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Chapter 1
General introduction

There is actually an increasing number of estimation coming from different fields
of applied sciences, in which the collected data are curves, indeed the progress of the
computing tools both in term of memory and computational capacities, allows us
to deal with large sets of data. Since the middle of nineties, the different situations
when functional variables can be observes has motivated the statistical development
that we called "statistics for functional data".
Traditional statistical methods fail as soon as we deal with the functional data, if
for instance we consider a sample of finely discretized curves two crucial statistical
problems appear: the first comes from the relation between the size of the sample
and the number of variables, the second is due to the existence of the strong corre-
lations between variables and becomes an ill-conditional problem in the context of
multivariate linear model, so there is a real necessity to develop statistical models.

A well-known statistical problem consists in studying the link between two variables
in order to predict one of them, this problem has been widely studied for real or
multivariate variables, but it also obviously occurs with functional variables.
There are several ways to approach the prediction setting, and one of the most pop-
ular is certainly the regression method which is based on conditional expectation.
For robustness purposes we have two alternative techniques : conditional quantile
and conditional mode.

The disadvantage of classical regression is that the estimation of the regression
function is sensitive to outliers and may be inappropriate in some cases when the
distribution is multimodal or strongly asymmetrical, the problem of robustness can
be solved by the prediction using conditional mode.
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1. GENERAL INTRODUCTION

The conditional quantile which can reveal an entire distributional relationship be-
tween the covariates and the response variable is another alternative predictor to
classical regression. Moreover, conditional quantiles are well-known for their ro-
bustness with respect to heavy-tailed error distributions and outliers which allows
to consider them as a useful alternative to the regression function. For the above
reasons, conditional quantiles are used in many areas of applied research and are
frequently used in a regression setup, called quantile regression.

1.1 Bibliographic context

We consider the estimation of the conditional mode and conditional quantile func-
tion when the covariates take values in some abstract functional space.
The main goal of this work is to establish the consistency and the asymptotic nor-
mality of the kernel estimator under α-mixing assumption and on the concentration
properties on small balls of the probability measure of the functional regressors.
The two models has taken considerable attention in the past for both dependent
and independent data.

The conditional mode, by its importance in the nonparametric forecasting field, has
motivated a number of researchers in the investigation of mode estimators, and con-
stitutes an alternative method to estimate the conditional regression (see Ould Saïd
[25] for more discussion and examples).
In finite dimension spaces, there exists an extensive bibliography for independent
and dependent data cases. In the independent case, strong consistency and asymp-
totic normality using the kernel method estimation of the conditional mode is given
in Samanta and Thavaneswaran [31]. In the dependent case, the strong consistency
of conditional mode estimator was obtained by Collomb et al. [3].

In our work, we pay attention to non-parametric conditional mode estimation via
the functional conditional density. This problem has been interesting in the last
few years. For example, Ferraty et al. [12] focused on kernel methods and almost
sure (with rate) convergence was stated. This precursor work has been extended
in many directions, including asymptotic normality (see Ezzahrioui and Ould Saïd
[7] and [9] for both independent and dependant functional data). The consistency
in Lp-norm of the conditional mode function estimator is given in Dabo-Niang and
Laksaci [5]. The asymptotic normality, under α-mixing conditions was established
by Louani and Ould Saïd [22]. Local linear estimation (see Rachdi et al. [26] and
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1. GENERAL INTRODUCTION

Bouanani et al. [2]) or semi-parametric extensions to single index setting (see Ling
and Xu [21]). For more discussions on non-parametric functional estimation context
via some conditional features including the estimation of conditional mean, condi-
tional median and conditional mode, one can refer to the monograph by Ferraty and
Vieu [14] and the references therein.

In fact, in this dissertation, we prove, under certain standard conditions, the consis-
tency and the asymptotic normality of the kernel estimator when we approach the
problem of the prediction of a functional time series by estimating the conditional
mode.

Since the seminal paper by Koenker and Bassett [20], the quantile regression method
has been widely used in many disciplines such as economics, finance and other science
fields. The quantile method serves as a robust alternative to the mean regression
method and there is an extensive literature on the conditional quantile function es-
timation when the data are (i.i.d) or dependent and in finite dimensional spaces, for
example, Fan et al [6], Jones and Hall [19], Mehra et al. [24], Samanta [30], Welsh
[33]. As an introduction to this field (for parametric models), we refer the reader to
the monographs of Bosq [1] and Ramsay and Silverman [27], [28].

There are many results for nonparametric models. For instance, Ferraty and Vieu
[11] established the strong consistency of kernel estimators of the regression func-
tion when the explanatory variable is functional and the response is scalar. Their
study is extended to nonstandard regression problems such as time series prediction
or curves discrimination. The asymptotic normality result for the same estimator
in the α-mixing case has been obtained by Masry [23]. Gasser et al. [16] gave an
approach to introduce a nonparametric estimation of the quantile. They highlighted
the issue of the curse of dimensionality for functional data and gave methods to over-
come the problem. Dabo-Niang [4] studied density estimation in a Banach space
with an application to the density estimation of a diffusion process with respect
to Wiener ’s measure. Ferraty et al. [14] studied the estimation of the conditional
quantile for dependent functional data. The almost complete convergence with rates
for the kernel type estimates is established and illustrated by an application to El
Nino data. Recently, the kernel conditional quantile estimator has been treated
under left truncation for functional regressors by Helal and Ould-Saïd [18].
Our aim in this work is to study the joint asymptotic properties of the kernel estima-
tion of the conditional quantiles under an α-mixing condition. This mixing condition
ensures asymptotically vanishing memory of the strictly stationary process.
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1. GENERAL INTRODUCTION

1.2 Preliminaries

In what follows, we regroup some definitions and some tools that are going to be
necessary established by this dissertation.

1.2.1 Definitions

In order to clarify many notions, we propose some basic definitions.
To fix the ideas, we give the following general definitions of a functional variable,
functional data and functional model.

Definition 1.1. [14] (Functional variable) A random variable x is called functional
variable if it takes values in an infinite dimensional space (or functional space). An
observation X of x is called a functional data.

Definition 1.2. [14] (Functional dataset) A functional dataset X1, . . . , Xn is the
observations of n functional variables x1, . . . , xn identically distributed as x.

Definition 1.3. [14] (Functional model) Let x be a random variable valued in some
infinite dimensional space S and let Υ be a mapping defined on the functional space
S and depending on the distribution of x. A model for the estimation of Υ consists
in introducing some constraint of the form:

Υ ∈ C.

The model is called a functional parametric model for the estimation of Υ if Λ
is indexed by a finite number of elements of S. Otherwise, the model is called a
functional nonparametric model.

The appellation Functional Nonparametric Statistics covers all statistical
backgrounds involving a nonparametric functional model.

Definition 1.4. (Mode function) The mode of a set of data values is the value that
appears most often. For probability density f is the value which maximizes the
function f , denoted by Θ,

Θ = argmax
x∈C

f(x),

where C is a compact set.
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1. GENERAL INTRODUCTION

Definition 1.5. (Quantile function) The quantile function is the synonym of the
percentile, we say that the quantile function of y of order p is defined by

ξ(p) = F−1(p) = inf{y : F (y) ≥ p},

where p ∈ [0, 1] and F−1(.) is the inverse of F (.).

In the functional context, the choice of the preliminary norm becomes crucial.
Even more, considering normed or metric spaces can become too restrictive. In
some situations and this is the case for our data-sets, it appears that semi-metric
spaces are better adapted than metric spaces. Before going on, let us just recall the
definition of semi-metric.
Proximities measures between mathematical objects play a major role in all statis-
tical methods. In many situations, a classical norm can be used to measure the
closeness between two objects. Because in a finite dimensional Euclidean space
(typically Rp) there is an equivalence between all norms. In the infinite dimensional
space, the equivalence between norms fails and the problem has to be solved in a
different way.

Definition 1.6. [14] (Semi-metric) d is a semi-metric on some space S as soon as

(1) ∀x ∈ S d(x, x) = 0,

(2) ∀(x, y, z) ∈ S × S × S d(x, y) ≤ d(x, z) + d(z, y).

Now we focus on some important modes of convergence.

Definition 1.7. [32] (Almost sure convergence) Let Xn be a sequence of random
variables, the sequence is said to converge almost surely to the random variable if:
P ( lim

n→∞
Xn = X) = 1 in short Xn

a.s.−−−→ X.

Definition 1.8. [32] (Almost complete convergence) We say that (Xn)n converges
to X almost completely if and only if:

∀ε > 0
∑
n≥0

P (|Xn −X| > ε) <∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by

lim
n→∞

Xn = X a.co.

Remark 1 The almost complete convergence implies other modes of convergence.
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1. GENERAL INTRODUCTION

Mixing conditions are usual structures for modeling dependence for a sequence of
random variables, this notion is defined in the following way.

Definition 1.9. [1] (Mixing Processes) Mixing conditions are usual structures for
modeling dependence for a sequence of random variables. Let (Ω, A, P ) be a prob-
ability space, let B and C be two sub σ−field of A.
Where B ∈ σ(Xs, s ≤ t) and C ∈ σ(Xs, s ≥ t+ k).
In order to estimate the correlation between B and C various coefficient are used

(1) α = α(B, C) = sup
B∈B
C∈C

| P (B ∩ C)− P (B)P (C) |,

(2) β = β(B, C) = sup
C∈C
| P (C)− P (C|B) |,

(3) ϕ = ϕ(B, C) = sup
B∈B,P (B)>0

C∈C

| P (B ∩ C)− P (B)P (C) |,

(4) ρ = ρ(B, C) = sup
X∈L2(B)
Y ∈L2(C)

| corr(X, Y ) |.

These coefficients satisfy the following inequalities:

2α ≤ β ≤ ϕ,

4α ≤ ρ ≤ 2ϕ 1
2 .

Then

ϕ-mixing⇒ β-mixing⇒ α-mixing,
ϕ-mixing⇒ ρ-mixing⇒ α-mixing.

In this work we use the α-mixing (or strong mixing) notion, which is one of the most
general among the different mixing structures introduced in the literature.
A process (Xt, t ∈ Z) is said to be α−mixing if

sup
t∈Z

α(σ(Xs, s ≤ t), (σ(Xs, s ≤ t+ k))→ 0 as k →∞,

and
lim
k→∞

α(k) = 0.
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1. GENERAL INTRODUCTION

Definition 1.10. [1](Geometrical and arithmetical α-mixing) We will mainly con-
sider both of the following subclasses of mixing processes.
The sequence Xn, n ∈ Z, is said to be arithmetically α-mixing with rate a > 0 if

∃ C > 0, α(n) ≤ Cn−a

It is called geometrically α-mixing if

∃ C > 0, ∃ t ∈ (0, 1) α(n) ≤ Ctn

We will use the geometrical α-mixing process in the remaining of the work.

Definition 1.11. [32] (stochastic o and O symbols ) For a given sequence of ran-
dom variables Rn,

Xn = o(Rn) means Xn = YnRn and Yn
P−−→ 0,

Xn = O(Rn) means Xn = YnRn and Yn = O(1).

There are many rules of calculus with o and O symbols, which we apply without
comment. For instance

o(1) + o(1) = o(1),

o(1) +O(1) = O(1),

o(1)O(1) = o(1),

(1 + o(1))−1 = O(1),

o(Rn) = Rno(1),

O(Rn) = RnO(1),

o(O(1)) = o(1).

1.2.2 Tools

Here are some tools that are going to be used to prove the main results.

Lemma 1.1. [1] (Bernstein’s inequality) This inequality is very useful to prove the
almost sure and almost complete convergence.
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1. GENERAL INTRODUCTION

Let (Xt, t ∈ Z) be a zero-mean real-valued strictly stationary bounded process.
Then for each integer q ∈ [1, n2 ] and each ε > 0

P(
n∑
t=1

Xt) ≤ 4 exp
(
−ε2

8v2(q)q
)

+ 22
(

1 + 4||X0||∞
ε

) 1
2

qα

(⌊
n

2q

⌋)
,

where

v2(q) = 8q2

n
V (

[ n2q ]+1∑
t=1

) + ε||X0||∞
2

and α
(⌊

n

2q

⌋)
is the strong mixing coefficient of order

⌊
n

2q

⌋
1.

Now, we present some lemmas that can be very important in the remainder of
this work.

Lemma 1.2. [17] (Davydov’s Lemma) Let {∆i, i ∈ N} be a sequences of real-valued
random variables that verify strong mixing prcess, and let ‖ ∆ ‖∞<∞, ∀i
we have for all i 6= j,

|cov(∆i,∆j)| < 4 ‖ ∆i ‖‖ ∆j ‖ α(|i− j|).

