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Abstract

T
his master thesis focused on the study of the existence and the uniqueness of solution

for a class of fractional stochastic differential equation.

First, we brought the reader through the fundamental notions of stochastic processes and

stochastic integration as well as stochastic differential equations. Then we gave a global

view on the fractional calculus, after a short introduction and some preliminaries, we

explored the Grüunwald-Letnikov, Riemann-Liouville and Caputo approaches for defining

a fractional derivative. Then, we proved some basic properties of fractional derivatives,

such as linearity, the Leibniz rule and composition. Thereafter, we applied the definitions

of the fractional derivatives to a few examples. As application of fractional derivatives we

gave a commonly used economic model.

This master thesis ends with investigating a global result on the existence and uniqueness

of solutions for Caputo fractional stochastic differential equations of order α ∈ (1/2, 1)

whose coefficients satisfy a standard Lipschitz condition, and using a temporally weighted

norm.

Key words: Fractional stochastic differential equations. Existence and uniqueness of

solutions. Temporally weighted norm. Fractional calculus. Caputo fractional derivative.
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Résumé

C
e mémoire de master a pour but, de faire une étude sur l’existence et l’unicité de

la solution d’une équation differentielle stochastique fractionnaire.

Tout d’abord, nous avons donné au lecteur les notions fondamentales des processus

stochastiques, l’intégration stochastique et les équations differentielles stochastiques, qui

nous seront utiles tout au long du présent mémoire. Nous avons introduit ensuite une

vue globale sur le calcul fractionnaire, après une courte introduction et quelques notions

préliminaires, nous nous sommes concentrés sur les approches de Grüunwald-Letnikov,

Riemann-Liouville et Caputo pour la définition d’une dérivée fractionnaire. De plus, on

a introduit et étudié quelques propriétés de base des dérivés fractionnaires, telles que la

linéarité, la composition de ces opérateurs et la règle de Leibniz. D’autre part, ces défi-

nitions sont appliquées à quelques exemples et une application d’un modèle économique

est éxaminée.

Ce mémoire de master se termine par un résultat global sur l’existence et l’unicité des

solutions pour les équations différentielles stochastiques fractionnaires de Caputo d’ordre

α ∈ (1/2, 1) dont les coefficients satisfont la condition standard de Lipschitz, en utilisant

une norme temporelle pondérée.

Mots clés: Equations différentielles stochastiques fractionnaires. Existence et unicité

des solutions. Norme temporelle pondérée. Calcul fractionnaire. Dérivée fractionnaire de

Caputo.
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Introduction

O
ur understanding of nature relies on calculus, which in turn relies on the intuitive

concept of the derivative. It’s descriptive power comes from the fact that it anal-

yses the behavior at scales small enough that its properties change linearly, so avoiding

complexities that arise at larger ones. Fractional calculus generalizes this concept from

integer to non-integer order.

Fractional calculus is the branch of calculus that generalizes the derivative of a func-

tion to non-integer order, allowing calculations such as deriving a function to 1/2 order,

the name "fractional" is used for denoting this kind of derivative. Most authors on this

topic will cite a particular date as the birthday of so called "fractional calculus". In a

letter dated September 30th, 1695. L’Hopital wrote to Leibniz asking him about a partic-

ular notation he had used in his publications for the nth-derivative of the linear function

f(x) = x. L’Hopital’s posed the question to Leibniz, what would the result be if n = 1/2.

Leibniz’s response: ”An apparent paradox, from which one day useful consequences will

be drawn”. In these words fractional calculus was born.

Notable contributions work in the broad area of fractional calculus were done in a slow

progress up to 1900. Leibniz, Euler(1738), Fourier(1822), Abel(1826), Liouville-Riemann

(1832-1847), Grünwald-Letnikov(1867-1868), Hadamard(1892). After 1900, the fractional

calculus attend a fast development and in an attempt to formulate particular problems,

other definitions were proposed. We mention some of them, Weyl(1917), Marchaud(1927),

Erdelyi-Kober(1940), Caputo(1967). For more in-depth information, applications and re-

lated topics it is possible to consult some of the classical references, Oldham-Spanier [12],

Samko and al [19], Miller and Ross [14].
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On the other hand, the increasing interest in applications of fractional calculus has mo-

tivated the development and the investigation of numerical methods specifically devised

to solve fractional differential equations(FDEs). Fractional differential equations are now

receiving an increasing attention due to their applications in a variety of disciplines such

as mechanics, physics, chemistry, biology, electrical engineering, control theory, finance.

For more details, we refer the interested reader to the monographs [8], and references

therein.

In contrast to the huge number of publications in deterministic fractional differential

equations, there have been only a few papers dealing with stochastic fractional differ-

ential equations involving with a Caputo fractional time derivative and most of these

publications have attempted to establish a result on the existence and uniqueness of mild

solutions. We refer the reader to [18, 1] for results on the existence and uniqueness of this

type of solutions. Pedjeu and Ladde [16] studied the existence and uniqueness of some

class of stochastic fractional differential equation. Kamrani [7] discussed the numerical

solution of stochastic fractional differential equation.

The present master thesis aims on the one hand, to introduce the concept of fractional

calculus, the branch of mathematics which explores fractional integrals and derivatives.

And secondly, the study of the existence and the uniqueness of solution for a class of

fractional stochastic differential equation.

This Master thesis, is divided into three chapters, it’s organized as follows:

In Chapter 1 we gather some preliminary results. In particular, we introduce some ba-

sic concepts concerning continuous time stochastic processes. First we recall what is a

continuous time stochastic process, and when do two stochastic processes coincide then,

different types of measurability, the notion of a martingale. After that we introduce Itô

calculus. At last we give a brief overview on stochastic differential equations.

The Chapter 2 focuses on the theory of fractional integrals and derivatives, we first give

some basic functions, such as the Gamma function, the Beta function and the Mittag-
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Leffler function, the definitions of the Grünwald-Letnikov, Riemann-Liouville and the

Caputo integral and derivatives, then introduce some more approaches to define a dif-

ferintegral also frequently used such as Hadamard and Hilfer. Then, we study many of

its properties. Finally, we briefly discuss some examples and an application of fractional

calculus and examine a commonly used economic model.

The core of this master thesis is the Chapter 3 in this chapter we establish a result

on the global existence and uniqueness of solutions for Caputo fractional stochastic dif-

ferential equations of order α ∈ (1/2, 1). We first introduce briefly some notations and

primely facts, after that we state the main result then show proof of the result on the

global existence and uniqueness of solution using a temporally weighted norm.

Finally, we give a conclusion. In witch we summarize the main results of this work.



Chapter 1

Preliminary Background

In this chapter we give some basic notions on stochastic processes, after that we introduce

Itô calculus. At last we give a brief overview on stochastic differential equations. There

exists a vast literature that treats stochastic process. For more detail, we refer the reader

to [2, 4, 5, 9, 13, 17, 20].

1.1 Basic definitions

In this section we introduce some basic concepts concerning continuous time stochastic

processes used freely later on. Let us fix a probability space (Ω,F , P) and recall that a

map Z : Ω → R is called a random variable if Z is measurable as a map from (Ω,F)

into (R,B(R)) where B(R) is the Borel σ-algebra on R.

What is a continuous time stochastic process? For us it is simply a family of random

variables.

Definition 1.1.1. Let I = [0, T ] for some T ∈ (0,∞) or I = [0,∞). A family of random

variables X = (Xt)t∈I with Xt : Ω −→ R is called stochastic process with index set I.

The definition of a stochastic process can be given more generally by allowing more

general I and other state spaces than R. In our case there are two different views on the

stochastic process X.

• The family X = (Xt)t∈I describes random functions by ω 7→ f(ω) = (Xt(ω))t∈I .

11
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The function t 7→ Xt(ω) is called path or trajectory of X.

• The family X = (Xt)t∈I describes a process, which is, with respect to the time

variable t, an ordered family of random variables t 7→ Xt.

The two approaches differ by the roles of ω and t.

Definition 1.1.2. Let X = (Xt)t∈I and Y = (Yt)t∈I be stochastic processes on (Ω,F , P).

The processes X and Y are versions or (modifications) of each other provided that

P(Xt = Yt) = 1, for all t ∈ I.

Definition 1.1.3. Let X = (Xt)t∈I and Y = (Yt)t∈I be stochastic processes on (Ω,F , P).

The processes X and Y are indistinguishable if and only if

P(Xt = Yt, for all t ∈ I) = 1.

Definition 1.1.4. The finite-dimensional distributions of the real valued stochastic

process Xt = {Xt}t∈I are the measures µt1,...,tk , defined on Rk, such that

µt1,...,tk(A1 × · · · × Ak) = P({Xt1 ∈ A1, · · · , Xtk ∈ Ak}), (1.1)

where k ∈ N and {ti}i=1,...,k ⊂ I a time sequence, {A1, . . . , Ak} are Borel sets on R.

Theorem 1.1.1. Let X = (Xt, t ∈ I) and Y = (Yt, t ∈ I) be two real valued processes.

