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Abstract

In this thesis, we analyze the impatient behaviour in different queueing systems due

to different factors including server state, quality of service, waiting time, etc. Firstly,

we obtain the steady-state probabilities for an M/M/2/N queueing system with two

heterogeneous servers, feedback, vacation, working vacation, balking, reneging which

depends on server state and retention of reneged customers, using supplementary vari-

able and recursive techniques. Secondly, we use the recursive method to establish the

solution of an infinite capacity queueing system with differentiated vacations, vaca-

tion interruption, balking, reneging during the busy period and retention of reneged

customers. Thirdly, we analyze the impatient behavior (reneging), the impact of re-

tention of reneged customers and feedback in an M/M/1 queueing system with single

vacation and waiting server, MX/M/1 with waiting server and K-variant vacations,

MX/M/c with K-variant working vacations as well as MX/M/c with waiting servers

and both single multiple vacation policies. We establish the stationary analysis for

these queueing systems using the probability generating function. In addition, we de-

rive useful performance measures and present the economic analysis of the different

models presented in this thesis. In addition, we study the optimization of the fourth

and sixth queueing systems using the PSO and QFSM methods.

Keywords:

Queueing systems, impatient customers, balking, reneging, stability.
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Résumé

Dans cette thèse nous analysons le comportement d’impatience dans différents sys-

tèmes de files d’attente, due aux différents facteurs notamment l’état de serveur, qual-

ité de service, le temps d’attente, etc. Dans un premier lieu, nous obtenons les prob-

abilités d’état stable pour un système de file d’attente M/M/2/N avec deux serveurs

hétérogènes, feedback, vacances, service pendant les vacances, dérobade, abandon

qui dépendent de l’état du serveur et rétention des clients abandonnés, en utilisant

la méthode de variable supplémentaire et la récursivité. En second lieu, nous util-

isons la méthode récursive afin d’établir la solution d’un système de file d’attente de

capacité infinie avec des vacances différentiées, interruption de vacances, dérobade,

abandon pendant la période d’occupation et rétention des clients abandonnés. En

troisième lieu, nous analysons le comportement d’impatience (abandon), l’impact des

rétentions et du feedback dans les systèmes de files d’attente M/M/1 avec vacance

unique, MX/M/1 avec K vacances consécutives, MX/M/c avec K vacances consécu-

tives et services pendant les vacances, MX/M/c avec vacances uniques et multiples, où

les serveurs dans le premier, deuxième et quatrième systèmes sont autorisés à prendre

des vacances chaque fois que le système est vide après une période d’attente aléatoire .

Nous établissons l’analyse stationnaire pour ces systèmes de files d’attente en utilisant

la fonction génératrice des probabilités. En outre, Nous dérivons importantes mesures

de performance et présentons l’analyse économique des différents modèles présentés

dans cette thèse. En outre, nous étudions dans cette thèse l’optimisation du quatrième,

et sixième système de files d’attente en utilisant les méthodes PSO et QFSM.

Mots clés:

Systèmes de files d’attente, clients impatients, dérobade, abandon, stabilité.
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Chapter 1

Introduction

Queueing theory is an prominent branch of mathematics with applied probability,

calculus, complex analysis, statistical distribution, matrix theory, etc. This theory is

a tool for analyzing various components of a queueing system and evaluating mathe-

matical results for various performance measures. The results of the queueing theory

are necessary to obtain the characteristics of the system and to evaluate the effect of

the modifications of the model. It helps to provide the vital information required by

a decision maker by anticipating various queueing features, such as the mean waiting

time, the mean number of customers in the queue, etc.

Queueing systems with impatient customers (balking and reneging) have been the

subject of many studies over the last three decades. The analysis of these models has

emerged as an significant area of queueing theory. These systems have wide applica-

bility in many real life situations as telecommunication systems, computer networks,

production and manufacturing systems, aircraft waiting for landing at a busy airport

and other stochastic systems.

The objective of this thesis is to study different queueing systems with impatient

customers wherein these later tend to leave the queue for different reasons including

the temporary unavailability of the server (being in vacation period) for a certain pe-

riod of time and other reasons associated with dissatisfaction of the customers with
the service time. This type of abandonment is visible not only in human queue situ-

ations but also in many practical real-world systems including call centers, computer

and telecommunication systems, production and manufacturing industries, and so on.

The thesis contains a detailed analysis of the stochastic processes underlying these

models.
The remainder of this chapter is organized as follows: In Section 1.1, we provide a

literature review on impatient customers in queueing models. In Sections 1.2 and 1.3,

1



1.1 Impatient customers in queueing models 2

we give a fairly broad set of results on vacation queues and customers’s impatience in

vacation queueing systems, respectively. Then, Section 1.4 we present different solu-

tion methods for queueing models with impatient customers and/or vacation. Section

1.5 is dedicated to presented the concept of feedback queues. Finally, we present the

contribution and outline of the thesis in Sections 1.6 and 1.7, respectively.

1.1 Impatient customers in queueing models

1.1.1 Impatient behaviour

The main objective of the study of queueing systems with impatient customers (irrita-

tion/dislike with everything causing delay) is to understand the real-world situations

as well as possible. Thus, the impatient customer acts are involved in the analysis

of queueing systems to model reality accurately. To characterize impatient customer

behavior, there are two terminologies employed in queueing system, that is, balking,

defined as deciding not to join the queue at all, and reneging, defined as joining the

queue but leaving without being served. Furthermore, there exists another term as-

sociated with the act of impatience, that is retrial, defined as join orbit (the virtual

pool of customers) after balking or reneging and repeats its request after random pe-

riod of time. The analysis of impatient behaviour in queueing theory is potentially

very valuable research area as diverse real situations in important industries and ser-

vice systems can be formulated as queueing systems with impatient customers. In this

chapter we are limited to some which have been the basis of diverse research results

in the literature while focusing on those presented in this thesis, namely, balking and

reneging.

− Balking: The customer faces the decision to join the queue or not when the server

is not inactive. The principal factor that leads the customer to decide whether or not

to join the system is the waiting time before he experiences the service. Nevertheless,

the customer always makes his decision according to the length of the queue since

information on the waiting time is imperceptible.

− Reneging: A customers may give up after a waiting time but do not leave on

arrival if the queues size exceeds a certain number. On the other hand, a customers

who has joined the queue may decide to leave the system if it seems that the time spent

can exceed the maximum waiting time T (threshold value) available to him.

− Retrial: The customer who may balk at interning the system or renege from it
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may join the virtual customer pool, called orbit, and repeat its request after a random

period of time. The probability that either balked and reneged customers will join the

orbit may depend on the number of customers in service. Indeed, queueing systems

with repeated attempts occur in different practical situations including telephone sys-

tems, retrial shopping queue, random access protocols in digital communication net-

works, priority queues computer systems and communication systems, etc.

1.1.2 Literature Review

1.1.2.1 On balking behaviour

During the past decades, notable research works on balked customers in queueing sys-

tems have been done due to their wide application in real-life situations such as real-

time telecommunication, computer networks with packet loss, hospital emergency

rooms’ handling of the critical patients and perishable goods storage inventory sys-

tems, etc. A body of pioneering researches within the queueing systems literature

which consider the balking feature include Haight (1957), Finch (1959), Haight (1960),

Ancker and Gafarian (1963b), Singh (1970), and Yechiali (1971). Later, Kumar et al.

(1993) obtained the transient solution for the system size of anM/M/1 queueing model

where balking occurs when the system size equals or exceeds a certain threshold value.

Later, Liu and Kulkarni (2006) presented the explicit solution of the steady state equa-

tion for a M/PH/1 queue with workload dependent balking by reducing the integral

equation of the steady state workload distribution to a differential equation with con-

stant coefficients for Phase-type service time distribution. Liu and Kulkarni (2008b)

extended the work in Liu and Kulkarni (2006) by considering the busy period analysis

for M/PH/1 queues with workload dependent balking. They developed an alterna-

tive method to study the first passage time in this queue via fluid models. Lozano

and Moreno (2008) carried out the economic analysis of an Geo/Geo/1 with finite and

infinite buffer queueing system for two variants balking scenarios which are the con-

stant and discouraged rate policies, authors proved the ergodicity condition and ob-

tained the closed-form expression for the stationary distribution of the system size.

Then, Manoharan and Jose (2011) dealt with a single-server Markovian queueing sys-

tem with customers’ impatience in the form of balking. They determined the mean

and variance associated to the stationary distribution of the system size and discussed

the maximum likelihood estimation of the balking parameter. Goswami (2014) gave
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an analysis of the multi-server Markovain queueing system with balking. The positive

recurrence conditions of the Geo/Geo/m andM/M/m queues has been given. Recently,

Wang et al. (2018) discussed the equilibrium strategies in infinite space single server

Markovian queue with a pay-for-priority option and balking.

1.1.2.2 On reneging behaviour

There is a board literature in queueing theory which studies the problems of reneging.

The pioneering research papers on the subject include Haight (1959), Finch (1960),

Daley (1965), Stanford (1979), Boxma and de Waal (1994), Garnett et. (2002), Choi et

al. (2004), and Choudhury (2008). Since then, abundant literature has been given in

different queues with reneging. Xiong et al. (2008) dealt with an M/G/1 queueing sys-

tem with deterministic reneging. Then, Xiong and Altiok (2009) extended the paper

to a M/G/n queueing model. The infinite space Markovian single server queueing sys-

tem with pre-emptive priority and Poisson reneging has been addressed in Nasrallah

(2009). Perel and Yechiali (2010) considered different Markovian queueing models,

namely, M/M/1, M/M/c and M/M/∞ queues in fast and slow phases Markovian ran-

dom environment, with impatient customers. After that, Kapodistria (2011) treated

single and multi-server queueing models with synchronized reneging. Later, Singh et

al. (2016) investigated the study of finite capacity and finite populationM/M/1/K and

M/M/1/K/L queues at which the server works in fast and slow random environments,

depending on the status of service system. In this paper, authors considered reneging

if the server does not change its state before the impatience timer expires. For more

details on reneging behaviour in queueing system, excellent survey on the subject can

be found in Ward (2012).

1.1.2.3 On balking and reneging behaviours

Balking and reneging together in the queueing systems have been discussed by many

researchers, the pioneering works on the topic are given by Ancker and Gafarian

(1963a,1963b), Rao (1965,1967), Montazer-Haghighi et al. (1986), Abou-El-Ata (1991),

and Jain and Singh (2002). Later, the M/M/c/N queueing system with balking and

reneging concepts was analyzed by Abou-El-Ata and Hariri (1992) by giving an ex-

plicit form of the steady state distribution of the number of units in the system and the

expected number of units in both the system and queue. In Wang and Chang (2002),
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authors focused on the cost analysis of an finite M/M/R queue with balking, reneg-

ing and server breakdowns. After that, Liu and Kulkarni (2008a) presented the exact

analysis and approximations for aM/G/s queueing system. Shin and Choo (2009) con-

sidered the infinite space multi-server Markovian queue with balking, reneging and

retrials. Al-Seedy et al. (2009) gave the analysis of a multi-server Markovian queue-

ing model with balking and reneging, where a customer has a constant probability of

balking independent of the queue size while he may renege with regard to negative

exponential distribution. Then, Choudhury and Medhi (2011c) dealt with balking and

reneging behaviours in Markovian multi-server queueing system. Ammar et al. (2012)

obtained the transient solution of the M/M/1/N queueing system with discouraged

arrivals and reneging. Later, Ammar et al. (2013) considered the busy period study

of a M/M/1 queueing system with balked and reneged customers. The literature on

balking and reneging is extensive, we limit the reference body to the most important

research works on the subject by refereing to Gupta et al. (2008,2009), Wu and Ke

(2010), Choudhury and Medhi (2011a,2011b), and references therein.

1.1.2.4 On retention of reneged customers

Customer’s impatience leads to loss of potential customers and has a very bad effect

on the revenue generation of a firm. Thus, many firms employ various strategies to

retain a reneging customer and they manage to do it with some probability. For that

reason, the concept of customer retention assumes a great importance for the busi-

ness management. Customer retention is the key issue in the organizations facing the

problem of customer’s impatience. Firms are employing a number of customer reten-

tion strategies to maintain their businesses. An impatient customer (due to reneging)

may be convinced to stay in service system for his service by utilizing certain convict-

ing mechanisms, like increasing the service rates or adding a supplementary service

channels in the system Bouchentouf et al. (2019).

Although many research papers have been dealt with queueing models with impa-

tience, while literature on customers retention is limited. Basic idea of retention of re-

neged customers has been developed by Kumar and Sharma (2012a,2012b). Then, Ku-

mar and Sharma (2013) considered a finite capacity multi-server queueing model with

reneging and retention of reneged customers. This work has been extended to a gen-

eral case, where Kumar (2013) incorporated the balking behaviour. Then, Bouchen-

touf et al. (2014) dealt with heterogeneous two server queueing model with balking,
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reneging and retention of reneged customers. Later, Madheswari et al. (2016) dis-

cussed the retention mechanism of reneged customers for a retrial queueing system

with impatience. Yang and Wu (2017) considered the retention of reneged customers

in a finite-capacity Markovian queueing system with working breakdowns. Recently,

Kumar and Sharma (2018a) presented the transient analysis of an infinite buffer multi-

server queuing system with balking, reneging and retention of reneged customers.

More papers on retention of reneging can be found in Kumar (2016), Som and Seta

(2017), Laxmi and Kassahun (2017), and Kumar and Sharma (2018b).

1.2 Vacation queues

In the contemporary world, competition between service providers is tough enough.

Thus, to survive, service systems must be managed efficiently and economically. The

demand for service varies predominantly wherein there may be periods of low flow

of customers. During such period, it may not be economical from the system point

of view to keep inactive servers in the system. On the other hand, no system can

afford to lose its customers. It is therefore necessary to find a balance between the

two uttermost situations. It is from this point that the study of queueing systems with

vacation and working vacation has been taken into consideration. In addition, other

situations can lead to server vacation including system maintenance, system failure,

resource sharing, and so on.

1.2.1 Different types of vacation policies

Various kind of vacation policies has been seen in the literature:

− Single vacation queueing models: The server goes on vacation at the end of each

busy period and returns immediately after the vacation period is over, even if the sys-

tem is empty at that time.

− Multiple vacation queueing models: The server takes a sequence of vacations

until he finds the system nonempty at a vacation completion instant.

−Working vacation queues: The server works continuously in the this period with

lower rate.
− Gated vacation queues: The server places a gate behind the last waiting customer

and serves only the ones who are within the gate according to certain rules.

− Limited service discipline: The server goes on vacation after serving K consecu-



1.2 Vacation queues 7

tive customers or after a time length t or if he is idle.

− Exhaustive service discipline: The server is serving customers until the system is

empty, after which he takes a vacation of a random length of time.

− Differentiated vacation queues: The server may takes two types of vacation, the

first one is taken after the server has finished serving at least one customer and the

second type is taken when the server has just returned from the previous vacation to

find an empty space.

− K-variant vacation queues: At the vacation completion instant, if there exist some

customers in the queue, the server switches to busy period, otherwise, he is permitted

to take K vacations sequentially. When the K consecutive vacations are complete, the

server returns to the busy period and stay there till the arriving of new customers.

1.2.2 Literature review

Vacation queueing systems are that models at which the server may become unavail-

able for a random period of time when there are no waiting customers in the queue

at a service completion instant. The idea of server vacation was proposed at the first

time by Miller (1964) in his Phd thesis. In the past four decades, these queueing mod-

els have been well described and successfully applied in many areas such as com-

puter and communication network systems, flexible manufacturing systems, service

systems, and so forth. Several excellent surveys, monographs and books on the subject

have been done by Doshi (1986), Takagi (1991,1993), Tian and Zhang (2006), Ke et al.

(2010), Upadhyaya (2016), and references therein.

The literature on queueing models with vacation is abundant. In what follows, we

are limited to some which have been the basis of various research results including

those presented in this thesis.

On single and multiple vacation queues

Single and multiple vacation queueing models have attracted a considerable attention

of many researchers. Levy and Yechiali (1975) considered the vacation time for some

additional work and supposed that the idle time of the server is not completely lost.

In their paper, authors gave the mean queue length and the Laplace transform of the

waiting time of an arbitrary arrival inM/G/1 queueing model. Then, Levy and Yechiali

(1976) analyzed an infinite-buffer multi-server Markovian queueing system with mul-
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tiple and single asynchronous vacation policies. An M/G/1 queueing model with va-

cation times has been studied by Van der Duyn Schouten (1978). Fuhrmann (1984)

presented a note on theM/G/1 queue with server vacations. Later, Baba (1986) treated

the M/G/1 queue with group arrival and vacation time, he obtained the steady state

distribution of the queue size at an arbitrary time. Servi (1986) dealt with vacation

times in an D/G/1 queueing model. Then, Kella and Yechiali (1988) gave the analy-

sis for the M/G/1 queueing system with the preemptive and non-preemptive priority

regimes under single and multiple server vacations. AnGI/M/1 queue with exhaustive

service and multiple exponential vacation were considered in Tian (1989). Chatterjee

and Mukherjee (1990) studied a GI/M/1 queue with multiple vacation policy. Kao and

Narayanan (1991) dealt with an M/M/N queueing model with asynchronous multi-

ple vacation policies. Later, Afthab Begum and Nadarajan (1997) studied an M/M/s

queueing system with multiple vacation at which at least r servers should be always

available in the system whatever busy or idle for service and only the remaining s − r
servers are permitted to go for vacation, when the there are no customers waiting in

the queue. After that, Alfa (2003) presented the analysis of a single server vacation

queueing models with single arrivals and non-batch service. Zhang and Tian (2003)

discussed a multi-server M/M/c queueing model with a single and multiple vacation

policies for some idle servers. They obtained the stationary distribution of the queue-

ing systems. In addition, they established conditional stochastic decomposition prop-

erties for the waiting time and the queue length given that all servers are busy. Re-

cently, Saffer and Yue (2015) considered a M/G/1 multiple vacation queueing model

with balking for a class of disciplines. Then, Ke et al. (2019) analyzed an M/M/c

balking retrial queueing system with both single and multiple vacation policies.

On working vacation queues

In the classical vacation queues, the basis of the research is the supposition that during

vacation period, the server completely stops a service. Nevertheless, there are many

situations in which the server does not remain completely idle during the vacation but

provides a service to the waiting customers at a lower rate. The idea of this concept

was first used by Servi and Finn (2002), where they studied anM/M/1 queueing model

with multiple working vacation policy. Since then, the studies on this type of vacation

have received an increasing interest. Research papers on single working vacation poli-

cies are extensive, the most important papers given on the subject include Wu and
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Takagi (2006), Li and Tian (2008), Lin and Ke (2009), and Zhang and Hou (2012).

Analyses of multiple working vacation queueing models showed a significant interest,

some preeminent articles include Baba (2005), Li et al. (2007), Baba (2012), Laxmi et

al. (2013b), Selvaraju and Goswami (2013), and Yu et al. (2017).

On K-variant working vacation queues

Variant of multiple vacation policy is relatively recent compared to the vacation types

presented above at which a server is allowed to take a certain fixed number of consecu-

tive vacations, if the system remains empty at the end of a vacation. Literature related

to this kind of vacation can be found in Zhang and Tian (2001), Ke (2007), Ke et al.

(2010), Wang et al. (2011), Yue et al. (2014), and Laxmi and Rajesh (2016).

On differentiated vacation queues

Differentiated vacation models can be applied in hospital emergency room operation

where a type 1 vacation is used to set up the room for the next wave of patients, getting

the equipment ready and performing any cleanups and sterilization. Similarly, a type

2 vacation can be used to give the emergency room personnel some actual rest, given

that the necessary cleanup and setup preparation for the room have been done.

The concept of queueing system with differentiated vacations was initiated by Ibe

and Isijola (2014). Then, Isijola and Ibe (2014) extended their work by considering va-

cation interruption. Further, Ibe and Isijola (2015) considered single server Markovian

queueing model with differentiated multiple vacations and vacation-dependent ser-

vice rates. Later, the model given in Ibe and Isijola (2014) were extended by Gupta et

al. (2016), authors considered a deterministic service time. Recently, Vijayashree and

Janani (2018) determined the time-dependent result for an M/M/1 queueing system

with differentiated vacations.

On vacation queues with waiting server

Vacation queueing models with waiting server are seen in many real-life situations

including postoffice, banks, etc, where the server waits a certain period of time before

taking a vacation even though the system is empty.

The concept of waiting server was introduced by Boxma et al. (2002), where they

considered a M/G/1 queueing model with waiting server under single and multiple
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vacation policies. Yechiali (2004) generalized this study to the case when customers

arrive in batches of random size (MX/G/1 queue). Other references on this subject

are found in Padmavathy et al. (2011), Sudhesh and Azhagappan (2016), and Suranga

Sampath and Jicheng (2018).

1.3 On customers’ impatience in vacation queues

Eminent research papers have been done on different vacation queueing systems with

impatient customers. In what follows, we cite the most resent works. Yue et al. (2006)

presented the analysis of a finite-buffer multi-server Markovian queueing model with

balking, reneging and synchronous vacations of partial servers. The impatient be-

haviour of the M/M/1 and M/G/1 queueing models with waiting server timer and

server vacation were analyzed by Padmavathy et al. (2011). Then, Yue et al. (2012)

dealt with customers’ impatience in an M/M/1 queue with working vacations. A

discrete-time single server queue with balking and multiple working vacations was

discussed in Laxmi et al. (2013). After that, Goswami (2014) presented a study of

balking and reneging in finite-buffer discrete-time single server queue with single

and multiple working vacations. Goswami and Selvaraju (2016) considered a PH/M/c

queueing system with multiple working vacations and impatient customers. Later, the

analysis of batch arrival queue with variant working vacations and reneging were done

in Laxmi and Rajesh (2017). Recently, Suranga Sampath and Jicheng (2018) studied the

behavior of the impatient customers in an M/M/1 queue with waiting server subject

to differentiated vacations policy. In addition, Azhagappan (2018) analyzed the tran-

sient behaviour of an M/M/1 queue with working vacation, variant reneging behavior

and waiting server. For recent research papers on customers’ impatience in vacation

queues with waiting servers, we cite Sudhesh and Azhagappan (2016), Ammar (2017),

and Suranga Sampath and Jicheng (2018).

1.4 Solution methods for queueing models with impa-
tient customers and/or vacations

In recent decades, many efforts have focused on the investigation of queueing systems

with impatient customers and/or vacations. In this sense, we mention in particular the

use of
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1.4.1 Recursive method

The recursive method is the most used method in queueing literature. Several authors

employed this technique in their analysis for vacation queueing models, let’s cite for

instance, Chao and Zhao (1998), Chao and Rahman (2006), Ibe and Isijola (2014), and

references therein. The recursive method was also extensively utilized while study-

ing queues with impatience. El-Paoumy and Nabwey (2011) analyzed an M/M/2/N

queueing system with balking function and exponential reneging time of the impa-

tient customer. The steady-state probabilities and some performance measures of the

system in closed-form were presented. Later, Kumar and Sharma (2014) discussed the

M/M/c/N queue with balking and retention of reneged customers, the exact expres-

sions of the steady-state probabilities were obtained. Very recently, Bouchentouf and

Messabihi (2018a,2018b) studied heterogeneous servers Markovian queueing systems

with impatient customers, the system size distribution was obtained, the performance

measures and economic model where carried out.

1.4.2 Matrix analytic method

Matrix analytic method has been successfully applied in the vacation queueing system

with impatience. One of practical advantages of this method is that the elementary

matrix operations may easily be programmed for a high-speed computer. Yue et al.

(2006) presented the optimization study of M/M/1/N queueing system with multiple

vacation of server, balking and reneging. In their work, authors developed the equa-

tions and derived the matrix form solution of the steady state probabilities. Further,

the performance analysis of GI/M/1 queue with working vacations and vacation in-

terruption has been discussed by Li et al. (2008). Later, Ammar et al. (2012) used

the computable matrix technique to derive the transient distribution of the system

length in single-server Markovian queue with discouraged arrivals and reneging. In

addition, Liou (2015) dealt with infinite capacity Markovian queue with a single un-

reliable service station subject to working breakdowns and impatient customers. The

matrix-analytic method has been used to compute the system size probabilities in the

steady-state. Recently, in Afroun et al. (2018), the stationary analysis of a multiple

vacation finite capacity Markovian queueing system with Bernoulli feedback, balking,

reneging and retention of the impatient customers under server breakdown and repair

has been established.



1.4 Solution methods for queueing models with impatient customers and/or
vacations 12

1.4.3 Transform method

This method involves the use of the Laplace-Stieltjes transform and the probability

generating function techniques in the queueing problem analysis. Altman and Yechiali

(2006) presented an analysis of the single and multi-server queueing models (M/M/1,

M/G/1 and M/M/c queues) with impatient customers for both multiple and single va-

cation policies, using the probability generating function (PGF). In Banik et al. (2007),

the Laplace-Stieltjes transform is applied in the analytic analysis and computation of

the GI/M/1/N queueing model with multiple working vacations. Then, an M/M/∞
queueing model with impatient customers has been studied by Altman and Yechiali

(2008), authors obtained various performance measures such as the PGF of the sta-

tionary probabilities and the mean cycle time. Further, Boxma and Prabhu (2011) an-

alyzed an M/G/1 queue with customer impatience and arrival adapted process, they

derived the Laplace-Stieltjes transform of the joint stationary workload and arrival

intensity process. In Yue et al. (2012), the authors considered a single server Marko-

vian queueing system with multiple working vacations and impatient customers. They

gave the probability generating functions of customers number in the system when

the server is in normal busy and working vacation periods. Laxmi and Jyothsna (2013)

presented the analysis of finite buffer renewal input queue with balking and multiple

working vacations. Then, Laxmi and Rajesh (2016) examined a batch arrival infinite-

buffer single server Markovain queueing system under the variant working vacations

policy. The authors derived the probability generating function of the steady-state

probabilities and obtained the closed form expressions of the system size when the

server is in different states. After that, Laxmi and Rajesh (2017) extended their model

given in Laxmi and Rajesh (2016) by including the impatience behavior. They used the

same methodology for the analysis of the system. Recently, Bouchentouf and Yahiaoui

(2017) carried out the stationary analysis of an M/M/1 queue with multiple working

vacations, Bernoulli schedule vacation interruption, feedback, reneging and retention

of reneged customers using the probability generating function.

1.4.4 Supplementary variable technique

The supplementary variable technique introduced by Cox (1955) plays an important

role in the analysis of non-Markovian queueing systems. Many studies are based on

this technique. Baba (1986) considered an MX/G/1 queue with vacation. For the anal-
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ysis, he used the remaining service time for the customers in service and the remain-

ing vacation time for the server on vacation as supplementary variables to derive the

queue size distribution at an arbitrary time. He also determined the waiting time and

busy period distributions. Then, this model were extended by Choudhury (2002) by

considering the elapsed service and vacation times as supplementary variables. The

steady-state behaviour of the queue distribution has been established under single

and multiple vacation policies. Later, Zhang and Hou (2012) carried out the station-

ary analysis of anM/G/1 queueing system under single working vacation policy of the

server. The supplementary variable and the matrix-analytic techniques have been used

to obtain the stationary differential equations and their solutions. Recently, Goswami

(2015) computed the steady state system size distribution at pre-arrival and arbitrary

epochs of an GI/M/1/N queue with balking, reneging and working vacation using the

supplementary variable and recursive methods. Various performance measures of the

model were evaluated.

1.4.5 Embedded Markov chain technique

Embedded Markov chain method is applied in many queueing problems when the dis-

tributions of the inter-arrival time, the service time or the vacation time do not get the

memoryless property. This technique was given for the first time by Kendall (1951)

and it was employed in many research papers, for instance, Chatterjee and Mukherjee

(1990) explored the equilibrium probability distributions of system size at pre-arrival

and at random epochs separately for a GI/M/1 queue with server vacation by applying

the embedded Markov chain technique. In addition, Baba (2005) used this technique

to present serval results such as the steady-state distributions for the number of cus-

tomers in the system at both arrival and arbitrary epochs as well as the sojourn time

for an arbitrary customer of an GI/M/1 queue with multiple working vacations. Af-

terward, Chae et al. (2009) gave the steady-state distributions for customers number

in the system of both GI/M/1 and GI/Geo/1 queues with single working vacations. In

recent time, Laxmi and Jyothsna (2013) investigated the finite-buffer renewal input

queue with balking and multiple working vacation. The system size distributions at

pre-arrival and arbitrary epochs have been obtained by using the embedded Markov

chain and supplementary variable techniques.
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1.4.6 Stochastic decomposition

This technique is very powerful in the study of the queueing models with vacation and

working vacation. Fuhrmann and Cooper (1985) used the stochastic decomposition to

show that the stationary distribution of the number of customers in an M/G/1 queue

with generalized server vacation is a convolution of the distribution functions of two

independent positive random variables, at which one of these is the stationary distri-

bution of the number of customers in an M/G/1 queue without server vacations. In

Shanthikumar (1988), an analytic proof of that result were done for more general sys-

tems which allow bulk customer arrivals and certain variations with reneging, balking,

and in arrival rate depending on the state of the system. Then, Artalejo (1997) devel-

oped the analysis of aM/G/1 queueing model with constant attempts and server vaca-

tions including ergodicity, limiting behaviour, stochastic decomposition and optimal

control. Zhang and Tian (2003) investigated the M/M/c queueing model with vaca-

tions of the servers, the conditional stochastic decomposition property of the queue

length and waiting time in the system were demonstrated. Further, Liu et al. (2007)

gave the stochastic decomposition of an M/M/1 queue with working vacation. Then,

in Li et al. (2009), authors were based on the stochastic decomposition structure of the

queue length and waiting time in the M/G/1 queue with working vacation and used

the embedded Markov chain as well as the matrix analytic techniques to determine the

distribution of the stationary queue length at departure epochs and the distribution of

the waiting time. Later, Selvaraju and Goswami (2013) considered a working vacation

Markovain queueing model with impatient customers. They presented the stochastic

decomposition properties for both single and multiple working vacation cases.

1.5 Queueing models with feedback

The feedback in the queueing systems is the situation when the customers are not sat-

isfied with the initial service due to inappropriate quality of the previous one or when

they are requiring another regular service. In this situation, customers may return to

the system to satisfy their needs. These cases can be observed in super markets, hos-

pital management, post offices, and banks etc. Interesting examples may be found in

computer communication, where the transmission of a protocol data unit can be from

time to time repeated because of occurrence of an error, this mostly arises because of

dissatisfying quality of service. Another example of feedback queue is a rework in in-
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dustrial operations at which units that do not comply with certain specifications are

placed in the production line and are again subject to rework. So, if the service is in-

complete or unsatisfactory, the customer can either leave the system definitively with

some probability or rejoin the end of the queue with a complementary probability.

This is known as Bernoulli feedback.
Takacs (1963) was the first who introduced a queue with feedback, he obtained the

Laplace-Stieltjes transform and the closed-form expressions of the first two moments

of the distribution function of the total time spent in the system by a customer. Since

then, several authors investigated queueing systems subject to feedback. D’Avignon

and Disney (1976) gave the analysis of single server queues with state dependent feed-

back. Later, Choi et al. (1998) investigated a M/M/c retrial queue with geometric loss

and feedback. Later, Santhakumaran and Thangaraj (2000) studied the M/M/1 queue

with impatient and Bernoulli feedback. The study of an M/M/1 feedback queue with

catastrophes have been examined by Thangaraj and Vanitha (2009), the authors de-

rived transient and stationary distributions of the system size by using continued frac-

tions method. Further, Bouchentouf and Belarbi (2013) presented the performance

evaluation of two retrial queueing system with balking and feedback. Then, a cost

analysis and optimization study of an M/M/1/N feedback queue with retention of re-

neged customers have been discussed by Kumer et al. (2014). Furthermore, Ayyappan

and Shyamala (2016) analyzed a single server queueing system with Bernoulli feed-

back and Bernoulli server vacation, random breakdowns, where the customers arrive
in batches according to a Poisson process, the service and vacation times have a gen-

eral distributions, authors obtained the probability generating function of transient

solutions of the system and presented the analysis of the steady state. Recently, Vijay-

alakshmi and Kalidass (2018) considered a Markovian queueing model with geomet-

ric abandonments and Bernoulli feedbacks, they derived the steady state probabilities,

and gave some important performance measures of the system.

1.6 Summary of results established in this thesis

I First Result: Performance and economic study of heterogeneous two-server queue-

ing system with Bernoulli feedback, multiple working vacations and impatient cus-
tomers.

In this work we present a study of heterogeneous two-server queueing system with

Bernoulli feedback, multiple working vacations, balking, reneging and retention of re-
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neged customers, at which the impatience timers of customers in the system depend on

the state of the servers. The current study has a large application in many real world

systems as telecommunication networks, call centers and production-inventory sys-

tems, where the assumption of impatience timers depending on server’s states takes

place, when arriving customers can not have an information about the servers. It is

supposed that the inter-arrival times are i.i.d r.v with cumulative distribution func-

tion A(u), probability density function a(u), u ≥ 0, Laplace-Stieltjes transform (L.S.T.)

A∗($) and mean inter-arrival time 1/λ = −A∗(1)(0), where h(1)(0) is the first derivative

of h($) evaluated at $ = 0. The capacity of the system is taken finite N and the cus-

tomers are served on a FCFS discipline. The considered queueing system consists of

two heterogeneous servers, namely, server 1 and server 2. The service times follow

an exponential distribution with parameters µ1 and µ2, respectively, where µ2 ≤ µ1.

We suppose that once server 2 becomes idle and finds the queue imply, he leaves for

an exponential working vacation with parameter φ. During this period, he serves the

waiting customers at a lower rate than the normal service rate which is assumed to

be exponentially distributed with parameter ν. Then, whenever the working vacation

is finished, if there are customers waiting in the queue, he switches to normal work-

ing level, otherwise he continues the vacation. The server 1 is always available in the

system. Moreover, an external arriving customer who finds i customers in the system

decides either to join the queue with probability bi = 1 − i
N2 or balk with probability

bi = 1 − bi = i
N2 , with b0 = b1 = 1, 0 ≤ bi+1 ≤ bi ≤ 1, 2 ≤ i ≤ N − 1, and bN = 0. Fuhrer,

If i customers are present in the system, one of the (i − 2) waiting customers in the

queue may renege, such that whenever a customer arrives at the system and finds the

server 2 on working vacation (resp. on normal busy period), he activates an impatience

timer T1 (resp. T2,) which is exponentially distributed with parameter ξ1 (resp. ξ2).

If the customer’s service has not started before the customer’s timer expires, the cus-

tomer leaves the queue. So, the customer’s average reneging rate is done by (i − 2)ξ1

(resp. (i − 2)ξ2) when server 2 is on working vacation (resp. on normal busy period),

2 ≤ i ≤ N. We suppose that impatience timers are i.i.d r.v and independent of the

number of waiting customers. Further, each reneged customer may be retained in the

system with some probability α′, and may leave the queue definitively with probabil-

ity α. After getting incomplete or unsatisfactory service either from working vacation

service or normal busy service, with probability β′, a customer may rejoin the end of
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the queue as a Bernoulli feedback customer to receive another regular service. Other-

wise, he leaves the system definitively with probability β, where β′+β = 1. Finally, it is

assumed that the inter-arrival times, service times and vacation times are assumed to
be independent.

Let Ns(t) denote the number of customers in the system at time t. Let I(t) denote

the remaining inter-arrival time at time t for the next arrival.

Let

S(t) =


0, when server 2 is idle during working vacation (WV) period;
1, when server 2 is busy during working vacation (WV) period;
2, when server 2 is busy during normal busy period,

be the state of the system.

We use the supplementary variable and recursive techniques to obtain the steady-

state probabilities of the system following the same method given in Laxmi and Jyoth-

sna (2015) . To get the system length distributions at arbitrary epoch, the differential

difference equations using the remaining inter-arrival time as the supplementary vari-

able are developed.

The joint probabilities are as

πi,0(u,t)du = P(Ns(t) = i,u ≤ I(t) < u + du,S(t) = 0),u ≥ 0, i = 0,1,

πi,j(u,t)du = P(Ns(t) = i,u ≤ I(t) < u + du,S(t) = j),u ≥ 0, j = 1,2,

1 ≤ i ≤N.

Thus

πi,0(u) = lim
t→∞

πi,0(u,t), i = 0,1, πi,j(u) = lim
t→∞

πi,j(u,t), j = 1,2, 1 ≤ i ≤N.

The L.S.T. of the steady-state probabilities are given as

π∗i,0($) =
∫ ∞

0
e−$uπi,0(u)du, i = 0,1, π∗i,j($) =

∫ ∞
0
e−$uπi,j(u)du,

j = 1,2, 1 ≤ i ≤N.

Let πi,j = π∗i,j(0) be the probability of i customers in the system when the server is

in state j at an arbitrary epoch.
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The pre-arrival epoch probabilities are as

π−i,j = lim
t→∞
P(Ns(t) = i,S(t) = j/I(t) = 0)

with π−i,0, i = 0,1 and π−i,j , j = 1,2; 1 ≤ i ≤N.

− The steady-state probabilities of the system are as

πN,1 =
λ
ζN

(
1− N − 1

N 2

)
π−N−1,1,

πi,1 =
(
ζi+1 −φ
ζi

)
πi+1,1 +

λ
ζi

((
1− i − 1

N 2

)
π−i−1,1 −

(
1− i

N 2

)
π−i,1

)
, i =N − 1, ...,3,

π2,1 =
(
ζ3 −φ
ζ2

)
π3,1 +

λ
ζ2

(
π−1,0 +π−1,1 −

(
1− 2

N 2

)
π−2,1

)
,

π1,1 =
(
βµ1

φ+ βν

)
π2,1 −

(
λ

φ+ βν

)
π−1,1,

πN,2 =
φ

θN
πN,1 +

λ
θN

(
1− N − 1

N 2

)
π−N−1,2,

πi,2 =
(
θi+1

θi

)
πi+1,2 +

φ

θi
πi,1 +

λ
θi

((
1− i − 1

N 2

)
π−i−1,2 −

(
1− i

N 2

)
π−i,2

)
, i =N − 1, ...,2,

π1,2 =
µ1

µ2
π2,2 +

φ

βµ2
π1,1 −

λ
βµ2

π−1,2,

π1,0 =
ν
µ1
π2,1 +

µ2

µ1
π2,2 +

λ
βµ1

(
π−0,0 −π

−
1,0

)
,

where

π0,0 = 1−π1,0 −
N∑
i=1

(πi,1 +πi,2).

− Useful system characteristics include:

� The mean number of customers in the system.

Ls = π1,0 +
N∑
i=1

i(πi,1 +πi,2).
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� The mean number of customers waiting for service.

Lq =
N∑
i=2

(i − 2)(π1,1 +πi,2).

� The mean waiting time of customers in the system.

Ws =
Ls
λ′
,where λ′ = λ(1− (πN,1 +πN,2)) is the effective arrival rate.

� The mean rate of joining the system.

Js = λ(π0,0 +π1,0 +π1,1 +π1,2) +
N∑
i=2

λ
(
1− i

N 2

)
(πi,1 +πi,2).

� The probability that server 2 is idle, in working vacation period and in normal busy

period, respectively.

Pidle =
1∑
i=0

πi,0, Pw =
N∑
i=1

πi,1, and Pb =
N∑
i=1

πi,2.

� The average balking rate.

Br =
λ

N 2

N∑
i=1

i(πi,1 +πi,2)

� The average reneging rates during busy period and working vacation period, respec-

tively.

Rren1 = αξ1

N∑
i=2

(i − 2)πi,1 and Rren2 = αξ2

N∑
i=2

(i − 2)πi,2.

� The average retention rates during busy period and working vacation period, respec-

tively.

Rret1 = α′ξ1

N∑
i=2

(i − 2)πi,1 and Rret2 = α′ξ2

N∑
i=2

(i − 2)πi,2.

Based on the steady-state distribution of the system size, explicit performance mea-

sures are derived and a cost model is developed for the costs incurred in the considered

queueing system. Moreover, numerical examples are presented.
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I Second result: Sensitivity analysis of feedback multiple vacation queueing

system with differentiated vacations, vacation interruptions and impatient customers.

In this work, we consider an M/M/1 queueing system with Bernoulli feedback,

multiple vacations, differentiated vacations, vacation interruptions, balking, reneging

and retention of reneged customers. Customers arrive into the system according to a

Poisson process with arrival rate λ, the service time is supposed to be exponentially

distributed with mean 1/µ. The service discipline is FCFS and there is an infinite space

for customers to wait. Two types of vacation are considered: type 1 vacation that may

be taken after a busy period where at least one customer is served, and type 2 vacation

which is taken when the server comes back from any vacation (either a type 1 vacation

or a type 2 vacation) and finds the system empty. The period of a type 1 (resp. type 2)

vacation is assumed to be exponentially distributed with rate φ1 (resp. φ2).

The server’s vacation can be interrupted when the number of customers in the system

reaches n1 (resp. n2) when the server is on type 1 (resp. type 2) vacation. Moreover,

we suppose that n1 > n2, as we desire that the server will be interrupted earlier when

he takes a vacation after zero busy period than when he takes a vacation after having

a non-zero busy period.

Whenever a customer arrives at the system and finds the server busy, he activates an

impatience timer T , exponentially distributed with parameter ξ, if the customer’s ser-

vice has not been completed before the customer’s timer expires, the customer may

leave the system. We suppose that the customers timers are independent and identi-

cally distributed random variables, independent of the size of the queue at that time.

Further, using a certain mechanism, a reneged customer may abandon the system

without getting service with probability α and can be retained in the system with prob-

ability α′, where α +α′ = 1.

A customer who on arrival finds at least one customer in the system, either decides

to join the queue with probability θ or balk with probability θ′, where θ + θ′ = 1.

If the service is incomplete or unsatisfactory, the customer can either leave the system

definitively with probability β or rejoin the end of the queue with probability β′,where

β + β′ = 1.

The steady-state analysis of the system is carried out using a recursive method. Let

L(t) be the number of customers in the system at time t, and J(t) denotes the state of

the server at time t such that
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J(t) =


0, if the server is on busy period;
1, if the server is on type 1 vacation;
2, if the server is on type 2 vacation.

The process {(L(t), J(t)), t ≥ 0} is a continuous-time Markov process with state space

Ω = {(n,0) : n ≥ 1} ∪ {(n,j) : n ≥ 0, j = 1,2}.

Let Pn,j = lim
t→∞

P {L(t) = n, J(t) = j, n ≥ 0, j = 0,2} denote the steady-state probabili-

ties of the system.

− The analytic expressions of the steady-state probabilities are given by

P0,1 =ω1P1,0, where ω1 =
(
βµ+αξ
λ+φ1

)
,

Pk,1 = δ1β
k
1P1,0, k = 1,n1 − 1, where δ1 =

ω1

θ
, and β1 =

θλ
θλ+φ1

, (1.1)

P0,2 =ω2P1,0, where ω2 =
φ1

λ
ω1.

Pk,2 = δ2β
k
2P1,0, k = 1,n2 − 1, where δ2 =

ω2

θ
, β2 =

θλ
θλ+φ2

. (1.2)

Pk,0 =
θλ

βµ+ kαξ

{
(θλ)k−2

k−1∏
i=2

(
1

βµ+ iαξ

)
+ δ1β

k−1
1 + δ2β

k−1
2 + δ1

k−2∑
i=1

(θλ)k−(i+1)

k−1∏
j=i+1

(
βµ+ jαξ

)βi1

+δ2

k−2∑
i=1

(θλ)k−(i+1)

k−1∏
j=i+1

(
βµ+ jαξ

)βi2}P1,0, k = 2,n2 − 1.

(1.3)

Pn2,0 =
θλ

βµ+n2αξ

(
Pn2−1,0 + Pn2−1,1 + Pn2−1,2

)
= A(n2,0)P1,0,

where
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A(n2,0) =
(

θλ
βµ+n2αξ

){
θλ

βµ+ (n2 − 1)αξ

{
(θλ)n2−3

n2−2∏
i=2

(
1

βµ+ iαξ

)
+ δ1β

n2−2
1 + δ2β

n2−2
2

+δ1

n2−3∑
i=1

(θλ)n2−(i+1)

n2−2∏
j=i+1

(
βµ+ jαξ

)βi1 + δ2

n2−3∑
i=1

(θλ)n2−(i+1)

n2−2∏
j=i+1

(
βµ+ jαξ

)βi2}+ δ1β
n2−1
1 + δ2β

n2−1
2

}
.

Pk,0 =
{

(θλ)k−n2

k−n2∏
i=1

(
βµ+ (n2 + i)αξ

)A(n2,0) + δ1

k−n2∑
j=0

(θλ)k−n2−j

k−n2∏
i=j+1

(
βµ+ (n2 + i)αξ

)βn2+j
1

}
P1,0,

k = n2,n1 − 1.

(1.4)

Pk,0 = ΦA(n1,0)P1,0, with Φ =
(θλ)k−n1

k−n1∏
j=1

(
βµ+ (n1 + j)αξ

) , k = n1,n1 + 1, .... (1.5)

where

A(n1,0) =
(

θλ
βµ+n1αξ

){
(θλ)n1−n2−1

n1−n2−1∏
i=1

(
βµ+ (n2 + i)αξ

)A(n2,0)

+δ2

n1−n2−1∑
j=0

(θλ)n1−n2−j−1

n1−n2−1∏
i=j+1

(
βµ+ (n2 + i)αξ

)βn2+j
1 + δ1β

n1−1
1

}
,

and

P1,0 =
1

1 +B1 +B2 +B3 +B4 +B5
,

where
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B1 =
n2−1∑
k=2

θλ
βµ+ kαξ

{
(θλ)k−2

k−1∏
i=2

(
1

βµ+ iαξ

)
+ δ1β

k−1
1 + δ2β

k−1
2

+δ1

k−2∑
i=1

(θλ)k−(i+1)

k−1∏
j=i+1

(
βµ+ jαξ

)βi1 + δ2

k−2∑
i=1

(θλ)k−(i+1)

k−1∏
j=i+1

(
βµ+ jαξ

)βi2},

B2 =
n1−1∑
k=n2

{
(θλ)k−n2

k−n2∏
i=1

(
βµ+ (n2 + i)αξ

)A(n2,0) + δ1

k−n2∑
j=0

(θλ)k−n2−j

k−n2∏
i=j+1

(
βµ+ (n2 + i)αξ

)βn2+j
1

}
,

B3 =
+∞∑
k=n1

(θλ)k−n1

k−n1∏
j=1

(
βµ+ (n1 + j)αξ

)A(n1,0), B4 =ω1 + δ1

n1−1∑
k=1

βk1 , andB5 =ω2 + δ2

n2−1∑
k=1

βk2 .