Lemma 1.3. [23] (Volkonskii and Rozanov’s Lemma) Let V1, . . . , VL be strongly
mixing random variables measurable with respect to the σ-algebras F j1i1 , . . . ,F

jL
iL

respectively with 1 ≤ i1 < j1 < i2 < . . . jL ≤ n, il+1 − jl > w > 1 and |Vj| ≤ 1
for j = 1 . . . L, then

∣∣∣E
 L∏
j=1

(Vj)
− L∏

j=1
E(Vj)

∣∣∣ ≤ 16(L− 1)α(w),

where α(w) is the strongly mixing coefficient.

Theorem 1.1. [32] (Slutsky’s Theorem) This theorem prepare the way to obtain
the asymptotic normality of the model.
Let Xn, X and Yn be random variables, if Xn

D−−−→ X and Yn P−−→ C for a constant
C, then

(i) Xn + Yn
D−−−→ X + C,

(ii) XnYn
D−−−→ XC,

1bxc integer part of x.

12



1. GENERAL INTRODUCTION

(iii) XnY
−1
n

D−−−→ XC−1.

Central limit theorems are theorems concerning convergence in distribution of
sums of random variables. There are versions for dependent observations and normal
limit distributions. The Lindeberg-Feller Theorem is the simplest extension of the
classical central limit theorem and is applicable to independent observations with
finite variances.

Theorem 1.2. [32] (Lindeberg-Feller Theorem) For each n let Yn,1, . . . , Yn,kn be
independent random vectors with finite variances such that

∀ε > 0,
kn∑
i=1

E(‖ Yn,i ‖2 11‖Yn,i‖>ε)→ 0,

kn∑
i=1

Cov(Yn,i)→ Σ,

then the sequence
kn∑
i=1

(Yn,i − E(Yn,i)) converges in distribution to a normal N(0,Σ)

distribution.

1.2.3 Brief outline of the dissertation

This dissertation is dedicated to the survey of the asymptotic properties of condi-
tional functional parameters in nonparametric statistics, the functional conditional
mode and conditional quantile, when the explanatory variable takes its values in
infinite dimensional space. The study of our functional estimators deals with the
dependent data especially the strong mixing data. This dissertation is divided into
four chapters, we begin by an introductory chapter which contains the bibliographic
context and the most important definitions and tools which clarify many notions and
will be used in the proofs of the main results. In the second chapter we focus on the
functional mode, we study the consistency of the estimator and some results about
asymptotic normality. In the third chapter we deal with conditional quantile then
we show its asymptotic properties. In the last chapter, some applications are stud-
ied, we apply the conditional quantile approach to the prediction and the building
of confidence bands. Finally we conclude the dissertation by a general conclusion.

13



Chapter 2
Functional Conditional Mode

The main goal of this chapter is to treat some asymptotic results of a conditional
model "Mode function". This chapter is organized as follows. The first section
is concerned with the presentation of our model and its estimator. In the second
section we give the assumptions, some notations and remarks on the assumptions.
In the third section we provide results about the consistency of the estimator and the
asymptotic normality. In the fourth and last section we prove the results elaborated
in the previous section.

2.1 The model and its estimator

Let {(Xi, Yi), i = 1, . . . , n} be n copies of a random vector identically distributed
as (X, Y ) whereX is valued in infinite dimensional semi-metric vector space (S, d(. . .))
and the variables Y are valued in R. In most practical applications, S is a normed
space (e.g. Hilbert or Banach space) with norm ‖ . ‖ so that d(x, x′) =‖ x− x′ ‖.
For x ∈ S, we denote by g(.|x) the conditional density function of Y given X = x.
We assume that g(.|x) has a unique mode and the conditional mode of Y given
X = x, denoted by Θ(x) and defined by

g(Θ(x)|x) = max
y∈R

g(y|x). (2.1)

A kernel estimator of the conditional mode Θ(x) is defined as the random variable
Θn(x) which maximizes the kernel estimator gn(.|x) of g(.|x) that is

gn(Θn(x)|x) = max
y∈R

gn(y|x), (2.2)

14



2. FUNCTIONAL CONDITIONAL MODE

here
gn(y|x) = fn(x, y)

`n(x) , (2.3)

where
fn(x, y) = 1

nhHφx(hK)

n∑
i=1

K

(
d(x,Xi)
hK

)
H(1)

(
y − Yi
hH

)
, (2.4)

and
`n(x) = 1

nφx(hK)

n∑
i=1

K

(
d(x,Xi)
hK

)
. (2.5)

Where K is a real valued kernel function hK (resp. hH) (depending on n) is a
sequence of real positive numbers which goes to zero as n goes to infinity and φx(.)
is a function which will be described later. H(1) is the first derivative of a given
distribution function H.
For any j ≥ 1, we define the jth partial derivative with respect to second component
of fn(., .) by

∂fn(x, y)
∂y(j) = f (j)

n (x, y) = 1
nhj+1

H φx(hK)

n∑
i=1

K

(
d(x,Xi)
hK

)
H(j+1)

(
y − Yi
hH

)
(2.6)

By the definition of the conditional mode function, we have

g(1)(Θ(x) | x) = 0.

It follows that

g(1)
n (Θn(x) | x) = 0.

Furthermore, we assume that g(2)(Θ(x) | x) 6= 0 and g(2)
n (Θ(x) | x) 6= 0.

By a Taylor expansion of g(1)
n (. | x) in the neighborhood of Θ(x), we have

Θn(x)−Θ(x) = − g(1)
n (Θ(x) | x)

g
(2)
n (Θ∗(x) | x)

. (2.7)

Where Θ∗(x) lies between Θn(x) and Θ(x).
Using (2.3), we can write

Θn(x)−Θ(x) = − f (1)
n (Θ(x) | x)

f
(2)
n (Θ∗(x) | x)

. (2.8)

If the denominator does not vanish.
Finally we put

axl = K l(1)−
∫ 1

0
((K l(u))′ζx0 (u)du for l = 1, 2.
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2. FUNCTIONAL CONDITIONAL MODE

2.2 Assumptions and some remarks

2.2.1 Assumptions and notations

To formulate our assumptions, some additional notations are required. LetB(x, hK)
be the ball of center x and radius hK and consider the random variableW := d(x,X)
with φx(hK) = P(W ≤ hK) = P(X ∈ B(x, hK)) for any fixed x ∈ S and hK > 0.
Furthermore let C be a compact set of R such that Θ(x) ∈ C◦, where C◦ is the
interior of C.
(H1) There exist two functions Γx(.) and ζx0 (.) such that

(i) for all hK > 0, φx(hK) > 0 and lim
hK→0

φx(hK) = 0,

(ii) for all u ∈ [0, 1], lim
hK→0

φx(uhK)
φx(hK) = lim

hK→0
ζxhK (u) = ζx0 (u),

(iii) sup
i 6=j

P[(Xi, Xj) ∈ B(x, hK), B(x, hK)] = sup
i 6=j

P[Wi ≤ hK ,Wj ≤ hK ] = Γx(hK),

where lim
hK→0

Ψx(hK) = 0. Furthermore, we assume that Γx(hK) = o(φ2
x(hK)).

(H2) The conditional joint probability density and the conditional density are con-
tinuous with respect to each variable such that

(i) ∀x ∈ S,∀(y, t) ∈ R2,
sup

‖X−x‖≤hK
| g(j](y − thK | X)− g(j](y | X) |= o(1), as hK → 0 for j = 1, 2.

(ii) ∀x ∈ S,∀(y, u, v) ∈ R3,
sup

‖Xi−x‖≤hK
‖Xj−x‖≤hK

| gij(y − hKu, y − hKv | (Xi, Xj))− gij(y, y | (x, x)) |= o(1),

where gij((., .), | (x, x)) is the conditional density of (Yi, Yj) given (Xi, Xj) =
(x, x).

(H3) The mixing coefficient satisfies:
+∞∑
k=1

kδ(α(k))1−( 2
τ

) ≤ +∞, for some τ > 2 and δ > 1− 2
τ

(H4) The kernelK has a compact support [0, 1] and is of class C1 on [0, 1]. Moreover
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2. FUNCTIONAL CONDITIONAL MODE

K(0) > 0, K(1) > 0 and K ′ < 0.
(H5) H(1) is twice differentiable such that

(i) ∀(u1, u2) ∈ R2, | H(j)(u1)−H(j)(u2) |≤ C | u1 − u2 | for j = 1, 3.

(ii)
∫
R
| H(j)(u) |k du < +∞ for j = 1, 3, k = 1 and for j = 2, k = 1, 2, τ.

(iii) H(j) is bounded for j = 1, 2, 3, furthermore, we assume that
m := inf

[0,1]
K(t)H(3)(t) 6= 0.

(H6) The bandwidths hK and hH satisfies, for 0 ≤ j ≤ 2

(i) nh2j+1
K φ2

x(hK)→ +∞ and nh2j+1
K φ2

x(hK)
log2 n

→ +∞ as n→ +∞,

(ii) nζhj+2
H → +∞ as n→ +∞ for some ζ > 0,

(iii) nh2j+2
K φ2

x(hK)→ 0 as n→ +∞.

(H7) There exist sequence of integers (un) and (vn) increasing to infinity such that
(un + vn) ≤ n satisfying

(i) vn = o((nhKφx(hK)) 1
2 and

(
n

hKφx(hK)

) 1
2

α(vn)→ 0 as n→ +∞,

(ii) qnvn = o((nhKφx(hK)) 1
2 and qn

(
n

hKφx(hK)

) 1
2

α(vn)→ 0, as n→ +∞,

where qn is the largest integer such that qn(un + vn) ≤ n.

2.2.2 Remarks on the assumptions

Remark 2 (H1) plays an important role in our methodology. It is known as the
"concentration hypothesis acting on the distribution of X" in infinite dimensional
space. This assumption is not at all restrictive and overcomes the problem of the
non existence of the probability density function. In many examples, around zero
the small ball probability φx(hK) can be written approximately as the product of two
independent functions (x) and ϕ(hK) as φx(hK)) = (x)ϕ(hK)+o(ϕ(hK)). Further-
more, in infinite dimension, there exist many examples fulfilling the decomposition
mentioned above. We quote the following decomposition (which can be found in
Ferraty, Mas and Vieu [15]):
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2. FUNCTIONAL CONDITIONAL MODE

(1) φx(hK) ≈ (x)hγK 1 for some γ > 0,

(2) φx(hK) ≈ (x)hγK exp −C
hpK

for some γ > 0 and p > 0,

(3) φx(hK) ≈ (x)/ | ln hK |.

The function ζxhK (.) which intervenes in (H1)(ii) is increasing for all fixed hK. Its
pointwise limit ζx0 (.) also plays a determinant role. It intervenes in all asymptotic
properties, in particular in the asymptotic variance term. With simple algebra, it is
possible to specify this function (with ζ0(u) := ζx0 (u)) in the above examples by

(1) ζ0(u) = uγ,

(2) ζ0(u) = δ1(u) where δ1(.) is a Dirac function,

(3) ζ0(u) = 11]0,1](u).

(H1)(iii) is a classical and permits to make the covariance term negligible.

Remark 3 (H2) is smoothness condition, continuity type and it is the only condi-
tion involving the conditional probability density of Y given X and the joint con-
ditional probability density of (Y1, Y2) given (X1, X2). it means that g(. | .) and
g(.. | ..) are continuous with respect to each variable.
(H4) and (H5) are technical and deal with the kernels K and H.

Remark 4 (H6) is classical in the functional estimation in finite and infinite-
dimensional space, this assumption is used to balance between the bias term and
the variance term.
The choice of sequences (un),(vn) and (qn) in (H7) is classical and almost the same
as in Masry [23], another choice can be found in Roussas [29].

2.3 Main results

The first result of this section is Proposition 2.1 and Proposition 2.2 which focus
on the consistency of the estimator Θn.

1 ≈ approximately equal.

18



2. FUNCTIONAL CONDITIONAL MODE

2.3.1 Consistency of the estimator

Our first result deals with the almost sure convergence of the kernel estimator
fn(x, y).

Proposition 2.1. Under (H4), (H5) (iii) and (H6) (i) and if for some γ ≥ 2

+∞∑
p=1

P
2γ

2γ+1 +3α
2γ

2γ+1 (p) <∞, (2.9)

then for all ε > 0, we have

+∞∑
n=1

P{| f (j)
n (x, y)− E[f (j)

n (x, y)] |> ε} < +∞ for j = 0, 1, 2.

Demonstration

To prove Proposition 2.1, we use a version of Bernstein’s exponential Inequality
for the strong mixing case which is quoted in Lemma 2.1.
For any fixed i ≥ 1, let

T
(j)
i = K

(
d(x,Xi)
hK

)
H(j+1)

(
y − Yi
hH

)
=: KiH

(j+1)
i .

Lemma 2.1. Let (Ti)i≥1 be a sequence of the strong mixing sequence of real random
variable with Laplace transform uniformly bounded on some interval [−δ,+δ] then
for every n ≥ 2, γ > 0 and p ≤ n

2 we have

P
{

1
n

n∑
i=1
| Ti − E[Ti] |> ε

}
≤ 6 exp

(
−ntε
30p

)
+ 6n

p

(10Mγ

ε
+ 1

)λ
α2λ(p).

