summarized in Table 3.1 below
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Figure 3.3: MSE comparison for different censoring rates considered: CR=0 (non
censoring), CR=0.2, 0.4 and 0.6.

MSE(Complete Data) MSE(Censored Data)

n CR=0 CR=0.2 CR=0.4 CR=0.6

n = 200 1.3222 1.3402 1.4297 1.5327

n = 400 1.1493 1.1625 1.2524 1.3549

n = 600 0.8501 0.8410 0.9473 1.0485

Table 3.1: the MSE-Results

Conclusion and comments: Whoever reads the results obtained in Table 3.1 can
observe that the new estimator Θ̂ that includes censored data performs slightly less

than Θ, when the percentage of censoring rates (CR) increases gradually (from 0.2 to
0.6); the quality of the proposed estimator is affected by the prevalence of censoring.
There is an obvious influence of this factor on the performance of the estimate and
this can also be shown through the graph in Figure 3.3. Moreover, this comparison
shows that even in the presence of this data, when the sample size n gets larger (from
200 to 600), the decrease in MSE is noticeable and thus, as expected, the prediction
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accuracy of the conditional mode increases. This is what we call the sample size effect.

3.7 Appendix

Some necessary technical lemmas which have been used in the proofs of the asymp-
totic results (pointwise and uniform convergence) are mentioned in this section. To
control the estimation based on functional ergodic data, we should use the following
version of exponential inequality which is quoted in Lemma 3.7.1 (see Laib and Louani
(2011)[26]) for partial sums of unbounded martingale differences.

Lemma 3.7.1. Let (Zn)n≥1 be a sequence of real martingale differences with respect to
the sequence of σ− fields ℘n = σ(Z1, Z2, . . . , Zn)n≥1 generated by the random variables

Z1, Z2, . . . , Zn. Set Sn =
n∑
k=1

Zk. For any p ≥ 2 and for any n ≥ 1, assume that there

exist some nonnegative constants C and dn such that

E(Zp
n/℘n−1) ≤ Cp−2p!d2

n almost surely. (3.12)

Then, for any ε > 0, we have

P(|Sn| > ε) ≤ 2 exp

(
− ε2

2(Dn + Cε)

)
where Dn =

n∑
k=1

d2
k.

Lemma 3.7.2. Assume that conditions (A.1), (A.3) and (A.5)(ii)-(iii) are verified.
Then, for any x ∈ H, we have

(i) γ̃n(x)− γ̈n(x) = Oa.s.

{(
log n

(χn(x, an))

)1/2
}
,

(ii) γ̈n(x)→ 1 a.s. as n→∞,

(iii) ∃δ > 0,
∑
n≥1

P{γ̃n(x) < δ} <∞.

The proof of these insertions may be found in Laib and Louani (2010)[25].
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Proof of Lemma 3.5.1

We first remark that for fixed (x, z), n, and from the expression (3.8), the bias term
can be expressed as

Bn(x, z) =
ϕ̈n(x, z)

γ̈n(x)
− ξx(z) =

B̃n(x, z)

γ̈n(x)
. (3.13)

Using for all 1 ≤ k ≤ n, the condition (A.6) and a double conditioning successively
with respect to the δ-field Bk−1 and Zk. Thus, under the ergodicity of the random
variables and the conditional expectation properties, we can write the following

E[Z̃k/℘k−1] = E

[
E

(
∆kL2

(
b−1
k (z − Yk)

)
G
W

(Yk)
/Bk−1, Zk

)
/℘k−1

]

= E

[
E

(
∆kL2

(
b−1
k (z − Zk)

)
G
W

(Zk)
/Xk, Zk

)
/℘k−1

]

= E

[
L2

(
b−1
k (z − Zk)

)
G
W

(Zk)
E
[
I(Zk≤Wk)/Xk, Zk

]
/℘k−1

]
= E

[
L2

(
b−1
k (z − Zk)

)
/℘k−1

]
(3.14)

which leads to

|ϕ̈n(x, z)− ξx(z)γ̈n(x)| ≤ 1

χn(x, ak)

n∑
k=1

E
[
L1

(
a−1
k dH(x,Xk)

)
=
∣∣E (b−1

k L2

(
b−1
k (z − Zk)

)
/Xk

)
− ξx(z)

∣∣ /℘k−1

]
by a simple change of variable h =

(
b−1
k (z − u)

)
, we obtain

b−1
k E

[
L2

(
b−1
k (z − Zk)

)
/Xk

]
= b−1

k

∫
R
L2(b−1

k (z − u))ξ(Xk)(u)du

=

∫
R
L2(h)ξ(Xk)(z − bkh)dh
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Meanwhile, it is clear that the condition (A.2) combined with the boundedness of the
kernel L2 allow us to have

sup
z∈I

∣∣E [b−1
k L2

(
b−1
k (z − Zk)

)
/Xk

]
− ξx(z)

∣∣ = sup
z∈I

∣∣∣∣∫
R
L2(h)

[
ξ(Xk)(z − bkh)− ξx(z)

]
dh

∣∣∣∣
≤ C1

∫
R
L2(h) (aν1k + bν2k |h|

ν2) dh.

The assumptions (A.1)(iii) and (A.4) (i) permit to show that

sup
z∈I

∣∣∣B̃n(x, z)
∣∣∣ ≤ C1 (aν1n + bν2n )

from which we conclude the proof of Lemma 3.5.1.

Proof of Lemma 3.5.2

For all x ∈ H, observe that we can write

ϕ̃n(x, z)− ϕ̈n(x, z) = (χn(x, ak))
−1

n∑
k=1

{
Z̃k
bk
L1

(
a−1
k dH(x,Xk)

)
−E

[
Z̃k
bk
L1

(
a−1
k dH(x,Xk)

)
/℘k−1

]}
= (χn(x, ak))

−1
n∑
k=1

Uk,n(x, z)

where {Uk,n(x, z)}k≥1 forms a triangular array of martingale differences sequence

with respect to the σ-fields (℘k)1≤k≤n and is defined for all x ∈ H by

Z̃k
bk
L1

(
a−1
k dH(x,Xk)

)
− E

[
Z̃k
bk
L1

(
a−1
k dH(x,Xk)

)
/℘k−1

]

with Sn =
n∑
k=1

Uk,n(x, z). It is also essential to examine whether the condition of

Lemma 3.7.1 is verified. By applying the Minkowski and Jensen inequalities for
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Uk,n(x, z) with p ≥ 2, we can easily get

∣∣E [Up
k,n(x, z)/℘k−1

]∣∣ =

∣∣∣∣∣E
[(

Z̃k
bk
L1(a−1

k dH(x,Xk))− E

[
Z̃k
bk
L1(a−1

k dH(x,Xk))/℘k−1

])p

/℘k−1

]∣∣∣∣∣
≤

(
E

[∣∣∣∣∣Z̃kbk L1(a−1
k dH(x,Xk))

∣∣∣∣∣
p

/℘k−1

]1/p

+E

[
E

[∣∣∣∣∣Z̃kbk L1(a−1
k dH(x,Xk))

∣∣∣∣∣
p

/℘k−1

]
/℘k−1

]1/p)p

= 2pE

[∣∣∣∣∣Z̃kbk L1(a−1
k dH(x,Xk))

∣∣∣∣∣
p

/℘k−1

]

by a simple manipulation and under the assumption (A.3), we have

E

[∣∣∣∣∣Z̃kbk L1(a−1
k dH(x,Xk))

∣∣∣∣∣
p

/℘k−1

]
= E

[
E

[∣∣∣∣∣Z̃kbk L1(a−1
k dH(x,Xk))

∣∣∣∣∣
p

/Bk−1, Zk

]
/℘k−1

]

= E
[
b−pk Lp1(a−1

k dH(x,Xk))L
p
2(b−1

k (z − Zk))/℘k−1

]
Next, by using the conditions (A.1)(ii) and (A.4)(ii), we deal with∣∣E [Up

k,n(x, z)/℘k−1

]∣∣ ≤ 2pCb−pn φk(x, an) (3.15)

with Dn =
n∑
k=1

d2
k = b−pn

n∑
k=1

φk(x, an). From now on, replacing the difference ϕ̃n(x, z)−

ϕ̈n(x, z) in (3.7) by Hk,n(x, z) to avoid repetition of expressions

Hk,n(x, z) = [ϕ̃n(x, z)− ϕ̃n(x, zj)] + [ϕ̃n(x, zj)− ϕ̈n(x, zj)]

− [ϕ̈n(x, z)− ϕ̈n(x, zj)]

:= H̃k,n(x, z) +Hk,n(x, zj).