− Useful performance measures of the system that are of general interest.

� The probability that the server is in busy period.

PB = P1,0 +
n2−1∑
k=2

Pk,0 +
n1−1∑
k=n2

Pk,0 +
+∞∑
k=n1

Pk,0.

� The probability that the server is on vacation.

PV = PV1
+ PV2

=
n1−1∑
k=0

Pk,1 +
n2−1∑
k=0

Pk,2 = 1− PB,

where PV1
and PV2

are the probabilities that the server is on type 1 vacation and type 2

vacation, respectively.

� The average number of customers in the system.

Ls = P1,0 +
n2−1∑
k=2

kPk,0 +
n1−1∑
k=n2

kPk,0 +
+∞∑
k=n1

kPk,0 +
n1−1∑
k=0

kPk,1 +
n2−1∑
k=0

kPk,2.
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� The average number of customers in the queue.

Lq =
n2−1∑
k=2

(k − 1)Pk,0 +
n1−1∑
k=n2

(k − 1)Pk,0 +
+∞∑
k=n1

(k − 1)Pk,0 +
n1−1∑
k=1

kPk,1 +
n2−1∑
k=1

kPk,2.

� The average reneging rate.

Rren = αξ

P1,0 +
n2−1∑
k=2

kPk,0 +
n1−1∑
k=n2

kPk,0 +
+∞∑
k=n1

kPk,0

 .
� The average retention rate.

Rret = α′ξ

P1,0 +
n2−1∑
k=2

kPk,0 +
n1−1∑
k=n2

kPk,0 +
+∞∑
k=n1

kPk,0

 .
� The average balking rate.

Br = θ′λ
(
P1,0 +

n2−1∑
k=2

Pk,0 +
n1−1∑
k=n2

Pk,0 +
+∞∑
k=n1

Pk,0 +
n1−1∑
k=1

Pk,1 +
n2−1∑
k=1

Pk,2

)
.

� The expected number of customers served per unit of time.

Ecs = βµ
(
P1,0 +

n2−1∑
k=2

kPk,0 +
n1−1∑
k=n2

kPk,0 +
+∞∑
k=n1

kPk,0

)
.

Using the steady-state probabilities, we obtained useful performance measures of

the system and developed a cost model. An extensive numerical analysis is done.

IThird result: Performance and economic analysis of Markovian Bernoulli feed-

back queueing system with vacations, waiting server and impatient customers.

In this work, we treat a M/M/1 vacation queueing system with Bernoulli feedback,

waiting server, reneging, and retention of reneged customers, at which once the busy

period ended the server waits a random duration of time before beginning on a vaca-

tion. The impatience timers of customers depend on the server’s states. The analysis

presented has a large application especially when we deal with a human behavior, ex-

amples can be found in post offices, banks, hospitals, etc. Another great scope of this

investigation concerns the supposition that customers may be impatient because of
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state of the server, where the customer may become impatient due to the long wait in

the queue even if the server is present in the system, another example when the cus-

tomer may leave the system during busy period is when he cannot see the server state,

these situations can be found in telecommunication systems, call centers and produc-

tion inventory systems. Consider aM/M/1 vacation queueing model, customers arrive

into the system according to a Poisson process with arrival rate λ, and service time is

assumed to be exponentially distributed with parameter µ. The service discipline is

FCFS and there is infinite space for customers to wait. When the busy period is fin-

ished the server waits a random duration of time before beginning on a vacation. This

waiting duration is exponentially distributed with parameter η. If the server comes

back from a vacation to an empty system he waits passively the first arrival, then he

begins service. Otherwise, if there are customers waiting in the queue at the end of a

vacation, the server starts immediately a busy period. That is single vacation policy.

The period of vacation has an exponential distribution with parameter γ. Whenever a

customer arrives at the system and finds the server on vacation (respectively. busy), he

activates an impatience timer T0 (respectively. T1), which is exponentially distributed

with parameter ξ0 (respectively. ξ1). If the customer’s service has not been completed

before the impatience timer expires, the customer may abandon the queue. We sup-

pose that the customers timers are independent and identically distributed random

variables and independent of the number of waiting customers. Each reneged cus-

tomer may leave the system without getting service with probability α and may be

retained in the system with probability α′ = (1 −α). After completion of each service,

the customer can either leave the system definitively with probability β or return to

the system and join the end of the queue with probability β′, where β + β′ = 1.

Let L(t) be the number of customers in the system at time t, and J(t) denotes the

state of the server at time t such that

J(t) =
{

1, when the server is in a busy period;
0, otherwise.

The process {(L(t); J(t)); t ≥ 0} is a continuous-time Markov process with state space

Ω = {(j,n) : j = 0,1, n = 0,1, ...}.

Let Pj,n = lim
t→∞

P {J(t) = j,L(t) = n}, j = 0,1,n = 0,1, ..., (j,n) ∈ Ω, denote the system

state probabilities.
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− Using the probability generating function (PGF), we get

1. The steady-state probability P0,. :

P0,. =
(
γαξ0 + δ1K0(1)(1−γ)

γK0(1)

)
P0,0. (1.6)

2. The steady-state probability P1,. :

P1,. = e
λ
αξ1

(
γ

λ+ η

(
βµ

αξ1
K1(1) +

η

αξ1
K2(1)

)
−
γ

αξ1
K3(1)

+
βµ+αξ1

λ+ η

(
βµ

αξ1
K1(1) +

η

αξ1
K2(1)

)(
αξ0 − δ1K0(1)
δ2K0(1)

))
P0,0,

(1.7)

where

P0,0 =
{
δ1δ2K0(1) + δ2(αξ0 − δ1K0(1))

γδ2K0(1)
+ e

λ
αξ1

[(
βµ

αξ1
K1(1) +

η

αξ1
K2(1)

)
(
γ

λ+ η
+
(
βµ+αξ1

λ+ η

(
αξ0 − δ1K0(1)
δ2K0(1)

)))
− γ
αξ1
K3(1)

]}−1

,

(1.8)

K0(1) =
∫ 1

0
(1− s)

γ
αξ0
−1
e
− λ
αξ0

s
ds,

K1(1) =
∫ 1

0
s−1s

βµ
αξ1 e

− λs
αξ1 ds, K2(1) =

∫ 1

0
(1− s)−1s

βµ
αξ1 e

− λs
αξ1 ds,

and

K3(1) =
∫ 1

0

(
1− K0(s)

K0(1)

)
s
βµ
αξ1 (1− s)−

( γ
αξ0

+1
)
e
(
λ
αξ0
− λ
αξ1

)
s
ds.

− The performance measures that are of general interest include:

� The probability that the server is in busy period, on vacation, and idle during busy

period, respectively.

PB = P1,., PV = 1− PB, and PI = P1,0.

� The average number of customers in the system when the server is taking vacation.
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E(L0) =
(

λ
γ +αξ0

)
P0,..

� The average number of customers in the system when the server is in busy period.

E(L1) =
(
λ− βµ
αξ1

)
P1,. +

γ

αξ1
E(L0) +

βµ

αξ1(λ+ η)

(
γ +

(βµ+αξ1)(αξ0 − δ1K0(1))
δ2K0(1)

)
P0,0.

� The average number of customers in the system.

E(L) = E(L0) +E(L1).

� The average number of customers in the queue.

E(Lq) = E(L)− (P1,. − P1,0).

� The mean waiting time of a customer in the system.

Ws =
E(L0) +E(L1)

λ
=
E(L)
λ

.

� The expected number of customers served per unit of time.

Ecs = βµ(P1,. − P1,0).

� The average rate of reneging (resp. retention) during vacation period.

Rren0
= αξ0E(L0), Rret0 = (1−α)ξ0E(L0).

� The average rate of reneging (resp. retention) during busy period.

Rren1
= αξ1E(L1), Rret1 = (1−α)ξ1E(L1).

� The average rate of abandonment of a customer due to impatience.

Rren = Rren0
+Rren1

.

� The average rate of retention of impatient customers.

Rret = Rret0 +Rret1 .

Based on the steady-state probabilities of the queueing model, explicit expressions

of useful measures of effectiveness as well as a cost model are derived. The impact
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of diverse parameters on the performance measures of the system has been shown.

Further, an economic analysis of the model is carried out.

I Fourth result: Single server batch arrival Bernoulli feedback queueing system

with waiting server, K-variant vacations and impatient customers.

This work deals with a M/M/1 queueing system where customers arrive in batches

according to a Poisson process with rate λ. Let X be the batch size random variable

of the arrival with probability mass function P (X = l) = bl , l = 1,2, · · ·. The service

time is supposed to be exponentially distributed with mean 1/µ. The customers are

served on FCFS discipline. Once the busy period is ended the server waits a random

period before taking a vacation, this waiting time follows an exponential distribution

with parameter η. At the end of the vacation period, if the system is still empty, the

server returns to the vacation. The server is allowed to take K of successive vacations.
When the K consecutive vacations are complete, the server returns to busy period

and depending on the arriving batch of customers, he stays idle or busy. The period

of a vacation follows an exponential distribution with mean 1/φ. During vacation

period, each incoming customer starts up an impatience timer independently of the

other customers in the system, which is supposed to be exponentially distributed with

parameter ξ. The impatient customers may leave the system with probability α and

they can be retained in the system with probability α′ = 1 − α. After completion of

each service, the customer may decide either to leave the system with probability β or

return and join the tail of the queue with probability β′, where β + β′ = 1.

The inter-arrival times, service times and vacation times are mutually independent.

Let L(t) denote the number of customers in the system and S(t) be the status of the

server at time t, such that

S(t) =


j, when the server is taking the (j + 1)th vacation at time t,

j = 0,K − 1;
K, the server is in busy period at time t.

The bi-variate {(L(t);S(t)); t ≥ 0} represents two dimensional infinite state continuous-

time Markov chain with state spaceΩ = {(n,j) : n ≥ 0, j = 0,K}.

Let Pn,j = lim
t→∞

P {L(t) = n,S(t) = j}, n ≥ 0, j = 0,K denote the system state probabili-

ties of the process {(L(t),S(t)), t ≥ 0}.
− Under the stability condition λE(X) < βµ,

1. The steady-state-probabilities Pn,j are given as
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P.,j =
∞∑
n=0

Pn,j = Aj−1P0,0, j = 0,K − 1, (1.9)

2. The steady-state-probabilities Pn,K are given as

P.,K =
∞∑
n=0

Pn,K =
1

βµ−λB′(1)

{
φλB′(1)
αξ +φ

1−AK

A(1−A)
+
βµαξ

ηC

}
P0,0, (1.10)

where

P0,0 =
{

βµαξ

ηC(βµ−λB′(1))
+

1−AK

A(1−A)

(
φλB′(1)

(βµ−λB′(1))(αξ +φ)
+ 1

)}−1

,

such that

A =
φC

αξ
,

with

C =
∫ 1

0
e
λ
αξH(x)(1− x)

φ
αξ −1dx and H(z) =

∫ z

0

B(x)− 1
1− x

dx,

where B(x) is the probability generating function of the batch arrival size X and

B′(1) = E(X) is the first moment of random variable X.

− The indices that are of general interest for the evaluation of the performances of

our system include:

� The probability that server is idle during busy period, in vacation period, and

serving customers during busy period, respectively.

P0,K =
αξ
ηC

P0,0, Pv =
1−AK

A(1−A)
P0,0, and Pb = 1− Pv − P0,K .

� The mean system size when the server is on vacation.

E[LV ] =
λB′(1)
αξ +φ

1−AK

A(1−A)
P0,0.

� The mean system size when the server is in busy period.
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E[LK ] =
[

φλB′(1)
(2αξ +φ)(βµ−λB′(1))

+
φ(2βµ+λB′′(1))
2(βµ−λB′(1))2

]
E[LV ]

+
βµλ(2B′(1) +B′′(1))

2(βµ−λB′(1))2 P0,K ,

where B′′(1) is the second moment of random variable X.

� The mean system size.

E[L] = E[LV ] +E[LK ].

� The mean queue length.

E[Lq] = E[L]−
[
1−

K∑
j=0

P0,j

]
.

� The mean number of customers served per unit time.

Ns = βµPb.

� The average rates of reneging and retention, respectively.

Ra = αξE[LV ] and Re = (1−α)ξE[LV ].

Based on the results given above, useful system characteristics are derived. Further,

the cost model is developed. Then, we considered the cost optimization problem un-

der a given cost structure via quadratic fit search method (QFSM) and particle swarm

optimization (PSO). We showed via numerical experiments that both methods give

identical results, but the convergence is faster in PSO algorithm.

I Fifth result: The MX/M/c Bernoulli feedback queue with variant multiple

working vacations and impatient customers: Performance and economic analysis.

This work considers aMX/M/c queueing system with batch arrival, variant of work-

ing vacations, Bernoulli feedback, impatient customers which depend on the states of

the servers and retention of reneged customers. Customers arrive in batches according

to a Poisson process with rate λ. The arrival batch size X is a random variable with

probability mass function P (X = l) = bl ; l = 1,2, .... The service times during normal

busy period follow an exponential distribution with mean 1/µ. During the vacation

time, the service is provided according to an exponential distribution with mean 1/η,
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such that µ ≥ η. The queueing system consists of c servers such that all the servers

go for working vacation and vacation time synchronously once the system becomes

empty, and they also return to the system as one at the same time. If the servers

comeback from working vacation and vacation period to find an empty queue, they

immediately leave all together for another vacation and working; otherwise, they re-

turn to serve the queue. Vacation and working vacation periods are assumed to be

exponentially distributed with mean 1/φ. The servers are allowed to take all together

K vacations sequentially. When the K consecutive working vacations are complete, the

servers returns to busy period and depending on the arriving batch of customers, they

stay idle or busy with the next arrivals. Whenever a customer arrives at the system

and finds the servers on vacation or working vacation (resp. busy) period, he activates

an impatience timer T1 (resp. T2), which is exponentially distributed with parameter

ξ1 (respectively. ξ2). If the customer’s service has not been completed before the cus-

tomer’s timer expires, this later may leave the system. The customers timers are inde-

pendent and identically distributed random variables and independent of the number

of waiting customers. Each impatient customer may abandon the system with proba-

bility α and can be retained in the queue with complementary probability α′ = (1−α).

If the service is uncomplete, or unsatisfactory, the customer can either leave the system

definitively with probability β or rejoin the end of the queue of the system for another

service with probability β′, where β + β′ = 1. Note that, both customers, the newly ar-

rived and those that are fed back are served in order in which they join the tail of the

primary queue.

The inter-arrival times, working vacation and vacation periods, normal busy period

are mutually independent.

Let N (t) denote the number of customers in the system at time t, and let κ(t) be the

status of the servers at time t.

κ(t) =
{
j, the servers are taking the (j + 1)th vacation at time t, j = 0,1,K − 1,
K, the servers are idle or busy at time t.

The bi-variate process {(N (t),κ(t)), t ≥ 0} represents two dimensional infinite state

Markov chain in continuous time with state space

Ω = {(n,j) : n ≥ 0; j = 0,K}.

Let Pn,j = lim
t→∞

P (N (t) = n;κ(t) = j), n ≥ 0; j = 0,K, be the steady-state probabilities of

the process {(N (t);κ(t)); t ≥ 0}.
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− The steady-state probabilities of the queueing model are as

K−1∑
j=0

P.,j =
{
βµ+αξ2

φ
θ1 +

1−CK−1

1−C

}
P0,0,

and

P.,K = e−
λ
αξ2

H(1)
{
−
φ

αξ2

(
K4(1)−

(
βµ+αξ2

φ
θ1 +

1−CK−1

1−C

)
K5(1)

)
+
βµ

αξ2
K6(1)

}
P0,0,

where

P0,0 =
{
e
− λ
αξ2

H(1)
{
−
φ

αξ2

(
K4(1)−

(
βµ+αξ2

φ
θ1 +

1−CK−1

1−C

)
K5(1)

)

+
βµ

αξ2
K6(1)

}
+
(
βµ+αξ2

φ
θ1 +

1−CK−1

1−C

)}−1

,

with

C =
φK2(1)− βνK3(1)

βνK0(1)
, θ1 =

βνK0(1)
(βµ+αξ2)K2(1)− βνK1(1)

,

K0(1) =
∫ 1

0
e

λ
αξ1

H(x)(1−x)
φ
αξ1 x

cβν
αξ1
−1
Q0(x)dx, K1(1) =

∫ 1

0
e

λ
αξ1

H(x)(1−x)
φ
αξ1 x

cβν
αξ1
−1
Q1(x)dx,

K2(1) =
∫ 1

0
e

λ
αξ1

H(x)(1− x)
φ
αξ1
−1
x
cβν
αξ1 dx, K3(1) =

∫ 1

0
e

λ
αξ1

H(x)(1− x)
φ
αξ1 x

cβν
αξ1
−1
Q2(x)dx,

K4(1) =
∫ 1

0
e

λ
αξ2

H(x)
x
cβµ
αξ2 (1− x)−1Ψ (x)dx,

K5(1) =
∫ 1

0
e

λ
αξ2

H(x)
x
cβµ
αξ2 (1− x)−1dx, K6(1) =

∫ 1

0
e

λ
αξ2

H(x)
x
cβµ
αξ2
−1
Q3(x)dx,
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Ψ (x) =
e
− λ
αξ1

H(x)

(1− x)
φ
αξ1 x

cβν
αξ1

{
βνK0(x) + (βνK1(x)− (βµ+αξ2)K2(x))θ1

αξ1

+
C
αξ1

(
βνK0(x) +

βνK3(x)−φK2(x)
C

)(
1−CK−1

1−C

)}
,

Q0(x) =
c−1∑
n=0

(c −n)γnx
n, Q1(x) =

c−1∑
n=0

(c −n)ϕnx
n,

Q2(x) =
c−1∑
n=0

(c −n)ωnx
n, andQ3(x) =

c−1∑
n=0

(c −n)θnx
n,

such that

γn =



1, if n = 0;
λ+φ

βν +αξ1
, if n = 1.

ψn−1γn−1 −
A
n

n−1∑
i=1

biγn−1−i if 2 ≤ n ≤ c − 1.

ϕn =



0, if n = 0;

−
βµ+αξ2

βν +αξ1
, if n = 1.

ψn−1ϕn−1 −
A
n

n−1∑
i=1

biϕn−1−i if 2 ≤ n ≤ c − 1.

ωn =



0, if n = 0;

−
φ

βν +αξ1
, if n = 1.

ψn−1ωn−1 −
A
n

n−1∑
i=1

biωn−1−i if 2 ≤ n ≤ c − 1.

θn =


θ0, if n = 0;
θ1, if n = 1.

σn−1θn−1 −
B
n

n−1∑
i=1

biθn−1−i −
E
n

(γn−1H(K) +ωn−1h(K)) if 2 ≤ n ≤ c − 1.
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where

σn =
λ+n(βµ+αξ2)

(n+ 1)(βµ+αξ2)
, A =

λ
βν +αξ1

, B =
λ

βµ+αξ2
, E =

φ

βµ+αξ2
,

H(K) =
1−CK

1−C
, h(K) =

1−CK

C(1−C)
, H(1) =

∫ 1

0

B(x)− 1
1− x

dx, andψn =
λ+φ+n(βν +αξ1)

(n+ 1)(βν +αξ1)
.

−Measures of effectiveness of the considered queueing system include:

� The average number of customers in the system.

E(L) = E(LWV ) +E(LK ).

� The average number of customers in the system during working vacation period.

E(LWV ) =
{
λB′(1)− cβν
αξ1 +φ

(
βµ+αξ2

φ

)
θ1 +

βν(Q0(1) +θ1Q1(1))
αξ1 +φ

+
((

1−CK−1

C(1−C)

)
λB′(1) + βν(Q0(1)C −Q2(1)− c)

αξ1 +φ

)}
P0,0,

where

Q0(1) =
c−1∑
n=0

(c −n)γn, Q1(1) =
c−1∑
n=0

(c −n)ϕn, andQ2(1) =
c−1∑
n=0

(c −n)ωn,

with B′(1) is the first moment of random variable X.

� The average number of customers in the system during normal busy period.

E(LK ) =
λB′(1)− βµ

αξ2
GK (1) +

φ

αξ
E(LWV ) +

βµ

αξ2
Q3(1)P0,0, (1.11)

where

Q3(1) =
c−1∑
n=0

(c −n)θn.

� The mean queue length.

Lq = E(L)− c+
{(
Q0(1) +

Q2(1)
C

)(
1−CK

1−C

)
+Q3(1)

}
P0,0.
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� The mean expected number of customers served per unit time.

Ns = cβ
(
µ(Pb + P0,K ) + νPwv

)
+ β (µQ3(1) + ν(Q0(1)H(K) +Q2(1)h(K)))P0,0.

� The probability that the servers are in working vacation period.

PWV =
{
βµ+αξ2

φ
θ1 +

1−CK−1

1−C

}
P0,0.

� The probability that the servers are idle during working vacation.

Pidle =
K−1∑
j=0

P0,j =
1−CK

1−C
P0,0.

� The probability that the servers are busy during normal busy period.

Pbusy = 1− P0,K − PWV .

� The average rate of reneging (resp. retention)

Ra = αξ1E(LWV ) +αξ2E(LK ), Re = (1−α)ξ1E(LWV ) + (1−α)ξ2E(LK ).

I Sixth result: Cost optimization analysis for anMX/M/c vacation queueing sys-

tem with waiting servers and impatient customers.

In this investigation, we consider an MX/M/c Bernoulli feedback queueing system

under single and multiple vacation policies. Customers arrive in batches according to

a Poisson process with rate λ. The sizes of successive arriving batches are i.i.d. r.v X1,

X2,... distributed with probability mass function P (X = l) = bl ; l = 1,2,3, .... The cus-

tomers are served on a First-Come First-Served (FCFS) queue discipline. The service

times follow exponential distribution with mean 1/µ.When the busy period is finished

the servers wait a random duration of time before beginning on a vacation. This wait-

ing duration is exponentially distributed with mean 1/η. The queueing model consists

of c servers. Synchronous vacation policy is considered; once the system is empty, all

the servers leave for a vacation simultaneously, and they return to the system as one

at the same time. Further, both single and multiple vacation policies are considered.

Vacation periods follow an exponential distribution with mean 1/φ. In addition, if the

servers are unavailable due to vacation, a batch of customers activates an indepen-

dent impatience timer T , with exponentially distributed duration, with mean 1/ξ. If
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T expires while the servers are still on vacation, the customers may leave the system.

Further, impatient customers may abandon the system, with probability α, and can be

retained in the queue, with complementary probability (1−α).Moreover, If the service

is uncomplete or unsatisfactory, the customers can either leave the system definitively,

with probability β, or comeback to the system for another service, with complemen-

tary probability (1 − β). The system is stable under the condition % = λE(X)
cβµ < 1, where

E(X) is the mean of a batch of arrivals. We suppose that the inter-arrival times, batch

sizes, server waiting times, vacation times, service times and impatience times are in-

dependent of each other.

Let {L(t); t ≥ 0} be the number of customers in the system at time t, and S(t) be the

state of servers at time t, where S(t) is defined as follows:

S(t) =
{

1, when the servers are in busy period at time t;
0, when the servers are in vacation period at time t.

Then, let {(S(t),L(t)); t ≥ 0} be a two-dimensional continuous Markov process with state
space

Ω = {(s,n) : s = 0,1, n = 0,1, ...}.

Let
Ps,n = lim

t→∞
P {S(t) = s,L(t) = n}, s = 0,1,n = 0,1, ...,

denote the system steady-state probabilities.

1. The steady-state probabilities of the queueing system under multiple vacation

policy (MVP) are given as

P0,. =
αξ

φK(1)
P0,0,

and

P1,. =
φG′0(1) + βµR(1)P0,0

cβµ−λB′(1)
,

where

P0,0 =
{

βµ

cβµ−λB′(1)
R(1) +

αξ
φK(1)

(
φλB′(1)

(cβµ−λB′(1))(αξ +φ)
+ 1

)}−1

,

and



1.6 Summary of results established in this thesis 37

G′0(1) =
αξλB′(1)

(αξ +φ)φK(1)
P0,0.

1.1. Performance measures of the considered queueing system under MVP are as

� The mean system size.

E[L] = E[L0] +E[L1].

� The mean system size when the servers are in vacation period.

E[L0] =
αξλB′(1)

(αξ +φ)φK(1)
P0,0.

� The mean system size when the servers are in busy period.

E[L1] =
(
φ(2cβµ+λB′′(1))
2(cβµ−λB′(1))2 +

λφB′(1)
(cβµ−λB′(1))(2αξ +φ)

)
E[L0]

+
(
βµλ(2B′(1) +B′′(1))

2(cβµ−λB′(1))2 R(1) +
βµ

cβµ−λB′(1)
R′(1)

)
P0,0

+
λφB′′(1)

2(cβµ−λB′(1))(2αξ +φ)
G0(1),

with

R′(1) =
c−1∑
n=1

n(c −n)θn,

where B′(1) and B′′(1) are first and second moments of random variable X, respec-

tively.

� The mean number of customers in the queue.

E[Lq] = E[L]− c(1− Pv) +R(1)P0,0.

� The probability that the servers are in vacation period, idle during busy period,

serving customers during busy period, respectively.

Pv =
αξ

φK(1)
P0,0, Pe =

αξ −φK(1)
ηK(1)

P0,0, and Pb = 1− Pv − Pe.

� The mean number of customers served per unit time.
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Ns = βµ
(
c(Pb + Pe) +R(1)P0,0

)
.

� The average rate of abandonment of customers due to impatience.

Ra = αξE[L0].

� The average retention rate of impatient customers.

Re = (1−α)ξE[L0].

2. The steady-state probabilities of the queueing system under single vacation pol-

icy (SVP) are given as

P0,. =
αξ

φK(1)
P0,0,

and

P1,. =
{

αξλB′(1)
K(1)(αξ +φ)(cβµ−λB′(1))

+
βµ

cβµ−λB′(1)
Q(1)

}
P0,0,

with

P0,0 =
{

αξ
φK(1)

(
1 +

φλB′(1)
(cβµ−λB′(1))(αξ +φ)

)
+

βµ

cβµ−λB′(1)
Q(1)

}−1

,

where

R(1) =
c−1∑
n=0

(c −n)θn, K(1) =
∫ 1

0
e
λ
αξH(x)(1− x)

φ
αξ −1dx, Q(1) =

c−1∑
n=0

(c −n)Mn,

and

θn =


θ0, if n = 0,
λ+η
βµ θ0, if n = 1,

ρn−1θn−1 −
φ

nβµ
ωn−1 −

λ
nβµ

n−1∑
i=1

biθn−1−i , if 2 ≤ n ≤ c − 1,

Mn =


M0, if n = 0,
M1, if n = 1,

ρn−1Mn−1 −
φ

nβµ
γn−1 −

λ
nβµ

n−1∑
i=1

biMn−1−i , if 2 ≤ n ≤ c − 1.
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with

ρn−1 =
λ+ (n− 1)βµ

nβµ
, M0 =

αξ
ηK(1)

, andM1 =
αξ(λ+ η)
ηβµK(1)

−
φ

βµ
.

2.1. Performance measures of the considered queueing system under SVP include

� The mean system size.

E[L] = E[L0] +E[L1].

� The mean system size when the servers are on vacation.

E[L0] =
αξλB′(1)

φK(1)(αξ +φ)
P0,0.

� The mean system size when the servers are on busy period.

E[L1] =
(
φ(2cβµ+λB′′(1))
2(cβµ−λB′(1))2 +

λφB′(1)
(cβµ−λB′(1))(2αξ +φ)

)
E[L0]

+
(
βµλ(2B′(1) +B′′(1))

2(cβµ−λB′(1))2 Q(1) +
βµ

cβµ−λB′(1)
Q′(1)

)
P0,0

+
λφB′′(1)

2(cβµ−λB′(1))(2αξ +φ)
G0(1),

with

Q′(1) =
c−1∑
n=1

n(c −n)Mn.

� The mean number of customers in the queue.

E[Lq] = E[L]− c(1− Pv) +Q(1)P0,0.

� The probability that the servers are in vacation period, idle during busy period,

and serving customers during busy period, respectively.

Pv =
αξ

φK(1)
P0,0, Pe =

αξ
ηK(1)

P0,0, and Pb = 1− Pv − Pe.

� The mean number of customers served per unit time.
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Ns = βµ
c−1∑
n=0

nP1,n + cβµ
∞∑
n=c

P1,n = βµ
(
c(Pb + Pe) +Q(1)P0,0

)
.

� The average rate of reneging (resp. retention).

Ra = αξE[L0], Re = (1−α)ξE[L0].

1.7 Outline of the thesis

This thesis consists of seven chapters including the introductory chapter.

Chapter 2 deals with a heterogeneous two-server queueing system with Bernoulli

feedback, multiple working vacations, balking, reneging and retention of reneged cus-

tomers at which the impatience timer of a customer in the system depends on the

server’s states. The steady-state probabilities of the considered queueing model are

established using supplementary variable and recursive techniques. In addition, use-

ful performance measures of the system are derived. Further, a model for the costs

incurred is developed in order to study the economic analysis of the queueing system.

Then, a sensitive numerical analysis for this model is carried out with respect to all
system parameters.

This chapter has been published in ProbStat Forum, 12, 15-35, 2019.

Chapter 3 analyzes an infinite-buffer single-server queueing system with Bernoulli

feedback, multiple vacations, differentiated vacations, vacation interruptions and im-

patient customers (balking and reneging) at which two types of vacation are consid-

ered, namely, type 1 vacation taken after the busy period and type 2 vacation consid-

ered when the server comes back from a vacation and finds the system empty. Both

vacations may be interrupted when the number of customers in the system reaches

a predefined threshold (each type of vacation has a different threshold). Via certain

mechanism, reneged customers may be retained in the system. Explicit expressions of

the steady-state probabilities are obtained via recursive method. Then, a cost model

is developed. In addition, a sensitivity analysis through numerical experiments are

carried out.
This chapter has been published in Int. J. Appl. Math. Stat.,57(6), 104-121,2018.

In chapter 4, we consider a single-server Markovian queueing system with Bernoulli

feedback, single and multiple vacation policies, waiting server and impatient cus-

tomers at which once the system is empty the sever waits for a random amount of
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time before he leaves for a vacation. In addition, the impatience time of a customer

depends on the states of the server. Via certain mechanism, impatient customer may

be retained in the system. The explicit expressions for the steady-state probabilities

of the queueing model has been established using the probability generating function

(PGF). After that, useful performance measures of the system are derived and a cost

model is developed. Finally, an extensive numerical study is illustrated.

This chapter has been published in Acta Univ. Sapientiae, Mathematica, 10(2),

218-241, 2018.
Chapter 5 studies an infinite capacity batch arrival single server Markovian Bernoulli

feedback queueing system with waiting server, K-variant vacations and impatient cus-

tomers. We obtain the probability generating function of the steady state of the queue-

ing system and derive important performance measures of the queueing model. Then,

we develop a cost model for the queueing system in order to determine the optimal

values of service rate and to minimize the total expected cost per unit time. For this,

we adopt QFSM and PSO algorithm to implement the optimization tasks.

This chapter has been submitted.

In chapter 6, we present the analysis of an MX/M/c Bernoulli feedback queue-

ing model with variant of multiple working vacations, reneging which depend on the

states of the servers and retention of reneged customers. We establish the steady-state

probabilities of the queueing model using probability generating functions (PGFs) and

obtain various system characteristics. Then, the cost profit model is performed. In ad-

dition, an economic analysis of the system is carried out.

This chapter has been published in Arabian Journal of Mathematics, 9(2), 309-

327, 2020.
In chapter 7, we deal with an infinite buffer multi-server vacation queueing system

with batch arrival, Bernoulli feedback and waiting servers wherein customers may re-

nege during vacation period. The reneged customers can be retained in the system,

via certain strategy. Both multiple and single vacation policies are considered. The

steady-state probabilities of the queueing system are found through probability gen-

erating functions (PGFs). Then, useful performance measures of the queueing system

are derived. The cost profit analysis of the model is developed. Further, we perform

the optimization of the model using quadratic fit search method (QFSM) in order to

minimize the total expected cost of the system with respect to the service rate.

This chapter has been published in SeMA Journal, 76, 309-341, 2019.
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the system depends on the server’s states. The steady-state probabilities of the model
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queueing system with respect to all system parameters. Further, numerical illustra-

tions have been presented.
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2.1 Introduction

Recent decades have seen an increasing interest in queueing systems with customer’s

impatience because of their great advantage in many real life applications such as situ-

ations involving impatient telephone switchboard customers, inventory systems with

storage of perishable goods, business and industry etc. The readers can be referred to

Gupta et al. (2008,2009), Boxma et al. (2010), Choudhury and Medhi (2011), Jose and

Manoharan (2011,2014), Kumar and Sharma (2014a,2014b), Bouchentouf et al. (2014)

and references therein.
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Queueing models with vacation and working vacation have gained the interest of

many researchers in the last three decades, due to their wide range of applications,

especially in the communication and the manufacturing systems. Altman and Yechiali

(2008) analyzed the infinite-server queues with system’s additional tasks and impa-

tient customers, both multiple and single U-task scenarios are studied considering

both exponentially and generally distributed task and impatience times. Madhu and

Anamika (2010) considered a working vacation queueing model with multiple types of

server breakdowns, via a matrix geometric approach the stationary queue length dis-

tribution is computed and various performance indices are established. Laxmi et al.

(2013) presented the analysis of a finite buffer M/M/1 queue with multiple and single

working vacations. Then, Goswami (2014) analyzed a queueing system with Bernoulli

schedule working vacations, vacation interruption and impatient customers. Abidini

et al. (2016) presented an analysis and an optimization of vacation and polling models

with retrials. Panda and Goswami (2016) established an equilibrium balking strategies

in renewal input queue with bernoulli-schedule controlled vacation and vacation inter-

ruption. Later, Bouchentouf and Yahiaoui (2017) presented an analysis of a Markovian

feedback queueing system with reneging and retention of reneged customers, multi-

ple working vacations and Bernoulli schedule vacation interruption, where customers’

impatience is due to the servers’ vacation.

Recently, there has been growing interest in the study of multiserver queues with

vacation. For instance, Yue and Yue (2010) considered heterogeneous two-server net-

work system with balking and a Bernoulli vacation schedule. An M/M/2 queueing

system with heterogeneous servers including one with working vacation has been an-

alyzed by Krishnamoorthy and Sreenivasan (2012). Ammar (2014) investigated the

transient analysis of a two-heterogeneous servers queue with impatient behavior, the

explicit solution for the considered model has been obtained. Later, Laxmi and Jyoth-

sna (2015) presented the analysis of a renewal input multiple working vacations queue

with balking, reneging and heterogeneous servers. Using supplementary variable and

recursive techniques, the steady-state probabilities of the model are obtained. Re-

cently, the cost optimization analysis for an MX/M/c vacation queueing system with

waiting servers and impatient customers has been given by Bouchentouf and Guen-

douzi (2019).

In this paper we present a heterogeneous two-server queueing system with Bernoulli

feedback, multiple working vacations, and impatient customers. In this work we ex-
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tend the analytical results of the model given in Laxmi and Jyothsna (2015) to the case

where the impatience timer of customers in the system depend on the server’s states,

moreover the concept of feedback and retention of reneged customers is incorporated.

The rest of the paper is organized as follows, in Section 2, we give a detailed de-

scription of the model. In Section 3, the steady-state probabilities of the model are

obtained using supplementary variable and recursive techniques. In Section 4, vari-

ous performance measures of the model are presented. In Section 5, we develop the

cost model, then, numerical results are illustrated in Section 6. Finally, conclusion and

some future aspects of research done are stated in Section 7.

2.2 The model

Consider a heterogeneous two-server queueing system with Bernoulli feedback, mul-

tiple working vacations, balking, server’s states-dependent reneging and retention of

reneged customers.

• The inter-arrival times are assumed to be independent and identically distributed

random variables with cumulative distribution functionA(u), probability density func-

tion a(u), u ≥ 0, Laplace-Stieltjes transform (L.S.T.) A∗($) and mean inter-arrival time

1/λ = −A∗(1)(0), where h(1)(0) denotes the first derivative of h($) evaluated at $ = 0.

• There exist two heterogeneous servers, server 1 and server 2. The service times

are supposed to be exponentially distributed with parameters µ1 and µ2, respectively,

with µ2 ≤ µ1. Whenever server 2 becomes idle and there are no waiting customers

in the queue, he leaves for an exponential working vacation ’WV’ with parameter φ.

During a WV, server 2 serves the waiting customers at a rate lower than the normal

service rate which is assumed to be exponentially distributed with parameter ν. At the

end of vacation period, if there are customers waiting in the queue, server 2 switches

to normal working level, otherwise he continues the vacation. Moreover, it is supposed

that server 1 is always available in the system.

• The capacity of the system is taken finite N, and the customers are served on a

FCFS discipline.

• An arriving customer who finds i customers in the system decides either to join

the queue with probability bi = 1− i
N2 or balk with probability bi = 1−bi = i

N2 . Suppose

that b0 = b1 = 1, 0 ≤ bi+1 ≤ bi ≤ 1, 2 ≤ i ≤N − 1, and bN = 0.

• If there are i customers in the system, one of the (i − 2) waiting customers in the
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queue may renege. Whenever a customer arrives at the system and finds the server 2

on working vacation (resp. on normal busy period), he activates an impatience timer

T1 (respectively. T2,) which is exponentially distributed with parameter ξ1 (resp. ξ2). If

the customer’s service has not begun before the customer’s timer expires, the customer

abandons the queue. Thus, customer’s average reneging rate is given by (i −2)ξ1 (resp.

(i−2)ξ2) when server 2 is on working vacation (resp. on normal busy period), 2 ≤ i ≤N.
We assume that impatience timers are independent and identically distributed random

variables and independent of the number of waiting customers.

• Using certain mechanism, each reneged customer may leave the queue defini-

tively with probability α or may be retained in the system with complimentary proba-

bility α′.

• After getting incomplete or unsatisfactory service either from working vacation

service or normal busy service, with probability β′, a customer may rejoin the system

as a Bernoulli feedback customer to receive another regular service. Otherwise, he

leaves the system definitively, i.e. with probability β, where β′ + β = 1.

• The inter-arrival times, service times and vacation times are assumed to be inde-
pendent.

2.3 Steady-State Solution

In this section, the distributions of the steady-state of the system will be obtained

following the same method given in Laxmi and Jyothsna (2015) . Thus, using the

supplementary variable and recursive techniques the steady-state probabilities will be

derived. To get the system length distributions at arbitrary epoch, the differential dif-

ference equations using the remaining inter-arrival time as the supplementary variable

will be developed.

Let Ns(t) be the number of customers in the system at time t. And let I(t) be the

remaining inter-arrival time at time t for the next arrival.

Let

S(t) =


0, when server 2 is idle during working vacation (WV) period;
1, when server 2 is busy during working vacation (WV) period;
2, when server 2 is busy during normal busy period.
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Then, the joint probabilities are presented as

πi,0(u,t)du = P(Ns(t) = i,u ≤ I(t) < u + du,S(t) = 0),u ≥ 0, i = 0,1,

πi,j(u,t)du = P(Ns(t) = i,u ≤ I(t) < u + du,S(t) = j),u ≥ 0, j = 1,2,

1 ≤ i ≤N.

Thus

πi,0(u) = lim
t→∞

πi,0(u,t), i = 0,1, πi,j(u) = lim
t→∞

πi,j(u,t), j = 1,2, 1 ≤ i ≤N.

The L.S.T. of the steady-state probabilities are given as

π∗i,0($) =
∫ ∞

0
e−$uπi,0(u)du, i = 0,1, π∗i,j($) =

∫ ∞
0
e−$uπi,j(u)du,

j = 1,2, 1 ≤ i ≤N.

Let πi,j = π∗i,j(0) be the probability of i customers in the system when the server is

in state j at an arbitrary epoch.

The system of differential difference equations at steady-state is given as follows:

−π(1)
0,0(u) = βµ1π1,0(u) + βνπ1,1(u) + βµ2π1,2(u), (2.1)

−π(1)
1,0(u) = −βµ1π1,0(u) + βνπ2,1(u) + βµ2π2,2(u) + a(u)π0,0(0), (2.2)

−π(1)
1,1(u) = −(φ+ βν)π1,1(u) + βµ1π2,1(u), (2.3)

−π(1)
2,1(u) = −

(
β(µ1 + ν) +φ

)
π2,1(u) +

(
β(µ1 + ν) +αξ1

)
π3,1(u)

+a(u)
(
π1,0(0) +π1,1(0) + 2

N2π2,1(0)
)
,

(2.4)
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−π(1)
i,1 (u) = −

(
β(µ1 + ν) +φ+ (i − 2)αξ1

)
πi,1(u)

+
(
β(µ1 + ν) + (i − 1)αξ1

)
πi+1,1(u)

+a(u)
((

1− i−1
N2

)
πi−1,1(0) + i

N2πi,1(0)
)
, 3 ≤ i ≤N − 1,

(2.5)

−π(1)
N,1(u) = −

(
β(µ1 + ν) +φ+ (N − 2)αξ1

)
πN,1(u)

+a(u)
((

1− N−1
N2

)
πN−1,1(0) +πN,1(0)

)
,

(2.6)

−π(1)
1,2(u) = −βµ2π1,2(u) +φπ1,1(u) + βµ1π2,2(u), (2.7)

−π(1)
i,2 (u) = −

(
β(µ1 +µ2) + (i − 2)αξ2

)
πi,2(u) +φπi,1(u)

+
(
β(µ1 +µ2) + (i − 1)αξ2

)
πi+1,2(u)

+a(u)
((

1− i−1
N2

)
πi−1,2(0) + i

N2πi,2(0)
)
, 2 ≤ i ≤N − 1,

(2.8)

−π(1)
N,2(u) = −

(
β(µ1 +µ2) + (N − 2)αξ2

)
πN,2(u) +φπN,1(u)

+a(u)
((

1− N−1
N2

)
πN−1,2(0) +πN,2(0)

)
,

(2.9)

Now, define ζi = β(µ1+ν)+φ+(i−2)αξ1, and θi = β(µ1+µ2)+(i−2)αξ2 for 2 ≤ i ≤N.
Multiplying Equations (2.1)-(2.9) by e−$u and integrating over u from 0 to ∞, we

get

−$π∗0,0($) = −π0,0(0) + βµ1π
∗
1,0($) + βνπ∗1,1($) + βµ2π

∗
1,2($), (2.10)

(βµ1 −$)π∗1,0($) = −π1,0(0) + βνπ∗2,1($) + βµ2π
∗
2,2($) +A∗($)π0,0(0), (2.11)
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(φ+ βν −$)π∗1,1($) = −π1,1(0) + βµ1π
∗
2,1($), (2.12)

(ζ2 −$)π∗2,1($) = −π2,1(0) + (ζ3 −φ)π∗3,1($)

+A∗($)
(
π1,0(0) +π1,1(0) + 2

N2π2,1(0)
)
,

(2.13)

(ζi −$)π∗i,1($) = −πi,1(0) + (ζi+1 −φ)π∗i+1,1($)

+A∗($)
(
(1− i−1

N2 )πi−1,1(0) + i
N2πi,1(0)

)
,

(2.14)

(ζN −$)π∗N,1($) = −πN,1(0) +A∗($)
(
(1− N − 1

N 2 )πN−1,1(0) +πN,1(0)
)
, (2.15)

(βµ2 −$)π∗1,2($) = −π1,2(0) +φπ∗1,1($) + βµ1π
∗
2,2($), (2.16)

(θi −$)π∗i,2($) = −πi,2(0) +φπ∗i,1($) +θi+1π
∗
i+1,2($)

+A∗($)
((

1− i−1
N2

)
πi−1,2(0) + i

N2πi,2(0)
)
,

(2.17)

(θN −$)π∗N,2($) = −πN,2(0) +φπ∗N,1($)

+A∗($)
((

1− N−1
N2

)
πN−1,2(0) +πN,2(0)

)
.

(2.18)

Next, adding Equations (2.10)-(2.18), we get

−A∗($)
( 1∑
i=0

πi,0(0) +
N∑
i=1

(πi,1(0) +πi,2(0))
)

=

$

( 1∑
i=0

π∗i,0($) +
N∑
i=1

(π∗i,1($) +π∗i,2($))
)
,

Then, taking limit as $ −→ 0 and using the normalization condition we obtain

1∑
i=0

πi,0(0) +
N∑
i=1

(πi,1(0) +πi,2(0)) = λ. (2.19)
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Next, we have to derive the steady-state probabilities at pre-arrival epoch, to this

end we shall establish the relations between system length distributions at arbitrary

and pre-arrival epochs. Firstly, we have to connect the pre-arrival epoch probabilities

π−i,j = lim
t→∞
P(Ns(t) = i,S(t) = j/I(t) = 0) (π−i,0, i = 0,1 and π−i,j , j = 1,2; 1 ≤ i ≤ N,) with

the rate probabilities πi,0(0) and πi,j(0), respectively.

Via Baye’s theorem on conditional probabilities, we obtain

π−i,j =
1
λ
πi,j(0), j = 0, i = 0,1; j = 1,2; 1 ≤ i ≤N. (2.20)

Putting $ = ζN in Equation (2.15), we obtain

πN−1,1(0) = ψN−1πN,1(0), (2.21)

such that ψN−1 =
(1−A∗(ζN ))N 2

A∗(ζN )(N 2 −N + 1)
.

Substituting Equation (2.21) in Equation (2.15), we get

(ζN −$)π∗N,1($) =
(
A∗($)

((
1− N − 1

N 2

)
ψN−1 +ψN

)
−ψN

)
πN,1(0), (2.22)

with ψN = 1.

