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"I have always sought knowledge and truth, and believed that in order to

approach God, it is no better here than to seek knowledge and truth .." [Ibn

al-Haytham]

" The study of mathematics, like the Nile, begins in minuteness but ends in

magnificence."[Charles Caleb Colton]

"Go down deep enough into anything and you will find mathematics .." [Dean

Schlicter]
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Abstract

I n the present master thesis, we seek to introduce the mean properties of the grey

Brownian motion and to study the stochastic differential equations driven by general-

ized grey noise.

First, we give some preliminary background of stochastic calculus from the notion of

stochastic processes and stochastic integration to stochastic differential equations. Then

we give an overview of the theory of fractional calculus. We wanted to study a parametric

class of stochastic processes to model both fast and slow anomalous diffusion. This class

called generalized grey Brownian motion (ggBm) which is defined canonically in the so

called grey noise space, then we show that it is possible to define it in an unspecified

probability space. The ggBm is made up of self-similar with stationary increments pro-

cesses (H-sssi) and depends on two real parameters α ∈ (0, 2) and β ∈ (0, 1]. It includes

fractional Brownian motion when α ∈ (0, 2) and β = 1, and standart Brownian motion

when α = β = 1. Then we establish a substitution formula for stochastic differential

equation driven by generalized grey noise.

Key words: Standard Brownian motion. Fractional Brownian motion. Grey noise. Grey

Brownian motion. Stochastic differential equations. Fractional calculus.

7



Résumé

D ans ce travail, nous cherchons à présenter les propriétés du mouvement Brownien

gris, et à étudier les équations différentielles stochastiques dirigées par le bruit gris

généralisé.

Premièrement, nous donnons quelques notions préliminaires sur le calcul stochastique par-

tons de la notion de processus stochastiques et l’intégration stochastique afin de résoudre

des équations différentielles stochastique, puis nous donnons un aperçu sur la théorie du

calcul fractionnaire. Nous voulions étudier une classe paramétrique de processus stochas-

tiques afin de modéliser une diffusion anormale rapide et lente. Cette classe appelée

mouvement Brownien gris généralisé (mBgg) qui est définie canoniquement dans l’espace

de bruit gris, alors nous montrons qu’il est possible de le définir dans un espace de proba-

bilité non spécifié. Le mBgg est constitué de processus auto-similaires avec des incréments

stationnaires (H-asas) et dépend de deux paramètres réels α ∈ (0, 2) et β ∈ (0, 1]. Il com-

prend un mouvement Brownien fractionnaire lorsque α ∈ (0, 2) et β = 1 et le mouvement

Brownien standart lorsque α = β = 1. Ensuite, nous établissons une formule de substitu-

tion pour les équations différentielles stochastiques dirigées par le bruit gris généralisé.

Mots clés: Mouvement Brownien standard. Mouvement Brownien fractionnaire. Bruit

gris. Mouvement Brownien gris. Equation différentielle stochastique. Calcul fraction-

naire.



Introduction

I n recent years fractional Brownian motion and processes related to fractional dynamics

have become an object of intensive study. Mathematically these processes in general

lack both the Markov and the semi-martingale property, so that many of the classical

methods from stochastic analysis do not apply, making their analysis more challenging.

These processes are capable of modeling systems with long-range self interaction and

memory effects by using fractional differential equations.

In 1992 Schneider introduced the notion of grey Brownian motion [31] in order to

solve Caputo fractional differential equation. In the 90’s Mainardi and al [11] started a

systematic study of fractional differential equations, and introduced the generalized grey

Brownian motion (ggBm for short). Mura, Mainardi [23] studied a class of self-similar

stochastic processes with stationary increments to model anomalous diffusion in physics

and they investigate the class of grey Brownian motion [6]. In 2018, Da Silva and Erraoui

[8] studied the singularity of generalized grey Brownian motions with different parameters.

On the other hand, the field of stochastic differential equations and its applications has

gained a lot of importance during the past three decades, mainly because it has become a

powerful tool in modeling several complex phenomena in numerous seemingly diverse and

widespread fields of science and engineering [26]. Recently, there has been a significant

development in the existence and uniqueness of solution of stochastic differential equa-

tions. For more details on this topic, see for example the book of [26].

In contrast to the much attention attracted by stochastic differential equations and

stochastic differential equations driven by fractional Brownian motion, stochastic differ-

ential equations driven by generalized grey Brownian motion is an unknown new subject
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in the literature and there are only a few papers published in this field. Da Silva and

Erraoui [7] studied the existence and the upper bound for the density of solutions of

stochastic differential equations driven by generalized grey noise. Bock and Da Silva [3]

derived solution of a linear Wick-type stochastic differential equation (SDE) driven by

grey Brownian motion in a suitable distribution space.

This Master thesis aims on the one hand, to answer the mentioned above questions

and to construct a comprehensive picture of what grey Brownian motion is? and secondly,

the study of a class of stochastic differential equations deriven by grey noise.

This master thesis consists of three chapters.

The first one is devoted to stochastic calculus. After giving a background on

stochastic calculus starting from the notion of stochastic processes. We move to the def-

inition of stationary processes, self-similarity, H−sssi processes. As an example we give

the mathematical definition of Brownian motion and its properties. After that we intro-

duce Itô calculus and we finish the chapter by a brief overview of stochastic differential

equations.

The Seconde chapter is devoted to a brief summary of the theory of fractional

calculus. We wanted to make an overview of the concepts, basic properties, in the same

time we give a general review on the fractional Brownian motion, we start by mathe-

matical definition then the main properties of this stochastic processes and we finish this

chapter by the main representation of fractional Brownian motion.

The Third chapter is the essence of this master thesis its deal to the stochastic

differential equation via generalized grey Brownian motion, at first we present the gen-

eralized grey Brownian motion it’s definition, properties then we present a global result

about a substituation formula for a class of stochastic differential equation.

Finally, we give a conclusion. In witch we summarize the main results of this work.



Chapter 1

Preliminary Background

This chapter provides theoretical basis for this work. Definitions, properties of stochas-

tic processes are discussed and some of concepts are clarified, such as self-similarity, H-sssi.

There exists a vast literature that treats stochastic process. For more detail, we refer the

reader to [23, 14, 28, 15, 10, 33].

1.1 Basic definitions

In this section we introduce some basic concepts concerning continuous time stochastic

processes used freely later on. Let us fix a probability space (Ω,F ,P) and recall that a

map Z : Ω → R is called a random variable if Z is measurable as a map from (Ω,F)

into (R,B(R)) where B(R) is the Borel σ-algebra on R.

What is a continuous time stochastic process? For us it is simply a family of random

variables:

Definition 1.1.1. Let I = [0, T ] for some T ∈ (0,∞) or I = [0,∞). A family of random

variables X = (Xt)t∈I with Xt : Ω −→ R is called stochastic process with index set I.

The definition of a stochastic process can be given more generally by allowing more

general I and other state spaces than R. In our case there are two different views on the

stochastic process X:

• The family X = (Xt)t∈I describes random functions by ω 7→ f(ω) = (Xt(ω))t∈I .

The function t 7→ Xt(ω) is called path or trajectory of X.

11



1.1 Basic definitions 12

• The family X = (Xt)t∈I describes a process, which is, with respect to the time

variable t, an ordered family of random variables t 7→ Xt.

The two approaches differ by the roles of ω and t.

Definition 1.1.2. Let X = (Xt)t∈I and Y = (Yt)t∈I be stochastic processes on (Ω,F ,P).

The processes X and Y are versions or (modifications) of each other provided that

P(Xt = Yt) = 1, for all t ∈ I.

Definition 1.1.3. Let X = (Xt)t∈I and Y = (Yt)t∈I be stochastic processes on (Ω,F ,P).

The processes X and Y are indistinguishable if and only if

P(Xt = Yt, for all t ∈ I) = 1.

Definition 1.1.4. The finite-dimensional distributions of the real valued stochastic

process Xt = {Xt}t∈I are the measures µt1,...,tk , defined on Rk, such that

µt1,...,tk(A1 × · · · × Ak) = P({Xt1 ∈ A1, · · · , Xtk ∈ Ak}), (1.1)

where k ∈ N and ti ∈ I, i = 1, ..., k a time sequence, {A1, . . . , Ak} are Borel sets on R.

Theorem 1.1.1. Let X = (Xt, t ∈ I) and Y = (Yt, t ∈ I) be two real valued processes.

Then X and Y have the same distribution (or law) if and only if their finite-dimensional

distributions agree.

Proof: See (Watkins, [33]).

Theorem 1.1.2. ([26]) For all {ti}i=1,...,k ⊂ I, k ∈ N let νt1,...,tk be probability measures

on Rk, such that :

1. for all permutations π on {1, 2, . . . , k},

νtπ(1),...,tπ(k)(A1 × ...× Ak) = νt1,...,tk(Aπ−1(1) × · · · × Aπ−1(k)),

2. for any m ∈ N,

νt1,...,tk(A1 × · · · × Ak) = νt1,...,tk,tk+1,...,tk+m(A1 × · · · × Ak × R× · · · × R).
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Then, there exists a probability space (Ω,F ,P) and a real valued stochastic process

X defined on it, such that:

νt1,...,tk(A1 × ...× Ak) = P({Xt1 ∈ A1, ..., Xtk ∈ Ak}),

for any {ti}i=1,...,k ⊂ I, k ∈ N and Ai ∈ B.

Definition 1.1.5. Let (Ω,F ,P) be a probability space. A family of σ-algebras Ft = (Ft)t∈I

is called filtration if Fs ⊆ Ft ⊆ F for all 0 ≤ s ≤ t ∈ I.

The quadruple (Ω,F ,P, (Ft)t∈I) is called stochastic basis.

Definition 1.1.6. Let X = (Xt)t∈I , Xt : Ω→ R be a stochastic process on (Ω,F ,P) and

let (Ft)t∈I be a filtration.

• The process X is called measurable provided that the function (ω, t) → Xt(ω)

considered as map between Ω× I and R is measurable with respect to F ⊗B(I) and

B(R).

• Adapted to the filtration (Ft)t∈I if for each t ∈ I one has that X(t) is Ft-measurable.

Let us recall the notion of a martingale.

Definition 1.1.7. Let X = (Xt)t∈I be (Ft)t∈I-adapted and such that E|Xt| < ∞ for all

t ≥ 0 , X is called martingale provided that for all 0 ≤ s ≤ t ∈ I, one has

E(Xt|Fs) = Xs, a.s.

Definition 1.1.8. Let X = (Xt)t∈I be a stochastic process. The process X is continuous

provided that t 7→ Xt(ω) is continuous for all ω ∈ Ω.