Where,

λ = γ

2γ + 1 , Mγ = sup
i≥1
‖ Ti ‖γ, t = min(δ2 ,

ε

3c), c = 4 sup
i≥1

∞∑
l=2

δl−2

l! E | Ti |l .

This proposition leads us to obtain

Proposition 2.2. Under the assumptions of Proposition 2.1, (H1) (i), (ii), (H2)
(i), (H5) (i) and (H6) (iii), if the function Θ(.) satisfies ∀ε > 0 and µ(x), there
exists ξ > 0 such that

| Θ(x)− µ(x) |≥ ε⇒| g(Θ(x) | x)− g(µ(x) | x) |≥ ξ,
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2. FUNCTIONAL CONDITIONAL MODE

then, for all x ∈ S we have

Θn(x)−Θ(x) a.co.−−−−→ 0 as n→∞.

Demonstration

The proof of this proposition is based on the following decomposition:

| g(Θn(x) | x)− g(Θ(x) | x) | = | g(Θn(x) | x)− gn(Θn(x) | x) + gn(Θn(x) | x)− g(Θ(x) | x) |
≤ | g(Θn(x) | x)− gn(Θn(x) | x)|+ |gn(Θn(x) | x)− g(Θ(x) | x) |
≤ sup

y∈C
| gn(y | x)− g(y | x) | + sup

y∈C
| gn(y | x)− g(y | x) |

≤ 2 sup
y∈C
| gn(y | x)− g(y | x) | . (2.10)

The uniqueness hypothesis of the conditional mode gives us the result provided, we
prove that the right hand side of (2.10) converges almost completely to zero.
For 0 ≤ j ≤ 2, we have

sup
y∈C
| g(j)

n (y | x)− g(j)(y | x) | ≤ 1
`n(x){sup

y∈C
| f (j)

n (x, y)− E[f (j)
n (x, y)] |

+ sup
y∈C
| E[f (j)

n (x, y)]− ax1g(j)(y | x) |}

+ 1
`n(x){| `n(x)− E[`n(x)] | + | E[`n(x)]− ax1 |}.

(2.11)
To show the almost complete convergence of the estimator we have to establish

the following results.
The Lemmas 2.2 and 2.4 show the asymptotic bias term of f (j)

n (x, y) and `n(x) as n
tends to infinity.

Lemma 2.2. Under assumptions (H1) (i), (ii), (H2) (i), (H4) and (H5) (i) we
have for 0 < j < 2

E[f (j)
n (x, y)]→ ax1g

(j)(y | x) as n→∞.

Lemma 2.3. Under assumptions (H1), (H2), for x fixed we have

1
φx(hK)E

[
Kj

(
d(x,Xi)
hK

)]
→ axl n→∞ for l = 1, 2,

where
axl = K l(1)−

∫ 1

0
(K l)′(u)ζhK (u)du
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2. FUNCTIONAL CONDITIONAL MODE

This lemma plays the same role as the classical Bochner’s Lemma in finite dimen-
sion and gives us the convergence of the last term of the right hand side of (2.11).

Lemma 2.4. Under assumptions (H1) (i), (ii) and (H4), we have

E[`n(x)] = 1
φx(hK)E

[
K

(
d(x,Xi)
hK

)]
→ ax1 ,

1
φx(hK)E

[
K2

(
d (x,Xi)
hK

)]
→ ax2 .

Now, we prove that `n(x)− E[`n(x)] converges almost completely to zero.

Lemma 2.5. Under Assumptions (H1) (i), (ii), (H2) (i), (H4) and (H5) (i) we
have 0 ≤ j ≤ 2 ∑

n≥1
P{| `n(x)− E[`n(x)]} <∞.

This lemma allows us to obtain the following corollary.

Corollary 5 Under Assumptions of Lemma 2.5, for all fixed x ∈ S we have

∃ δ̃ > 0,
∞∑
n=1

P{| `n(x) < δ̃} < +∞. (2.12)

To conclude the result, we deal with the following lemma.

Lemma 2.6. Under assumptions of Proposition 2.1, assumptions (H5) (i) and
(H6) (i), (ii) we have

1
`n(x) sup

y∈C
| f (j)

n (x, y)− E[f (j)
n (x, y)] | a.co.−−−−→ 0 as n→∞ for 0 ≤ j ≤ 2.

(2.13)

2.3.2 Asymptotic normality

The following result deals with the asymptotic normality of (2.8)

Theorem 2.3. Under (H1)-(H7) we have for any x ∈ Ξ

(
nh3

Hφx(h)
σ2(x,Θ(x))

) 1
2

(Θn(x)−Θ(x)) D−−−→ N (0, 1) as n→∞, (2.14)

where Ξ = {x : x ∈ S, g(Θ(x) | x) 6= 0} and

σ2(x,Θ(x)) := ax2g(Θ(x) | x)
[ax1g(2)(Θ(x) | x)]2

∫
R
(H(2)(t))2dt.
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2. FUNCTIONAL CONDITIONAL MODE

Demonstration

Now, we give a decomposition which help us in the next steps of the proof.
Recall that

Θn(x)−Θ(x) = −f
(1)
n (x,Θ(x))− E[f (1)

n (x,Θ(x))]
f

(2)
n (x,Θ∗n(x))

− E[f (1)
n (x,Θ(x))]

f
(2)
n (x,Θ∗n(x))

. (2.15)

According to Slutsky’s Theorem, we will prove the asymptotic normality of the
dominant term of the first term in the right hand side of (2.15), then we show that
the denominator converges in probability to a constant c, Finally we check that the
second term of the right hand side term is negligible.
We begin by the first step:

f (1)
n (x,Θ(x))− E[f (1)

n (x,Θ(x))] =: 1
nh2

Hφx(hK)

n∑
i=1

Zi(x,Θ(x)), (2.16)

after suitable normalization where

Zi(x, y) := KiH
(2)
i − E[KiH

(2)
i ],

denoted by
Rn(x, y) := 1

nh2
Hφx(hK)

n∑
i=1

Zi(x, y),

with Zi(x, y) = Zi we have

V ar(Rn(x, y)) = 1
nh4

Hφ
2
x(hK)V ar(Z1) + 2

n2h4
Hφ

2
x(hK)

n∑
1≤i<j≤n

Cov(Zi, Zj),

note that

V ar(Rn(x, y)) = V ar(f (1)
n (x, y)),

then

nh3
HV ar(f (1)

n (x, y)) = 1
hHφ2

x(hK)V ar(Z1) + 2
nhHφx(hK)

n∑
1≤i<j≤n

Cov(Zi, Zj)

= Vn(x, y) + 2
nhHφx(hK)

n∑
1≤i<j≤n

Cov(Zi, Zj).

Now, we are in a position to establish the following lemma.
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2. FUNCTIONAL CONDITIONAL MODE

Lemma 2.7. If (H1)-(H4) and (H5) (i), (ii) are fulfilled, then

(i) lim
n→∞

Vn(x, y) = V (x, y),

(ii) lim
n→∞

2
nhHφx(hK) |

n∑
1≤i<j≤n

Cov(Zi, Zj) |= 0,

where
V (x, y) = ax2g(y | x)

∫
R2

(H(2)(u))2du.

Therefore, we can write√
nh3

Hφx(hK)Rn(x, y) =: 1√
nhHφx(hK)

n∑
i=1

Zi =: 1√
n
Z̃i =: 1√

n
Sn.

Then we show that
1√
n
Sn

D−−−→ N (0, V (x, y)).

The second step is treated in the following lemma.

Lemma 2.8. Under assumptions of Lemma 2.2, Lemma 2.6 and Proposition 2.1,
for j = 2

f (2)
n (x,Θ∗n(x)) P−−→ ax1g

(2)(Θ(x) | x).

Now, we move to the second term in the right hand side of (2.15).

Lemma 2.9. Under assumptions (H1) (i), (ii), (H2)(i), (H4), (H5)(i), we have√
nh3

Hφx(hK)
f

(2)
n (x,Θ∗n(x))

(E[f (1)
n (x,Θn(x))]) P−−→ 0 as n→∞.

In the last section we give technical proofs of the results elaborated in the previous
section

2.4 Technical proofs and auxiliary results

2.4.1 Proof of Proposition 2.1

Using the Lemma 2.1, and by (H4) and (H5) (iii), we have that T (j)
i is bounded,

therefore, its Laplace transform exists on any interval [−δ,+δ]. Furthermore, we
have Mγ <∞ and c <∞. Now, we have

P{| f (j)
n (x, y)− E[f (j)

n (x, y)] |> ε} = P
{

1
n

n∑
i=1
| T ji − E[T (j)

i ] |> εφx(hK)hj+1
H

}
.
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Applying (2.1) , we get

P{| f (j)
n (x, y)− E[f (j)

n (x, y)] |> ε} ≤ 6 exp
(
−ntjεφx(hK)hj+1

H

30pj

)

+ 6 n
pj

(
10M j

γ

εφx(hK)hj+1
H

+ 1
)λ

α2λ(pj).
(2.17)

On the one hand, let

tj = εφx(hK)hj+1
H

3cj
, where cj = 4

∞∑
l=2

δl−2

l! E | Ti(j) |l.

Put Mj = sup
[0,1]
| H(j+1) |,

clearly we have

cj = 4
δ2

∞∑
l=2

δlMj

l! E
[
K lE

[
|H

(j+1)

Mj

|l | X1

]]

≤ 4
δ2Mj

∞∑
l=2

δlMj

l! E
[
K lE

[
|H(j+1)| |X1

]]
.

Now for n large enough and by (H5) (ii), there exist a constant Cj such that:
E[| H(j+1) | | X1]] ≤ Cjh

j+1
H

We obtain that cj ≤ Cjφ(h)hj+1
H then, −tj ≤ −Cjε.

choosing pj = [
√
nhjHφx(hK)], we get that the first term of the right hand side of

(2.17) satisfies

exp
(
−ntjεφx(hK)hj+1

H

30pj

)
≤ exp(Cjε2

√
nhj+2

H φx(hK)).

Under the last part of (H6) (i), we have
∑
n≤1

exp
(
−ntjεφx(hK)hj+1

30pj

)
<∞.

On the other hand, we have

M j
γ ‖ T

(j)
i ‖γ= (E | T (j)

i |γ)
1
γ ≤ C.

Now, we show that
n

pj
≤ 4pj
hjHφx(hK)

≤
Cp3

j

nh2j
Hφ

2
x(hK)

≤ Cp3
j .

Then, for n large enough we get

6 n
pj

(
10M j

γ

εφx(hK)hj+1
H

+ 1
)λ
∼= C

n

pj

(
1

εφx(hK)hj+1
H

)λ
≤ Cp3

j

 p2
j

εp2
jφx(hK)hj+1

H

λ .
(2.18)
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By the first part of (H6) (i), we have that p2
jφx(hK)hj+1

H →∞ then from (2.18)

6
∑
pj≥1

n

pj

(
10M j

γ

εφx(hK)hj+1
H

+ 1
)λ

α2λ(pj) <
∑
pj≥1

Cp2λ+3
j <∞,

if and only if (2.9) holds, which complete the proof of Proposition 2.1.

Remark 6 If α(p) = p−a for a > 0, then for any 2
5 ≤ λ ≤ 1

2 Proposition 2.1 holds
for a > 2λ+ 1.

2.4.2 Proof of Proposition 2.2

Proof of Lemma 2.2

As the proof is identical for j = 1 and j = 2, we give only the first case and we
suppose X1 ∈ B(X, hK).

E[f (1)
n (x, y)] = 1

h2
Hφx(hK)E

(
K

(
d(x,Xi)
hK

)
H(2)

(
θ(x)− Y1

hH

))

= 1
h2
Hφx(hK)E

(
K

(
d(x,Xi)
hK

))
E
(
H(2)

(
θ(x)− Y 1

hH

)
| X1

)
.

Now we calculate

E
(
H(2)

(
y − Y1

hH

)
| X1

)
=

∫
R2
H(2)

(
y − Y 1

hH

)
g(z | X1)

= h2
H

∫
R2
H(1)(t)[g(1)(y − thH | X1)− g(1)(y | X1)]dt

+H(1)(t)g(1)(y | X1)dt
= h2

H

∫
R2
H(1)(t)[g(1)(y − thH | X1)− g(1)(y | X1)] + h2

Hg
(1)(y | X1).

Then

E[f (1)
n (x, y)] = 1

φx(hK)E
(
K

(
d(x,Xi)
hK

))∫
R2

[g(1)(y − thH | X)− g(1)(y | X)]

+ 1
φx(hK)E

(
K

(
d(x,Xi)
hK

))
g(1)(y | X).