For $ , ζN , we have

π∗N,1($) =
(A∗($)((1− N−1

N2 )ψN−1 +ψN )−ψN )

(ζN −$)
πN,1(0) (2.23)

Differentiating Equation (2.22) with respect to $ and taking $ = ζN , we get

π∗N,1(ζN ) = −A∗(1)(ζN )
((

1− N − 1
N 2

)
ψN−1 +ψN

)
πN,1(0) (2.24)

Differentiating (2.22) with respect to $ successively l times, we obtain

(ζN −$)π∗(l)N,1($)− lπ∗(l−1)
N,1 ($) = A∗(l)($)

((
1− N − 1

N 2

)
ψN−1 +ψN

)
πN,1(0). (2.25)

From Equations (2.23)-(2.25), we get

π∗N,1($) = ςN,$πN,1(0),
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where

ςN,$ =


A∗($)((1− N−1

N2 )ψN−1 +ψN )−ψN
(ζN −$)

, if $ , ζN ;

−A∗(1)($)((1− N − 1
N 2 )ψN−1 +ψN ), if $ = ζN ,

with

ς
(l)
N,$ =


A∗(l)($)((1− N−1

N2 )ψN−1 +ψN ) + lς(l−1)
N,$

(ζN −$)
, if $ , ζN ;

−A∗(l+1)($)((1− N−1
N2 )ψN−1 +ψN )

l + 1
, if $ = ζN ,

such that ς(l)
N,$ denotes the lth derivative of ςN,$ with respect to $.

For i = N − 1, taking $ = ζN−1 in Equation (2.14) and using Equation (2.21), we

obtain
πN−2,1(0) = ψN−2πN,1(0), (2.26)

with ψN−2 =
(ψN−1 − (ζN −φ)ςN,ζN−1

−A∗(ζN−1)N−2
N2 ψN−1)N 2

A∗(ζN−1)(N 2 −N + 2)
.

Next, substituting Equation (2.26) in Equation (2.14) for i =N − 1, we obtain

π∗N−1,1($) = ςN−1,$πN,1(0),

where

ςN−1,$ =


A∗($)((1− N−2

N2 )ψN−2 + N−1
N2 ψN−1) + (ζN −φ)ςN,$ −ψN−1

(ζN−1 −$)
, if $ , ζN−1;

−(A∗(1)($)((1− N − 2
N 2 )ψN−2 +

N − 1
N 2 ψN−1) + (ζN −φ)ς(1)

N,$), if $ = ζN−1,

with

ς
(l)
N−1,$ =


A∗(l)($)((1− N−2

N2 )ψN−2 + N−1
N2 ψN−1) + (ζN −φ)ς(l)

N,$ + lς(l−1)
N−1,$

(ζN−1 −$)
, if $ , ζN−1;

−
A∗(l+1)($)((1− N−2

N2 )ψN−2 + N−1
N2 ψN−1) + (ζN −φ)ς(l+1)

N,$

l + 1
, if $ = ζN−1.

In the same way, for i =N − 2,N − 3, ....,3 in Equation (2.14), it yields
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πi−1,1(0) = ψi−1πN,1(0), i =N − 2,N − 3, ....,3. (2.27)

where

ψi−1 =
(ψi − (ζi+1 −φ)ςi+1,ζi −A

∗(ζi)
i
N2ψi)N 2

A∗(ζi)(N 2 − i − 1)
, i =N − 2,N − 3, ...,3,

and

π∗i,1($) = ςi,$πN,1(0), i =N − 2,N − 3, ...,3,

where

ςi,$ =


A∗($)((1− i−1

N2 )ψi−1 + i−1
N2ψi) + (ζi+1 −φ)ςi+1,$ −ψi

(ζi −$)
, if $ , ζi ;

−(A∗(1)($)((1− i − 1
N 2 )ψi−1 +

i − 1
N 2 ψi) + (ζi+1 −φ)ς(1)

i+1,$), if $ = ζi ,

with

ς
(l)
i,$ =


A∗(l)($)((1− i−1

N2 )ψi−1 + i−1
N2ψi) + (ζi+1 −φ)ς(l)

i+1,$ − lς
(l−1)
i,$

(ζi −$)
, if $ , ζi ;

−
(ζi+1 −φ)ς(l+1)

i+1,ζi
+A∗(l+1)($)((1− i−1

N2 )ψi−1 + i−1
N2ψi)

l + 1
, if $ = ζi .

Taking $ = ζ2 in Equation (2.13), we find

π1,1(0) = ψ1πN,1(0) +ωπ1,0(0), (2.28)

where

ψ1 =
ψ2 − (ζ3 −φ)ς3,ζ2

−A∗(ζ2) 2
N2ψ2

A∗(ζ2)
and ω = −A

∗(ζ2)
A∗(ζ2)

= −1.

Now, substituting Equation (2.28) in Equation (2.13), we obtain

π∗2,1($) = ς2,$πN,1(0),

where
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ς2,$ =


−ψ2 + (ζ3 −φ)ς3,$ +A∗($)(ψ1 + 2

N2ψ2)

(ζ2 −$)
, if $ , ζ2;

−((ζ3 −φ)ς(1)
3,$ +A∗(1)($)(ψ1 +

2
N 2ψ2), if $ = ζ2,

with

ς
(l)
2,$ =


(ζ3 −φ)ς(l)

3,$ +A∗(l)($)(ψ1 + 2
N2ψ2)− lς(l−1)

2,$

(ζ2 −$)
, if $ , ζ2;

−
(ζ3 −φ)ς(l+1)

3,$ +A∗(l+1)($)(ψ1 + 2
N2ψ2)

l + 1
, if $ = ζ2.

From Equation (2.12), we have

π∗1,1($) = ς1,$πN,1(0) + τ1,$π1,0(0)),

where

ς1,$ =


βµ1ς2,$ −ψ1

(φ+ βν −$)
, if $ , φ+ βν;

−βµ1ς
(1)
2,$, if $ = φ+ βν.

; ς(l)
1,$ =


βµ1ς

(l)
2,$ − lς

(l−1)
1,$

(φ+ βν −$)
, if $ , φ+ βν;

−
βµ1ς

(l+1)
2,$

l + 1
, if $ = φ+ βν.

τ1,$ =

 −
ω

(φ+ βν −$)
, if $ , φ+ βν;

0, if $ = φ+ βν.
; τ (l)

1,$ =


lτ

(l−1)
1,$

(φ+ βν −$)
, if $ , φ+ βν;

0, if $ = φ+ βν.

Putting θN =$ in Equation (2.18) and using π∗N,1($), we obtain

πN−1,2(0) = ηN−1πN,2(0) +γN−1πN,1(0), (2.29)

where

ηN−1 =
1−A∗(θN )N 2

A∗(θN )(N 2 −N − 1)
, and γN−1 = −

φςN,θNN
2

A∗(θN )(N 2 −N − 1)
.

Substituting Equation (2.29) in Equation (2.18), we get

π∗N,2($) = ρN,$πN,2(0) +χN,$πN,1(0),

where
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ρN,$ =


A∗($)((1− N−1

N2 )ηN−1 + ηN )− ηN
θN −$

, if θN ,$;

−A∗(1)($)((1− N − 1
N 2 )ηN−1 + ηN ), if θN =$.

χN,$ =


φςN,$ +A∗($)(1− N−1

N2 )γN−1

θN −$
, if θN ,$;

−(φς(1)
N,$ +A∗(1)($)(1− N − 1

N 2 )γN−1), if θN =$,

with

ρ
(l)
N,$ =


A∗(l)($)((1− N−1

N2 )ηN−1 + ηN ) + lρ(l−1)
N,$

(θN −$)
, if θN ,$;

−
A∗(l+1)(θN )((1− N−1

N2 )ηN−1 + ηN )

l + 1
, if θN =$,

χ
(l)
N,$ =


φς

(l)
N,$ +A∗(l)($)(1− N−1

N2 )γN−1 + lχ(l−1)
N,$

θN −$
, if θN ,$;

−
φς

(l+1)
N,θN

+A∗(l+1)(θN )(1− N−1
N2 )γN−1

l + 1
, if θN =$,

ηN = 1 and γN = 0.

In the same manner, we obtain πi,2(0) and π∗i,2($) using Equation (2.17), thus

πi−1,2(0) = ηi−1πN,2(0) +γi−1πN,1(0), 2 ≤ i ≤N − 1, (2.30)

with

ηi−1 =N 2
ηi −θi+1ρi+1,θi −A

∗(θi)
i
N2ηi

A∗(θi)(N 2 − i + 1)
.

γi−1 =N 2
γi −θi+1χi+1,θi −A

∗(θi)
i
N2γi −φςi,θi

A∗(θi)(N 2 − i + 1)
.

Substituting Equation (2.30) in Equation(2.17)

π∗i,2($) = ρi,$πN,2(0) +χi,$πN,1(0),

with
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ρi,$ =


−ηi +θi+1ρi+1,$ +A∗($)((1− i−1

N2 )ηi−1 + i
N2ηi)

(θi −$)
, if θi ,$;

−(θi+1ρ
(1)
i+1,$ +A∗(1)($)((1− i − 1

N 2 )ηi−1 +
i

N 2ηi)), if θi =$.

χi,$ =


−γi +φςi,$ +θi+1χi+1,$ +A∗($)((1− i−1

N2 )γi−1 + i
N2γi)

θi −$
, if θi ,$;

−(φς(1)
i,$ +θi+1χ

(1)
i+1,$ +A∗(1)($)((1− i − 1

N 2 )γi−1 +
i

N 2γi)), if θi =$,

where

ρ
(l)
i,$ =


θi+1ρ

(l)
i+1,$ +A∗(l)($)((1− i−1

N2 )ηi−1 + i
N2ηi) + lρ(l−1)

i,$

(θi −$)
, if θi ,$;

−
θi+1ρ

(l+1)
i+1,$ +A∗(l+1)($)((1− i−1

N2 )ηi−1 + i
N2ηi)

l + 1
, if θi =$.

χ
(l)
i,$ =


φς

(l)
i,$ +θi+1χ

(l)
i+1,$ +A∗(1)($)((1− i−1

N2 )γi−1 + i
N2γi) + lχ(l−1)

i,$

θi −$
, if θi ,$;

−
φς

(l+1)
i,$ +θi+1χ

(l+1)
i+1,$ +A∗(l+1)($)((1− i−1

N2 )γi−1 + i
N2γi)

l + 1
, if θi =$.

Putting $ = βµ1 in Equation(2.11), we get

π0,0(0) = ε0π1,0(0) + σ0πN,1(0) +40πN,2(0), (2.31)

where ε0 =
1

A∗(βµ1)
, σ0 =

−βνς2,βµ1
− βµ2χ2,βµ1

A∗(βµ1)
, and 40 =

−βµ2ρ2,βµ1

A∗(βµ1)

Now, let $ = φ+ βν and use (2.30) we get

π1,0(0) = κ1πN,1(0), (2.32)

where κ1 = ψ1 − βµ1ς2,φ+βν .

Putting βµ2 =$ in Equation (2.16)

πN,2(0) = κ2πN,1(0), (2.33)

where κ2 =
φς1,βµ2

+ βµ1χ2,βµ2
+φκ1τ1,βµ2

−γ1

η1 − βµ1ρ2,βµ2
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From Equations (2.19),(2.21), and (2.26)-(2.33), it yields

πN,1(0) = λ
(
κ1ε0 + σ0 +κ240 +ψ1 +

N∑
i=2

ψi +
N∑
i=2

(γi +κ2ηi)
)−1

.

Now, from the rate probabilities (πi,j(0)) using Equation (2.20) the pre-arrival epoch

probabilities (π−i,j) can be derived easily.

Next, setting $ = 0 in the Equations (2.11)-(2.18) and using (2.20). We obtain after

slight simplification.

πN,1 =
λ
ζN

(
1− N − 1

N 2

)
π−N−1,1

πi,1 =
(
ζi+1 −φ
ζi

)
πi+1,1 +

λ
ζi

((
1− i − 1

N 2

)
π−i−1,1 −

(
1− i

N 2

)
π−i,1

)
, i =N − 1, ...,3

π2,1 =
(
ζ3 −φ
ζ2

)
π3,1 +

λ
ζ2

(
π−1,0 +π−1,1 −

(
1− 2

N 2

)
π−2,1

)

π1,1 =
(
βµ1

φ+ βν

)
π2,1 −

(
λ

φ+ βν

)
π−1,1

πN,2 =
φ

θN
πN,1 +

λ
θN

(
1− N − 1

N 2

)
π−N−1,2

πi,2 =
(
θi+1

θi

)
πi+1,2 +

φ

θi
πi,1 +

λ
θi

((
1− i − 1

N 2

)
π−i−1,2 −

(
1− i

N 2

)
π−i,2

)
, i =N − 1, ...,2

π1,2 =
µ1

µ2
π2,2 +

φ

βµ2
π1,1 −

λ
βµ2

π−1,2

π1,0 =
ν
µ1
π2,1 +

µ2

µ1
π2,2 +

λ
βµ1

(
π−0,0 −π

−
1,0

)
Finally, the explicit expressions of π0,0 can be computed by using the normalization

condition, that is,

π0,0 = 1−π1,0 −
N∑
i=1

(πi,1 +πi,2).
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2.4 Measures of Performance

− The mean number of customers in the system.

Ls = π1,0 +
N∑
i=1

i(πi,1 +πi,2).

− The mean number of customers waiting for service.

Lq =
N∑
i=2

(i − 2)(π1,1 +πi,2).

− The mean waiting time of customers in the system.

Ws =
Ls
λ′
,where λ′ = λ(1− (πN,1 +πN,2)) is the effective arrival rate.

− The mean rate of joining the system.

Js = λ(π0,0 +π1,0 +π1,1 +π1,2) +
N∑
i=2

λ
(
1− i

N 2

)
(πi,1 +πi,2).

− The probability that server 2 is idle, in working vacation period and in normal busy

period, respectively.

Pidle =
1∑
i=0

πi,0; Pw =
N∑
i=1

πi,1; Pb =
N∑
i=1

πi,2.

− The average balking rate.

Br =
λ

N 2

N∑
i=1

i(πi,1 +πi,2)

− The average reneging rates during busy period and working vacation period, respec-

tively.

Rren1 = αξ1

N∑
i=2

(i − 2)πi,1, Rren2 = αξ2

N∑
i=2

(i − 2)πi,2.
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− The average retention rates during busy period and working vacation period, respec-

tively.

Rret1 = α′ξ1

N∑
i=2

(i − 2)πi,1, Rret2 = α′ξ2

N∑
i=2

(i − 2)πi,2.

2.5 Economic analysis

In this section, we develop a model for the costs incurred in the queueing system under

consideration using the following symbols:

• C1 : Cost per unit time when server 2 is on normal busy period.

• C2 : Cost per unit time when server 2 is on working vacation period.

• C3 : Cost per unit time when server 2 is idle during working vacation.

• C4 : Cost per unit time when a customer joins the queue and waits for service.

• C5 : Cost per unit time when a customer balks.

• C6 : Cost per service per unit time during busy period.

• C7 : Cost per service per unit time during working vacation period.

• C8 : Cost per unit time when a customer reneges during the working vacation

period of server 2.

• C9 : Cost per unit time when a customer reneges during normal busy period of

server 2.

• C10 : Cost per unit time when a customer is retained during the working vacation

period of server 2.

• C11 : Cost per unit time when a customer is retained during normal busy period

of server 2.

• C12 : Cost per unit time when a customer returns to the system as a feedback
customer.

• C13 : Fixed server purchase cost per unit.
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Let
R be the revenue earned by providing service to a customer.

Γ be the total expected cost per unit time of the system.

∆ be the total expected revenue per unit time of the system.

Θ be the total expected profit per unit time of the system.

Thus

Γ = C1Pb +C2Pw +C3Pidle +C4Lq +C5Br +C8Rren1 +C9Rren2

+C10Rret1 +C11Rret2 + (µ1 +µ2)C6 + νC7 + β′(µ1 +µ2 + ν)C12 + 2C13.

The total expected revenue per unit time of the system is given by:

∆ = R
(
µ1π1,0 + (µ1 + ν)Pw + (µ1 +µ2)Pb

)
Now, the total expected profit is presented as

Θ = ∆− Γ .

2.6 Numerical analysis

2.6.1 Effect of different parameters on the performance measures of
the system

Case 1: Effect of arrival rate (λ).

We check the behavior of the system characteristics for various values of (λ) by keeping

all other variables fixed. Put µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, α = 0.4, ξ1 = 0.6,

ξ2 = 0.4, α = 0.4, β = 0.6, and N = 5.

According to Table 2.1, we observe that along the increasing of the arrival rate λ, Br ,

Ls, Js, Pb, Rren1, Rren2, Rret1, Rret2, Pw all increase. While Pidle decreases monotonically.

This is due to the fact that along the increases of the arrival rate, the queue of the

system becomes large, thus, the normal busy period becomes significant, while the

probability that the server 2 becomes idle Pidle decreases. Furthermore, the average

balking rate increases with λ because of the size of the system.



2.6 Numerical analysis 72

Table 2.1: Variation in system performance measures vs. λ .
λ 1,4 2,2 3 3,8 4,2 4,8
Ls 1.14991 1.91543 2.59842 3.12838 3.33741 3.59305
Js 1.34147 1.95358 2.38493 2.66080 2.75654 2.86360
Br 0.05852 0.24641 0.61506 1.13919 1.44346 1.93639
Rren1 0.00231 0.01641 0.02729 0.03161 0.03187 0.03077
Rren2 0.01089 0.05901 0.12314 0.18468 0.21173 0.24702
Rret1 0.00347 0.02462 0.04094 0.04742 0.04780 0.04616
Rret2 0.01634 0.08852 0.18472 0.27702 0.31759 0.37054
Ws 0.07773 0.43723 0.88339 1.28599 1.45611 1.67216
Pidle 0.58306 0.34822 0.19872 0.11374 0.08692 0.05907
Pw 0.16708 0.20504 0.19084 0.15799 0.14092 0.11745
Pb 0.24986 0.44674 0.61044 0.72827 0.77216 0.82348

Case 2: Effect of service rates (µ1), (µ2) and (ν).

We examine the behavior of the characteristics of the system for various values of

(µ1), (µ2) and (ν), respectively, by keeping all other variables fixed. To this end, we

consider the following cases

- λ = 2.5, µ2 = 1.9, ν = 1.4, β = 0.6, ξ1 = 0.1, ξ2 = 0.2, α = 0.4, φ = 1.2, and N = 5.

- λ = 2.5, µ1 = 3, ν = 1.4, β = 0.6, ξ1 = 0.1, ξ2 = 0.2, α = 0.4, φ = 1.2, and N = 5.

- λ = 2.5, µ1 = 3, µ2 = 2.5, β = 0.6, ξ1 = 0.1, ξ2 = 0.2, α = 0.4, φ = 0.5, and N = 5.

Table 2.2: Variation in system performance measures vs. µ1 .
µ1 2.1 2.5 2.9 3.3 3.5 3.7
Ls 2.59636 2.37738 2.18182 2.00876 1.93012 1.85638
Js 1.97894 2.06061 2.12774 2.18275 2.20640 2.22782
Br 0.52105 0.43938 0.37225 0.31724 0.29359 0.27217
Rren1 0.00409 0.00379 0.00339 0.00293 0.00269 0.00245
Rren2 0.06321 0.05109 0.04092 0.03246 0.02879 0.02546
Rret1 0.00613 0.00568 0.00509 0.00440 0.00404 0.00367
Rret2 0.09482 0.07664 0.06139 0.04869 0.04319 0.03819
Ws 0.89249 0.73355 0.59642 0.47920 0.42735 0.37959
Pidle 0.20634 0.24159 0.27501 0.30622 0.32095 0.33510
Pw 0.17391 0.18698 0.19688 0.20405 0.20676 0.20896
Pb 0.61974 0.57143 0.52811 0.48972 0.47228 0.45594

From Tables 2.2–2.3–2.4, we observe that
−with the increases of µ1, µ2 and ν, Br decreases, while Js increases, as it should be.

Therefore, customers are served faster with µ1, µ2 and ν. This implies a decrease in the

mean number of customers in the system Ls, in the probability that the server 2 is on

normal busy period Pb and in the mean waiting timeWs. Consequently, the probability

that the server 2 becomes idle Pidle increases with the service rates.

− the probability of working vacation of server 2, Pw increases with both µ1 and

µ2 because customers are served faster. Then, the mean system size decreases, hence,
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Table 2.3: Variation in system performance measures vs. µ2 .
µ2 1.7 1.9 2.1 2.3 2.5 2.7
Ls 2.20418 2.13650 2.07650 2.02313 1.97550 1.93286
Js 2.11974 2.14254 2.16232 2.17956 2.19464 2.20789
Br 0.38025 0.35745 0.33767 0.32043 0.30535 0.29210
Rren1 0.00306 0.00328 0.00348 0.00367 0.00384 0.00399
Rren2 0.04224 0.03865 0.03550 0.03273 0.03027 0.02809
Rret1 0.00459 0.00492 0.00523 0.00550 0.00576 0.00599
Rret2 0.06336 0.05798 0.05326 0.04909 0.04541 0.04214
Ws 0.60457 0.56533 0.53104 0.50096 0.47448 0.45108
Pidle 0.26413 0.28303 0.30013 0.31564 0.32975 0.34260
Pw 0.18537 0.19891 0.21123 0.22244 0.23268 0.24204
Pb 0.55050 0.51806 0.48864 0.46192 0.43757 0.41536

Table 2.4: Variation in system performance measures vs. ν .
ν 1.3 1.5 1.7 1.9 2.1 2.3
Ls 2.10375 2.05437 2.00692 1.96140 1.91775 1.87594
Js 2.15324 2.16818 2.18221 2.19538 2.20775 2.21936
Br 0.34675 0.33181 0.31778 0.30461 0.29224 0.28063
Rren1 0.00968 0.00911 0.00857 0.00807 0.00760 0.00716
Rren2 0.02424 0.02337 0.02255 0.02176 0.02101 0.02029
Rret1 0.01453 0.01367 0.01286 0.01211 0.01141 0.01075
Rret2 0.03636 0.03506 0.03382 0.03264 0.03151 0.03044
Ws 0.54523 0.52009 0.49635 0.47394 0.45281 0.43290
Pidle 0.29148 0.30771 0.32362 0.33918 0.35437 0.36917
Pw 0.38610 0.37849 0.37095 0.36351 0.35618 0.34897
Pb 0.32242 0.31380 0.30543 0.29731 0.28945 0.28186

the server 2 switches to vacation period. On the other hand, Pw decreases with ν, as

intuitively expected.

− when µ1 and ν increase, the average reneging rates during working vacation and

during normal busy period Rren1 and Rren2, average retention rates in working vacation

and during normal busy period Rret1 and Rret1 decrease. This agree absolutely with

our intuition. While when µ2 increases, Rren2 and Rret2 decrease because customers

are served faster, thus, the size of the system will be reduced, hence, server 2 goes on

vacation. Consequently, the probability of working vacation increases which leads to

an increase in the average reneging and retention rates Rren1 and Rret1 respectively.

Case 3: Effect of reneging rates (ξ1) and (ξ2).

We check the behavior of the performance measures of the system for various values

of (ξ1) and (ξ2), respectively by keeping all other variables fixed. Let

- λ = 3.5, µ1 = 2.1, µ2 = 1.7, ν = 1.3, β = 0.6, ξ2 = 2, α = 0.6, φ = 0.1, and N = 5.

- λ = 3.5, µ1 = 2.5, µ2 = 2.1, ν = 1.7, β = 0.6, ξ1 = 1, α = 0.6, φ = 1.2, and N = 5.

According to Tables 2.5–2.6, we observe that
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Table 2.5: Variation in system performance measures vs. ξ1 .
ξ1 3.5 3.7 3.9 4.1 4.3 4.5
Ls 2.38620 2.36189 2.33912 2.31773 2.29763 2.27868
Js 3.04204 3.05417 3.06521 3.07529 3.08453 3.09301
Br 0.45795 0.44582 0.43478 0.42470 0.41546 0.40698
Rren1 0.86827 0.87516 0.88040 0.88415 0.88655 0.88775
Rren2 0.21529 0.21313 0.21109 0.20917 0.20736 0.20564
Rret1 0.57884 0.58344 0.58693 0.58943 0.59103 0.59183
Rret2 0.14353 0.14208 0.14072 0.13944 0.13824 0.13709
Ws 0.59288 0.57183 0.55215 0.53372 0.51642 0.50016
Pidle 0.15090 0.15327 0.15554 0.15769 0.15974 0.16170
Pw 0.66838 0.66710 0.66586 0.66468 0.66355 0.66247
Pb 0.18072 0.17963 0.17860 0.17762 0.17671 0.17583

Table 2.6: Variation in system performance measures vs. ξ2 .
ξ2 3.5 3.7 3.9 4.1 4.3 4.5
Ls 2.19085 2.17338 2.15715 2.14203 2.12791 2.11470
Js 3.09108 3.09919 3.10654 3.11320 3.11926 3.12479
Br 0.40891 0.40080 0.39345 0.38679 0.38073 0.37520
Rren1 0.10338 0.10446 0.10547 0.10642 0.10733 0.10818
Rren2 0.69007 0.69389 0.69657 0.69822 0.69896 0.69889
Rret1 0.06892 0.06964 0.07031 0.07095 0.07155 0.07212
Rret2 0.46004 0.46259 0.46438 0.46548 0.46597 0.46592
Ws 0.50091 0.48666 0.47347 0.46121 0.44980 0.43915
Pidle 0.22108 0.22338 0.22554 0.22758 0.22951 0.23134
Pw 0.26548 0.26824 0.27084 0.27330 0.27561 0.27780
Pb 0.51344 0.50838 0.50362 0.49912 0.49488 0.49086

− with the increases of reneging rates ξ1 and ξ2, the characteristics Ls, Ws and Br
decrease, while Js increases, as intuitively expected.

− along the increasing of ξ1, the average reneging rate during working vacation

Rren1 increases, while the average rate of reneging in the normal busy period of server

2, Rren2 decreases.

− along the increasing of ξ1, the probability of working vacation Pw, the probability

of normal busy period Pb decrease because of the size of the system which become

small due to reneging. Consequently, the probability that the server 2 becomes idle

Pidle increases with ξ1.

− when the reneging rate ξ2 increases, the average reneging rate during normal

busy period Rren2 and the average rate of reneging in the busy period of server 2 during

his vacation Rren1 increase.

− the increases of ξ2 implies a decreasing of Pb and an increasing of Pw, which can

be explained by the fact that when reneging rate increases in the normal busy period

of server 2, more customers are lost. Thus, server 2 goes on vacation, consequently Pw
and Pidle increase.
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Case 4: Effect of vacation rate (φ).

We study the behavior of the performance measures of the system for various values of

(φ) by keeping all other variables fixed. Put λ = 3, µ1 = 2.5, µ2 = 2.1, ν = 1.7, β = 0.6,

ξ1 = 0.1, ξ2 = 0.5, α = 0.6, and N = 5.

Table 2.7: Variation in system performance measures vs. φ .
φ 0.5 0.7 0.9 1.1 1.3 1.5
Ls 2.60098 2.56891 2.54766 2.53259 2.52136 2.51270
Js 2.38962 2.40830 2.42040 2.42879 2.43490 2.43952
Br 0.61037 0.59169 0.57959 0.57120 0.56509 0.56047
Rren1 0.01925 0.01413 0.01087 0.00864 0.00705 0.00586
Rren2 0.16768 0.18586 0.19731 0.20502 0.21048 0.21448
Rret1 0.01283 0.00942 0.00724 0.00576 0.00470 0.00391
Rret2 0.11179 0.12391 0.13154 0.13668 0.14032 0.14299
Ws 0.87984 0.85509 0.83889 0.82753 0.81917 0.81278
Pidle 0.19442 0.19954 0.20307 0.20567 0.20767 0.20927
Pw 0.34910 0.28653 0.24394 0.21293 0.18926 0.17055
Pb 0.45647 0.51392 0.55298 0.58139 0.60305 0.62017

From Table 2.7, we remark that along the increasing of the vacation rate φ, Ls and

Ws decrease. Therefore, the average balking rate Br decreases, while the average rate

of joining the system Js increases with φ. Further, the increase in vacation rate implies

that Pb increases, wherein, the probability that the system goes on working vacation Pw
decreases. This implies an increase in the mean number of customers served. There-

fore, the probability that the server 2 becomes idle Pidle increases. Further, with the

increases of φ, Rren1 and Rret1 (resp. Rren2 and Rret2) decreases (resp. increase), as

intuitively expected.

Case 5: Effect of non-feedback probability (β).

We examine the behavior of the performance measures of the system for various values

of (β) by keeping all other variables fixed. Put µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2,

α = 0.4, ξ1 = 0.6, ξ2 = 0.4, α = 0.4, λ = 3, and N = 5.

Thought Table 2.8, we see that when the non-feedback probability β increases, Ls
andWs decrease, this results in the decreasing of the average balking rate Br and in the

increasing of the average rate of joining the system Js. Moreover, along the increases of

the non-feedback probability, Rren1 and Rret1 increase, while Rren2 and Rret2 decreases.

Further, obviously, the probability of normal busy period Pb decreases, the probability

that the system is on working vacation Pw and the probability that the server is idle

Pidle increase, as it should be.
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Table 2.8: Variation in system performance measures vs. β .
β 0.1 0.3 0.5 0.7 0.9 1
Ls 4.54732 3.81878 2.97531 2.27287 1.77073 1.58122
Js 0.86754 1.63389 2.19464 2.52636 2.70701 2.76395
Br 2.13245 1.36610 0.80535 0.47363 0.29298 0.23604
Rren1 0.00085 0.01173 0.02482 0.02695 0.02132 0.01758
Rren2 0.40725 0.29047 0.16948 0.08786 0.04352 0.03040
Rret1 0.00128 0.01760 0.03724 0.04042 0.03198 0.02637
Rret2 0.61088 0.43570 0.25423 0.13179 0.06529 0.04560
Ws 2.54892 1.86435 1.16273 0.66146 0.36090 0.26329
Pidle 0.00141 0.03512 0.13419 0.26505 0.38866 0.44283
Pw 0.00291 0.05196 0.14789 0.22317 0.25612 0.26039
Pb 0.99568 0.91292 0.71792 0.51177 0.35522 0.29678

Case 6: Effect of non-retention probability (α).

We examine the behavior of the characteristics of the system for various values of (α)

by keeping all other variables fixed. We take µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, α = 0.4,

ξ1 = 0.6, ξ2 = 0.4, λ = 3, β = 0.6, and N = 5.

Table 2.9: Variation in system performance measures vs. α .
α 0,1 0.3 0.5 0.7 0.9 1.0
Ls 2.72298 2.63780 2.56099 2.49153 2.42851 2.39916
Js 2.30217 2.35932 2.40879 2.45182 2.48939 2.50639
Br 0.69782 0.64067 0.59120 0.54817 0.51060 0.49360
Rren1 0.00697 0.02064 0.03379 0.04632 0.05815 0.06379
Rren2 0.03488 0.09622 0.14786 0.19138 0.22809 0.24423
Rret1 0.06277 0.04816 0.03379 0.01985 0.00646 0.00000
Rret2 0.31400 0.22452 0.14786 0.08202 0.02534 0.00000
Ws 0.98850 0.91654 0.85196 0.79381 0.74127 0.71689
Pidle 0.18516 0.19437 0.20289 0.21078 0.21809 0.22155
Pw 0.17945 0.18723 0.19428 0.20069 0.20653 0.20924
Pb 0.63539 0.61840 0.60283 0.58853 0.57538 0.56921

Through Table 2.9, we remark that when the non-retention probability α increases,

the size of the system Ls, the mean waiting time Ws and the average balking rate Br
decrease, while the probability that customers join the system increases. Moreover,

the average reneging rates Rren1 and Rren2 increase with α, while average retention

rates Rret1 and Rret2 decrease with the increasing of α, which absolutely agree with

our intuition. This implies that the probability of normal busy period Pb decreases,

consequently, the probability of working vacation Pw, and of idle period of server 2

Pidle increase.

Case 7: Effect of system capacity (N).

We analyze the behavior of the performance measures of the system for various values

of (N ) by keeping all other variables fixed. Let λ = 3, µ1 = 2.5, µ2 = 2.1, ν = 1.7, β = 0.6,
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ξ1 = 0.1, ξ2 = 0.2, α = 0.4, and φ = 1.1.

Table 2.10: Variation in system performance measures vs. N.
N 3 4 5 6 7 8
Ls 1.73287 2.21507 2.69421 3.16073 3.60819 4.03161
Js 1.97401 2.17590 2.32287 2.43554 2.52532 2.59887
Br 1.02598 0.82409 0.67712 0.56445 0.47467 0.40112
Rren1 0.00201 0.00446 0.00532 0.00543 0.00524 0.00496
Rren2 0.00850 0.03470 0.06644 0.10020 0.13399 0.16668
Rret1 0.00301 0.00669 0.00798 0.00814 0.00786 0.00744
Rret2 0.01275 0.05205 0.09966 0.15030 0.20098 0.25002
Ws 0.15645 0.54544 0.96360 1.38828 1.80595 2.20759
Pidle 0.29531 0.23036 0.18785 0.15868 0.13791 0.12272
Pw 0.28102 0.23321 0.19472 0.16616 0.14516 0.12955
Pb 0.42367 0.53643 0.61743 0.67516 0.71693 0.74773

From Tables 2.10 , we remark that along the increasing of N , the average balking

rate Br decreases due to the large capacity of the system. Then, the means system

size Ls, and the mean waiting time Ws increase, consequently, the probability that the

server is in normal busy period Pb increases, wherein, Pw and Pidle decrease, this implies

an increase in the mean number of customers served with N. Moreover, the average

reneging and retention rates Rren2 and Rret2 increase due to the significant number of

customers in the system. While the behaviour of Rren1 and Rret1 is not monotone, it

increases, then, decreases when N is above a certain threshold.

2.6.2 Economic analysis

In this part we present the variation in total expected cost, total expected revenue and

total expected profit with the change in diverse parameters of the system. For the

whole numerical study we fix the costs at C1 = 4, C2 = 2, C3 = 2, C4 = 3, C5 = 3, C6 = 4,

C7 = 4, C8 = 2, C9 = 2, C10 = 3, C11 = 3, C12 = 2, C13 = 5, R = 25. And consider the

following Tables

• Table 11: λ = 1.4 : 0.8 : 4.8, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.6, ξ2 = 0.4,

β = 0.6, α = 0.4, N = 10,

• Table 12: λ = 2.5, µ1 = 2.1 : 0.4 : 3.7, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.1, ξ2 = 0.2,

β = 0.6, α = 0.4, N = 10,

• Table 13: λ = 2.5, µ1 = 3.0, µ2 = 1.7 : 0.2 : 2.7, ν = 1.7, φ = 1.2, ξ1 = 0.1, ξ2 = 0.2,

β = 0.6, α = 0.4, N = 10,

• Table 14: λ = 2.5, µ1 = 3.0, µ2 = 2.5, ν = 1.3 : 0.2 : 2.3, φ = 1.2, ξ1 = 0.1, ξ2 = 0.2,

β = 0.6, α = 0.4, N = 10,
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• Table 15: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.3 : 0.2 : 1.3, ξ2 = 0.1,

β = 0.6, α = 0.4, N = 10,

• Table 16: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.1, ξ2 = 0.3 : 0.2 : 1.3,

β = 0.6, α = 0.4, N = 10,

• Table 17: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 0.3 : 0.2 : 1.3, ξ1 = 0.1, ξ2 = 0.2,

β = 0.6, α = 0.4, N = 10,

• Table 18: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.6, ξ2 = 0.4, β = 0.1 :

0.2 : 1, α = 0.6, N = 10,

• Table 19: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.2, ξ1 = 0.6, ξ2 = 0.4, β = 0.6,

α = 0.1 : 0.2 : 1, N = 10,

• Table 20: λ = 3.0, µ1 = 2.5, µ2 = 2.1, ν = 1.7, φ = 1.1, ξ1 = 0.1, ξ2 = 0.2, β = 0.6,

α = 0.4, N = 3 : 2 : 11.

The numerical results are presented in following Tables and Graphes.

Table 2.11: Γ , ∆ and Θ vs. λ.
λ 1.4 2.2 3 3.8 4.2 4.8
Γ 43.41467 47.16563 53.81363 61.46361 64.93732 69.43411
∆ 62.44631 87.83599 103.58542 110.98226 112.68849 113.98970
Θ 19.03164 40.67037 49.77179 49.51866 47.75117 44.55559

Table 2.12: Γ , ∆ and Θ vs. µ1.
µ1 2.1 2.5 2.9 3.3 3.5 3.7
Γ 49.04408 48.72019 48.82543 49.31085 49.67482 50.10801
∆ 89.84638 95.38482 100.32531 104.82918 106.95748 109.01970
Θ 40.80231 46.66463 51.49987 55.51833 57.28266 58.91169

Table 2.13: Γ , ∆ and Θ vs. µ2.
µ2 1.7 1.9 2.1 2.3 2.5 2.7
Γ 48.64273 48.91370 49.2815 49.73212 50.25305 50.83345
∆ 100.27834 101.48669 102.4811 103.30047 103.97722 104.53800
Θ 51.63561 52.57298 53.1996 53.56835 53.72417 53.70455
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Table 2.14: Γ , ∆ and Θ vs. ν.
ν 1.3 1.5 1.7 1.9 2.1 2.3
Γ 60.006248 60.42808 60.83935 61.24349 61.64399 62.04501
∆ 112.06111 113.81396 115.51876 117.17090 118.76361 120.29314
Θ 52.05486 53.38588 54.67941 55.92741 57.11961 58.24813

Table 2.15: Γ , ∆ and Θ vs. ξ1.
ξ1 0.3 0.5 0.7 0.9 1.1 1.3
Γ 55.60031 55.55241 55.50744 55.46520 55.42550 55.38809
∆ 106.73059 106.62743 106.52766 106.43137 106.33855 106.24913
Θ 51.13028 51.07502 51.02023 50.96617 50.91305 50.86104

Table 2.16: Γ , ∆ and Θ vs. ξ2.
ξ2 0.3 0.5 0.7 0.9 1.1 1.3
Γ 54.42735 54.18721 53.50838 52.98109 52.05005 52.20927
∆ 104.77963 104.26948 102.84655 101.58610 99.60370 99.46025
Θ 50.35228 50.08227 49.33816 48.60501 47.55365 47.25098

Table 2.17: Γ , ∆ and Θ vs. φ.
φ 0.1 0.5 0.9 1.3 1.7 2.1
Γ 55.52628 55.08756 55.01420 54.98712 54.97424 54.96726
∆ 103.76382 105.37013 105.66036 105.78134 105.84754 105.88922
Θ 48.23755 50.28258 50.64616 50.79423 50.87330 50.92196

Table 2.18: Γ , ∆ and Θ vs. β.
β 0.1 0.3 0.5 0.7 0.9 1
Γ 82.79219 72.35272 59.53657 49.17583 42.63061 40.23601
∆ 114.99820 114.53007 109.25291 96.80668 83.22630 77.19281
Θ 32.20601 42.17735 49.71635 47.63085 40.59570 36.95680

Table 2.19: Γ , ∆ and Θ vs. α
α 0.1 0.3 0.5 0.7 0.9 1
Γ 58.62700 55.12727 52.71747 51.01291 49.76362 49.25887
∆ 106.81003 104.56888 102.68686 101.11251 99.78247 99.19185
Θ 48.18303 49.44161 49.96940 50.09960 50.01886 49.93298

Table 2.20: Γ , ∆ and Θ vs. N.
N 3 5 6 7 9 11
Γ 46.70298 48.86349 50.13514 51.42076 53.87616 56.02955
∆ 88.66901 98.09453 100.70350 102.56714 104.95503 106.32773
Θ 41.96604 49.23104 50.56836 51.14637 51.07887 50.29818

General comments

− According to Table 2.11 and Figure 2.1, we remark that the increases of λ generates

an increase in Γ and ∆, this is quite obvious. While the behavior ofΘ is not monotonic,

it increases, then decreases when λ is above a certain threshold, this can be explicable

by the fact that a large number of incoming customers engenders a large number of

customers served, and consequently the total expected profit increases, but when λ is
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Figure 2.1: Γ , ∆ and Θ vs. λ.
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Figure 2.2: Γ , ∆ and Θ vs. ν
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Figure 2.3: Γ , ∆ and Θ vs. µ1.
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Figure 2.4: Γ , ∆ and Θ vs. µ2.

large enough, the customers in the system may renege due to the long queue length,

this implies a loss customers.

− From Tables 2.12-2.14 and Figures 2.2-2.4, we remark that Γ , ∆ andΘ all increase

with the increasing of µ1, µ2, and ν. We can explain this by the fact that with the

increasing of the service rates, the average balking rate Br decreases. The customers are

served faster, this leads to a decrease in the mean number of customers in the system

Ls, in the probability that the system is idle Pidle, in the mean waiting time Ws, in
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Figure 2.5: Γ , ∆ and Θ vs. ξ1.
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Figure 2.6: Γ , ∆ and Θ vs. ξ2.
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Figure 2.7: Γ , ∆ and Θ vs. β.
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Figure 2.8: Γ , ∆ and Θ vs. φ.

average reneging rates Rren1, and Rren1. Therefore, the expected total profit increases.

− From Tables 2.15-2.16 and Figures 2.5-2.6, we remark that ∆, and Θ decrease

along the increasing of impatience rates ξ1 and ξ2. This is due to the fact that the

mean waiting time of impatient customers decreases with the increasing of ξ1 and

ξ2. Therefore, the average rate of loss customers increases, while the mean number of

customers waiting for service and the busy period probability decrease which results in

an increasing of the total expect cost Γ . Consequently this later generates a decrease in
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Figure 2.9: Γ , ∆ and Θ vs. α.
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Figure 2.10: Γ , ∆ and Θ vs. N.

the total cost profitΘ. Thus, it is quite clear that impatient phenomenon has a negative

impact in the economy.

− From Table 2.17 and Figure 2.8, we see that Γ decreases with φ,while ∆ andΘ in-

crease along the increasing of the vacation rate φ. Obviously, the decrease in the mean

vacation time implies a diminution in probability of loss customers, this leads to a high

rate of customers served. Therefore, the total expected profit becomes significant.

− From Table 2.18 and Figure 2.7, we remark that along the increasing of non-

feedback probability β, total expected cost Γ and total expected revenue ∆ decrease.

While, the total expected profit Θ is not monotonic with β, it first increases, then,

decreases significantly. Therefore, one can deduce easily the negative impact of this

probability on the cost profits.

− Through Table 2.19 and Figure 2.9, we observe that the increasing of non-retention

probability α generates a decrease in Γ and ∆.While, the behavior of the total expected

profit Θ is not monotone with α, it increases, then, when α is above a certain thresh-

old, it decreases. This can be explained by the fact that when the non-retention prob-

ability α increases, the size of the system and the mean waiting time decrease, while

the average reneging rate increases. This implies also that the probability of normal

busy period Pb decreases. Therefore, the mean number of customers served is reduced.

Moreover, the increase of Θ can be due to the choice of ξ1 = 0.6 and ξ2 = 0.4 So, it is

quite evident that retention probability has a positive effect on the revenue generation

and on the total expected profit of the system.
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− From Table 2.20 and Figure 2.10, we remark that along the increasing N, total

expected cost Γ , total expected revenue ∆ increase. While, total expected profit Θ

is not monotonic, it increases, then decreases when N is above a certain threshold.
Obviously, the larger the size of the system, the smaller the average rate of balking,

this generates a large number of customers served which engenders a positive impact

on the total costs of the system and consequently on the economy of any firm. Note

that the non-monotonicity of Θ can be due to the choice of the impatience rates ξ1 and

ξ2.

2.7 Conclusion

In this paper we present a study of heterogeneous two-server queueing system with

Bernoulli feedback, multiple working vacations, balking, reneging and retention of re-

neged customers. It is supposed that impatience timers of customers in the system

depend on the state of the server. The equations of the steady state probabilities are

developed. The most important performance measures of the system are given. Then,

based on the performance analysis, we formulate a cost model to determine the ef-

fect of different system parameters on the different characteristics as well as on total

expected cost, total expected revenue, and total expected profit of the system.

In this study, the positive impact of retention probability on both characteristics

and costs of the system under consideration has been shown. The present analysis has

a large application in many real world systems as telecommunication networks, call

centers and production-inventory systems. For further work, it will be interesting to

consider a multiserver queueing system with heterogeneous service times, multiple

working vacations, and impatient customers depending on the state of the servers.

Moreover, one can develop a similar model wherein the servers are subject to sudden

halt.
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Abstract. The purpose of this paper is to study an infinite-buffer single-server

queueing system with Bernoulli feedback, multiple vacations, differentiated vacations,

vacation interruptions and impatient customers (balking and reneging). Two types of

vacation are considered; type 1 vacation taken after the busy period and type 2 vaca-

tion taken when the server returns from a vacation and finds the system empty. Each

vacation type may be interrupted when the number of customers in the system reaches

a predefined threshold (each type of vacation has a different threshold). Via certain

mechanism, reneged customers may be retained in the system. Using the recursive

method, we obtain explicit expressions of the steady-state probabilities of the queue-

ing system. Further, we present important performance measures and formulate a cost

model. Finally, we carry out a sensitivity analysis through numerical experiments.

Keywords: Multiple vacations. Differentiated vacations. Vacation interruptions. Im-

patient customers. Bernoulli feedback. Cost model.
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3.1 Introduction

Vacation queues have been intensively considered because of their wide applications

in a variety of congestion problems including computer systems, call centers, web ser-

vices and communication networks, manufacturing systems, etc. Vacations queueing
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models have been the subject of big interest of many researchers. Excellent results on

vacation models are found in the survey paper of Doshi (1986) and the monographs

of Takagi (1991), Tian and Zhang (2006). For related literature, interested readers

may refer to Chakravarthy (2009), Wang et al. (2011), Sandari and Srinivasan (2013),

Choudhury and Deka (2016), Jain and Jain (2017) and references therein.

Vacation queueing models with impatient customers play a powerful role in our

day-to-day life as well as various congestion situations; communication networks, call

centers, systems operating in machining environment, manufacturing systems, trans-

portation systems, etc. So, over recent years, a vast number of research papers has been

done on this subject. Arumuganathan and Jeyakumar (2005) presented the steady state

analysis of a bulk queue with multiple vacations, set up times with N-policy and close

down times. Zhang et al. (2005) studied a single server queueing model with finite

waiting space, impatient customers and server vacations.