Gaussian processes form a class of stochastic processes used in several branches in

pure and applied mathematics.

Definition 1.1.9. A real-valued stochastic process is called Gaussian of all its finite-

dimensional distributions are Gaussian, in other words, if they are multivariate normal

distributions.
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1.1.1 Stationary processes

Stationarity is a rather intuitive concept, it means that the statistical properties of the

process do not change over time.

Definition 1.1.10. A stochastic process {Xt}t≥0 is said a stationary process if any

collection {Xt1 , Xt2 , . . . , Xtn} has the same distribution of {Xt1+τ , Xt2+τ , . . . , Xtn+τ} for

all t ≥ 0 and each τ ≥ 0. That is,

{Xt1 , Xt2 , . . . , Xtn}
d
= {Xt1+τ , Xt2+τ , . . . , Xtn+τ}.

Definition 1.1.11. A stochastic process {Xt}t≥0 is said a stationary increment process,

shortly si, if for all t ≥ 0 and for any h ≥ 0 :

{Xt+h −Xh}t≥0
d
= {Xt −X0}t≥0. (1.2)

1.1.2 Self-similar processes

Self-similar(shortly ss) processes, introduced by Lamperti [15, 10], are the ones that

are invariant under suitable translations of time and scale. In the last few years there has

been an explosive growth in the study of self-similar processes.

Definition 1.1.12. (Self-similar processes) A real valued stochastic process X = {Xt}t≥0

is said self-similar with index H ≥ 0, shortly H-ss, if for all t ≥ 0 and for any a > 0

{Xat}t≥0
d
= {aHXt}t≥0.

Remark 1.1.1. Observe that, if X is an H-ss process, then all the finite-dimensional

distributions of X in [0,∞[ are completely determined by the distribution in any finite

real interval.

Corollary 1.1.1. For H > 0, H-ss process starts at 0 a.s.

Proof: We have for all a that X0 = Xa0
d∼ aHX0. Then, letting a→ 0, we obtain the

result.

Proposition 1.1.1. Let X = {Xt}t≥0 be a non-degenerate1 stationary process, then X

can not be an H-ss process.
1A process {Xt}t≥0 is said to be degenerate if for any t ≥ 0, Xt = 0 almost surely.
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Proof: Indeed, for any a > 0:

Xt
d
= Xat

d
= aHXt,

by stationarity and self-similarity of the process X. Let a −→ ∞. Then the family

of random variables on the right diverge with positive probability, whereas the random

variable on the left is finite with probability one, leading to a contradiction.

Nevertheless, there is an important connection between self-similar and stationary

processes.

Proposition 1.1.2. Let {Xt}t≥0 be an H-ss process; then the process

Y (t) = e−tHX(et), t ∈ R (1.3)

is stationary. We have the converse, in the sense that if (Yt)t∈R is stationary, then

Xt = tHY (ln(t)), t ≥ 0 (1.4)

is H−ss.

Proof: Let θ1, ....θd be real numbers. If {X(t), 0 < t < ∞} is H-ss, then for any

t1, ...., td ∈ R1 and h > 0,

d∑
j=1

θjY (tj + h) =
d∑
j=1

θje
−tjHe−hHX(ehetj)

d
=

d∑
j=1

θje
−tjHX(etj)

=
d∑
j=1

θjY (tj),

proving that {Y (t), t ∈ R} is stationary.

Conversely, if {Y (t), t ∈ R} is stationary, then for t1, ...., td > 0 and a > 0
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d∑
j=1

θjX(atj) =
d∑
j=1

θja
HtHj Y (ln(a) + ln(tj))

d
=

d∑
j=1

θja
HtHj Y (ln(tj))

=
d∑
j=1

θja
HX(tj),

proving that {X(t), t > 0} is H-ss.

The transformation defined by (1.3) is called the Lamperti transformation.

1.1.3 H-sssi processes

Definition 1.1.13. A stochastic process X = {Xt}t∈I , F-adapted, which is H-ss with

stationary increments, is said H-sssi process with exponent H.

In the following we always suppose that E(X2
t ) < ∞, t ∈ I. let X = {Xt}t∈I , F -

adapted, be an H-sssi process with finite variance 2, the following properties hold:

1. X0 = 0 almost surely.

2. If H 6= 1, then for any t ≥ 0, E(Xt) = 0.

3. One has:

X(−t) d
= −X(t),

it follows from the first property and the stationarity of the increments:

X(−t) a.s.
= X(−t)−X(0)

d
= X(0)−X(t)

a.s.
= −X(t).

The above property allows us to extend the definition of an H-sssi process to the

whole real line (i.e {Xt}t∈R).

4. Let σ2 = E(X2
1 ). Then,

E(X2
t ) = |t|2Hσ2. (1.5)

2We always consider finite variance H-sssi process because it have many interesting properties.
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Indeed, from the third property and the self-similarity:

EX(t)2 = EX2(|t|sign(t)) = |t|2HEX2(sign(t)) = |t|2HE(X2
1 ) = |t|2Hσ2.

5. The autocovariance function of an H-sssi process 3 X, with E(X2
1 ) = σ2, turns out

to be:

γHs,t =
σ2

2
(|t|2H + |s|2H − |t− s|2H). (1.6)

It follows from the fourth property and the stationarity of the increments

E(XsXt) =
1

2
(EX2

s + EX2
t − E(Xt −Xs)

2).

6. If X = {Xt}t∈I is an H-sssi process, then one must have H ≤ 1.

The constraint of the scaling exponent follows directly from the stationarity of the

increments:

2HE|X1| = E|X2| = E|X2 −X1 +X1| ≤ E|X2 −X1|+ E|X1| = 2E|X1|,

therefore, 2H ≤ 2⇐⇒ H ≤ 1.

Remark 1.1.2. The case H = 1 corresponds a.s. to Xt = tX1. Indeed, on the L2(Ω,P)

norm:

E(Xt − tX1)2 = E(X2
t + t2X2

1 − 2tXtX1) = σ2(2t2 − 2t2) = 0.

1.1.4 The basic examples of stochastic processes, The Brownian

motion

The most important stochastic process is the Brownian motion. It was first discussed

by Louis Bachelier in 1900, and independently by Einstein in his 1905 paper. The modern

mathematical treatment of Brownian motion (abbreviated to BM), also called the Wiener

process is due to Wiener in 1923, who proved that there exists a version of BM with con-

tinuous paths. Note that BM is a Gaussian process, a Markov process and a martingale.

Hence its importance in the theory of stochastic process. It serves as a basic building

block for many more complicated processes. For further history of Brownian motion and

related processes we cite Meyer [19], Klebaner [14] and Pitman [28].
3Sometimes, we refer to the H-sssi process {Xt}t∈I with the word standard if σ2 = 1
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1.1.4.1 Definition of Brownian Motion

We now start to define and study Brownian motion (Wiener process).

Definition 1.1.14. (Brownian motion) A stochastic process {B(t), t ≥ 0} is said to

be a Brownian motion with variance parameter σ2 > 0 if:

(i) B(0) = 0.

(ii) (Independent increments.) For each 0 ≤ t1 < t2 < . . . < tm,

B(t1), B(t2)−B(t1), . . . , B(tm)−B(tm−1),

are independent r.v.’s.

(iii) (Stationary increments.) For each 0 ≤ s < t,B(t)−B(s) has a normal distribu-

tion with mean zero and variance σ2(t− s).

(iv) (Continuity of paths.) {B(t)}t≥0 are continuous functions of t.

Remark 1.1.3. • Notice that the natural filtration of the Brownian motion is FBt =

σ(Bs, s ≤ t).

• If σ2 = 1, we said that {B(t) : t ≥ 0} is a standard Brownian motion.

1.1.4.2 Properties of Brownian motion

1- Martingale property

A martingale is a very special type of stochastic process.

Lemma 1.1.1. An Ft-Wiener process Bt is an Ft-martingale.

Proof: We need to prove that E(Bt|Fs) = Bs for any t > s. But as Bs is Fs-

measurable (by adaptedness) this is equivalent to E(Bt − Bs|Fs) = 0, and this is clearly

true by the definition of the Wiener process (as Bt−Bs has zero mean and is independent

of Fs).

2- Markov property

The reason why Markov processes are so important comes from the fact that they are

fundamental class of stochastic processes, with many applications in real life problems

outside mathematics.
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Definition 1.1.15. An Ft adapted process Xt is called an Ft-Markov process if we have

E(f(Xt)|Fs) = E(f(Xt)|Xs) for all t ≥ s and all bounded measurable functions f . When

the filtration is not specified, the natural filtration FXt is implied.

Lemma 1.1.2. An Ft-Wiener process Bt is an Ft-Markov process.

Proof: We refer the reader to (Klebaner, [14]).

3- Self-similarity

Theorem 1.1.3. B is an H-ss process with H = 1/2.

Proof: It is enough to show that for every a > 0, {a1/2B(t)} is also Brownian motion.

Conditions (i), (ii) and (iv) follow from the same conditions for {B(t)}. As to (iii), Gaus-

sianity and mean-zero property also follow from the properties of {B(t)}.

As to the variance, E
[(
a1/2B(t)2

)]
= t. And for all t1, t2 ∈ R, the autocovariance func-

tion E [(B(at1)B(at2))] = min(at1, at2) = amin(t1, t2) = E
[(
a1/2B(t1)a1/2B(t2)

)]
. Thus

{a1/2B(t)} is a Brownian motion.

4- Non-differentiability

Theorem 1.1.4. For any t almost all trajectories of Brownian motion are not differen-

tiable at t.

Proof: We refer the reader to (Klebaner, [14]).

5- Hölder continuity

Proposition 1.1.3. Brownian motion paths are a.s locally γ-Hölder continuous for γ ∈

[0, 1/2).

Proof: We refer the reader to (Klebaner, [14]).

6- Quadratic variation

Definition 1.1.16. The quadratic variation of Brownian motion B(t) is defined as

[B,B](t) = [B,B]([0, t]) = lim
n→∞

n∑
i=1

∣∣∣∣Btni
−Btni−1

∣∣∣∣2,
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where for each n, {tni , 0 ≤ i ≤ n} is a partition of [0, t], and the limit is taken over all

partitions with δn = maxi(t
n
i+1 − tni ) → 0 as n → ∞, and in the sense of convergence in

probability.

Theorem 1.1.5. (Klebaner, [14]). Quadratic variation of a Brownian motion over [0, t]

is t.

1.2 Introduction to stochastic integration

Let us consider the filtered probability space (Ω,F ,Ft,P), where {Ft}t≥0 is the natural

filtration of the Bm B(t), t ≥ 0.