Then X and Y have the same distribution (or law) if and only if their finite-dimensional

distributions agree.

Proof: See, (Watkins, [20]).

Theorem 1.1.2. ([11]) For all {ti}i=1,...,k ⊂ I , k ∈ N let νt1,...,tk be probability measures

on Rk, such that

1. For all permutations π on {1, 2, . . . , k},

νtπ(1),...,tπ(k)
(A1 × ...× Ak) = νt1,...,tk(Aπ−1(1) × · · · × Aπ−1(k)).
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2. For any m ∈ N,

νt1,...,tk(A1 × · · · × Ak) = νt1,...,tk,tk+1,...,tk+m
(A1 × · · · × Ak × R× · · · × R).

Then, there exists a probability space (Ω,F , P) and a real valued stochastic process

X defined on it, such that

νt1,...,tk(A1 × ...× Ak) = P({Xt1 ∈ A1, ..., Xtk ∈ Ak}),

for any ti ∈ I , k ∈ N and Ai ∈ B.

Definition 1.1.5. A stochastic process {Xt}t≥0 is said a stationary process if any

collection {Xt1 , Xt2 , . . . , Xtn} has the same distribution of {Xt1+τ , Xt2+τ , . . . , Xtn+τ} for

all t ≥ 0 and each τ ≥ 0. That is

{Xt1 , Xt2 , . . . , Xtn}
d
= {Xt1+τ , Xt2+τ , . . . , Xtn+τ}.

Definition 1.1.6. A stochastic process {Xt}t≥0 is said a stationary increment process,

shortly si, if for any h ≥ 0, for all t ≥ 0,

{Xt+h −Xh}t≥0
d
= {Xt −X0}t≥0. (1.2)

Definition 1.1.7. A real valued stochastic process X = {Xt}t≥0 is said self-similar with

index H ≥ 0, shortly H-ss, if for any t ≥ 0, a > 0,

{Xat}t≥0
d
= {aHXt}t≥0.

Definition 1.1.8. Let (Ω,F , P) be a probability space. A family of σ-algebras Ft = (Ft)t∈I

is called filtration if Fs ⊆ Ft ⊆ F for all 0 ≤ s ≤ t ∈ I.

The quadruple (Ω,F , (Ft)t∈I , P) is called stochastic basis.

Definition 1.1.9. Let X = (Xt)t∈I , Xt : Ω → R be a stochastic process on (Ω,F , P) and

let (Ft)t∈I be a filtration.

• The process X is called measurable provided that the function (ω, t) 7→ Xt(ω)

considered as map between Ω× I and R is measurable with respect to F ⊗B(I) and

B(R).
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• Adapted to the filtration (Ft)t∈I if for each t ∈ I one has that X(t) is Ft-measurable.

Let us recall the notion of a martingale.

Definition 1.1.10. Let X = (Xt)t∈I be (Ft)t∈I-adapted and such that E|Xt| < ∞, for all

t ≥ 0, X is called martingale provided that for all 0 ≤ s ≤ t ∈ I, one has

E(Xt|Fs) = Xs. a.s

Definition 1.1.11. Let X = (Xt)t∈I be a stochastic process. The process X is continuous

provided that t 7→ Xt(ω) is continuous for all ω ∈ Ω.

Gaussian processes form a class of stochastic processes used in several branches in

pure and applied mathematics.

Definition 1.1.12. A real-valued stochastic process is called Gaussian of all its finite-

dimensional distributions are Gaussian, in other words, if they are multivariate normal

distributions.

1.1.1 The basic examples of stochastic processes, The Brownian

motion

The most important stochastic process is the Brownian motion. It was first discussed

by Louis Bachelier (1900), and independently by Einstein in his 1905 paper. The modern

mathematical treatment of Brownian motion (abbreviated to BM), also called the Wiener

process is due to Wiener in 1923, who proved that there exists a version of BM with con-

tinuous paths. Note that BM is a Gaussian process, a Markov process, and a martingale.

Hence its importance in the theory of stochastic process. It serves as a basic building

block for many more complicated processes. For further history of Brownian motion and

related processes we cite Meyer [13], Klebaner [9] and Pitman [17].

1.1.1.1 Definition of Brownian Motion

We now start to define and study Brownian motion (Wiener process).

Definition 1.1.13. (Brownian motion) A stochastic process {B(t), t ≥ 0} is said to

be a Brownian motion with variance parameter σ2 > 0 if
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(i) B(0) = 0.

(ii) (Independent increments.) For each 0 ≤ t1 < t2 < . . . < tm,

B(t1), B(t2)−B(t1), . . . , B(tm)−B(tm−1),

are independent r.v.’s.

(iii) (Stationary increments.) For each 0 ≤ s < t, B(t)−B(s) has a normal distribu-

tion with mean zero and variance σ2(t− s).

(iv) (Continuity of paths.) {B(t)}t≥0 are continuous functions of t.

Remark 1.1.1. • Notice that the natural filtration of the Brownian motion is FB
t =

σ(Bs, s ≤ t).

• If σ2 = 1, we said that {B(t) : t ≥ 0} is a standard Brownian motion.

1.1.1.2 Properties of Brownian motion

1- Martingale property

A martingale is a very special type of stochastic process.

Lemma 1.1.1. An Ft-Wiener process Bt is an Ft-martingale.

Proof: We need to prove that E(Bt|Fs) = Bs for any t > s. But as Bs is Fs-

measurable (by adaptedness) this is equivalent to E(Bt − Bs|Fs) = 0, and this is clearly

true by the definition of the Wiener process (as Bt−Bs has zero mean and is independent

of Fs).

2- Markov property

The reason why Markov processes are so important comes from the fact that they are

fundamental class of stochastic processes, with many applications in real life problems

outside mathematics.

Definition 1.1.14. An Ft adapted process Xt is called an Ft-Markov process if we have

E(f(Xt)|Fs) = E(f(Xt)|Xs) for all t ≥ s and all bounded measurable functions f . When

the filtration is not specified, the natural filtration FX
t is implied.



1.1.1 The basic examples of stochastic processes, The Brownian motion 16

Lemma 1.1.2. An Ft-Wiener process Bt is an Ft-Markov process.

Proof: We refer the reader to (Klebaner, [9]).

3- Self-similarity

Theorem 1.1.3. B is an H-ss process with H = 1/2.

Proof: It is enough to show that for every a > 0, {a1/2B(t)} is also Brownian motion.

Conditions (i), (ii) and (iv) follow from the same conditions for {B(t)}. As to (iii), Gaus-

sianity and mean-zero property also follow from the properties of {B(t)}.

As to the variance, E
[(

a1/2B(t)2
)]

= t. And for all t1, t2 ∈ ∞, the autocovariance func-

tion E [(B(at1)B(at2))] = min(at1, at2) = a min(t1, t2) = E
[(

a1/2B(t1)a
1/2B(t2)

)]
. Thus

{a1/2B(t)} is a Brownian motion.

4- Non-differentiability

Theorem 1.1.4. For any t almost all trajectories of Brownian motion are not differen-

tiable at t.

Proof: We refer the reader to (Klebaner, [9]).

5- Hölder continuity

Proposition 1.1.1. Brownian motion paths are a.s. locally γ-Hölder continuous for

γ ∈ [0, 1/2).

Proof: We refer the reader to (Klebaner, [9]).

6- Quadratic variation

Definition 1.1.15. The quadratic variation of Brownian motion B(t) is defined as

[B, B](t) = [B, B]([0, t]) = lim
n→∞

n∑
i=1

∣∣∣∣Btni
−Btni−1

∣∣∣∣2,
where for each n, {tni , 0 ≤ i ≤ n} is a partition of [0, t], and the limit is taken over all

partitions with δn = maxi(t
n
i+1 − tni ) → 0 as n → ∞, and in the sense of convergence in

probability.
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Theorem 1.1.5. (Klebaner, [9]) Quadratic variation of a Brownian motion over [0, t] is

t.

1.2 Introduction to stochastic integration

Let us consider the filtered probability space (Ω,F ,Ft, P), Bt is a standard Brownian

motion.

Definition 1.2.1. Let V(S, T ) be the class of real measurable functions f(t, ω), defined

on [0,∞)× Ω, such that

1. f(t, ω) is Ft-adapted.

2. E
(∫ T

S

f(t, ·)2dt

)
< ∞.

1.2.1 Itô integral

1.2.1.1 Itô integral definition

Let f ∈ V(S, T ). We want to define the Itô integral of f in the interval [S, T ). Namely

I(f)(ω) =

∫ T

S

f(t, ω)dBt(ω). (1.3)

The idea is natural. First we define I(f) for a simple class of functions f. Then define∫ T

S

f(t, ω)dBt(ω), as the limit of as
∫ T

S

φdBt(ω), as the limit f → φ.

We begin defining the integral for a special class of functions.

Definition 1.2.2. (Simple functions) A function φ ∈ V(S, T ) is called simple function

(or elementary), if it can be expressed as a superposition of characteristic functions.