Altman and Yechiali (2006) dealt with customers’ impatience in single and multiple

vacation models of diverse types of queues (M/M/1 and M/G/1 and M/M/c queues).

Further, Padmavathy et al. (2011) considered a vacation queues with impatient cus-

tomers and a waiting server. The balking behavior of customers in the single-server

queue with generally distributed service and vacation times has been examined by

Economou et al. (2011).

Later, in Panda et al. (2016), authors considered a single server renewal input

queueing model with balking, bernoulli-schedule controlled vacation and vacation in-

terruption. Customers’ equilibrium and socially optimal balking strategies in single-

server Markovian queues with multiple vacations and N-policy was provided by Sun

et al. (2016). Vijaya Laxmi and Jyothsna (2016) considered a discrete-time M/M/1/N

queue with impatient customers and Bernoulli-schedule vacation interruption under

the early arrival system. Further, a study of single server Markovian queueing model

with single and multiple vacations and impatience timers which depend of the states

of the server was presented in Yue et al. (2016). Recently, customers’ impatience in

unreliable server queueing system under N-policy and vacation interruption was ana-

lyzed by Sharma (2017). Then, Bouchentouf and Yahiaoui (2017) examined a queueing

system with feedback, reneging and retention of reneged customers, multiple working

vacations and Bernoulli schedule vacation interruption.

The research for the present paper is initially motivated by the desire to include

Bernoulli feedback queue, impatience behavior (reneging and balking), and retention
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of reneged customers in Isijola-Adakeja and Ibe (2014), where authors have presented

an M/M/1/DV multiple vacation queueing system with differentiated vacations and

vacation interruption considering two types of vacations. The model considered in

this paper can be employed to model many real life congestion situations, like certain

hospital emergency situations, call centers, post offices, etc. Further, from an economic

point of view, it is beneficial to convince the reneged customers to do not leave the

system to get their services.

This paper is structured as follows. The system description is presented in Section

2. In Section 3, the steady-state probabilities of the queueing system are obtained. In

Section 4, we obtain explicit expressions of useful measures of effectiveness and de-

velop a cost model. Further, in Section 5, numerical examples are performed. Finally,

in Section 6 we conclude the paper.

3.2 System description

Consider anM/M/1 queueing system with Bernoulli feedback, multiple vacations, dif-

ferentiated vacations, vacation interruptions, balking, reneging and retention of re-

neged customers. Customers arrive into the system according to a Poisson process

with arrival rate λ, the service time is assumed to be exponentially distributed with

rate µ. The service discipline is FCFS and there is an infinite space for customers to

wait. In this work, two types of vacation are considered: type 1 vacation that may be

taken after a busy period where at least one customer is served, and type 2 vacation

which is taken when the server comes back from any vacation (either a type 1 vacation

or a type 2 vacation) and finds the system empty. The period of a type 1 (resp. type 2)

vacation is assumed to be exponentially distributed with rate φ1 (resp. φ2).

Further, we assume that the server’s vacation can be interrupted when the number of

customers in the system reaches n1 (resp. n2) when the server is on type 1 (resp. type

2) vacation. Moreover, we suppose that n1 > n2, as we want that the server will be

interrupted earlier when he takes a vacation after zero busy period than when he takes

a vacation after having a non-zero busy period.

Whenever a customer arrives at the system and finds the server busy, he activates

an impatience timer T , exponentially distributed with parameter ξ, if the customer’s

service has not been completed before the customer’s timer expires, the customer may

leave the system. We suppose that the customers timers are independent and identi-
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cally distributed random variables, independent of the size of the queue at that time.

Further, using a certain mechanism, a reneged customer may abandon the system

without getting service with probability α and can be retained in the system with prob-

ability α′, where α +α′ = 1.

A customer who on arrival finds at least one customer in the system, either decides to

join the queue with probability θ or balk with probability θ′, where θ +θ′ = 1.

If the service is incomplete or unsatisfactory, the customer can either leave the sys-

tem definitively with probability β or rejoin the end of the queue with probability β′,

where β + β′ = 1.

3.3 Analysis of the model

In this part of paper we carry out the steady-state analysis of the system. Let L(t) be

the number of customers in the system at time t, and J(t) denotes the state of the server

at time t such that

J(t) =


0, if the server is on busy period;
1, if the server is on type 1 vacation;
2, if the server is on type 2 vacation.

Clearly, the process {(L(t), J(t)), t ≥ 0} is a continuous-time Markov process with

state spaceΩ = {(n,0) : n ≥ 1} ∪ {(n,j) : n ≥ 0, j = 1,2}.

Let Pn,j = lim
t→∞

P {L(t) = n, J(t) = j, n ≥ 0, j = 0,2} denote the steady-state probabili-

ties of the system.

3.3.1 Balance equations

Using Markov theory, the set of balance equations of our model is given as follows

(λ+φ1)P0,1 = (βµ+αξ)P1,0, (3.1)

(θλ+φ1)P1,1 = λP0,1, (3.2)

(θλ+φ1)Pk,1 = θλPk−1,1, k = 2,n1 − 1, (3.3)

λP0,2 = φ1P0,1, (3.4)

(θλ+φ2)P1,2 = λP0,2, (3.5)
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(θλ+φ2)Pk,2 = θλPk−1,2, k = 2,n2 − 1, (3.6)

θλ(Pk,0 + Pk,1 + Pk,2) = (βµ+ (k + 1)αξ)Pk+1,0, k = 1,n2 − 1, (3.7)

(βµ+n2αξ)Pn2,0 = θλ(Pn2−1,0 + Pn2−1,1 + Pn2−1,2), (3.8)

θλ(Pk,1 + Pk,0) = (βµ+ (k + 1)αξ)Pk+1,0, k = n2,n1 − 1, (3.9)

θλPk,0 = (βµ+ (k + 1)αξ)Pk+1,0, k = n1,n1 + 1, .... (3.10)

3.3.2 Steady-state solution

Applying the recursive method, we solve the above balance equations and obtain the

steady state probabilities.

Using (3.1)-(3.3), we get

P0,1 =ω1P1,0, where ω1 =
(
βµ+αξ
λ+φ1

)
,

and 
P1,1 =

(
λ

θλ+φ1

)
P0,1, k=1;

Pk,1 =
(

θλ
θλ+φ1

)
Pk−1,1, k = 2,n1 − 1.

Then, recursively we obtain

Pk,1 = δ1β
k
1P1,0, k = 1,n1 − 1, where δ1 =

ω1

θ
, and β1 =

θλ
θλ+φ1

. (3.11)

Via (3.4), we have

P0,2 =ω2P1,0, where ω2 =
φ1

λ
ω1.

Using (3.5) and (3.6), we get


P1,2 =

(
λ

θλ+φ2

)
P0,2, k=1;

Pk,2 =
(

θλ
θλ+φ2

)
Pk−1,2, k = 2,n2 − 1.
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Thus,

Pk,2 = δ2β
k
2P1,0, k = 1,n2 − 1, where δ2 =

ω2

θ
, β2 =

θλ
θλ+φ2

. (3.12)

Next, from (3.7), it yields

Pk+1,0 =
θλ

βµ+ (k + 1)αξ

(
Pk,1 + Pk,2 + Pk,0

)
, k = 1,n2 − 1.

Thus, from this we obtain the following equation

Pk,0 =
θλ

βµ+ kαξ

{
(θλ)k−2

k−1∏
i=2

(
1

βµ+ iαξ

)
+ δ1β

k−1
1 + δ2β

k−1
2 + δ1

k−2∑
i=1

(θλ)k−(i+1)

k−1∏
j=i+1

(
βµ+ jαξ

)βi1

+δ2

k−2∑
i=1

(θλ)k−(i+1)

k−1∏
j=i+1

(
βµ+ jαξ

)βi2}P1,0, k = 2,n2 − 1.

(3.13)

In the same manner as above, from (3.8), we get

Pn2,0 =
θλ

βµ+n2αξ

(
Pn2−1,0 + Pn2−1,1 + Pn2−1,2

)
= A(n2,0)P1,0,

where

A(n2,0) =
(

θλ
βµ+n2αξ

){
θλ

βµ+ (n2 − 1)αξ

{
(θλ)n2−3

n2−2∏
i=2

(
1

βµ+ iαξ

)
+ δ1β

n2−2
1 + δ2β

n2−2
2

+δ1

n2−3∑
i=1

(θλ)n2−(i+1)

n2−2∏
j=i+1

(
βµ+ jαξ

)βi1 + δ2

n2−3∑
i=1

(θλ)n2−(i+1)

n2−2∏
j=i+1

(
βµ+ jαξ

)βi2}+ δ1β
n2−1
1 + δ2β

n2−1
2

}
.

Now, from (3.9), we have

Pk+1,0 =
θλ

βµ+ (k + 1)αξ

(
Pk,0 + Pk,1

)
, k = n2,n1 − 1,
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this gives

Pn2+l,0 =
{

(θλ)l

l∏
i=1

(
βµ+ (n2 + i)αξ

)A(n2,0) + δ1

l∑
j=0

(θλ)l−j

l∏
i=j+1

(
βµ+ (n2 + i)αξ

)βn2+j
1

}
P1,0.

Therefore, we obtain

Pk,0 =
{

(θλ)k−n2

k−n2∏
i=1

(
βµ+ (n2 + i)αξ

)A(n2,0) + δ1

k−n2∑
j=0

(θλ)k−n2−j

k−n2∏
i=j+1

(
βµ+ (n2 + i)αξ

)βn2+j
1

}
P1,0,

k = n2,n1 − 1.

(3.14)

Next, by using (3.10), we get

Pk+1,0 =
(

θλ
βµ+ (k + 1)αξ

)
Pk,0, k = n1,n1 + 1....

Recursively, we find

Pn1+l,0 =
(θλ)l

l∏
j=1

(
βµ+ (n1 + j)αξ

)Pn1,0.

Thus,

Pk,0 = ΦPn1,0, with Φ =
(θλ)k−n1

k−n1∏
j=1

(
βµ+ (n1 + j)αξ

) , k = n1,n1 + 1, .... (3.15)

Again, via (3.9), we obtain

Pn1,0 =
(

θλ
βµ+n1αξ

)(
Pn1−1,1 + Pn1−1,0

)
,

and from (3.14), we have

Pn1,0 = A(n1,0)P1,0,
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where

A(n1,0) =
(

θλ
βµ+n1αξ

){
(θλ)n1−n2−1

n1−n2−1∏
i=1

(
βµ+ (n2 + i)αξ

)A(n2,0)

+δ2

n1−n2−1∑
j=0

(θλ)n1−n2−j−1

n1−n2−1∏
i=j+1

(
βµ+ (n2 + i)αξ

)βn2+j
1 + δ1β

n1−1
1

}
.

Therefore,

Pk,0 = ΦA(n1,0)P1,0, k = n1,n1 + 1, .... (3.16)

Finally, using the normalization condition, we get

P1,0 +
n2−1∑
k=2

Pk,0 +
n1−1∑
k=n2

Pk,0 +
+∞∑
k=n1

Pk,0 + P0,1 +
n1−1∑
k=1

Pk,1 + P0,2 +
n2−1∑
k=1

Pk,2 = 1.

Then, using (3.11)-(3.14) and (3.16), we obtain

P1,0 =
1

1 +B1 +B2 +B3 +B4 +B5
,

where

B1 =
n2−1∑
k=2

θλ
βµ+ kαξ

{
(θλ)k−2

k−1∏
i=2

(
1

βµ+ iαξ

)
+ δ1β

k−1
1 + δ2β

k−1
2

+δ1

k−2∑
i=1

(θλ)k−(i+1)

k−1∏
j=i+1

(
βµ+ jαξ

)βi1 + δ2

k−2∑
i=1

(θλ)k−(i+1)

k−1∏
j=i+1

(
βµ+ jαξ

)βi2},

B2 =
n1−1∑
k=n2

{
(θλ)k−n2

k−n2∏
i=1

(
βµ+ (n2 + i)αξ

)A(n2,0) + δ1

k−n2∑
j=0

(θλ)k−n2−j

k−n2∏
i=j+1

(
βµ+ (n2 + i)αξ

)βn2+j
1

}
,
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B3 =
+∞∑
k=n1

(θλ)k−n1

k−n1∏
j=1

(
βµ+ (n1 + j)αξ

)A(n1,0), B4 =ω1 + δ1

n1−1∑
k=1

βk1 , andB5 =ω2 + δ2

n2−1∑
k=1

βk2 .

3.4 Performance Measures and Cost Model

In this part of paper, we present different performance measures of the system, and

based on these performance indices, we develop a cost model.

3.4.1 Performance measures

Using the steady-state probabilities presented previously, we can obtain useful perfor-

mance measures of the system that are of general interest.

• The probability that the server is in busy period (PB).

PB = P1,0 +
n2−1∑
k=2

Pk,0 +
n1−1∑
k=n2

Pk,0 +
+∞∑
k=n1

Pk,0.

• The probability that the server is on vacation (PV ).

PV = PV1
+ PV2

=
n1−1∑
k=0

Pk,1 +
n2−1∑
k=0

Pk,2 = 1− PB,

where PV1
and PV2

are the probabilities that the server is on type 1 vacation and type 2

vacation, respectively.

• The average number of customers in the system (Ls).

Ls = P1,0 +
n2−1∑
k=2

kPk,0 +
n1−1∑
k=n2

kPk,0 +
+∞∑
k=n1

kPk,0 +
n1−1∑
k=0

kPk,1 +
n2−1∑
k=0

kPk,2.

• The average number of customers in the queue (Lq).

Lq =
n2−1∑
k=2

(k − 1)Pk,0 +
n1−1∑
k=n2

(k − 1)Pk,0 +
+∞∑
k=n1

(k − 1)Pk,0 +
n1−1∑
k=1

kPk,1 +
n2−1∑
k=1

kPk,2.
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• The average reneging rate (Rren).

Rren = αξ

P1,0 +
n2−1∑
k=2

kPk,0 +
n1−1∑
k=n2

kPk,0 +
+∞∑
k=n1

kPk,0

 .
• The average retention rate (Rret).

Rret = α′ξ

P1,0 +
n2−1∑
k=2

kPk,0 +
n1−1∑
k=n2

kPk,0 +
+∞∑
k=n1

kPk,0

 .
• The average balking rate (Br).

Br = θ′λ
(
P1,0 +

n2−1∑
k=2

Pk,0 +
n1−1∑
k=n2

Pk,0 +
+∞∑
k=n1

Pk,0 +
n1−1∑
k=1

Pk,1 +
n2−1∑
k=1

Pk,2

)
.

• The expected number of customers served per unit of time (Ecs).

Ecs = βµ
(
P1,0 +

n2−1∑
k=2

kPk,0 +
n1−1∑
k=n2

kPk,0 +
+∞∑
k=n1

kPk,0

)
.

3.4.2 Cost Model

In this subpart, we develop a model for the costs incurred in the queueing system, to

this end let us define

• Cb : Cost per unit time when the server is busy.

• Cv : Cost per unit time when the server is on type 1 /type 2 vacation.

• Cq : Cost per unit time when a customer joins the queue and waits for service.

• Cs : Cost per service per unit time.

• Cren : Cost per unit time when a customer reneges.

• Cret : Cost per unit time when a customer is retained.

• Cs−f : Cost per unit time when a customer returns to the system as a feedback

customer.
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• Cbr : Cost per unit time when a customer balks.

Let
• R be the revenue earned by providing service to a customer.

• Γ be the total expected cost per unit time of the system.

Γ = CbPB +CvPV +CqLq +CbrBr +CrenRren +CretRret +µ(Cs + β′Cs−f ).

• ∆ be the total expected revenue per unit time of the system.

∆ = RµPB.

• Θ be the total expected profit per unit time of the system.

Θ = ∆− Γ .

3.5 Numerical analysis

In this section, we perform a sensitive numerical analysis to illustrate the impact of the

system parameters on different performance measures and the total expected profit.

The computations are given by developing a program in R software. For the whole

numerical study we fix the costs at Cb = 5, Cv = 2, Cq = 3, Cs = 4, Cren = 3, Cret = 5,

Cbr = 3, Cs−f = 2, and R = 25.

Impact of arrival and service rates (λ) and (µ)

To examine the impact of λ and µ, we consider the following cases.

• Tables 3.1 and 3.3: λ = 1.00 : 0.40 : 3.40, µ = 5.00, ξ = 0.50, φ1 = 0.60, φ2 = 0.90,

n1 = 8, n2 = 4, θ = 0.80, α = 0.50, and β = 0.60.

• Tables 3.2 and 3.4: λ = 3.00, µ = 3.00 : 0.50 : 6.00, ξ = 1.00, φ1 = 1.00, φ2 = 0.80,

n1 = 8, n2 = 4, θ = 0.9, α = 0.5, and β = 0.60.

From Tables 3.1-3.4 and Figures 3.1-3.2 we remark that along the increases of the

arrival (resp. service) rate λ (resp. µ), Ls and Lq increase (resp. decrease), this leads

to an increase (resp. a decrease) in PB, Br , Rren and Rret , as it should be. Further,

increases in λ and µ implies an increase in Ecs which results in the increasing of Γ , ∆

and Θ, respectively, as intuitively expected.
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Table 3.1: System performance measures vs. λ.
λ PB Ls Lq Br Rren Rret Ecs
1.00 0.230323 1.372887 1.142564 0.135705 0.092503 0.026772 1.406790
1.40 0.301415 1.795022 1.493607 0.213454 0.155046 0.062617 2.167688
1.80 0.368932 2.155418 1.786486 0.293900 0.226351 0.111582 3.021292
2.20 0.434706 2.479265 2.044559 0.375951 0.306408 0.173462 3.972506
2.60 0.499547 2.790536 2.290989 0.459213 0.396352 0.249569 5.036779
3.00 0.563671 3.111412 2.547742 0.543514 0.498175 0.342365 6.238812
3.40 0.626857 3.464063 2.837207 0.628736 0.614725 0.455287 7.613304

Table 3.2: System performance measures vs. µ.
µ PB Ls Lq Br Rren Rret Ecs
3.00 0.710071 3.004134 2.294063 0.275214 1.175551 0.736414 4.425961
3.50 0.661448 2.833762 2.172313 0.271057 1.042867 0.623889 4.613809
4.00 0.617257 2.701564 2.084307 0.267279 0.934458 0.537627 4.756190
4.50 0.577443 2.597701 2.020258 0.263876 0.845058 0.470577 4.868113
5.00 0.541695 2.514913 1.973218 0.260820 0.770520 0.417614 4.958953
5.50 0.509605 2.447932 1.938327 0.258076 0.707664 0.375074 5.034655
6.00 0.480755 2.392949 1.912194 0.255610 0.654072 0.340346 5.099086

Table 3.3: Γ , ∆ and Θ for different values of λ.
λ 1.00 1.40 1.80 2.20 2.60 3.00 3.60
Γ 27.509454 28.322831 29.22546 30.21851 31.31318 32.52791 33.88739
∆ 28.79041 37.67687 46.11648 54.33831 62.44340 70.45883 78.35708
Θ 1.280961 9.354035 16.89102 24.11980 31.13022 37.93092 44.46970

Table 3.4: Γ , ∆ and Θ for different values of µ.
µ 3.00 3.50 4.00 4.50 5.00 5.50 6.00
Γ 26.56458 27.84556 29.34512 31.01202 32.80717 34.70141 36.67304
∆ 53.25530 57.87673 61.72574 64.96237 67.71184 70.07072 72.11331
Θ 26.69072 30.03116 32.38062 33.95035 34.90466 35.36931 35.44027
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Figure 3.1: Γ , ∆ and Θ vs. λ.
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Figure 3.2: Γ , ∆ and Θ vs. µ.

Impact of impatience rate (ξ)

To study the impact of ξ, we put λ = 3.00, µ = 5.00, ξ = 0.50 : 0.50 : 3.50, φ1 = 1.00,

φ2 = 0.80, n1 = 8, n2 = 5, θ = 0.90, α = 0.40, and β = 0.60.
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Table 3.5: System performance measures vs. ξ
ξ PB Ls Lq Br Rren Rret Ecs
0.50 0.669285 3.257864 2.588578 0.272498 0.506168 0.405302 7.850343
1.00 0.583702 2.678804 2.095103 0.265381 0.708000 0.387606 5.615459
1.50 0.525868 2.444018 1.918150 0.260572 0.849241 0.358569 4.574773
2.00 0.481555 2.313908 1.832353 0.256887 0.956366 0.336779 3.926740
2.50 0.445609 2.230707 1.785098 0.253898 1.040777 0.322067 3.468099
3.00 0.415479 2.172923 1.757444 0.251392 1.108931 0.312406 3.119526
3.50 0.389669 2.130578 1.740910 0.249246 1.164959 0.306131 2.842394

Table 3.6: Γ , ∆ and Θ for different values of ξ.
ξ 0.50 1.00 1.50 2.00 2.50 3.00 3.50
Γ 32.37036 32.60928 32.69989 32.76832 32.83119 32.88943 32.94227
∆ 83.66068 72.96272 65.73355 60.19434 55.70117 51.93488 48.70858
Θ 51.29032 40.35345 33.03366 27.42602 22.86998 19.04544 15.76630
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Figure 3.3: Γ , ∆ and Θ vs. ξ.

Tables 3.5-3.6 and Figure 3.3 depict the impact of the impatience rate ξ, it is well

shown that Ls, Lq, PB, Br and Rret all decrease with ξ, whereas Rren increases with the

parameter ξ, which is quite reasonable; the number of reneged customers increases

with the parameter ξ, this implies a decrease in the number of customers in the system,

therefore the probability of busy period, the average rates of balking and retention de-

crease also. Further, as intuitively expected, the mean number of customers served Ecs
decreases as ξ increases. Moreover, a decreasing trend is observed in ∆ and Θ with the

increase of ξ, while Γ increases with ξ. This is because the number of customers in the
system decreases with ξ, which results in the decreasing of the number of customers

served.
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Impact of type 1 and type 2 vacation rates (φ1) and (φ2) as well as

type 1 and type 2 vacation interruption thresholds (n1) and (n2)

To examine the effect of φ1 and n1 (resp. φ2 and n2), we consider the following cases.

• Tables 3.7 and 3.9: λ = 3.00, µ = 5.00, ξ = 1.00, φ1 = 0.50 : 0.50 : 2.50, φ2 = 2.00,

n1 = 10 : 5 : 20, n2 = 8, θ = 0.70, α = 0.50, and β = 0.60.

• Tables 3.8 and 3.10: λ = 3.00, µ = 5.00, ξ = 1.00, φ1 = 2.00, φ2 = 0.50 : 0.50 : 2.50,

n1 = 50, n2 = 5 : 5 : 15, θ = 0.70, α = 0.50, and β = 0.60.

Table 3.7: System performance measures vs. (φ1,n1).
φ1 n1 PB Ls Lq Br Rren Rret Ecs

10 0.422135 3.056662 2.634527 0.807175 0.762541 0.041587 4.070553
0.50 15 0.411867 3.606383 3.194516 0.813177 0.830683 0.117194 4.394589

20 0.407638 3.866849 3.459211 0.814921 0.854130 0.141596 4.506980
10 0.472532 2.311160 1.838628 0.766424 0.698528 0.014798 3.863686

1.00 15 0.470614 2.422226 1.951613 0.768089 0.716322 0.032281 3.948029
20 0.470247 2.444240 1.973993 0.768299 0.718895 0.034705 3.960313
10 0.492016 2.058173 1.566157 0.745009 0.665373 0.009182 3.757397

1.50 15 0.491049 2.117313 1.630392 0.745913 0.675273 0.018766 3.804383
20 0.490863 2.128470 1.637607 0.746020 0.676585 0.019998 3.810648
10 0.511499 1.805185 1.293686 0.723594 0.632218 0.003574 3.651108

2.00 15 0.511483 1.812400 1.300917 0.723737 0.634223 0.005250 3.660736
20 0.511479 1.812700 1.301221 0.723741 0.634275 0.005293 3.660982
10 0.518436 1.728032 1.209596 0.713948 0.618543 0.002651 3.609525

2.50 15 0.518477 1.730849 1.212372 0.714008 0.619633 0.003511 3.610423
20 0.518477 1.730899 1.212422 0.714009 0.619643 0.003519 3.614856

Table 3.8: System performance measures vs. (φ2,n2).
φ2 n2 PB Ls Lq Br Rren Rret Ecs

5 0.470013 1.950241 1.480227 0.754515 0.611339 0.064832 3.460818
0.50 10 0.459874 2.637000 2.177127 0.776899 0.747348 0.005696 4.078685

15 0.451622 3.000162 2.548541 0.781909 0.789144 0.001152 4.273749
5 0.486758 1.828364 1.341606 0.737770 0.599065 0.057652 3.445963

1.00 10 0.489732 2.141068 1.651336 0.750115 0.688883 0.002192 3.860765
15 0.488463 2.209231 1.720767 0.751243 0.699727 0.000151 3.911848
5 0.495101 1.770043 1.274942 0.728004 0.591389 0.054956 3.434713

1.50 10 0.500803 1.984356 1.483553 0.737144 0.664613 0.001660 3.775444
15 0.500196 2.021283 1.521091 0.737766 0.670098 0.000090 3.805642
5 0.503443 1.711721 1.208277 0.718237 0.583713 0.052259 3.423462

2.00 10 0.511874 1.827644 1.315770 0.724172 0.640343 0.001100 3.690123
15 0.511920 1.833334 1.321414 0.724288 0.642269 0.000029 3.699435
5 0.507877 1.682327 1.174450 0.712258 0.578870 0.051283 3.415855

2.50 10 0.516690 1.771559 1.254869 0.717204 0.629459 0.001039 3.655063
15 0.516777 1.774486 1.257708 0.717268 0.630837 0.000027 3.661772

Tables 3.7-3.10 and Figures 3.4-3.5 illustrate the effects of type 1 and type 2 vaca-

tion rates (φ1) and (φ2) as well as type 1 and type 2 vacation interruption thresholds

(n1) and (n2), respectively. From the results obtained we have
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Table 3.9: Γ , ∆ and Θ for different values of (φ1,n1).
n1\φ1 0.50 1.00 1.50 2.00 2.50
10 32.18349 31.88644 31.76423 31.61980 31.56603

Γ 15 32.75315 32.02648 31.84164 31.63458 31.57391
20 32.93805 32.04585 31.86150 31.63495 31.57398
10 52.76687 59.06653 61.51205 63.93735 64.80445

∆ 15 51.48339 58.82670 61.39214 63.93536 64.80967
20 50.95472 58.78082 61.36894 63.93485 64.80960
10 20.58338 27.18009 29.65993 32.31755 33.23842

Θ 15 18.73024 26.80022 29.56162 32.30078 33.23576
20 18.01667 26.73497 29.52854 32.29990 33.23562

Table 3.10: Γ , ∆ and Θ for different values of (φ2,n2).
n2\φ2 0.50 1.00 1.50 2.00 2.50
5 31.83176 31.75904 31.72637 31.67748 31.65343

Γ 10 31.98084 31.79715 31.72997 31.63467 31.59526
15 32.07378 31.81905 31.73842 31.63558 31.59478
5 58.75166 60.84476 61.89759 62.93042 63.48457

∆ 10 57.48420 61.21652 62.70046 63.98421 64.58630
15 56.45270 61.05793 62.62398 63.99004 64.59716
5 26.91990 29.08572 30.26844 31.25294 31.83114

Θ 10 25.50336 29.41937 30.89556 32.34954 32.99105
15 24.37892 29.23887 30.80778 32.35447 33.00238
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Figure 3.4: Γ , ∆ and Θ vs. (φ1,n1).
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Figure 3.5: Γ , ∆ and Θ vs. (φ2,n2).
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• For fixed ni , i = 1,2, along the increases of φi , i = 1,2, a decreasing trend is

observed in Ls, Lq, Br , Rren and Rret, as intuitively expected. Whereas PB increases

with φi , i = 1,2, this makes a perfect sense; the smaller the mean vacation time,

the bigger the busy period. Moreover, the number of customers in the system

decreases with vacation rates whatever the type of vacation which leads to the

increase in the probability of busy period. Therefore, the average rates of balking,

reneging and retention decrease.

• A decreasing trend is seen in Ecs with φi , i = 1,2, this can be explained by the

fact that as φi , i = 1,2, increases, the vacation period decreases and the server

switches to busy period during which customers may be impatient and leave the

system, taking into account that the interruption thresholds ni , i = 1,2, are taken

slightly large. But, for appropriate values of different costs, this slight lost in the

mean number of customers served does not affect negatively the total expected

profit.

• As intuitively expected, for suitable values of the costs, Γ decreases as φi , i =

1,2, increases, while ∆ and Θ increase significantly with the increasing values of

φi , i = 1,2.

• For fixed φi , i = 1,2, the performance measures Ls, Lq, Br , Rren and Ecs increase

with ni , i = 1,2. While Rret increases with n1 and decreases with n2. This is be-

cause of the values chosen of vacation rates and vacation interruption thresholds.

• PB decreases with n1 when φ1 = 0.5,1.0,1.5,2.0 and increases when φ1 = 2.5,

while it decreases with n2 when φ2 = 0.5, it is not monotone when φ2 = 1.0,1.5

and increases when φ2 = 2.0,2.5. This is due to the choice of the vacation rates

and vacation interruption thresholds. Moreover, the higher the vacation rates,

the greater the probability of busy period.

• For fixed φi , i = 1,2, along the increasing of n1, Γ increases, while it increases

with n2 when φ2 = 0.5,1.0,1.5, it is not monotone when φ2 = 2 and decreases in

the case where φ2 = 2.5. Further, ∆ decreases with n1 when φ1 = 0.5,1.0,1.5,2.0,

and not monotone when φ1 = 2.5. Whereas it decreases with n2 when φ2 = 0.5,

not monotone when φ1 = 1.0,1.5 and increases when φ2 = 2.0,2.5. As a con-

sequence, Θ monotonically decreases with n1. While it decreases with the in-

creasing values of n2, when φ2 = 0.50, it is not monotone in the case where
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φ2 = 1.0,1.5, and increases when φ2 = 2.0,2.5. Thus, as it is seen from the re-

sults obtained, early interruption of type 1 vacation has a significant impact on

the total expected profit. Whereas, Θ is not monotone with type 2 vacation in-

terruption threshold, this is due to the impatience phenomenon during busy pe-

riod and the choice of type 1 and type 2 of vacation rates as well as type 1 and

type 2 vacation interruption thresholds. However, theoretically, for our queueing

model, it is not easy to obtain vacation rates and vacation interruption thresholds

associated that affect positively the total expected profit.

Impact of non-balking probability (θ)

In order to check the effect of θ, we put λ = 3.00, µ = 5.00, ξ = 0.50, φ1 = 1.00, φ2 =

0.80, n1 = 8, n2 = 4, θ = 0.10 : 0.10 : 0.90, α = 0.50, and β = 0.60.

Table 3.11: System performance measures vs. θ.
θ PB Ls Lq Br Rren Rret Ecs
0.10 0.235634 1.075323 0.839689 2.204897 0.037174 0.001374 0.953884
0.20 0.287360 1.316758 1.029399 1.983997 0.078158 0.009631 1.417905
0.30 0.337355 1.543214 1.205859 1.755245 0.124356 0.027722 1.946898
0.40 0.386823 1.763335 1.376512 1.520767 0.176892 0.056402 2.552293
0.50 0.436370 1.984218 1.547848 1.281226 0.236544 0.096141 3.242417
0.60 0.486216 2.213723 1.727507 1.036649 0.304142 0.147718 4.026670
0.70 0.536334 2.460722 1.924388 0.786733 0.380768 0.212365 4.917727
0.80 0.586532 2.735448 2.148916 0.531003 0.467924 0.291853 5.933539
0.90 0.636495 3.050194 2.413699 0.268924 0.567734 0.388606 7.099662

Table 3.12: Γ , ∆ and Θ for different values of θ.
θ 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Γ 33.4399 33.0967 32.7894 32.5354 32.3431 32.2196 32.1733 32.1656 32.1614
∆ 29.4542 35.9199 42.1693 48.3529 54.5462 60.7769 67.0417 73.3164 79.5618
Θ -3.9857 2.8232 9.3798 15.8174 22.2031 28.5573 34.8684 41.1008 47.1993

Clearly, from Tables 3.11-3.12 and Figure 3.6, we see that along the increasing of

non-balking probability θ, the performance measures Ls, Lq, PB, Rren and Rret all in-

crease, while Br decreases with θ, as it should be. Further, it is consistent with our

intuition that the larger the probability of non-balking, the higher the number of cus-

tomers served Ecs. This leads to a decrease in Γ and a significant increase in ∆ and Θ.

This trend matches absolutely with the realistic situation.

Impact of non-retention and non-feedback probabilities (α) and (β)

To examine the impact of α and of β, we consider the following cases.
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Figure 3.6: Γ , ∆ and Θ vs. θ.

• Tables 3.13 and 3.14: λ = 3.00, µ = 5.00, ξ = 0.50, φ1 = 1.00, φ2 = 0.80, n1 = 8,

n2 = 4, θ = 0.70, α = 0.10 : 0.10 : 0.90, and β = 0.60.

• Tables 3.15 and 3.16: λ = 3.00, µ = 5.00, ξ = 0.50, φ1 = 1.00, φ2 = 0.80, n1 = 8,

n2 = 5, θ = 0.70, α = 0.60, and β = 0.10 : 0.10 : 0.90.

Table 3.13: System performance measures vs. α.
α PB Ls Lq Br Rren Rret Ecs
0.10 0.639608 3.193360 2.553752 0.811962 0.122932 0.811869 7.664556
0.20 0.605978 2.890069 2.284090 0.803746 0.208848 0.565704 6.575937
0.30 0.578958 2.698767 2.119809 0.797146 0.276595 0.407173 5.858417
0.40 0.556147 2.563201 2.007054 0.791573 0.332776 0.295334 5.330477
0.50 0.536334 2.460722 1.924388 0.786733 0.380768 0.212365 4.917727
0.60 0.518794 2.380015 1.861221 0.782448 0.422616 0.148776 4.582377
0.70 0.503048 2.314623 1.811575 0.778602 0.459682 0.098878 4.302513
0.80 0.488761 2.260510 1.771750 0.775112 0.492922 0.058994 4.064236
0.90 0.475682 2.214987 1.739305 0.771917 0.523035 0.026623 3.858153

Table 3.14: Γ , ∆ and Θ for different values of α.
α 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Γ 34.7828 33.6842 32.9939 32.5181 32.1733 31.9154 31.7183 31.5653 31.44501
∆ 79.9510 75.7473 72.3698 69.5184 67.0417 64.8491 62.8810 61.0950 59.46025
Θ 45.1681 42.0630 39.3758 37.0002 34.8684 32.9337 31.1626 29.5297 28.01524

From Tables 3.13-3.16 and Figures 3.7-3.8, it is easy to observe that along the in-

creases of α and β, the performance measures Ls, Lq, PB, Br and Rret all decrease, as it

should be. Further, an increase in the probability of non-feedback β leads to a decrease

in Rren, this implies an increase in Ecs. However, the increase in the probability of non-

retention α implies an increase in Rren, which implies a decrease in Ecs. Consequently,

the increases in α and β generates a decrease in Γ , ∆ and Θ, respectively. The negative

impact of these two probabilities is quite clear in the economy.



3.6 Conclusion 105

Table 3.15: System performance measures vs. β.
β PB Ls Lq Br Rren Rret Ecs
0.10 0.973630 5.870646 4.897016 0.893725 1.738876 0.969416 2.911200
0.20 0.895094 4.389540 3.494445 0.875038 1.240081 0.559856 4.197609
0.30 0.786456 3.426369 2.639913 0.849189 0.882475 0.310923 4.553516
0.40 0.683629 2.893932 2.210303 0.824722 0.661805 0.186544 4.630228
0.50 0.598166 2.597724 1.999559 0.804386 0.524616 0.124672 4.656364
0.60 0.529217 2.420934 1.891718 0.787980 0.433937 0.091435 4.678825
0.70 0.473423 2.306964 1.833540 0.774705 0.370096 0.071817 4.702464
0.80 0.427720 2.228476 1.800756 0.763830 0.322769 0.059193 4.725824
0.90 0.389754 2.171503 1.781748 0.754796 0.286256 0.050465 4.747600

Table 3.16: Γ , ∆ and Θ for different values of β.
β 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
Γ 46.6657 41.8299 38.1089 35.4431 33.4048 31.7105 30.2137 28.8389 27.5447
∆ 121.703 111.886 98.3069 85.4536 74.7707 66.1520 59.1779 53.4649 48.7192
Θ 75.0379 70.0568 60.1980 50.0104 41.3658 34.4415 28.9641 24.6260 21.1745
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Figure 3.7: Γ , ∆ and Θ vs. α.
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Figure 3.8: Γ , ∆ and Θ vs. β.

3.6 Conclusion

In this paper we presented a sensitivity study of an infinite-buffer single server queue-

ing system with Bernoulli feedback, multiple vacations, differentiated vacations, vaca-

tion interruptions, balking and reneging. Via certain mechanism, reneged customers

may be retained in the system. Using the recursive approach, the exact expressions

of the steady-state probabilities are obtained. Moreover, explicit expressions of useful

performance measures are derived, and a cost model is developed. Finally, a variety of

numerical results has been discussed.
For further work, it would be interesting to extend our results to a non-Markovian

models which takes the system to more realistic environment. Furthermore, the model

considered in the present investigation can be extended to a more general case with

multiple servers, batch arrivals and servers subject to breakdowns with repairs.
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Abstract. This paper concerns the analysis of a Markovian queueing system with

Bernoulli feedback, single vacation, waiting server and impatient customers. We sup-

pose that whenever the system is empty the sever waits for a random amount of time

before he leaves for a vacation. Moreover, the customer’s impatience timer depends

on the states of the server. If the customer’s service has not been completed before the

impatience timer expires, the customer leaves the system, and via certain mechanism,

impatient customer may be retained in the system. We obtain explicit expressions for

the steady-state probabilities of the queueing model, using the probability generating

function (PGF). Further, we obtain some important performance measures of the sys-

tem and formulate a cost model. Finally, an extensive numerical study is illustrated.
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4.1 Introduction

Queueing models with vacations have a great impact in many real life situations, such

models occur naturally in different fields such as computer and communication sys-

tems, flexible manufacturing systems, telephone services, production line systems,

machine operating systems, post offices, etc. Over the past few decades, vacation
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queueing systems have paid attention of many researchers, excellent surveys on queue-

ing systems with vacations can be found in Doshi (1986) and Takagi (1991) and in the

monographs of Tian (2006) and Ke (2010). In recent years, there has been gowning in-

terest in the study of queueing systems with impatient customers (balking and reneg-

ing). For related literature, interested readers may refer to Shin and Choo (2009), El-

Paoumy and Nabwey (2011), Kumar et al. (2014), Kumar and Sharma (2014), Bouchen-

touf et al. (2014), Baek et al. (2017), Bouchentouf and Messabihi (2018) and references

therein.
The studies of queueing models with impatient customers were ranked depend-

ing on the causes of the impatience behavior. In queueing literature, models where

customers may be impatiens because of server vacations have been extensively ana-

lyzed. Yue et al. (2006) presented the optimal performance analysis of an M/M/1/N

queueing system with balking, reneging and server vacation. Altman and Yechiali

(2006) gave the analysis of some queueing models such as M/M/1, M/G/1 and M/M/c

queues with server vacations and customer impatience, both single and multiple vaca-

tion cases were studied. Further, Altman and Yechiali (2008) investigated the infinite

server queue with vacations and impatient customers. They obtained the probability

generating function of the number of customers in the model and derived the perfor-

mance measures of the system. Queueing systems with vacations and synchronized

reneging have been done by Adan et al. (2009). Wu and Ke (2010) presented computa-

tional algorithm and parameter optimization for a multi-server system with unreliable

servers and impatient customers. Later, the model given in Altman and Yechiali (2006)

were extended by Yue et al. (2014) by considering a variant of the multiple vacation

policy which includes both single vacation and multiple vacations. In Padmavathy et

al. (2011), authors studied the steady state behavior of the vacation queues with im-

patient customers and a waiting server. Further, the transient solution of a M/M/1

multiple vacation queueing model with impatient customers has been investigated by

Ammar (2015). Then, a study of single server Markovian queueing system with vaca-

tions and impatience timers which depend of the state of the server was presented in

Yue et al. (2016). Recently, in Ammar (2017), author established the transient solution

of an M/M/1 vacation queue with a waiting server and impatient customers.

The main objective of this article is to study an M/M/1 vacation queueing system

with Bernoulli feedback, waiting server, reneging, and retention of reneged customers.

It is supposed that whenever the busy period ended the server waits a random dura-
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tion of time before beginning on a vacation. Moreover, we assume that the impatience

timers of customers depend on the server’s states. We obtain the steady-state solu-

tion of the queueing model, using the probability generating function (PGF). Further,

we give explicit expressions of useful measures of effectiveness and formulate a cost

model. Then, we present a sensitive numerical experiments to illuminate the inter-

ests of our theoretical results and to show the impact of the diverse parameters on

the behavior of the system. Finally, an appropriate economic analysis is carried out

numerically.

The model analyzed in this paper has a number of applications in practice. In most

studies cited earlier, authors considered that the server leaves the system once the

system is empty, but in many practical life situations the server waits a certain period

of time before he leaves the system even if there is no customers, especially when we

deal with a human behavior, examples can be found in post offices, banks, hospitals,
etc.

Further, our study has another great scope, in most studies mentioned in the above

literature, the basis of the research is the supposition that customers may be impatient

because of server vacations. However, there are many situations where the customer

can become impatient due to the long wait in the queue even if the server is present

in the system, another example when the customer may leave the system during busy

period is when he cannot see the server state, these situations can be found in telecom-

munication systems, call centers and production inventory systems.

The rest of the paper is organized in the following manner. In Section 2, we describe

the model. In Section 3, we present the stationary analysis for the queueing model.

In Section 4, we obtain different performance measures and formulate a cost model.

Section 5 presents numerical results in the form of Tables and Figures. Finally, in

Section 6 we conclude the paper.

4.2 System model

Consider a M/M/1 vacation queueing model with Bernoulli feedback, waiting server,

reneging and retention of reneged customers. The model studied in this paper is based

on following assumptions:

∗ Customers arrive into the system according to a Poisson process with arrival rate

λ, and service time is assumed to be exponentially distributed with parameter µ. The

service discipline is FCFS and there is infinite space for customers to wait.
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∗ When the busy period is finished the server waits a random duration of time

before beginning on a vacation. This waiting duration is exponentially distributed

with parameter η.

∗ If the server comes back from a vacation to an empty system he waits passively

the first arrival, then he begins service. Otherwise, if there are customers waiting in

the queue at the end of a vacation, the server starts immediately a busy period. That

is single vacation policy. The period of vacation has an exponential distribution with
parameter γ.

∗ Whenever a customer arrives at the system and finds the server on vacation (re-

spectively. busy), he activates an impatience timer T0 (respectively. T1), which is ex-

ponentially distributed with parameter ξ0 (respectively. ξ1). If the customer’s service

has not been completed before the impatience timer expires, the customer may aban-

don the queue. We suppose that the customers timers are independent and identically

distributed random variables and independent of the number of waiting customers.

∗ Each reneged customer may leave the system without getting service with proba-

bility α and may be retained in the system with probability α′ = (1−α).

∗ After completion of each service, the customer can either leave the system defini-

tively with probability β or return to the system and join the end of the queue with

probability β′, where β + β′ = 1.

4.3 Stationary analysis

In this section, we use the probability generating function (PGF) to obtain the steady-

state solution of the queueing system.

Let L(t) be the number of customers in the system at time t, and J(t) denotes the

state of the server at time t such that

J(t) =
{

1, when the server is in a busy period;
0, otherwise.

Clearly, the process {(L(t); J(t)); t ≥ 0} is a continuous-time Markov process with state
space

Ω = {(j,n) : j = 0,1, n = 0,1, ...}.

Let Pj,n = lim
t→∞

P {J(t) = j,L(t) = n}, j = 0,1,n = 0,1, ..., (j,n) ∈ Ω, denote the system

state probabilities.
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Then, the steady-state balance equations of our model are given as follows:

(λ+γ)P0,0 = αξ0P0,1 + ηP1,0, (4.1)

(λ+γ +nαξ0)P0,n = λP0,n−1 + (n+ 1)αξ0P0,n+1, n ≥ 1, (4.2)

(λ+ η)P1,0 = γP0,0 + (βµ+αξ1)P1,1, (4.3)

(λ+ βµ+nαξ1)P1,n = λP1,n−1 +γP0,n + (βµ+ (n+ 1)αξ1)P1,n+1,

n ≥ 1,
(4.4)

Theorem 4.3.1. If we have a single server Bernoulli feedback queueing system with single

vacation, waiting server, server’s states-dependent reneging and retention of reneged cus-

tomers, then
1. The steady-state probability P0,. is given by

P0,. =
(
γαξ0 + δ1K0(1)(1−γ)

γK0(1)

)
P0,0. (4.5)

2. The steady-state probability P1,. is given by

P1,. = e
λ
αξ1

(
γ

λ+ η

(
βµ

αξ1
K1(1) +

η

αξ1
K2(1)

)
−
γ

αξ1
K3(1)

+
βµ+αξ1

λ+ η

(
βµ

αξ1
K1(1) +

η

αξ1
K2(1)

)(
αξ0 − δ1K0(1)
δ2K0(1)

))
P0,0,

(4.6)

where

P0,0 =
{
δ1δ2K0(1) + δ2(αξ0 − δ1K0(1))

γδ2K0(1)
+ e

λ
αξ1

[(
βµ

αξ1
K1(1) +

η

αξ1
K2(1)

)
(
γ

λ+ η
+
(
βµ+αξ1

λ+ η

(
αξ0 − δ1K0(1)
δ2K0(1)

)))
− γ
αξ1
K3(1)

]}−1

,

(4.7)

K0(z) =
∫ z

0
(1− s)

γ
αξ0
−1
e
− λ
αξ0

s
ds,
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K1(z) =
∫ z

0
s−1s

βµ
αξ1 e

− λs
αξ1 ds, K2(z) =

∫ z

0
(1− s)−1s

βµ
αξ1 e

− λs
αξ1 ds,

and

K3(z) =
∫ z

0

(
1− K0(s)

K0(1)

)
s
βµ
αξ1 (1− s)−

( γ
αξ0

+1
)
e
(
λ
αξ0
− λ
αξ1

)
s
ds.