Finally we get

1
φx(hK)E

(
K

(
d(x,Xi)
hK

))
g(1)(y | X)→ ax1g

(1)(y | X) as n→∞.
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Proof of Lemma 2.4

To prove this lemma we calculate

1
φx(hK)E

[
K

(
d(x,Xi)
hK

)]
= 1

φx(hK)

∫ hK

0
K l

(
u

hK

)
dP d(x,Xi)

= 1
φx(hK)

[
K l

(
u

hK

)
φx(u)

]hK
0
− 1
φx(hK)

∫ hK

0
K l

(
u

hK

)
φx(u)du

= 1
φx(hK) [K l(1)φx(hK)]− 1

φx(hK)

∫ 1

0
(K l)′(u)φx(uhK)du

= K l(1)−
∫ 1

0
(K l)′(u)ζhK (u)du

= K l(1)−
∫ 1

0
(K l)′(u)ζhK (u)du

= axl as n→∞.

We replace l by 1 and 2 to obtain the result.

Proof of Lemma 2.5

The proof of this lemma is the same as in Proposition 2.1 with slight difference,
to get the result we make use of the following choice:

K

(
d(x,Xi)
hK

)
, t = εφx(hK)

3c , p = [
√
nφx(hK)].

Proof of Corollary 5

To obtain the claimed this result, we combine Lemma 2.5 below with the fact that
`n(x) ≥ E[`n(x)]− | `n(x)− E[`n(x)] |. Furthermore, we have E[`n(x)] = ax1

2 , which
completes the proof.
Now to end the proof of Proposition 2.2, it suffices to show the uniformity over y ∈ C
of Proposition 2.1. This is the object Lemma 2.6.

Proof of Lemma 2.6

Consider a coverage of C by a finite number ln of intervals Ck of the folowing form
Ck = (sk −wn, sk +wn). We have that C ⊂∪lnk=1 Ck. Put sy = arg min

s∈{s1,...,sy}
| y− s |,
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then we have

1
`n(x) sup

y∈C
| f (j)

n (x, y)− E[f (j)
n (x, y)] | ≤ 1

`n(x) sup
y∈C
| f (j)

n (x, y)− f (j)
n (x, sy) |

+ 1
`n(x) sup

y∈C
| [f (j)

n (x, sy)]− E[f (j)
n (x, sy)] |

+ 1
`n(x) sup

y∈C
| E[f (j)

n (x, sy)− E[f (j)
n (x, y)])

=: I1 + I2 + I3.

Regarding I1, using the last part (H5) (i), we have

1
`n(x) sup

y∈C
| f (j)

n (x, y)− f (j)
n (x, sy) | ≤

1
`n(x) sup

y∈C

1
nhj+1

H φx(hK)
n∑
i=1
| H(j+1)

i (y)−H(j+1)
i (sy) | Ki(x)

≤ sup
y∈C

C | y − sy|
h2+j
H `n(x)

(
1

nhHφx(hK)

n∑
i=1

Ki(x)
)

≤ C
wn

hj+2
H

.

Now take wn = n−ς , then by (H6) (ii) we obtain that for n large enough

P{ 1
`n(x) sup

y∈C
| f (j)

n (x, y)− E[f (j)
n (x, y)] |> ε

3} = 0. (2.19)

Now we deal with I2, we have

P{sup
y∈C
| f (j)

n (x, y)− E[f (j)
n (x, sy)] |>

ε

3} = P{ max
sy∈{s1,...,sy}

| f (j)
n (x, y)− E[f (j)

n (x, sy)] |>
ε

3}

≤ ln max
sy∈{s1,...,sy}

P | f (j)
n (x, y)− E[f (j)

n (x, sy)] |>
ε

3}.

Now, using the same arguments as in Proposition 2.1, we take ln ≤ Cw−1
n with the

same choice of wn we get that for n large enough

P{sup
y∈C
| f (j)

n (x, y)− E[f (j)
n (x, sy)] |= o(1) a.co.,

thus

1
`n(x) sup

y∈C
| f (j)

n (x, y)− E[f (j)
n (x, sy)] |= o(1) a.co. (2.20)
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Finally, we use the same idea as for I1, by Lemma 2.2 and for n large enough, we have

sup
y∈C
| E[f (j)

n (x, y)]− E[f (j)
n (x, sy)] | ≤ sup

y∈C

1
nhj+1

H φx(h)
n∑
i=1
| E[H(j+1)

i (y)−H(j+1)
i (sy) | Ki(x)]

≤ sup
y∈C

C | y − sy |
hj+2
H

(
1

φx(hK)E
[
K

(
d(x,X1)
hK

)])

≤ C
wn

hj+2
H

.

By the same arguments as for I1 and for n large enough, we get

P{ 1
ln(x)E[f (j)

n (x, y)]− E[f (j)
n (x, sy)] |>

ε

3} = 0. (2.21)

We conclude Lemma 2.6 from (2.19)-(2.21) and hence Proposition 2.2 is proved.

2.4.3 Proof of Theorem 2.3

This theorem will be proved as long as the following lemmas can be checked.

Proof of Lemma 2.7

Part(i): We prove that lim
n→∞

Vn(x, y) = V (x, y).

nh3
Hφx(h)V ar(f (1)

n (x, y)) = 1
hHφx(hK)E

[
K2

(
d(x,Xi)
hK

)(
H(2)

(
y − yi
hH

))2
]

− 1
hHφx(hK

E2
[
K

(
d(x,Xi)
hK

)
H(2)

(
y − yi
hH

)]
.

First, we deal with Dn : Dn := h3
Hφx(hK)

E
(
K
(
d(x,Xi)
hK

)
H(2)

(
y−yi
hH

))
h2
Hφx(h)

2

Using (H2) we obtain:

h3
Hφx(hK)E2(f (1)

n (x, y)) = 0 as n→∞.

Now, we deal with Cn

Cn := 1
hHφx(hK)E

(
K2

(
d(x,Xi)
hK

))
E
(
H(2)

(
y − yi
hK

| X1

))
.
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We calculate

E
(
H(2)

(
y − Yi
hH

)
| X1

)
= hH

∫
R
(H(2)(t))2[g(y − thH | x1)− g(y | x)]dt

+hHg(y | x)
∫
R
(H(2)(t))2dt.

Then

lim
n→∞

Cn = g(y | x)
∫
R
(H(2)(t))2dt

1
φx(hK)EK

2
(
d(x,Xi)
hK

)
︸ ︷︷ ︸

ax2

+ax2g(y | x)
∫
R
(H(2)(t))2dt.

By combining all these results, we get

lim
n→∞

Vn(x, y) = V (x, y).

Let us turn to Part (ii)
Using the decomposition of Masry [23], we define:

{(i, j); 1 ≤ |i− j| ≤ ln} and {(i, j); ln ≤ |i− j| ≤ n− 1},

where ln = o(n), so
1

nhHφx(hK)

n∑
1≤i<j≤n

Cov(Zi, Zj) = 1
nhHφx(hK)

∑
|i−j|≤ln

Cov(Zi, Zj)

+ 1
nhHφx(hK)

∑
|i−j|≥ln

Cov(Zi, Zj)

=: An +Bn.

On the one hand, by stationarity we have

Cov(Zi, Zj) = E[Zi, Zj]
= E[KiH

(2)
i KjH

(2)
j ]− E2[K1H

(2)
1 ]

= E[KiKjE[H(2)
i H

(2)
j | (XiXj)]]− E2[K1H

(2)
1 ].

By Assumption (H2) (ii) and changing variables, we get

E[H(2)
i H

(2)
j | (XiXj)] = h2

H

∫
R

∫
R
H(2)(u)H(2)(v)[gi,j(y − hHu, y − hHv | (Xi, Xi))

− gi,j(y, y | (x, x))]dudv + h2
Hgi,j(y, y | (x, x))

[∫
R
H(2)(u)du

]2

= h2
H

(
o(1) + gi,j(y, y | (x, x)) +

[∫
R
H(2)(u)du

]2
)

= h2
H(o(1) + C).
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Then, by Assumption (H1) (iii)

| Cov(Zi, Zj) | ≤ Ch2
H(o(1) + C) sup

i 6=j
P{(Xi, Xj) ∈ B(x, hK), B(x, hK)}+ E2[K1H

(2)
1 ]

≤ h2
H(o(1) + C)Γx(hK) + E2[K1H

(2)
1 ].

Then

| An | ≤
∑

|i−j|≤ln

1
nφx(hK)(h2

H(o(1) + C)Γx(hK) + E2[K1H
(2)
1 ])

≤ (o(1) + C)Γx(hK)
φx(hK) hH ln + h3

Hφx(hK)ln

E2[K1H
(2)
1 ]

h2
Hφx(hK)


= (o(1) + C)

[
Γx(hK)
φ2
x(hK)

]
(hHφx(h)ln) + h3

Hφx(hK)ln(E[f (1)
n (x, y)])2.

Now choosing ln =
(

1
[hHφx(hK)]1− 2

δ

) 1
δ

,

with assumption (H1) (iii) and Lemma 2.4 we get An = o(1) as n→∞.
On the other hand, by Davydov’s Lemma [17] we have:

| Cov(Zi, Zj) |≤ 8(E[| Zτ
i |])

2
τ (α(| i− j |))1− 2

τ .

Using the conditional property, Assumptions (H2) (i) and (H5) (ii), we get

E[| Zτ
i |] ≤ CE[(Ki | H2

i )τ ]
= CE[Kτ

i E[(| H2
i |)τ | X]]

= ChHE[Kτ
i {
∫
R
(| H2

i (u) |)τ [g(y − hu | X)− g(y | X)]du

+g(y | X)
∫
R
(| H2

i (u) |)τdu}]

= chHE[Kτ
i (o(1) + C)]

= (o(1) + C)hHφx(hK).

Then
| Cov(Zi, Zj) |≤ (o(1) + C) 2

τ (α(| i− j |))1− 2
τ .

By reducing the above double sum to a single sum and with the same choice of ln
as before, we obtain

| Bn |≤
(o(1) + C) 2

τ

hHφx(hK)lδn(hHφx(hK)) 2
τ

∞∑
p=ln+1

pδα1− 2
τ (p) = (o(1) + C) 2

τ

∞∑
p=ln+1

pδα1− 2
τ (p).
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Finally, by (H3), we get Bn = (o(1)) as n→∞, which completes the proof of the
lemma.
Now we have√

nh3
Hφx(hK)Rn(x, y) =: 1√

nhHφx(hK)

n∑
i=1

Zi =: 1√
n
Z̃i =: 1√

n
Sn.

Where

Z̃i := Zi√
hHφx(hK)

and Sn :=
n∑
i=1

Z̃i

By the second part of Lemma 2.6, we have
n∑

1≤i<j≤n
Cov(Z̃i, Z̃j) = o(n) (2.22)

It remains to show that

1√
n
Sn

D−−−→ N (0, V (x, y)). (2.23)

To prove the asymptotic normality for Sn of dependent variables, make use of
Doob’s technique, used in Masry [23].
We consider the classical big and small block decomposition. We split the set
{1, 2, . . . , n} into 2kn+1 subsets with large blocks of size un and small blocks of size
vn and put k =

⌊
n

un + vn

⌋
.

Assumption (H7) (ii) allows us to define the large block size un =

(nhφx(hK)
qn

) 1
2
 .

We use (H7) to prove that

un
vn
→ 0, un

n
→ 0, un√

nhφx(hK)
→ 0, n

un
α(vn)→ 0. (2.24)

Now let Nj, N
′
j and N ′′(j) be defined as follows

Nj =
j(u+v)+u∑
j(u+v)+1

Z̃i , 0 ≤ j ≤ k + 1,

N ′j =
(j+1)(u+v)+u∑
j(u+v)+u+1

Z̃i , 0 ≤ j ≤ k + 1,
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N ′′j =
n∑

k(u+v)+1
Z̃i , 0 ≤ j ≤ k + 1.

We can write

Sn =
k−1∑
j=0

Nj +
k−1∑
j=0

N ′j + rN ′′k = S ′n + S ′′n + S ′′′n (2.25)

Now, we make some claims which leads us to obtain the result.
Equation (2.26) proves that S ′′n and S ′′′n are asymptotically negligible.

(i) 1
n
E[S ′′n]→ 0, (ii) 1

n
E[S ′′′n ]→ 0. (2.26)

We begin by the first part (i), we have

E[S ′′n]2 = var

K−1∑
j=0

N ′j


=

k−1∑
j=0

V ar(N ′j) +
∑

0≤i≤j≤K−1
Cov(N ′i , N ′j)

= L1 + L2.

By the second-order stationarity we get

V ar(N ′j) = V ar

(j+1)(u+v)+u∑
j(u+v)+u+1

Z̃i


= vnV ar(Z̃1) +

vn∑
i 6=j

Cov(Z̃i, Z̃j),

then

L1

n
= kvn

n
V ar(Z̃1) + 1

n

k−1∑
j=0

vn∑
i 6=j

Cov(Z̃i, Z̃j)

≤ kvn
n

[
1

nφx(hK)V ar(Z1)
]

+ 1
n

n∑
i 6=j
| Cov(Z̃i, Z̃j) | .