φ(t, ω) =
∑
k≥0

ek(ω)1[tk,tk+1)(t). (1.4)

Definition 1.2.3. Let φ ∈ V(S, T ) be a simple function of the form of (1.4), then we

define the stochastic integral as∫ T

S

φ(t, ω)dBt =
∑
k≥0

ek(ω)(Btk+1
−Btk)(ω). (1.5)
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Lemma 1.2.1. (Ito isometry, [15]) Let φ ∈ V(S, T ) be a simple function, then

E

((∫ T

S

φ(t, ·)dBt

)2
)

= E
(∫ T

S

φ(t, ·)2dt

)
. (1.6)

Remark 1.2.1. Observe that (1.6) is indeed an isometry. In fact, it can been written as

equality of norms in L2 spaces∥∥∥∥∫ T

S

φ(t, ·)dBt

∥∥∥∥
L2(Ω,P)

= ‖φ‖L2([S,T ]×Ω) .

We have the following important proposition.

Proposition 1.2.1. Let f ∈ V , then there exists a sequence of simple functions

φn ∈ V , n ∈ N, which converges to f in the L2-norm. Namely

lim
n−→∞

∫ T

S

E
(
(f(t, ·)− φn(t, ·))2

)
dt = lim

n−→∞
||f − φn| |2L2([S,T ]×Ω) = 0. (1.7)

Proof: See (Mura, [15]).

Definition 1.2.4. (Itô integral I) Let f ∈ V(S, T ) the Itô integral from S to T of f is

defined as the L2(Ω, P) limit

I(f) =

∫ T

S

f(t, ω)dBt(ω) = lim
n−→∞

∫ T

S

φn(t, ω)dBt(ω), (1.8)

where φn ∈ V, n ∈ N, is a sequence of simple functions which converges to

f ∈ L2([S, T ]× Ω).

Remark 1.2.2. Observe, in view of (1.7), that the definition above does not depend on

the actual choice of {φn, n ∈ N}.

By definition, we have that Itô isometry holds for Itô integrals.

Corollary 1.2.1. (Itô isometry for Itô integrals, [15]) Let f ∈ V(S, T ), then

E

((∫ T

S

f(t, ·)dBt

)2
)

= E
(∫ T

S

f(t, ·)dt

)
. (1.9)

Corollary 1.2.2. [15] If fn(t, ω) ∈ V(S, T ) converges to f(t, ω) ∈ V(S, T ) as n −→ ∞

in the L2([S, T ]× Ω)-norm, then∫ T

S

fn(t, ·)dBt −→
∫ T

S

f(t, ·)dBt, (1.10)

in the L2(Ω, P)-norm.
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1.2.1.2 Properties of the Itô integral

Proposition 1.2.2. [15] Let f, g ∈ V(0, T ) and let 0 ≤ S < U < T . Then

1.
∫ T

S

fdBt =

∫ U

S

fdBt +

∫ T

U

fdBt.

2. For some constant a ∈ R,

∫ T

S

(af + g)dBt = a

∫ T

S

fdBt +

∫ T

S

gdBt.

3. E
[∫ T

S

fdBt

]
= 0.

4.
∫ T

S

fdBt is FT -measurable.

5. The process Mt(ω) =

∫ T

0

f(t, ω)dBs(ω) where f ∈ V(0, T ) for any t > 0, is a

martingale with respect to Ft.

1.2.2 Extensiens of Itô integral

The construction of the Itô Integral can be extended to a class of function f(t, ω) which

satisfies a weak integration condition. This generalization is indeed necessary because it

is not difficult to find functions which do not belong to V . Therefore, we introduce the

following class of functions.

Definition 1.2.5. Let W(S, T ) be the class of real measurable functions f(t, ω), defined

on [0,∞)× Ω, such that

1. f(t, ω) is Ft-adapted.

2. P
(∫ T

S

f(t, ·)2dt < ∞
)

= 1.

For any f ∈ W , one can show that there exists a sequence of simple functions φn ∈ W

such that ∫ T

S

|φn(t, ·)− f(t, ·)|2dt −→ 0, (1.11)

in probability. For such a sequence one has that the sequence
{∫ T

S

φn(t, ω)dBt(ω), n ∈ N
}

converges in probability to some random variable. Moreover, the limit does not depends

on the approximating sequence φn. Thus, we may define
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Definition 1.2.6. (Itô integral II) Let f ∈ W(S, T ). The Itô integral from S to T of

f is defined as the limit in probability∫ T

S

f(t, ω)dBt(ω) = lim
n−→∞

∫ T

S

φn(t, ω)dBt(ω), (1.12)

where φn ∈ W , n ∈ N, is a sequence of simple functions which converges to f in probability.

1.2.3 Stochastic Differential Equations

We call stochastic differential equation (SDE) an equation of the form

dXt = b(t,X(t))dt + σ(t,X(t))dB(t), X|t=0 = x, (1.13)

where (Bt)t≥0 is a d-dimensional Brownian motion on a filtered probability space

(Ω,F ,Ft, P), x is F0-measurable, b : [0, T ] × Rd → Rd and σ : [0, T ] × Rd → Rd×d

have some regularity specified case by case and the solution (Xt)t≥0 is a d-dimensional

continuous adapted process. The meaning of the equation (1.13) is identic to

Xt = x +

∫ t

0

b(s, X(s))ds +

∫ t

0

σ(s, X(s))dB(s). (1.14)

If there exists a stochastic process Xt that satisfies this equation, we say that it solves

the stochastic differential equation.

The main goal of this section is to find conditions on the coefficients b and σ that

guarantee the existence and uniqueness of solutions.

However, there are a number of subtle points involved

• First, the existence of the integrals in (1.14) requires some degree of regularity on

Xt and the functions b and σ; in particular, it must be the case that for all t ≥ 0,

with probability one,
∫ t

0
|b(s, X(s))|ds < ∞ and

∫ t

0
σ2(s, X(s))ds < ∞.

• Second, the definition requires that the process Xt live on the same probability space

as the given Wiener process Bt, and that it be adapted to the given filtration. It

turns out that for certain coefficient functions b and σ, solutions to the stochastic
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integral equation (1.14) may exist for some Wiener processes and some admissible

filtration but not for others.

– The solution is a strong solution if it is valid for each given Wiener process

(and initial value), that is it is sample pathwise unique.

– A solution is a weak solution if it is valid for given coefficients, but unspecified

Wiener process, that is its probability law is unique.

More precisely.

Definition 1.2.7. Let {Bt}t≥0 be a standard Brownian motion on a probability space

(Ω,F , P) with an admissible filtration F = {Ft}t≥0. A strong solution of the stochastic

differential equation (1.14) with initial condition x ∈ R is an adapted process Xt with

continuous paths such that for all t ≥ 0,

X(t) = x +

∫ t

0

b(s, X(s))ds +

∫ t

0

σ(s, X(s))dB(s).

Definition 1.2.8. A weak solution of the stochastic differential equation (1.14) with

initial condition x is a continuous stochastic process Xt defined on some probability space

(Ω,F , P) such that for some Wiener process Bt and some admissible filtration Ft the

process X(t) is adapted and satisfies the stochastic integral equation (1.14).

Let us come to uniqueness. Similarly to existence, there are two concepts.

Definition 1.2.9. (pathwise uniqueness) We say that pathwise uniqueness holds for

equation (1.14) if, given any filtered probability space (Ω,F ,Ft, P) with a Brownian motion

(Bt)t≥0 given any deterministic initial condition X0 = x, if (X
(1)
t )t≥0 and (X

(2)
t )t≥0 are

two continuous Ft-adapted process which fulfill (1.14), then they are indistinguishable.

Definition 1.2.10. (uniqueness in law) We say that there is uniqueness in law for

equation (1.13) if a given two weak solutions on any pair of spaces, their laws coincide.

Theorem 1.2.1. If the coefficients b and σ satisfy the following conditions

1. A Lipschitz condition in x and y. ∃K, ∀x ∈ Rn,∀y ∈ Rn,∀t ≥ 0,

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K‖x− y‖.
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2. A linear growth condition, ∃K,∀x ∈ Rn,∀t ≥ 0,

‖b(t, x))‖+ ‖σ(t, x)‖ ≤ K(1 + ‖x‖).

Then there exists a unique strong solution X to the stochastic differential equation (1.13)

with continuous trajectories and there exists a constant C such that

E[‖Xt‖2] ≤ CeCt(1 + ‖x‖2).

Proof: See (Oksendal, 36+[11]).



Chapter 2

Fractional Calculus

As it’s mentioned in the introduction, the fractional calculus is the mathematical field in

which the differentiation operator is applied to a function a nonintegral number of times.

This subject is as old as the differential calculus, and goes back to times when Leibnitz

and Newton invented differential calculus. In this chapter we aim to introduce fractional

calculus we start with the Grunwald-Letnikov’s one to move then to the precise definitions

of the left and right Riemann-Liouville (R-L) fractional integrals and derivatives and the

definition of the fractional derivatives in the Caputo sense. Other fractional derivatives

are given such as Hadamard and Hilfer. Then, we study the main of their properties.