Proof. Let

Gj(z) =
∞∑
n=0

Pj,nz
n, j = 0,1.

Then, multiplying Equation (4.2) by zn, using Equations (4.1) and (4.3) and sum-

ming all possible values of n, we get

αξ0(1− z)G′0(z)− (λ(1− z) +γ)G0(z) = −{δ1P00 + δ2P11} , (4.8)

with

δ1 =
(
γη

λ+ η

)
and δ2 =

(
η(βµ+αξ1)

λ+ η

)
,

where G′0(z) = d
dzG0(z).

In the same manner, from Equations (4.3) and (4.4) we obtain

αξ1z(1− z)G′1(z)− (λz − βµ)(1− z)G1(z) = −γzG0(z) + (βµ(1− z) + ηz)P1,0. (4.9)

Next, let Γ = δ1P00 +δ2P11. Then, for z , 1, Equation (4.8) can be rewritten as follows

G′0(z)−
(
λ
αξ0

+
γ

αξ0(1− z)

)
G0(z) = − Γ

αξ0(1− z)
. (4.10)

Multiplying both sides of (4.10) by the integrating factor e
−λ
αξ0 (1 − z)

γ
αξ0 , then inte-

grating from 0 to z we get

G0(z) = e
λ
αξ0

z(1− z)−
γ
αξ0

{
G0(0)− Γ

αξ0
K0(z)

}
, (4.11)
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with

K0(z) =
∫ z

0
(1− s)

γ
αξ0
−1
e
− λ
αξ0

s
ds. (4.12)

Since G0(1) =
∞∑
n=0

P0,n > 0 and z = 1 is the root of the denominator of the right hand

side of Equation (4.11), so z = 1 must be the root of the numerator of the right hand

side of Equation (4.11).

Thus, we get

P0,0 = G0(0) =
Γ

αξ0
K0(1). (4.13)

This implies

P0,0 =
δ2K0(1)

αξ0 − δ1K0(1)
P1,1. (4.14)

Consequently

P1,1 =
αξ0 − δ1K0(1)
δ2K0(1)

P0,0. (4.15)

Next, substituting Equation (4.13) into (4.11), we obtain

G0(z) = e
λ
αξ0

z(1− z)−
γ
αξ0

{
1− K0(z)

K0(1)

}
P0,0. (4.16)

For z , 1 and z , 0, Equation (4.9) can be rewritten as follows

G′1(z)−
(
λ
αξ1
−
βµ

αξ1z

)
G1(z) =

(
βµ

αξ1z
+

η

αξ1(1− z)

)
P1,0 −

γ

αξ1(1− z)
G0(z). (4.17)

Then, we multiply both sides of Equation (4.17) by e−
λ
αξ1

z
z
βµ
αξ1 , we get

d
dz

(
e
− λ
αξ1

z
z
βµ
αξ1G1(z)

)
=

{(
βµ

αξ1z
+

η

αξ1(1− z)

)
P1,0 −

γ

αξ1(1− z)
G0(z)

}
e
− λ
αξ1

z
z
βµ
αξ1 . (4.18)

Integrating from 0 to z, we have
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G1(z) = e
λ
αξ1

z
z
− βµ
αξ1

{(
βµ

αξ1
K1(z) +

η

αξ1
K2(z)

)
P1,0 −

γ

αξ1

∫ z

0
(1− s)−1s

βµ
αξ1 e

− λs
αξ1G0(s)ds

}
.

(4.19)

Where

K1(z) =
∫ z

0
s−1s

βµ
αξ1 e

− λs
αξ1 ds, K2(z) =

∫ z

0
(1− s)−1s

βµ
αξ1 e

− λs
αξ1 ds. (4.20)

Using Equation (4.14) and substituting Equation (4.16) into (4.19), we get

G1(z) = e
λz
αξ1 z

− βµ
αξ1

{(
βµ

αξ1
K1(z) +

η

αξ1
K2(z)

)
P1,0 −

γ

αξ1
K3(z)P0,0

}
. (4.21)

With

K3(z) =
∫ z

0

(
1− K0(s)

K0(1)

)
s
βµ
αξ1 (1− s)−

( γ
αξ0

+1
)
e
(
λ
αξ0
− λ
αξ1

)
s
ds. (4.22)

Next, putting z = 1 in Equation (4.8), we get the probability that the server is on

vacation, (P0,. = G0(1) =
∞∑
n=0

P0,n),

P0,. =
(
δ1P0,0 + δ2P1,1

γ

)
. (4.23)

And, putting z = 1 in Equation (4.21), we find the probability that the server is in

busy period, (P1,. = G1(1) =
∞∑
n=0

P1,n),

P1,. = e
λ
αξ1

{(
βµ

αξ1
K1(1) +

η

αξ1
K2(1)

)
P1,0 −

γ

αξ1
K3(1)P0,0

}
. (4.24)

From Equation (4.3), it yields

P1,0 =
(
γ

λ+ η

)
P0,0 +

(
βµ+αξ1

λ+ η

)
P1,1. (4.25)

Substituting Equation (4.25) into (4.24), we have
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P1,. = e
λ
αξ1

{(
γ

λ+ η

(
βµ

αξ1
K1(1) +

η

αξ1
K2(1)

)
−
γ

αξ1
K3(1)

)
P0,0

+
(
βµ

αξ1
K1(1) +

η

αξ1
K2(1)

)(
βµ+αξ1

λ+ η

)
P1,1

}
.

(4.26)

Next, substituting Equation (4.15) into (4.23), we get (4.5). Then, substituting

Equation (4.15) into (4.26), we obtain (4.6).

Finally, using the normalizing condition

∞∑
n=0

P0,n +
∞∑
n=0

P1,n = 1,

which is equivalent to

P0,. + P1,. = 1. (4.27)

And substituting Equations (4.15), (4.23) and (4.26) into (4.27), we obtain (4.7)

4.4 Performance measures and cost model

4.4.1 Performance measures

In this subpart useful performance measures are presented.

∗ The probability that the server is in a busy period (PB).

P(Busy period) = PB = P1,..

∗ The probability that the server is on vacation (PV ).

P(Vacation period) = PV = 1−P(Busy period).

∗ The probability that the server is idle during busy period (PI ).

PI = P1,0.

∗ The average number of customers in the system when the server is taking vacation

(E(L0)).

From Equation (4.8), using L’Hopital rule, we have
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E(L0) = lim
z→1

G′0(z) =
−λP0,. +γE(L0)

−αξ0
.

This implies

E(L0) =
(

λ
γ +αξ0

)
P0,..

∗ The average number of customers in the system when the server is in busy period

(E(L1)).

From Equation (4.9), using L’Hopital rule, we get

E(L1) = lim
z→1

G′1(z)

=
(
λ− βµ
αξ1

)
P1,. +

γ

αξ1
E(L0) +

βµ

αξ1(λ+ η)

(
γ +

(βµ+αξ1)(αξ0 − δ1K0(1))
δ2K0(1)

)
P0,0.

∗ The average number of customers in the system (E(L)).

E(L) = E(L0) +E(L1).

∗ The average number of customers in the queue (E(Lq)).

E(Lq) =
+∞∑
n=0

nP0n +
+∞∑
n=1

(n− 1)P1n

= E(L)− (P1,. − P1,0).

∗ The mean waiting time of a customer in the system (Ws).

Ws =
E(L0) +E(L1)

λ
=
E(L)
λ

.

∗ The expected number of customers served per unit of time (Ecs).

Ecs = βµ(P1,. − P1,0).

∗ The average rate of reneging (resp. retention) of impatient customers during va-

cation period.

Rren0
= αξ0E(L0), Rret0 = (1−α)ξ0E(L0).
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∗ The average rate of reneging (resp. retention) of impatient customers during busy

period.

Rren1
= αξ1E(L1), Rret1 = (1−α)ξ1E(L1).

Thus,

∗ The average rate of abandonment of a customer due to impatience (Rren).

Rren = Rren0
+Rren1

.

∗ The average rate of retention of impatient customers (Rret).

Rret = Rret0 +Rret1 .

4.4.2 Cost model

This subpart is devoted to develop a model for the costs incurred in the queueing

system using the following symbols:

• C1 : Cost per unit time when the server is working during busy period.

• C2 : Cost per unit time when the server is idle during busy period.

• C3 : Cost per unit time when the server is on vacation.

• C4 : Cost per unit time when a customer joins the queue and waits for service.

• C5 : Cost per service per unit time.

• C6 : Cost per unit time when a customer reneges.

• C7 : Cost per unit time when a customer is retained.

• C8 : Cost per unit time when a customer returns to the system as a feedback
customer.

Let
∗ R be the revenue earned by providing service to a customer.

∗ Γ be the total expected cost per unit time of the system.

Γ = C1PB +C2PI +C3PV +C4E(Lq) +C6Rren +C7Rret +µ(C5 + β′C8).

∗ ∆ be the total expected revenue per unit time of the system.
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∆ = Rµ(1− PV − P1,0).

∗ Θ be the total expected profit per unit time of the system.

Θ = ∆− Γ .

4.5 Numerical analysis

4.5.1 Impact of system parameters on performance measures

Different performance measures of interest computed under different scenarios are

given. These measures are obtained by using a MATLAB program coded by the au-

thors. To illustrate the system numerically, the values for default parameters are con-

sidered using the following cases

• Table 4.1: λ = 0.05 : 1.00 : 1.45, µ = 2.00, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85,

β = 0.50, and α = 0.50.

• Table 4.2 : λ = 1.50, µ = 0.40 : 2.00 : 5.60, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85,

β = 0.50, and α = 0.50.

• Table 4.3 : λ = 1.50, µ = 2.00, η = 0.10, γ = 0.10, ξ0 = 0.05 : 0.50 : 0.95, ξ1 = 0.85,

β = 0.50, and α = 0.50.

• Table 4.4 : λ = 1.50, µ = 2.00, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.05 : 0.85 : 1.30,

β = 0.50, and α = 0.50.

• Table 4.5 : λ = 1.50, µ = 2.00, η = 0.10, γ = 0.05 : 0.10 : 0.55, ξ0 = 0.50, ξ1 = 0.85,

β = 0.50, and α = 0.50.

• Table 4.6 : λ = 1.50, µ = 2.00, η = 0.05 : 0.10 : 0.55, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85,

β = 0.50, and α = 0.50.

• Table 4.7 : λ = 1.50, µ = 2.00, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85, β = 0.10 :

0.10 : 1.00, and α = 0.50.

• Table 4.8 : λ = 1.50, µ = 2.00, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85, β = 0.50,

and α = 0.10 : 0.10 : 1.00.
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Table 4.1: Performance measures vs. λ.
λ P0,0 PB PV E(L0) E(L1) Ws Rren Rret Ecs
1.00 0.0272 0.7720 0.2280 0.6840 0.7883 1.4022 0.5060 0.5060 0.5440
1.05 0.0248 0.7795 0.2205 0.6931 0.8654 1.4169 0.5411 0.5411 0.5589
1.10 0.0227 0.7869 0.2131 0.7002 0.9439 1.4296 0.5762 0.5762 0.5738
1.15 0.0208 0.7943 0.2057 0.7052 1.0237 1.4407 0.6114 0.6114 0.5886
1.20 0.0191 0.8017 0.1983 0.7083 1.1049 1.4505 0.6466 0.6466 0.6034
1.25 0.0176 0.8090 0.1910 0.7094 1.1874 1.4591 0.6820 0.6820 0.6180
1.30 0.0161 0.8163 0.1837 0.7087 1.2713 1.4667 0.7175 0.7175 0.6325
1.35 0.0148 0.8234 0.1766 0.7063 1.3566 1.4735 0.7531 0.7531 0.6469
1.40 0.0137 0.8305 0.1695 0.7021 1.4434 1.4797 0.7890 0.7890 0.6610
1.45 0.0126 0.8375 0.1625 0.6964 1.5315 1.4853 0.8250 0.8250 0.6750

Table 4.2: Performance measures vs. µ.
µ P0,0 PB PV E(L0) E(L1) Ws Rren Rret Ecs
2.00 0.0144 0.8143 0.1857 0.7959 1.2864 1.3882 0.7457 0.7457 0.7543
2.40 0.0160 0.7938 0.2062 0.8839 1.0741 1.3053 0.6775 0.6775 0.8225
2.80 0.0174 0.7757 0.2243 0.9614 0.8883 1.2331 0.6179 0.6179 0.8821
3.20 0.0186 0.7597 0.2403 1.0300 0.7240 1.1694 0.5652 0.5652 0.9348
3.60 0.0197 0.7455 0.2545 1.0909 0.5775 1.1123 0.5182 0.5182 0.9818
4.00 0.0207 0.7328 0.2672 1.1453 0.4459 1.0607 0.4758 0.4758 1.0242
4.40 0.0216 0.7214 0.2786 1.1941 0.3268 1.0140 0.4374 0.4374 1.0626
4.80 0.0224 0.7111 0.2889 1.2383 0.2187 0.9713 0.4025 0.4025 1.0975
5.20 0.0231 0.7017 0.2983 1.2786 0.1201 0.9325 0.3707 0.3707 1.1293
5.60 0.0238 0.6931 0.3069 1.3154 0.0300 0.8970 0.3416 0.3416 1.1584

Table 4.3: Performance measures vs. ξ0.
ξ0 P0,0 PB PV E(L0) E(L1) Ws Rren Rret Ecs
0.50 0.0130 0.8374 0.1626 0.6506 1.5209 1.4477 0.8253 0.8253 0.6747
0.55 0.0134 0.8372 0.1628 0.6106 1.5117 1.4148 0.8256 0.8256 0.6744
0.60 0.0139 0.8370 0.1630 0.5752 1.5036 1.3859 0.8260 0.8260 0.6740
0.65 0.0143 0.8369 0.1631 0.5438 1.4964 1.3601 0.8263 0.8263 0.6737
0.70 0.0148 0.8367 0.1633 0.5157 1.4899 1.3371 0.8266 0.8266 0.6734
0.75 0.0153 0.8365 0.1635 0.4904 1.4842 1.3164 0.8269 0.8269 0.6731
0.80 0.0158 0.8364 0.1636 0.4675 1.4790 1.2976 0.8272 0.8272 0.6728
0.85 0.0163 0.8362 0.1638 0.4466 1.4742 1.2806 0.8275 0.8275 0.6725
0.90 0.0167 0.8361 0.1639 0.4276 1.4699 1.2650 0.8278 0.8278 0.6722
0.95 0.0172 0.8360 0.1640 0.4101 1.4659 1.2507 0.8281 0.8281 0.6719

Table 4.4: Performance measures vs. ξ1.
ξ1 P0,0 PB PV E(L0) E(L1) Ws Rren Rret Ecs
0.85 0.0131 0.8310 0.1690 0.7242 1.4598 1.4560 0.8380 0.8380 0.6620
0.90 0.0136 0.8248 0.1752 0.7508 1.3951 1.4306 0.8504 0.8504 0.6496
0.95 0.0140 0.8189 0.1811 0.7763 1.3364 1.4084 0.8623 0.8623 0.6377
1.00 0.0145 0.8132 0.1868 0.8007 1.2828 1.3890 0.8737 0.8737 0.6263
1.05 0.0149 0.8077 0.1923 0.8241 1.2338 1.3719 0.8846 0.8846 0.6154
1.10 0.0153 0.8024 0.1976 0.8467 1.1886 1.3568 0.8951 0.8951 0.6049
1.15 0.0157 0.7974 0.2026 0.8683 1.1469 1.3435 0.9052 0.9052 0.5948
1.20 0.0161 0.7925 0.2075 0.8892 1.1083 1.3317 0.9150 0.9150 0.5850
1.25 0.0164 0.7878 0.2122 0.9093 1.0723 1.3211 0.9244 0.9244 0.5756
1.30 0.0168 0.7833 0.2167 0.9288 1.0389 1.3117 0.9334 0.9334 0.5666

4.5.2 General Comments

∗ From Table 4.1 it is clearly seen that with the increases of the arrival rate λ, P0,0 and

PV decrease, while PB increases. Thus, the mean number of customers in the system

during the busy period E(L1) increases significatively which leads to an increase in the
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Table 4.5: Performance measures vs. γ.
γ P0,0 PB PV E(L0) E(L1) Ws Rren Rret Ecs
0.10 0.0284 0.7420 0.2580 0.9674 2.1932 2.1071 1.1740 1.1740 0.6646
0.15 0.0290 0.7933 0.2067 0.6890 1.9385 1.7517 0.9961 0.9961 0.7106
0.20 0.0290 0.8276 0.1724 0.5172 1.7849 1.5348 0.8879 0.8879 0.7414
0.25 0.0286 0.8522 0.1478 0.4032 1.6856 1.3925 0.8172 0.8172 0.7635
0.30 0.0281 0.8706 0.1294 0.3234 1.6179 1.2942 0.7685 0.7685 0.7801
0.35 0.0276 0.8850 0.1150 0.2654 1.5699 1.2235 0.7336 0.7336 0.7930
0.40 0.0270 0.8965 0.1035 0.2218 1.5348 1.1711 0.7077 0.7077 0.8033
0.45 0.0264 0.9059 0.0941 0.1882 1.5085 1.1311 0.6882 0.6882 0.8118
0.50 0.0258 0.9138 0.0862 0.1617 1.4884 1.1001 0.6730 0.6730 0.8189
0.55 0.0252 0.9204 0.0796 0.1404 1.4728 1.0755 0.6610 0.6610 0.8249

Table 4.6: Performance measures vs. η.
η P0,0 PB PV E(L0) E(L1) Ws Rren Rret Ecs
0.10 0.0161 0.7919 0.2081 0.8919 1.5729 1.6432 0.8914 0.8914 0.6532
0.15 0.0187 0.7579 0.2421 1.0375 1.6647 1.8015 0.9669 0.9669 0.6369
0.20 0.0208 0.7316 0.2684 1.1502 1.7899 1.9601 1.0483 1.0483 0.6243
0.25 0.0224 0.7107 0.2893 1.2400 1.9383 2.1189 1.1338 1.1338 0.6142
0.30 0.0237 0.6936 0.3064 1.3132 2.1034 2.2778 1.2223 1.2223 0.6060
0.35 0.0248 0.6794 0.3206 1.3741 2.2811 2.4368 1.3130 1.3130 0.5992
0.40 0.0258 0.6674 0.3326 1.4254 2.4684 2.5959 1.4054 1.4054 0.5935
0.45 0.0266 0.6571 0.3429 1.4694 2.6632 2.7550 1.4992 1.4992 0.5886
0.50 0.0272 0.6483 0.3517 1.5074 2.8639 2.9142 1.5940 1.5940 0.5843
0.55 0.0278 0.6405 0.3595 1.5407 3.0696 3.0735 1.6897 1.6897 0.5806

Table 4.7: Performance measures vs. β.
β P0,0 PB PV E(L0) E(L1) Ws Rren Rret Ecs
0.10 0.0020 0.9741 0.0259 0.1109 4.3719 2.9885 1.1207 1.1207 0.3793
0.20 0.0038 0.9503 0.0497 0.2128 3.6255 2.5589 0.9596 0.9596 0.5404
0.30 0.0060 0.9221 0.0779 0.3336 2.9646 2.1988 0.8246 0.8246 0.6754
0.40 0.0083 0.8932 0.1068 0.4578 2.3968 1.9031 0.7137 0.7137 0.7863
0.50 0.0104 0.8658 0.1342 0.5752 1.9133 1.6590 0.6221 0.6221 0.8779
0.60 0.0123 0.8410 0.1590 0.6815 1.4995 1.4541 0.5453 0.5453 0.9547
0.70 0.0140 0.8189 0.1811 0.7760 1.1416 1.2784 0.4794 0.4794 1.0206
0.80 0.0155 0.7995 0.2005 0.8594 0.8282 1.1251 0.4219 0.4219 1.0781
0.90 0.0169 0.7822 0.2178 0.9333 0.5510 0.9895 0.3711 0.3711 1.1289
1.00 0.0181 0.7669 0.2331 0.9991 0.3038 0.8686 0.3257 0.3257 1.1743

Table 4.8: Performance measures vs. α.
α P0,0 PB PV E(L0) E(L1) Ws Rren Rret Ecs
0.10 0.0019 0.9710 0.0290 0.2900 6.3941 4.4560 0.5580 5.0220 0.9420
0.20 0.0049 0.9273 0.0727 0.5454 3.4759 2.6808 0.6454 2.5817 0.8546
0.30 0.0076 0.8916 0.1084 0.6502 2.4282 2.0523 0.7167 1.6724 0.7833
0.40 0.0101 0.8623 0.1377 0.6886 1.8756 1.7095 0.7754 1.1631 0.7246
0.50 0.0126 0.8375 0.1625 0.6964 1.5315 1.4853 0.8250 0.8250 0.6750
0.60 0.0151 0.8162 0.1838 0.6892 1.2957 1.3233 0.8676 0.5784 0.6324
0.70 0.0178 0.7976 0.2024 0.6746 1.1238 1.1989 0.9048 0.3878 0.5952
0.80 0.0205 0.7813 0.2187 0.6562 0.9926 1.0992 0.9375 0.2344 0.5625
0.90 0.0231 0.7667 0.2333 0.6362 0.8892 1.0170 0.9666 0.1074 0.5334
1.00 0.0258 0.7537 0.2463 0.6157 0.8056 0.9475 0.9926 0.0000 0.5074

number of customers served Ecs. Moreover, E(L0) is not monotone with λ, while Ws

increases as the arrival rate increases, this implies an increases in the average reneging

and retention rates Rren and Rret.

∗According to Table 4.2 we see that along the increases of the service rate µ, P0,0, PV ,
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E(L0) and Ecs increase, whereas PB and E(L1) both decrease, as it should be expected.

Moreover, with the increase in µ, the mean waiting time of a customer in the systemWs

deceases, this leads to a decrease inRren andRret. Obviously, the higher the service rate,

the smaller the average rate of abandonment and the larger the number of customers

served.
∗ From Table 4.3 we remark that when the reneging rate during vacation period

ξ0 increases, PB, Ws, E(L0) and E(L1) decrease, while P0,0, PV , Rren and Rret increase.

Consequently, Ecs decreases. As intuitively expected, the bigger the rate of reneging,

the smaller the number of customers served.
∗ According to Table 4.4, we observe that along the increases of the reneging rate

during busy period ξ1, PB, E(L1) and Ws decrease, this leads to a decrease in Ecs. Fur-

ther, as expected, the increasing of ξ1 implies an increase in P0,0, PV , E(L0), Rren and

Rret.

∗ Table 4.5 illustrates that PB increase with increasing values of the vacation rate

γ, while P0,0 is not monotonic with γ. Further, PV , Ws, E(L0) and E(L1) decrease, this

implies an increase in Ecs. On the other hand, Rren and Rret decrease significantly,

which agrees with the intuitive expectation; the higher the rate of vacation, the bigger

the probability of busy period and the greater the number of customers served.

∗ According to Table 4.6, it is clearly observed that with the increase in the waiting

server rate η, the probability of busy period PB decreases which leads to a decrease in

the mean number of customers served Ecs; this is because Ws, PV and E(L0) increase

with η, which implies an increase in Rren, Rret and P0,0. On the other hand the number

of customers in the system during busy period E(L1) increases; the reason is that the

size of the system during vacation period becomes large with η.

∗ The effect of the probability of non-feedback β is presented in Table 4.7, we see

that PB and Ws both decrease with increasing values of β. Further, as expected, P0,0, PV

and E(L0) increase as β increases, whereas E(L1) decreases with increasing values of β;

this is because the mean system size during vacation period increases with β. Further,

it is well shown that Rren and Rret both decrease along the increasing of non-feedback

probability β, which results in the increasing of Ecs.

∗ The impact of non-retention probability α is shown in Table 4.8. As intuitively

expected, along the increase of α, PB and E(L1) decrease, while PV as α increases. Fur-

ther, E(L0) is not monotonic with the probability of non-retention. Moreover, Ws and

Rret both decrease with increasing of α whereas Rren increases with the probability α,
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this leads to a decease of Ecs. This is quite reasonable; the smaller the probability of

retaining impatient customers, the larger the average rate of reneged customers and

the smaller the number of customers served.

4.5.3 Economic analysis

In this subpart, a sensitive economic analysis of the model is performed numerically

and the results are discussed appropriately. We present the variation in total expected

cost, total expected revenue and total expected profit with the change in different pa-

rameters of the system. For the whole numerical study we fix the costs at C1 = 5,

C2 = 3, C3 = 5, C4 = 3, C5 = 4, C6 = 3, C7 = 2, C8 = 2, and R = 50.

Impact of arrival rate λ

We examine the impact of λ by keeping all other variables fixed, to this end we take

λ = 1.00 : 0.05 : 1.45, µ = 2.00, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85, β = 0.50, and

α = 0.50. Results of the analysis are summarized in Table 4.9 and Figure 4.1.

Table 4.9: Γ , ∆ and Θ for different values of λ.
λ 1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35 1.40 1.45
Γ 22.63 23.04 23.45 23.86 24.26 24.67 25.07 25.48 25.88 26.29
∆ 54.39 55.89 57.38 58.86 60.33 61.80 63.25 64.68 66.10 67.50
Θ 31.76 32.84 33.92 35.00 36.06 37.12 38.17 39.20 40.21 41.20
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Figure 4.1: Γ , ∆ and Θ vs. λ.
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Figure 4.2: Γ , ∆ and Θ vs. µ.
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Following the obtained results we observe that Γ , ∆, and Θ all increase with the

increasing of the arrival rate λ. This result agrees with our intuition; the number of the

customers in the system increases with the increasing of λ, therefore a large number

of customers is served. Consequently, the total expected profit increases.

Impact of service rate µ

To check the impact of service rate µ, the values of the parameters are chosen as fol-

lows: λ = 1.50, µ = 2.00 : 0.40 : 5.60, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85, β = 0.50,

and α = 0.50.

Table 4.10: Γ , ∆ and Θ for different values of µ.
µ 2.00 2.40 2.80 3.20 3.60 4.00 4.40 4.80 5.20 5.60
Γ 27.53 28.88 30.31 31.80 33.35 34.95 36.58 38.25 39.94 41.66
∆ 75.43 82.25 88.21 93.48 98.18 102.4 106.2 109.7 112.9 115.8
Θ 47.89 53.37 57.90 61.67 64.82 67.46 69.67 71.49 72.98 74.17

According to Table 4.10 and Figure 4.2 we see that Γ and ∆ increase with increasing

values of µ, this generates an increase in Θ. This result makes perfect sense, the higher

the service rate, the greater the total expected profit of the system.

Impact of reneging rates ξ0 and ξ1

Let’s study the effect of reneging rates in vacation and busy periods ξ0 and ξ1, To this

end we consider the following cases

• Table 4.11: λ = 1.50, µ = 2.00, η = 0.10, γ = 1.00, ξ0 = 2.00 : 0.50 : 6.50, ξ1 = 0.85,

β = 0.50, and α = 0.50.

• Table 4.12: λ = 1.50, µ = 2.00, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85 : 0.05 : 1.30,

β = 0.50, and α = 0.50.

Table 4.11: Γ , ∆ and Θ for different values of ξ0.
ξ0 2.00 2.50 3.00 3.50 4.00 4.50 5.00 5.50 6.00 6.50
Γ 23.97 23.99 24.01 24.02 24.03 24.04 24.05 24.05 24.05 24.06
∆ 78.59 78.47 78.37 78.28 78.21 78.15 78.10 78.06 78.03 78.01
Θ 54.62 54.48 54.36 54.26 54.18 54.11 54.06 54.01 53.97 53.95

From Tables 4.11 and 4.12 and Figures 4.3 and 4.4 we observe that

∗ As expected, along the increasing of ξ0, Γ increases while Θ and ∆ decrease with

ξ0, this is because the average rate of reneged customers increases with ξ0. Therefore
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Table 4.12: Γ , ∆ and Θ for different values of ξ1.
ξ1 0.85 0.90 0.95 1.00 1.05 1.10 1.15 1.20 1.25 1.30
Γ 26.24 26.21 26.19 26.17 26.17 26.17 26.18 26.19 26.20 26.22
∆ 66.20 64.96 63.77 62.63 61.54 60.48 59.47 58.50 57.56 56.65
Θ 39.95 38.74 37.58 36.45 35.36 34.31 33.29 32.31 31.36 30.43
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Figure 4.3: Γ , ∆ and Θ vs. ξ0.
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Figure 4.4: Γ , ∆ and Θ vs. ξ1.

the number of customers served decreases, which results in the decreasing of the total

expected profit.

∗With the increase of ξ1, ∆ decreases, while Γ is not monotonic with the parameter

ξ1. Further, Θ decreases with the increasing of the impatience rate, this is because the

number of customers in the system decreases with ξ1, this implies a decrease in PB
which results in the decreasing of Ecs.

Impact of vacation rate γ

To examine the impact of the vacation rate γ on the total expected profit, we take

λ = 1.50, µ = 2.00, η = 0.10, γ = 0.10 : 0.05 : 0.55, ξ0 = 0.50, ξ1 = 0.85, β = 0.50, and

α = 0.50.

Table 4.13: Γ , ∆ and Θ for different values of γ.
γ 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Γ 30.58 28.11 26.61 25.61 24.93 24.45 24.09 23.81 23.60 23.43
∆ 66.46 71.06 74.13 76.34 78.00 79.29 80.33 81.18 81.89 82.49
Θ 35.87 42.94 47.53 50.72 53.06 54.85 56.24 57.37 58.29 59.06
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Figure 4.5: Γ , ∆ and Θ vs. γ.
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Figure 4.6: Γ , ∆ and Θ vs. η.

From Table 4.13 and Figure 4.5 it is easily seen that the increases of the vacation

rate γ implies a decrease in Γ and a considerable increase in ∆ and Θ. This is quite ex-

plicable; as γ increases the vacation duration decreases and the server switches to busy

period during which customers are served. Thus, this leads to a significant increase in

the total expected profit.

Impact of waiting rate of a server η

Here, we examine the sensitivity of the total expected profit versus the waiting server

rate η. For this case, we put λ = 1.50, µ = 2.00, η = 0.10 : 0.05 : 0.55, γ = 0.10, ξ0 = 0.50,

ξ1 = 0.85, β = 0.50, and α = 0.50. The numerical results are presented in Table 4.14

and Figure 4.6.

Table 4.14: Γ , ∆ and Θ for different values of η.
η 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50 0.55
Γ 27.26 28.30 29.38 30.49 31.62 32.77 33.93 35.09 36.27 37.45
∆ 65.31 63.68 62.42 61.42 60.60 59.92 59.34 58.85 58.43 58.06
Θ 38.04 35.38 33.04 30.92 28.98 27.15 25.42 23.75 22.15 20.60

From the obtained results we remark that with the increase in η, total expected

cost Γ increases, while ∆ and Θ monotonically decease. This is due to the fact that

the probability of busy period during which service is provided decreases with the

parameter η. Therefore, the total expected profit decreases considerably.
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Impact of probability of non-retention α

To study the impact of α on the total expect profit, we choose the parameters values

as follows: λ = 1.50, µ = 2.00, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85, β = 0.50, and

α = 0.10 : 0.10 : 1.00.

Table 4.15: Γ , ∆ and Θ for different values of β.
α 0.10 0.20 0.3 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Γ 46.8570 34.38 30.05 27.75 26.29 25.26 24.49 23.88 23.39 22.98
∆ 94.2005 85.45 78.32 72.45 67.50 63.24 59.52 56.25 53.34 50.74
Θ 47.3435 51.07 48.27 44.69 41.20 37.97 35.03 32.36 29.95 27.76
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Figure 4.7: Γ , ∆ and Θ vs. α.
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Figure 4.8: Γ , ∆ and Θ vs. β.

According to Table 4.15 and Figure 4.7 we observe that the increases of non-retention

probability α implies a decrease in Γ , ∆ andΘ. A slight increase is observed inΘ when

the parameter α is below a certain value, (α = 0.20). Therefore, we can see that the

probability of retaining reneged customers α′ has a noticeable effect on the revenue

generation and on the total expected profit of the system. This is because the number

of customers served increases with the parameter α′. Thus, it is quite clear that the

probability of retention has a positive impact in the economy.

Impact of probability of non-feedback β

Here, we put λ = 1.50, µ = 2.00, η = 0.10, γ = 0.10, ξ0 = 0.50, ξ1 = 0.85, β = 0.10 : 0.10 :

1.00, and α = 0.50. The numerical results obtained for this situation is given in Table
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4.16 and Figure 4.8

Table 4.16: Γ , ∆ and Θ for different values of β.
β 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00
Γ 35.32 32.26 29.65 27.45 25.57 23.94 22.49 21.17 19.96 18.83
∆ 94.81 90.07 84.42 78.63 73.15 68.19 63.78 59.89 56.44 53.37
Θ 59.49 57.80 54.77 51.18 47.57 44.24 41.29 38.72 36.48 34.54

From the obtained results, it is clearly shown that Γ , ∆ and Θ monotonically de-

crease as non-feedback probability β increases. The reason is that the number of the

customers in the system decreases with the increasing of β, which leads to a decrease

in the total expected profit.

4.6 Conclusion and future work

In this paper we studied an M/M/1 Bernoulli feedback queueing system with single

exponential vacation, waiting server, reneging and retention of reneged customers,

wherein the impatience timers of customers depend on the states of the server. The

explicit expressions of the steady-state probabilities are obtained, using probability

generating functions (PGFs). Useful measures of effectiveness of the queueing system

are presented and a cost model is developed. Finally, an extensive numerical study

is presented. Our system can be considered as a generalized version of the existing

queueing models given by Yue et al.(2016) and Ammar (2017) associated with several

practical situations.

The model considered in this paper can be extended to multiserver queueing sys-

tem with delayed state-dependent service times, breakdowns and repairs.
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Abstract. This paper deals with an infinite capacity batch arrival single server

Markovian Bernoulli feedback queueing system with waiting server, K-variant vaca-

tions, impatient customers and retention of reneged customers. The server activates

a waiting timer whenever he completes the service of the last customer. If an arrival

enters the system before the completion of the waiting timer, the server immediately

begins the service. Otherwise, he decides to go on vacation after the expiration of the

waiting timer. When a vacation period ends, the server switches to busy period, if

there are customers in the queue. Otherwise, he takes another vacation and continues

to do so till K consecutive vacations have been taken. After the end of the Kth vaca-
tion, the server switches to busy period and remains idle or busy depending on the

availability of the customers in the system. During vacation period the customer may

renege due to impatience. Using certain customer retention mechanism, the impatient

customer can be retained in the system. Further, after getting incomplete or dissatisfy-

ing service, a customer may comeback to the system as a Bernoulli feedback customer

to receive another regular service. The model is analyzed using probability generat-

ing function (PGF) technique. Various performance measures of the queueing system

are derived. Then, by setting the appropriate parameters, some special cases are dis-

cussed. Moreover, a cost model for the queueing system is developed. The parameter

optimization is illustrated numerically using quadratic fit search method (QFSM) and

particle swarm optimization (PSO). Finally, numerical results are provided to explore

the impact of system parameters on performance measures and costs of the queueing
system.
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5.1 Introduction

Vacation queues have broad applications in many real life situation systems, such as

manufacturing and production systems, distribution and service systems, transporta-

tion systems, telecommunication industry, computer and communication systems, and

so on. Queueing systems with vacation policies have been extensively studied in the

past decades. For various results on different vacation models, the readers may refer to

the survey paper of Doshi (1986), monographs of Takagi (1991), and Tian and Zhang

(2006).

The queueing models discussed in the above literature suppose that the customers

arrive one at a time. There are various situations wherein customers arrive in groups.

Such queues, called batch arrival queueing models are prevalent in many practical sit-

uations for instance, in digital communication systems. Lee et al. (1994) analyzed

a MX/G/1 queue with bulk arrival, N-policy and multiple vacations. Madan and

AI-Rawwash (2005) presented a study on the MX/G/1 queue with feedback and op-

tional server vacations based on a single vacation policy. The maximum entropy of the

MX/M/1 queueing system with multiple vacations and server breakdowns was pro-

vided in Wang et al. (2007). Then, Haridass and Arrumuganathan (2008) treated a

M[X]/G/1 queueing model with an unreliable server and with single vacation. Chang

and Ke (2009) studied a batch retrial queueing model with J vacations. Aissani (2011)

dealt with anMX/G/1 energetic retrial queue with vacations and control. Later, a batch

arrival single server retrial queue with modified vacations under N-policy was consid-

ered in Haridass and Arumuganathan (2015). Recently, Inoue et al. (2018) studied the

impatient behavior of customers in an M[X]/G/1 queueing model under steady state.

Vacation queueing systems with impatience play important roles in the analysis

of many telephone switching systems, communication/telecommunication networks,

computer systems and manufacturing systems. Zhang et al. (2005) considered a

M/M/1/N queue with balking, reneging and server vacations. Then, a study of cus-

tomers’ impatience in queues with server vacations has been given in Altman and

Yechiali (2006). Performance analysis of an M/M/c/N queueing system with balk-
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ing, reneging and synchronous vacations of partial servers was carried out by Yue et

al. (2006). Altman and Yechiali (2008) analyzed the infinite-server queueing model

with system’s additional tasks and impatient customers. Adan et al. (2009) treated

queueing models with server vacations and synchronized abandonments. Later, Am-

mar (2015) gave the transient analysis of an M/M/1 queueing model with impatience

and multiple vacations.

In real-life situations, the server does not go on vacation just as the system does

when it gets empty. By considering a human behavior, we see that the server waits

a certain amount of time before taking a vacation, even if the system does not have

customers. Padmavathy et al. (2011) dealt with single server queueing models with

impatient customers, server vacations and a waiting server, where the service times,

customer impatience times, waiting times of the server in the empty system and the

duration of the server vacations are all exponentially distributed. Ammar (2017) de-

rived the transient solution of an M/M/1 vacation queue with a waiting server and

impatient customers. Recently, a Markovian vacation queueing system with a waiting

server and geometric abandonments has been developed in Deepa and Kalidass (2018).

Recently, a Markovian queueing system with Bernoulli feedback, single vacation, wait-

ing server and impatient customers has been discussed in Bouchentouf et al. (2018).

Then, Bouchentouf and Guendouzi (2019) presented a cost optimization analysis for

an MX/M/c queueing system with Bernoulli feedback, waiting servers and impatient

customers under both single and multiple synchronous vacations.

Variant of multiple vacation schemes is relatively recent where it is permitted to

the server to take a certain fixed number of consecutive vacations if the system re-

mains empty at the end of a vacation. Such vacation policy was treated by Zhang and

Tian (2001), the authors treated aGeo/G/1 queueing system with multiple adaptive va-

cations. Ke (2007) studied an MX/G/1 queueing system with balking under a variant

vacation. Literature related to variant multiple working vacations are found in Wang

et al. (2011) and Yue et al. (2014). Recently, Laxmi and Rajesh (2016) studied a vari-

ant working vacations queue with customer impatience. Further, some performance

measures of variant working vacations on batch arrival queue with reneging have been

presented in Laxmi and Rajesh (2017).

The optimization of anufacturing/production, telecommunication and computer

systems using queueing theory has been the subject of many studies in recent decades.

Interesting papers in this area include the research works of Whitt (1984) in open
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and closed queueing networks, Dallery and Gershwin (1992), which describe the main

queueing models and the results of the literature on the production lines, Cruz et al.

(2018), which present the optimization of the performance of general finite single-

server acyclic queueing networks, and Martins et al. (2019), which present perfor-

mance analysis and optimization of buffers and servers in finite queueing networks.

In earlier literature, as it was mentioned, very few authors studied the compara-

ble work on the variant vacations for queueing models with impatience at which the

server may take a sequence of finite vacations in his idle time. But as far as the best of

our knowledge, there is no considerable amount of research work on Bernoulli feed-

back queueing system with batch arrival, waiting server, variant vacations, impatient

customers and retention of reneged customers. This motivates us to develop such a

model and carry out its cost model. The system considered in this paper is motivated

by questions regarding the performance modeling of queueing systems including call

centers, customized manufacturing, traffic modeling, business and industries, com-

puter communication, health sectors, post of office, medical sciences and many other
areas.

The rest of the paper is arranged as follows, the mathematical model has been con-

structed in Section 2. The probability generating function of the steady state of the

system is obtained in Section 3. In Section 4, various performance measures are de-

rived. In Section 5, we give some special cases of our model. In Section 6, a cost

model for the queueing system is developed in order to determine the optimal val-

ues of service rate, simultaneously, to minimize the total expected cost per unit time.

For this purpose, we adopt QFSM and PSO algorithm to implement the optimization

tasks. Section 7 is consecrated to numerical illustrations. In Section 8, we present the

managerial insights. Finally, we conclude the paper in Section 9.

5.2 Model description

We consider an infinite-buffer Markovian queueing system at which customers arrive

in batches according to a Poisson process with rate λ. Let X denote the batch size

random variable of the arrival with probability mass function P (X = l) = bl , l = 1,2, ....

The service is provided by a single server, and service time is assumed to be expo-

nentially distributed with parameter µ. The customers are served on FCFS discipline.

When the busy period is ended, the server waits a random period before taking a va-

cation, this waiting time is assumed to be exponentially distributed with parameter η.
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When duration of the waiting server expires, the server leaves for vacation. Then, at a

vacation period termination if he finds a customer at the vacation completion instant,

he comes back to the busy period, otherwise, he takes a finite number, say K, of suc-

cessive vacations. When the K consecutive vacations are complete, the server returns

to busy period and depending on the arriving batch of customers, he stays idle or busy.

The period of a vacation follows a exponentially distribution with parameter φ.

During vacation period, each incoming customer starts up an impatience timer

independently of the other customers in the system, which is assumed to be exponen-

tially distributed with parameter ξ. The impatient customers may leave the system

(renege) with probability α. Using certain mechanism, they can be retained in the sys-

tem with probability α′ = 1−α.

After completion of each service, this later may be incomplete or unsatisfactory, at

this situation the customer may decide either to leave the system with probability β or

return and join the tail of the queue with probability β′, where β + β′ = 1. Note that,

there is no distinction between regular arrival and feedback ones, that is, the newly

arrived and those that are fed back are served in order in which they join the tail of the

primary queue.

The inter-arrival times, batch sizes, waiting server times, vacation times, service

time and impatience times are independent of each other.

Practical applications of the model

− The proposed queueing model has prominent applications in diverse practical sys-

tems dealing with human behavior including post of office, banks, private healthcare,

and private business firms at which customers may arrive in batches. At end of busy

periods, the server waits for a while before proceeding for a vacation. Once the vaca-

tion period is over, the server switches to the busy period if there are customers in the

queue; otherwise he may take a fixed consecutive vacations, at the end of the succes-

sive vacations, the server switches to busy period and stays idle or busy depending on

the availability of the customers in the system. During the vacation period, a customer

may quit the system whenever his waiting time is longer than his patience time. Fur-

ther, customers may be dissatisfied with the quality of the service. In this case, they

can rejoin the system as feedback customers to complete their service. Such systems

can be modeled by our model developed in this paper.

− Another practical application of the proposed model arises in communication
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systems: Due to recent theoretical analyses, it is now broadly recognized that the im-

patience phenomenon is one of the determining factors for the performance of call

centers. The asymptotic study of call center models has proven to provide useful man-

agerial insights. From a business point of view, a call center is an entity that combines

voice and data communication technologies, enabling a company to implement critical

business strategies in order to reduce costs and increase revenues. It is typically set up

for sales, marketing, technical support and customer service purposes.

Once the calls (arrival stream of customers in batches) are connected to the system,

they can be filtered and forwarded through a proactive support service. The filter may

be a software or a live representative who assesses the customer’s problem and then

transfers the calls to a designated representative. Once the calls are forwarded to the

suitable representatives, the customer service representatives will work on resolving

the customers’s problems (service). In addition, in call center, arrival stream of in

batches called outbound call, in the form of e-mail sent to the call center with a request

to be called back will be processed in the center in the order of their arrival when

there is no incoming call. Once the customers are serviced and no call are connected

(empty system), the agents stay active and look for a new calls (waiting server) for a

certain period of time. After that, they go on vacation. At the end of the vacation

period, the agents come back to the busy period, if there are a new calls, they start

working on them; otherwise they may take a fixed consecutive vacations. When the

number of fixed vacation in taken, the agents return to the busy period where they

start working if they find customers waiting in the queue; otherwise they stay idle.

When the system is on vacation, the flow of new requests (customers) continues, but

each customer activates his own impatience timer, such that, if the system is still on

vacation when the time expires, the customers leave the system.

− Customer’s impatience represents a threat to businesses, it leads to the loss of po-

tential customers. For any firm, it’s not just about losing a customer, it’s about harming

the company’s brand image by giving negative feedback about the firm’s quality of ser-

vice. Therefore, the reneging has a very bad effect on the business and the goodwill

of a company. Thus, to avert this serious problem, a firm has to use certain reten-

tion strategies to convince the impatient customer to remain in the system. So, the

concept of customer retention is of great importance for the management of the firm.

This could be either by increasing the rate of the service, introducing an extra service

channel or presenting more advantageous offers to customers.
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5.3 The equilibrium state distribution

In this section, we study the steady-state distribution of the system. Let L(t) be the

number of customers in the system and S(t) denote the status of the server at time t,

such that

S(t) =


j, when the server is taking the (j + 1)th vacation at time t,

j = 0,K − 1;
K, the server is in busy period at time t.

The bi-variate {(L(t);S(t)); t ≥ 0} represents two dimensional infinite state continuous-

time Markov chain with state spaceΩ = {(n,j) : n ≥ 0, j = 0,K}.

Let Pn,j = lim
t→∞

P {L(t) = n,S(t) = j}, n ≥ 0, j = 0,K denote the system state probabili-

ties of the process {(L(t),S(t)), t ≥ 0}.
The state transition diagram corresponding to our system is depicted in Figure 5.1.