We use the compactness property of I by writing for any z1, z2, . . . , zrn , I ⊂
rn⋃
j=1

Gj

where Gj = (zj − sn, zj + sn). And since I is bounded we can take for a constant M,

sn ≤Mn−γ with (γ = (3/2)β + 1/2) for β > 0 and j(z) = arg min
j∈{1,...,rn}

|z − zj|.



3.7 Appendix 95

Thereafter, we have

sup
z∈I
|Hk,n(x, z)| ≤ max

j∈{1,...,rn}
sup
z∈I

∣∣∣H̃k,n(x, z)
∣∣∣+ max

j∈{1,...,rn}
|Hk,n(x, zj)|

= A1n + A2n. (3.16)

Firstly, the term A1n can be expressed as follow

A1n ≤ max
j∈{1,...,rn}

sup
z∈I
|ϕ̃n(x, z)− ϕ̃n(x, zj)|+ max

j∈{1,...,rn}
sup
z∈I
|ϕ̈n(x, z)− ϕ̈n(x, zj)|

= Σ1 + Σ2.

Obviously, this latter can be deduced directly from the following two main statements.

• Σ1 tends to 0 almost surely as n→∞;

• Σ2 = Oa.s.(1).

Concerning Σ1, let us consider Z̃k,j =
∆kL2

(
b−1
k (zj − Yk)

)
G
W

(Yk)
. Because L1 is continuous

and bounded, then by the condition (A.4)(i), we can write for almost all z and a fixed
number C2 the following

Σ1 ≤ max
j∈{1,...,rn}

sup
z∈I

1

χn(x, ak)

n∑
k=1

L1

(
a−1
k dH(x,Xk)

)
bk

∣∣∣Z̃k − Z̃k,j∣∣∣
≤ max

j∈{1,...,rn}
sup
z∈I

C2
|z − zj|
χn(x, ak)

n∑
k=1

∆k

b2
kG

W
(Zk)

L1

(
a−1
k dH(x,Xk)

)
≤ (χn(x, ak))

−1M

n∑
k=1

snb
−2
k

it follows from (3.12) and (A.5)(i) that

Σ1 → 0 a.s. as n→∞. (3.17)

Similarly, for Σ2, using the same arguments to the foregoing such that

Σ2 ≤ max
j∈{1,...,rn}

sup
z∈I

1

χn(x, ak)

n∑
k=1

E

[
L1

(
a−1
k dH(x,Xk)

)
bk

∣∣∣Z̃k − Z̃k,j∣∣∣ /℘k−1

]
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with the fact that

E
[
L1

(
a−1
k dH(x,Xk)

)
/℘k−1

]
≤ P[dH(x,Xk) ≤ ak/℘k−1]

≤ φk(x, ak)

we deduce by the assumption (A.1)(ii) that

Σ2 = Oa.s.(1) as n→∞. (3.18)

Hence, the definition of A1n and the statements (3.17) and (3.18) give directly

A1n = Oa.s.

{(
log n

bnχn(x, an)

)1/2
}
. (3.19)

Next, let’s highlight the second term A2n of our decomposition (3.16), one can write

A2n = max
j∈{1,...,rn}

|Hk,n(x, zj)|

≤ (χn(x, ak))
−1 max

j∈{1,...,rn}

∣∣∣∣∣
n∑
k=1

Uk,n(x, zj)

∣∣∣∣∣ .
Making use the principe of the technical Lemma 3.7.1 on

n∑
k=1

Uk,n(x, zj) with

rn = O
(
n(3/2)β+1/2

)
, we obtain

P

{
(χn(x, ak))

−1 max
j∈{1,...,rn}

∣∣∣∣∣
n∑
k=1

Uk,n(x, zj)

∣∣∣∣∣ > θ

}
≤ rn max

j∈{1,...,rn}
P

{∣∣∣∣∣
n∑
k=1

Uk,n(x, zj)

∣∣∣∣∣ > θ (χn(x, ak))

}

We have from (3.15), the following quantity is verified for all (x, z) ∈ S × I and

j = 1, . . . , rn,
∣∣E [Up

k,n(x, zj)/℘k−1

]∣∣ ≤ 2pCb−pn φk(x, an) with Dn = Oa.s. (bnχn(x, an))

and

P

{∣∣∣∣∣
n∑
k=1

Uk,n(x, zj)

∣∣∣∣∣ > θ0 (χn(x, ak))

(
log n

bnχn(x, ak)

)1/2
}
≤ 2 exp

{
−Cθ2

0 log n
}
,
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and therefore for the two positive constants C ′ and M1 given, we have

P

{
max

j∈{1,...,rn}

∣∣∣∣∣
n∑
k=1

Uk,n(x, zj)

∣∣∣∣∣ > θ0 (χn(x, ak))

(
log n

bnχn(x, ak)

)1/2
}
≤ 2C ′rn exp

{
−Cθ2

0 log n
}

≤ M1rnn
−Cθ20

≤ M1

n(Cθ20−(3/2)β−1/2)

which implies by applying the Borel-Cantelli Lemma and taking θ0 sufficiently big
that ∑

n≥1

P

{
max

j∈{1,...,rn}

∣∣∣∣∣
n∑
k=1

Uk,n(x, zj)

∣∣∣∣∣ > θ (χn(x, ak))

}
<∞

from which the same result holds

A2n = Oa.s.

{(
log n

bnχn(x, an)

)1/2
}

= Oa.s.(1), as n→∞. (3.20)

Finally, combining (3.16) together with (3.19) and (3.20) lead to the required result.

∑
n≥1

P
{

sup
z∈I
|ϕ̃n(x, z)− ϕ̈n(x, z)| > θ

}
<∞.

and the proof is thus valid.

Proof of Lemma 3.5.3

First of all, for x ∈ H, note that the function γ̃n(x) can be decomposed as

γ̃n(x) =

{
(χn(x, ak))

−1

(
n∑
k=1

[
L1

(
a−1
k dH(x,Xk)

)
− E

[
L1

(
a−1
k dH(x,Xk)

)
/℘k−1

]])}

+

{
(χn(x, ak))

−1
n∑
k=1

E
[
L1

(
a−1
k dH(x,Xk)

)
/℘k−1

]
− 1

}
+ 1

= B1n(x) +B2n(x) + 1.
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Indeed, there is no effect here of the censoring factor on this latter decomposition, the
proof is thus standard. We start directly by the first term

B1n(x) = γ̃n(x)− γ̈n(x) = (χn(x, ak))
−1

n∑
k=1

Mk,n(x).

We draw the readers’ attention to the fact that the proof of this term uses a
concept similar to that of Lemma 3.5.2 with a slight difference. Let Mk,n(x) =

L1

(
a−1
k dH(x,Xk)

)
− E

[
L1

(
a−1
k dH(x,Xk)

)
/℘k−1

]
be a sequence of martingale differ-

ences with respect to the σ-fields (℘k)1≤k≤n and which satisfies the condition of Lemma
3.7.1 such as ∣∣E [Mp

k,n(x)/℘k−1

]∣∣ ≤ 2pE
[
Lp1
(
a−1
k dH(x,Xk)

)
/℘k−1

]
≤ C2pφk(x, an)

:= d2
k.

Again, Lemma 3.7.1 with Dn =
n∑
k=1

d2
k and the result (i) of Lemma 3.7.2, which proof

is given in Laib and Louani (2010)[25] allow us to conclude B1n(x). In view of the
second term B2n, we thus can write for any x ∈ S

B2n(x) = γ̈n(x)− 1,

a direct application of the insertion (ii) of Lemma 3.7.2 completes the proof and

B2n(x)→ 0 as n→∞, almost surely.

Proof of Lemma 3.5.4

In this proof, we are satisfied with studying the quantity sup
x∈S

sup
z∈I
|Bn(x, z)| uniformly

on x and z. For that, using again the condition (A.6) for any measurable function Φ.

The conditions (A.1) and (A.3) allow us to conclude that

χn(x, ak)γ̈n(x) ≥ Cχn(x, ak).
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Moreover, we want to stress that despite the presence of censorship, the function
γ̈n(·) is not affected according to its definition (3.10). Furthermore, by taking into
consideration the last inequality in establishing the proof of Lemma 3.5.1, in addition
to the condition (A.4) (i), we terminate the proof of Lemma 3.5.4.

Proof of Lemma 3.5.5

By maintaining the same notations as the ones we used for Lemma 3.5.2, we add to

that the topological condition S ⊂
hn⋃
i=1

B(xi, sn) realized by the compactness property

of S for all sequence of positive real numbers hn. In the following, we will note for all
pairs (x, z),

sup
x∈S

sup
z∈I
|ϕ̃n(x, z)− ϕ̈n(x, z)| = Kk,n(x, z)

and we set h(x) = arg min
i∈{1,...,hn}

dH(x, xi) where B(xi, sn) = {x ∈ S; dH(x, xi) ≤ sn} .