Finally, we briefly discussed some examples and as an application of fractional calulus we

examined a commonly used economic model. Further details on the material discussed

here can be found in [6, 10, 12] and references therein.

2.1 Useful Mathematical Functions

Before looking at the definition of fractional integrals or derivatives, we will first discuss

some useful mathematical definitions that are inherently tied to fractional calculus and

will commonly be encountered. These include the Gamma function, the Beta function

and the Mittag-Leffler function.

23
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2.1.1 The Gamma Function

The Gamma function, denoted by Γ(x), is a generalization of the factorial function n! and

defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt, x ∈ R. (2.1)

Some of the basic properties of Γ function, are


Γ(1) = Γ(2) = 1.

Γ(x + 1) = xΓ(x), x ∈ R+.

Γ(n) = (n− 1)!, n ∈ N∗.

From the above we can get


Γ(1

2
) =

√
π.

Γ(5
2
) = 3

2
Γ(3

2
) = 3

2
1
2
Γ(1

2
) = 3

4

√
π.

Γ(−3
2

) =
Γ(−3

2
+ 1)

−3
2

=
Γ(−1

2
)

−3
2

=
Γ(1

2
)

−3
2
−1
2

=
4

3

√
π.

2.1.2 The Beta Function

The Beta function is very important for the computation of the fractional derivatives

of the power function. It is defined by the two parameter integral

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt, x, y ∈ R. (2.2)

It should be mention that the Beta function has also some properties, the key one is its

relationship to the gamma function.

•

B(x, y) =
Γ(x) Γ(y)

Γ(x + y)
. (2.3)

• B(x, y) = B(y, x).

• B(1/2, 1/2) = π.
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2.1.3 The Mittag-Lefler Function

The Mittag-Leffler function is named after a Swedish mathematician who defined and

studied it in 1903. The function is a direct generalization of the exponential function, it

plays a major role in fractional calculus. Firstly, we introduce one parameter function by

using series, namely

Eα(x) =
∞∑

k=0

xk

Γ(αk + 1)
, α > 0. (2.4)

Then, we define the Mittag-Leffler function with two parameters, as

Eα,β(x) =
∞∑

k=0

xk

Γ(αk + β)
, α, β > 0. (2.5)

Note that Eα,β(0) = 1. Also, for some specific values of α, and β, the Mittag-Leffler

function reduces to some familiar functions, namely

E1,1(x) =
∞∑

k=0

xk

Γ(k + 1)
=

∞∑
k=0

xk

k!
= exp(x).

E1,2(x) =
∞∑

k=0

xk

Γ(k + 2)
=

∞∑
k=0

xk

(k + 1)!
=

1

x

∞∑
k=0

xk+1

(k + 1)!
=

exp(x)− 1

x
.

E1,3(x) =
∞∑

k=0

xk

Γ(k + 3)
=

∞∑
k=0

xk

(k + 2)!
=

1

x2

∞∑
k=0

xk+2

(k + 2)!
=

exp(x)− 1− x

x2
.

E1,m(x) = 1
xm−1 [exp(x)−

m−2∑
k=0

xk

k!
].

E2,1(−x2) =
∞∑

k=0

(−x2)k

Γ(2k + 1)
=

∞∑
k=0

(−1)kx2k

(2k)!
= cos(x).

E2,2(−x2) =
∞∑

k=0

(−x2)k

Γ(2k + 2)
=

∞∑
k=0

(−1)kx2k+1

x(2k + 1)!
=

sin(x)

x
.

2.2 Fractional Derivatives and Integrals

This section is devoted to review three important definition of fractional derivatives

and Integrals.

2.2.1 Grünwald-Letnikove, 1867-1868

Grünwald-Letnikov derivative is a basic extension of the natural derivative to fractional

one. It was introduced by A. Grünwald in 1867, and then by A. Letnikov in 1868. Hence,

it is written as
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Definition 2.2.1. Let α ∈ (0, 1) be fixed and let f : R → R be a given function. The

R-Grünwald-Letnikov derivative of order α of f is defined, respectively as

Dα
+f(t) = lim

h→0
h−α

[ t−a
h

]∑
j=0

(−1)j

 α

j

 f(t− jh).

We recall that the binomial coefficients can be defined as

 α

n

 = α!
n!(α−n)!

.

2.2.2 Riemann-Liouville, 1832-1847

The Riemann-Liouville Operator is still the most frequently used when fractional inte-

gration is performed. Which is considered as a direct generalization of Cauchy’s formula

for an n-times integral∫ x

a

dx1

∫ x1

a

dx2...

∫ xn−1

a

f(xn)dxn =
1

(n− 1)!

∫ x

a

f(t)

(x− t)1−n
dt. (2.6)

Example 2.2.1. As an example let f(x) = x, n = 3 and a = 0 then (2.6) becomes∫ x

0

∫ x1

0

∫ x2

0

x3dx3x2x1 =
1

2!

∫ x

0

t

(x− t)−2
dt, (2.7)

and by integration one gets
1

2!

∫ x

0

t

(x− t)−2
dt =

x4

4!
. (2.8)

Since (n− 1)! = Γ(n), Riemann realized that (2.6) might have meaning even when n

takes non-integer values. Thus perhaps it was natural to define fractional integration as

follows.

Definition 2.2.2. Let f ∈ L1([a, b]) and a ≤ x ≤ b then

Iα
a+f(x) :=

1

Γ(α)

∫ x

a

f(t)

(x− t)1−α
dt,

Iα
b−f(x) :=

1

Γ(α)

∫ b

x

f(t)

(t− x)1−α
dt,

are called the Riemann-Liouville fractional integral of order α > 0.

Definition 2.2.3. Let f ∈ L1([a, b]) and a ≤ x ≤ b then

Dα
a+f(x) :=

1

Γ(1− α)

d

dx

∫ x

a

f(t)

(x− t)α
dt,
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Dα
b−f(x) :=

1

Γ(1− α)

d

dx

∫ b

x

f(t)

(t− x)α
dt,

which is called the Riemann-Liouville fractional derivative of order 0 < α < 1.

2.2.3 Caputo, 1969

Since Riemann-Liouville fractional derivatives failed in the description and modeling of

some complex phenomena, Caputo derivative was introduced in 1967.

Definition 2.2.4. The Caputo derivative of fractional order (n−1 ≤ α < n) of a function

f is defined as

C
a Dα

t f(t) =
1

Γ(α− n)

∫ t

a

f (n)(τ)dτ

(t− τ)α+1−n
, (n− 1 ≤ α < n).

C
b Dα

t f(t) =
1

Γ(α− n)

∫ b

t

f (n)(τ)dτ

(τ − t)α+1−n
, (n− 1 ≤ α < n).

Remark 2.2.1. • Such kind of equations arise in the mathematical modeling of var-

ious physical phenomena, such as heat conduction in materials with memory.

• Initial conditions for the Caputo derivatives are expressed in terms of initial values

of integer order derivatives.

• For this reason, many authors either resort to Caputo derivatives, or use the Riemann-

Liouville derivatives but avoid the problem of initial values of fractional derivatives

by treating only the case of zero initial conditions.

• It is known that for zero initial conditions the Riemann-Liouville, Grünwald-Letnikov

and Caputo fractional derivatives coincide.

2.3 Other Fractional Derivatives

As previously mentioned, different definitions for fractional derivative with the different

properties can be proposed, which all of them are valid and mathematically acceptable.

However, the main question is "which relation should be applied in modeling of a specific

phenomenon? In other words, which definition would be more appropriate for a specific
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problem?". As a rule of thumb, since they tend to interpret natural phenomena, the

definition which is more consistent with the experimental results have more privilege

than the other fractional definitions.

2.3.1 Marchaud fractional derivative

In his doctoral thesis, Marchaud defined the following fractional differentiation.

Definition 2.3.1. (Marchaud derivative: 1927) For a function defined R and for

every α ∈ (0, 1) distinguishing two types of derivative, respectively from the right and

from the left one

Dα
+f(x) =

α

Γ(1− α)
+

∫ ∞

0

f(x)− f(x− t)

t1+α
dt,

and

Dα
−f(x) =

α

Γ(1− α)
+

∫ 0

−∞

f(x)− f(x + t)

t1+α
dt.

These fractional derivatives are well defined when f is a bounded, locally Hölder con-

tinuous function in R.

Remark 2.3.1. If we compare the Marchaud derivative with respect to the Riemann-

Liouville one, we immediately realize that, in the latter one, the classical derivative op-

erator appears, while, in the first one, it does not. This is one of the key points that

Marchaud’s definition makes evident. That is, Marchaud derivative avoids applying the

classical derivative after an integration in order to define the fractional operator.