Definition 1.2.1. Let V(S, T ) be the class of real measurable functions f(t, ω), defined

on [0,∞)× Ω, such that:

1. f(t, ω) is Ft-adapted.

2. E
(∫ T

S

f(t, ·)2dt

)
<∞.

1.2.1 Itô integral

1.2.1.1 Itô integral definition

Let f ∈ V(S, T ). We want to define the Itô integral of f in the interval [S, T ). Namely:

I(f)(ω) =

∫ T

S

f(t, ω)dBt(ω), (1.7)

where Bt is a standard (E(B(1)2) = 1) one dimensional Brownian motion. We begin

defining the integral for a special class of functions:

Definition 1.2.2. (Simple functions) A function φ ∈ V(S, T ) is called simple function

(or elementary), if it can be expressed as a superposition of characteristic functions.

φ(t, ω) =
∑
k≥0

ek(ω)1[tk,tk+1)(t). (1.8)

Definition 1.2.3. Let φ ∈ V(S, T ) be a simple function of the form of (1.8) , then we

define the stochastic integral:∫ T

S

φ(t, ω)dBt =
∑
k≥0

ek(ω)(Btk+1
−Btk)(ω). (1.9)
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Lemma 1.2.1. (Ito isometry, [23]) Let φ ∈ V(S, T ) be a simple function, then:

E

((∫ T

S

φ(t, ·)dBt

)2
)

= E
(∫ T

S

φ(t, ·)2dt

)
. (1.10)

Remark 1.2.1. Observe that (1.10) is indeed an isometry. In fact, it can been written

as equality of norms in L2 spaces:∥∥∥∥∫ T

S

φ(t, ·)dBt

∥∥∥∥
L2(Ω,P)

= ‖φ‖L2([S,T ]×Ω) .

We have the following important proposition.

Proposition 1.2.1. Let f ∈ V , then there exists a sequence of simple functions

φn ∈ V , n ∈ N, which converges to f in the L2-norm. Namely,

lim
n−→∞

∫ T

S

E
(
(f(t, ·)− φn(t, ·))2

)
dt = lim

n−→∞
||f − φn| |2L2([S,T ]×Ω) = 0. (1.11)

Proof: See (Mura, [23]).

Definition 1.2.4. (Itô integral) Let f ∈ V(S, T ) the Itô integral from S to T of f is

defined as the L2(Ω,P) limit:

I(f) =

∫ T

S

f(t, ω)dBt(ω) = lim
n−→∞

∫ T

S

φn(t, ω)dBt(ω), (1.12)

where φn ∈ V, n ∈ N, is a sequence of simple functions which converges to

f ∈ L2([S, T ]× Ω).

Remark 1.2.2. Observe, in view of (1.11), that the definition above does not depend on

the actual choice of {φn, n ∈ N}.

By definition, we have that Itô isometry holds for Itô integrals:

Corollary 1.2.1. (Itô isometry for Ito integrals, [23]) Let f ∈ V(S, T ), then:

E

((∫ T

S

f(t, ·)dBt

)2
)

= E
(∫ T

S

f (t, ·) dt
)
. (1.13)

Corollary 1.2.2. (Mura, [23]) If fn(t, ω) ∈ V(S, T ) converges to f(t, ω) ∈ V(S, T ) as

n −→∞ in the L2([S, T ]× Ω)-norm, then:∫ T

S

fn(t, ·)dBt −→
∫ T

S

f(t, ·)dBt, (1.14)

in the L2(Ω,P)-norm.
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1.2.1.2 Properties of the Itô integral

Proposition 1.2.2. (Mura, [23]) Let f, g ∈ V(0, T ) and let 0 ≤ S < U < T . Then:

1.
∫ T

S

fdBt =

∫ U

S

fdBt +

∫ T

U

fdBt.

2. For some constant a ∈ R,
∫ T

S

(af + g)dBt = a

∫ T

S

fdBt +

∫ T

S

gdBt.

3. E
[∫ T

S

fdBt

]
= 0.

4.
∫ T

S

fdBt is FT -measurable.

5. The process Mt(ω) =

∫ T

0

f(t, ω)dBs(ω) where f ∈ V(0, T ) for any t > 0, is a

martingale with respect to Ft.

1.2.2 Extensiens of Itô integral

The construction of the Itô Integral can be extended to a class of function f(t, ω) which

satisfies a weak integration condition. This generalization is indeed necessary because it

is not difficult to find functions which do not belong to V . Therefore, we introduce the

following class of functions

Definition 1.2.5. Let W(S, T ) be the class of real measurable functions f(t, ω), defined

on [0,∞)× Ω, such that

1. f(t, ω) is Ft-adapted.

2. P
(∫ T

S

f(t, ·)2dt <∞
)

= 1.

In the construction of stochastic integrals for the class of functions belonging to Ω

we can no longer use the L2 notion of convergence, but rather we have to use convergence

in probability. In fact, for any f ∈ B, one can show that there exists a sequence of simple

functions φn ∈ W such that ∫ T

S

|φn(t, ·)− f(t, ·)|2dt −→ 0, (1.15)

in probability. For such a sequence one has that the sequence
{∫ T

S

φn(t, ω)dBt(ω), n ∈ N
}

converges in probability to some random variable. Moreover, the limit does not depends

on the approximating sequence φn.
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Definition 1.2.6. (Itô integral II) Let f ∈ W(S, T ). The Itô integral from S to T of f

is defined as the limit in probability:∫ T

S

f(t, ω)dBt(ω) = lim
n−→∞

∫ T

S

φn(t, ω)dBt(ω), (1.16)

where φn ∈ W , n ∈ N, is a sequence of simple functions which converges to f in probability.

Remark 1.2.3. Note that this integral is not in general a martingale. However, it is a

local martingale.

1.3 Stochastic Differential Equations

We call stochastic differential equation (SDE) an equation of the form

dXt = b(t,X(t))dt+ σ(t,X(t))dB(t), X|t=0 = x, (1.17)

where (Bt)t≥0 is a d-dimensional Brownian motion on a filtered probability space

(Ω,F ,Ft,P), x is F0-measurable, b : [0, T ] × Rd → Rd and σ : [0;T ] × Rd → Rd×d

have some regularity specified case by case and the solution (Xt)t≥0 is a d-dimensional

continuous adapted process. The meaning of the equation (1.17) is identic to

Xt = x+

∫ t

0

b(s,X(s))ds+

∫ t

0

σ(s,X(s))dB(s). (1.18)

If there exists a stochastic process Xt that satisfies this equation, we say that it solves

the stochastic differential equation.

The main goal of this section is to find conditions on the coefficients b an σ that

guarantee the existence and uniqueness of solutions.

However, there are a number of subtle points involved:

• First, the existence of the integrals in (1.18) requires some degree of regularity on

Xt and the functions b and σ; in particular, it must be the case that for all t ≥ 0,

with probability one,
∫ t

0
|b(s,X(s))|ds <∞ and

∫ t
0
σ2(s,X(s))ds <∞.
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• Second, the definition requires that the process Xt live on the same probability space

as the given Wiener process Bt, and that it be adapted to the given filtration. It

turns out that for certain coefficient functions b and σ, solutions to the stochastic

integral equation (1.18) may exist for some Wiener processes and some admissible

filtration but not for others.

– The solution is a strong solution if it is valid for each given Wiener process

(and initial value), that is it is sample pathwise unique.

– A solution is a weak solution if it is valid for given coefficients, but unspecified

Wiener process, that is its probability law is unique.

More precisely.

Definition 1.3.1. Let (Bt)t≥0 be a standard Brownian motion on a probability space

(Ω,F ,P) with an admissible filtration F = {Ft}t≥0. A strong solution of the stochastic

differential equation (1.18) with initial condition x ∈ R is an adapted process Xt with

continuous paths such that for all t ≥ 0,

X(t) = x+

∫ t

0

b(s,X(s))ds+

∫ t

0

σ(s,X(s))dB(s).

Definition 1.3.2. A weak solution of the stochastic differential equation (1.18) with

initial condition x is a continuous stochastic process Xt defined on some probability space

(Ω,F ,P) such that for some Wiener process Bt and some admissible filtration Ft the

process X(t) is adapted and satisfies the stochastic integral equation (1.18).

Let us come to uniqueness. Similarly to existence, there are two concepts.

Definition 1.3.3. (pathwise uniqueness) We say that pathwise uniqueness holds for

equation (1.18) if, given any filtered probability space (Ω,F ,Ft,P) with a Brownian motion

(Bt)t≥0 given any deterministic initial condition X0 = x, if (X
(1)
t )t≥0 and (X

(2)
t )t≥0 are

two continuous Ft-adapted process which fulfill (1.18), then they are indistinguishable.

Definition 1.3.4. (uniqueness in law) We say that there is uniqueness in law for

equation (1.17) if a given two weak solutions on any pair of spaces, their laws coincide.

Theorem 1.3.1. If the coefficients b and σ satisfy the following conditions:
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1. A Lipschitz condition in x and y. ∃K, ∀x ∈ Rn,∀y ∈ Rn,∀t ≥ 0 :

‖b(t, x)− b(t, y)‖+ ‖σ(t, x)− σ(t, y)‖ ≤ K‖x− y‖.

2. A linear growth condition: ∃K, ∀x ∈ Rn, ∀t ≥ 0 :

‖b(t, x))‖+ ‖σ(t, x)‖ ≤ K(1 + ‖x‖).

Then there exists a unique strong solution X to the stochastic differential equation (1.17)

with continuous trajectories and there exists a constant C such that

E[‖Xt‖2] ≤ CeCt(1 + ‖x‖2).

Proof: See (Øksendal, [26]).



Chapter 2

Fractional Calculus

Fractional calculus is a field of applied mathematics that deals with derivatives and

integrals of arbitrary orders. During the last three decades fractional calculus has been

applied to almost every field of mathematics, science, biology, engineering and technol-

ogy. Our aim in this chapter is to introduce some very elementary facts about fractional

calculus then we discuss the definition and the well-known properties of the fractional

Brownian motion. In this section, we have taken definitions and used notions from

[1, 5, 9, 15, 18, 21, 20, 27, 29].

2.1 Useful Mathematical Functions

Before looking at the definition of fractional integrals or derivatives, we will first discuss

some useful mathematical definitions that are inherently tied to fractional calculus and

will commonly be encountered.

2.1.1 The Gamma Function

The Gamma function, denoted by Γ(x), is a generalization of the factorial function n!

and defined as.

