REPUBLIQUEALGERIENNEDEMOCRATIQUEETPOPULAIRE

MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHESCIENTIFIQUE

UNIVERSITE« Dr. TAHAR MOULAY »DE SAIDA FACULTE DES SCIENCES DEPARTEMENT DE PHYSIQUE

Présenté en vue de l'obtention du diplôme de

MASTER

Spécialité : PHYSIQUE Option : Rayonnements

Par

Benagui Chahira

Sur le thème

Étude théorique par la méthode DFT des propriétés structurale, vibrationnelle, électronique et optique non linéaire de dérivés d'uracile et Thiouracile

Soutenu le : 04/07/2019 devant le jury composé de :

Pr

Dr. EIKEURTI Mohammed

Dr. BENHALIMA Nadia

Dr. BOUTALEB Habib

Dr. SAADAOUI Fatiha

- Université Dr. Tahar Moulay de Saida Président Université Dr. Tahar Moulay de Saida Encadreur
- MCA Université Dr. Tahar Moulay de Saida
- MCB Université Dr. Tahar Moulay de Saida
- MAB Université Dr. Tahar Moulay de Saida

Examinateur Examinateur

Année Universitaire 2018 - 2019

DEDICACE

Je dédie ce modeste travail à celle qui m'a donnée la vie, le symbole de tendresse, qui s'est sacrifiée pour mon bonheur et ma réussite, à ma mère A mon père, école de mon enfance, qui a été mon ombre durant toutes les années des études, et qui a veillé tout au long de ma vie à m'en courages, à me donner l'aide et à me protéger.

Que dieu les gardes et les protégé

A mes frères

A mes amis

A tous ceux qui me sont chers

A tous ceux qui m'aiment

A tous ceux que j'aime

Je dédie ce travail.

Nous tenons tout d'abord à remercier dieu le tout puissant et miséricordieux, qui nous a donné la force et la patience d'accomplir le modeste travail.

Je tiens à exprimer mes vifs remerciements à Madame BENHALIMA Nadia maitre de conférences A à université Dr. Tahar Moulay de Saida pour avoir dirigé, pour ses précieux conseils et son aide durant toute la période du travail.

Je tiens à remercier Monsieur ElKEURTI Mohammed, professeur à université Dr. Tahar Moulay de Saida, qui m'a honoré en acceptant de présider le jury de ce mémoire.

Je remercie également Monsieur BOUTALEB Habib, maitre de conférences B à université Dr. Tahar Moulay de Saida et Mademoiselle SAADAOUI Fatiha, Maitre Assistante B à Université Dr. Tahar Moulay de Saida, pour m'avoir fait l'honneur d'examiner et de participer au jury de ce travail.

Je tiens à remercier aussi l'ensemble des professeurs qui m'ont enseigné durant tout mon parcours universitaire.

Enfin, Mes remerciements s'adressent également à toutes les personnes qui ont participé du près ou de loin à la réalisation de ce travail.