2.3.2 Hilfer fractional derivative

In the recent years new alternative definitions of fractional operators have been intro-

duced in the literature. An interesting example is the so-called Hilfer derivative. The idea

behind the introduction of this derivative is to interpolate between the Riemann-Liouville

and the Caputo derivatives. As it is clear from the definition below, the Hilfer derivative

depends on the parameter ν ∈ [0, 1] that balances the individual contributions of the two

fractional derivatives.
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Definition 2.3.2. (Hilfer derivative: 2000) Let µ ∈ (0, 1), ν ∈ [0, 1], f ∈ L1[a, b], a <

t < b, the Hilfer derivative is defined as

(Dµ,ν
a+ f)(t) =

(
I

ν(1−µ)
a+

d

dt

(
I

(1−ν)(1−µ)
a+ f

))
(t).

(Dµ,ν
b− f)(t) =

(
I

ν(1−µ)
b−

d

dt

(
I

(1−ν)(1−µ)
b− f

))
(t).

Remark 2.3.2. Hilfer derivatives coincide with Riemann-Liouville derivatives for ν = 0

and with Caputo derivatives for ν = 1.

2.3.3 Canavati fractional derivative

There is another defenition of fractional derivatives that is useful in deriving inequal-

ities. This is the Canavati fractional derivative. It is "between" the Riemann-Liouville

derivative and the Caputo derivative.

Definition 2.3.3. (Canavati derivative: 2009) Let n − 1 < α < n, f ∈ Cα([a, b]).

Then, the Canavati derivative of order α is defined as

Can
a Dα

t f(t) =
1

Γ(n− α)
+

d

dt

∫ t

a

f (n−1)(τ)

(t− τ)α−n+1
dτ.

2.4 Basic Properties of Fractional Derivatives

2.4.1 Semigroup Properties of Fractional Integral Operators

Theorem 2.4.1. For any f ∈ C([a, b]) the Riemann-Liouville fractional integral satisfies

Iα
a+Iβ

a+f(x) = Iα+β
a+ f(x), (2.9)

for α > 0, β > 0.

Proof: The proof is rather direct, we have by definition

Iα
a+Iβ

a+f(x) =
1

Γ(α)Γ(β)

∫ x

a

dt

(x− t)1−α

∫ t

a

f(u)

(t− u)1−β
du, (2.10)

and since f(x) ∈ C([a, b]) we can by Fubini’s theorem interchange order of integration

and by setting t = u + s(x− u) we obtain

Iα
a+Iβ

a+f(x) =
B(α, β)

Γ(α)Γ(β)

∫ x

a

f(u)

(x− u)1−α−β
du = Iα+β

a+ f(x). (2.11)
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2.4.2 Linearity

Let f and g are functions for which the given derivatives or integrals operator are defined

and λ, µ ∈ R are real constants.

aD
p
t (λf(t) + µg(t)) = λaD

p
t f(t) + µaD

p
t g(t).

Proof:

• For Grüunwald-Letnikov fractional derivative we have

aD
p
t (λf(t) + µg(t)) = lim

h→0
h−p

m∑
r=0

(−1)r

 p

r

 (λf(t− rh) + µg(t− rh))

= λ lim
h→0

h−p

m∑
r=0

(−1)r

 p

r

 f(t− rh)

+ µ lim
h→0

h−p

m∑
r=0

(−1)r

 p

r

 g(t− rh)

= λaD
p
t f(t) + µaD

p
t g(t).

• For Riemann-Liouville differintegral will also be given

aD
−p
t (λf(t) + µg(t)) =

1

Γ(p)

∫ t

a

(t− τ)p−1(λf(t) + µg(t))dτ

= λ
1

Γ(p)

∫ t

a

(t− τ)p−1f(τ)dτ + µ
1

Γ(p)

∫ t

a

(t− τ)p−1g(τ)dτ

= λaD
−p
t f(t) + µaD

−p
t g(t).

2.4.3 Zero Rule

It can be proved that if f is continuous for t ≥ a then we have

lim
p→0

aD
−p
t f(t) = f(t).

Proof:

The proof can be found in (Oldham, [12]). Hence, we define

aD
0
t f(t) = f(t).
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2.4.4 Product Rule & Leibniz’s Rule

If f and g are functions we know the derivative of their product is given by the product

rule

(f.g)′ = f ′.g + f.g′.

This can be generalized to

(fg)(n) =
n∑

k=0

 n

k

 f (k)g(n−k),

which is also known as the Leibniz rule. In the last expression f and g are n-times

differentiable functions. If f and g and their derivatives are continuous in [a,t] it can be

proved that the Leibniz rule for fractional derivatives is given by the following expression

aD
p
t (f(t)g(t)) =

m∑
k=0

 p

k


aD

k
t f(t) aD

p−k
t g(t). (2.12)

A similar proof can be given for the fractional integral.

2.4.5 Composition

2.4.5.1 Fractional integration of a fractional integral

The Riemann-Liouville fractional integral has the following important property

aD
−p
t (aD

−q
t f(t)) =a D−q

t (aD
−p
t f(t)) =a D−p−q

t f(t), (2.13)

which is called the composition rule for the Riemann-Liouville fractional integrals. Using

the definition, the proof is quite straightforward

aD
−p
t

(
aD

−q
t f(t)

)
=

1

Γ(p)

∫ t

a

(t− τ)p−1(aD
−q
t f(τ))dτ

=
1

Γ(p)

∫ t

a

(t− τ)p−1

(
1

Γ(q)

∫ τ

a

(τ − ξ)q−1f(ξ)dξ

)
dτ

=
1

Γ(p)Γ(q)

∫ t

a

∫ τ

a

(t− τ)p−1(τ − ξ)q−1f(ξ)dξdτ.

Changing the order of integration we obtain

aD
−p
t

(
aD

−q
t f(t)

)
=

1

Γ(p)Γ(q)

∫ t

a

f(ξ)

∫ τ

a

(t− τ)p−1(τ − ξ)q−1dτdξ.
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We make the substitution τ−ξ
t−ξ

= ζ from which it follows that dτ = (t− ξ)dζ and the new

interval of integration is [0, 1]. Now we are able to rewrite the last expression as

aD
−p
t

(
aD

−q
t f(t)

)
=

1

Γ(p)Γ(q)

∫ t

a

f(ξ)

(
(t− ξ)p+q−1

∫ 1

0

(1− ζ)p−1ζq−1dζ

)
dξ

=
1

Γ(p)Γ(q)

∫ t

a

f(ξ)
(
(t− ξ)p+q−1B(p, q)

)
dξ.

Using identity (2.3) to express the Beta function in terms of the Gamma function we

obtain

aD
−p
t

(
aD

−q
t f(t)

)
=

1

Γ(p)Γ(q)

Γ(p)Γ(q)

Γ(p + q)

∫ t

a

f(ξ)(t− ξ)p+q−1dξ

=
1

Γ(p + q)

∫ t

a

(t− ξ)p+q−1f(ξ)dξ

= aD
−p−q
t f(t).

2.4.5.2 Fractional differentiation of a fractional integral

An important property of the Riemann-Liouville fractional derivative is

aD
p
t

(
aD

−q
t f(t)

)
=a Dp−q

t f(t), (2.14)

where f has to be continuous and if p ≥ q ≥ 0, the derivative aD
p−q
t f exists. This property

is called the composition rule for the Riemann-Liouville fractional derivatives. We shall

prove this property, but first we need another property which actually is a special case of

the previous one with q = p

aD
p
t

(
aD

−p
t f(t)

)
= f(t), (2.15)

where p > 0 and t > a. This implies that the Riemann-Liouville fractional differentiation

operator is the left inverse of the Riemann-Liouville fractional integration of the same

order p. We prove this in the following way

• First we consider the case p = n ∈ N∗, then we have

aD
n
t

(
aD

−n
t f(t)

)
=

dn

dtn
1

Γ(n)

∫ t

a

(t− τ)n−1f(τ)dτ

=
d

dt

∫ t

a

f(τ)dτ = f(t).
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• For the non-integer case we take k − 1 ≤ p < k and use (2.13) to write

aD
−k
t f(t) =a D

−(k−p)
t

(
aD

−p
t f(t)

)
.

Now using the definition of the Riemann-Liouville differintegral we obtain

aD
p
t

(
aD

−p
t f(t)

)
=

dk

dtk

[
aD

−(k−p)
t

(
aD

−p
t f(t)

)]
=

dk

dtk
[
aD

−k
t f(t)

]
= f(t).

• Now we are able to prove (2.14). We consider two cases. First we’ll deal with

q ≥ p ≥ 0. Then we have

aD
p
t

(
aD

−q
t f(t)

)
=a Dp

t

[
aD

−p
t

(
aD

−(q−p)
t f(t)

)]
=a Dp−q

t f(t).

This follows directly from (2.13) and (2.15). Now we will consider the second case

in which we have p > q ≥ 0. Using (2.13) we see that

aD
p
t

(
aD

−q
t f(t)

)
=

dk

dtk

[
aD

−(k−p)
t

(
aD

−q
t f(t)

)]
=

dk

dtk

(
aD

p−q−k
t f(t)

)
=

dk

dtk

(
aD

−(k−(p−q))
t f(t)

)
= aD

p−q
t f(t).