The following algebra gives us

kvn
n
∼=
(

n

un + vn

)
vn
n
∼=

vn
un + vn

∼=
vn
un
→ 0 as n→∞.

Using (2.22) we have
lim
n→∞

L1

n
= 0. (2.27)
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Let us turn to L2

n

L2

n
= 1

n

k−1∑
i=0

k−1∑
j=0

Cov(N ′i , N ′j)

= 1
n

k−1∑
i=0

k−1∑
j=0

vn∑
l1=1

vn∑
l2=1

Cov(Z̃λ1+l1 , Z̃λ1+l1)

with λi = i(un + vn) + vn.as i 6= j, we have | λi − λj + l1 + l2 |, it follows that

L2

n
≤ 1
n

n∑
i=1

n∑
j=1

Cov(| Z̃i, Z̃j |),

then
lim
n→∞

L2

n
= 0. (2.28)

By (2.27) and (2.28) we get part (i) of the lemma.
Now we deal with (ii), we have

1
n
E[S ′′′n ]2 = 1

n
V ar(N ′′k )

= µn
n
V ar(Z̃1) + 1

n
Cov(Z̃i, Z̃j),

where µn = n− kn(un + vn) by the definition of kn, we have µn ≤ un + vn,
then

1
n
E[S ′′′n ]2 ≤ un + vn

n
var(Z̃1) + 1

n

µn∑
i=1

µn∑
j=1

Cov(Z̃i, Z̃j)︸ ︷︷ ︸
o(1)

and by the definition of un and vn, we achieve the proof of (ii)
Equation (2.29) shows the asymptotic independence of {Nj} in S

′

n

| E[exp(itn−1
2 S ′n)]−

K−1∏
j=0

[exp(itn−1
2 Nj)] |→ 0. (2.29)

We make use of Volkonskii and Rozanov’s Lemma [23] and the fact that the pro-
cess (Xi, Yi) is strong mixing.
Note that Na is F iaia -measurable with ia = a(un + vn) + 1 and ja = a(un + vn) + un

hence, with Vj = exp(itn
−1
2 Nj) we have

| E[exp(itn
−1
2 S ′n)]−

K−1∏
j=0

[exp(itn
−1
2 Nj)] |≤ 16knα(vn + 1) ∼=

n

un
α(vn + 1),
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which goes to zero by the last part of (2.24).
Equations (2.30) and (2.31) are standard Lindeberg-Feller conditions for asymptotic
normality under independence.

1
n

k−1∑
j=0

E[N2
j ]→ V (x, y), (2.30)

Proceeding as in the proof of (2.26) by replacing vn by un we get

1
n

k−1∑
i=0

E[N2
j ] = kun

vn
V ar(Z̃1) + o(1).

As var(Z̃1) = V (x, y) and kun
n
→ 1, we get the result.

1
n

k−1∑
j=0

E[N2
j 11{|Nj |>ε

√
nV (x,y)}]→ 0, (2.31)

for every ε, n > 0.
Recall that

Nj =
j(u+v)+u∑
i=j(u+v)+1

Z̃i where Z̃i := 1√
hHφx(hK)

(KiH
(2)
i − E[KiH

(2)
i ]).

Making use (H4) and (H5) (iii), we have

| Z̃i |≤
C√

hHφx(hK)
thus | Nj√

n
|≤ Cun√

nhHφx(hK)
,

which goes to zero as n goes to infinity by (2.24), if we take n large enough, the set
{| Nj |> ε

√
nV (x, y)} becomes empty, this completes the proof and therefore that

of (2.23).
Lemma 2.9 proves the convergence in probability of the decomposition given in
equation (2.15).

Proof of Lemma 2.9

By the last part of assumption (H5) (iii) we have
√
nh3

Hφx(hK)
f

(2)
n (x,Θ∗n(x))

≤

√
nh3

Hφx(hK)
m

.
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Finally (H6) (iii) and Lemma 2.2 allows us to conclude.
Now, we come back to the proof of Theorem 2.3.
From (2.15), we have

√
nh3

Hφx(hK)(Θn(x)−Θ(x)) =

√
nh3

Hφx(hK)(f (1)
n (x,Θ∗n(x))E[f (1)

n (x,Θ∗n(x))])
f

(2)
n (x,Θ∗n(x))

−

√
nh3

Hφx(hK)E[f (1)
n (x,Θ∗n(x))])

f
(2)
n (x,Θ∗n(x))

.

(2.32)
Using Lemma 2.8, and then by Lemma 2.9, we conclude that the last term of the
right-hand side of (2.32) goes to zero as n goes to infinity.
Now, by (2.23) and Slutsky’s Theorem we have that the first term of right hand side

(2.32) is asymptotically normal with variance term equal to V (x, y)
[ax1g(2)(Θ(x) | x)]2 .

Which completes the proof of Theorem (2.3).
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Chapter 3
Functional Conditional Quantile

In this chapter we will treat some asymptotic properties of a non-parametric con-
ditional quantile estimator, this chapter is divided into four sections. Firstly we
describe our model then we construct its estimator. Secondly we give the assump-
tions, notations and some important remarks. Then we provide some important
results about the consistency of the estimator and the asymptotic normality. The
last chapter is concerned with technical proofs of the main results elaborated in the
previous section.

3.1 The model and its estimator

Let {(Xi, Yi), i = 1, . . . , n} be n copies of a random vector identically distributed
as (X, Y ) whereX is valued in infinite dimensional semi-metric vector space (S, d(., .))
and the variables Y are valued in R. For x ∈ S we denote the conditional probability
distribution of Y given X = x by

∀y ∈ R F (y|x) = P(Y ≤ y|X = x). (3.1)

A natural way to model a conditional quantile function is to invert a conditional cu-
mulative distribution function at the desired quantile. So, we denote the conditional
quantile of order p in [0, 1] by

ξp = inf{y : F (y|x) ≥ p}. (3.2)
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3. FUNCTIONAL CONDITIONAL QUANTILE

It is clear that an estimator of ξp can easily be deduced from an estimator of F (y|x).
A kernel of F (y|x) is given by

Fn(y|x) =
∑n
i=1 K

(
d(x,Xi)
hK

)
H
(
y−Yi
hH

)
∑n
i=1 K

(
d(x,Xi)
hK

) . (3.3)

Where K,H, hH and hK are defined in Chapter 2.
Suppose that, for any fixed x, F (.|x) be continuously differentiable real function,
and admits a unique conditional quantile.
Let p ∈ [0, 1], we will consider the problem of estimating the parameter ξp(x) which
satisfies

F (ξp(x)|x) = p. (3.4)

Then a natural estimator of ξp(.) is given by

ξp,n = inf{y : Fn(y|x) ≥ p}, (3.5)

which satisfies
Fn(ξp,n(x)|x) = p. (3.6)

We can write (3.3) as

F (j)
n (y|x) = Ψ(j)

n (x, y)
gn(x) , (3.7)

where
Ψ(j)
n (x, y) = 1

nhjHφx(hK)

n∑
i=1

K

(
d(x,Xi)
hK

)
H(j)

(
y − Yi
hH

)
,

and
gn(x) = 1

nφx(hK)

n∑
i=1

K

(
d(x,Xi)
hK

)
.

In what follows, for j ≥ 0 we denote by F j
n(.|x) the jth derivative of F (.|x) (resp

Fn(.|x)).
By a Taylor expansion of Fn(.|x) around ξp(x) we get

Fn(ξp(x)|x)− F (ξp(x)|x) = (ξp(x)− ξp,n(x))fn(ξ∗p,n|x). (3.8)

Where fn(.|x) = ∂Fn
∂y

(.|x) is the estimate of the conditional density of Y given
X = x and ξ∗p,n(x) lies between ξp(x) and ξp,n(x).
Equation (3.8) shows that from the asymptotic behavior of Fn(ξp(x)|x)−F (ξp(x)|x)
as n goes to infinity, it is easy to obtain the asymptotic results for the sequence
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(ξp,n(x)−ξp(x)) and prove why the rates of convergence are the same for ξp,n(x) and
Fn(ξp,n(x)|x).
In the next section, the assumptions that allow us to derive the main results are
stated.

3.2 Assumptions and some remarks

3.2.1 Assumptions and notations

We start by introducing the following notation

axl = K l(1)−
∫ 1

0
(K l(u))′ζx0 (u)du for l = 1, 2.

The first three assumptions are the same used in Chapter 2: (H1)-(H3).
The fourth assumption is modified by adding a second condition
(Q4) The kernel functions satisfies

(ii) For j = 0, 1, H(j) satisfy the Lipschitz Condition and furthermore
m = inf

[0,1]
K(t)H1(t) > 0.

Then we impose another assumption
(Q5) The bandwidths hK and hH satisfy the following, for 0 ≤ j ≤ 1

(i) nh2j+1
K φ2

x(hK)→ +∞ and nh2j+1
K φ2

x(hK)
log2 n

→ +∞ as n→ +∞,

(ii) nh2j
Hφ

3
x(hK)→ +∞ as n→ +∞,

(iii) there exists a positive sequence vn such that vn → +∞, vn = o(nφx(hK)) and(
n

φx(hK)

)
α(vn) → 0 as n goes to infinity.

3.2.2 Remarks on the assumptions

Remark 7 (Q4) is classical in functional estimation for finite and infinite dimen-
sional space, this condition deals with the kernel H. Concerning (Q5), we use this
assumption to balance between variance and bias terms.

3.3 Main results

Our first result states the almost complete convergence of the conditional distri-
bution function and its first derivative.
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3.3.1 Consistency of the estimator

Theorem 3.1. Under assumptions (H1) (i), (ii), (H3), (Q4) and (Q5) (i), we have
for j = 0, 1

sup
y∈C
|F (j)
n (y|x)− F (j)(y|x)| → 0 a.co. as n→∞.

Demonstration

The first step is to give the decomposition of sup
y∈C
|F (j)
n (y|x)−F (j)(y|x)| as follows

sup
y∈C
|F (j)
n (y|x)− F (j)(y|x)| ≤ 1

gn(x){sup
y∈C
|Ψ(j)

n (x, y)− E[Ψ(j)
n (x, y)]|

+ sup
y∈C
|E[Ψ(j)

n (x, y)]− ax1Ψ(j)(x, y)|

+ sup
y∈C

F (j)(y|x)|ax1g(x)− E[gn(x)]|

+ sup
y∈C

F (j)(y|x)|E[gn(x)]− gn(x)|}.

The following lemma shows the asymptotic bias term of Ψn(x, y) and gn(x) as n
tends to infinity

Lemma 3.1. Under assumptions (H1) (i), (ii), (H2) and (Q4), we have

(i) E[gn(x)]→ ax1g(x) as n→∞

(ii) E[Ψ(j)
n (x, y)]→ ax1Ψ(j)(y|x) as n→∞ (3.9)

The following lemma deals with the variance term sup
y∈C
|Ψ(j)

n (x, y)− E[Ψ(j)
n (x, y)]

Lemma 3.2. Under assumptions (Q4) and (Q5) (i) then if
∑
k

k2λ+3(α(k))2λ <∞

for some λ ∈ [25 ,
1
2], we have

sup
y∈C
|Ψ(j)

n (x, y)− E[Ψ(j)
n (x, y)]| → 0, a.co. for j = 0, 1.

The almost complete convergence of the conditional quantile is given below.

Theorem 3.2. Under assumptions of Theorem 3.1, we suppose that the conditional
quantile ξp(x) of the order p ∈ [0, 1] is unique then

|ξp,n(x)− ξp(x)| → 0 a.co. as n→∞ (3.10)
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3.3.2 Asymptotic normality

The following result gives the asymptotic normality of the conditional distribution
function.
Let A = {(x, y) : (x, y) ∈ S × R, V (x, y) 6= 0} and Ξ = {x : x ∈ S,Σ(x, ξp(x)) 6= 0}

Theorem 3.3. Under assumptions (H1)-(H3), (Q4) and (Q5), we have(
nφx(hK)
σ2(x, y)

) 1
2

(Fn(y|x)− F (y|x)) D−−−→ N (0, 1) as n→∞. (3.11)

Where σ2(x, y) := V (x, y)
(ax1)2

Demonstration

Now, to prove the asymptotic normality of Fn(y|x) and ξp,n(x), we need to define
some notations.
Firstly, we give the following decomposition:

Fn(y(x)|x)− F (y(x)|x) = Ψn(x, y)
gn(x) − ax1F (y|x)

ax1

= 1
gn(x){Ψn(x, y)− E[Ψn(x, y)]− F (y|x)[gn(x)− E[gn(x)]]

− 1
gn(x){a

x
1F (y|x)− E[Ψn(x, y)]− F (y|x)[ax1 − E[gn(x]]}

=: 1
gn(x)(Rn(x, y) +Bn(x, y)). (3.12)

After that, we deal with Rn(x, y) then Bn(x, y). Thus

Rn(x, y) = 1
nφx(hK)

n∑
i=1

[(Hi(y)− F (y|x))Ki(x)− E[(Hi(y)− F (y|x))Ki(x)]]

= 1
nφx(hK)

n∑
i=1

Ni(x, y).