The steady-state balance equations that govern our model are deduced as

(λ+φ)P0,0 = αξP1,0 + ηP0,K , (5.1)

(λ+φ+αξ)P1,0 = λb1P0,0 + 2αξP2,0, n = 1, (5.2)

(λ+φ+nαξ)Pn,0 = λ
n∑

m=1

bmPn−m,0 + (n+ 1)αξPn+1,0, n ≥ 2, (5.3)

(λ+φ)P0,j = αξP1,j +φP0,j−1, 1 ≤ j ≤ K − 1, (5.4)

(λ+φ+nαξ)Pn,j = λ
n∑

m=1

bmPn−m,j + (n+ 1)αξPn+1,j , n ≥ 1, 1 ≤ j ≤ K − 1, (5.5)

(λ+ η)P0,K = φP0,K−1 + βµP1,K , (5.6)

(λ+ βµ)Pn,K = λ
n∑

m=1

bmPn−m,K + βµPn+1,K +φ
K−1∑
j=0

Pn,j , n ≥ 1. (5.7)
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Figure 5.1: State-transition-rate diagram of the model.

Theorem 5.3.1. If λE(X) < βµ, then the steady-state-probabilities Pn,j are given as

P.,j =
∞∑
n=0

Pn,j = Aj−1P0,0, j = 0,K − 1, (5.8)

and

P.,K =
∞∑
n=0

Pn,K =
1

βµ−λB′(1)

{
φλB′(1)
αξ +φ

1−AK

A(1−A)
+
βµαξ

ηC

}
P0,0, (5.9)

where

P0,0 =
{

βµαξ

ηC(βµ−λB′(1))
+

1−AK

A(1−A)

(
φλB′(1)

(βµ−λB′(1))(αξ +φ)
+ 1

)}−1

,
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such that

A =
φC

αξ
,

with

C =
∫ 1

0
e
λ
αξH(x)(1− x)

φ
αξ −1dx, and H(z) =

∫ z

0

B(x)− 1
1− x

dx,

where B(x) is the probability generating function of the batch arrival size X, and B′(1) =

E(X) is the first moment of random variable X.

Proof. The state probabilities are obtained by solving equations (5.1)-(5.7) using prob-

ability generating functions (PGFs).

Let us define the PGFs of Pn,j as

Gj(z) =
∞∑
n=0

Pn,jz
n, |z| ≤ 1, j = 0,K,

and the PGF of the batch arrival size X as

B(z) =
∞∑
n=1

bnz
n, |z| ≤ 1.

Multiplying equations (5.1)-(5.3) by zn and summing all possible values of n, then

re-arranging all the terms, we obtain

(1− z)αξG′0(z)− [λ(B(z)− 1)−φ]G0(z) = −ηP0,K , (5.10)

In the same way, using equations (5.4)-(5.5) and (5.6)-(5.7), we respectively get

(1− z)αξG′j(z)− [λ(B(z)− 1)−φ]Gj(z) = −φP0,j−1, j = 1,K − 1, (5.11)

and

[λz(B(z)− 1) + βµ(1− z)]GK (z) + zφ
K−1∑
j=0

Gj(z) = zφ
K−2∑
j=0

P0,j + [βµ(1− z) + zη]P0,K . (5.12)

By taking z = 1 in equations (5.10) and (5.11), we respectively find
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φG0(1) = ηP0,K , (5.13)

and

Gj(1) = P0,j−1, j = 1,K − 1. (5.14)

Now, we can write equations (5.10) and (5.11) for z , 1 as

G′0(z) +
[
λ
αξ

H ′(z)−
φ

αξ(1− z)

]
G0(z) = −

η

αξ(1− z)
P0,K , (5.15)

and

G′j(z) +
[
λ
αξ

H ′(z)−
φ

αξ(1− z)

]
Gj(z) = −

φ

αξ(1− z)
P0,j−1, j = 1,K − 1, (5.16)

where

H ′(z) =
B(z)− 1

1− z
.

Next, by multiplying (5.15) and (5.16) by e
λ
αξH(z)(1− z)

φ
αξ , we obtain

d
dz

(
e
λ
αξH(z)(1− z)

φ
αξG0(z)

)
= −

η

αξ
e
λ
αξH(z)(1− z)

φ
αξ −1P0,K , (5.17)

and

d
dz

(
e
λ
αξH(z)(1− z)

φ
αξGj(z)

)
= −

φ

αξ
e
λ
αξH(z)(1− z)

φ
αξ −1P0,j−1, j = 1,K − 1. (5.18)

Then, integrating form 0 to z, we get

G0(z) = e−
λ
αξH(z)(1− z)−

φ
αξ

{
G0(0)−

η

αξ
C(z)P0,K

}
, (5.19)

and

Gj(z) = e−
λ
αξH(z)(1− z)−

φ
αξ

{
Gj(0)−

φ

αξ
C(z)P0,j−1

}
, j = 1,K − 1, (5.20)
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where

C(z) =
∫ z

0
e
λ
αξH(x)(1− x)

φ
αξ −1dx.

Since G0(1) =
∞∑
n=0

Pn,0 > 0 and z = 1 is the root of the denominator of the right hand

side of equation (5.19), so z = 1 must be the root of the numerator of the right hand

side of equation (5.19). Thus, we get

P0,0 = G0(0) =
η

αξ
CP0,K , (5.21)

where

C =: C(1) =
∫ 1

0
e
λ
αξH(x)(1− x)

φ
αξ −1dx.

This implies

P0,K =
αξ
ηC

P0,0. (5.22)

Similarly, asGj(1) =
∞∑
n=0

Pn,j > 0, j = 1,K − 1, and z = 1 is the root of the denominator

of the right hand side of equation (5.20), so z = 1 must be the root of the numerator of

the right hand side of equation (5.20). Thus

P0,j = Gj(0) =
φ

αξ
CP0,j−1, j = 1,K − 1. (5.23)

Now, using equation (5.23) repeatedly, we obtain

P0,j = AjP0,0, j = 1,K − 1, where A =
φC

αξ
. (5.24)

Next, substituting equations (5.22) and (5.24) into (5.19) and (5.20) respectively, we
get

G0(z) = e−
λ
αξH(z)(1− z)−

φ
αξ

{
1− C(z)

C

}
P0,0, (5.25)
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and

Gj(z) = e−
λ
αξH(z)(1− z)−

φ
αξ

{
1− C(z)

C

}
AjP0,0, j = 1,K − 1. (5.26)

From equations (5.25)-(5.26), we find the expression of the probability generating

function Gj(z) for j = 0,K − 1 in terms of P0,0, and from equation (5.22) we have P0,K

in terms of P0,0, while P0,j in terms of P0,0 is given equation (5.24). Thus, substituting

equations (5.22) and (5.24)-(5.26) in equation (5.12), we obtain the expression of the

probability generating function GK (z) in term of P0,0.

Next, substituting equations (5.13)-(5.14) into (5.12), we get

GK (z) =
βµ(1− z)P0,K − zφ

∑K−1
j=0 (Gj(z)−Gj(1))

λz(B(z)− 1) + βµ(1− z)
. (5.27)

Then, applying L’Hospital’s rule, we find

GK (1) =
βµP0,K +φ

∑K−1
j=0 G

′
j(1)

βµ−λB′(1)
. (5.28)

Next, form equations (5.10) and (5.13), using L’Hospital’s rule, we get

G′0(1) =
λB′(1)
αξ +φ

G0(1). (5.29)

Similarly, form equations (5.11) and (5.14), we have

G′j(1) =
λB′(1)
αξ +φ

Gj(1), j = 1,K − 1. (5.30)

Then, equations (5.29) and (5.30) imply

G′j(1) =
λB′(1)
αξ +φ

Gj(1), j = 0,K − 1. (5.31)

Now, via equations (5.25) and (5.26), using L’Hospital’s rule, we obtain

Gj(1) = Aj−1P0,0, j = 0,K − 1. (5.32)

This implies
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K−1∑
j=0

G′j(1) =
λB′(1)
αξ +φ

1−AK

A(1−A)
P0,0. (5.33)

Next, substituting equations (5.22) and (5.33) into (5.28), we get

GK (1) =
1

βµ−λB′(1)

{
φλB′(1)
αξ +φ

1−AK

A(1−A)
+
βµαξ

ηC

}
P0,0. (5.34)

Finally, in order to obtain P0,0 we use the normalization condition given as

∞∑
n=0

K−1∑
j=0

Pn,j +
∞∑
n=0

Pn,K = 1⇐⇒
K−1∑
j=0

Gj(1) +GK (1) = 1. (5.35)

So, substituting equations (5.32) and (5.34) into (5.35), we get

P0,0 =
{

βµαξ

ηC(βµ−λB′(1))
+

1−AK

A(1−A)

(
φλB′(1)

(βµ−λB′(1))(αξ +φ)
+ 1

)}−1

.

5.4 System Performance measures

The indices that are of general interest for the evaluation of the performances of our

system include:

− The probability that the server is idle during busy period.

P0,K =
αξ
ηC

P0,0.

− The probability that the server is in vacation period.

Pv =
1−AK

A(1−A)
P0,0.

− The probability that the server is serving customers during busy period.

Pb = 1− Pv − P0,K .

− The mean system size when the server is on vacation.
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E[LV ] =
K−1∑
j=0

lim
z→1

G′j(z).

Form equation (5.33), we have

E[LV ] =
λB′(1)
αξ +φ

1−AK

A(1−A)
P0,0.

− The mean system size when the server is in busy period.

E[LK ] = lim
z→1

G′K (z).

Differentiating equation (5.27) and using L’Hospital’s rule, we obtain

E[LK ] =
φ

2(βµ−λB′(1))

K−1∑
j=0

G′′j (1) +
φ(2βµ+λB′′(1))
2(βµ−λB′(1))2

K−1∑
j=0

G′j(1) +
βµλ(2B′(1) +B′′(1))

2(βµ−λB′(1))2 P0,K ,

(5.36)

where G′′j (1) is obtained by differentiating twice Gj(z) at z = 1 for j = 0,K . So,

differentiating twice equations (5.10) and (5.11) and taking z = 1, we find

K−1∑
j=0

G′′j (1) =
2λB′(1)
2αξ +φ

E[LV ]. (5.37)

Next, substituting equation (5.37) into (5.36), we find

E[LK ] =
[

φλB′(1)
(2αξ +φ)(βµ−λB′(1))

+
φ(2βµ+λB′′(1))
2(βµ−λB′(1))2

]
E[LV ] +

βµλ(2B′(1) +B′′(1))
2(βµ−λB′(1))2 P0,K .

− The mean system size.

E[L] = E[LV ] +E[LK ].

− The mean queue length.

E[Lq] =
K∑
j=0

∞∑
n=1

(n− 1)Pn,j = E[L]−
[
1−

K∑
j=0

P0,j

]
.
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− The mean number of customers served per unit time.

Ns = βµ
∞∑
n=1

Pn,K = βµPb.

− The average rate of abandonment of a customer due to impatience.

Ra = αξ
K−1∑
j=0

∞∑
n=0

nPn,j = αξE[LV ].

− The average rate of retention of impatient customers.

Re = (1−α)ξ
K−1∑
j=0

∞∑
n=0

nPn,j = (1−α)ξE[LV ].

5.5 Particular cases

In this section, we present some special cases of our queueing model which are con-

sistent with the existing literature. These latter can be deduced by setting appropriate

parameters as follows:

Case 1: No variant vacations, no batch arrival, no retention, and no
feedback

When K = 1, b1 = 1, α = 1, and β = 1, that is, if the server comes back from vacation

to an empty system, he remains idle waiting for the first arrival, then he starts a busy

periods. Customers arrive to the system one by one, they are persistent and never

returns to the system as a feedback customer. In this case, the equations (5.1)–(5.7)

can be abstracted as follow:

(λ+φ)P0,0 = ξP1,0 + ηP0,1, (5.38)

(λ+φ+nξ)Pn,0 = λPn−1,0 + (n+ 1)ξPn+1,0, n ≥ 1, (5.39)

(λ+ η)P0,1 = φP0,0 +µP1,1, (5.40)

(λ+µ)Pn,1 = λPn−1,1 +µPn+1,1 +φPn,0, n ≥ 1. (5.41)
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Then, the steady-state probabilities P.,0 and P.,1 from equations (5.38)–(5.41) are as:

P.,0 =
(φ+ ξ)(µ(ηC − ξP0,0)−ληC)

φC(φµ+ ξ(µ−λ))
,

and

P.,1 =
λφηC + ξµ(φ+ ξ)P0,0

ηC(µφ+ ξ(µ−λ))
,

where

P0,0 =
φηC(φ+ ξ)(µ−λ)

(µφη +µηξ −ληξ +µφ2 +µφξ)ξ
,

and

C =
∫ 1

0
e
−λ
ξ x(1− x)

φ
ξ −1dx.

which match with the results ofM/M/1 queueing model with single vacation, wait-

ing server, and impatient customers, given in Padmavathy et al. (2011).

Case 2: No waiting server, no batch arrival, no retention, and no feed-
back

When η→ +∞, b1 = 1, α = 1, and β = 1, that is, Whenever a system becomes empty, the

server goes on vacation. Customers arrive to the system one by one, they are persistent

and never returns to the system as a feedback customer. In this case, the equations

(5.1)–(5.7) can be abstracted as follow:

(λ+φ)P0,0 = ξP1,0 +µP1,K , (5.42)

(λ+φ+nξ)Pn,0 = λPn−1,0 + (n+ 1)ξPn+1,0, n ≥ 1, (5.43)

(λ+φ)P0,j = ξP1,j +φP0,j−1, 1 ≤ j ≤ K − 1, (5.44)

(λ+φ+nξ)Pn,j = λPn−1,j + (n+ 1)ξPn+1,j , n ≥ 1, 1 ≤ j ≤ K − 1, (5.45)

λP0,K = φP0,K−1, (5.46)
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(λ+µ)Pn,K = λPn−1,K +µPn+1,K +φ
K−1∑
j=0

Pn,j , n ≥ 1. (5.47)

From the latest equations, the steady-state-probabilities of the number of customers

in the system have the following from:

P.,j = Aj−1P0,0, j = 0,K − 1,

and

P.,K =
φ

µ−λ

(
λ(1−AK )

(φ+ ξ)A(1−A)
+
µ

λ
AK−1

)
P0,0,

where

P0,0 =
{

(µφ+ (µ−λ)ξ)(1−AK )
(µ−λ)(φ+ ξ)A(1−A)

+
µφAK−1

λ(µ−λ)

}−1

,

with

A =
φC

ξ
,

such that

C =
∫ 1

0
e
−λ
ξ x(1− x)

φ
ξ −1dx.

The obtained results match with that of anM/M/1 queueing model with impatient

customers and a variant of multiple vacation policy presented by Yue et al. (2014).

5.6 Cost model

This part is devoted to develop a model for the costs incurred in the queueing system

using the following elements:

• C1 : Cost per unit time when the server is working during busy period.

• C2 : Cost per unit time when the server is idle during busy period.

• C3 : Cost per unit time when the server is on vacation.
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• C4 : Cost per unit time when customers join the queue and wait for service.

• C5 : Cost per service per unit time.

• C6 : Cost per unit time of serving a feedback customer.

• C7 : Cost per unit time when a customer reneges.

• C8 : Cost per unit time when a customer is retained.

The costs for this queueing model can be presented as follows:

− The busy period cost (Cb). When there are customers in the system, the server

works on them. Thus, busy period cost is needed and is given by Cb = C1Pb.

− The idle period cost (Cid). When the server finishes serving all customers present

in the system, he waits a random period of time for a new arrival before he goes on

vacation. A cost for this period is required, it is given by Cid = C2P0,K .

− The vacation period cost (Cv). Once the normal busy period is over, the server

switches to the vacation period. A cost for this period is necessary, it is done by Cv =

C3Pv .

− The cost for the number of customers waiting for service (Cq). A cost is needed

for customers in the queue waiting to be serviced, it is given as Cq = C4E[Lq].

− The service cost (Cs). The service cost per customer should be included in the

total cost of the queueing system. It is given as Cs = µC5.

− The service cost for feedback customers (Cf ). After getting incomplete or unsat-

isfactory service, the customers may comeback to the system as feedback customers in

order to get another service. Thus, a cost is required for these customers. The service

cost per feedback customer is done as Cf = β′µC6.

− The cost due to lost abandonment (Ca). During vacation period, customers may

lose their patience and leave the system. Thus, the reneging cost per customer is re-

quired and it is given as Ca = C7Ra.

− The retention cost for reneged customers (Ce). Due to reneging of impatient

customers, the retention cost must be incorporated into the total cost of the system.

Therefore, the retention cost per customer is Ce = C8Re.

Finally, using the cost parameters listed above, the total expected cost per unit time

of the system is presented as

Tc = C1Pb +C2P0,K +C3Pv +C4E[Lq] +µ(C5 + β′C6) +C7Ra +C8Re.
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The total expected profit per unit time of the system is given by

Tp = Tr −Tc,

where Tr is the total expected revenue per unit time of the system,

Tr = Rev ×µ× Pb,

where Rev denotes the revenue earned by providing service to a customer.

The analytic study of the optimization behavior of the expected cost function is

a non-trivial task to undertake, since the decision variables appear in an expression

which is a highly complex. Thus, we consider in this paper the cost optimization prob-

lem under a given cost structure via quadratic fit search method (QFSM) and parti-

cle swarm optimization (PSO). We employ the two methods to solve the optimization

problem, then we compare the two algorithms. For a detailed algorithm of QFSM and

PSO, one may refer to Rao (2009) and Radin (1997), respectively.

We focus on the optimization of the service rate µ in different cases in order to min-

imize the cost function F. Therefore, a total expected cost function must be developed

in order to determine an optimum regular service rate µ∗ and the optimum expected

cost F(µ∗). Consequently, the optimization problem can be illustrated mathematically
as:

Minimize: F(µ) = Tc.

5.7 Numerical results

To study the behavior of system characteristics with respect to the changes of its pa-

rameters, we execute a numerical experiment by coding computer program in R soft-

ware. For computational convenience, we arbitrarily choose the values of different

system parameters and costs. We suppose that the arrival batch size X follows a geo-

metric distribution with parameter p, that is

P (X = l) = bl = (1− p)l−1p, 0 < p < 1 (l = 1,2, ...).

Then, we easily have

B(z) =
pz

1− (1− p)z
, E(X) = B′(1) =

1
p
, and E(X2) = B′′(1) =

2(1− p)
p2 .
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Next, for the whole analysis, we fixe C1 = 20, C2 = 10, C3 = 8, C4 = 20, C5 = 30,

C6 = 15, C7 = 20, C8 = 25, and Rev = 200.

5.7.1 Optimization of service rate µ

The main goal in this part of paper is to determine the optimal value of service rate µ

for different cases in order to minimize the cost function F. The tolerance of QFSM is

ε = 10−6, swarm size, maximum number of iterations and learning factors of PSO are

taken as 20, 100 and c1 = c2 = 2, respectively.

The total expected cost incurred on the system Tc can be minimized with respect

to the decision parameter service µ using QFSM and PSO. To make the study more

useful from the cost-benefit view point, the total cost function is presented in Tables

5.1-5.4 and plotted (using QFSM) in Figures 5.2-5.5 by varying values of λ, K, η, and

φ, respectively.

• Table 5.1 (resp. Figure 5.2) presents the minimum values of µ along with F(µ∗)

(resp. Tc) for various λ. The other parameters are chosen as K = 7, p = 0.75,

β = 0.7, η = 3, φ = 1.1, α = 0.6, and ξ = 1.5.

• Table 5.2 (resp. Figure 5.3) illustrates the optimum values of µ along with F(µ∗)

(resp. Tc) for various values of K. The other parameters are taken as λ = 1, p =

0.75, β = 0.7, η = 3, φ = 1.1, α = 0.6, and ξ = 1.5.

• Table 5.3 (resp. Figure 5.4) displays the optimal values of µ along with F(µ∗)

(resp. Tc) for different values of η. The other parameters are fixed as K = 7,

p = 0.75, β = 0.7, λ = 1, φ = 1.1, α = 0.6, and ξ = 1.5.

• Table 5.4 (resp. Figure 5.5) illustrates the minimum values of µ along with F(µ∗)

(resp. Tc) for various values of φ. The other parameters are taken as K = 7, p =

0.75, β = 0.7, λ = 1, η = 3, α = 0.6, and ξ = 1.5.

Table 5.1: The optimal values µ∗ and F(µ∗) for various values of λ.
QFSM PSO

λ µ∗ F(µ∗) µ∗ F(µ∗)
0.55 1.818215 102.873936 1.8182 102.8739
0.65 2.082011 115.988351 2.0820 115.9884
0.75 2.340349 128.746239 2.3404 128.7462
0.85 2.594235 141.207636 2.5942 141.2076
0.95 2.844401 153.416642 2.8444 153.4166
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Table 5.2: The optimal values µ∗ and F(µ∗) for various values of K.
QFSM PSO

K µ∗ F(µ∗) µ∗ F(µ∗)
1 2.989518 158.255259 2.9895 158.2553
3 2.972585 159.195156 2.9726 159.1952
5 2.969294 159.379618 2.9693 159.3796
7 2.968266 159.437363 2.9683 159.4374
9 2.967902 159.457829 2.9679 159.4578

Figure 5.2: Tc vs. λ and µ.

Table 5.3: The optimal values µ∗ and F(µ∗) for various values of η.
QFSM PSO

η µ∗ F(µ∗) µ∗ F(µ∗)
0.7 3.006193 157.345151 3.0062 157.3452
1.4 2.985068 158.50078 2.9851 158.5008
2.1 2.975202 159.048926 2.9752 159.0489
2.8 2.969484 159.368998 2.9695 159.369
3.5 2.965751 159.578848 2.9658 159.5788

Table 5.4: The optimal values µ∗ and F(µ∗) for various values of φ.
QFSM PSO

φ µ∗ F(µ∗) µ∗ F(µ∗)
0.6 2.904913 162.926958 2.9049 162.927
1.2 2.975776 158.931596 2.9758 158.9316
1.8 3.005696 156.699431 3.0057 156.6994
2.4 3.022255 155.312738 3.0226 155.3127
3.0 3.032777 154.382524 3.0328 154.3825

From Figures 5.3-5.5, it is clearly seen the convexity of the curves for different val-

ues of K, η, and φ which shows that there exists a certain value of the service rate µ
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Figure 5.3: Tc vs. K and µ.

Figure 5.4: Tc vs. η and µ.

that minimizes the total expected cost function for the chosen set of model parame-

ters. However, the convexity is not clear in Figure 5.2, this is due to the choice of the

parameters, especially λ and µ. We had to choose the values for the two parameters in

such a way that the stability condition λE(X) < βµ is verified.
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Figure 5.5: Tc vs. φ and µ.

Further, it is worth noting that the fastest optimization algorithms look only for a

local solution, a point where the objective function is smaller than any other possible

points nearby. They don’t always find the best of all such minima, namely the global

solution. Global solutions are needed (or highly desirable) in some applications, but

they are generally difficult to identify and even more difficult to locate. An important

particular case is convex programming, where all local solutions are also global solu-

tions. Linear programming problems fall into the category of convex programming.

Nevertheless, nonlinear general problems, both constrained and unconstrained, may

have local solutions that are not global solutions. From Figures 5.3-5.5, we clearly ob-

serve that the optimal value is the global solution, as when F is convex. Then, any

local minimizer µ∗ is a global minimizer of F, see Theorem 2.5 in Nocedal and Wright

(2006).

Tables 5.1-5.4 present the optimum values of µ along with the minimum expected

cost for various values of λ, K, η, and φ, respectively. A decreasing (resp. increasing)

trend is seen in µ∗ with the increase of η and K (resp. λ and φ ). Further, the optimal

expected cost F(µ∗) increases with the increase of λ, η and K. This is because the mean

number of the customers in the system as well as the average rate of lost customers

increase with the increasing of λ, η andK which results in the increasing of the optimal

expected cost. In addition, F(µ∗) decreases with φ which is quite reasonable; the mean
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queue length and the average rate of reneging decrease which leads to the decreasing

in the optimal expected cost.

Via the results presented in the Tables, we observe that both the two adopted meth-

ods give identical results, but the convergence is faster in PSO algorithm. Then, as it

has been pointed out in Laxmi et al. (2013), the advantage of using the PSO algorithm

lies in the ease with which it may be adjusted and implemented utilizing only a veloc-

ity operator in order to drive the search in the search space, while the QFSM depends

on the proper choice of the initial 3-point approximation.

Furthermore, the results obtained are quite interesting and can be applied to many

real-time machining systems for upgrading the system by suitable choice of service
rate µ.

5.7.2 Impact of λ, p, and β

We check the effect of λ, p, and β on different performance measures and costs, the

values of these parameters are presented in Table 5.5 and Figures 5.6-5.7. The other

parameters of the model as taken as K = 5, η = 3, φ = 1.1, α = 0.6, ξ = 0.9, and µ = 3.5.

Table 5.5: Impact of λ, p, and β.
λ p β E[LV ] E[LK ] Ra Pb Pv P0,K Tc Tr

0.7 0.3612 0.8683 0.1950 0.3286 0.5923 0.0791 154.4013 229.9915
0.60 0.8 0.3858 0.6840 0.2083 0.2827 0.6327 0.0846 146.5769 197.9150

0.9 0.4044 0.5629 0.2184 0.2481 0.6633 0.0886 139.7439 173.6907
0.7 0.3209 0.5137 0.1733 0.2558 0.6578 0.0864 146.0160 179.0679

0.6 0.75 0.8 0.3359 0.4186 0.1814 0.2209 0.6886 0.0905 139.5682 154.6544
0.9 0.3473 0.3530 0.1876 0.1944 0.7120 0.0936 133.5388 136.0991
0.7 0.2846 0.3538 0.1537 0.2094 0.7000 0.0906 141.6145 146.5738

0.9 0.8 0.2947 0.2939 0.1591 0.1813 0.7249 0.0938 135.6575 126.8854
0.9 0.3024 0.2513 0.1633 0.1598 0.7439 0.0963 129.9293 111.8600
0.7 0.3779 1.2075 0.2041 0.3929 0.5312 0.0759 161.3242 275.0287

0.60 0.8 0.4126 0.9266 0.2228 0.3371 0.5802 0.0829 151.9645 235.9600
0.9 0.4387 0.7493 0.2369 0.2952 0.6167 0.0881 144.3036 206.6104
0.7 0.3471 0.6796 0.1874 0.3045 0.6099 0.0856 149.8402 213.1156

0.7 0.75 0.8 0.3681 0.5452 0.1988 0.2624 0.6468 0.0908 142.8413 183.6394
0.9 0.3840 0.4547 0.2074 0.2304 0.6748 0.0948 136.4914 161.3262
0.7 0.3131 0.4550 0.1691 0.2485 0.6602 0.0913 144.2319 173.9113

0.9 0.8 0.3272 0.3740 0.1767 0.2147 0.6899 0.0954 138.0070 150.2730
0.9 0.3379 0.3173 0.1825 0.1890 0.7125 0.0985 132.1152 132.2917
0.7 0.3810 1.6623 0.2058 0.4602 0.4687 0.0711 170.1157 322.1654

0.60 0.8 0.4280 1.2348 0.2311 0.3936 0.5265 0.0799 158.3052 275.5482
0.9 0.4632 0.9783 0.2501 0.3439 0.5697 0.0864 149.4117 240.7166
0.7 0.3651 0.8834 0.1972 0.3549 0.5614 0.0837 154.1822 248.4298

0.8 0.75 0.8 0.3933 0.6961 0.2124 0.3051 0.6047 0.0902 146.4034 213.5712
0.9 0.4145 0.5735 0.2239 0.2676 0.6374 0.0950 139.6203 187.2912
0.7 0.3362 0.5737 0.1815 0.2887 0.6202 0.0911 147.0579 202.1041

0.9 0.8 0.3549 0.4660 0.1917 0.2490 0.6548 0.0962 140.4808 174.3076
0.9 0.3692 0.3921 0.1993 0.2189 0.6810 0.1001 134.3817 153.2326

− For fixed p and β, along the increases of λ, an increasing trend is observed in Pb,
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Figure 5.6: Effect of λ, p, and β on Ns.
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Figure 5.7: Effect of λ, p, and β on Tp.

E[LV ], E[LK ], andRa,while a decreasing trend is seen in P0,K and Pv with λ. This implies

an increasing in Tc, Tr and Tp. The obtained results agree absolutely with our intuition;

the mean number of the customers in the system increases with the increasing of λ.

Thus, the larger the mean number of customers in the system, the higher the mean
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number of customers served.
− For fixed λ and β, with the increases of p, an increasing trend is remarked in Pv

and P0,K . Further, a decreasing trend is observed in Pb, E[LV ], E[LK ], and Ra with p. This

implies a diminution in Tc, Tr , and Tp. This is because the mean number of customers in

the system decreases with p. Thus, the mean number of customers served is reduced.

− For fixed λ and p, along the increases of β,we observe an increasing trend in P0,K ,

Pv , E[LV ], and Ra. In addition, a decreasing trend is seen in Pb and E[LK ] with β. This

leads to a decrease in Tc, Tr , and Tp.

− For fixed p and β, along the increase of λ, Ns increases monotonically, as it should

be. Moreover, one may also see that for higher values of β and smaller values p, Ns is

reduced. Therefore, Tp decreases.

5.7.3 Impact of K, ξ, and α

We vary K, ξ, and α, their values are given in the respective Table 5.6 and Figures 5.8-

5.9. The other default parameters are chosen as p = 0.75, β = 0.7, λ = 1, η = 3, φ = 1.1,

and µ = 3.

Table 5.6: Impact of K, ξ, and α.
K ξ α E[LK ] E[LV ] Ns Ra Re Tc Tr Tp

0.3 2.4102 0.2899 1.2638 0.0696 0.1624 163.7101 451.3396 287.6295
0.8 0.6 2.2180 0.2625 1.2073 0.1260 0.0840 158.6905 431.1953 272.5049

0.9 2.0845 0.2398 1.1607 0.1726 0.0192 155.0977 414.5361 259.4384
0.3 2.2180 0.2625 1.2073 0.1260 0.2940 163.9399 431.1953 267.2554

1 1.6 0.6 1.9847 0.2207 1.1215 0.2119 0.1412 156.7723 400.5296 243.7573
0.9 1.8426 0.1904 1.0592 0.2741 0.0305 152.2130 378.2885 226.0755
0.3 2.0845 0.2398 1.1607 0.1726 0.4028 164.6884 414.5361 249.8477

2.4 0.6 1.8426 0.1904 1.0592 0.2741 0.1828 156.0203 378.2885 222.2682
0.9 1.7061 0.1578 0.9924 0.3409 0.0379 150.8832 354.4259 203.5427
0.3 2.4259 0.3399 1.2518 0.0816 0.1903 165.4641 447.0590 281.5949

0.8 0.6 2.1984 0.3134 1.1829 0.1504 0.1003 159.6924 422.4637 262.7714
0.9 2.0342 0.2913 1.1236 0.2097 0.0233 155.4353 401.2820 245.8467
0.3 2.1984 0.3134 1.1829 0.1504 0.3510 165.9605 422.4637 256.5032

4 1.6 0.6 1.9062 0.2725 1.0717 0.2616 0.1744 157.5341 382.7672 225.2331
0.9 1.7138 0.2418 0.9851 0.3482 0.0387 151.8575 351.8160 199.9585
0.3 2.0342 0.2913 1.1236 0.2097 0.4894 167.0877 401.2820 234.1943

2.4 0.6 1.7138 0.2418 0.9851 0.3482 0.2322 156.6943 351.8160 195.1217
0.9 1.5136 0.2074 0.8853 0.4481 0.0498 150.0523 316.1646 166.1123
0.3 2.4273 0.3443 1.2507 0.0826 0.1928 165.6206 446.6771 281.0565

0.8 0.6 2.1964 0.3184 1.1805 0.1529 0.1019 159.7915 421.5995 261.8079
0.9 2.0287 0.2969 1.1195 0.2138 0.0238 155.4721 399.8358 244.3637
0.3 2.1964 0.3184 1.1805 0.1529 0.3567 166.1605 421.5995 255.4390

7 1.6 0.6 1.8969 0.2787 1.0658 0.2675 0.1783 157.6248 380.6526 223.0278
0.9 1.6961 0.2489 0.9749 0.3584 0.0398 151.8088 348.1880 196.3792
0.3 2.0287 0.2969 1.1195 0.2138 0.4989 167.3495 399.8358 232.4863

2.4 0.6 1.6961 0.2489 0.9749 0.3584 0.2389 156.7867 348.1880 191.4013
0.9 1.4831 0.2153 0.8683 0.4650 0.0517 149.9207 310.1067 160.1860
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Figure 5.8: Effect of K, ξ, and α on Pv .
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Figure 5.9: Effect of K, ξ, and α on Pb.

− For fixed α, increases in K and ξ implies an increase in Ra, Re, and Tc, while

E[LV ] increases with K and decreases with ξ. The other performance measures and

costs, E[LK ], Ns, Tr , and Tp decrease with the increasing of K and ξ.

− For fixed K and ξ, except Ra, all the other performance measures and costs de-
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crease with the increase of α. Moreover, as intuitively expected, Pv (resp. Pb) increases

(resp. decreases) with ξ. In addition, the higher α and K, the smaller the probability

that the server is working during the busy period Pb and the bigger the probability that

the server is on vacation Pv . This is due to the fact that, the number of customers in the

system decreases with α and ξ, and increase with K. Thus, the probability of busy

period decreases which implies a decrease in the mean number of customers served.

Further, one can conclude that the retention probability α′ has a nice impact on the

economy of the queueing system.

5.7.4 Impact of µ, φ, and η

We examine the impact of µ, φ, and η, their values are mentioned in Table 5.7 and

Figure 5.10. The other model parameters are arbitrarily selected as λ = 3, β = 0.8,

p = 0.8, K = 3, ξ = 0.1, α = 0.4, η = 3, and φ = 2.

Table 5.7: Impact of µ, φ, and η.
µ φ η Pb Pv P0,K E[L] E[Lq] Tp

2.0 0.9368 0.0385 0.0247 19.6869 18.7270 377.7967
2.0 2.5 0.9368 0.0418 0.0214 19.7672 18.8054 376.1619

3.0 0.9367 0.0444 0.0189 19.8288 18.8656 374.9070
2.0 0.9370 0.0360 0.0270 19.4320 18.4755 383.0391

5.0 2.5 2.5 0.9369 0.0394 0.0237 19.4966 18.5383 381.7286
3.0 0.9369 0.0420 0.0211 19.5470 18.5872 380.7077
2.0 0.9371 0.0339 0.0290 19.2690 18.3150 386.3820

3.0 2.5 0.9370 0.0374 0.0256 19.3221 18.3665 385.3081
3.0 0.9370 0.0401 0.0229 19.3640 18.4070 384.4610
2.0 0.8667 0.0813 0.0520 9.1744 8.2590 573.7768

2.0 2.5 0.8665 0.0883 0.0452 9.2558 8.3364 572.0877
3.0 0.8665 0.0936 0.0399 9.3182 8.3957 570.7913
2.0 0.8670 0.0759 0.0571 8.9177 8.0094 579.2146

5.4 2.5 2.5 0.8669 0.0831 0.0500 8.9834 8.0713 577.8618
3.0 0.8668 0.0887 0.0445 9.0346 8.1195 576.8080
2.0 0.8672 0.0716 0.0612 8.7536 7.8506 582.6724

3.0 2.5 0.8671 0.0789 0.0540 8.8078 7.8506 581.5640
3.0 0.8671 0.0846 0.0483 8.8505 7.9412 580.6899
2.0 0.8063 0.1181 0.0756 6.2294 5.3524 618.5547

2.0 2.5 0.8062 0.1282 0.0656 6.3117 5.4288 616.8190
3.0 0.8060 0.1360 0.0580 6.3749 5.4875 615.4870
2.0 0.8068 0.1103 0.0829 5.9713 5.1044 624.1603

5.8 2.5 2.5 0.8067 0.1207 0.0726 6.0379 5.1655 622.7712
3.0 0.8065 0.1289 0.0646 6.0898 5.2131 621.6892
2.0 0.8070 0.1040 0.0890 5.8061 4.9472 627.7167

3.0 2.5 0.8070 0.1146 0.0784 5.8612 4.9971 626.5789
3.0 0.8069 0.1230 0.0701 5.9047 5.0365 625.6816

− As we expect, for fixed φ and η, the performance measures Pv , and P0,K increase

with the increase in µ, while Pb, E[LK ], E[L] and E[Lq] decrease monotonically. There-

fore, Tp increases because of the number of customers served, which is quite reason-

able.
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Figure 5.10: E[LK ] vs. µ and η.

− For fixed µ and η, it is depicted that Pb and P0,K increase with φ, while Pv , E[L],

and E[Lq] decrease with the increasing values of φ. Thus, Tp increases significantly.

This trend matches with the realistic situation.
− For fixed µ and φ, along the increasing of η, an increasing trend is observed in

Pv , E[L], and E[Lq] and a decreasing trend is seen in Pb, E[LK ], P0,K , and Tp. This is be-

cause the number of customers during the vacation period increases with η. Hence, as

the impatience occurs during this period, the number of customers reneged augments

which results in the increasing of the total expected profit.

5.8 Managerial insights

Businesses are increasingly dependent on Internet services (call centers) as the basis of

their revenues. The downtime (vacation and/or breakdowns) can therefore be directly

translated into a loss of customers and consequently of income. The issue addressed in

this work concerns the impatient behavior of customers in infinite buffer batch arrival

single server Markovian Bernoulli feedback queueing system with waiting server, and

K-variant vacations. A managerial implication of fundamental importance lies pre-

cisely in the retention strategy which would take, from this point of view, a strongly

positive connotation. This study focuses on this concept, offering different compa-
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nies interesting management perspectives for impatient customer. After presenting

the theoretical analysis of the considered queueing model, it was proposed to examine

the relationship between the different system parameters and performance measures

as well as the cost model of the queueing system. The final outcome carried out in

this investigation, theoretical and numerical analysis of the queueing system, marked

a transition in the theory of queueing systems with vacation and impatient customers.

It is worth noting that the analysis has been more difficult because of diverse parame-

ters governing the system.

5.9 Conclusion

This study focused on the analysis of an infinite capacity batch arrival single server

Markovian Bernoulli feedback queueing system subject to functioning K-variant va-

cations by including the assumption of waiting server, customer’s impatience and re-

tention of reneged customers. The steady-state study of the system has been carried

out using the PGFs method to evaluate various system metrics in terms of steady-state

probabilities. We also considered a cost optimization problem using particle swarm

optimization (PSO) and quadratic fit search method (QFSM). The results presented

show that the two methods adopted give identical results, but the convergence is faster

in the PSO algorithm. Further, we investigated the effect of different parameters on the

performance measures and the cost functions of the system through numerical exper-

iments. Our queueing system may be considered as a generalized version of many

existing queueing models given by Padmavathy et al. (2011) and Yue et al. (2014)

equipped with various features and associated with diverse practical situations. Our

model can be further extended to a more general case with general type service times

and lead times. Furthermore, the realistic feature of bulk failure can be included.
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Abstract. The present paper deals with an MX/M/c Bernoulli feedback queueing

system with variant multiple working vacations and impatience timers which depend

on the states of the servers. Whenever a customer arrives at the system, he activates an

random impatience timer. If his service has not been completed before his impatience

timer expires, the customer may abandon the system. Using certain customer reten-

tion mechanism, the impatient customer can be retained in the system. After getting

incomplete or unsatisfactory service, with some probability, each customer may come-

back to the system as a Bernoulli feedback. Using the probability generating functions

(PGFs), we derive the steady-state solution of the model. Then, we obtain useful per-

formance measures. Moreover, we carry out an economic analysis. Finally, numerical

study is performed to explore the effects of the model parameters on the behavior of

the system.

Keywords: Queueing models. batch arrival. variant working vacations. impatient

customers. Bernoulli feedback.
2010 Mathematics Subject Classification: 60K25, 68M20, 90B22.

6.1 Introduction

Vacation queueing models with impatient customers are very helpful in providing

basic framework for efficient design and study of diverse practical situations includ-
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ing telephone switchboard, inventory problems with perishable goods, computer and

communication network, data/voice transmission, manufacturing system, etc.

In recent past, vacation queueing models have been widely studied. Doshi (1986),

Takagi (1991) and Tian and Zhang (2006) are excellent survey works on the subject.

An extensive amount of the literature is available on queueing models with server

vacation and arrival batch and can be found in Madan and AI-Rawwash (2005), Wang

et al. (2007), Haridass and Arrumuganathan (2008), etc.

Working vacation queues with customer impatience have attracted the interest of

many researchers. Altman and Yechiali (2008) treated the infinite-server queueing

model with system’s additional tasks and impatient customers. Perel and Yechiali

(2010) considered a 2-phase Markovian random environment with impatient customers.

working vacation queueing model with customer impatience has been analyzed by Yue

et al. (2012). Then, Zhang et al. (2013) presented an equilibrium balking strategies

in Markovian queues with working vacations. Sun et al. (2014) gave the equilibrium

and optimal behavior of customers in Markovian queues with multiple working va-

cations. Goswami (2014) analyzed a queueing model with impatient customers with

Bernoulli schedule working vacations and vacation interruption. Laxmi and Jyothsna

(2015) dealt with balking and reneging multiple working vacations queue with hetero-

geneous servers. Later, Tian et al. (2016) presented equilibrium and optimal strate-

gies in M/M/1 queueing model with working vacations and vacation interruptions.

Recently, in Bouchentouf and Yahiaoui (2017), a study on feedback queueing system

with reneging and retention of reneged customers, multiple working vacations and

Bernoulli schedule vacation interruption has been done. For more literature on cus-

tomer impatience in working vacation queueing models, the authors may be referred

to Selvaraju and Goswami (2013) and Laxmi and Jyothsna (2013,2014).

Variant of multiple vacation policy is relatively a recent one where it is permitted

to the server to take a certain fixed number of consecutive vacations, if the system

remains empty at the end of a vacation. This sort of vacation schedule was carried out

by Zhang and Tian (2001). In their paper, a Geo/G/1 queueing model with multiple

adaptive vacations has been analyzed. Literature related to variant multiple working

vacations can be found in Ke (2007), Ke et al. (2010), Wang et al. (2011) and Yue et al.

(2014). Recently, Laxmi and Rajesh (2016) studied a variant working vacations queue

with customer impatience. Furthermore, the performance measures of batch arrival

queue with variant working vacations and reneging have been presented in Laxmi and
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Rajesh (2017).

In the present investigation, we carry out an analysis of anMX/M/c Bernoulli feed-

back queueing model with variant of multiple working vacations, reneging which de-

pend on the states of the servers and retention of reneged customers. The queueing

model presented in this paper has many practical situations. Moreover, as the impa-

tience has strongly bas effect on the economy of any firm, a great idea of retention of

impatient customers is incorporated in this work. Besides, to the best of our knowl-

edge, modeling of multi-server queueing system with Bernoulli feedback, variant of

working vacations, impatience timers which depend on the states of the servers and

retention of reneged customers has not been attempted in literature. This paper makes

a contribution in this sense.
The paper is arranged as follows. We describe the model in Section 2. The theoret-

ical analysis of the system is presented in Section 3. Useful measures of effectiveness

and the cost of our model are given in Section 4. To validate the analytical results and

to facilitate the sensitivity analysis, we present some numerical results for system per-

formance and cost model in Section 5. Some concluding remarks and notable features

of investigation done are highlighted in Section 6.

6.2 The model formulation

Consider Markov model for an infinite buffer multi-server queueing system with batch

arrival, variant of working vacations, Bernoulli feedback, impatient customers which

depend on the states of the servers and retention of reneged customers. For the math-

ematical formulation of the queueing model, the following notations and assumptions

are given:

Customers arrive in batches according to a Poisson process with rate λ. The arrival

batch size X is a random variable with probability mass function P (X = l) = bl ; l =

1,2, .... The service times during normal busy period is assumed to be exponentially

distributed with mean 1/µ. And during the vacation time the service is provided ac-

cording to an exponential distribution with parameter η, with µ ≥ η. The queueing

system consists of c servers such that all the servers go for working vacation and va-

cation time synchronously once the system becomes empty, and they also return to

the system as one at the same time. If the servers return from working vacation and

vacation period to find an empty queue, they immediately leave all together for an-
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other vacation and working; otherwise, they return to serve the queue. Vacation and

working vacation periods are assumed to be exponentially distributed with mean 1/φ.

If the servers find customer at a working vacation completion instant, they all

comeback to regular busy period; otherwise, they take all together K vacations se-

quentially. When the K consecutive working vacations are complete, all servers switch

to busy period and depending on the arriving batch of customers, they stay idle or

busy. So, in variant multiple vacation policy, if the system remains empty at the end

of a vacation, the servers are permitted to take a finite number, say K, of consecutive

vacations.

Whenever a customer arrives at the system and finds the servers on vacation or

working vacation (respectively. busy) period, he activates an impatience timer T1 (re-

spectively. T2), which is exponentially distributed with parameter ξ1 (respectively. ξ2).

If the customer’s service has not been completed before the customer’s timer expires,

this later may leave the system. We suppose that the customers timers are indepen-

dent and identically distributed random variables and independent of the number of

waiting customers. Each impatient customer may abandon the system with probabil-

ity α and can be retained in the queue with complementary probability α′ = (1−α). If

the service is uncomplete or unsatisfactory, the customer can either leave the system

definitively with probability β or rejoin the end of the queue of the system for another

service with probability β′, where β + β′ = 1. Note that, both customers, the newly ar-

rived and those that are fed back are served in order in which they join the tail of the

primary queue.

The inter-arrival times, working vacation and vacation periods, normal busy period

are mutually independent.

6.3 Theoretical analysis of the model

LetN (t) denote the number of customers in the system at time t, and let κ(t) be the sta-

tus of the servers at time t. For the mathematical representation of the present model at

an instant t, we consider the following states of the system based on the server status,

κ(t) =
{
j, the servers are taking the (j + 1)th vacation at time t, j = 0,1,K − 1,
K, the servers are idle or busy at time t.

Figure 6.1 depicts the state transition diagram.
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Figure 6.1: State-transition-rate diagram.