So in both cases we proved equation (2.14).

Remark 2.4.1. The converse of (2.15) is not true, so aD
−p
t (aD

p
t f(t)) 6= f(t). The proof

for this can be found in (Koning, [10]).

2.5 Examples

This section deals with some examples of fractional derivatives. First we will take a look

at the power function and thereafter explore the exponential function and trigonometric

functions.

2.5.1 The Power Function

The Power function is very important in mathematics since many functions can be

derived from an infinite power series. First we will use the Riemann- Liouville fractional
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integral to compute the integral of order p ∈ R∗
+ of the power function (t− a)β. Plugging

this into the equation gives

aD
−p
t (t− a)β =

1

Γ(p)

∫ t

a

(t− τ)p−1(τ − a)βdτ.

If we make the substitution τ−a
t−a

= ξ from which it follows that dτ = (t − a)dξ and the

new interval of integration is [0, 1], we can rewrite the last expression as

aD
−p
t (t− a)β =

(t− a)β+p

Γ(p)

∫ 1

0

(1− ξ)p−1ξβdξ

=
(t− a)β+p

Γ(p)
B(p, β + 1) (2.16)

=
Γ(β + 1)

Γ(β + p + 1)
(t− a)β+p,

where in the last equation we made use of (2.3). It follows that β > −1.

Next we will compute the derivative of order r ∈ R∗
+ of the same power function (t− a)β

using the Riemann-Liouville fractional derivative.

Again filling in f(t) = (t− a)β gives

aD
r
t (t− a)β =

dk

dtk

(
aD

−(k−r)
t (t− a)β

)
.

Now we are able to use the integral of the power function we have just computed in (2.16).

If we replace the order p by k − r > 0 we can rewrite the last expression as

aD
r
t (t− a)β =

Γ(β + 1)

Γ(β + k − r + 1)

dk

dtk
(t− a)β+k−r

=
Γ(β + 1)

Γ(β − r + 1)
(t− a)β−r, (2.17)

with β > −1.

The following two examples can clarify this using concrete numbers.

Example 2.5.1. The half-derivative of f(x) = x, so in the last expression we set t = x,

a = 0, β = 1 and r = 1
2
. Then we obtain

aD
1
2
t (x− 0)1 =

Γ(1 + 1)

Γ(1− 1
2

+ 1)
(x− 0)1− 1

2

aD
1
2
t x =

Γ(2)

Γ(3)
x

1
2 = 2

√
x

π
.
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Example 2.5.2. The derivative of order 3
4

of f(x) = x2, so again in formula (2.17) we

set t = x, a = 0, but now β = 2 and r = 3
4
. This gives us

aD
3
4
t (x− 0)2 =

Γ(2 + 1)

Γ(2− 3
4

+ 1)
(x− 0)2− 3

4

aD
3
4
t x2 =

Γ(3)

Γ(21
4
)
x

1
4 ≈ 1.76522x

1
4 .

2.5.2 The Exponential Function

Another frequently used function in mathematics is the exponential function. We shall

use the Weyl fractional integral, which is formally equal to the Riemann- Liouville frac-

tional integral [10], to compute the integral of order p ∈ R∗
+ of the function f(t) = exp(λt),

where λ ∈ C, and setting a equal to −∞ gives us

−∞D−p
t exp(λt) =

1

Γ(p)

∫ t

−∞
(t− τ)p−1 exp(λτ)dτ.

This expression can be rewritten as

−∞D−p
t exp(λt) = λ1−p 1

Γ(p)

∫ t

−∞
(λ(t− τ))p−1 exp(λτ)dτ.

If we make the substitution ξ = λ(t−τ) it follows that ξ goes from ∞→ 0 and −λdτ = dξ

so dτ = −λ−1dξ. Now we can rewrite the last expression as

−∞D−p
t exp(λt) = −λ1−p 1

Γ(p)

∫ 0

−∞
ξp−1 exp(λt− ξ)λ−1dξ

= λ1−p 1

Γ(p)

∫ +∞

0

ξp−1 exp(λt− ξ)λ−1dξ

= λ−p exp(λt)

Γ(p)

∫ +∞

0

ξp−1 exp(−ξ)dξ.

Using the Gamma function, we get

−∞D−p
t exp(λt) = λ−p exp(λt)

Γ(p)
Γ(p) = λ−p exp(λt).

The fractional derivative of order p can be obtained in the same way and is given by

−∞Dp
t exp(λt) = λp exp(λt), p ∈ R. (2.18)

Example 2.5.3. Compute the fractional derivative of order α = 1/3 for function f(t) =

e5t.

−∞D
1/3
t (e5t) = 51/3e5t.
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2.5.3 The Trigonometric Functions

In this example we would like to explore the differintegral of the sine and cosine func-

tions. We are able to use the last example since we can write the trigonometric functions

in terms of the exponential function in the following way

sin(t) =
exp(it)− exp(−it)

2i
. cos(t) =

exp(it) + exp(−it)

2
.

First we will explore the Weyl differintegral of order p ∈ R of the sine function

−∞Dp
t sin(t) =−∞ Dp

t

(
exp(it)− exp(−it)

2i

)
.

If we now use the linearity of the Weyl differintegral, which follows directly from the

linearity of the Rieman-Liouville differintegral since they are formally equal, the last

expression can be rewritten as

−∞Dp
t sin(t) =

1

2i
(−∞Dp

t exp(it)−−∞ Dp
t exp(−it)) .

If we now use the expression for the differintegral of the exponential function (2.18) given

in the last example we obtain

−∞Dp
t sin(t) =

1

2i
(ip exp(it)− (−i)p exp(−it)) =

1

2i

(
exp(i

π

2
p) exp(it)− exp(−i

π

2
p) exp(−it)

)
=

1

2i

(
exp(i(t +

π

2
p))− exp(−i(t +

π

2
p))
)

= sin(t +
π

2
p).

The differintegral for the cosine function can be obtained in the same way and is given by

−∞Dp
t cos(t) = cos(t +

π

2
p).

Example 2.5.4. Compute the fractional derivative of order α = 1/2 for function f(t) =

sin(3t). Taking a = −∞,

−∞D
1/2
t (sin(3t)) =

√
3(sin(3t +

π

4
)).

2.6 Applications

We will treat one simple economic example to show how fractional calculus can be

implemented in a commonly used model.



2.6.1 Economic example 37

2.6.1 Economic example

Let’s say a customer buys a product for a price b euro. The customer does not pay

instantly for the product, but chooses to pay off in y months. The interest rate of the

seller is r% per month. The monthly payment the customer is charged is denoted by m

euro. If we define f(τ) to be the remaining debt at the end of the τ th month, it can be

shown that we have

f(τ) = b(1 + r)τ − m

r
[(1 + r)τ − 1]. (2.19)

At τ = y the customer should have payed off his product so then we must have f(y) = 0.

Now we are able to solve (2.19) for m which gives

m =
b(1 + r)yr

(1 + r)y − 1
. (2.20)

Usually this problem can be solved using the following differential equation

f ′(τ)− rf(τ) = −m. (2.21)

If we want to approximate this with a fractional differential equation we rewrite the last

formula and consider

0D
p
t f(τ)− rf(τ) = −m, with 0 < p ≤ 1. (2.22)

As in [10] we can solve this fractional differential equation by taking the Laplace transform

on both sides, and the linearity of the Laplace transform we obtain

L{0D
p
t f(τ)} − L{rf(τ)} = −L{m}

spF (s)−0 Dp−1
t f(0)− rF (s) = −m

s
.

We assume 0D
p−1
t f(0) exists and call it c. Now we are able to solve for F (s) and obtain

F (s) =
c

sp − r
− m

s(sp − r)
.

Using Table 1 ([10], p 23) we take the inverse Laplace transform on both sides and get

fp(τ) = cτ p−1Ep,p(rτ
p)−mτ pEp,p+1(rτ

p). (2.23)

Using the fact that [10]

lim
τ→0+

τ p−1Ep,p(rτ
p) = 1,
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and

lim
τ→0+

τ pEp,p+1(rτ
p) = 0.

Therefore, if we evaluate expression (2.23) in τ = 0 we get

fp(0) = c.

Since fp(τ) denotes the remaining debt at the end of month τ , the last expression can be

seen as the debt at the beginning, which is equal to the price of the product b euro. So

we have b = fp(0) = c and we can rewrite (2.23) as

fp(τ) = bτ p−1Ep,p(rτ
p)−mτ pEp,p+1(rτ

p). (2.24)



Chapter 3

Stochastic Fractional Differential

Equations

The use of fractional orders differential and integral operators in mathematical models

has become increasingly widespread in recent year. Several forms of fractional stochas-

tic differential equations have been proposed in standard models and there has been of

significant interest in studying their solution. In this chapter we shall discuss the global

existence and uniqueness of solution of a class of a Caputo fractional order α ∈ (1
2
, 1)

stochastic differential equations, using a temporally weighted norm and whose coefficients

satisfy a standard Lipschitz condition. The main reference of this chapter is [1, 3, 18].