Then, one can write the following decomposition

Kk,n(x, z) ≤ sup
x∈S

sup
z∈I
|ϕ̃n(x, z)− ϕ̃n(xi, z)|

+ max
j∈{1,...,rn}

sup
x∈S
|ϕ̃n(xi, z)− ϕ̃n(xi, zj)|

+ max
i∈{1,...,hn}

max
j∈{1,...,rn}

|ϕ̃n(xi, zj)− ϕ̈n(xi, zj)|

+ max
j∈{1,...,rn}

sup
x∈S
|ϕ̈n(xi, zj)− ϕ̈n(xi, z)|

+ sup
x∈S

sup
z∈I
|ϕ̈n(xi, z)− ϕ̈n(x, z)|

= D1n +D2n +D3n +D4n +D5n. (3.21)

Hence, the techniques are the same to treat the convergence of D1n and that of D5n.

We will just treat one of them, let it be the first one. In this case, we use the fact that
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L1 is Lipschitzian on (0, 1)

D1n ≤ sup
x∈S

sup
z∈I

1

χn(x, ak)

∣∣∣∣∣
n∑
k=1

Z̃k
bk

[
L1

(
a−1
k dH(x,Xk)

)
− L1

(
a−1
k dH(xi, Xk)

)]∣∣∣∣∣
≤ C

χn(x, ak)
sup
x∈S

sup
z∈I

∣∣∣∣∣
n∑
k=1

Rk

∣∣∣∣∣
with Rk =

Z̃k
akbk

dH(x, xi), it comes for n large enough

D1n = D5n = Oa.s.

{(
log n

bnχn(x, an)

)1/2
}
. (3.22)

Turning to D2n, by maintaining the condition of Lipschitz on the function L2, the
condition (A.6) and following the same passages of Lemma 3.5.2, one has

|ϕ̃n(xi, z)− ϕ̃n(xi, zj)| ≤
1

χn(x, ak)

n∑
k=1

L1

(
a−1
k dH(xi, Xk)

)
bk

|Z̃k − Z̃k,j|

≤ C2
sn

χn(x, ak)

n∑
k=1

Tk
∆k

G
W

(Zk)

with Tk =
1

b2
k

L1

(
a−1
k dH(xi, Xk)

)
. The fact that sn = n−(3/2)β−1/2, allows us to obtain

D2n = D4n = Oa.s.

{(
log n

bnχn(x, an)

)1/2
}

(3.23)

In order to end the proof, it remains to study the third term on the right hand side of
(3.21). We follow the same arguments as for proving the second term (A2n) of Lemma
3.5.2, one may show that for all η0 > 0

P {D3n > η} = P
{

max
j∈{1,...,rn}

max
i∈{1,...,hn}

|ϕ̃n(xi, zj)− ϕ̈n(xi, zj)| > η

}
≤ rnhn max

j∈{1,...,rn}
max

i∈{1,...,hn}
P {|ϕ̃n(xi, zj)− ϕ̈n(xi, zj)| > η}
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where for 1 ≤ k ≤ n, we have

ϕ̃n(xi, zj)− ϕ̈n(xi, zj) = (χn(x, ak))
−1

n∑
k=1

Uk,n(xi, zj).

Applying the exponential inequality for bounded martingale differences sequence
{Uk,n(xi, zj)}k≥1 and without repeating the same calculations, we refer just to the first

part of Lemma 3.5.2, the following inequality is still true∣∣E [Up
k,n(xi, zj)/℘k−1

]∣∣ ≤ 2pCb−pn φk(xi, an).

Since rn = O(s−1
n ), we have

rnhn max
j∈{1,...,rn}

max
i∈{1,...,hn}

P {|ϕ̃n(xi, zj)− ϕ̈n(xi, zj)| > η} ≤M ′rnhnn
−Cη20 .

Taking into account the hypothesis (A.5)(i), the Borel-Cantelli’s Lemma with an
appropriate choice of η0 give directly

D3n = Oa.s.

{(
log n

bnχn(x, an)

)1/2
}
. (3.24)

From (3.22)-(3.24), the proof is then achieved.

Proof of Lemma 3.5.6

The positive real sequence sn given previously checks the condition hnsn ≤M2 for a
positive finite constantM2. Then, we have for all x ∈ S and i = 1, . . . , hn the following

sup
x∈S
|γ̃n(x)− γ̈n(x)| = sup

x∈S
|Vk,n(x)|

≤ sup
x∈S
|Ṽk,n(x)|+ sup

x∈S
|Vk,n(xi)|. (3.25)
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Roughly the same procedures are followed as in the second part of the proof of Lemma
3.5.2 with respect to x, and which give us

sup
x∈S
|Ṽk,n(x)| ≤ sup

x∈S

{
(χn(x, ak))

−1
n∑
k=1

∣∣L1

(
a−1
k dH(x,Xk)

)
− L1

(
a−1
k dH(xi, Xk)

)∣∣}

+ sup
x∈S

{
(χn(x, ak))

−1
n∑
k=1

E
[
L1

(
a−1
k dH(x,Xk)

)
− L1

(
a−1
k dH(xi, Xk)

)
/℘k−1

]}
= Λ1 + Λ2

Making use now of the Hölderian property of the kernel L1 on (0, 1) for β1 = 1, the
first term of the right hand-side can be rewritten as follows

Λ1 ≤ (χn(x, ak))
−1

n∑
k=1

dH(x, xi)

a
k

and the same is true for the second term by using sn = n−(3/2)β−1/2. From this we
conclude that

sup
x∈S
|Ṽk,n(x)| = Oa.s.(1).

It remains for us now to evaluate the term sup
x∈S
|Vk,n(xi)|, for n large enough and an

optimal choice of ς0 we obtain

P
{

sup
x∈S
|Vk,n(xi)| > ς

}
≤ P

{
max

i∈{1,...,hn}
|Vk,n(xi)| > ς

}
≤ hn max

i∈{1,...,hn}
P {|γ̃n(xi)− γ̈n(xi)| > ς}

In order to apply Lemma 3.7.1, let Mk,n(xi) = L1

(
a−1
k dH(xi, Xk)

)
−

E
[
L1

(
a−1
k dH(xi, Xk)

)
/℘k−1

]
as mentioned in proof of Lemma 3.5.3. A direct ap-

plication of exponential inequality and the result of Lemma 3.7.2(i) achieve the proof.

Proof of Lemma 3.5.7

From the definition of the estimator ξ̂xn(z) and (3.5), by the assumed condition on the
function γX(·) and using the fact that I[Zk≤Wk]Φ(Yk) = I[Zk≤Wk]Φ(Zk), it is enough to
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study this quantity

|ϕ̂n(x, z)− ϕ̃n(x, z)| = (χn(x, ak))
−1
∣∣∣ n∑
k=1

∆k

bk
L1

(
a−1
k dH(x,Xk)

)
L2

(
b−1
k (z − Yk)

)
[

1

G
W

(Yk)
− 1

G
W
n (Yk)

] ∣∣∣
≤ (χn(x, ak))

−1
n∑
k=1

∆kL1

(
a−1
k dH(x,Xk)

)
bk∣∣∣∣∣

[
G
W

n (Zk)−G
W

(Zk)

G
W

n (Zk)G
W

(Zk)

]
L2

(
b−1
k (z − Zk)

)∣∣∣∣∣ .
it follows

sup
x∈S

sup
0≤z≤T

|ϕ̂n(x, z)− ϕ̃n(x, z)| ≤
{[
G
W

n (T )
]−1

sup
0≤z≤T

∣∣∣GW

n (z)−GW
(z)
∣∣∣}

× (χn(x, ak))
−1

n∑
k=1

L1

(
a−1
k dH(x,Xk)

)
bk

∣∣L2

(
b−1
k (z − Zk)

)∣∣ .
Then, from the very last inequality obtained and using the fact that T < TFZ ∧ TGW
and for any positive constant M3, such that

sup
0≤z≤T

∣∣∣GW

n (z)−GW
(z)
∣∣∣ ≤M3

{
n−1/2 (log2 n)1/2

}
(the interested reader can be referred to Deheuvels and Einmahl (2000) [11]), we fall
directly on the desired result

sup
x∈S

sup
0≤z≤T

∣∣∣ξ̂xn(z)− ξ̃xn(z)
∣∣∣ −→ 0 as n→∞.

This lemma remains valid for the punctual case and follows the same calculation
structures.
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Chapter 4

Consistency Result for the Recursive

Kernel Estimate of the Conditional

Quantile on Continuous Time

Stationary and Ergodic Data

This chapter is the subject of an article submitted.

Abstract The principal aim of this chapter is to consider the recursive kernel
estimate of the conditional quantile function qα when the response variable Y is real
and the explanatory variable X takes values in some infinite-dimensional space. Then,
by considering two continuous time processes (Xt, Yt)t≥0, we establish the almost sure
convergence with rates of our proposed recursive estimator q̃α(x) under a stationary
ergodic process assumption.