Γ(x) =

∫ ∞
0

tx−1e−tdt, x ∈ R. (2.1)

Some of the basic properties of Γ function, are:

26
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Γ(1) = Γ(2) = 1

Γ(x+ 1) = xΓ(x) x ∈ R+

Γ(n) = (n− 1)! n ∈ N∗

From the above we can get:


Γ(1

2
) =
√
π

Γ(5
2
) = 3

2
Γ(3

2
) = 3

2
1
2
Γ(1

2
) = 3

4

√
π

Γ(−3
2

) =
Γ(−3

2
+ 1)
−3
2

=
Γ(−1

2
)

−3
2

=
Γ(1

2
)

−3
2
−1
2

=
4

3

√
π

2.1.2 The Mittag-Lefler Function

The Mittag-Leffler function is named after a Swedish mathematician who defined and

studied it in 1903. The function is a direct generalization of the exponential function, it

plays a major role in fractional calculus. Firstly, we introduce one parameter function by

using series, namely

Eα(x) =
∞∑
k=0

xk

Γ(αk + 1)
, α > 0. (2.2)

Then, we define the Mittag-Leffler function with two parameters, as:

Eα,β(x) =
∞∑
k=0

xk

Γ(αk + β)
, α, β > 0. (2.3)

Note that Eα,β(0) = 1. Also, for some specific values of α, and β, the Mittag-Leffler

function reduces to some familiar functions. Namely:

E1,1(x) =
∞∑
k=0

xk

Γ(k + 1)
=
∞∑
k=0

xk

k!
= exp(x),

E1,2(x) =
∞∑
k=0

xk

Γ(k + 2)
=
∞∑
k=0

xk

(k + 1)!
=

1

x

∞∑
k=0

xk+1

(k + 1)!
=

exp(x)− 1

x

E1,3(x) =
∞∑
k=0

xk

Γ(k + 3)
=
∞∑
k=0

xk

(k + 2)!
=

1

x2

∞∑
k=0

xk+2

(k + 2)!
=

exp(x)− 1− x
x2

E1,m(x) = 1
xm−1 [exp(x)−

m−2∑
k=0

xk

k!
]

E2,1(−x2) =
∞∑
k=0

(−x2)k

Γ(2k + 1)
=
∞∑
k=0

(−1)kx2k

(2k)!
= cos(x)

E2,2(−x2) =
∞∑
k=0

(−x2)k

Γ(2k + 2)
=
∞∑
k=0

(−1)kx2k+1

x(2k + 1)!
=

sin(x)

x
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2.2 Fractional Derivatives and Integrals

This section is devoted to review three important definitions of fractional derivatives

and integrals.

2.2.1 Grünwald-Letnikove, 1867-1868

Grünwald-Letnikov derivative is a basic extension of the natural derivative to fractional

one. It was introduced by A. Grünwald in 1867, and then by A. Letnikov in 1868. Hence,

it is written as

Definition 2.2.1. Let α ∈ (0, 1) be fixed and let f : R → R be a given function. The

R-Grünwald-Letnikov derivative of order α of f is defined, respectively as:

Dα
+f(t) = lim

h→0
h−α

[ t−a
h

]∑
j=0

(−1)j

 α

j

 f(t− jh).

We recall that the binomial coefficients can be defined as:

 α

n

 = α!
n!(α−n)!

.

2.2.2 Riemann-Liouville definition

The Riemann-Liouville Operator is still the most frequently used when fractional inte-

gration is performed. which is considered as a direct generalization of Cauchy’s formula

for an n-times integral :∫ x

a

dx1

∫ x1

a

dx2...

∫ xn−1

a

f(xn)dxn =
1

(n− 1)!

∫ x

a

f(t)

(x− t)1−ndt. (2.4)

Example 2.2.1. let f(x) = x, n = 3 and a = 0 then (2.4) becomes∫ x

0

∫ x1

0

∫ x2

0

x3dx3x2x1 =
1

2!

∫ x

0

t

(x− t)−2
dt, (2.5)

and by integration one gets
1

2!

∫ x

0

t

(x− t)−2
dt =

x4

4!
. (2.6)

Since (n− 1)! = Γ(n), Riemann realized that (2.4) might have meaning even when n

takes non-integer values. Thus perhaps it was natural to define fractional integration as

follows.
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Definition 2.2.2. Let f ∈ L1([a, b]) and a ≤ x ≤ b then

Iαa+f(x) :=
1

Γ(α)

∫ x

a

f(t)

(x− t)1−αdt,

Iαb−f(x) :=
1

Γ(α)

∫ b

x

f(t)

(t− x)1−αdt,

are called the Riemann-Liouville fractional integral of order α > 0.

Lemma 2.2.1. (Miller, [20]) Assuming arbitrary function f and m,n ≥ 0 the following

equations hold .

1. Semi-group property:

Ima I
n
a f = Im+n

a f.

2. Commutative property:

Ima I
n
a f(x) = Ina I

m
a f(x).

Definition 2.2.3. Let f ∈ L1([a, b]) and a ≤ x ≤ b then

Dα
a+f(x) :=

1

Γ(1− α)

d

dx

∫ x

a

f(t)

(x− t)α
dt,

Dα
b−f(x) :=

1

Γ(1− α)

d

dx

∫ b

x

f(t)

(t− x)α
dt,

which is called the Riemann-Liouville fractional derivative of order 0 < α < 1.

To find a profound understanding of Riemann-Liouville derivative, some of the most

crucial properties of this operator are mentioned in the following:

Lemma 2.2.2. (Miller, [20]) Let f1 and f2 are two functions on [a, b] as well as c1, c2 ∈

R, n > 0, and m > n. Regarding these, the following equations hold

1. Linearity rules:

RLDn
a (f1 + f2) =RL Dn

af1 +RL Dn
af2,

RLDn
a (c1f1) = cRL1 Dn

a (f1).

2. Zero rule:

D0f = f.
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3. Product rule:

RLDq
t (fg) =

∞∑
j=0

(
q

j

)
RLDj

t (f)RLDq−j
t (g).

4. In the general, semi-group property does not hold for Riemann-Liouville fractional

derivative. Indeed, the following equation is not always true.

RLDa RLDbf =RL Da+bf.

2.2.3 Caputo definition

Since Riemann-Liouville fractional derivatives failed in the description and modeling of

some complex phenomena, Caputo derivative was introduced in 1967.

Definition 2.2.4. The Caputo derivative of fractional order a (n − 1 ≤ α < n) of a

function f is defined as

C
aD

α
t f(t) =

1

Γ(α− n)

∫ t

a

f (n)(τ)dτ

(t− τ)α+1−n , (n− 1 ≤ α < n)

C
b D

α
t f(t) =

1

Γ(α− n)

∫ b

t

f (n)(τ)dτ

(τ − t)α+1−n , (n− 1 ≤ α < n)

Let f is a enough differentiable function, c1, c2 ∈ R, and m > n ≥ 0. The following

proprieties are satisfies

1. Caputo derivative is the left inverse of Riemann-Liouville integral.

CDn
aI

n
a f = f.

2.

Ina
CDn

af(x) = f(x)−
m−1∑
k=0

Dkf(a)

k!
(x− a)k.

3. Linearity:
CDn

a (c1f1 + c2f2) = c1(CDn
af1) + c2(CDn

af2).

4. Leibniz equation

CDn
a [fg](x) =

(x− a)−n

Γ(1− n)
g(a)(f(x)− f(a)) + (CDn

ag(x))f(x)

+
∞∑
k=1

(
n

k

)
(Ik−na g(x))CDk

af(x).
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5. The semi-group property, the following equation holds,

CDα
a

CDβ
af =C Dα+βf.

2.3 Fractional Brownian motion

Among all the fractional stochastic processes applied to modeling natural and manmade

systems, fractional Brownian motion (fBm) can be regarded as the most widely used. This

process was first introduced by Kolmogorov in 1940, and studied by Mandelbrot and Van

Ness in 1968. The fBm is a generalization of Brownian motion where a stochastic integral

representation in terms of a standard Brownian motion was established.

Definition 2.3.1. A Gaussian Process BH
t = {BH(t), t ≥ 0} is called a fractional Brow-

nian motion (fBm) of Hurst index H ∈ (0, 1) if it has mean zero with covariance function

RH(t, s) = E[BH(t)BH(s)] =
1

2
(t2H + s2H − |t− s|2H). (2.7)

In the next paragraph we list several properties of the fractional Brownian motion

that are of our main interest.

• For H = 1, we set BH
t = B1

t = tξ, where ξ is a standard normal random variable.

• For H = 1
2
, BH

t is the standard Wiener process.

• For H > 1/2, increments BH
t − BH

s for any 0 ≤ s < t are positively correlated and

conversely for H < 1/2 the increments are negatively correlated.

Hence the following three properties are obtained through RH(t, s) in Definition 2.3.1.

1. Self-similarity: {a−HBH(at), t ≥ 0} has the same law as {BH(t), t ≥ 0}.

2. Stationary increments: BH(t+s)−BH(t) has the same law as BH(t) for s, t ≥ 0.

3. Variance: E[BH(t)2] = t2H , for all t ≥ 0.

Proof: By definition E[BH(t)] = 0 and hence E[a−HBH(at)] = 0 also.
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1. Thus to show that both processes have the same probability distribution, it is suf-

ficient enough to show that they both have the same covariance. Let a > 0 and

s, t ≥ 0.

E[a−HBH(at)a−HBH(as)] = a−2HE[BH(at)BH(as)]

=
1

2
a−2H [(at)2H + (as)2H− | at− as |2H ]

=
1

2
a−2Ha2H [(t)2H + (s)2H− | t− s |2H ]

=
1

2
[(t)2H + (s)2H− | t− s |2H ]

= E[BH(t)BH(s)].

And thus fBm is self-similar.

2. Again, since E[BH(t + s) − BH(t)] is clearly zero, it suffices to show that both

processes have equal covariance. Let r, s, t ≥ 0, then

E[(BH(t+ s)−BH(s))(BH(r + s)−BH(s))] = E[BH(t+ s)BH(r + s)]

− E[BH(t+ s)BH(s)]

− E[BH(s)BH(r + s)] + E[BH(s)BH(s)]

=
1

2
((t+ s)2H + (r + s)2H− | t− r |2H)

− 1

2
([(t+ s)2H + s2H − t2H ])

− 1

2
([s2H + (r + s)2H − r2H ] + [s2H + s2H ])

=
1

2
(t2H + r2H− | t− r |2H)

= E[BH(t)BH(r)].

Hence fBm has stationary increments.