The bi-variate process {(N (t),κ(t)), t ≥ 0} represents two dimensional infinite state

Markov chain in continuous time with state space

Ω = {(n,j) : n ≥ 0; j = 0,K}.
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Let Pn,j = lim
t→∞

P (N (t) = n;κ(t) = j), n ≥ 0; j = 0,K be the steady-state probabilities of

the process {(N (t);κ(t)); t ≥ 0}.

6.3.1 PGFs and Balance equations

Define the probability generating functions as

Gj(z) =
∞∑
n=0

Pn,jz
n, |z| ≤ 1, j = 0,K

G′j(z) =
d
dz
Gj(z) =

∞∑
n=1

nPn,jz
n−1, j = 0,K

B(z) =
∞∑
n=1

bnz
n, with B(1) =

∞∑
n=1

bn = 1.

In order to develop the model, the steady state Chapman-Kolmogrov equations for

the system states is constructed as follows:

(λ+φ)P0,0 = (βν +αξ1)P1,0 + (βµ+αξ2)P1,K , (6.1)

(λ+φ+ βν +αξ1)P1,0 = λb1P0,0 + 2(βν +αξ1)P2,0, (6.2)

(λ+φ+n(βν +αξ1))Pn,0 = λ
n∑

m=1

bmPn−m,0 + (n+ 1)(βν +αξ1)Pn+1,0, 2 ≤ n ≤ c − 1, (6.3)

(λ+φ+ cβν +nαξ1)Pn,0 = λ
n∑

m=1

bmPn−m,0 + (cβν + (n+ 1)αξ1)Pn+1,0, n ≥ c, (6.4)

(λ+φ)P0,j = (βν +αξ1)P1,j +φP0,j−1, 1 ≤ j ≤ K, (6.5)

(λ+φ+ βν +αξ1)P1,j = λb1P0,j + 2(βν +αξ1)P2,j , 1 ≤ j ≤ K − 1, (6.6)
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(λ+φ+n(βν +αξ1))Pn,j = λ
n∑

m=1

bmPn−m,j + (n+ 1)(βν +αξ1)Pn+1,j ,

2 ≤ n ≤ c − 1, 1 ≤ j ≤ K − 1,

(6.7)

(λ+φ+ cβν +nαξ1)Pn,j = λ
n∑

m=1

bmPn−m,j + (cβν + (n+ 1)αξ1)Pn+1,j ,

n ≥ c, 1 ≤ j ≤ K − 1,

(6.8)

λP0,K = φP0,K−1, (6.9)

(λ+ βµ+αξ2)P1,K = λb1P0,K + 2(βµ+αξ2)P2,K +φ
K−1∑
j=0

P1,j , (6.10)

(λ+n(βµ+αξ2))Pn,K = λ
n∑

m=1

bmPn−m,K + (n+ 1)(βµ+αξ2)Pn+1,K

+φ
K−1∑
j=0

Pn,j , 2 ≤ n ≤ c − 1,

(6.11)

(λ+ cβµ+nαξ2)Pn,K = λ
n∑

m=1

bmPn−m,K + (cβµ+ (n+ 1)αξ2)Pn+1,K

+φ
K−1∑
j=0

Pn,j , n ≥ c.

(6.12)

The normalizing condition is given as

∞∑
n=0

K∑
j=0

Pnj = 1. (6.13)

Multiplying Eqs.(6.1)-(6.4) by zn, and summing all possible values of n, we get
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(1− z)zαξ1G
′
0(z) + [λz(B(z)− 1)− z(φ+ cβν) + cβν]G0(z) =

βν(1− z)
c−1∑
n=0

(c −n)Pn,0z
n − (αξ2 + βµ)zP1,K .

(6.14)

In a similar manner, we get from Eqs.(6.5)-(6.8)

(1− z)zαξ1G
′
j(z) + [λz(B(z)− 1)− z(φ+ cβν) + cβν]Gj(z) =

βν(1− z)
c−1∑
n=0

(c −n)Pn,jz
n −φzP0,j−1, 1 ≤ j ≤ K − 1.

(6.15)

In the same way, from Eqs.(6.9)-(6.12)

(1− z)zαξ2G
′
K (z) + [λz(B(z)− 1) + cβµ(1− z)]GK (z) = −zφ

K−1∑
j=0

Gj(z)

βµ(1− z)
c−1∑
n=0

(c −n)Pn,Kz
n + z(βµ+αξ2)P1,K + zφ

K−2∑
j=0

P0,j .

(6.16)

Next, using the recursive method, we get
Pn,0 = γnP0,0 +ϕnP1,K ,

Pn,j = γnP0,j +ωnP0,j−1,

where

γn =



1, if n = 0;
λ+φ

βν +αξ1
, if n = 1.

ψn−1γn−1 −
A
n

n−1∑
i=1

biγn−1−i if 2 ≤ n ≤ c − 1,
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ϕn =



0, if n = 0;

−
βµ+αξ2

βν +αξ1
, if n = 1.

ψn−1ϕn−1 −
A
n

n−1∑
i=1

biϕn−1−i if 2 ≤ n ≤ c − 1,

ωn =



0, if n = 0;

−
φ

βν +αξ1
, if n = 1.

ψn−1ωn−1 −
A
n

n−1∑
i=1

biωn−1−i if 2 ≤ n ≤ c − 1,

and

A =
λ

βν +αξ1
, ψn =

λ+φ+n(βν +αξ1)
(n+ 1)(βν +αξ1)

.

6.3.2 Solutions of the Differential Equations

For z , 1 and z , 0, Eqs. (6.14) and (6.15) can be written respectively as

G′0(z) +
(
λ
αξ1

H ′(z)−
(φ+ cβν)
(1− z)αξ1

+
cβν

(1− z)zαξ1

)
G0(z) =

βν

zαξ1
Q0(z)P0,0 +

(
βν

αξ1z
Q1(z)−

αξ2 + βµ
(1− z)αξ1

)
P1,K ,

(6.17)

for j = 1,K − 1.

G′j(z) +
(
λ
αξ1

H ′(z)−
(φ+ cβν)
(1− z)αξ1

+
cβν

(1− z)zαξ1

)
Gj(z) =

βν

zαξ1
Q0(z)P0,j +

(
βν

αξ1z
Q2(z)−

φ

(1− z)αξ1

)
P0,j−1,

(6.18)

such that
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Q0(z) =
c−1∑
n=0

(c −n)γnz
n,Q1(z) =

c−1∑
n=0

(c −n)ϕnz
n,Q2(z) =

c−1∑
n=0

(c −n)ωnz
n,

and

H(z) =
∫ z

0

B(x)− 1
1− x

dx, and H ′(z) =
B(z)− 1

1− z
.

Now, by taking z = 1 in Eqs.(6.14) and (6.15), we have respectively

φG0(1) = (αξ2 + βµ)P1,K , (6.19)

and

Gj(1) = P0,j−1 (6.20)

Next, to solve the linear differential equations (6.17) and (6.18), we multiply both

sides of the above equations by e
λ
αξ1

H(z)(1 − z)
φ
αξ1 z

cβν
αξ1 , then integrating form 0 to z, we

obtain

G0(z) =
e
− λ
αξ1

H(z)

(1− z)
φ
αξ1 z

cβν
αξ1

{
βν

αξ1
K0(z)P0,0 +

(
βν

αξ1
K1(z)−

αξ2 + βµ
αξ1

K2(z)
)
P1,K

}
, (6.21)

for j = 1,K − 1.

Gj(z) =
e
− λ
αξ1

H(z)

(1− z)
φ
αξ1 z

cβν
αξ1

{
βν

αξ1
K0(z)P0,j +

(
βν

αξ1
K3(z)−

φ

αξ1
K2(z)

)
P0,j−1

}
, (6.22)

where

K0(z) =
∫ z

0
e

λ
αξ1

H(x)(1− x)
φ
αξ1 x

cβν
αξ1
−1
Q0(x)dx,

K1(z) =
∫ z

0
e

λ
αξ1

H(x)(1− x)
φ
αξ1 x

cβν
αξ1
−1
Q1(x)dx,

K2(z) =
∫ z

0
e

λ
αξ1

H(x)(1− x)
φ
αξ1
−1
x
cβν
αξ1 dx,
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and

K3(z) =
∫ z

0
e

λ
αξ1

H(x)(1− x)
φ
αξ1 x

cβν
αξ1
−1
Q2(x)dx.

Next, z = 0 and z = 1 are the roots of the numerator of the right hand side of (6.21)

and (6.22). Then, taking z = 1 in (6.21) and (6.22) respectively, we get

P1,K = θ1P0,0, where θ1 =
βνK0(1)

(βµ+αξ2)K2(1)− βνK1(1)
, (6.23)

and

P0,j = CjP0,0,1 ≤ j ≤ K − 1 where C =
φK2(1)− βνK3(1)

βνK0(1)
. (6.24)

Via Eqs.(6.9) and (6.24)

P0,K = θ0P0,0, (6.25)

where

θ0 =
φ

λ
CK−1.

Substituting Eqs.(6.23) and (6.24) in Eqs.(6.21) and (6.22) respectively, we get

G0(z) =
e
− λ
αξ1

H(z)

(1− z)
φ
αξ1 z

cβν
αξ1

{
βνK0(z) + (βνK1(z)− (βµ+αξ2)K2(z))θ1

αξ1

}
P0,0, (6.26)

and for j = 1,K − 1

Gj(z) =
e
− λ
αξ1

H(z)

(1− z)
φ
αξ1 z

cβν
αξ1

{
βνK0(z) +

βνK3(z)−φK2(z)
C

}
Cj

αξ1
P0,0. (6.27)

Thus,

K−1∑
j=0

Gj(z) = Ψ (z)P0,0, j = 0,K − 1, (6.28)

with



6.3 Theoretical analysis of the model 178

Ψ (z) =
e
− λ
αξ1

H(z)

(1− z)
φ
αξ1 z

cβν
αξ1

{
βνK0(z) + (βνK1(z)− (βµ+αξ2)K2(z))θ1

αξ1

+
C
αξ1

(
βνK0(z) +

βνK3(z)−φK2(z)
C

)(
1−CK−1

1−C

)}
.

By taking z = 1 in Eq. (6.16), we find

φ
K−1∑
j=0

Gj(1) = (βµ+αξ2)P1,K +φ
K−2∑
j=0

P0,j . (6.29)

Consequently, we have

K−1∑
j=0

Gj(1) =
{
βµ+αξ2

φ
θ1 +

1−CK−1

1−C

}
P0,0. (6.30)

Next, we have to solve the differential equation (6.16). So, we must express recur-

sively the quantity Pn,K in terms of P0,0. In the same manner as previously, it yields

Pn,K = θnP0,0,

with

θn =


θ0, if n = 0;
θ1, if n = 1.

σn−1θn−1 −
B
n

n−1∑
i=1

biθn−1−i −
E
n

(γn−1H(K) +ωn−1h(K)) if 2 ≤ n ≤ c − 1,

such that

σn =
λ+n(βµ+αξ2)

(n+ 1)(βµ+αξ2)
,

B =
λ

βµ+αξ2
, E =

φ

βµ+αξ2
,

and
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H(K) =
K−1∑
j=0

Cj =
1−CK

1−C
, h(K) =

K−1∑
j=0

Cj−1 =
1−CK

C(1−C)
.

By substituting Eq. (6.29) in Eq. (6.16), we have

G′K (z) +
(
λ
αξ2

H(z)′ +
cβµ

zαξ2

)
GK (z) =

βµ

zαξ2
Q3(z)P0,0 −

φ
∑K−1
j=0 [Gj(z)−Gj(1)]

(1− z)αξ2
, (6.31)

where

Q3(z) =
c−1∑
n=0

(c −n)θnz
n.

Multiplying Eq. (6.31) by e
λ
αξ2

H(z)
z
cβµ
αξ2 and integrating from 0 to z, then using Eqs.

(6.28) and (6.30), we get

GK (z) =
e
− λ
αξ2

H(z)

z
cβµ
αξ2

{
−
φ

αξ2

(
K4(z)−

(
βµ+αξ2

φ
θ1+

1−CK−1

1−C

)
K5(z)

)
+
βµ

αξ2
K6(z)

}
P0,0, (6.32)

where

K4(z) =
∫ z

0
e

λ
αξ2

H(x)
x
cβµ
αξ2 (1− x)−1Ψ (x)dx,

K5(z) =
∫ z

0
e

λ
αξ2

H(x)
x
cβµ
αξ2 (1− x)−1dx,

and

K6(z) =
∫ z

0
e

λ
αξ2

H(x)
x
cβµ
αξ2
−1
Q3(x)dx.

Now, Taking z = 1 in Eq. (6.32), and using the normalization condition

K−1∑
j=0

Gj(1) +GK (1) = 1,

we obtain
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P0,0 =
{
e
− λ
αξ2

H(1)
{
−
φ

αξ2

(
K4(1)−

(
βµ+αξ2

φ
θ1 +

1−CK−1

1−C

)
K5(1)

)

+
βµ

αξ2
K6(1)

}
+
(
βµ+αξ2

φ
θ1 +

1−CK−1

1−C

)}−1
(6.33)

6.4 Performance measures and cost model

6.4.1 Measures of effectiveness

Performance measures are significant features of queueing systems as they reflect the

effectiveness of the considered queueing system. The queueing model developed may

be of great importance by using some useful characteristics which can be in the fu-

ture employed for the prediction, development and improvement of the concerned

real world queueing system. In this section, we formulate some important system per-

formance measures in terms of steady state probabilities.

∗ The average number of customers in the system E(L).

E(L) = E(LWV ) +E(LK ).

Differentiating Eq. (6.14), taking z = 1 and using Eq. (6.19), we get

(αξ1 +φ)G′0(1) = (λB′(1)− cβν)G0(1) + βν(Q0(1)P0,0 +Q1(1)P1,K ). (6.34)

In the same manner, for j = 1,K − 1, Differentiating Eq.(6.15), taking z = 1 and

using Eq. (6.20), we get

(αξ1 +φ)G′j(1) = (λB′(1)− cβν)Gj(1) + βν(Q0(1)P0,j −Q2(1)P0,j−1), (6.35)

where

Q0(1) =
c−1∑
n=0

(c −n)γn, Q1(1) =
c−1∑
n=0

(c −n)ϕn, Q2(1) =
c−1∑
n=0

(c −n)ωn.

From Eq.(6.34), we obtain

G′0(1) =
{
λB′(1)− cβν
αξ1 +φ

(
βµ+αξ2

φ

)
θ1 +

βν(Q0(1) +θ1Q1(1))
αξ1 +φ

}
P0,0. (6.36)



6.4 Performance measures and cost model 181

From Eq. (6.35), summing over all possible values of j, j = 1,K − 1, we obtain

K−1∑
j=1

G′j(1) =
{(

1−CK−1

C(1−C)

)
λB′(1) + βν(Q0(1)C −Q2(1)− c)

αξ1 +φ

}
P0,0. (6.37)

Furthermore, the mean system size when the servers are on working vacation, de-

noted by E(LWV ), is obtained as follows:

E(LWV ) = G′0(1) +
K−1∑
j=1

G′j(1). (6.38)

Substituting Eqs. (6.36) and (6.37) in (6.38), we get

E(LWV ) =
{
λB′(1)− cβν
αξ1 +φ

(
βµ+αξ2

φ

)
θ1 +

βν(Q0(1) +θ1Q1(1))
αξ1 +φ

+
((

1−CK−1

C(1−C)

)
λB′(1) + βν(Q0(1)C −Q2(1)− c)

αξ1 +φ

)}
P0,0.

(6.39)

Next, from Eq.(6.16), and using L’Hospital rule, we find

E(LK ) = lim
z→1

G′K (z) = lim
z→1

{
−(λz(B(z)− 1) + cβµ(1− z))

(1− z)αξ2
GK (z)

−
φ
∑K−1
j=0 [Gj(z)−Gj(1)]

(1− z)αξ2
+
βµ

zαξ2
Q3(z)P0,0

}
.

This implies

E(LK ) =
λB′(1)− βµ

αξ2
GK (1) +

φ

αξ

K−1∑
j=1

G′j(1) +
βµ

αξ2
Q3(1)P0,0, (6.40)

where

Q3(1) =
c−1∑
n=0

(c −n)θn.

∗ The mean of the queue length Lq.
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Lq =
K∑
j=0

∞∑
n=c+1

(n− c)Pn,j

= E(L)− c+
{(
Q0(1) +

Q2(1)
C

)(
1−CK

1−C

)
+Q3(1)

}
P0,0.

∗ The mean expected number of customers served per unit time Ns.

Ns = βµ
c−1∑
n=1

nPn,K + cβµ
∞∑
n=c

Pn,K + βν
K∑
j=0

c−1∑
n=1

nPn,j + cβν
K∑
j=0

∞∑
n=c

Pn,j

= cβ
(
µ(Pb + P0,K ) + νPwv

)
+ β (µQ3(1) + ν(Q0(1)H(K) +Q2(1)h(K)))P0,0.

∗ The probability that the servers are in working vacation period PWV .

PWV =
K−1∑
j=0

Gj(1) =
{
βµ+αξ2

φ
θ1 +

1−CK−1

1−C

}
P0,0.

∗ The probability that the servers are idle in working vacation Pidle.

Pidle =
K−1∑
j=0

P0,j =
1−CK

1−C
P0,0.

∗ The probability that the servers are busy Pbusy .

Pbusy = 1− P0,K − PWV .

∗ The average rate of abandonment of a customer due to impatience Ra.

Ra =
K−1∑
j=0

∞∑
n=0

nαξ1Pn,j +
∞∑
n=0

nαξ2Pn,K

= αξ1E(LWV ) +αξ2E(LK ).

∗ The average rate of retention of impatient customers Re.

Re =
K−1∑
j=0

∞∑
n=0

n(1−α)ξ1Pn,j +
∞∑
n=0

n(1−α)ξ2Pn,K

= (1−α)ξ1E(LWV ) + (1−α)ξ2E(LK ).
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6.4.2 Economic model

To construct the cost model, we consider the following cost (in unit) elements associ-

ated with different events:

• C1 : Cost per unit time when the servers are busy.

• C2 : Cost per unit time when the servers are idle during busy period.

• C3 : Cost per unit time when the servers are idle during working vacation period.

• C4 : Cost per unit time when the servers are on working vacation period.

• C5 : Cost per unit time when a customer joins the queue and waits for service.

• C6 : Cost per unit time when a customer reneges.

• C7 : Cost per unit time when a customer is retained.

• C8 : Cost per service per unit time when the servers are in busy period.

• C9 : Cost per service per unit time when the servers are in working vacation

period.

• C10 : Cost per unit time when a customer returns to the system as a feedback
customer.

• C11 : Fixed server purchase cost per unit.

Let
R be the revenue earned by providing service to a customer.

Γ be the total expected cost per unit time of the system.

Γ = C1Pb +C2P0,K +C3Pe +C4PWV +C5Lq +C6Ra +C7Re

+cµC8 + cνC9 + cβ′(µ+ ν)C10 + cC11.

∆ be the total expected revenue per unit time of the system.

∆ = R×Ns.

Θ be the total expected profit per unit time of the system.

Θ = ∆− Γ .
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6.5 Numerical analysis

To analyze the parameter impact on the system performance, numerical calculus are

carried out and some ones are presented in the form of Graphs and Tables. The char-

acteristics and different costs are obtained by using R program coded by the authors.

First of all let us assume that the arrival batch size X follows a geometric distribution

with parameter q, that is P (X = l) = (1 − q)l−1q, with 0 < q < 1, and l = 1,2, .... Conse-

quently, B(z) =
qz

1− (1− q)z
.

To illustrate the system numerically, the values for default parameters are consid-

ered as:
First, we consider the following cases:

• Table 6.1 : λ = 2.9 : 0.1 : 3.3, K = (1,5,9), c = 3, q = 0.8, µ = 4, ν = 3.8, φ = 0.1,

β = 0.8, α = 0.8, ξ1 = 0.5, ξ2 = 0.8.

• Table 6.2 : λ = 3, K = 3, c = 3, q = (0.5,0.7,0.9), µ = 4, ν = 3.8, φ = 0.07 : 0.02 :

0.15, β = 0.8, α = 0.8, ξ1 = 0.5, ξ2 = 0.8.

• Table 6.3 : λ = 3, K = 3, c = 3, q = 0.8, µ = 4.6 : 0.4 : 6.2, ν = 3.8, φ = 0.1, β = 0.8,

α = 0.8, ξ1 = 0.5, ξ2 = (0.8,0.94,1.04).

• Table 6.4 : λ = 3.4, K = 3, c = 3, q = 0.8, µ = 4.0, ν = 0.35 : 0.2 : 1.15, φ = 0.1,

β = 0.8, α = (0.5,0.7,0.9), ξ1 = 0.5, ξ2 = 0.8.

• Table 6.5 : λ = 2.9, K = 3, c = 3, q = 0.8, µ = 4.0, ν = 3.8, φ = 0.1, β = (0.5,0.7,0.9),

α = 0.8, ξ2 = 0.79 : 0.02 : 0.87, ξ1 = 0.5.

• Table 6.6 : λ = 3.4, K = 3, c = (1,2,3), q = 0.8, µ = 4.0, ν = 3.8, φ = 0.1, β = 0.8,

α = 0.8, ξ1 = 4.5 : 0.5 : 6.5, ξ2 = 0.8.

Second, for economic cost results, we consider the following situations: C1 = 5,

C2 = 3, C3 = 4, C4 = 5, C5 = 5, C6 = 5, C7 = 5, C8 = 4, C9 = 4, C10 = 5, C11 = 4, and

R = 50. Numerical results are presented in the following Tables and Figures.

6.5.1 Discussion on the results

• From Table 6.1 and Figures 6.2-6.3, we see that for different values of variant va-

cation K, along the increase of the arrival rate λ, the probability that the system
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Table 6.1: Total costs vs. λ.
K 1 5 9
λ Γ ∆ Θ Γ ∆ Θ Γ ∆ Θ

2.9 120.4041 531.6658 411.2618 195.2688 568.5601 373.2913 195.3084 568.5796 373.2712
3.0 122.1671 534.7137 412.5467 192.7104 569.8081 377.0976 192.7494 569.8274 377.0781
3.1 123.9192 537.6298 413.7105 190.3974 571.0168 380.6194 190.4356 571.0360 380.6003
3.2 125.6620 540.4197 414.7576 188.3150 572.1867 383.8717 188.3524 572.2056 383.8533
3.3 126.7224 545.4875 418.7651 182.1972 573.0985 390.8506 182.2479 573.0985 390.5806

Table 6.2: Total costs vs. φ.
q 0.5 0.7 0.9
φ Γ ∆ Θ Γ ∆ Θ Γ ∆ Θ

0.07 160.2763 595.4973 435.2210 172.8560 572.8560 400.0426 216.3829 545.9906 329.6077
0.09 160.7400 596.2907 435.5507 170.2858 578.0479 407.7620 219.4602 554.4544 334.9942
0.11 160.8474 596.8863 436.0389 166.8535 581.9042 415.0506 213.1461 565.2968 352.1507
0.13 160.7960 597.3476 436.5516 161.7721 584.5145 422.7425 205.0141 571.0750 366.0609
0.15 160.6748 597.7125 437.0377 158.9608 586.6848 427.7240 197.1398 575.5170 378.3772

Table 6.3: Total costs vs. µ.
ξ2 0.80 0.94 1.04
µ Γ ∆ Θ Γ ∆ Θ Γ ∆ Θ

4.60 183.9987 644.5488 460.5501 191.9106 635.7698 443.8591 197.0989 630.0409 432.9421
5.00 187.7598 691.1525 503.3926 196.2569 679.9235 483.6665 198.8866 676.0608 477.1742
5.40 191.4837 737.2152 545.7281 200.5359 723.5063 522.9703 203.3135 718.9175 515.6040
5.80 195.1493 782.8152 587.6659 204.7636 766.5681 561.8045 207.7011 761.2520 553.5509
6.20 198.7750 827.9931 629.2181 208.9442 809.1618 600.2176 212.0479 803.1188 591.0709

Table 6.4: Total costs vs. ν.
α 0.5 0.7 0.9
ν Γ ∆ Θ Γ ∆ Θ Γ ∆ Θ

0.35 98.7895 548.2676 449.4781 95.5000 498.4809 402.9810 92.9471 458.5866 365.6395
0.55 100.1176 554.3015 454.1939 96.4025 508.2268 411.8243 93.7156 472.5236 378.8080
0.75 101.9522 558.9834 457.0311 97.8672 516.6151 418.7479 95.1487 484.0831 388.9344
0.95 104.2273 562.3944 458.1671 99.8645 523.7082 423.8435 97.1571 494.2884 397.1314
1.15 106.8859 565.1780 458.2921 102.3833 529.8369 427.4536 99.7588 502.9528 403.1940

Table 6.5: Total costs vs. ξ2.
β 0.5 0.7 0.9
ξ2 Γ ∆ Θ Γ ∆ Θ Γ ∆ Θ

0.79 195.2539 580.2338 384.9799 190.4259 572.1482 381.7223 199.3447 564.7339 365.3892
0.81 195.4810 579.6329 384.1518 191.5068 571.3736 379.8668 201.4988 563.8195 362.3207
0.83 195.7182 579.0377 383.3195 190.1446 572.0249 381.8803 203.6107 562.9214 359.3108
0.85 195.9633 578.4492 382.4859 191.1776 571.2889 380.1113 205.6878 562.0369 356.3491
0.87 196.2156 577.8671 381.6515 192.1779 570.5641 378.3661 207.7247 561.1681 353.4434

Table 6.6: Total costs vs. ξ1.
c 1 2 3
ξ1 Γ ∆ Θ Γ ∆ Θ Γ ∆ Θ

4.50 58.1448 198.6960 140.5512 97.5554 397.3824 299.8269 138.0011 596.6616 458.6605
5.00 58.1369 198.6854 140.5485 97.5312 397.2814 299.7502 137.9293 596.3670 458.4377
5.50 58.1297 198.6729 140.5431 97.5028 397.1844 299.6816 137.8431 596.0944 458.2513
6.00 58.1230 198.6588 140.5358 97.4712 397.0918 299.6207 137.7470 595.8445 458.0976
6.50 57.2817 193.4057 136.1240 91.7429 385.8117 294.0688 126.7755 578.6476 451.8720

becomes empty P00 decreases. Thus, the mean number of customers served in-
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creases. This implies an increase in the total expected profit Θ. Further, it is well

observed that the increase of the number of variant vacation has a bad effect on
the system.

• The impact of vacation rate φ is depicted in Table 6.2 and Figures 6.4-6.5 for

different mean batch sizes 1/q. It can be observed that for fixed q, as φ increases,

the mean size of the system when the servers are in normal busy period E(LK )

increases, as intuitively expected. On the other hand, for fixed φ, E(LK ) increases

with 1/q, as it should be. Thus, it is clearly obvious that the total expected profit

Θ increases with the increasing of φ, while the augmentation of q implies a lost

in Θ.

• In Table 6.3 and Figures 6.6-6.7, we illustrate the effect of service rate during

busy period µ, for various impatience rate during busy period ξ2. It is quite clear

that with the increase in the service rate µ, the mean number of customers served

augments. Thus, the total expected profit Θ increases. Obviously, the number of

customers served decreases when ξ2 increases. Thus, we have a significant total

expected profit Θ for large values of µ and small values of ξ2.

• According to the results presented in Table 6.4 and Figures 6.8-6.9, we see that

the average rate of abandonment Ra decreases with the increases in the service

rate during vacation period ν. This is because the mean number of customers

served augments with ν. Consequently, the average rate of abandonment is re-

duced. Further, the increase in the probability of non-retention α implies an

increase in Ra. Finally, it is well observed that the increases in the service rate

during vacation period ν, and in the retention probability α′ have a nice impact

on the total expected profit Θ.

• The impact of the impatience rate during busy period ξ2 for different values of

non-feedback probabilities β is illustrated in Table 6.5 and Figures 6.10-6.11. It

is clearly shown that with the increase in impatience rate during normal busy

period ξ2, the mean size on the system when the servers are in normal busy pe-

riod E(LK ) decreases, this implies a diminution in the mean number of customers

served. Consequently, the total expected profit Θ decreases. Furthermore, from
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the above presentations it is well seen that the feedback probability β′ has a nice

effect on the economy of the system.

• Figures 6.12 and 6.13 plot the impatience rate during working vacation period

ξ1 for different values of number of servers c. It is well observed that when the

impatience rate ξ1 is large, the mean size of the system when the servers are on

working vacation period decreases. Therefore, the mean number of customers

served is reduced. This leads to a decrease in Θ. On the other hand, from Table
6.6, we observe that when the number of servers becomes large, the total expected

profit is significant. This is due to the fact that the mean number of customers

served increases with c, while the average rate of abandonment decreases with

the increasing of the number of the servers.

6.6 Conclusions and future scope

In the present study, we explored reneging behaviour in multi-server Bernoulli feed-

back queueing system with batch arrival, variant of multiple working vacations and

retention of the reneged customers. For the analysis purpose, we investigated vari-

ous system characteristics in terms of steady state probabilities using the probability

generating functions (PGFs). Reneging and retention probabilities incorporated in our

model may play an important role in the economy of the concerned system. Numeri-

cal experiments performed can be useful and benefic to explore the impacts of system

parameters on the performance measures in different contexts. The model developed

may provide lucrative perspicacity to the production managers, system engineers etc.

To make the system modelling more closer to the real world problems, an extension of

our results for a non-Markovian models is a pointer to future research. Moreover, we

can extend this study in future by incorporating the bulk failure.
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Abstract. This paper deals with the study of anMX/M/c Bernoulli feedback queue-

ing system with waiting servers and two different policies of synchronous vacations

(single and multiple vacation policies). During vacation period, the customers may

leave the system (reneging), and using certain customer retention mechanism, the re-

neged customers may be retained in the system. The probability generating function

(PGF) has been used to obtain the steady state probabilities of the model. Various

performances measures of the system are derived. Then, a cost model is developed.

Further, a cost optimization problem is considered using quadratic fit search method.

Finally, a variety of numerical illustrations are discussed for the applicability of the

model.

Keywords: Multi-server queueing systems. Single vacation. Multiple vacation. Impa-
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7.1 Introduction

Performance of modeling vacation queueing systems has attracted many researchers

owing to their large applications in many real life congestion problems including com-

puter and communication systems, manufacturing and production systems along with

other queueing systems having industrial importance. A detailed surveys of the litera-

ture devoted to such systems are found in Doshi (1986), Takagi (1991), Tian and Zhang

(2006) and references therein.
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Modeling vacation queueing models with impatient customers is very important

in order to obtain novel managerial insights. The lost revenues due to impatience in

several industries may be enormous. Literature analysis has shown an extensive stud-

ies of these models. Altman and Yechiali (2006) dealt with customers’ impatience in

queues with server vacation. Zhang et al. (2005) gave the analysis of an M/M/1/N

queueing model with balking, reneging and server vacations. Later, Ammar (2015)

carried out the transient analysis of an M/M/1 queue with impatient behavior and

multiple vacations. Panda and Goswami (2016) studied the equilibrium balking strate-

gies for a GI/M/1 queue with Bernoulli-schedule vacation and vacation interruption.

Recently, in Ammar (2017), the transient solution of an M/M/1 vacation queue with

a waiting server and impatient customers has been established. For more literature

on customer’s impatience in vacation queues, the authors can be referred to Yue et al.

(2006), Padmavathy et al. (2011), Misra and Goswami (2015), Yue et al. (2016), Sun et

al. (2016), Bouchentouf and Yahiaoui (2017), and references therein.

Queueing systems with batch arrival represent the case where arrivals enter the

system in batches rather than one by one. Few examples of arrivals in batches to a

system are customers in elevators, supermarkets, banks, etc. Considerable works on

vacation models with batch arrivals were conducted by many researchers. Lee et al.

(1996) analyzed the fixed bulk service queueing system with single and multiple vaca-

tions. Later, Jau-Chuan Ke (2007) dealt with a MX/G/1 queueing model with balking

and variant vacation policy, Wang et al. (2007) presented the maximum entropy anal-

ysis of the MX/M/1 queueing system with multiple vacations and server breakdowns.

Then, Baruah et al. (2012) treated the balking and the re-service in a vacation queueing

model with batch arrival and two types of heterogeneous service. Baruah et al. (2013)

dealt with a batch arrival queue with second optional service and reneging during va-

cation periods. Recently, Sasikala et al. (2017) presented the steady state behaviour

of MX/GK /1 queueing model with control policy on request for re-service, N-policy,

balking and multiple vacations.

The study of multi-server vacation systems with impatient customers is far more

complex compared to impatience in single server vacation models, consequently, a

limited literature is available. The M/M/c/N queuing system with balking, reneging

and synchronous vacations of some partial servers together was presented by Yue et

al. (2006). Altman and Yechiali (2008) treated the infinite-server queues with system’s

additional tasks and impatient customers. Then, a computational algorithm and pa-



7.2 Model Description 195

rameter optimization for a multi-server queue with unreliable server and impatient

customers have been discussed by Chia and Jau-Chaun (2010). Later, Yue et al. (2014)

dealt with an M/M/c queueing system with impatient customers and synchronous va-

cation, where impatience is due to the servers’ vacation. Recently, the analysis of a

M/M/c queueing model with single and multiple synchronous working vacations was

presented in Majid and Manoharan (2017).

This paper deals with an infinite buffer multi-server vacation queueing system with

batch arrival, Bernoulli feedback and waiting servers wherein customers may renege

during vacation period, and they can be retained in the system, via certain strategy

(convinced to stay in order to be serviced). The steady-state probabilities of the queue-

ing system are obtained through probability generating functions (PGFs). Useful per-

formance measures of the queueing system are derived. The cost profit analysis of

the model is carried out. The optimization of the model is performed using quadratic

fit search method (QFSM) in order to minimize the total expected cost of the system

with respect to the service rate. A numerical study is presented to illustrate the impact

of various system parameters on different performance measures and total expected

profit of the system. The analysis carried out in this paper is very important and use-

ful to any insurance firm. Among the advantages of the obtained results is to show the

positive impact of waiting server and customer retention strategy.

The rest of paper is arranged as follows. Section 2 provides a general description

of the model with multiple and single vacation policies. In Section 3, we develop

the queueing model under multiple vacation policy (MVP) and carry out the steady-

state analysis of the system, then we derive the explicit expressions of the various

performance measures of the queueing system. The model under single vacation pol-

icy (SVP) is analyzed in Section 4 following the same methodology presented in the

previous section. In Section 5, we develop a model for the costs incurred and perform

the appropriate optimization using a quadratic fit search method (QFSM). Section 6

presents numerical examples in order to demonstrate the applicability of the theoreti-

cal investigation, and finally we conclude the paper in Section 7.

7.2 Model Description

We consider an MX/M/c Bernoulli feedback queueing system under single and mul-

tiple vacations wherein customers may leave the system due to impatience during the
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absence of the servers. Using certain retention customer mechanism, the reneged cus-

tomers may be retained in the system. The model considered in this work is based on

following assumptions:

(i) Customers arrive in batches according to a Poisson process with rate λ. The sizes

of successive arriving batches are i.i.d. random variables X1, X2,...distributed with

probability mass function P (X = l) = bl ; l = 1,2,3, ....

(ii) The customers are served on a First-Come First-Served (FCFS) queue discipline.

The service times are assumed to follow exponential distribution with mean 1/µ.

(iii) When the busy period is finished the servers wait a random duration of time

before beginning on a vacation. This waiting duration is exponentially distributed

with mean 1/η.

(iv) The queueing model consists of c servers. In synchronous vacation policy, all

the servers leave for a vacation simultaneously, once the system becomes empty and

they also comeback to the system as one at the same time.

In multiple vacation policy (MVP), the servers continue to take vacations until they

find the system nonempty at a vacation completion instant. While, in single vacation

policy (SVP), when the vacation ends and servers find the system empty, they remains

idle until the first arrival occurs. Vacation periods are assumed to be exponentially

distributed with mean 1/φ.

(v) Customers in batches are supposed to enter the queueing system, join the queue,

if the servers are unavailable due to vacation, a batch of customers activates an inde-
pendent impatience timer T , with exponentially distributed duration, with mean 1/ξ.

If T expires while the servers are still on vacation, the customers may abandon the

system. Further, using certain mechanism, each impatient customer may abandon the

system, with probability α, and can be retained in the queue, with complementary

probability (1 − α). Moreover, If the service is uncomplete or unsatisfactory, the cus-

tomers can either leave the system definitively, with probability β, or rejoin the end of

the queue of the system for another service, with complementary probability (1 − β).

Note that % = λE(X)
cβµ < 1 is the stability condition of the system, where E(X) is the mean

of a batch of arrivals.
(vi) We assume that the inter-arrival times, batch sizes, server waiting times, vaca-

tion times, service times and impatience times are independent of each other.

Let {L(t); t ≥ 0} be the number of customers in the system at time t, and S(t) be the
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state of servers at time t, where S(t) is defined as follows:

S(t) =
{

1, when the servers are in busy period at time t;
0, when the servers are in vacation period at time t.

Then, {(S(t),L(t)); t ≥ 0} defines a two-dimensional continuous Markov process with
state space

Ω = {(s,n) : s = 0,1, n = 0,1, ...}.

Let
Ps,n = lim

t→∞
P {S(t) = s,L(t) = n}, s = 0,1,n = 0,1, ...,

denote the system steady-state probabilities.

7.3 Analysis of the model under MVP

In this section, we study the model considered in Section 2 under multiple vacation

policy, the state-transition-rate diagram is presented in Figure 7.1.

Figure 7.1: State-transition-rate diagram of the model under MVP.
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7.3.1 Steady state solution of the model

Using the Markov theory, the set of steady-state equations are written as follows

λP0,0 = αξP0,1 + ηP1,0, (7.1)

(λ+φ+αξ)P0,1 = λb1P0,0 + 2αξP0,2, n = 1, (7.2)

(λ+φ+nαξ)P0,n = λ
n∑

m=1

bmP0,n−m + (n+ 1)αξP0,n+1, n ≥ 2, (7.3)

(λ+ η)P1,0 = βµP1,1, (7.4)

(λ+ βµ)P1,1 = λb1P1,0 + 2βµP1,2 +φP0,1, n = 1, (7.5)

(λ+nβµ)P1,n = λ
n∑

m=1

bmP1,n−m + (n+ 1)βµP1,n+1 +φP0,n, 2 ≤ n ≤ c − 1, (7.6)

(λ+ cβµ)P1,n = λ
n∑

m=1

bmP1,n−m + cβµP1,n+1 +φP0,n, n ≥ c. (7.7)

And the normalizing condition is given as

∞∑
n=0

P0,n +
∞∑
n=0

P1,n = 1. (7.8)

The probability generating function (PGF) of Ps,n is defined as

Gs(z) =
∞∑
n=0

Ps,nz
n, s = 0,1. (7.9)

The probability generating function (PGF) of the batch size X is as

B(z) =
∞∑
l=1

blz
l , |z| ≤ 1, with B(1) =

∞∑
l=1

bl = 1. (7.10)

The steady-state probabilities of the queueing system are obtained by solving the

equations (7.1)-(7.7) using PGF.
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By multiplying equations (7.1)-(7.3) by zn, and summing over n, then re-arranging

all the terms, we get

(1− z)αξG′0(z) + [λ(B(z)− 1)−φ]G0(z) = −[φP0,0 + ηP1,0]. (7.11)

In a similar manner, form equations (7.4)-(7.7), we have

[λz(B(z)− 1) + cβµ(1− z)]G1(z) + zφG0(z) = βµ(z − 1)
c−1∑
n=0

(n− c)P1,nz
n

+z[ηP1,0 +φP0,0].

(7.12)

Then, by taking z = 1 in equation (7.11) or equation (7.12), we obtain

φG0(1) = ηP1,0 +φP0,0. (7.13)

We solve the differential equation (7.11) using the same method used in Altman

and Yechiali (2006). Thus equation (7.11) can be written as

G′0(z) +
[
λ
αξ

H ′(z)−
φ

αξ(1− z)

]
G0(z) = −

[
φ

αξ(1− z)
P0,0 +

η

αξ(1− z)
P1,0

]
, (7.14)

where

H(z) =
∫ z

0

B(x)− 1
1− x

dx and H ′(z) =
B(z)− 1

1− z
.

Then, we multiply both sides of equation (7.14) by e
λ
αξH(z)(1− z)

φ
αξ , we get

d
dz

(
e
λ
αξH(z)(1− z)

φ
αξG0(z)

)
= −

[
φ

αξ
P0,0 +

η

αξ
P1,0

]
e
λ
αξH(z)(1− z)

φ
αξ −1. (7.15)

Now, integrating equation (7.15) from 0 to z, we get

G0(z) = e−
λ
αξH(z)(1− z)−

φ
αξ

{
G0(0)− K(z)

αξ

[
φP0,0 + ηP1,0

]}
, (7.16)

where

K(z) =
∫ z

0
e
λ
αξH(x)(1− x)

φ
αξ −1dx. (7.17)
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Since G0(1) = P0,. =
∞∑
n=0

P0,n > 0 and z = 1 is the root of the denominator of the right

hand side of equation (7.16), so z = 1 must be the root of the numerator of the right

hand side of equation (7.16).

Thus, we get

P0,0 = G0(0) =
K(1)
αξ

[
φP0,0 + ηP1,0

]
, (7.18)

with

K(1) =
∫ 1

0
e
λ
αξH(x)(1− x)

φ
αξ −1dx. (7.19)

From equation (7.18), it yields

P1,0 = θ0P0,0, where θ0 =
αξ −φK(1)
ηK(1)

. (7.20)

By substituting equation (7.20) into equation (7.16), we obtain

G0(z) = e−
λ
αξH(z)(1− z)−

φ
αξ

{
1− K(z)

K(1)

}
P0,0. (7.21)

And by substituting equation (7.20) into equation (7.13), we find the probability

that the servers are in vacation period, (G0(1) = P0,. =
∞∑
n=0

P0,n),

G0(1) =
αξ

φK(1)
P0,0. (7.22)

It is clearly seen that equation (7.12) expresses G1(z) in terms of P0,0, P1,0, P1,n and

G0(z). From equation (7.21), we see that G0(z) is expressed in terms of P0,0, then in

equation (7.20), P1,0 is given in terms of P0,0. Thus, to define G1(z) in terms of P0,0, we

need to express P1,n in terms of P0,0. To this end, we firstly have to write P0,n in terms

of P0,0.

From equation (7.1), using equation (7.20), we get

P0,1 =ω1P0,0, (7.23)
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where ω1 = λ−ηθ0
αξ .

From equation (7.2), using equation (7.23), we find

P0,2 =ω2P0,0, (7.24)

where ω2 = ψ1ω1 − λ
2αξ b1ω0, ψ1 = λ+φ+αξ

2αξ , and ω0 = 1.

Then, from equation (7.3), for n = 2, using equations (7.23) and (7.24), we obtain

P0,3 =ω3P0,0, (7.25)

where ω3 = ψ2ω2 − λ
3αξ

(
b1ω1 + b2ω0

)
, andψ2 = λ+φ+2αξ

3αξ .

Then, recursively, it yields

P0,n =ωnP0,0, (7.26)

where

ωn =


1, if n = 0,
λ−ηθ0
αξ , if n = 1,

ψn−1ωn−1 −
λ
nαξ

n−1∑
i=1

biωn−1−i , if 2 ≤ n ≤ c − 1,

with

ψn−1 =
λ+φ+ (n− 1)αξ

nαξ
.

Next, we need to write P1,n in terms of P0,0.Via equation (7.4), using equation (7.20),

we get

P1,1 = θ1P0,0, (7.27)

where θ1 = λ+η
βµ θ0.

From equation (7.5), using equations (7.20), (7.23) and (7.27), we obtain

P1,2 = θ2P0,0, (7.28)
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where θ2 = ρ1θ1 −
φ

2βµω1 − λ
2βµb1θ0, and ρ1 = λ+βµ

2βµ .

Then, from equation (7.6), for n = 2, using equations (7.20), (7.24), (7.27) and (7.28),

we find

P1,3 = θ3P0,0, (7.29)

where θ3 = ρ2θ2 −
φ

3βµω2 − λ
3βµ

(
b1θ1 + b2θ0

)
, and ρ2 = λ+2βµ

3βµ .

Then, recursively, we get

P1,n = θnP0,0, (7.30)

where

θn =


θ0, if n = 0,
λ+η
βµ θ0, if n = 1,

ρn−1θn−1 −
φ

nβµ
ωn−1 −

λ
nβµ

n−1∑
i=1

biθn−1−i , if 2 ≤ n ≤ c − 1,

with

ρn−1 =
λ+ (n− 1)βµ

nβµ
.

Finally, using equations (7.12),(7.20),(7.21), and (7.30), G0(z) and G1(z) are ex-

pressed in terms of P0,0. So, it remains to determine this quantity. From equation (7.14),

applying L’Hopital rule, we find

lim
z→1

G′0(z) = G′0(1) =
λB′(1)
αξ +φ

G0(1). (7.31)

Next, substituting equation (7.22) in equation (7.31), we obtain

G′0(1) =
αξλB′(1)

(αξ +φ)φK(1)
P0,0. (7.32)

Then, substituting equation (7.13) in equation (7.12), we get

G1(z) =
βµ(1− z)R(z)P0,0 − zφ(G0(z)−G0(1))

λz(B(z)− 1) + cβµ(1− z)
, (7.33)
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where

R(z) =
c−1∑
n=0

(c −n)θnz
n.

From equation (7.33), applying L’Hopital rule, we obtain the probability that the

servers are in busy period, (G1(1) = P1,. =
∞∑
n=0

P1,n),

lim
z→1

G1(z) = G1(1) =
φG′0(1) + βµR(1)P0,0

cβµ−λB′(1)
, (7.34)

with

R(1) =
c−1∑
n=0

(c −n)θn.

Finally, by substituting equations (7.22), (7.32) and (7.34) in equation (7.8), we find

P0,0 =
{

βµ

cβµ−λB′(1)
R(1) +

αξ
φK(1)

(
φλB′(1)

(cβµ−λB′(1))(αξ +φ)
+ 1

)}−1

.

7.3.2 Performance measures

Once the steady-state probabilities are obtained, one can evaluate different perfor-

mance measures of the considered model.
• The mean system size (E[L]). Let L denote the number of customers in the system.