Tables des matières

Introduction générale	01
Chapitre I : Méthodes de Calculs Théoriques	
I-1 Introduction	03
I-2 Approches ab-initio	03
1-2-1 Equation de Schrödinger	03
I-2-2 Approximation de Born-Oppenheimer (adiabatique)	05
I-2-3 Approximation Hartree (des électrons libres)	07
I-2-4 Méthode Hartree-Fock	08
I-2-5 Equations Hartree-Fock	09
I-2-6 Fonction de Base	10
I-2-7 Formulation de la Corrélation Electronique	13
I-3 Théorie de la Fonctionnelle de la Densité	14
I-3-1 Théorèmes de Hohenberg et Kohn	15
I-3-2 Les équations de Kohn-Sham	16
I-3-3 Fonctionnelle d'échange et corrélation	17
I-3-3-1 Approximation de la densité locale (LDA)	17
I-3-3-2 Approximation du gradient généralisé (GGA)	18
I-3-4 Fonctionnelles hybrides	20
I-3-5 Succès et limites de la DFT	20
Chapitre II : Etude des propriétés Géométriques de dérivés d'Uracile et Thiouracile	
II-1 Dérivés d'Uracile et Thiouracile	22
II-2 Etude des propriétés géométriques dedérivés d'Uracile	22
II-2-1 Conformation moléculaire calculée à partir d'HF et de la DFT	22
II-2-2 Analyse des données géométriques	23
II-3 Etude des propriétés géométriques de dérivés de Thiouracile	27
II-3-1 Conformation moléculaire calculée à partir d'HF et de la DFT	27
II-3-2 Analyse des données géométriques	28
Chanitre III : A nalyse vibrationnelle de dérivés d'Uracile et Thiouracile	20
III.1 Introduction	33
III-1 Infoduction III-2 Vibration dans les molécules nolv-atomiques	33
III-2 Vibration dans its moléculaires	33
III-3 1 Flongation	34
III 2 1 1 Vibrotion gymétrique (1)	34
$\frac{111-3-1-1}{100} \text{ vibration symmetrique } \left(V_s\right)$	24
$\frac{111-3-1-2}{2} \text{ Vibration asymetrique } \left(V_{as}\right)$	34 24
111-5-2 Deformation dans et nors du plan	34
III-3-5 Influence de divers facteurs sur les frequences de vibration	35
III-5-4 Differences zones du spectre en infrarouge	20
III-5-5-Calcul analytique des spectres IK	30
111-4 Etude vibrationnenesde derives d'Orache et Innourache Chanita IV : Etude des monniétés physics chimis de dérivés d'Unesile et Thieuresile	39
Unapitre IV : Etude des proprietes physico-chimie de derives d'Orache et Tinourache	50
IV-1 1 Francisco das excitadas moleculaires	50
IV-1-1 Energies des orditales moleculaires HUMU-LUMU d'Uracile	50
IV 2 1 Dependences optiques non linearres	54
1v-2-1 rroprietes optiques non lineaires de derives d'Uraclie	55
IV-3 Energies des orbitales moleculaires HOMO-LUMO de Thiouracile	59
1v-4 Proprietes optiques non lineaires de derives de Thiouracile	62
Conclusion generale	66
Bibliographies	67

Líste de fígures

Figure II. 1 GrainesdeBrassica (colza) et les choux	22
Figure II. 2 Numérotation des atomes des molécules F-U, Cl-U et Br-U	24
Figure II. 3 Numérotation des atomes des molécules F-TU, Cl-TU et Br-TU	29
Figure III.1 Modes propres de vibration de la molécule d'eau	35
Figure III.2Modes propres de vibration de molécule CH ₂	35
Figure III.3 Différentes zones du spectre infrarouge	37
Figure III.4 Nombres d'onde, intensités IR calculés aux niveaux HF, B3LYP et	40
HSEH1PBE avec la base 6-31G (d,p) du (F-U), (Cl-U) et (Br-U)	
Figure III.5 Représentation de quelques modes théoriques de (F-U) et (Cl-U) et (Br-U)	44
Figure III.6 Nombres d'onde, intensités IR calculés aux niveaux HF, B3LYP et	45
HSEH1PBE avec la base 6-31G (d,p) du , (F-TU), (Cl-TU) et (Br-TU)	
Figure III.7 Représentation de quelques modes théoriques de (F-TU) et (Cl-TU) et (Br-	49
TU)	
Figure IV.1 Orbitales moléculaires de F-U, Cl-U et Br-U	51
Figure IV.2 Variation du moment dipolaire, polarisabilités et l'hyperpolarisabilités de	56
F-U, Cl-U et Br-U obtenus au niveau DFT	
Figure IV.3 Orbitales moléculaires de F-TU, Cl-TU et Br-TU	60
Figure IV.4 Variation du moment dipolaire, polarisabilités et l'hyperpolarisabilités de	63
F-TU, Cl-TU et Br-TU obtenus au niveau DFT	