3.1 Preliminaries

Consider a Caputo fractional stochastic differential equation (for short Caputo FSDE)

of order α ∈ (1
2
, 1) of the following form

CDα

0+X(t) = b(t,X(t)) + σ(t,X(t))
dBt

dt
, (3.1)

where b, σ : [0,∞)×Rd → Rd, are measurable and (Bt)t∈[0,∞) is a standard scalar Brow-

nian motion on an underlying complete filtered probability space (Ω,F ,Ft := {Ft}t∈[0,∞), P).

For each t ∈ [0,∞), let Xt := L2(Ω,Ft, P) denote the space of all Ft− measurable, mean

square integrable functions f = (f1, , ..., fd)
T : Ω → Rd with

39
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‖f‖ms :=

√√√√ d∑
i=1

E(|fi|2) =
√

E‖f‖2,

where Rd is endowed with the standard Euclidean norm.

A process X : [0,∞) → L(Ω,F , P) is said to be Ft− adapted if X(t) ∈ Xt for all

t ≥ 0.

Definition 3.1.1. For each η ∈ X0 a Ft−adapted process X is called a solution of (3.1)

with the initial condition X(0) = η if the following equality holds for t ∈ [0,∞),

X(t) = η +
1

Γ(α)

(∫ t

0

(t− τ)α−1b(τ,X(τ))dτ +

∫ t

0

(t− τ)α−1σ(τ,X(τ))dBτ

)
, (3.2)

where Γ(α) is the Gamma function.

3.2 The main result

In the remaining of this section, we assume that the coefficients b and σ satisfy the

following standard conditions

• (H.1) There exists L > 0 such that for all x, y ∈ Rd, t ∈ [0,∞),

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ L‖x− y‖.

• (H.2) σ(., 0) is essentially bounded, i.e.

‖σ(., 0)‖∞ := esssupτ∈[0,∞)‖σ(τ, 0)‖ < ∞,

and b(., 0) is L2 integrable, i.e.

∫ ∞

0

‖b(τ, 0)‖2dτ < ∞.
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The main result in this chapter is to show the global existence and uniqueness solutions of

(3.1) when (H.1) and (H.2) hold. Furthermore, we also show the continuity dependence

of solutions on the initial values.

Theorem 3.2.1. Suppose that (H.1) and (H.2) hold. Then

• (i) for any η ∈ X0, the initial value problem (3.1) with the initial condition X(0) = η

has a unique global solution on the whole interval [0,∞) denoted by ϕ(., η).

• (ii) on any bounded time interval [0, T ], where T > 0, the solution ϕ(., η) depends

continuously on η, i.e.

lim
ζ→η

sup
t∈[0,T ]

‖ ϕ(t, ζ)− ϕ(t, η) ‖ms= 0.

3.3 Proof of the main result

Our aim in this section is to prove the result on global existence, uniqueness and conti-

nuity dependence on the initial values of solutions to the equation (3.1). In fact, in order

to prove the Theorem 3.2.1 it is equivalent to show the existence and uniqueness solutions

on an arbitrary interval [0, T ], where T > 0 is arbitrary. In what follows we choose and

fix a T > 0 arbitrarily. Let H2([0, T ]) be the space of all Ft-adapted and measurable

processes X such that

‖ X ‖H2=: sup
0≤t≤T

‖ X(t) ‖ms< ∞.

Obviously, H2([0, T ], ‖ . ‖H2), is a Banach space. For any η ∈ X0, we define an operator

τη : H2([0, T ]) → H2([0, T ]) by

τηξ(t) = η +
1

Γ(α)

(∫
t

0

(t− τ)α−1b(τ, ξ(τ))dτ +

∫
t

0

(t− τ)α−1σ(τ, ξ(τ))dBτ

)
. (3.3)

The following lemma is devoted to showing that this operator is well-defined.

Lemma 3.3.1. For any η ∈ X0, the operator τη is well-defined.

Proof: Let ξ ∈ H2([0, T ]) be arbitrary. From the definition of τηξ as in (3.3) and

the inequality ‖x + y + z‖2 ≤ 3(‖x‖2 + ‖y‖2 + ‖z‖2) for all x, y, z ∈ Rd, we have for all
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t ∈ [0, T ],

‖τηξ(t)‖2
ms ≤ ‖3η‖2

ms +
3

Γ(α)2
E

(∥∥∥∥∫ t

0

(t− τ)α−1b(τ, ξ(τ))dτ

∥∥∥∥2
)

+
3

Γ(α)2
E

(∥∥∥∥∫ t

0

(t− τ)α−1σ(τ, ξ(τ))dBτ

∥∥∥∥2
)

. (3.4)

By the Hölder inequality, we obtain

E

(∥∥∥∥∫ t

0

(t− τ)α−1b(τ, ξ(τ))dτ

∥∥∥∥2
)

≤
∫

t

0

(t− τ)2α−2dτE
(∫

t

0

‖b(τ, ξ(τ))‖2dτ

)
=

t2α−1

2α− 1
E
(∫

t

0

‖b(τ, ξ(τ))‖2dτ

)
. (3.5)

From (H.1), we derive

‖b(τ, ξ(τ))‖2 ≤ 2(‖b(τ, ξ(τ))− b(τ, 0)‖2 + ‖b(τ, 0)‖2)

≤ 2L2‖ξ(τ)‖2 + 2‖b(τ, 0)‖2.

Therefore,

E
(∫

t

0

‖b(τ, ξ(τ))‖2dτ

)
≤ 2L2E

(∫
t

0

‖ξ(τ)‖2dτ

)
+ 2

∫
t

0

‖b(τ, 0)‖2dτ

≤ 2L2T sup
t∈[0,T ]

E(‖ξ(t)‖2) + 2

∫
T

0

‖b(τ, 0)‖2dτ,

which together with (3.5) implies that

E

(∥∥∥∥∫ t

0

(t− τ)α−1b(τ, ξ(τ))dτ

∥∥∥∥2
)
≤ 2L2T 2α

2α− 1
‖ξ‖2

H2 +
2T 2α−1

2α− 1

∫
T

0

‖b(τ, 0)‖2dτ. (3.6)

Now, using Itô’s isometry, we obtain

E

(∥∥∥∥∫ t

0

(t− τ)α−1σ(τ, ξ(τ))dBτ

∥∥∥∥2
)

=
∑
1≤i≤d

E
(∫

t

0

(t− τ)α−1σi(τ, ξ(τ))dBτ

)
2

=
∑
1≤i≤d

E
(∫

t

0

(t− τ)2α−2 | σi(τ, ξ(τ)) | 2dτ

)
= E

∫
t

0

(t− τ)2α−2‖σ(τ, ξ(τ))‖2dτ.

From (H.1), we also have

‖σ(τ, ξ(τ))‖2 ≤ 2L2‖ξ(τ)‖2 + 2‖σ(τ, 0)‖2 ≤ 2L2‖ξ(τ)‖2 + 2‖σ(., 0)‖2

∞.
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Therefore, for all t ∈ [0, T ] we have

E
(∥∥∥∥∫ t

0

(t− τ)α−1σ(τ, ξ(τ))dBτ

∥∥∥∥2

)
≤ 2L2E

∫
t

0

(t− τ)2α−2‖ξ(τ)‖2dτ

+ 2‖σ(., 0)‖2

∞

∫
t

0

(t− τ)2α−2dτ

≤ 2L2 T 2α−1

2α− 1
‖ξ‖2

H2 +
2T 2α−1

2α− 1
‖σ(., 0)‖2

∞.

This together with (3.4) and (3.6) implies that ‖τηξ‖H2 < ∞. Hence, the map τη is well-

defined.

To prove existence and uniqueness of solutions, we will show that the operator τη defined

as above is contractive under a suitable temporally weighted norm ( for the same method

to prove the existence and uniqueness of solutions of stochastic differential equations).

Here, the weight function is the Mittag-Leffler function E2α−1(.) defined as

E2α−1(t) =
∞∑

k=0

tk

Γ((2α− 1)k + 1)
, for all t ∈ R.

Lemma 3.3.2. For any α > 1
2

and γ > 0, the following inequality holds

γ

Γ(2α− 1)

∫
t

0

(t− τ)2α−2E2α−1(γτ 2α−1)dτ ≤ E2α−1(γt2α−1).

Proof: Let γ > 0 be arbitrary. Consider the corresponding linear Caputo fractional

differential equation of the following form

cD2α−1

0+ x(t) = γx(t). (3.7)

The Mittag-Leffler function E2α−1(γt2α−1) is a solution of (3.7). Hence, the following

equality holds

E2α−1(γt2α−1) = 1 +
γ

Γ(2α− 1)

∫
t

0

(t− τ)2α−2E2α−1(γτ 2α−1)dτ,

which completes the proof.