3. E[BH(t)2] = E[BH(t)BH(t)] = 1
2
(t2H + t2H − |t− t|2H) = t2H .

2.3.1 Long range dependency

Define X(n) = BH(n+ 1)−BH(n), n ≥ 1. Then clearly X(n) is a Gaussian stationary

sequence with unit variance. Moreover the covariance function of X(t) is

rH(n) = E[X(0)X(n)] = 1/2((n+ 1)2H − 2n2H + (n− 1)2H).
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If H = 1/2 then we get that r(n) = 0 implying that the increments of X(n) are uncorre-

lated.

But, if H 6= 1/2, we get that as n tends to infinity rH(n) v H(2H − 1)n2H−2. Thus

we get

• If 0 < H < 1/2 then
∑∞

n=0 |rH(n)| <∞.

• If 1/2 < H < 1 then
∑∞

n=0 |rH(n)| = ∞, in this case the process BH is a long

memory process.

2.3.2 Hölder continuity

We recall that according to the Kolmogorov criterion (Klebaner, [14]), a process X =

(Xt)t∈R admits a continuous modification if there exist constants α ≥ 1 , β > 0, and k > 0

such that

E
[
|X(t)−X(s)|α

]
≤ k|t− s|1+β,

for all s, t ∈ R.

Theorem 2.3.1. Let H ∈ (0, 1). The fbm BH admits a version whose sample paths are

almost surely Hölder continuous of order strictly less than H.

Proof: We recall that a function f : R −→ R is Hölder continuous of order α,

0 < α ≤ 1 and write f ∈ Cα(R), if there exists M > 0 such that

|f(t)− f(s)| ≤M |t− s|α,

for every s, t ∈ R. For any α > 0 we have

E
[
|BH(t)−BH(s)|α

]
= E

[
|BH(1)|α

]
|t− s|αH .

2.3.3 Path differentiability

By (Maslowski, [17]) we also obtain that the process BH is not mean square differen-

tiable and it does not have differentiable sample paths.
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Proposition 2.3.1. Let H ∈ (0, 1). The fBm sample path BH(.) is not differentiable. In

fact, for every t0 ∈ [0,∞)

lim
t→t0

sup

∣∣∣∣BH(t)−BH(t0)

t− t0

∣∣∣∣ =∞,

with probability one.

Proof: Here we recall the proof of (Maslowski, [17]). Note that we assume BH(0) = 0.

The result is proved by exploiting the self-similarity of BH . Consider the random variable

Rt,t0 :=
BH(t)−BH(t0)

t− t0
,

that represents the incremental ratio of BH . Since BH is self-similar see(Biagini, [1]), we

have that the law of Rt,t0 is the same of (t− t0)H−1BH(1). If one considers the event

A(t, w) :=

{
sup

0≤s≤t

∣∣∣∣BH(s)

s

∣∣∣∣ > d

}
,

then for any sequence (tn)n∈N decreasing to 0, we have

A(tn, w) ⊇ A(tn+1, w),

and

A (tn, w) ⊇
(∣∣∣∣BH(tn)

tn

∣∣∣∣ > d

)
=
(
|BH(1)| > t1−Hn d

)
.

But,

lim
n−→∞

(
|BH(1)| > t1−Hn d

)
.

Since this is true for any d, it must be the case that the derivative does not exist at any

point along any sample path of BH(t).

2.3.4 Non semi-martingale property

The definition of the Itô integral is a direct consequence of the martingale property

of Brownian motion. But fBm does not exhibit this property, in fact, fBm is not even

a semi-martingale. There are many different proofs revealing this fact. We state the

theorem and present a simple proof here. But first, we need to find the p-variation of BH .

Definition 2.3.2. The p-variation of a stochastic process (X(t))t∈[0,T ]is defined as

Vp(X, [0, T ]) := supπ

n∑
i=1

|X(ti)−X(ti−1)|p, (2.8)
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where π is a finite partition of [0, T ]. The index of p-variation of a process is defined to

be

I(X, [0, T ]) := inf
{
p > 0;Vp(X, [0, T ]) <∞

}
. (2.9)

Lemma 2.3.1. I(BH , [0, T ]) = 1
H

Moreover, Vp(BH(t), [0, T ]) = 0 when pH > 1 and

Vp(BH(t), [0, T ]) =∞ when pH < 1.

Proof: A proof can be found in see(Biagini, [1]).

This can be seen when we take into consideration that

E[|BH(ti)−BH(ti−1)|p] = E[|BH(1)|p]|ti − ti−1|pH ,

and plugging this into (2.8) and applying (2.9).

Theorem 2.1. {BH(t) : t ≥ 0}, for H 6= 1/2, is not semimartingale.

Proof: A process {X(t), t ≥ 0} is called a semimartingale if it admits the Doob-Meyer

decomposition X(t) = X(0) + M(t) + A(t), where M(t) is an Ft local martingale with

M(0) = 0, A(t) is a càdlàg adapted process of locally bounded variation and X(0) is

F0-measurable. Moreover, any semimartingale has locally bounded quadratic variation

(Biagini, [1]). Now, let X(t) = BH(t). If H ∈ (0, 1/2), then BH(t) cannot even be a

martingale since it has infinite quadratic variation, hence, it is not a semimartingale.

If H ∈ (1/2, 1) then the quadratic variation of BH(t) is zero. So, let’s suppose that it is

a semimartingale. Then, M(t) = BH(t)−A(t) has quadratic variation equal to zero. So,

from [1], M(t) = 0 for all t a.s. Then that would mean that BH(t) = A(t), but this can’t

be the case since BH(t) has unbounded variation. Hence BH(t) is not a semimartingale

for any H 6= 1/2.

2.3.5 Integral representation of fractional Brownian motion

Now we show that the fractional Brownian motion can be represented as a stochastic

integral.

The standard fBm as introduced by Mandelbrot and Van Ness is defined by the fol-

lowing moving average representation:

BH(t) =
1

Γ(H + 1/2)

{∫ 0

−∞
[(t− u)H−1/2 − (−u)H−1/2dB(u) +

∫ t

0

(t− u)H−1/2dB(u)

}
(2.10)
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where B(t) is the standard Brownian motion, Γ is the gamma function. Equation(2.10)

can be written more compactly as

BH(t) =
1

Γ(H + 1/2)

∫ ∞
−∞

[(t− u)
H−1/2
+ − (−u+)H−1/2]dB(u). (2.11)



Chapter 3

Stochastic Differential Equation Via

Generalized Grey Brownian Motion

Grey Brownian motion was introduced by Schneider in [31, 32] as a stochastic model

for slow-anomalous diffusion described by the time fractional diffusion equation. Later

Minardi, Mura and Pagnini [21],[22], extended this class, to the so called "generalized"

grey Brownian motion which includes stochastic models for slow and fast-anomalous dif-

fusion, i.e., the time evolution of the marginal density function is described by differential

equations of fractional type. In this chapter we will not reproduce the all construction of

the ggBm, but we will refer to the mention of the latter and some of its properties. Then

we establish a global result on stochastic differential equation driven by generalized grey

noise, the interested reader is referred to [7] and references therein.

3.1 Preliminary notions

Definition 3.1.1. (Schwartz space) The space S(Rn) is the space of all the functions

f ∈ C∞(Rn), such that for any multi-indices j = (j1, j2, . . . , jn) and k = (k1, k2, ..., kn)

sup
x∈Rn
|xjDkf(x)| <∞. (3.1)

Definition 3.1.2. (Tempred distribution) The space of all tempered distributions on

R, denoted S ′(Rn), is the dual space of S(Rn). That is, it is the set of all functions that

are linear and continuous.

37
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Definition 3.1.3. (Completely monotonic function) A function f with domain (0,∞)

is said to be completely monotonic, if it possesses derivatives f (n)(x) for all n = 0, 1, 2, ...

and if (−1)nf (n)(x) ≥ 0 for all x > 0.

Definition 3.1.4. A continuous map Φ : X −→ C is called a characteristic functional

on X if it is:

1. Normalized: Φ(0) = 1,

2. Positive defined:
∑m

i,j=1 ciΦ(ξi − ξj)cj ≥ 0, m ∈ Z, {ci}i=1,....,m ∈ C, {ξi}i=1,...,m ∈

X.

Proposition 3.1.1. Let F be a completely monotonic function defined on the positive real

line. Therefore, there exists a unique characteristic functional, defined on a real separable

Hilbert space H, such that:

Φ(ξ) = F (‖ξ‖2), ξ ∈ H.

Definition 3.1.5. (Nuclear space, [23]) A topological vector space X, with the topology

defined by a family of Hilbert norms, is said a nuclear space if for any Hilbert norm

‖ · ‖p there exists a larger norm ‖ · ‖q such that the inclusion map Xq ↪→ Xp is an

Hilbert−Schmidt operator.

Remark 3.1.1. Nuclear spaces have many of the good properties of the finite-dimensional

Euclidean spaces Rd. For example, a subset of a nuclear space is compact if and only if is

bounded and closed. Moreover, spaces whose elements are ’smooth’ in some sense tend

to be nuclear spaces.

Theorem 3.1.1. (Minlos theorem, [23]) Let X be a nuclear space. For any character-

istic functional Φ defined on X there exists a unique probability measure µ defined on the

measurable space (X ′,B), where B is regarded as the Borel σ-algebra generated by the weak

topology on X ′, such that: ∫
X′
ei〈w,ξ〉dµ(w) = Φ(ξ), ξ ∈ X. (3.2)
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3.2 Grey Brownian Motion

3.2.1 Grey noise

We denote by L2(R) := L2(R, dx) the Hilbert space of real-valued square integrable

measurable functions w.r.t. the Lebesgue measure. The inner product in L2(R) is denoted

by (., .) and the corresponding norm by | . |. As a densely imbedded nuclear space in L2(R)

we choose the Schwartz test function space S(R) equipped with the scalar product.

(ξ, η)α := C(α)

∫
R
ξ̃(x)η̃(x)|x|1−αdx, ξ, η ∈ S(R), 0 < α < 2, (3.3)

with C(α) = Γ(α + 1) sin(πα
2

). Together with the dual space S ′(R) we obtain the basic

nuclear triple

S(R) ⊂ L2(R) ⊂ S ′(R).

The canonical dual pairing between S ′(R) and S(R) is denoted by 〈., .〉 and given as an

extension of the scalar product in L2(R) by

〈f, ϕ〉 = (f, ϕ), f ∈ L2(R), ϕ ∈ S(R).

On S ′(R) we choose the Borel σ-algebra B generated by the cylinder sets. Thus, we have

a measurable space (S ′(R),B).