It follows that

nφx(hK)V ar[Rn(x, y)] = 1
φx(hK)V ar(N1) + 1

nφx(hK)

n∑
|i−j|>0

n∑
Cov(Ni, Nj)

= Vn(x, y) + 1
nφx(hK)

n∑
|i−j|>0

n∑
Cov(Ni, Nj).

To show the claimed asymptotic normality, the following results have to be checked.
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Lemma 3.3. Under assumptions (H2) and (Q4) (ii), we have

V ar
[
H
(
y − Y1

hH

)]
→ F (y|x)[1− F (y|x)] as n→∞.

Now, we deal with nφx(hK)V ar[Rn(x, y)]

Lemma 3.4. Under assumptions (H1)-(H3) and (Q4), we have

Vn(x, y)→ V (x, y) as n→∞, (3.13)

1
nφx(hK)

n∑
|i−j|>0

n∑
|Cov(Ni, Nj)| = o(1), as n→∞, (3.14)

where V (x, y) = ax2F (y|x)(1− F (y|x)).

Lemma 3.5. Under assumptions (H1)-(H3), (Q4) and (Q5)(iii), we have for any
(x, y) ∈ S × R

(nφx(hK)) 1
2V ar[Rn(x, y)] D−−−→ N (0, V (x, y)) as n→∞.

Corollary 8 Under assumptions of Lemma 3.4, we have

nφx(hK)V ar[Rn(x, y)]→ V (x, y) as n→∞.

Now, we move to the second term and we prove that (nφx(hK)) 1
2Bn(x, y) converges

to zero in probability.

Lemma 3.6. Under assumptions (H1), (Q5) (i) (ii), we have

(nφx(hK)) 1
2Bn(x, y) P−−→ 0 as n→∞.

Corollary 9 Under assumptions of Lemma 3.6, we have

(nφx(hK)) 1
2Bn(x, y)

fn(ξ∗p,n(x)|x)
P−−→ 0 as n→∞.

Theorem 3.4. Let p is the unique order of the conditional quantile such that
p = F (ξp(x)|x) = Fn(ξp,n(x)|x), if the Assumptions (H1)-(H3), (Q4) and (Q5) we
have for any x ∈ Ξ(

nφx(hK)
Σ2(x, ξp(x))

) 1
2

(ξp,n(x)− ξp(x)) D−−−→ N (0, 1) as n→∞, (3.15)

where Σ(x, ξp(x)) := σ(x, ξp(x))
f(ξp(x)|x) .
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3.4 Technical proofs and auxiliary result

3.4.1 Proof of Theorem 3.1

Proof of Lemma 3.1

i) Using assumption (H1) (iii) and integration by parts, we get

1
φx(hK)E

(
K l

(
d(x,Xi)
hK

))
= 1

φx(hK)

∫ h

0
K l

(
u

hK

)
dP d(x,X1)(u)

= K l(1)φx(hK)
φx(hK) − 1

φx(hK)

∫ 1

0
(K(u))′φx(uhK)du

=
(
K l(1)−

∫ 1

0
(K(u))′ζx0 (u)du

)
[g(x) + o(1)]

= axl g(x).

When l = 1, we conclude the result.

ii) Now, we turn to the second part of this lemma

E(Ψ(j)
n (x, y)) = 1

nhjHφx(hK)

n∑
i=1

E
(
K

(
d(x,Xi)
hK

)
H(j)

(
y − Yi
hH

))

= 1
hjHφx(hK)

E
(
K

(
d(x,Xi)
hK

))
E
(
H(j)

(
y − Yi
hH

|X1

))

E
(
H(j)

(
y − Yi
hH

|X1

))
=

∫
R
H
(
y − z
hH

)
f(z|x)dz ( Integrating by parts)

=
∫
R
H ′(t)[F (y − thH |X1)− F (y|x) + F (y|x)]dt

E(Ψn(x, y)) = 1
φx(hK)E

(
K

(
d(x,Xi)
hK

))∫
R
H ′(t)[F (y − thH |X1)− F (y|x)]

+
F (y|x)E

(
K
(
d(x,Xi)
hK

))
φx(hK)

= ax1F (y|x)g(x)
= ax1Ψ(x, y).

Where Ψ(x, y) = F (y|x)g(x).

Now, we deal with sup
y∈C
|Ψn(x, y) − E[Ψn(x, y)]|, for gn(x) − E(gn(x)) we use the

same method with a slight difference.
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Proof of Lemma 3.2

We give a decomposition then we deal with j = 0, but firstly we consider a cover
of C by a finite number ln of intervals Ck of the form Ck = (yk − hηH , yk + hηH) where

η > 1, we have that C ⊂
ln⋃
k=1
Ck, since C is bounded there exists M > 0 such that

ln ≤MhηH , clearly we have

sup
y∈C
|Ψn(x, y)− E[Ψn(x, y)]| ≤ sup

y∈C
|Ψn(x, y)−Ψn(x, yk)|

+ sup
y∈C
|Ψn(x, yk)− E[Ψn(x, yk)]|

+ sup
y∈C
|E[Ψn(x, yk)]− E[Ψn(x, y)]|.

We deal with the first term using (Q4) (ii), we get

sup
y∈C
|Ψn(x, y)−Ψn(x, yk)| ≤

1
nφx(hK) sup

y∈C

n∑
i=1
|H

(
y − Yi
hH

)
−H

(
yk − Yi
hH

)
|K

(
d(x,Xi)
hK

)

≤ sup
y∈C

C|y − yk|
hH

(
1

nφx(hK)

n∑
i=1

K

(
d(x,Xi)
hK

))
≤ Chη−1

H gn(x).

We have also gn(x) = (gn(x) − E(gn(x))) + E(gn(x)) by Lemma 3.1 (i) the first
term is bounded and nφx(hK) goes to infinity, we conclude that the first difference
converges almost completely to zero.
Now we deal with the term expressed by sup

y∈C
|Ψn(x, yk)− E[Ψn(x, yk)]|

As the Assumptions imply that laplace transforms of the real random variables
Ui = Ki(x)Hi(y), where Ui, i > 0 is strong mixing, exist on every interval [−δ, δ].
So, ∀n ≥ 2, ∀γ ≥ 2 and ∀k ≤ n

2 we have

P
(

1
n

n∑
i=1
|Ui − E(Ui)| > ε

)
≤ 6 exp

(−nsε
30k

)
+ 6n

k

(10Dγ

ε
+ 1

) 2γ
2γ+1

(α(k))
2γ

2γ+1 ,

where

Dγ = sup
i≥1
‖ Ui ‖γ, s = min

(
δ

2 ,
ε

3c

)
, c = 4 sup

i≥1

∞∑
j=2

δl−2

j! E|Ui|.

We obtain

P(|Ψn(x, yk)− E[Ψn(x, yk)] > ε) = P
(

1
n

n∑
i=1
|Ui − E(Ui)| > εφx(h)

)

≤ 6 exp
(−nsε

30k

)
+ 6n

k

(10Dγ

ε
+ 1

) 2γ
2γ+1

(α(k))
2γ

2γ+1

=: J1 + J2.
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Firstly, we deal with J1,
we know that K(t) < K(0) and H(t) ≤ 1, using (Q1) (i), then we get Dγ ≤ K(0),

E|Ui|j ≤ (K(0))jφx(hK) and for n large enough s = εφx(hK)
3c , then we deduce that

−s ≤ −Cε, where C = δ2

12 exp(−δK(0)).

Now choosing k = [(nφx(hK) 1
2 )], by (Q5) (i), we have

J1 ≤ exp
(−Cε

30 (nφx(hK)) 1
2

)
<∞. (3.16)

Let us turn to J2

J2 ≈ An = C
n

k

(
1

φx(hK)

)λ
(α(k))2λ, for n large enough, where C > 0.

Now, use the definition of k such that k = [(nφx(hK)) 1
2 ], by an algebra we obtain

n >
4k2

φx(hK)
As k2φx(hK)→∞ then for n large enough , we get An ≤ Ck2λ+3(α(k))2λ.
Now we have

∑
n

k2λ+3(α(k))2λ <∞ then
∑
n

J2 <∞. (3.17)

We combine the results (3.16), (3.17) to conclude that sup
y∈C
|Ψn(x, yk)−E[Ψn(x, yk)]|

converges almost completely to zero.
Finally, we deal with sup

y∈C
|EΨn(x, yk)− E[Ψn(x, y)]|.

Using (Q1) (ii) we get

sup
y∈C
|EΨn(x, yk)− EΨn(x, y)| ≤ 1

nφx(hK) sup
y∈C

n∑
i=1

E
(
|H

(
y − Yi
hH

)
−H

(
yk − Yi
hH

)
|K

(
d(x,Xi)
hK

))

≤ sup
y∈C

C|y − yk|
hH

× E
(

1
nφx(hK)

n∑
i=1

K

(
d(x,Xi)
hK

))
≤ Chη−1

H E(gn(x)).

We know that E(gn(x)) is bounded and nφx(hK) goes to infinity, we conclude that
the last term converges almost completely to zero and Lemma 3.2 is checked.
Using the previous results and Lemma 3.1 we conclude the proof of Theorem 3.1.

3.4.2 Proof of Theorem 3.2

This proof is based on the following idea:
As F (.|x) is a distribution function with a unique quantile of order p then for any
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ε > 0 let

η(ε) = min{F (ξp(x) + ε|x)− F (ξp(x)|x), F (ξp(x)|x)− F (ξp(x)− ε|x)}.

Then

∀ε0,∀y > 0, |ξp(x)− y| > ε⇒ |F (ξp(x)|x)− F (y(x)|x)| > η(ε).

Now, we use (3.4) and (3.6) we have

F (ξp,n(x)|x)− |F (ξp(x)|x)| ≤ sup
y∈C
|Fn(y(x)|x)− F (y(x)|x)|. (3.18)

Making use (3.1) and the continuity of F (.|x), we obtain
∞∑
n

P(ξp,n(x)− ξp(x) ≥ ε) ≤
∞∑
n

P(sup
y∈C
|Fn(y(x)|x)− F (y(x)|x)| ≥ η(ε)).

3.4.3 Proof of Theorem 3.3

Proof of Lemma 3.3

Using the definition of the conditional variance

V ar
[
H
(
y − Y1

hH
|X1

)]
= E

[
H2

(
y − Y1

hH
|X1

)]
−
[
E
[
H
y − Y1

hH
|X1

]]2

E
(
H2

(
y − Y1

hH
|X1

))
=

∫
R
H2

(
y − z
hH

)
f(z|X1)dz

=
∫
R
H2

(
y − z
hH

)
dF (y − thH |X1)dt (integrating by parts)

=
∫
R

2H ′(t)H(t)[F (y − thH |X1)− F (y|x)]dt+
∫
R

2H ′(t)H(t)F (y|x)dt

= F (y|x) as n→∞.

Because
∫
R

2H ′(t)H(t)F (y|x)dt = F (y|x) and using (Q3) we obtain the result. Now
the second term on the right hand side of this last equality tends to F 2(y|x) as n
tends to infinity, which completes the proof of the lemma.
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Proof of Lemma 3.4

We begin by the proof of (3.13)

Vn(x, y) = 1
φx(hK)V ar(N1(x, y))

= 1
φx(hK)E(N2

1 (x, y))

= 1
φx(hK)E[(Hi(y)− F (y|x))2K2

i (x)]− 1
φx(hK) [E[(Hi(y)− F (y|x))2K2

i (x)]]2

=: T1 + T2.

Then

T2 = φx(hK)[ 1
φx(hK)E[(Hi(y)− F (y|x))2K2

i (x)]]2

= φx(hK)[E[Ψn(x, y)]− F (y|x)E[gn(x)]2].

Making use of (3.1) the last term goes to zero as n goes to infinity.
Now we turn to T1

T1 = 1
φx(hK)E[E[(Hi(y)− F (y|x))2|X1]K2

i (x)]

= 1
φx(hK)E[V ar(Hi(y)|X1)K2

i (x)]

+ 1
φx(hK)E[[E(Hi(y)|X1)− F (y|x))]2K2

i (x)].

Using (3.9), we have

1
φx(hK)E[[E(Hi(y)|X1)− F (y|x))]2K2

i (x)]→ 0 as n→∞.

Using also (3.3), we have

1
φx(hK)E[V ar(Hi(y)|X1)K2

i (x)]→ V (x, y) as n→∞.