Proof of The Theorem 3.2.1: Let T > 0 be arbitrary. Choose and fix a positive

constant γ such that

γ >
3L2(T + 1)Γ(2α− 1)

Γ(α)2
. (3.8)

On the space H2([0, T ]), we define a weighted norm ‖.‖γ as below

‖X‖γ := sup
t∈[0,T ]

√
E(‖X(t)‖2)

E2α−1(γt2α−1)
, for all X ∈ H2([0, T ]). (3.9)
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Obviously, two norms ‖.‖H2 and ‖.‖γ are equivalent. Thus, (H2(0, T ), ‖.‖γ) is also a

Banach space.

• Choose and fix η ∈ X0. By virtue of Lemma 3.3.1, the operator τη is well defined.

We will prove that the map τη is contractive with respect to the norm ‖.‖γ.

For this purpose, let ξ, ξ̂ ∈ H2([0, T ]) be arbitrary. From (3.3) and the inequality

‖x + y‖2 ≤ 2(‖ x ‖ 2+ ‖ y ‖ 2) for all x, y ∈ Rd, we derive the following inequalities

for all t ∈ [0, T ],

E
(∥∥∥∥τηξ(t)− τη ξ̂(t)

∥∥∥∥2

)
≤ 2

Γ(α)2
E

(∥∥∥∥∫ t

0

(t− τ)α−1(b(τ, ξ(t))− b(τ, ξ̂(t)))dτ

∥∥∥∥2
)

+
2

Γ(α)2
E

(∥∥∥∥∫ t

0

(t− τ)α−1(σ(τ, ξ(t))− σ(τ, ξ̂(t)))dBτ

∥∥∥∥2
)

.

Using the Hölder inequality and (H.1), we obtain

E

(∥∥∥∥∫ t

0

(t− τ)α−1(b(τ, ξ(τ))− b(τ, ξ̂(τ)))dτ

∥∥∥∥2
)

≤ L2t

∫ t

0

(t− τ)2α−2E(‖ξ(τ)− ξ̂(τ)‖2)dτ.

On the other hand, by Itô’s isometry and (H1), we have

E

(∥∥∥∥ ∫ t

0
(t− τ)α−1(σ(τ, ξ(τ))− σ(τ, ξ̂(τ)))dBτ

∥∥∥∥2
)

= E
∫ t

0

(t− τ)2α−2‖σ(τ, ξ(τ))− σ(τ, ξ̂(τ))‖2dτ

≤ L2

∫ t

0

(t− τ)2α−2E(‖ξ(τ)− ξ̂(τ))‖2)dτ.

Thus, for all t ∈ [0, T ] we have

E

(∥∥∥∥τηξ(t)− τη ξ̂(t)

∥∥∥∥2
)
≤ 2L2(t + 1)

Γ(α)2

∫ t

0

(t− τ)2α−2E(‖ξ(τ)− ξ̂(τ))‖2)dτ,

which together with the definition of ‖.‖γ as in (3.9) implies that

E

(∥∥∥∥τηξ(t)− τη ξ̂(t)

∥∥∥∥2
)

E2α−1(γt2α−1)
≤ 2L2(t + 1)

Γ(α)2

∫ t

0
(t− τ)2α−2E2α−1(γt2α−1)dτ

E2α−1(γt2α−1)
‖ξ − ξ̂‖2

γ.
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In light of Lemma 3.3.2, we have for all t ∈ [0, T ],

E

(∥∥∥∥τηξ(t)− τη ξ̂(t)

∥∥∥∥2
)

E2α−1(γt2α−1)
≤ 2Γ(2α− 1)L2(T + 1)

Γ(α)2γ
‖ξ − ξ̂‖2

γ.

Consequently,

‖τηξ − τη ξ̂‖γ ≤ κ‖ξ − ξ̂‖γ, where κ :=

√
2Γ(2α− 1)L2(T + 1)

Γ(α)2γ
.

By (3.8), we have κ < 1 and therefore the operator τη is a contractive map on

(H2([0, T ]), ‖.‖γ). Using the Banach fixed point theorem, there exists a unique fixed

point of this map in (H2([0, T ])). This fixed point is also the unique solution of (3.1)

with the initial condition X(0) = η. The proof of this part is complete.

• Choose and fix T > 0 and η, ζ ∈ X0. Since ϕ(., η) and ϕ(., ζ) are solutions of (3.1)

it follows that

ϕ(t, η)− ϕ(t, ζ) = η − ζ +
1

Γ(α)

∫ t

0

(t− τ)α−1(b(τ, ϕ(τ, η))− b(τ, ϕ(τ, ζ)))dτ

+
1

Γ(α)

∫ t

0

(t− τ)α−1(σ(τ, ϕ(τ, η))− σ(τ, ϕ(τ, ζ)))dBτ .

Hence, using the inequality ‖x + y + z‖2 ≤ 3(‖x‖2 + ‖y‖2 + ‖z‖2) for all x, y, z ∈ Rd

and using (H.1), the Hölder inequality and Itô’s isometry, we obtain

E(‖ϕ(t, η)− ϕ(t, ζ)‖2) ≤ 3L2(t + 1)

Γ(α)2

∫ t

0

(t− τ)2α−2E(‖ϕ(t, η)− ϕ(t, ζ)‖2)dτ

+3E(‖η − ζ‖2).

By definition of ‖.‖γ, we have

E(‖ϕ(t, η)− ϕ(t, ζ)‖2)

E2α−1(γt2α−1)
≤ 3L2(t + 1)

Γ(α)2

∫ t

0
(t− τ)2α−2E2α−1(γτ 2α−1)dτ

E2α−1(γτ 2α−1)
×

‖ϕ(., η)− ϕ(., ζ)‖2
γ + 3E(‖η − ζ‖2).

By virtue of Lemma 3.3.2, we have

‖ϕ(., η)− ϕ(., ζ)‖2
γ ≤

3L2(T + 1)Γ(2α− 1)

γΓ(α)2
‖ϕ(., η)− ϕ(., ζ)‖2

γ + 3‖η − ζ‖2
ms.

Thus, by (3.8) we have(
1− 3L2(T + 1)Γ(2α− 1)

γΓ(α)2

)
‖ϕ(., η)− ϕ(., ζ)‖2

γ ≤ 3‖η − ζ‖2
ms.
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Hence,

lim
η→ζ

sup
t∈[0,T ]

‖ϕ(t, η)− ϕ(t, ζ)‖ms = 0.

The proof is complete.



Conclusion

O
ur main goal in this work is the study of the existence and the uniqueness of solu-

tion for a class of fractional stochastic differential equation.

First, we discussed some fundamental notions of stochastic processes and stochastic in-

tegration as well as stochastic differential equations. Next, we introduced the concept

of fractional calculus; the branch of mathematics which explores fractional integrals and

derivatives. Although the history of fractional calculus is three hundred years old, it is

still receiving great interest and acceptance from the research community. In the recent

years new alternative definitions of fractional operators have been introduced in the lit-

erature: Coimbra derivative (2003), Jumarie derivative (2006), Chen derivative (2010),

local fractional Yang derivative (2012).

At last we investigated a global result on the existence and uniqueness of solutions for

Caputo fractional stochastic differential equations of order α ∈ (1/2; 1) whose coefficients

satisfy a standard Lipschitz condition, and using a temporally weighted norm called Bi-

elecki norm. With respect to this norm, it was proved that the operator associated with

the stochastic integral equation is globally contractive and its fixed point gives rise to the

appropriate global solution of the system. Furthermore, we also show that the solutions

depend continuously on the initial values.
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Appendix

I. Banach space

A Banach space is a complete, normed, vector space.

II. Contraction mapping

A map T : X → X is a contraction if for some k ∈ (0, 1),

‖Tx− Ty‖ ≤ k‖x− y‖, for all x, y ∈ X.

The Contraction mapping theorem

Let X be a Banach space and T be a contraction mapping. Then has an unique fixed point.

III. Fixed point

If T : X → X, then a point x ∈ X such that

T (x) = x,

is called a fixed point of T.

IV. Essentially bounded function

The function f is said to be essentially bounded when the function x 7→ |f(x)| has an

almost upper bound. We then note ‖f‖∞ = ess sup |f |.

V. Almost upper bound

Let a measurable space (X,A, µ) and f a function on X with real values. A real a is

called an almost upper bound of f if f(x) ≤ a for almost every element x of X, in other

words, if the set {x ∈ X | f(x) > a} is negligible.
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VI. Weighted Norm

A weighted norm is a finite norm that involves multiplication by a particular function

referred to as the weight.

For example, in the space of functions from a set U ⊂ R to R under the norm ‖ · ‖U

defined by: ‖f‖U = sup
x∈U

|f(x)|, functions that have infinity as a limit point are excluded.

However, the weighted norm ‖f‖ = sup
x∈U

∣∣f(x) 1
1+x2

∣∣ is finite for many more functions, so

the associated space contains more functions.

VII. Hölder Inequality

Let 1 ≤ p ≤ ∞, q be the conjugate exponent of p i.e 1
p

+ 1
q

= 1. Let f ∈ Lp and g ∈ Lq

then f.g ∈ L1 and ‖f.g‖ ≤ ‖f‖p‖g‖q.
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