In order to define the Mittag-Leffler measure which is a family of probability mea-

sures on (S ′(R),B) whose characteristic functions are given by the Mittag-Leffler func-

tions. using proposition 3.1.1 which states that starting from a completely monotonic

function F, we can define characteristic functionals on S(R) by setting Φ(ξ) = F (‖ξ‖2
α).

Then, by Minlos Theorem 3.1.1, the following definition makes sense.

Definition 3.2.1. For any β ∈ (0, 1] the Mittag-Leffler measure is defined as the unique

probability measure µβ on S ′(R) by fixing its characteristic functional∫
S′
ei〈w,ϕ〉dµβ(w) = Eβ(−1

2
〈ϕ, ϕ〉), ϕ ∈ S(R) (3.4)

Remark 3.2.1. 1. The measure µβ is also called grey noise (reference) measure, (Mura

[23], Bingham [2], Bondesson [4]).

2. The range 0 < β ≤ 1 ensures the complete monotonicity of Eβ(−x).
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In other words, this is sufficient to show that

S(R) 3 ϕ 7→ Eβ(−1

2
〈ϕ, ϕ〉) ∈ R

is a characteristic function in S(R).

It follows from (3.4) that all moments of µβ exists and we have

Lemma 3.2.1. For any ϕ ∈ S(R) and n ∈ N0 we have

∫
S′(R)

〈w,ϕ〉2n+1dµβ(w) = 0.

∫
S′(R)

〈w,ϕ〉2ndµβ(w) =
(2n)!

2nΓ(βn+ 1)
| ϕ |2n .

Remark 3.2.2. • In the approach of (Mura, [21]) the grey noise measure is defined

via the characteristic function Eβ(−(., .)α) and denoted by µα,β. This means that

first the parameters 0 < α < 2 and 0 < β < 1 are fixed and then generalized grey

Brownian motion Bα,β
t is constructed in L2(µα,β). The measure µβ as defined above

is named general grey noise measure since for fixed 0 < β < 1 all generalized grey

Brownian motions Bα,β
t for 0 < α < 2 can be constructed in the single space L2(µβ).

• In the case α = β we write Bβ(t) instead of Bβ,β
t . Bβ(t) is called grey Brownian

motion.

Definition 3.2.2. We consider the generalized stochastic process Xα,β defined canonically

on the generalized grey noise space (S ′(R),B, µα,β), called grey noise by

Xα,β(ϕ) : S ′(R)→ R, w 7→ Xα,β(ϕ)(w) := 〈w,ϕ〉.

Properties

1. Characteristic function:

E(eiλXα,β(ϕ)) := Eβ(−λ2‖ϕ‖2
α). (3.5)

2. Moments:

E(Xα,β(ϕ)k) =

 0, k = 2n+ 1

(2n)!
Γ(βn+1)

‖ϕ‖2n
α , k = 2n.
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3. For any f ∈ S(R), we have Xα,β(f) ∈ L2(µα,β) and

‖Xα,β(f)‖2
L2(µα,β) =

2

Γ(β + 1)
‖f‖2

α.

3.2.2 Generalized grey Brownian motion.

In this subsection we briefly introduce the mathematical definition and the main of

proprieties of generalized grey Brownian motion.

Definition 3.2.3. The stochastic process

{Bα,β(t)}t≥0 = {Xα,β(1[0,t))}t≥0. (3.6)

is called ’generalized’ (standard) grey Brownian motion.

The "generalized" grey Brownian motion {Bα,β} has the following properties that

come directly from the grey noise properties.

1. Bα,β(0) = 0 a.s. Moreover, for each t ≥ 0, E(Bα,β(t)) = 0 and

E(Bα,β(t)2) =
2

Γ(β + 1)
tα. (3.7)

2. The autocovariance function is:

E(Bα,β(t)Bα,β(s)) = γα,β(t, s) =
1

Γ(β + 1)
(tα + sα − |t− s|α). (3.8)

3. For any t, s ≥ 0, the characteristic function of the increments is:

E(eiy(Bα,β(t)−Bα,β(s))) = Eβ(−y2|t− s|α), y ∈ R. (3.9)

The third property follows from the linearity of the grey noise definition, we suppose

0 ≤ s < t, we have y(Bα,β(t) − Bα,β(s)) = yXα,β(1[0,t) − 1[0,s)) = Xα,β(y1[s,t)), and

‖y1[s,t)‖2
α = y2(t− s)α.

Proposition 3.2.1. For any 0 < α < 2 and 0 < β ≤ 1, the process Bα,β(t), t ≥ 0, is a

self-similar with stationary increments process (H-sssi), with H = α/2.
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Proof: This result is actually a consequence of the linearity of the noise definition.

Given a sequence of real numbers {θj}j=1,...,n we have to show that for any 0 < t1 < t2 <

· · · < tn and a > 0 :

E

(
exp

(
i
∑
j

θjBα,β(atj)

))
= E

(
exp

(
i
∑

θja
α/2Bα,β(tj

)
)
)
.

The linearity of the grey noise definition allows to write the above equality as

E

[
exp

(
iXα,β

(∑
j

θj1[0,atj)

))]
= E

[
exp

(
iXα,β

(
aα/2

∑
j

θj1[0,tj)

))]
.

Using (3.5) we have

Fβ

(
‖
∑
j

θj1[0,atj)‖2
α

)
= Fβ

(
‖aα/2

∑
j

θj1[0,tj)‖2
α

)
,

which, because of the complete monotonicity, reduces to

‖
∑
j

θj1[0,atj)‖2
α = aα‖

∑
j

θj1[0,tj)‖2
α.

In view of (3.3) and the fact that 1̃[0,t)(x) =
1√
2π

eixt − 1

ix
, the above equality is checked

after a simple change of variable in the integration. In the same way we can prove the

stationarity of the increments.We have to show that for any h ∈ R :

E

[
exp

(
i
∑
j

θj(Bα,β(tj + h)−Bα,β(h))

)]
= E

[
exp

(
i
∑
j

θj(Bα,β(tj))

)]
.

We use the linearity property to write

E

[
exp

(
iXα,β

(∑
j

θj1[h,tj+h)

))]
= E

[
exp

(
iXα,β

(∑
j

θj1[0,tj)

))]
.

By using the definition and the complete monotonicity, we have

‖
∑
j

θj1[h,tj+h)‖2
α = ‖

∑
j

θj1[0,tj)‖2
α.

Remark 3.2.3. In view of Proposition 3.2.1, {Bα,β(t)} forms a class of H-sssi stochastic

processes indexed by two parameters 0 < α < 2 and 0 < β ≤ 1. This class includes frac-

tional Brownian motion (β = 1), grey Brownian motion (α = β) and Brownian motion

(α = β = 1).
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3.2.3 Characterization of the ggBm

We want now to characterize the ggBm through its finite dimensional structure. We

know that all the ggBm finite dimensional probability density functions are defined only

by their autocovariance matrix. The following proposition holds

Proposition 3.2.2. Let Bα,β be a ggBm, then for any collection {Bα,β(t1), ..., Bα,β(tn)},

the joint probability density function is given by:

fα,β(x1, x2, . . . , xn; γα,β) =
(2π)−

n−1
2√

2Γ(1 + β)n det γα,β

∫ ∞
0

1

τn/2
M1/2

(
ζ

τ 1/2

)
Mβ(τ)dτ. (3.10)

with:

ζ =

(
2Γ(1 + β)−1

n∑
i,j=1

xiγ
−1
α,β(ti, tj)xj

)1/2

, γα,β(ti, tj) = 1
Γ(1+β)

(tαi + tαj −|ti− tj|α), i, j =

1, ..., n.

and M is the M-Wright function.

Proof: in order to show (3.10), we calculate its n-dimensional Fourier transform and

we find that it is equal to

E

(
exp(i

n∑
j=1

θjBα,β(tj))

)
= Eβ

(
−Γ(1 + β)

1

2

n∑
i,j=1

θiθjγα,β(ti, tj)

)
.

We have ∫
Rn
exp

(
i

n∑
j=1

θjxj

)
fα,β(x1, ..., xn; γα,β)dnx =

(2π)−
n−1
2√

2Γ(1 + β)n det γα,β

∫ ∞
0

1

τn/2
Mβ(τ)

∫
Rn
exp

(
i

n∑
j=1

θjxj

)
M1/2(

ξ

τ 1/2
)dnxdτ.

We remember that M1/2(r) = 1√
π
er

2/4, thus we get

∫ ∞
0

1

τn/2
Mβ(τ)

∫
Rn
exp

(
i

n∑
j=1

θjxj

)
×

(2π)−
n
2√

Γ(1 + β)n det γα,β
exp

(
−Γ(1 + β)−1

n∑
i,j=1

xiγ
−1
α,β(ti, tj)xj/2τ

)
dnxdτ.
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We make the change of variables x = Γ(1 + β)1/2τ 1/2y, with x, y ∈ Rn, and we get

∫ ∞
0

Mβ(τ)

∫
Rn
exp

(
iΓ(1 + β)1/2τ 1/2

n∑
j=1

θjyj

)
×

(2π)−
n
2√

det γα,β
exp

(
−

n∑
i,j=1

yiγ
−1
α,β(ti, tj)yj

2

)
dnydτ =

∫ ∞
0

Mβ(τ)exp

(
−Γ(1 + β)τ

n∑
i,j=1

θiγα(ti, tj)θj
2

)
dτ =

∫ ∞
0

e−τsMβ(τ)dτ = Eβ(s),

where s = Γ(1 + β)
∑n

i,j=1 θiθjγα,β(ti, t
j)/2.

Applying the Kolmogorov extension theorem (see Theorem 1.1.2), the above propo-

sition allows us to define the ggBm in an unspecified probability space. In fact, given a

probability space (Ω,F ,P), the following proposition characterizes the ggBm:

Proposition 3.2.3. (Mura, [23]) Let X(t), t ≥ 0, be a stochastic process, defined in a

certain probability space (Ω,F ,P), such that

1. X(t) has covariance matrix indicated by γα,β and finite-dimensional distributions

defined by (eq. 3.10 ).

2. E[X2(t)] = 2
Γ(1+β)

tα for 0 < β ≤ 1 and 0 < α < 2.

3. X(t) has stationary increments,

then X(t), t ≥ 0, is a generalized grey Brownian motion.

In fact condition 2) together with condition 3) imply that γα,β must be the ggBm

autocovariance matrix (3.8).