Tableau II.1 Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°)	25
calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (F-U)	
Tableau II.2 Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°)	26
calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Cl-U)	
Tableau II.3 Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°)	27
calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Br-U)	
Tableau II.4 Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°)	30
calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (F-TU)	
Tableau II.5 Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°)	31
calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Cl-TU)	
Tableau. II.6. Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°)	32
calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Br-TU)	
Tableau III.1 Quelques exemples de modes de vibrations avec les fréquences	38
correspondantes	
Tableau III.2 Nombres d'onde (cm ⁻¹), intensités IR calculés aux niveaux HF, B3LYP et	41
HSEH1PBE avec la base 6-31G (d,p) du (F-U)	
Tableau III.3 Nombres d'onde (cm ⁻¹), intensités IR calculés aux niveaux HF, B3LYP et	42
HSEH1PBE avec la base 6-31G (d,p) du (Cl-U)	
Tableau III.4 Nombres d'onde (cm ⁻¹), intensités IR calculés aux niveaux HF, B3LYP et	43
HSEH1PBE avec la base 6-31G (d,p) du (Br-U)	
Tableau III.5 Nombres d'onde (cm ⁻¹), intensités IR calculés aux niveaux HF, B3LYP et	46
HSEH1PBE avec la base 6-31G (d,p) du (F-TU)	
Tableau III.6 Nombres d'onde (cm ⁻¹), intensités IR calculés aux niveaux HF, B3LYP et	47
HSEH1PBE avec la base 6-31G (d,p) du (Cl-TU)	
Tableau III.7 Nombres d'onde (cm ⁻¹), intensités IR calculés aux niveaux HF, B3LYP et	48
HSEH1PBE avec la base 6-31G (d,p) du (Br-TU)	
Tableau IV.1 Energie de gap (ΔE), potentiel d'ionisation(I), affinité électronique(A),	53
potentiel chimique(μ), électronégativité (χ), la dureté (η), et l'indice	
d'électrophile(ω) de dérivés d'Uracile calculés par DFT au niveau 6-31G(d,p)	
Tableau IV.2 Moment dipolaire $\mu_{tot}(D)$ de dérivés d'Uracile calculés par DFT au niveau	55
6-31G (d,p)	
Tableau IV.3 Polarisabilités a_{tot} .10– ²³ (esu) de dérivés d'Uracile calculés par DFT au	57
niveau 6-31G (d,p)	
Tableau IV.4 Hyperpolarisabilités β_{tot} . 10– ³¹ (esu) de dérivés d'Uracile calculés par	58
DFT au niveau 6-31G (d,p)	
Tableau IV.5 Energie de gap (ΔE), potentiel d'ionisation(I), affinité électronique(A),	61
potentiel chimique(μ), électronégativité (χ), la dureté (η), et l'indice	
d'électrophile(ω) de dérivés de Thiouracile calculés par DFT au niveau 6-31G(d,p)	
Tableau IV.6 Moment dipolaire μ_{tot} (D) de dérivés de Thiouracile calculés par DFT au	62
niveau 6-31G (d,p)	
Tableau IV.7 Polarisabilités α_{tot} .10- ²³ (esu) de dérivés de Thiouracile calculés par DFT	64
au niveau 6-31G (d,p)	
Tableau IV.8 Hyperpolarisabilités β_{tot} (esu) de dérivés de Thiouracile calculés par DFT	65
au niveau 6-31G (d,p)	

Les dérivés de l'Uracile et Thiouracile sont des composés très demandés en raison de leurs activités biologiques exceptionnelles. Ils ont subi un développement rapide en raison de leur utilisation dans les traitements anti-cancéreux, antiviral et antibactériens, analgésique (antidouleur), antioxydants, anti-inflammatoires et antithyroïdien.

Le développement des moyens informatiques (microprocesseur plus puissant, mémoire plus importante, calcul scientifique, infographie,.....) au cours de ces dernières années a permise à la chimie, physique, la biologie de s'enrichir d'outil est apparu permettant à tout chimiste el les physiciens de mieux appréhender les problèmes liés au domaine moléculaire : la modélisation moléculaire^(1,2). Cette dernière implique l'utilisation de méthodes de calcul théoriques (mécanique moléculaire, dynamique moléculaire, mécanique quantique ab -initio ou semi- empirique) permettant de déterminer la représentation graphique de la géométrie ou de la configuration des atomes d'une molécule et d'évaluer les propriétés physico-chimiques associées^(3,4).