Now, we deal with (3.14), and to prove this part we have to split the sum as follows:

1
nφx(hK)

n∑
i

n∑
j

Cov(Ni, Nj) = 1
nφx(hK)

n∑
0<|i−j|≤mn

Cov(Ni, Nj)

+ 1
nφx(hK)

∑
|i−j|≥mn

Cov(Ni, Nj)

=: L1 + L2,
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where mn = o(n) at a rate specified below, for L1 we have

|Cov(Ni, Nj)| = E(Ni, Ni) = E[(Hi(y)− F (y|x))(Hj(y)− F (y|x))Ki(x)Kj(x)]

Conditioning on (Xi, Xj), we have

|Cov(Ni, Nj)| = E[E[(Hi(y)− F (y|x))(Hj(y)− F (y|x))|(Xi, Xj)]Ki(x)Kj(x)]

By the assumption made on H(.) and F (.|x) we have |Hi(y)−F (y|x)| ≤ 1, it follows
that

|Cov(Ni, Nj)| ≤ E[Ki(x), Kj(x)]
≤ CP[(Xi, Xi) ∈ B(x, hK)×B(x, hK)].

Using (H1) (iii) we obtain

Cov(Ni, Nj) ≤ CΓx(hK)

Therefore

L1 ≤
1

nφx(hK) [CΓx(hK)]nmn

≤ Cmnφx(hK)
[

Γx(hK)
φ2
x(hK)

]
.

We choose mn such that mnφx(hK) goes to zero as n goes to infinity.

Making use of (3.1) (i) and Γx(hK)
φ2
x(hK) is bounded, we get L1 = o(1).

We turn to L2, by Davydov’s Inequality, we get

|Cov(Ni, Ni)| ≤ 8[E[|(Hi(y)− F (y|x))Ki(x)|v]] 2
v [α(|i− j|)]1− 2

v .

Conditioning on Xi and |Hi(y)− F (y|x)| ≤ 1, we get

E[|(Hi(y)− F (y|x))Ki(x)|v] ≤ Cφx(hK)

Therefore

|Cov(Ni, Ni)| ≤ C[φx(hK)] 2
v [α(|i− j|)]1− 2

v

≤ C[φx(hK)] 2
v

(mn)δ |i− j|δ[α(|i− j|)]1− 2
v .
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Thus

L2 ≤
C

n(m)δ[φx(hK)]1− 2
v

n∑
|i−j|>mn

|i− j|δ[α(|i− j|)]1− 2
v

≤ C

(mn)δ[φx(hK)]1− 2
v

n∑
k>mn

kδ[α(k)]1− 2
v .

We choose mn such that mn = [φx(hK)]−
1−2/v
δ .

Finally, we use (Q4) to show that L2 = o(1), which complete the proofs
Now we prove the asymptotic normality of Fn(y|x) and ξp,n(x) making use of the
decomposition of Fn(y|x)− F (y|x).
So, the next results prove that (nφx(hK)) 1

2Rn(x, y) is asymptotically normal and
(nφx(hK)) 1

2Bn(x, y) converges to zero in probability .

Proof of Lemma 3.5

To prove this lemma we need to introduce the following modification
We normalize Ni: Ñi := Ni√

φx(hK)
, then V ar(Ñi) = Vn(x, y).

So, we can write

V ar(Ñi)→ V (x, y) as n goes to infinity,

we have also
n∑

|i−j|>0
|Cov(Ñi, Ñj)| =

1
φx(h)

n∑
|i−j|>0

|Cov(Ni, Nj)| = o(n). (3.19)

We can write
(nφx(hK)) 1

2Rn(x, y) =: 1√
n
Sn,

because Sn =
n∑
i=1

Ñi, now we have to show that

1√
n
Sn

D−−−→ N (0, V (x, y)) as n→∞. (3.20)

Now, we want to prove the asymptotic normality for Sn of dependent variables,
make use of Doob’s Technique which uses the Bernstein’s large-block and small-
block procedure. Partition of the set [1, . . . , n] into 2kn+1 subsets with large-blocks
of size u = un and small-block v = vn with k := kn =

⌊
n

un + vn

⌋
.
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Let vn be the sequence described in Assumption (Q5) (iii) and the same hypothesis
implies that there exists a sequence of positive numbers qn →∞ such that:

qnvn = o((nφx(hK)) 1
2 ) and qn

(
n

φx(hK)

) 1
2

α(vn)→ 0 asn goes to infinity.

(3.21)

We define the large-block size as un =

(nφx(hK)
qn

) 1
2
, with simple algebra when n

going to infinity we get

vn
un
→ 0, un

n
→ 0, un

(nφx(hK)) 1
2
→ 0 and

n

un
α(vn)→ 0.

Now we split Sn as follows

Sn(x, y) = Sn =
k−1∑
j=1

Z
′

j +
k−1∑
j=1

Z
′′

j + Z
′′′

j = S
′

n + S
′′

n + S
′′′

n .

Where

Z
′

j =
tj+u−1∑
i=tj

Ñi 0 ≤ j ≤ k − 1,

Z
′′

j =
tj+u+v−1∑
i=tj+u

Ñi 0 ≤ j ≤ k − 1,

Z
′′′

j =
n∑

i=tk
Ñi 0 ≤ j ≤ k − 1.

Where tj = j(u+ v) + 1.
Now we present some claims to obtain the result.

(i) 1
n
E[S ′′n]→ 0, (ii) 1

n
E[S ′′′n ]→ 0, (3.22)

For this claim, we show that the first part (i) and second part (ii) are negligible as
n tends to infinity.
We begin by the first part (i)

E[S ′′n]2 =
k−1∑
j=1

V ar[Z ′j]

=
k−1∑
j=1

V ar(Z ′′j ) +
k−1∑
|i−j|>0

Cov(Z ′′i , Z
′′

j )

=: A1 + A2.
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By stationarity and (3.19), we obtain

V ar(Z ′′j ) = V ar[
tj+u+v−1∑
i=tj+u

Ñ1]

= vnV ar(Ñ1) +
vn∑

|i−j|>0
Cov(Ñi, Ñi)

= vnV ar(Ñ1) + o(vn),

thus
A1 =

k−1∑
j=1

V ar(Z ′′j ) = knvnV ar(Ñ1) + kno(vn).

We know that
knvn ≈

nvn
un + vn

≈ nvn
un

= o(n).

This show that A1 = o(n). Now, we turn to A2

A2 =
k−1∑
|i−j|>0

Cov(Z ′′i , Z
′′

j ) =
k−1∑
|i−j|>0

vn∑
l1=1

vn∑
l2=1

Cov(Ñµi , Ñµj),

where µi = tj + un + l1. Since for i 6= j we have
|(tj + un + l1)− (tj + un + l2) = tj − ti + l1 + l2 ≥ un, it follows that

A2 ≤
n∑

|i−j|>un

Cov(Ñi, Ñj) = o(n).

For the second part (ii)

1
n
E[S ′′′n ]2 ≤ 1

n
((n− tk + 1)V ar(Ñ1)) + 1

n

n−tk+1∑
|i−j|>0

Cov(Ñi, Ñj)

≤ 1
n

((un + vn)V ar(Ñ1)) + 1
n

n∑
|i−j|>0

Cov(Ñi, Ñj).

Using (3.19) and the definition of un and vn, we get the result which completes the
proof of (3.22).

|E[(exp(itn− 1
2S
′

n)−
k−1∏
j=0

E[exp(itn− 1
2Z
′

j)]| → 0, (3.23)

Now, we prove (3.23) using the Volkonskii and Rosanov’s Lemma to show the
asymptotically independence of S ′n in Z ′j Note that Z ′p is F ipip -measurable with ip =
p(u+ v) + 1, and jp = p(u+ v) + u and Ui = exp(itn− 1

2S
′

n) we have

|E[(exp(itn− 1
2S
′

n)−
k−1∏
j=0

E[exp(itn− 1
2Z
′

j)]| ≤ 16knα(vn + 1) ≈ 16 n
un
α(vn + 1),
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tends to zero, because n

un
α(vn)→ 0.

The following two claims are concerned by the conditions of lindeberg-Feller Theo-
rem.

1
n

k−1∑
j=1

E[Z ′j]2 → 0, (3.24)

Let us turn to (3.25), we replace un by vn, we have V ar(Z(1)
j ) = unV ar(Ñ1) +o(un),

hence
1
n

k−1∑
j=1

E[Z ′j=1]2 = knun
n

V ar(Ñ1) + kn
n
o(un),

since knun
n
→ 1 and V ar(Ñ1)→ V (x, y).

Finally, it remains to establish (3.25)

1
n

k−1∑
j=1

E[(Z ′j)211{|Z′j |>ε
√
nV (x,y)}]. (3.25)

Now we have to show that {|Z ′j| > ε
√
nV (x, y)} is empty for n large enough.

|Z ′j| ≤
un|Nj|√
φx(hK)

≤ K(0)un√
φx(hK)

.

Therefore
1
n
|Z ′j| ≤

K(0)un√
nφx(hK)

.

Because |Hi(y)−F (y|x)| ≤ 1 andKi(x) < K(0). This show that {|Z ′j| > ε
√
nV (x, y)}

is empty for n large enough which complete the proof.

Proof of Lemma 3.6

We have

(nφx(hK)) 1
2Bn(x, y) = (nφx(hK)) 1

2

gn(x) [ax1F (y|x)−E(Ψn(x, y))−F (y|x)[ax1−E(gn(x))]].

Using Lemmas 2.3 and 3.1, we have

[ax1F (y|x)− E(Ψn(x, y))− F (y|x)[ax1 − E(gn(x))]]→ 0 as n→∞.
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On the other hand

(nφx(hK)) 1
2

gn(x) = (nφx(hK)) 1
2fn(y|x)

gn(x)fn(y|x) = (nφx(hK)) 1
2fn(y|x)

Ψ′n(x, y)

Then we use Theorem 3.1, it suffices to show that (nφx(hK)) 1
2

Ψ′n(x, y) tends to zero as n
goes to infinity.
Because K(.)H ′(.) is continuous with support on [0, 1] then by the last part of (Q4)
(ii) it follows that

Ψ′n(x, y) ≥ m

hHφx(hK) ,

then
(nφx(hK)) 1

2

Ψ′n(x, y) ≤ (nh2
Hφ

3
x(hK)) 1

2

m
.

Finally, using (Q5) (ii) completes the proof of Lemma 3.6.
Now, to prove Theorem 3.3, we apply the Lemmas 3.4, 3.5 and 3.6 to obtain the
claimed result.

3.4.4 Proof of Theorem 3.4

Using (3.8) and (3.12), we get:

(nφx(hK)) 1
2 (ξp(x)− ξp,n(x)) = (nφx(hK)) 1

2
Fn(ξp(x))− F (ξp(x))

fn(ξ∗p,n(x)|x)

= (nφx(hK)) 1
2Rn(x, y)

fn(ξ∗p,n(x)|x) + (nφx(h)) 1
2Bn(x, y)

fn(ξ∗p,n(x)|x) .

Combining Theorem 3.1 for j = 1, with Theorems 3.2 and 3.3 and the corollary 9,
we obtain the result.
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Chapter 4
Application and conclusion

This chapter is devoted to the implementation of a functional non-parametric
prediction method. (We deal with conditional quantile). In the first section we focus
on the building of confidence bands then we illustrate an application to prediction.
Secondly we apply our methodology on simulated data in order to show the utility
of the asymptotic normality in the determination of the confidence bands, then we
test the performance of the conditional quantile estimator via an application to a
real data study (El Nino data). In the second and the last section, we conclude this
dissertation by a general conclusion.

4.1 Application

4.1.1 Confidence bands

It is worth to note that the conditional quantile method can be used for prediction
confidence band construction. As we know the central limit theorem is usually used
in the determination of the confidence bands for the estimates. In non-parametric
estimation, the asymptotic variance depends on certain unknown functions. Here,
we have

Σ2(x, ξp(x)) = ax2P (1− P )
(ax1)2f 2

n(ξp(x)|x) ,

where f(y|x), ξp(x), ax1 and ax2 are unknown a priori and have to be estimated in
practice. Then we can obtain a confidence band even if Σ2(x, y) is functionally
specified.

53



4. APPLICATION AND CONCLUSION

The normalization constants axl for l = 1, 2 can be estimated by

axl,n = 1
nφ̂x(hK)

n∑
i=1

K l

(
d(x,Xi)
hK

)
,

where φ̂x(hK) = 1
n

n∑
i=1

11{Wi≤x}.

Now, a plug-in estimate for the asymptotic standard deviation Σ(x, ξp(x)), can be
obtained using the estimators ξp,n(.), fn(.|.) and axl,n of ξp(x), f(.|.) and axl respec-
tively, that is

Σ2
n(x, ξp,n(x)) =

ax2,nP (1− P )
(ax1,n)2f 2

n(ξp,n(x)|x) .