Corollary 3.2.1. (Mura, [23]) Let X(t), t ≥ 0, be a stochastic process defined in a

certain probability space (Ω,F ,P). Let H = α/2 with 0 < α < 2 and suppose that

E[X(1)2] = 2/Γ(1 + β). The following statements are equivalent:

i) X is H-sssi with finite-dimensional distribution defined by (3.10),
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ii) X is a generalized grey Brownian motion with scaling exponent α/2 and "fractional

order" parameter β,

iii) X has zero mean, covariance function γα,β(t, s), t, s ≥ 0, defined by (3.8) and finite

dimensional distribution defined by (3.10).

3.2.4 Representations of ggBm

In this subsection we will show that gBm Bα,β admits different representations which

will be useful in proving certain properties on the next sections. This is related to the fact

that these representations involves certain known processes, such as fractional Brownian

motion (fBm).

3.2.4.1 Normal variance mixture

Proposition 3.2.4. [23] Let Bα,β(t), t ≥ 0, be a ggBm, then

{Bα,β(t), t ≥ 0} d
= {
√
YβXα(t), t ≥ 0}, (3.11)

where Xα(t) is a standard fBm, Yβ is an independent nonnegative random variable with

probability density function Mβ(τ), τ ≥ 0.

The representation (3.11) is particularly interesting. Since, many question, in partic-

ularly those related to the distribution properties of Bα,β(t), can be reduced to question

concerning the fBm Xα(t), which are easier since Xα(t) is a Gaussian process.

3.2.4.2 One dimensional representation

Here we obtain two representations of ggBm as subordinations, valid for one-dimensional

distributions. First we show that ggBm may be represented as a subordination of Brow-

nian motion by a β-stable subordinator, (Schneider, [32]).

1- Subordination of Brownian motion

Let S = S(t), t ∈ [0, 1] be a β-stable subordinator and define the inverse process of S by

E(x) := inf{t : S(t) > x, x ∈ R+}.
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E(x) is 1/β-self-similar process with no independent/stationary increments. Bingham [2]

and Bondesson and al. [4] showed that E(x) has a Mittag-Leffler distribution

E(e−sE(x)) = Eβ(−sxβ).

It follows that

E(e−sE(xα/β)) = Eβ(−sxα).

On the other hand, we have the equality in law E(x) = (S(1)/x)−β which implies

E(e−sS
−β(1)) = Eβ(−s).

and

E(e−sS
−β(t−α)) = Eβ(−stα).

As a consequence, we obtain the following representation for the ggBm:

Bα,β(t) = B(E(tα/β)) = B(S−β(t−α)),

where B is a standard Brownian motion independent of S and the equalities are valid

only for one-dimensional distributions.

2- Subordination of fBm

The second representation of ggBm as a subordination of fBm uses as subordinator a

process with one-dimensional distribution related to the M-Wright function.

Let Dβ = {Dβ(t), t ≥ 0} be the process with one-dimensional distribution given by

fDβ(t)(x) = t−βMβ(xt−β), x, t ≥ 0.

The ggBm is represented as

Bα,β(t) = BH

(
D

1/α
β (tα/β)

)
,

where the fBm BH andDβ are independent. The equality is valid only for one-dimensional

distributions. Density fDβ(t) is the fundamental solution of the time-fractional drift equa-

tion

Dβt fDβ(t)(x) = − ∂

∂x
fDβ(t)(x),

where Dβt denotes the Caputo derivative.
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3.2.5 Other properties of the ggBm

This subsection is devoted to the study of some other properties such as the p−variation

of ggBm, Hölder continuity...

3.2.5.1 The p-variation of generalized grey Brownian motion

The approach taken is inspired from the one used for the fBm.

Proposition 3.2.5. We have the following limit in probability

lim
n−→+∞

np
α
2
−1

n∑
j=1

∣∣∣∣Bα,β

(
j

n

)
−Bα,β

(
j − 1

n

)∣∣∣∣p = E(|Bα,β(1)|p).

Proof: See (Silva,[8]).

Proposition 3.2.6. (Silva,[8]) We have the following limit in probability

Vp,n :=
n∑
j=1

∣∣∣∣Bα,β

(
j

n

)
−Bα,β

(
j − 1

n

)∣∣∣∣p −−−−−−−→
n −→ +∞


0 a.s. if pα/2 > 1

∞ a.s. if pα/2 < 1

E(|Bα,β(1)|p) a.s. if p = 2
α
.

Remark 3.2.4. The ggBm is not a semimartingale. In addition, Bα,β cannot be of finite

variation on [0, 1] and by scaling and stationarity of the increment on any interval.

Proof: Indeed there is a subsequence such that Vp,n converge almost surely to ∞ for

p = 1 and α ∈ (0, 2). If α ∈ (1, 2) we can choose p ∈ (2/α, 2) such that Vp,n converge

to 0 for some subsequence. This implies that the quadratic variation of Bα,β is zero. If

α ∈ (0, 1) we can choose p > 2 such that 2p/α < 1 and the p-variation of Bα,β must be

infinite. So, in any case Bα,β can not be a semimartingale.

3.2.5.2 Hölder continuity

Proposition 3.2.7. (Grothaus, [12]) Let 0 < α < 2 and 0 < β < 1. Then for all p ∈ N

there exists K <∞ such that Eµβ(| Bα,β
t −Bα,β

s |2p) = K | t− s |αp, t, s ≥ 0.

The last proposition ensures that generalized grey Brownian motion has a continuous

version. Indeed, choose p ∈ N such that ap > 1 then the previous proposition provides

the estimate Eµβ((Bα,β
t − Bα,β

s )2p) ≤ k | t − s |1+p with q = ap − 1 > 0. This estimate is

sufficient to apply Kolmogorov’s continuity theorem.
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3.2.5.3 Long-range dependency

Remark 3.2.5. (Mura, [22]) Because of the stationarity of the increments, the anomalous

diffusion appears deeply related to the long-range dependence characterization of Bα,β(t).

We remember that an H-sssi process has long-range dependence (or long memory) if 1/2 <

H < 1. This means that the discrete time process of its increments exhibits long-range

correlation. That is, the increments’ autocorrelation function r(k) tends to zero with a

power law as k goes to infinity. Therefore, when 0 < α < 1 the diffusion is slow and the

process has short memory. While when 1 < α < 2 the diffusion is fast and the process

has long memory.

3.3 Stochastic differential equations driven by general-

ized grey noise

In this section we establish a substitution formula for stochastic differential equation

driven by generalized grey noise.

We consider the following stochastic differential equation (SDE) on Rn

Xt = x0 +
d∑
j=1

∫ t

0

Vj(Xs)dB
j
α,β(s) +

∫ t

0

V0(Xs)ds, t ∈ [0, T ]. (3.12)

where x0 ∈ Rn, T > 0 is a fixed time, Bα,β = (B1
α,β, ..., B

d
α,β) is a d-dimensional ggBm,

α ∈ (1, 2), β ∈ (0, 1] and {Vj, 0 ≤ j ≤ d} is a collection of vector fields of Rn.

The stochastic integral appearing in (3.12) is a pathwise Riemann-Stieltjes, see

(Young, [34]), under suitable assumptions on V = (V1, ..., Vd), the equation (3.12) has a

unique solution which is (α
2
)-Hölder continuous for all ε > 0. This result was obtained

in (Lyons, [16]). Nualart and Rãşcanu [24] have established the existence of a unique

solution for a class of general differential equations that includes (3.12) using the frac-

tional integration by parts formula obtained by Zähle for Young integral, see [35]. The

representation in law of Bα,β see (3.11), allows us to consider, instead of the equation

(3.12), the following equation:

XH
t = x0 +

d∑
j=1

∫ t

0

Vj(X
H
s )d(

√
YβB

j
H)(s) +

∫ t

0

V0(XH
s )ds, t ∈ [0, T ]. (3.13)
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This is due to the fact that the solutions of the SDEs (3.12) and(3.13) induces the same

distribution on the space of continuous functions C([0, T ],Rn). Furthermore, since the

stochastic integral in (3.13) is a pathwise Riemann-Stieltjes integral, then the SDE (3.13)

can be written as

XH
t = x0 +

√
Yβ

d∑
j=1

∫ t

0

Vj(X
H
s )dBj

H(s) +

∫ t

0

V0(XH
s )ds, t ∈ [0, T ]. (3.14)

The main purpose of this section is to establish a substitution formula (SF) for

equation (3.14). Let us now describe this approach. For each y > 0, we consider the

following equation

XH
t (y) = x0 +

√
y

d∑
j=1

∫ t

0

Vj(X
H
s (y))dBj

H(s) +

∫ t

0

V0(XH
s (y))ds (3.15)

It is well known that, under suitable assumptions, see e.g. Nualart and Rãşcanu [13],

that the SDE (3.15) has a strong (1−λ)- Hölder continuous solution with 1−H < λ < 1
2
.

To establish a SF, the natural idea is to replace y in (3.15) by the random variable (Yβ)

and prove that XH
. (Yβ) satisfies the SDE (3.14). For more details on the SF we refer to

Nualart [25]. To handle this problem, the key is to prove, for each t ∈ [0, T ] the following

equalities

∫ t

0

Vj(X
H
s (y))dBj

H(s)|y=Yβ =

∫ t

0

Vj(X
H
s (Yβ))dBj

H(s), j = 1, ..., d, (3.16)

and ∫ t

0

V0(XH
s (y))ds|y=Yβ =

∫ t

0

V0(XH
s (Yβ))ds. (3.17)

To this end we need to study the regularity of the solution XH
t (y) of the SDE (3.15) with

respect to y.

3.3.1 Preliminary

According to Mura and Pagnini [22], the ggBm Bα,β is a stochastic process defined on

a probability space (Ω,F ,P) such that for any collection 0 ≤ t1 < t2 < . . . < tn <∞ the
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joint probability density function of (Bα,β(t1), . . . , Bα,β(tn)) is given by (3.11).

Using the fact that the process Bα,β has (α
2
− ε) − Hölder continuous trajectories

for all ε > 0. So, we can use the integral introduced by Young [34] with respect to Bα,β.

That is, for any Hölder continuous function f of order such that γ+ (α/2) > 1 and every

subdivision (tni )i=0,...,T of [0, T ], whose mesh tends to 0, as n goes to ∞, the Riemann

sums
n−1∑
i=0

f(tni )(Bα,β(tni+1)−Bα,β(tni )),

converge to a limit which is independent of the subdivision (tni )i=0,...,T . We denote this

limit by ∫ T

0

f(t)dBα,β(t).

For 0 < λ < 1 we denote by Cλ([0, T ],Rd) the space of all λ − Hölder continuous

functions f : [0, T ]→ Rd, equipped with the norm

‖ f ‖λ=‖ f ‖[0,T ],∞ + ‖ f ‖[0,T ],λ,

where

‖ f ‖[0,T ],∞= sup
0≤t≤T

| f(t) |, ‖ f ‖[0,T ],λ= sup
0≤s<t≤T

| f(t)− f(s) |
| t− s |λ

.