Key words and phrases Functional data, Recursive nonparametric estimation,
Conditional quantile, Ergodicity, Almost sure convergence, Martingale difference,
Continuous process.
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4.1 Introduction

As far as we know, for the last few years, there have been more and more works
about the recursive kernel estimate, while that non-recursive method is very sensitive
to the supplementary item of data added to the series, it should be re-read the process
again. This approach, from a theoretical point of view, has many advantages because
of its interest in reducing computation time, in addition to the results given that are
closer to the correct one in prediction problems. In this setting, the first recursive
estimators of the density and regression functions are introduced respectively by
Wagner and Wolverton (1969)[27], Ahmed and Lin(1976)[1] and Devroye and Wagner
(1980)[10]. Currently, work in the field of functional variables has turned into an
interesting topic lately, thanks to its applications; so that we can mention the work
of Amiri et al. (2014)[2] who have studied the asymptotic properties of the recursive
nonparametric kernel estimator of the regression. When a recursive estimator of
the conditional geometric median is studied by Hervé Cardot et al. (2012)[7] in
Hilbert space and they have proved the almost sure convergence together with L2

rates of convergence. For i.i.d observations, Bouadjemi (2014)[5] has introduced a
new estimator of the conditional cumulative distribution function based on a recursive
approach and he has elaborated under general conditions a result on the asymptotic
normality of this estimate.

The conditional quantile qα(x) is one of the most studied models in recursive
estimation; this is interesting for a certain number of reasons, particularly since it
provides a clearer view of the conditional distribution than the classical regression
R(x) = E(Y/X = x), x ∈ Rd that limits attention only to the conditional mean
function influenced by outliers. It has been also known that it supplies a good solution
to the prediction problem, thanks to its robustness and it is largely studied in finite
dimensional spaces. The literature on the conditional quantile estimate has increased
considerably in recent years, Roussas (1969)[24] is the first to be interested in and he
has showed the convergence and the asymptotic normality for the kernel method, by
using an estimator of the conditional distribution function for markov observations.
We can cite the work of Samanta (1989)[26] (see also Chaudhuri (1991b)[8], Berlinet
et al. (2001)[4] and Gardes et al. (2010)[18] as a general study and for additional
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details on the asymptotic properties).
Historically, several authors have discussed the nonparametric estimation of

conditional quantiles as the inverse of the conditional distribution function. For
example, the asymptotic normality in both cases (i.i.d. and α−mixing) is studied
by Ezzahrioui and Ould-Saïd ((2005b)[12], (2006b)[13]). The estimation of such a
function for functional variables is introduced by Ferraty et al. (2006)[15]; they have
constructed a dual kernel estimator for the conditional distribution function and have
specified the almost complete convergence rate of this latter. Also, it has been studied
in several articles among which we cite Ferraty et al. (2005)[14], Ferraty and Vieu
(2006)[16] and Laksaci and Maaref (2009)[21].

Regarding the functional framework, to our knowledge, as a recent work, Benziadi
in collaboration with Laksaci (2016)[3] have considered a recursive estimator of
the conditional quantile by inverting the double-kernel estimate of the conditional
distribution function, which gives efficient results in the case of a stationary ergodic
process and they have got its almost complete convergence; this work is established
with rates for n copies of a random vector {(Xk, Yk), k = 1, . . . , n}. In the same field
of stationary and ergodic hypotheses, notice that further studies are conducted in
the case of continuous time processes; among whom Didi and Louani (2014)[11] who
have established the almost sure convergence of the density, the regression and the
conditional mode functions based on kernel estimators. Maillot (2008)[22] has also
obtained the uniform convergence of the conditional density estimate and the almost
sure convergence of the conditional mode estimator for continuous time processes
when explanatory variable is functional. Thus, in this article, the main inspired
objective is to extend the previously done work for the kernel recursive estimation
of the conditional quantile given a functional covariate by achieving a result in the
continuous time case, where the most physical phenomena are functional variables
which are observable at continuous time, especially that there is no result investigated
in this context before in the recent statistical literature.

Our scientific paper is arranged then according to the following way: In Section
4.2, we present the proposed recursive estimator. In the next section, some necessary
hypotheses and notations are given in a very classical manner with comments. In
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addition to the main results and some particular cases to give a comprehensive look
of our model. The last section is dedicated to prove the technical lemmas.

4.2 Presentation of the estimator

Let Zt = (Xt, Yt)t≥0 be a stationary ergodic process defined on a probabilized space
(Ω,A,P). We also assume Xt take values in a semi-metric space (H, dH) where dH(., .)

is a semi-metric associated to the space (keeping in mind that dH(x,Xk) = ‖x−Xk‖),
whereas Yt are real-valued random variables; distributed as the couple (X, Y ) and
both observed at continuous time.

For a fixed x ∈ H, the conditional distribution function F x of variable Y knowing
X = x given by

F (y/x) = P(Y ≤ y/X = x) where y ∈ R. (4.1)

The study focuses on the conditional quantile qy(α/x) of order α (denoted simply
qα(x)) defined for all x ∈ H and α ∈]0, 1[ by

qα(x) := F−1(α/x) = inf{y ∈ R : F (y/x) ≥ α}. (4.2)

Thanks to the definition (4.2), it is easily shown that, to estimate the conditional
quantile, we have estimate beforehand the conditional distribution function defined in
(4.1) and then inverting it. For ensuring the existence and uniqueness of the latter,
assuming that for any fixed x ∈ H, F (.|x) is strictly increasing and continuous in a
neighborhood of qα(x). It is easy then to make an estimator of qα(x) by

q̃α(x) := F̃−1(α/x).

So, in the following, we may first introduce the recursive double kernels type estimator

F̃ x (we use the notation F x(·) instead of F (·/x)) of the conditional distribution
function F x for the continuous time process, defined for t ∈ [0, T ] as follows:

F̃ x(y) =

∫ T

0

L1

(
dH(x,Xt)

at

)
L2

(
(y − Yt)

bt

)
dt∫ T

0

L1

(
dH(x,Xt)

at

)
dt

, ∀y ∈ R. (4.3)
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Where L1(·) is the kernel with support [0, 1], L2(·) is a strictly increasing distribution

function and at, bt are sequences of positive real numbers with the convention
0

0
= 0

and the denominator is not null.

4.3 Assumptions and main study

4.3.1 General assumptions

To establish our results, some notations are necessary, in the following, on the one
hand, we use the notation ℘t the σ−field generated by ((X1, Y1), . . . , (Xt, Yt)) and Bt
the one generated by ((X1, Y1), . . . , (Xt, Yt), Xt+1). On the other hand, we use B(x, h)

as a ball centered at x with radius h.
In addition, we need to set the necessary following assumptions which will help

us in the proofs.

(A.1) Our strictly stationary ergodic process (Zt)t≥0 satisfies:



(i) The function φ(x, h) := P(X ∈ B(x, h)) > 0,∀h > 0.

(ii) For all t ∈ [0, T ], there exists a deterministic function φt(x, .) such that

P(Xt ∈ B(x, h)/℘t−1) = P(dH(x,Xt) ≤ h/℘t−1) ≤ φt(x, h), ∀h > 0 a.s.

and lim
h→0

φt(x, h) = 0.

(iii) For all h > 0,

∫ T

0

P(Xt ∈ B(x, ht)/℘t−1)dt∫ T

0

φt(x, ht)dt

→ 1 a.s.

Where B(x, h) := {x′ ∈ H/dH(x, x
′
) < h}, φt(x, h) is the conditional small ball

probability.

(A.2) – The conditional distribution function F x of Y given X = x exists for
all x ∈ Nx and satisfies the lipschitz condition with respect to each vari-
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able, there exists δ > 0, b1 > 0, b2 > 0 such that: ∀(y1, y2) ∈ S2 =

[qα(x)− δ, qα(x) + δ]2 , ∀(x1, x2) ∈ N 2
x , one has

|F x1(y1)− F x2(y2)| ≤ C
′
(dH(x1, x2)b1 + |y1 − y2|b2)

– The function F x is strictly monotonous, bounded, continuously differen-
tiable and admits a continuous conditional density ξx with respect to the
lebesgue’s measure over R where inf

y∈[qα(x)−δ,qα(x)+δ]
ξx(y) ≥ C > 0.

With Nx is a fixed neighborhood of x in H, S is a fixed compact subset of R

and C, C ′ are two strictly positive constants.

(A.3) L1 is a spherically symmetric bounded kernel on its compact support [0, 1], such
that:

0 < CI[0,1] < L1(t) < C
′I[0,1] <∞.