We have
axl,n = φx(hK)

φ̂x(hK)
× 1
nφx(hK)

n∑
i=1

K l

(
d(x,Xi)
hK

)
.

By Glivenko-Cantelli1 type result the first ratio goes to 1 in probability as n goes
to infinity

φx(hK)
φ̂x(hK)

P−−→ 1

For l = 1 Lemma 3.1 shows that

axl,n
P−−→ ax1 .

In the same manner, we show that axl,n converges in probability to ax2 for l = 2.
Theorem 3.1 gives us that fn(.|x) converges almost completely to f(.|x), then in
probability. Now Theorem 3.2 allows us to conclude that Σn(x, ξp,n(x)) converges
in probability to Σ(x, ξp(x)), which leads us to use an asymptotic approximation
provided by the following Corollary where :

Corollary 10 Under assumptions (H1)-(H3), (Q4) and (Q5)

(
nφ̂x(hK)

Σ2
n(x, ξp,n(x))

) 1
2

(ξp,n(x)− ξp(x)) D−−−→ N (0, 1) as n→∞

This corollary permits us to built (1− ζ) confidence bands for ξp(x) which is given
by

−u1− ζ2
≤
(

nφ̂x(hK)
Σ2
n(x, ξp,n(x))

) 1
2

(ξp,n(x)− ξp(x)) ≤ u1− ζ2
,

1Fn uniformly convergent to F , where F is a distribution function P(lim
n
||Fn−F ||∞ = 0) = 1
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then

ξp,n(x)− u1− ζ2

(
Σ2
n(x, ξp,n(x))
nφ̂x(hK)

) 1
2

≤ ξp(x) ≤ ξp,n(x) + u1− ζ2

(
Σ2
n(x, ξp,n(x))
nφ̂x(hK)

) 1
2

.

Finally we can represent the confidence bands as follows

CB =
ξp,n(x)− u1− ζ2

(
Σ2
n(x, ξp,n(x))
nφ̂x(hK)

) 1
2

, ξp,n(x) + u1− ζ2

(
Σ2
n(x, ξp,n(x))
nφ̂x(hK)

) 1
2
 ,

where u1− ζ2
denotes the (1− ζ) quantile of the standard normal distribution.

4.1.2 Application to prediction

The term quantile is synonymous with percentile, the median is the best-known
example of a quantile. We know that the sample median can be defined as the
middle value (or the value half-way between the two middle values).
In prediction problem, the use of the conditional median µ(x) is good alternative to
standard method based on the conditional mean for its robustness. Note that the
estimation of µ(x) is given by ξ 1

2 ,n
(x).

For each n ∈ N∗, let Xi(t), i = 1, . . . , n be functional random variables with t ∈ R.
For each curve Xi(t), we have a real response variable Yi which is corresponding to
some modality of our problem. Now, we say that we can predict the corresponding
response variable ynew = yn+1 given a new curve xnew = xn+1.
The predictor estimator is obtained by calculating the quantity:

ynew = µn(xnew) = ξ 1
2 ,n

(xnew)

applying Theorem 3.4, we have

Corollary 11 Under assumptions (H1)-(H3), (Q4) and (Q5)
 nφ̂x(hK)

Σ2(xnew, ξ 1
2
(xnew))

 1
2

(ξ 1
2 ,n

(xnew)− ξ 1
2
(xnew)) D−−−→ N (0, 1) as n→∞.

4.1.3 Simulation study

In this section we deal with simulated data then with real data to show how our es-
timator behaves in α-mixing contexts through asymptotic normality and confidence
bands.

55



4. APPLICATION AND CONCLUSION

Simulated data

We now see the role of the asymptotic normality in the determination of confidence
bands, we consider the classical non-parametric functional regression model

Y = R(X) + ε,

where ε is α-mixing generated by the following model:

εi = 1√
2

(εi−1 + ηi) i = 1, . . . , 200

with ηi and ε0 are independent and generated as N (0, 1).
For our functional data, we consider two diffusion processes on the interval [0, 1]

Z1(t) = 2− cos(πtW ) and Z2(t) = cos(πtW ),

whereW is also normally distributed N (0, 1).We take X(t) = AZ1(t)+(1−A)Z2(t),
where A is a random variable Bernoulli distributed. We carried out a 200 sample
simulation of the curve X which is represented by the following graph 4.1.

Figure 4.1: curves of Xi(t) i = 1, . . . , 200 t = 1, . . . , 100.
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Here we choose R(X) = Ar1(X) + (1−A)r2(X) where r1 (resp. r2) is the nonlinear
regression model r1(X) = 0.25 ×

∫ 1

0
(X ′(t))2dt (resp. r2(X)) is the null function.

The quadratic kernel choice is given by

K(x) = 3
2(1− x2)11[0,1)

and the distribution function H(.) is defined by

H(x) =
∫ x

−∞

3
4(1− t2)11[−1,1](t)dt.

We ensure the good behavior of our method by using a norm well adapted to the
kind of the data we have to deal with. Because of the regularity of the curves we
choose the norm defined by the L2 distance between the seconde derivatives of the
curves.
In this simulation, the optimal bandwidth is obtained by minimizing the mean square
error between the predicted and the true values over a set of known bandwidths val-
ues.
In order to construct conditional confidence bands we proceed by the following steps:

• We split our data into randomly chosen subsets: (Xj, Yj)j∈J training sample,
(Xi, Yi)i∈I test sample.

• We use the training sample to calculate the estimator ξ 1
2
(Xj) for all j ∈ J .

• We set i∗ = argmin
j∈J

d(Xi, Xj), for each Xi in the test sample.

• For all i ∈ I we define confidence bands byξ 1
2 ,n

(Xi∗)− u0.975

Σ2
n(Xi∗ , ξ 1

2 ,n
(x))

Jφ̂Xi∗ (hK)

 1
2

, ξ 1
2 ,n

(Xi∗) + u0.975

Σ2
n(Xi∗ , ξ 1

2 ,n
(x))

Jφ̂Xi∗ (hK)

 1
2
 ,

where u0.975 denotes 5 percent quantile of the standard normal distribution.

• Finally, we present our results in graph 4.2.
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Figure 4.2: the extremities of the predicted values, the true values and the confidence
bands.

Real data study

This study deals with a functional approach for time-series forecasting, based on
the splitting of the observed time series into several continuous functional data.
We start by describing the El Nino time series, then we show how it can be viewed as
a set of functional dependent variables. Thereafter, we will explain how a forecast-
ing method can be built from the estimation of the conditional quantiles, Finally,
we will show how this forecasting approach behaves on the real El Nino data-set.
El Nino data : The aim of this part is to apply the conditional quantile estimator
on real functional data. Our study concerns the monthly times series of the Sea Sur-
face Temperature (SST) from December 1950 up to November 2004. This dataset
is a part of the original one which is available on line 2. These temperatures are
measured by moored buyos in the El Nino region defined by the coordinates south
and west. Our (SST) time-series comes from the average of the monthly tempera-
tures over the moored buoys in this area. Finally, the statistical sample is of size
648. The graphical display is given in graph 4.3.
This time series (zi) i = 1, . . . , 648 is loaded into a 54× 12 matrix.

2http://www.cpc.ncep.noaa.gov/data/indices/
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Figure 4.3: El Nino monthly Sea Surface Temperature.

Splitting El Nino : We split time-series into functional data. A useful way to
display such a time series consists in cutting it into 54 pieces or 54 annual curves
(see graph 4.4). More precisely, let {Z(k)} k = 1, . . . , 648 be our El Nino time-series.
We can build, for i = 1, . . . , 54, the following subsequences:

∀t{1, 2, . . . , 12}, , Zi(t) = Z(12× (i− 1) + t),

Zi = (Zi(1), . . . , Zi(12)) corresponding to the variations of the (SST) at the ith year.

Because the climatic phenomenon is changing continuously over time, there is ev-
idence for considering each annual curve as a continuous path. Of course, this
continuous yearly curve will be observed only at some discretized points (here, at
12 discretized points). Finally, the time series can be viewed as a sample of 54
dependent functional data, namely Z1, . . . , Z54. the main advantage of using such
continuous path for the past of the time series is to be unsensitive to the curse of
dimensionality.

Our approach is able to capture much information in the past of the time series, but
still using for the past a single continuous object and avoiding the dimensionality
effects.
As the kernel K does not affect the quality of the estimation in the mean square
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Figure 4.4: The 54 curves.

error (MSE) criterion, here we choice the quadratic kernel:

K(x) = 3
2(1− x2)11[0,1)

and the distribution function H(.) is defined by

H(x) =
∫ x

−∞

3
4(1− u2)11[−1,1](u)du

Another important point for ensuring a good behavior of the method, is to use a
semi-metric that is well adapted to the kind of data we have to deal with. Here
we used some semi-metric based on the q first term of the functional principal
components analysis (FPCA) of the data. Indeed we do not choose a semi-metric at
the beginning of the study but only a family of semi-metrics, and the key question
is more to select the best semi-metric inside of the family than to choose the family
itself. The key parameter is the order q of the (FPCA) expansion 3, which should
also be chosen in a data-driven way.
Prediction procedure : We have at hand a set of 54 functional data. However,
to show the performance of our method we will ignore the 54th year and we will
predict it from the 53’s ones. We will build our statistical method only on the 52

3Other choices of semi-metrics are possible, like for instance those based on some L2 errors
between higher order derivatives of the curves, and in this case the key parameter would be the
order of the derivative.
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previous data, the 53rd being used as a learning step to select the parameters using
cross validation. (Xi, Xi+1(j))(i=1,...,52) training sample.
Then, for the curve X54 we set i∗ = arg min

i=1,...,53
d(X54, Xi).

Thus, we calculate our predictor by X̂54(j) = ξj1
2 ,54(Xi∗). Moreover we define the

confidence bandsX̂54(j)− u0.975

Σ2
n(Xi∗ , ξ 1

2 ,54(Xi∗))
53φ̂Xi∗ (hK)

 1
2

, (X̂54(j)) + u0.975

Σ2
n(Xi∗ , ξ 1

2 ,54(Xi∗))
53φ̂Xi∗ (hK)

 1
2
 ,

where u0.975 denotes 5 percent quantile of the standard normal distribution.

Figure 4.5: The extremities of the predicted values versus the true values and the
confidence bands.

Finally, we present our results in the graph 4.5.

Real data study with R

Entering and organizing El Nino:
dataset ELNINODAT <- as.matrix(read.table("npfda-elnino.dat"))
attributes(ELNINODAT)$dimnames[[1]] <- character(0)
learning <- 1:52
testing <- 53
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elnino.past.learn <- ELNINODAT[learning,]
elnino.past.testing<-LNINODAT[testing,]
s <- 1
elnino.futur.s <- ELNINODAT[2:53,s]
The functional nonparametric prediction :
result.pred.quantile.step.s <- funopare.quantile.lcv( elnino.futur.s,
elnino.past.learn,elnino.past.testing,2, Knearest=NULL,
kind.of.kernel="quadratic", semimetric="pca").
result.pred.quantile.step.s$Predicted.values .
predict the 54th year :
] To do that, it suffices to repeat the previous stages for s = 1,. . . ,12 (horizons):
pred.mode <- 0
for(s in 1:12){
elnino.futur.s <- ELNINODAT[2:53,s]
result.pred.quantile.step.s <- funopare.quantile.lcv(elnino.futur.s,
elnino.past.learn,elnino.past.testing,3,Knearest=NULL,
kind.of.kernel="quadratic",semimetric="pca")
pred.quantile[s]<- result.pred.quantile.step.s$Predicted.values
}
Plotting the predicted values :
] The following command lines allow to display the forecasted 54th year obtained
(Figure 1) by the various functional prediction methods and we compare them with
the observed values (54th year)
year54 <-ELNINODAT[54,]
mse.quantile<- round(sum((pred.reg-year54)∧2)/12,2)
plot(1:12,year54,type=’l’,lty=1,axes=F,xlab=′ ′, ylab=”, ylim=range(c(pred.median,year54)))
plot(1:12,pred.quantile,xlab=’54th year’, ylab=′ ′, main=paste(’quantile: MSE=’,mse.quantile,sep=′ ′),
type=’l’,lty=2,ylim=range(c(pred.quantile,year54)))
par(new=T)
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4.2 Conclusion

There are many situations in which we study the link between two variables in
order to be able to predict new values of one of them given the other one, this
problem occurs with real, multivariate variables and functional variables. There
are several ways to approach the prediction setting, in this dissertation we have
been interested in two important models: conditional mode and conditional quantile
which are studied when the explanatory variables are functional and the response
variable still real. We have provided some theoretical supports by showing how the
dependence is acting on the asymptotic behavior of the non-parametric functional
method. In the last chapter, we have illustrated an application in which we have
applied the conditional quantile approach in time-series analysis to the prediction
and the building of confidence bands, then we have implement our methodology with
el Nino data which is a real data study that test the performance of the conditional
quantile estimator.
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