The mean system size is given as

E[L] = E[L0] +E[L1].

∗ Let L0 be the system size when the servers are in vacation period. Then, the mean

system size when the servers are in vacation period (E[L0]) is given as

E[L0] = lim
z→1

G′0(z) = G′0(1),

which is a direct consequence of equation (7.32).

∗ Let L1 be the system size when the servers are in busy period. Then, the mean

system size when the servers are in busy period (E[L1]) is given as
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E[L1] = lim
z→1

G′1(z) = G′1(1).

Via equation (7.33), using L’Hopital rule, we obtain

E[L1] = G′1(1) =
φ

2(cβµ−λB′(1))
G′′0 (1) +

φ(2cβµ+λB′′(1))
2(cβµ−λB′(1))2 G

′
0(1)

+
(
βµλ(2B′(1) +B′′(1))

2(cβµ−λB′(1))2 R(1) +
βµ

cβµ−λB′(1)
R′(1)

)
P0,0,

(7.35)

whereG′′0 (1) is obtained by differentiating twiceG0(z) at z = 1. Thus, using equation

(7.11), we find

G′′0 (1) =
2λB′(1)
2αξ +φ

G′0(1) +
λB′′(1)

2αξ +φ
G0(1). (7.36)

Further

R′(1) =
c−1∑
n=1

n(c −n)θn.

Then, substituting equation (7.36) in equation (7.35), we get

E[L1] =
(
φ(2cβµ+λB′′(1))
2(cβµ−λB′(1))2 +

λφB′(1)
(cβµ−λB′(1))(2αξ +φ)

)
E[L0]

+
(
βµλ(2B′(1) +B′′(1))

2(cβµ−λB′(1))2 R(1) +
βµ

cβµ−λB′(1)
R′(1)

)
P0,0

+
λφB′′(1)

2(cβµ−λB′(1))(2αξ +φ)
G0(1).

• The mean number of customers in the queue (E[Lq]).

E[Lq] =
∞∑
n=0

nP0,n +
∞∑

n=c+1

(n− c)P1,n = E[L]− c(1− Pv) +R(1)P0,0.

• The probability that the servers are in vacation period (Pv). From equation (7.22),

we obtain
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Pv = G0(1) =
αξ

φK(1)
P0,0.

• The probability that the servers are idle during busy period (Pe). From equation

(7.20), we get

Pe =
αξ −φK(1)
ηK(1)

P0,0.

• The probability that the servers are working (serving customers) during busy

period (Pb).

Pb = 1− Pv − Pe.

• The mean number of customers served per unit time (Ns).

Ns = βµ
c−1∑
n=1

nP1,n + cβµ
∞∑
n=c

P1,n = βµ
(
c(Pb + Pe) +R(1)P0,0

)
.

• The average rate of abandonment of customers due to impatience (Ra).

Ra = αξ
∞∑
n=0

nP0,n = αξE[L0].

• The average retention rate of impatient customers (Re).

Re = (1−α)ξ
∞∑
n=0

nP0,n = (1−α)ξE[L0].

7.4 Analysis of the model under SVP

This section is devoted to the study of the system under single vacation policy. The

transition- rate diagram depicting the state of the system is shown in Figure 7.2.

7.4.1 Steady state solution of the model

Via the Markov theory, the set of steady-state equations are as follows

(λ+φ)P0,0 = αξP0,1 + ηP1,0, (7.37)
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Figure 7.2: State-transition-rate diagram of the model under SVP.

(λ+φ+αξ)P0,1 = λb1P0,0 + 2αξP0,2, n = 1, (7.38)

(λ+φ+nαξ)P0,n = λ
n∑

m=1

bmP0,n−m + (n+ 1)αξP0,n+1, n ≥ 2, (7.39)

(λ+ η)P1,0 = φP0,0 + βµP1,1, (7.40)

(λ+ βµ)P1,1 = λb1P1,0 + 2βµP1,2 +φP0,1, n = 1, (7.41)

(λ+nβµ)P1,n = λ
n∑

m=1

bmP1,n−m + (n+ 1)βµP1,n+1 +φP0,n, 2 ≤ n ≤ c − 1, (7.42)

(λ+ cβµ)P1,n = λ
n∑

m=1

bmP1,n−m + cβµP1,n+1 +φP0,n, n ≥ c, (7.43)

The normalizing condition is given in equation (7.8).



7.4 Analysis of the model under SVP 207

The PGF of Ps,n is given in equation (7.9), and that of the batch size X has already

been done in (7.10).

The state probabilities are obtained by solving the equations (7.37)-(7.43) using

PGF.
Now, multiplying equation (7.37)-(7.39) by zn, and summing n, then re-arranging

all the terms, we have

(1− z)αξG′0(z) + [λ(B(z)− 1)−φ]G0(z) = −ηP1,0. (7.44)

In a similar manner, form equations (7.40)-(7.43), it yields

[λz(B(z)− 1) + cβµ(1− z)]G1(z) + zφG0(z) = βµ(z − 1)
c−1∑
n=0

(n− c)P1,nz
n + ηzP1,0. (7.45)

By taking z = 1 in equation (7.44) or equation (7.45), we obtain

φG0(1) = ηP1,0. (7.46)

We solve equation (7.44) by following the method presented in Altman and Yechiali

(2006).

Using equation (7.40), we get

P1,0 =
φ

λ+ η
P0,0 +

βµ

λ+ η
P1,1. (7.47)

Equation (7.44) can be written as

G′0(z) +
[
λ
αξ

H ′(z)−
φ

αξ(1− z)

]
G0(z) = −

[
δ1

αξ(1− z)
P0,0 +

δ2

αξ(1− z)
P1,1

]
, (7.48)

where

δ1 =
ηφ

λ+ η
, δ2 =

ηβµ

λ+ η
.

The solution of the equation (7.44) is computed as before and given as follows

G0(z) = e−
λ
αξH(z)(1− z)−

φ
αξ

{
G0(0)− K(z)

αξ

[
δ1P0,0 + δ2P1,1

]}
. (7.49)
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Since G0(1) = P0,. =
∞∑
n=0

P0,n > 0 and z = 1 is the root of the denominator of the right

hand side of equation (7.49), thus z = 1 must be the root of the numerator of the right

hand side of equation (7.49).

Consequently,

P0,0 = G0(0) =
δ1P0,0 + δ2P1,1

αξ
K(1). (7.50)

This implies

P1,1 =M1P0,0, where M1 =
αξ(λ+ η)
ηβµK(1)

−
φ

βµ
. (7.51)

Consequently,

G0(z) = e−
λ
αξH(z)(1− z)−

φ
αξ

{
1− K(z)

K(1)

}
P0,0. (7.52)

Next, substituting equation (7.51) into (7.40), and equation (7.53) into (7.46), we

get respectively

P1,0 =M0P0,0, where M0 =
αξ
ηK(1)

, (7.53)

and

G0(1) =
αξ

φK(1)
P0,0. (7.54)

Now, equation (7.52) shows that G0(z) can be expressed in terms of P0,0 and equa-

tion (7.53) expresses P1,0 in terms of P0,0. So, to get P1,n in terms of P0,0 for n = 0, ..., c−1,

at first we have to express P0,n in terms of P0,0 for n = 0, ..., c − 1.

Using equations (7.37)-(7.39), recursively, we get

P0,n = γnP0,0, (7.55)

with
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γn =


1, if n = 0,
λ+φ−ηM0

αξ , if n = 1,

ψn−1γn−1 −
λ
nαξ

n−1∑
i=1

biγn−1−i , if 2 ≤ n ≤ c − 1.

Next, via equations (7.40)-(7.42), using recursive method, we obtain

P1,n =MnP0,0, (7.56)

where

Mn =


M0, if n = 0,
M1, if n = 1,

ρn−1Mn−1 −
φ

nβµ
γn−1 −

λ
nβµ

n−1∑
i=1

biMn−1−i , if 2 ≤ n ≤ c − 1.

Thus, G0(z) and G1(z) can be easily deduced in terms of P0,0.

From equation (7.44), using equation (7.46), and applying L’Hopital rule, we have

lim
z→1

G′0(z) = G′0(1) =
λB′(1)
αξ +φ

G0(1). (7.57)

Substituting equation (7.54) into equation (7.57), we obtain

G′0(1) =
αξλB′(1)

φK(1)(αξ +φ)
P0,0. (7.58)

Next, substituting equation (7.46) into equation (7.45), we have

G1(z) =
βµ(1− z)Q(z)P0,0 − zφ(G0(z)−G0(1))

λz(B(z)− 1) + cβµ(1− z)
, (7.59)

where

Q(z) =
c−1∑
n=0

(c −n)Mnz
n.

From equation (7.59), applying L’Hopital rule, it yields

G1(1) =
φG′0(1) + βµQ(1)P0,0

cβµ−λB′(1)
, (7.60)
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with

Q(1) =
c−1∑
n=0

(c −n)Mn.

Next, substituting equation (7.58) into equation (7.60), we get

G1(1) =
{

αξλB′(1)
K(1)(αξ +φ)(cβµ−λB′(1))

+
βµ

cβµ−λB′(1)
Q(1)

}
P0,0. (7.61)

Finally, by substituting equations (7.54) and (7.61) into equation (7.8), we get

P0,0 =
{

αξ
φK(1)

(
1 +

φλB′(1)
(cβµ−λB′(1))(αξ +φ)

)
+

βµ

cβµ−λB′(1)
Q(1)

}−1

.

7.4.2 Performance measures

• The mean system size (E[L]). L is the number of customers in the system.

E[L] = E[L0] +E[L1].

∗ Let L0 be the system size when the servers are in vacation period, the mean system

size when the servers are on vacation (E[L0]) has been already given in equation (7.58).

∗ Let L1 be the system size when the servers are in busy period, (E[L1]) be the mean

system size when the servers are on busy period. From equation (7.59), taking z = 1

and using L’Hopital rule, we obtain

E[L1] = G′1(1) =
φ

2(cβµ−λB′(1))
G′′0 (1) +

φ(2cβµ+λB′′(1))
2(cβµ−λB′(1))2 G

′
0(1)

+
(
βµλ(2B′(1) +B′′(1))

2(cβµ−λB′(1))2 Q(1) +
βµ

cβµ−λB′(1)
Q′(1)

)
P0,0,

(7.62)

where G′′0 (1) is obtained by differentiating twice G0(z) at z = 1, therefore, using

equation (7.44), we get

G′′0 (1) =
2λB′(1)
2αξ +φ

G′0(1) +
λB′′(1)

2αξ +φ
G0(1), (7.63)

and
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Q′(1) =
c−1∑
n=1

n(c −n)Mn.

Now, substituting equation (7.63) into (7.62), we get

E[L1] =
(
φ(2cβµ+λB′′(1))
2(cβµ−λB′(1))2 +

λφB′(1)
(cβµ−λB′(1))(2αξ +φ)

)
E[L0]

+
(
βµλ(2B′(1) +B′′(1))

2(cβµ−λB′(1))2 Q(1) +
βµ

cβµ−λB′(1)
Q′(1)

)
P0,0

+
λφB′′(1)

2(cβµ−λB′(1))(2αξ +φ)
G0(1).

• The mean number of customers in the queue (E[Lq]).

E[Lq] =
∞∑
n=0

nP0,n +
∞∑

n=c+1

(n− c)P1,n = E[L]− c(1− Pv) +Q(1)P0,0.

• The probability that the servers are in vacation period (Pv). From equation (7.54),

we obtain

Pv = G0(1) =
αξ

φK(1)
P0,0.

• The probability that the servers are idle during busy period (Pe). From equation

(7.53), we get

Pe =
αξ
ηK(1)

P0,0.

• The probability that the servers are working (serving customers) during busy

period (Pb).

Pb = 1− Pv − Pe.

• The mean number of customers served per unit time (Ns).

Ns = βµ
c−1∑
n=1

nP1,n + cβµ
∞∑
n=c

P1,n = βµ
(
c(Pb + Pe) +Q(1)P0,0

)
.
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• The average rate of abandonment of customers due to impatience (Ra).

Ra = αξ
∞∑
n=0

nP0,n = αξE[L0].

• The average retention rate of impatient customers (Re).

Re = (1−α)ξ
∞∑
n=0

nP0,n = (1−α)ξE[L0].

7.5 Cost model

Practically, queueing managers are interested in minimizing operating cost of unit

time. In this part of paper, we first formulate a steady-state expected cost function

per unit time, where the service rate µ is the decision variable. Our main goal is to

determine the optimum value of µ in order to minimize the expected cost function. To

this end, we have to define the following cost elements:

• C1 : Cost per unit time when the servers are working during busy period.

• C2 : Cost per unit time when the servers are idle during busy period.

• C3 : Cost per unit time when the servers are in vacation period.

• C4 : Cost per unit time when customers join the queue and wait for service.

• C5 : Cost per service per unit time.

• C6 : Cost per unit time of serving a feedback customer.

• C7 : Cost per unit time when a customer reneges.

• C8 : Cost per unit time when a customer is retained in the system.

• C9 : Fixed server purchase cost per unit.

• R : The revenue earned by providing service to a customer.

Let

• Tc be the total expected cost per unit time of the system:

Tc = C1Pb +C2Pe +C3Pv +C4E[Lq] + cµ(C5 + β′C6) +C7Ra +C8Re + cC9.
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• Tr be the total expected revenue per unit time of the system:

Tr = R×Ns

• Tp be the total expected profit per unit time of the system:

Tp = Tr −Tc.

Quadratic fit search method

This part considers the cost optimization problem under a given cost structure via

quadratic fit search method (QFSM), this technique utilizes a 3-point pattern for fitting

a quadratic function that has a unique optimum, see Rardin (1997). So, we focus on the

optimization of the service rate µ in different cases in order to minimize the expected

cost function Tc denoted in this part by F. Assume that all system parameters have

fixed values, and the only controlled parameter is the service rate µ.

Thus, the optimization problem can be illustrated mathematically as:

Minimize: F(µ) = C1Pb +C2Pe +C3Pv +C4E[Lq] + cµ(C5 + β′C6) +C7Ra +C8Re + cC9.

As it has been mentioned in Laxmi et al. (2014), given a 3-point pattern, we may fit

a quadratic function via corresponding functional values that has a unique minimum,

xq, for the given objective function F(x). Quadratic fit utilizes this approximation to

improve the current 3-point pattern by replacing one of its points with optimum xq.

The unique optimum xq of the quadratic function agreeing with F(x) at 3-point opera-

tion (xl ,xm,xu) is given as

xq �
1
2

[
F(xl)((xm)2 − (xu)2) +F(xm)((xu)2 − (xl)2) +F(xu)((xl)2 − (xm)2)

F(xl)(xm − xu) +F(xm)(xu − xl) +F(xu)(xl − xm)

]

7.6 Numerical results

In this section, we illustrate the obtained resulting formulas numerically, we first

carry out the optimization of the queueing system, using quadratic fit search method

(QFSM) to minimize the expected cost function F with respect to the service rate, then

we discuss the influence of different system parameters on the various performance
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measures of the queueing system as well as on total expected cost, total expected rev-

enue and total expected profit. We assume that the batch size X follows a geometric

distribution with parameter p, that is,

bl = P (X = l) = (1− p)l−1p, 0 < p < 1 (l = 1,2, ...).

Then, it is easy to observe that

B(z) =
pz

1− (1− p)z
,E(X) = B′(1) =

1
p
, and E(X2) = B′′(1) =

2(1− p)
p2 .

For the whole analysis in this numerical part, we fixeC1 = 40, C2 = 25, C3 = 20, C4 = 30,

C5 = 50, C6 = 20, C7 = 20, C8 = 30, and C9 = 10.

7.6.1 Optimization analysis

In order to carry out the numerical analysis on the parameter optimisation for the

queueing system under consideration, we consider the values for default parameters

as c = 2, p = 0.70, λ = 1.00, β = 0.80, η = 3.00, φ = 2.20, α = 0.60, and ξ = 0.20, and the

tolerance of QFSM is ε = 10−6.
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Figure 7.3: The optimum service rate µ∗
under multiple vacation policy.
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Figure 7.4: The optimum service rate µ∗
under single vacation policy.

From Figures 7.3-7.4, we clearly see the convexity of the curves, which shows that

there exists a certain value of the service rate µ that minimizes the total expected
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Table 7.1: Search for optimum service rate µ∗ under multiple vacation policy.
iter µl µm µu F(µl ) F(µm) F(µu ) µq F(µq)
01 1.050000 2.750000 3.500000 383.304600 365.811400 443.316700 2.010933 295.150300
07 1.050000 1.595699 1.634616 383.304600 265.898700 267.792700 1.561236 264.473400
14 1.050000 1.474157 1.481616 383.304600 262.234000 262.333800 1.468219 262.168900
21 1.050000 1.450477 1.452088 383.304600 262.045900 262.060100 1.449175 262.051500
28 1.050000 1.445212 1.445577 383.304600 262.045600 262.045800 1.444916 262.045400
35 1.050000 1.444012 1.444095 383.304600 262.045100 262.045100 1.443944 262.045100
42 1.050000 1.443738 1.443755 383.304600 262.045000 262.045000 1.443720 262.045000
49 1.050000 1.443670 1.443678 383.304600 262.045000 262.045000 1.443674 262.045000

Table 7.2: Search for optimum service rate µ∗ under single vacation policy.
iter µl µm µu F(µl ) F(µm) F(µu ) µq F(µq)
01 1.050000 2.750000 3.500000 382.489400 363.101400 440.196600 2.022338 294.000500
07 1.050000 1.600834 1.640239 382.489400 264.464800 266.371900 1.566160 263.037800
14 1.050000 1.478071 1.485637 382.489400 260.777800 260.879400 1.472040 260.711500
21 1.050000 1.453966 1.455613 382.489400 260.594700 260.600100 1.452634 260.591200
28 1.050000 1.448941 1.448941 382.489400 260.585000 260.585300 1.448260 260.584800
35 1.050000 1.447324 1.447410 382.489400 260.584500 260.585300 1.447253 260.584500
42 1.050000 1.447037 1.447056 382.489400 260.584500 260.584500 1.447022 260.584500
49 1.050000 1.446982 1.446983 382.489400 260.584500 260.584500 1.446983 260.584500

cost function for the chosen set of model parameters. By adopting QFSM and choos-

ing the initial 3-point pattern as (µl ,µm,µu) = (1.05,2.75,3.5), in multiple vacation,

and (µl ,µm,µu) = (1.05,2.75,3.5), in single vacation, and after finite iterations, we ob-

serve that the minimum expected operating cost per unit time converges to the so-

lution F = 262.045100 at µ∗ = 1.443674, under multiple vacation and converges to

F = 260.584500 at µ∗ = 1.446983, under single vacation.

Further, from Tables 7.1-7.2, and Figures 7.3-7.4, we observe that the optimum

service rate µ∗ of multiple vacation model is smaller than that of single vacation model,

while the minimum expected cost F(µ∗) of multiple vacation model is bigger than that

of single vacation model.

Table 7.3: The optimal values µ∗ and F(µ∗) for different values of λ.
MVP SVP

λ µ∗ F(µ∗) µ∗ F(µ∗)
0.70 1.080571 210.4515 1.084180 209.6032
0.80 1.203464 228.0262 1.206953 226.9668
0.90 1.324392 245.2030 1.327779 243.9394
1.00 1.443674 262.0450 1.446983 260.5845
1.10 1.561503 278.5999 1.564713 276.9498

Using QFS technique, the optimal values of µ and the minimum expected cost F(µ∗)

are shown in Tables 7.3, 7.4 and 7.5 for various values of λ, φ and η, respectively. We

observe from Table 7.3 that for both single and multiple vacations, as the arrival rate

λ increases, both the optimal service rate and the minimum expected cost increase,
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Figure 7.5: Tc versus λ and µ in MVP. Figure 7.6: Tc versus λ and µ in SVP.

Table 7.4: The optimal values µ∗ and F(µ∗) for different values of φ.
MVP SVP

φ µ∗ F(µ∗) µ∗ F(µ∗)
0.80 1.425489 279.9405 1.427247 277.9489
1.20 1.434895 270.6155 1.437281 268.6739
1.60 1.439685 265.8825 1.442519 264.1108
2.00 1.442593 263.0613 1.445755 261.4950
2.40 1.444537 261.2039 1.447950 259.8484

Table 7.5: The optimal values µ∗ and F(µ∗) for different values of η.
MVP SVP

η µ∗ F(µ∗) µ∗ F(µ∗)
1.00 1.446642 260.7151 1.451625 258.7063
1.50 1.445304 261.2975 1.449833 259.4021
2.00 1.444523 261.6465 1.448581 259.9053
2.50 1.444013 261.8790 1.447658 260.2862
3.00 1.443674 262.0450 1.446949 260.5845

the increase in the optimal service rate with λ is as expected in view of the stability

of the system. Moreover, it is quite clear from Figures 7.5 and 7.6 that for both MVP

and SVP, the total expected cost increases with λ and µ, as intuitively expected. Then,

from Table 7.4, we observe that for both single and multiple vacation policies, the

optimal service rate increases with φ,while the minimum expected cost decreases as φ

increases. On the other hand, Figures 7.7 and 7.8 show that for both MVP and SVP, the

total expected cost decreases with φ, which agrees with our intuition, while it is not

monotone with the parameter µ; it first decreases if the service rate µ is less than some

threshold parameter, then it increases when µ is above this threshold value. Further,
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Figure 7.7: Tc versus φ and µ in MVP. Figure 7.8: Tc versus φ and µ in SVP.

Figure 7.9: Tc versus η and µ in MVP. Figure 7.10: Tc versus η and µ in SVP.

from Table 7.5, it is clearly seen that the optimal service rate decreases with η,whereas,

the minimum expected cost increases as η increases, this is quite obvious. Moreover,

Figures 7.9 and 7.10 point out that for both MVP and SVP, the total expected cost

increases with η, whereas it is not monotone with µ; it first decreases when the service

rate µ is below a certain threshold value, then it increases when µ is greater than this

threshold value. The non-monotonicity of the total expected cost with µ, displayed in
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Figures 7.7- 7.10, can be due to the choice of the system parameters.

7.6.2 Performance and cost-profit analysis

In this subsection, we perform a sensitivity analysis to understand how different per-

formance measures, total expected cost, total expected revenue, and total expected

profit vary with different system parameters.

Impact of arrival rate (λ) and batch size (p).

Let the values for default parameters be fixed as c = 2, β = 0.90, η = 3.00, φ = 1.50,

α = 0.60, ξ = 3.50, and µ = 1.50.

Table 7.6: Impact of λ and p.
λ p E[L] Ns Pe Tc Tr Tp

0.65 0.97286 0.97058 0.06191 152.77216 291.17513 138.40297
0.70 0.75 0.74095 0.86469 0.06319 148.24494 259.40575 111.16081

0.85 0.60110 0.78567 0.06357 145.37701 235.70059 90.323580
With 0.65 1.21954 1.12674 0.06329 157.15329 338.02346 180.87017
multiple 0.80 0.75 0.90281 1.00127 0.06577 151.26648 300.38062 149.11415
vacation 0.85 0.71935 0.90839 0.06696 147.72496 272.51708 124.79212

0.65 1.52497 1.28564 0.06300 162.35242 385.69260 223.34018
0.90 0.75 1.09166 1.13953 0.06696 154.56575 341.85851 187.29276

0.85 0.85197 1.03224 0.06913 150.15713 309.67332 159.51619
0.65 1.06753 0.74619 0.23936 150.50700 223.85729 73.350290

0.70 0.75 0.81422 0.61197 0.25509 145.74809 183.59043 37.842330
0.85 0.66234 0.51080 0.26679 142.81731 153.23999 10.422670

With 0.65 1.32890 0.96625 0.21694 155.21125 289.87474 134.66349
single 0.80 0.75 0.98592 0.81299 0.23539 148.96740 243.89841 94.931010
vacation 0.85 0.78777 0.69823 0.24901 145.30197 209.46816 64.166190

0.65 1.64967 1.17791 0.19455 160.79661 353.37170 192.57509
0.90 0.75 1.18476 1.00559 0.21584 152.49444 301.67655 149.18211

0.85 0.92746 0.87738 0.23146 147.88262 263.21447 115.33185

From Table 7.6, we observe that for both single and multiple vacation policies, for

fixed p, with the increases of λ, the mean system size E[L] increases, which results in

the increasing of the mean number of customers served Ns. Further, along the increas-

ing of λ, the probability that the servers are idle during busy period Pe decreases in the

model with SVP, while it is not monotone in the model with MVP; it increases, then
decreases, when p = 0.65, and increases in the case where p = 0.75,0.85. This is due

to the choice of the system parameters. In addition, Tc, Tr , and Tp all increase with λ.

This is quite reasonable, the bigger the arrival rate, the larger the number of customers

served and the greater the total expected cost, the total expected revenue and the total

expected profit.

On the other hand, for both policies, for fixed λ, with the increasing of p, the probabil-
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Figure 7.11: Impact of λ on E[Lq] in
MVP and SVP.
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Figure 7.12: Impact of λ on E[L0] in
MVP and SVP.

ity that the servers are idle Pe increases, while E[L] andNs decrease with the parameter

p, this leads to a decrease in Tc, Tr , and Tp, as intuitively expected.

Figures 7.11-7.12 show the effect of the arrival rate λ on the expected number of

customers in the queue E[Lq] and on the size of the system when the servers are on

vacation E[L0], for different values of batch size p, under multiple and single vacation

policies. It can be observed that for fixed p, with the increase of λ, E[Lq] increases

monotonically as it should be. While E[L0] first increases, then decreases in the case

where λ > 0.80 & p = 0.60, λ > 1.00 & p = 0.70, and λ > 1.10 & p = 0.80. Obviously,

E[Lq] increases with 1/p,while E[L0] decreases with the parameter 1/p, which is coher-

ent with the fact that increasing the arrival rates increase the queue length during the

busy period and decreases the system size when the servers are in vacation.

Further, one may also observe that for higher values of p, E[Lq] of multiple vacation

model is smaller than that of single vacation model, while E[L0] of multiple vacation

model is higher than that of single vacation model. This is due to the fact that in single

vacation policy, whenever the busy period ended, the servers switch to the busy period

and stay there until the first arriving customer enters the system, consequently the

queue length E[Lq] increases and E[L0] decreases. Contrariwise, in multiple vacation

policy, once the vacation period is finished, the servers switch to the busy period, if at

that moment no customer is observed in the queue, they immediately comeback to the
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vacation period, which results in the increasing of the size of the system during this

period E[L0].

Impact of waiting rate of the severs (η) and vacation rate (φ).

In this subpart, we fixed the parameters as c = 2, p = 0.70, λ = 0.90, β = 0.80, η = 3.00,

φ = 0.50, α = 0.60, ξ = 3.20, and µ = 2.20.

Table 7.7: System performance measures vs. η.
η Pv Pb E[L0] E[L1] Ra Re Ns
1.00 0.430930 0.488966 0.254386 2.334917 0.488421 0.325614 1.093950

With 1.50 0.470251 0.471474 0.277598 2.217380 0.532988 0.355325 1.065748
multiple 2.00 0.492731 0.461473 0.290868 2.150184 0.558467 0.372311 1.049624
vacation 2.50 0.507281 0.455000 0.299458 2.106692 0.574959 0.383306 1.039188

3.00 0.517468 0.450468 0.305471 2.076241 0.586505 0.391003 1.031882
1.00 0.302642 0.546037 0.178655 2.718388 0.343018 0.228679 1.185962

With 1.50 0.359414 0.520781 0.212169 2.548688 0.407364 0.271576 1.145243
single 2.00 0.396614 0.504232 0.234129 2.437491 0.449527 0.299685 1.118562
vacation 2.50 0.422875 0.492550 0.249631 2.358992 0.479292 0.319528 1.099727

3.00 0.442404 0.483862 0.261159 2.300618 0.501426 0.334284 1.085720

Table 7.8: System performance measures vs. φ.
φ Pv Pb E[L0] E[L1] Ra Re Ns
0.50 0.517468 0.450468 0.305471 2.076241 0.586505 0.391003 1.031882

With 0.80 0.428737 0.533169 0.225177 2.454730 0.432340 0.288227 1.221750
multiple 1.10 0.376571 0.581728 0.178132 2.675744 0.342014 0.228009 1.333429
vacation 1.40 0.342205 0.613676 0.147248 2.820324 0.282717 0.188478 1.407038

1.70 0.317842 0.636296 0.125431 2.922099 0.240828 0.160552 1.459247
0.50 0.442404 0.483862 0.261159 2.300618 0.501426 0.334284 1.085720

With 0.80 0.346108 0.561596 0.181779 2.679892 0.349017 0.232678 1.256686
single 1.10 0.289268 0.604667 0.136835 2.895358 0.262722 0.175148 1.349564
vacation 1.40 0.251263 0.631480 0.108117 3.033645 0.207584 0.138389 1.405972

1.70 0.223768 0.649430 0.088306 3.129558 0.169548 0.113032 1.442606

Table 7.9: Tc, Tr , and Tc vs. η.
MVP SVP

η Tc Tr Tp Tc Tr Tp
1.00 171.0821 328.1849 157.1029 172.1893 355.7885 183.5992
1.50 170.7427 319.7243 148.9816 171.6993 343.5729 171.8736
2.00 170.5486 314.8873 144.3386 171.3782 335.5686 164.1903
2.50 170.4231 311.7565 141.3335 171.1516 329.9180 158.7664
3.00 170.3351 309.5646 139.2294 170.9830 325.7160 154.7330

The impact of waiting rate of the servers η and vacation rate φ in single and multi-

ple vacations are shown in Tables 7.7-7.10. It is clearly seen that for both multiple and

single vacation policies, Pv , E[L0], Ra and Re all increase with η and decrease with φ.

While Pb, E[L1], and Ns decrease with η and increase with φ. Therefore, for both poli-

cies, Tc, Tr , and Tp decrease with η and increase with φ. These results are consistent
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Table 7.10: Tc, Tr , and Tc vs. φ.
MVP SVP

φ Tc Tr Tp Tc Tr Tp
0.50 170.3351 309.5646 139.2294 170.9830 325.7160 154.7330
0.80 171.3911 366.5250 195.1338 172.0484 377.0059 204.9575
1.10 171.9970 400.0286 228.0316 172.6472 404.8691 232.2219
1.40 172.3860 422.1114 249.7253 173.0279 421.7915 248.7635
1.70 172.6546 437.7740 265.1194 173.2900 432.7819 259.4919
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Figure 7.13: Impact of η on E[L0] in
MVP and SVP.
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Figure 7.14: Impact of λ on E[L0] in
MVP and SVP.

with our intuition; the probability of busy period increases with φ (resp. decreases

with η), thus the mean number of customers served increases with φ (resp. decreases

with η), therefore, the total expected profit increases with φ (resp. decreases with η).

On the other hand, the probability of vacation period decreases with the parameter

φ (resp. increases with the parameter η). Consequently, the average rate of reneg-

ing decreases with φ (resp. increases with η). Consequently, the total expected profit

increases with increasing values of φ and decreases along the increasing of η.

From Figures 7.13-7.14 we see that for both single and multiple vacations, E[L0]

increases with η and decreases with λ and φ, as it should be expected. Then, evidently

for lower values of φ, E[L0] of multiple vacation model is higher than that of single

vacation model. On the other hand, for higher values of η, E[L0] of multiple vacation

model is greater than that of single vacation model. Consequently, we can conclude

that the model with waiting servers outperforms the model without this policy.
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Impact of impatience rate (ξ) and non-retention probability (α).

In this subpart, we choose the default parameters as c = 2, p = 0.70, λ = 0.90, β = 0.80,

η = 2.00, φ = 1.50, µ = 2.20.

Table 7.11: Impact of ξ and α.
ξ α E[L] Ns Ra Re Tc Tr Tp

0.25 1.57260 1.56348 0.01940 0.05819 209.2591 469.0433 259.7843
0.20 0.50 1.53353 1.54527 0.03799 0.03799 208.3662 463.5815 255.2153

0.75 1.49770 1.52764 0.05584 0.01861 207.5425 458.2923 250.7498
With 0.25 1.46464 1.51054 0.07299 0.21897 211.1577 453.1625 242.0048
multiple 0.80 0.50 1.35354 1.44673 0.13562 0.13562 208.2473 434.0202 225.7729
vacation 0.75 1.26600 1.38898 0.19040 0.06347 205.9043 416.6931 210.7888

0.25 1.37866 1.46206 0.12078 0.36233 213.0528 438.6178 225.5650
1.40 0.50 1.22834 1.36198 0.21542 0.21542 208.5768 408.5930 200.0162

0.75 1.11845 1.27563 0.29312 0.09771 205.2185 382.6889 177.4704
0.25 1.48691 1.20539 0.01537 0.04610 206.2113 361.6174 155.4061

0.20 0.50 1.45496 1.18637 0.02999 0.02999 205.4669 355.9117 150.4448
0.75 1.42577 1.16795 0.04393 0.01464 204.7821 350.3842 145.6021

With 0.25 1.39896 1.15007 0.05723 0.17169 207.5825 345.0215 137.4390
single 0.80 0.50 1.30984 1.08337 0.10493 0.10493 205.1588 325.0103 119.8515
vacation 0.75 1.24105 1.02314 0.14540 0.04847 203.2324 306.9424 103.7099

0.25 1.32984 1.09938 0.09376 0.28127 208.9241 329.8147 120.8906
1.40 0.50 1.21196 0.99511 0.16346 0.16346 205.2052 298.5327 93.32747

0.75 1.12925 0.90638 0.21768 0.07256 202.4852 271.9147 69.42946
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Figure 7.15: Impact of ξ on E[L0] in MVP.
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Figure 7.16: Impact of ξ on E[L0] in SVP.

Table 7.11 illustrates the impact of ξ and α, for both single and multiple vacation

policies. As expected, for both MVP and SVP, increases in ξ and α implies a decrease

in E[L] and Ns. This is because the size of the system decreases with the increasing of

ξ and α. Thus, the mean number of customers served decreases as the two parameters
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ξ and α increase. Further, Ra increases with ξ and α, whereas, Re increases with ξ and

decreases with α, as it should be. Therefore, Tc, Tr , and Tp monotonically decrease with

α, Tc is not monotone with ξ,while Tr and Tp decrease significantly with the increasing

values of ξ, this is because of the significant number of lost customers. From this, it is

clearly obvious that the retention probability has a positive impact on the economy of

the system, this probability is very useful for any firm operating in the field of finance,

supply chain, manufacturing, and so on.

Figures 7.15-7.16 depict the effect of ξ for different values of α in both single and

multiple vacation policies. From the figures, it can be seen that as the impatience rate

ξ increases, the mean system size when the servers are on vacation period E[L0] mono-

tonically decreases for any α, as intuitively expected. Moreover, from both figures, we

observe that E[L0] is high when the non-retention probability α is small. Further, as

it should be expected, E[L0] of multiple vacation model is greater than that of single

vacation model.

Impact of non-feedback probability (β) and number of the severs (c).

In this part, we take p = 0.70, λ = 0.90, η = 2.00, φ = 1.50, α = 0.60, ξ = 1.00, and

µ = 2.20.

Table 7.12: Impact of c and β.
MVP SVP

c β Tc Tr Tp Tc Tr Tp
0.70 214.1259 429.2409 215.1150 211.5811 350.1083 138.5272

2 0.80 207.1737 416.6931 209.5195 204.2018 306.9425 102.7406
0.90 201.1740 400.7218 199.5478 197.8585 258.1941 60.33554
0.70 281.6618 837.3160 555.6542 293.5541 810.1472 516.5932

3 0.80 288.7010 838.0231 549.3221 285.9941 797.1694 511.1753
0.90 295.9462 830.8510 534.9048 278.6898 773.2725 494.5827

From Table 7.12 and Figures 7.17-7.18, we see that for both single and multiple va-

cations, Ns increases with µ, c, and β, respectively. Further, for both MVP and SVP, for

fixed β, the total expected cost, the total expected revenue, and the total expected profit

increase significantly with the increasing of c. This is quite reasonable, the greater the

number of servers in the system, the larger the number of customers served and the

higher the total expected profit. In addition, in both MVP and SVP, for fixed c, the

total expected revenue and the total expected profit decrease when β increases. While

in the model with SVP, Tc decreases with the parameter β, and in the model with MVP,

it decreases with β, when c = 2, and increases along the increasing of β, when c = 3.
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Figure 7.17: Impact of µ on Ns in MVP.
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Figure 7.18: Impact of µ on Ns in SVP.

Thus, we can say that a feedback probability has a nice effect on the economy of the

system. Moreover, as intuitively expected, Ns of single vacation model is higher than

that of multiple vacation model.

7.7 Conclusion and future scope

In this paper, we carried out a study of a infinite-buffer multi-server Bernoulli feed-

back queueing system with batch arrivals, waiting servers, impatient customers and

retention of reneged customer, under single and multiple vacation policies. We ob-

tained the closed-form expressions for the steady-state probabilities of the queueing

model, using the probability generating function (PGF). Various performance mea-

sures of the system are evaluated. We also performed a cost model and considered a

cost optimization problem using quadratic fit search method (QFSM) in order to obtain

the optimum values of the service rate for different values of arrival rate, waiting rate

of the servers and vacation rate. Important numerical results have been illustrated,

which may be useful to explore the impact of system parameters on different perfor-

mance measures and total expected cost, total expected revenue and total expected

profit, respectively. The obtained results have potential applications in modeling com-

puter and telecommunication systems, computer networks, manufacturing, and so on.

For further works, it will be interesting to apply the technique used in this paper in or-
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der to study more complex models such asGeoX/Geo/c andMX/M/cwith breakdowns,

impatient customers and asynchronous multiple and single vacations. Furthermore,

the model under investigation can be analyzed under the provision of time dependent

arrival and service rates which leads the system to more realistic environment.
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Chapter 8

Conclusions and future work

In this thesis, we examined different queueing systems with impatient customers. Al-

though extensive research has been done on this topic in the last decades, we believe

that combining different features including reneging during busy and vacation peri-

ods, waiting server, feedback and retention of reneged customers together for diverse

systems with vacation and working vacations, then studying their impact on the per-

formance measures as well as the cost-profit of the systems has not been addressed,
yet.

In what follows, we first reiterate the main conclusions of this thesis, then we pro-

pose some possible extensions that can contribute to the literature on the queueing

systems with impatient customers.

8.1 Results

In Chapter 1, a comprehensive review of the recent literature on impatience in queue-

ing systems, feedback queues, vacation and working vacation queues was provided. In

this chapter, we represented the exposition of our research within the body of existing

literature.
In Chapter 2, we studied an heterogeneous two-server queueing system with Bernoulli

feedback, multiple working vacations, balking, reneging and retention of reneged cus-

tomers, we assumed that impatience timers of customers in the system depend on the

state of the server. In this work, we extended the problem in Laxmi and Jyothsna (2015)

by considering Bernoulli feedback, reneging in either normal busy and working vaca-

tion periods, wherein the reneged customers may be retained via ceratin mechanism.

We developed the equations of the steady state probabilities via the supplementary

variable and recursive techniques, then we derived useful performance measures of

228
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the queueing system. Further, we formulated a cost model in order to determine the

impact of various system parameters on the different characteristics as well as on total

expected cost, total expected revenue, and total expected profit of the system. In this

study, we showed via a numerical analysis the impact of different system parameters

on both characteristics and costs of the considered queueing system.

In Chapter 3, we considered an infinite-buffer single server queueing system with

Bernoulli feedback, multiple vacations, differentiated vacations, vacation interrup-

tions, balking and reneging such that reneged customers may be retained in the sys-

tem. Via the recursive method, we obtained the exact expressions of the steady-state

probabilities. Then, we presented explicit expressions of important performance mea-

sures, and developed a cost model. In addition, a variety of numerical results has been

discussed.
In Chapter 4, we dealt with aM/M/1 Bernoulli feedback queueing system with sin-

gle exponential vacation, waiting server, reneging and retention of reneged customers,

wherein the impatience timers of customers depend on the states of the server. We ob-

tained the explicit expressions of the steady-state probabilities using probability gen-

erating functions (PGFs). In addition, we derived important measures of effectiveness

of the queueing system and formulated a cost model. Further, via an extensive numer-

ical study, we showed the impact of different system parameters on the performance

measures and cost-profit of the queueing model. The considered queueing system can

be considered as a generalized version of the queueing models which exist in the liter-

ature presented in Yue et al. (2016) and Ammar (2017) associated with many practical

situations.
In Chapter 5, we analyzed an infinite capacity batch arrival single server Markovian

Bernoulli feedback queueing system subject to functioning K-variant vacation policy

with waiting server, impatient customers and retention of reneged customers. We es-

tablished the steady-state study of the queueing system using the PGFs method and

evaluated diverse system metrics in terms of steady-state probabilities. In addition, we

considered a cost optimization problem using particle swarm optimization (PSO) and

quadratic fit search method (QFSM). Using a comprehensive numerical experiment we

showed that the two algorithms performed quite well. Further, we investigated the ef-

fect of different parameters on the performance measures and the cost functions of the

system through numerical experiments.

Chapter 6 explored the impatience behavior in multi-server Bernoulli feedback

queueing system with batch arrival, variant of multiple working vacations, and reten-
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tion of the reneged customers. We investigated diverse system characteristics in terms

of steady state probabilities via the probability generating function method. We car-

ried out an economic analysis and showed the effect of the different system parameters

on the system characteristics as well as on total expected cost, total expected revenue,

and total expected profit of the system.

In Chapter 7, we treated a infinite-buffer multi-server Bernoulli feedback queue-

ing model with batch arrivals, waiting servers, impatient customers and retention of

reneged customer, under single and multiple vacations. We derived the closed-form

expressions for the steady-state probabilities of the queueing system using the proba-

bility generating function (PGF). Then, we evaluated useful performance measures of

the system. We also performed a cost model and considered a cost optimization prob-

lem using quadratic fit search method (QFSM). We aimed to find the optimum values

of the service rate for different values of arrival rate, waiting rate of the servers and

vacation rate such that the average total cost is minimized and proved the convexity

of the cost function in each decision variable. In addition, we explored the impact of

system parameters on different performance measures and total expected cost, total

expected revenue and total expected profit, respectively.

− The obtained results in this thesis have potential applications in many real world

systems including computer and telecommunication systems, computer networks, man-

ufacturing, call centers and production-inventory systems and so on.

8.2 Further research

The framework developed in this thesis allows us to examine the impact of differ-

ent system parameters including service rates during busy and working vacation pe-

riods, vacation rate, waiting rate of server, reneging, retention of reneged customers,

Bernoulli feedback, and others in enhancing performance (i.e, operational costs reduc-

tion) and profitability of the queueing systems in different settings. The models devel-

oped in this thesis provide lucrative perspicacity to the production managers and sys-

tem engineers. Our analyses can be used as a building block to compose more complex

queueing models. For instance, providing a rigorous proof for transient solution anal-

ysis for multiserver queueing systems with asynchronous multiple and single vacation

policies, vacation interruption and impatient customers as an interesting extension to

what we have carried out for the queueing models given in Chapters 4-7. Further, to

make the system modelling more closer to the real world problems, these models can
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be further extended to a more general cases with general type service times and lead

times.
Another interesting case for future research can be the realistic feature of syn-

chronous and asynchronous breakdowns and repairs for the multiserver queueing sys-

tems given in this thesis.

In such models, analysing the effect of the system parameters on the system char-

acteristics and profitability will help the system manager to enhance the cost efficiency

and responsiveness of the systems. It should be noted that each of the above mentioned

extensions adds sufficient complexity and makes the problem less tractable.
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Abstract. In this thesis, we analyze the impatient behaviour in different queueing systems due to
different factors including server state, quality of service, waiting time, etc. Firstly, we obtain the steady-
state probabilities for an M/M/2/N queueing system with two heterogeneous servers, feedback, vaca-
tion, working vacation, balking, reneging which depends on server state and retention of reneged cus-
tomers, using supplementary variable and recursive techniques. Secondly, we use the recursive method
to establish the solution of an infinite capacity queueing system with differentiated vacations, vacation
interruption, balking, reneging during the busy period and retention of reneged customers. Thirdly, we
analyze the impatient behavior (reneging), the impact of retention of reneged customers and feedback in
an M/M/1 queueing system with single vacation and waiting server, MX /M/1 with waiting server and
K-variant vacations, MX /M/c with K-variant working vacations as well as MX /M/c with waiting servers
and both single multiple vacation policies. We establish the stationary analysis for these queueing sys-
tems using the probability generating function. In addition, we derive useful performance measures
and present the economic analysis of the different models presented in this thesis. In addition, we study
the optimization of the fourth and sixth queueing systems using the PSO and QFSM methods.

Résumé. Dans cette thèse nous analysons le comportement d’impatience dans différents systèmes
de files d’attente, due aux différents facteurs notamment l’état de serveur, qualité de service, le temps
d’attente, etc. Dans un premier lieu, nous obtenons les probabilités d’état stable pour un système de file
d’attente M/M/2/N avec deux serveurs hétérogènes, feedback, vacances, service pendant les vacances,
dérobade, abandon qui dépendent de l’état du serveur et rétention des clients abandonnés, en utilisant
la méthode de variable supplémentaire et la récursivité. En second lieu, nous utilisons la méthode
récursive afin d’établir la solution d’un système de file d’attente de capacité infinie avec des vacances
différentiées, interruption de vacances, dérobade, abandon pendant la période d’occupation et rétention
des clients abandonnés. En troisième lieu, nous analysons le comportement d’impatience (abandon),
l’impact des rétentions et du feedback dans les systèmes de files d’attente M/M/1 avec vacance unique,
MX /M/1 avec K vacances consécutives, MX /M/c avec K vacances consécutives et services pendant les
vacances, MX /M/c avec vacances uniques et multiples, où les serveurs dans le premier, deuxième et
quatrième systèmes sont autorisés à prendre des vacances chaque fois que le système est vide après une
période d’attente aléatoire . Nous établissons l’analyse stationnaire pour ces systèmes de files d’attente
en utilisant la fonction génératrice des probabilités. En outre, Nous dérivons importantes mesures de
performance et présentons l’analyse économique des différents modèles présentés dans cette thèse. En
outre, nous étudions dans cette thèse l’optimisation du quatrième, et sixième système de files d’attente
en utilisant les méthodes PSO et QFSM.
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