(A.4) 

(i) The bandwidths at and bt satisfy the following conditions :

lim
t→∞

at = 0, lim
t→∞

bt = 0;

(ii) The concentration function verifies

lim
T→∞

TψT (x) =∞, lim
T→∞

log T

TψT (x)
= 0 where ϕT (x) =

∫ T

0

φt(x, at)dt

and ψT (x) =
1

T

∫ T

0

φt(x, at)dt.

(A.5) The kernel L2 is an increasing continuous function satisfies:

∀(y1, y2) ∈ R2, |L2(y1) − L2(y2)| ≤ C|y1 − y2| and
∫
R
|z|b2L(1)

2 (z)dz < ∞,∫
R
L

(1)
2 (z)dz = 1 where L2, L

(1)
2 are bounded.

(A.6) For any k ≥ 1 and j = 0, 1;

E
[(
L

(j)
2 (b−1

t (y − Yt))
)k
/Bt−1

]
= E

[(
L

(j)
2 (b−1

t (y − Yt))
)k
/Xt

]
= hk(x),
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where the function hk(x) is continuous in the neighborhood of x.

(A.7) There exists η > 0 such that lim
T→∞

T−η
∫ T

0

1

bt
dt = 0.

Remark 4.3.1. For the discretization, we consider for all t, n = T/δ ∈ N, (δ > 0)

and k ∈ N ∩ [1, n], the partition (Tk)1≤k≤n of the interval [0, T ], such that

[0, T ] =
n⋃
k=1

[Tk−1, Tk].

Comments on the assumptions

Assumption (A.1) known as concentration property, it is the same as one mentioned
in Ferraty et al. (2006)[15] and analogous to that used by Gheriballah et al. (2013)[19]
which plays an essential role in the ergodic and functional context of this paper as
well as in the case of finite dimension, it is less demanding compared to the condition
(A2) discussed for regression function case in the presence of a functional explanatory
variable (see Laïb and Louani (2011)[20]).

Nevertheless, notice that only condition (A.1)(iii) will change and it is also
satisfied in our continuous time case. While the condition (A.2) ensures the regularity
of the conditional law of Y knowing X = x, this type of condition is necessary to
achieve and give a precision of the convergence rates for the bias term given below.
Furthermore, it is identical to assumption (H.2) made by Ferraty, Laksaci and Vieu
(2006)[15].

The assumption (A.4) is very frequent in non-parametric estimation literature
dealing with functional data for finite or infinite dimension spaces. Then, it is important
to highlight that assumptions (A.3) and (A.5) are fundamental conditions which are
intended to ease the computational complexity of recursive kernels. Assumption (A.6)
is of Markov’s nature which is previously used by Ferraty and al. (2006)[15]. Moreover,
condition (A.7) is imposed in order to simplify and obtain the convergence rates and
to outline our results proofs.



4.3 Assumptions and main study 115

4.3.2 Strong consistency

We study the almost sure convergence (with rates of convergence) of our proposed
family of estimators. Such that, the following theorem gives us the main result

Theorem 4.3.1. Under the assumptions (A.1)-(A.7) above and for any x ∈ H. If
TψT (x)

log T
→∞ as T →∞, then, we are able to obtain

q̃α(x)− qα(x) = O

(
1

TψT (x)

∫ T

0

φt(x, at)
(
ab1t + bb2t

)
dt

)
+Oa.s

((
log T

TψT (x)

)1/2
)
.

4.3.3 Particular cases

We present in this brief section some special cases. So that we discuss the
important results in this area and provide a general overview in different types of
our study as well as the impact of each of these cases, which correspond to some of
the previously achieved ones by the statisticians. Note also that all these results are
realized whenever the data are associated to a stationary and ergodic conditions.

• The simple recursive kernel estimator

We start by replacing the cumulative distribution function H by an indicator
one in the same model used in (4.3), this makes it possible to write the resulting
estimator as follows

F̂ x
T (y) =

∫ T

0

L1

(
dH(x,Xt)

at

)
I(Yt≤y)dt∫ T

0

L1

(
dH(x,Xt)

at

)
dt

, ∀y ∈ R.

Thus, it is clear that the conditional quantile expression is closely related to the
distribution function, by the same arguments as of the recursive double kernel
estimate, we study in this case the convergence rate which is given in the next
corollary



4.3 Assumptions and main study 116

Corollary 4.3.1. Under assumptions (A.1)-(A.4), we have

q̂α(x)− qα(x) = O

(
1

TψT (x)

∫ T

0

ab1t φt(x, at)dt

)
+Oa.s

((
log T

TψT (x)

)1/2
)

• Case of discrete processes

We consider a sequence of strictly stationary ergodic processes {Zt}t=1,...,n, then,
we need to impose the following additional smoothness assumptions

(A.1′)(iii) The conditional concentration function satisfies for all sequence

(ht)t=1,...,n > 0,

n∑
t=1

P (Xt ∈ B(x, ht)/℘t−1)

n∑
t=1

φ(x, ht)

→ 1 a.co,

(A.7′) There exists η > 0 such that lim
n→∞

n−η
n∑
t=1

1

bt
= 0.

Which will simply allow us to move from a continuous time case to a discrete
time case.

Remark 4.3.2. These two conditions are common and which characterize and
control our model in the setting of functional discrete processes (as mentioned
in Benziadi et al. (2016)[3]). On the other hand, as part of our methodology;
respectively, they are necessary to obtain the convergence rates of the estimator
and for the continuity of the model studied here.

Then, the obtained estimator of the conditional distribution function is similar
to the one defined by ([3]):

F̃ x(y) =

n∑
t=1

L1

(
dH(x,Xt)

at

)
L2

(
(y − Yt)

bt

)
n∑
t=1

L1

(
dH(x,Xt)

at

) , ∀y ∈ R.
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Our theorem leads thus to the following corollary which gives the almost sure
convergence with rate of the new constructed recursive kernel estimate.

Corollary 4.3.2. Under assumptions (A.2)-(A.6) and the additional hypotheses
given below, we have

q̃α(x)− qα(x) = O

(
1

TψT (x)

n∑
t=1

φt(x, at)
(
ab1t + bb2t

))
+Oa.s

((
log T

TψT (x)

)1/2
)
.

• The classical kernel estimator
Comparing the recursive kernel method with the classical one by replacing the
bandwidths at = aT and bt = bT for all t ∈ [0, T ]. Thus, in that case, the
recursive estimator of the conditional distribution function can be re-write by
this way

F̃ x(y) =

∫ T

0

L1

(
dH(x,Xt)

aT

)
L2

(
(y − Yt)
bT

)
dt∫ T

0

L1

(
dH(x,Xt)

aT

)
dt

, ∀y ∈ R.

Corollary 4.3.3. Under assumptions (A.1)-(A.6), we have

q̃α(x)− qα(x) = O
(
ab1T + bb2T

)
+Oa.s

((
log T

TψT (x)

)1/2
)
.

Remark 4.3.3. We show that the obtained rates are similar to that realized in
Sultana Didi and Louani’s paper (2014)[11] in order to demonstrate the almost
sure convergence of the conditional mode in the case of classical kernel estimate
for continuous variables in finite dimensional setting.

4.4 Appendix

From now on, we denote for all t ≥ 0, by the quantities L1

(
dH(x,Xt)

at

)
= L1,t(x),

L2

(
y − Yt
bt

)
= L2,t(y) and ψT (x) = E

(
L1

(
dH(x,X1)

at

))
.
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To establish our almost sure pointwise result, we need to introduce the following
exponential inequality used in Lemma 1 in Laib and Louani (2011) [20] for partial
sums of unbounded martingale differences, which permits to control the estimation
based on stationary ergodic data.

Lemma 4.4.1. (Laib and Louani (2011)[20]). Let (Zn)n≥1 be a sequence of real mar-
tingale differences with respect to the sequence of σ− fields Fn = σ(Z1, Z2, . . . , Zn)n≥1

generated by the random variables Z1, Z2, . . . , Zn. Set Sn =
n∑
k=1

Zk. For any p ≥ 2 and

for any n ≥ 1, assume that there exist some nonnegative constants C and dn such that

E(Zp
n/℘n−1) ≤ Cp−2p!d2

n almost surely. (4.4)

Then, for any ε > 0, we have

P(|Sn| > ε) ≤ 2 exp

(
− ε2

2(Dn + Cε)

)
, Dn =

n∑
k=1

d2
k.