For k, n,m ∈ N we denote by Ckb := Ckb (Rn,Rm) the space of all bounded functions on Rn

which are k times continuously differentiable in Fréchet sense with bounded derivative up

to the kth order, equipped with the norm

‖ f ‖Ckb =‖ f ‖∞ + ‖ Df ‖∞ +...+ ‖ Dkf ‖∞<∞.

We also denote by C∞b := C∞b (Rn,Rm) the class of all infinitely differentiable (in Fréchet

sense) bounded functions on Rn with bounded derivatives of all orders.

3.3.2 Substitution theorem

Throughout this subsection we assume that the coefficients V0 and V satisfy the fol-

lowing hypothesis

(H.1) V0 ∈ C1
b , V ∈ C2

b .
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First we give the regularity of the solution XH
t (y) of the SDE (3.15) with respect to

y. This result will be proved using the following Fernique-type lemma.

Lemma 3.3.1. (Saussereau, [30])

• (i). Let T > 0 and 1/2 < δ < H < 1 be given. Then, for any τ < 1/(128(2T )2(H−δ)),

we have

E(exp(τ ‖ BH ‖2
[0,T ],δ)) ≤ (1− 128τ(2T )2(H−δ))−1/2.

• (ii). For any integer k ≥ 1 we have

E(‖ BH ‖2k
[0,T ],δ) ≤ 32k(2T )2k(H−δ)(2k)!.

Remark 3.3.1. For any τ < 1/128(2T )2(H−δ)) we have the following tail norm estimate

for BH :

P[‖ BH ‖[0,T ],δ> r] ≤Mexp(−τr2), (3.18)

where M =
(
1− 128τ(2T )2(H−δ))−1/2

.

The following estimate is crucial in the proof of our main result, Theorem 3.3.1

below. It is worth to notice that such estimate was obtained and improved by Hu and

Nualart [13].

Proposition 3.3.1. (Nualart, [13]) Let T > 0 and 1/2 < δ < H < 1 be given. Under

Hypothesis (H.1) there exist a positive constant Cn depending on T, δ,H, ‖ V0 ‖C1b and

‖ V ‖C2b such that

‖ XH(y)−XH(ỹ) ‖δ≤ Cn |
√
y −

√
ỹ |‖ V ‖C1b ‖ BH ‖[0,T ],δ

×
(
1+ ‖ BH ‖[0,T ],δ

)2/δ
exp

(
Cn ‖ BH ‖[0,T ],δ

)1/δ
,

for all | y |, | ỹ |≤ n.

Now we are ready to state the regularity of the solution XH(y) of the SDE (3.15)

with respect to y.

Proposition 3.3.2. Let T > 0 and 1/2 < δ < H < 1 be given. Under Hypothesis (H.1)

there exist a positive C̃n > 0 depending on T, δ,H, ‖ V0 ‖C1b and ‖ V ‖C2b such that

E
(

sup
s≤t
| XH(y)−XH(ỹ) |4

)
≤ C̃n | y − ỹ |2, t ∈ [0, T ],

for all | y |, | ỹ |≤ n.
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Proof: Let t ∈ [0, T ] and |y|, |ỹ| ≤ n be fixed. Using the estimate in Proposition 3.3.1

we obtain

E
(

sup
s≤t
| XH(y)−XH(ỹ) |4

)
≤ C4

n |
√
y −

√
ỹ |4‖ V ‖C1b

×E
(
‖ BH ‖4

[0,T ],δ

(
1+ ‖ BH ‖[0,T ],δ

)8/δ
exp

(
4Cn ‖ BH ‖[0,T ],δ)

1/δ
))

It follows from the assertions (i) and (ii) of Lemma 3.3.1 and the following Young inequal-

ity

4Cn ‖ BH ‖1/δ
[0,T ],δ≤

2δ − 1

2δ

(
4Cn
ε

)2δ/(2δ−1)

+ ε2δ ‖ BH ‖2
[0,T ],δ

that, for small enough ε, there exist a constant C̃n > 0 depending on T, δ,H, ‖ V0 ‖C1b
and‖ V ‖C2b such that

E(sup
s≤t
| XH

s (y)−XH
s (ỹ |4) ≤ C̃n | y − ỹ |2

The following proposition provides the substitution formulas (3.16) and (3.17).

Proposition 3.3.3. Under Hypothesis (H.1) the equalities (3.16) and (3.17) are satisfied.

Proof: First let’s recall that, for j = 1, ..., d and any y > 0, the Young integrals∫ T

0

Vj(X
H
s (y))dBj

H(s), (3.19)

and ∫ T

0

Vj(X
H
s (Yβ))dBj

H(s), (3.20)

exist. Indeed, if 1−H < λ < 1
2
, then for each y > 0, the SDE (3.15) has a strong (1−λ)

-Hölder continuous solution XH(y). Therefore, the process XH
s (y) has (1− λ)−Hölder

continuous paths. Then the existence of the preceding integrals follows from the Lipschitz

condition of Vj and the Hölder continuity of the paths of Bj
H . As a consequence, for any

subdivision (tnk)k=0,...,n−1 of [0, T ], whose mesh tends to 0 as n goes to ∞, and each y ≥ 0,

the Riemann sums

Sjn(y) =
n−1∑
k=0

Vj

(
XH
tnk

(y)
) (
Bj
H(tnk+1)−Bj

H(tnk)
)
,
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and

Rj
n =

n−1∑
k=0

Vj

(
XH
tnk

(Yβ)
) (
Bj
H(tnk+1)−Bj

H(tnk)
)
,

converge to (3.19) and (3.20), respectively. Now to prove (3.16), it suffices to show that

Sjn(Yβ) = Rj
n, converge, as n goes to ∞, to∫ T

0

Vj(X
H
s (y))dBj

H(s) |y=Yβ .

Taking into account that the fBm with Hurst parameterH has locally bounded p−variation

for p > 1/H and the regularity of the solution XH
t (y) with respect to y, cf. Proposition

3.3.2, then the above mentioned convergence follows from Nualart [25] and the following

estimate,

E | Sjn(y)− Sjn(ỹ) |4= E |
n−1∑
k=0

(
Vj(X

H
tnk

(y))− Vj(XH
tnk

(ỹ))
) (
Bj
H(tnk+1)−Bj

H(tnk)
)
|4,

≤ C | y − ỹ |2,

for all | y |, | ỹ |≤ n.

The equality (3.17) is easy to prove.

The main result of this section is the following theorem.

Theorem 3.3.1. The process {XH
t (Yβ), t ∈ [0, T ]} satisfies the SDE (3.13).

Proof: It follows from the classical Kolmogorov criterion that, for each t ∈ [0, T ] there

exists a modification of the process {XH
t (y), y ≥ 0} that is a continuous process whose

paths are γ- Hölder for every γ ∈ [0, 1
4
). Now using the equalities (3.16) and (3.17)

we obtain that the process {XH
t (Yβ), t ∈ [0, T ]} satisfies the SDE (3.13) by substituting

y = Yβ(w) in the SDE (3.15). This completes the proof.



Conclusion

I n this work we investigated the class of grey Brownian motion Bα,β(0 < α < 2, 0 <

β ≤ 1) which is a class of self-similar stochastic processes with stationary increments.

First we have giving a background on stochastic calculus starting from the notions of

processes and filtration, definition of stationary processes, self-similarity, H-sssi processes

and we took the Brownian motion as an example.

Secondly we have discussed some useful mathematical definitions that are inherently

tied to fractional calculus then some definitions of fractional integrals and derivatives are

given, after that we have introduced the fractional Brownian motion.

Finally we showed that grey Brownian motion is in general a non-Gaussian process,

is not a semimartingale and is of course Non-Markovian. This class of processes includes,

fractional Brownian motion, Brownian motion and other α
2
-sssi process as special cases.

GgBm admits different representations in terms of certain known processes such as Brow-

nian motion subordinator, fractional Brownian motion subordinator and normal variance

mixture Bα,β(t) =
√
YβXα(t), t ≥ 0, were Xα(t) is a standard fBm. This last represen-

tation is very interesting since many question related to gBm Bα,β may be reduced to

questions concerning the fBm which is easier since it is Gaussian. Then we studied the

problem of stochastic differential equation driven by gBm, we have established a substi-

tution formula for stochastic differential equation driven by generalized grey noise.
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Appendix

I. Riemann-Stieltjes integral

The Riemann-Stieltjes integral of a deterministic function f : [a, b]→ R (integrand) with

respect to another deterministic function g : [a, b]→ R (integrator) is defined as the limit

of sums
n∑
i=1

f(si)g(ti)− g(ti−1)

where si ∈ [ti−1; ti], π = a = t0 < t1 < . . . < tn = b , as the mesh of the partition π,mesh(π) :=

maxi=1,2,...,n |ti − ti−1| , goes to 0. The Riemann-Stieltjes integral, denoted by

(R− S)

∫
[a,b]

fdg.

II. Hilbert-Schmidt Operators

An Hilbert-Schmidt operator is a bounded operator A, defined on an Hilbert spaceH, such

that there exists an orthonormal basis {ei}i∈I of H with the property
∑
i∈I

||Aei||2 <∞.

III. Anomalous diffusion

Anomalous diffusion is characterized by the asymptotic time power-law behaviour of the

variance for large times: σ2(t) ∼ tγ . Namely, the diffusion is slow if the exponent γ is

lesser than one, normal if it is equal to one and fast if it is greater than one.

IV. The Wright function Wλ,µ(z)

The Wright function, denoted by Wλ,µ(z), is named in honour of the British mathemati-

cian Edward Maitland Wright, who introduced and investigated this function in a series

of notes starting from 1933 in the framework of the theory of partitions.

Definition
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The Wright function is defined by the series representation, convergent in the whole

complex plane,

Wλ,µ(z) :=
∞∑
n=0

zn

n!Γ(λn+ µ)
, λ > −1, µ ∈ C.

The Auxiliary Functions of the Wright Type

Mainardi, in his first analysis of the time-fractional diffusion equation [11], introduced the

two (Wright-type) entire auxiliary functions,

Fν(z) := W−ν,0(−z), 0 < ν < 1.

Mν(z) := W−ν,1−ν(−z), 0 < ν < 1.

As a matter of fact, functions Fν(z) andMν(z) are particular cases of the Wright function

by setting λ = −ν and µ = 0 or µ = 1 , respectively.
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