The key argument in the proof of this theorem comes from the definition (4.2) of
the conditional quantile qα(x) and since F x(y) is supposed to be strictly increasing, in
addition to the proof of Theorem 2.3.2 given in the article by Benziadi et al. (2016)[3]
(for more details and demonstration of this result imposed, refer to this paper). It is
thus expressed as follows

∑
n≥1

P(|q̃α(x)− qα(x)| > ε) ≤
∑
n≥1

P
(

sup
y∈S

∣∣∣F̃ x(y)− F x(y)
∣∣∣ ≥ Cε

)
<∞. (4.5)

So, the proof of our theorem is an easy consequence of (4.5). This means that it is
enough to study the almost sure convergence of the conditional distribution function
estimator

sup
y∈S

∣∣∣F̃ x(y)− F x(y)
∣∣∣ = O

(
1

TψT (x)

∫ T

0

φt(x, at)
(
ab1t + bb2t

)
dt

)
+O

((
log T

TψT (x)

)1/2
)
, a.s.

From which we deduce the almost sure convergence of the conditional quantile
estimator.
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Proof of Theorem 4.3.1 The proof of this result may be demonstrated easily by
using the following decomposition

F̃ x(y)− F x(y) = B̃T (x, y) +
R̃T (x, y) + Q̃T (x, y)

F̂D(x)
. (4.6)

Where
Q̃T (x, y) = [F̃ x

T (y)− F̈ x
T (y)]− F x(y)[F̂D(x)− FD(x)], (4.7)

R̃T (x, y) = −B̃T (x, y)[F̂D(x)− FD(x)], (4.8)

B̃T (x, y) =
F̈ x
T (y)

FD(x)
− F x(y). (4.9)

And let’s define the used functions as follow

F̃ x
T (y) :=

1

TψT (x)

∫ T

0

L1

(
dH(x,Xt)

at

)
L2

(
y − Yt
bt

)
dt,

F̈ x
T (y) :=

1

TψT (x)

∫ T

0

E
[
L1

(
dH(x,Xt)

at

)
L2

(
y − Yt
bt

)
/℘t−1

]
dt,

F̂D(x) :=
1

TψT (x)

∫ T

0

L1

(
dH(x,Xt)

at

)
dt,

FD(x) :=
1

TψT (x)

∫ T

0

E
[
L1

(
dH(x,Xt)

at

)
/℘t−1

]
dt.

Thus, Theorem 4.3.1 can be deduced from a sequence of the following auxiliary lemmas
and corollary

Lemma 4.4.2. Under hypotheses (A.1)-(A.7), for any x ∈ F , we are able to obtain

sup
y∈S

∣∣∣F̃ x
T (y)− F̈ x

T (y)
∣∣∣ = Oa.s

((
log T

TψT (x)

)1/2
)
.
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Proof of Lemma 4.4.2

For the demonstration, let’s start by observing that [0, T ] =
n⋃
k=1

[Tk−1, Tk]. So, for all

x ∈ H, we can write

F̃ x
T (y)− F̈ x

T (y) =
1

TψT (x)

∫ T

0

(L1,t(x)L2,t(y)− E [L1,t(x)L2,t(y)/℘t−1]) dt

=
1

TψT (x)

n∑
k=1

∫ Tk

Tk−1

(L1,t(x)L2,t(y)− E [L1,t(x)L2,t(y)/℘t−1]) dt

=
1

TψT (x)

n∑
k=1

ZT,k(x).

Where (ZT,k(x))k≥1 is a martingale difference sequence with respect to the sequence
of σ-fields (℘t)t≥0 and defined for all x ∈ H by

ZT,k(x) =

∫ Tk

Tk−1

[L1,t(x)L2,t(y)− E [L1,t(x)L2,t(y)/℘t−1]] dt.

Applying now Jensen and Minkowski inequalities for ZT,k with p ≥ 2, to verify the
conditions of the Lemma 4.4.1. Thus, we have

∣∣E [Zp
T,k(x)/℘t−1

]∣∣ ≤ E

[∣∣∣∣∣
∫ Tk

Tk−1

[L1,t(x)L2,t(y)− E [L1,t(x)L2,t(y)/℘t−1]] dt

∣∣∣∣∣
p

/℘t−1

]

≤
∫ Tk

Tk−1

(
E [|L1,t(x)L2,t(y)|p/℘t−1]

1
p + E [(E[|L1,t(x)L2,t(y)|/℘t−1])p/℘t−1]

1
p

)p
dt

≤
∫ Tk

Tk−1

(
E [|L1,t(x)L2,t(y)|p/℘t−1]

1
p + E [E[|L1,t(x)L2,t(y)|p/℘t−1]/℘t−1]

1
p

)p
dt

≤
∫ Tk

Tk−1

(
E [|L1,t(x)L2,t(y)|p/℘t−1]

1
p + E [|L1,t(x)L2,t(y)|p/℘t−1]

1
p

)p
dt

= 2p
∫ Tk

Tk−1

E [|L1,t(x)L2,t(y)|p/℘t−1] dt.
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By using the condition (A.1)(ii), (A.6) when E [|L2,t(y)|p/Xt] ≤ C <∞ and since
the kernel L1 is bounded from hypothesis (A.3), then, we have for any p ≥ 2

E [|L1,t(x)L2,t(y)|p/℘t−1] = E [E [|L1,t(x)L2,t(y)|p/Bt−1] /℘t−1]

= E
[
Lp1,t(x)E [|L2,t(y)|p/Bt−1] /℘t−1

]
= E

[
Lp1,t(x)E [|L2,t(y)|p/Xt] /℘t−1

]
≤ Cφt(x, at).

According to Lemma 4.4.1, this form of writing satisfies the conditions imposed, so, we
can simply observe that d2

t = φt(x, at), and this will allow us to apply the exponential
inequality in later proofs.

In the rest of this part, to establish the proof of our lemma, the idea is to introduce

the compactness of S = [qα(x)− δ, qα(x) + δ] ∈
dn⋃
j=1

Sj where Sj = (yj − ln, yj + ln) and

since S is bounded we can take lT ≤ T−1/2α. Thus, it suffices to consider the following
decomposition where y is in S

sup
y∈[qα(x)−δ, qα(x)+δ]

∣∣∣F̃ x
T (y)− F̈ x

T (y)
∣∣∣ ≤ sup

y∈S

∣∣∣F̃ x
T (y)− F̃ x

T (zy)
∣∣∣

+ sup
y∈S

∣∣∣F̃ x
T (zy)− F̈ x

T (zy)
∣∣∣

+ sup
y∈S

∣∣∣F̈ x
T (zy)− F̈ x

T (y)
∣∣∣

= D1 +D2 +D3. (4.10)

Where zy = arg min
z∈{y1,...,ydn}

|y − z|. Clearly, two kinds of proofs are considered for this

decomposition, the first and third terms of these are depend on the same method of
computation. When the second one is a dispersion term, controlled by Lemma 4.4.1.

We treat the three terms separately. Firstly, let us begin with the term (D1), by
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using the fact that L2 is a lipschitz function and for a large enough T , we get:

sup
y∈S

∣∣∣F̃ x
T (y)− F̃ x

T (zy)
∣∣∣ = sup

y∈S

∣∣∣∣ 1

TψT (x)

∫ T

0

L1,t(x)[L2,t(y)− L2,t(zy)]

∣∣∣∣ dt
≤ 1

TψT (x)
sup
y∈S

∫ T

0

L1,t(x) |L2,t(y)− L2,t(zy)| dt

≤ C

TψT (x)
sup
y∈S
|y − zy|

∫ T

0

L1,t(x)

bt
dt

≤ C
lT

TψT (x)

(∫ T

0

1

bt
dt

)
.

By taking lT = T−η, it remains to show that

lT
TψT (x)

(∫ T

0

1

bt
dt

)
= O

((
log T

TψT (x)

)1/2
)
.

Which implies that, there exists a finite constant θ > 0 such that, for T great enough,
we conclude then

P

(
sup
y∈S

∣∣∣F̃ x
T (y)− F̃ x

T (zy)
∣∣∣ > θ

√
log T

TψT (x)

)
= 0. (4.11)

Turning now our interest to the second term (D2) of the decomposition, such that

P

(
sup
y∈S

∣∣∣F̃ x
T (zy)− F̈ x

T (zy)
∣∣∣ > θ

√
log T

TψT (x)

)
≤ P

(
max

z∈{y1,y2,...ydn}

∣∣∣F̃ x
T (z)− F̈ x

T (z)
∣∣∣ > θ

√
log T

TψT (x)

)

≤
∑
z∈Sj

P

(∣∣∣F̃ x
T (z)− F̈ x

T (z)
∣∣∣ > θ

√
log T

TψT (x)

)

≤ 2C”l−1
T exp(−Cθ2 log T )

≤ 2C”

T (Cθ2−η)
.
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Where C” is a positive constant. Thus, we are in position to apply Borel-Cantelli

Lemma and by taking θ big enough to have T (Cθ2−η) →∞ as T →∞. Therefore,

∑
n≥1

P

(
sup
y∈S

∣∣∣F̃ x
T (zy)− F̈ x

T (zy)
∣∣∣ > θ

√
log T

TψT (x)

)
converges almost surely.

It follows that

D2 = Oa.s

((
log T

TψT (x)

)1/2
)
. (4.12)

Similarly, it remains to study the term (D3) in order to end the proof. So, to
demonstrate it, we follow the same steps as for proving (D1) and condition (A.1)(ii),
which allow us to also obtain after a classical calculation the same rate and we write

sup
y∈S

∣∣∣F̈ x
T (zy)− F̈ x

T (y)
∣∣∣→ 0 a.s. as T →∞. (4.13)

Finally, by combining the decomposition (4.10) and the three last statements (4.11),
(4.12) and (4.13), we get the result when T tending to infinity.

Lemma 4.4.3. Under hypotheses (A.1)-(A.3) and (A.5), for any x ∈ H, we have

sup
y∈S

∣∣∣B̃T (x, y)
∣∣∣ = O

(
1

TψT (x)

∫ T

0

φt(x, at)
(
ab1t + bb2t

)
dt

)
.

Proof of Lemma 4.4.3

Making use the markov property of the process (Xt)t≥0, it follows that

|B̃T (x, y)| =

∣∣∣∣∣ F̈ x
T (y)− F x(y)FD(x)

FD(x)

∣∣∣∣∣
=

∣∣∣∣ 1

TψT (x)FD(x)

∫ T

0

(E[L1,t(x)L2,t(y)/℘t−1]− F x(y)E[L1,t(x)/℘t−1]) dt

∣∣∣∣
=

∣∣∣∣ 1

TψT (x)FD(x)

∫ T

0

(E[L1,t(x)E (L2,t(y)/Bt−1) /℘t−1]− F x(y)E[L1,t(x)/℘t−1]) dt

∣∣∣∣
≤ 1

TψT (x)FD(x)

∫ T

0

E (L1,t(x) [|E(L2,t(y)/Xt)− F x(y)|] /℘t−1) dt.
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The kernels are bounded, so we can easily see, after using successively an integration
by parts and a change of variable z = (y − Yt)/bt, that we get

E(L2,t(y)/Xt) =

∫
R
L

(1)
2 (z)FXt(y − btz)dz.

Moreover, under hypotheses (A.1) and (A.3), we have

TψT (x)FD(x) ≥ CϕT (x) ≥ CTψT (x).

This inequality is useful in the sequel. Then, condition (A.2) allows us to write

|B̃T (x, y)| ≤ C
′

TψT (x)

∫ T

0

E
[
L1,t(x)

(∫
R
L

(1)
2 (z)|FXt(y − btz)− F x(y)|dz

)
/℘t−1

]
dt

≤ C
′

TψT (x)

∫ T

0

φt(x, at)

(∫
R
L

(1)
2 (z)

(
ab1t + |z|b2bb2t

)
dz

)
dt.

Now, by the assumption (A.5) and the fact that L(1)
2 (·) is a density of probability,

we immediately have∫
R
L

(1)
2 (z)

(
ab1t + |z|b2bb2t

)
dz ≤

∫
R
L

(1)
2 (z)ab1t dz +

∫
R
L

(1)
2 (z)|z|b2bb2t dz

≤ ab1t +Mbb2t .

Therefore, we get the desired result with C1 is a constant supposed does not
depend on x and y

|B̃T (x, y)| ≤ C1

[
1

TψT (x)

∫ T

0

φt(x, at)
(
ab1t + bb2t

)
dt

]
. (4.14)

And here we have come to complete the proof of the Lemma 4.4.3.

Remark 4.4.1. The term R̃T (x, y) can be easily deduced from the decomposition (4.8)
together with the statement (4.14) and the result of the next lemma.

Lemma 4.4.4. Under the hypotheses (A.1), (A.3) and (A.4)(ii), we have

F̂D(x)− FD(x) = Oa.s

((
log T

TψT (x)

)1/2
)
.
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Proof of Lemma 4.4.4

It is very simple to show that for all x ∈ H, we can write without loss of generality

F̂D(x)− FD(x) =
1

TψT (x)

n∑
k=1

∆T,k(x),

with

∆T,k(x) =

∫ Tk

Tk−1

[L1,t(x)− E(L1,t(x)/℘t−1)] dt.

Now, applying the exponential inequality since ∆T,k fulfills the conditions of
Lemma 4.4.1, for all ε0 > 0, it follows that

P

(∣∣∣F̂D(x)− FD(x)
∣∣∣ > ε0

√
log T

TψT (x)

)
= P

(∣∣∣∣∣
n∑
k=1

∆T,k(x)

∣∣∣∣∣ > ε0TψT (x)

√
log T

TψT (x)

)

≤ 2 exp

− T 2ψ2
T (x)ε20

log T

TψT (x)

2

(
Dn + CTψT (x)ε0

√
log T

TψT (x)

)


≤ 2 exp

− TψT (x)ε20 log T

2

(
ϕT (x) + CTψT (x)ε0

√
log T

TψT (x)

)


≤ 2 exp

− ε20 log T

2

(
1 + Cε0

√
log T

TψT (x)

)


≤ 2

TC
′ε20
.

While, according to the condition (A.4)(ii), we have

lim
T→∞

log T

TψT (x)
= 0
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with C ′ is a positive constant. So, it is enough then to take ε0 sufficiently large and to
use once again the Borel-Cantelli Lemma to complete the proof and obtain almost
surely ∑

n≥1

P

(∣∣∣∣∣
n∑
k=1

∆T,k(x)

∣∣∣∣∣ > TψT (x)ε0

√
log T

TψT (x)

)
<∞

Corollary 4.4.1. Under assumptions (A.1)(iii) and (A.3), we have

∃C > 0,
∑
n≥1

P
(
F̂D(x) ≤ C

)
<∞.

Proof of Corollary 4.4.1

Assume that assumptions (A.1)(iii) and (A.3) are satisfied, there exists 0 < C < C
′
<

∞. Then, we have for any x ∈ H

0 < C

∫ T

0

P(Xt ∈ B(x, at)/℘t−1)dt∫ T

0

φt(x, at)dt

≤ FD(x) ≤ |F̂D(x)− FD(x)|+ F̂D(x).

Recall that we already consider in the assumptions the writing

ϕT (x) =

∫ T

0

φt(x, at)dt,

so, the previous inequality can be reformulated as shown below

C

ϕT (x)

∫ T

0

P(Xt ∈ B(x, at)/℘t−1)dt− |F̂D(x)− FD(x)| ≤ F̂D(x).

Hence, we can reasonably assume

P
(
F̂D(x) ≤ C

2

)
≤ P

(∣∣∣∣ C

ϕT (x)

∫ T

0

P(Xt ∈ B(x, at)/℘t−1)dt− |F̂D(x)− FD(x)| − C
∣∣∣∣ > C

2

)
≤ P

(
|F̂D(x)− FD(x)| > C

2

)
.
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Consequently, it follows that∑
n≥1

P
(
|F̂D(x)− FD(x)| > C

2

)
<∞

from Lemma 4.4.4’s results, which completes the proof.

Lemma 4.4.5. (Laib and Louani, 2010) Assume that conditions (A.1) and (A.3) hold
true. Then, we have

F̂D(x)− 1 = Oa.s

((
log T

TψT (x)

)1/2
)

+Oa.s(1).

Proof of Lemma 4.4.5

Observe that we can write for each x ∈ H the following decomposition

F̂D(x)− 1 = (F̂D(x)− FD(x)) + (FD(x)− 1)

= FD,1(x) + FD,2(x). (4.15)

Where

FD,1(x) =
1

TψT (x)

∫ T

0

(L1,t (x)− E [L1,t (x) /℘t−1]) dt,

FD,2(x) =
1

TψT (x)

∫ T

0

E [L1,t (x) /℘t−1] dt− 1.

So, to prove this lemma, we will argue these two terms as follows:

• To handle the first term FD,1, we start by taking into consideration that FD,1(x) =

1

TψT (x)

n∑
k=1

∆T,k(x) where (∆T,k(x)) is an ℘t−1 triangular array of martingale

differences. Considering now the definition of FD,1 and by keeping in mind the
ratings of Lemma 4.4.4 and using the same reasoning, it’s obvious to conclude
that this term converges almost surely to zero as T goes to infinity and we write

FD,1(x) = Oa.s

((
log T

TψT (x)

)1/2
)

= Oa.s (1) . (4.16)
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• Next, for the second one FD,2, assuming that the hypotheses (A.1)(ii) and (A.3)
are verified, when it is easy to see below that we have

E [L1,t(x)/℘t−1] ≤ CP(Xt ∈ B(x, at)/℘t−1)

≤ Cφt(x, at).

Then, in view of the last inequality and by a simple manipulation, we thus get

FD,2(x) + 1 =
1

TψT (x)

∫ T

0

E [L1,t (x) /℘t−1] dt

≤ C

TψT (x)

∫ T

0

φt(x, at)dt.

So, by assumption (A.1)(iii), we can prove very simply that:

FD,2(x) = Oa.s(1) as T →∞. (4.17)

Consequently, Lemma 4.4.5 can be deduced from the decomposition (4.15) and the
statements (4.16), (4.17). Therefore, the proof is readily achieved.
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Conclusion and Prospects

Conclusion

During this work, researchers are interested in studying the asymptotic proper-
ties of conditional nonparametric models related to recursive kernel approach, and
thereafter assume that the sample we study consists of functional ergodic observations.

• To make the work easier to read, Chapter 1 has recalled the necessary key
concepts and notions related to statistics on incomplete data and other properties
needed for the study. In Chapter 2, 3 and 4, the interest has been in the first
time, the presentation of new estimator of the conditional distribution function
based on the recursive method, in addition to a generalization of this result in
continuous time case. We have examined in the second time the problem of
estimating the conditional mode function by the recursive kernel method for
a sample consisting of variables and that the variable of interest is randomly
censored on the right. Fortunately, we have conducted asymptotic normality
results as well as almost sure convergence with rates of the estimators.

• Complementary to this work, we have applied these theories to simulated data to
test the numerical behavior of the estimators and confirm our theoretical result
for an infinite sample size and different censoring rates that measure the degree
to which the data are randomly censored on the right. Thus, the estimators are
shown to perform poorly in terms of mean square error (MSE) as we increase the
percentage of censoring. This indicates that censorship has a significant impact
on estimates even in case of increasing the sample size, this will not improve the
performance of the methodology.
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Prospects

Work in collaboration with Pr. T. Guendouzi and Dr. F. Benziadi has already
done on the recursive estimation of some conditional models for right-censored data.
At the end of this satisfying work, here are some research perspectives and future
challenges on the continuity of this thesis.

Extension of chapters 3 to a truncated response variable and other types

• Following the results concerning incomplete and dependent data, we can think
in our future short-term research to determine the asymptotic properties of some
estimators in the case where the variable of interest Y is randomly left-truncated.
To our knowledge, this is the least discussed case in the literature and we are
currently working on this topic.

• It would also be interesting to think that it is possible to extend our results in
the presence of other types of incomplete data (left-censored, interval, LTRC,
the mixed model,. . . ). Even though this class of data is of high relevance for
practical problems, it is still rarely applied in the empirical literature.

• Subsequently, we would like to combine our strengths to extend our work to the
case where both variables X and Y are assumed to be incomplete.

Semi-parametric study of certain model in functional context

Another line of research that I am particularly interested in and would like to invest
myself in future research, is to study the estimation of these models in a semi-parametric
context (the single index domain, in particular). The mentioned models generally
depend on one or more parameters as well as a link function to be estimated. Then, as
an extension of some existent contributions, the idea would be to propose a recursive
estimator of the desired function next to a one for the parameter θ. Indeed, one of
the popular methods today that serves the required topic is the recursive SIR (Sliced
Inverse Regression).



Reminder of some tools

We recall here without demonstration some basic results, used in the proofs of the
achieved results in this thesis.

Theorem 4.4.1. (Hölder’s Inequality for Integrals) Let p > 1 and
1

p
+

1

q
= 1. If f

and g are real functions defined on [a, b] and if |f |p, |g|q are integrable functions on
[a, b], then ∫ b

a

|f(t)g(t)|dt ≤
{∫ b

a

|f(t)|pdt
}1/p{∫ b

a

|g(t)|qdt
}1/q

,

with equality holding if and only if C1|f(t)|p = C2|g(t)|q almost everywhere, where C1

and C2 are constants.

Theorem 4.4.2. (Minkowski’s Inequality) Let a, b ∈ T (T is a subset of the reals)
and p > 1. For rd-continuous f, g : [a, b]→ R, we have{∫ b

a

|(f + g)(t)|pdt
}1/p

≤
{∫ b

a

|f(t)|pdt
}1/p

+

{∫ b

a

|g(t)|pdt
}1/p

.

Theorem 4.4.3. (Jensen’s Inequality) Let a, b ∈ T and c, d ∈ R. Suppose g : [a, b]→
(c, d) is rd-continuous and F : (c, d)→ R is convex. Then

F

(∫ b
a
g(t)dt

b− a

)
≤
∫ b
a
F (g(t))dt

b− a
.

Theorem 4.4.4. (Markov’s Inequality) Let X be a non-negative random variable.
Then, for any a > 0

P [X ≥ a] ≤ E(X)

a
.
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Theorem 4.4.5. (Lindeberg Condition) Suppose (Xnk) is a triangular array with

Zn =
n∑
k=1

Xnk and s2
n = var(Zn). If the Lindeberg condition holds for every ε > 0,

s−2
n

n∑
k=1

E
[
X2
nkI(|Xnk|≥εsn)

]
→ 0, as n→∞.

Then, Zn/sn
d−→ N (0, 1).

Lemma 4.4.6. (Borel-Cantelli Lemma) Let {An} be a sequence of events such that
∞∑
n=1

P(An) <∞. Then, almost surely, only finitely many An’s will occur.

Characterization of an Ergodic Application

Corollary 4.4.2. Let (Ω,B, µ) be a probability space and T : Ω −→ Ω be a measure
preserving transformation, then we have for n→∞,

T is ergodic⇔ ∀A,B ∈ B, 1

n

n−1∑
k=0

µ(T−kA ∩B)→ µ(A)µ(B).



Recursive estimation of nonparametric models for 

functional ergodic data 

The main inspirational theme for this work is based on building recursive estimators for 

nonparametric conditional models, extending the works done previously to the issues recently 

discussed in nonparametric statistics, such as: functional ergodic context and the survival data 

analysis. Therefore, the main model considered here is the conditional distribution function 

and its derivatives of a scalar response variable Y given a random variable X taking its values 

in semi-metric space. The thesis uses appropriate statistical methodologies and theories to 

manage basic issues related to the possible prevalence of outliers and incomplete observations 

in the sample. Given the power of the recursive method, we continue to ask reasonable 

question of whether this method, proposed for evaluating previous models in complete case, 

can be considered a useful one and remains a viable alternative if data are incomplete. 

Estimation récursive de modèles non paramétriques pour 

des données ergodiques fonctionnelles 

Le thème principal d'inspiration de ce travail est basé sur la construction des estimateurs 

récursifs pour des modèles conditionnels non paramétriques, en étendant les travaux réalisés 

précédemment aux questions récemment discutées en statistique non paramétrique, telles que: 

le contexte ergodique fonctionnel et l'analyse des données de survie. Par conséquent, le 

modèle principal considéré ici est la fonction de distribution conditionnelle et ses dérivées 

d'une variable réponse scalaire Y étant donné une variable aléatoire X prenant ses valeurs 

dans un espace semi-métrique. La thèse utilise des méthodologies et des théories statistiques 

appropriées pour gérer les problèmes de base liés à la prévalence possible de valeurs 

aberrantes et d'observations incomplètes dans l'échantillon. Compte tenu de la puissance de la 

méthode récursive, nous continuons à poser la question raisonnable de savoir si cette 

méthode, proposée pour évaluer les modèles précédents dans le cas complet, peut être 

considérée comme utile et reste une alternative viable si les données sont incomplètes. 

 التقدیر التكراري للنماذج اللامعلمیة للبیانات الترابطیة الوظیفیة

، وتوسیع الأعمال ودیة للنماذج الشرطیة اللامعلمیةیعتمد الموضوع الرئیسي الملھم لھذا العمل على بناء المقدرات الع

ابطي وتحلیل السیاق الوظیفي التر: ، مثلمؤخرًا في الإحصائیات اللامعلمیةالمنجزة سابقًا إلى القضایا التي تمت مناقشتھا 

ابة ا من متغیر الاستج، فإن النموذج الرئیسي الذي تم النظر فیھ ھنا ھو دالة التوزیع الشرطي ومشتقاتھلذلك. بیانات البقاء

تستخدم الأطروحة المنھجیات والنظریات الإحصائیة . ةیأخذ قیمھ في مساحة شبھ متری العددیة نظرًا لمتغیر عشوائي

فنظرًا . القضایا الأساسیة المتعلقة بالانتشار المحتمل للقیم المتطرفة والملاحظات غیر المكتملة في العینة دارةالمناسبة لا

حالة اللعودیة، واصلنا طرح سؤال معقول عما إذا كانت ھذه الطریقة، المقترحة لتقییم النماذج السابقة في لقوة الطریقة ا

.كاملة، یمكن اعتبارھا مفیدة وتظل بدیلاً قابلاً للتطبیق إذا كانت البیانات غیر كاملةال   
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