Dans ce travail,nous nous intéresserons à l'optimisation de la structure de dérivés de l'Uracile et Thiouracile et l'obtention des propriétés moléculaires par calcul théorique. En outre, la modélisation moléculaire sera utilisée, dans cette étude, dans le but d'établir la relation entre les propriétés structurales et les propriétés optiques non linéaires de ces dérivés. L'intérêt de notre travail est voir avec quelle précision on pouvait comparer les résultats d'optimisation de la géométrie moléculaire obtenue à partir des calculs théoriques (HF et DFT) avec celles obtenues par la cristallographie pour ces molécules. Pour compléter cette analyse structurale nous avons également fait appel à la spectroscopie Infra Rouge pour identifier les différents modes de vibrations des liaisons présentes dans ces molécules.

Ce manuscrit est organisé en quatre chapitres principaux. Outre une introduction générale, un rappel bibliographique des différentes méthodes utilisées en chimie quantique moderne y compris celle relatives à la théorie de la fonctionnelle de la densité (DFT)et' la méthode Hartree-Fock (HF)font l'objet du premier chapitre.

¹ Berbouche Dalila, thèse de doctorat, Université Med Khider Biskra ,2014

² C.C.J. Roothaan. Rev. Mod. Phys, (1951), 23, 69.

³ A. D. Becke. J. Chem. Phys, (1993), 98, 5648.

⁴ A. D. Becke, J. Chem. Phys (1372), 1993, 98.

Au sein du deuxième chapitre, nous avons calculé la conformation moléculaire de dérivés de l'Uracile et Thiouracile en utilisant le programme Gaussian09 basés sur la théorie de la fonctionnelle de la densité (DFT) avec la fonctionnelles de corrélation et d'échange B3LYP et HSEH1PBE le jeu de base 6-31G(d,p) en effectuant une étude comparative avec la méthode d'Hartree Fock et les données expérimentales.

Quelques notions théoriques sur la spectroscopie IR l'objet de la première partie de troisième chapitre, dans la deuxième partie nous présentons les différentes modes de vibrations obtenues par la méthode HF et la DFT.

Alors que dans le quatrième chapitre, nous décrivons les propriétés moléculaires obtenus par calcul théorique tels que le moment dipolaire, polarisabilité, l'hyperpolarisabilités, les orbitales moléculaires frontières ainsi que le gap énergétique, L'ensemble de ces propriétés permettra de mettre en évidence le transfert de charge au sein de ces dérivés.

Enfin nous clôturons ce travail par une conclusion générale en évoquant les principaux résultats obtenus.

Chapítre I

Méthodes de Calculs Théoríques

I-1Introduction

L'utilisation des méthodes de chimie quantique permet de déterminer la fonction d'onde de systèmes atomiques comme moléculaires, et ainsi prédire l'ensemble de leurs propriétés physiques et chimiques. La chimie quantique tient compte de la structure électronique d'un système et repose sur l'équation de Schrödinger. L'utilisation des méthodes théoriques pour l'obtention de modèles qui puissent prédire et comprendre les structures, les propriétés et les interactions moléculaires est connue sous le nom de « modélisation moléculaire ». Celle-ci permet de fournir des informations qui ne sont pas disponibles par l'expérience et joue donc un rôle complémentaire à celui de la chimie expérimentale. Des algorithmes de calculs très précis sont utilisés pour minimiser l'énergie totale en fonction des paramètres structuraux et pour prédire la structure la plus stable des composés étudiés. Les fonctions d'onde ainsi obtenues permettent de calculer des propriétés électriques et magnétiques, ainsi que des paramètres structuraux tels que les distances interatomiques et les angles de liaisons entre les différents atomes. Le but de ce chapitre est d'exposer les éléments fondamentaux des méthodes de chimie quantique utilisées dans le cadre de ce travail.

I-2Approches ab-initio

I-2-1Equation de Schrödinger

Les solides sont constitués par une association de particules élémentaires : Les ions et les électrons. Le problème théorique fondamental de la physique des solides est de comprendre l'organisation intime de ces particules à l'origine de leurs propriétés. Toute l'information que l'on peut obtenir sur un système composé de Nions et **n** électrons, estcontenue dans la fonction d'onde Ψ du système ; elle est une fonction de coordonnées des noyaux et des électrons, obtenue par la mécanique quantique dont la base est résolvant l'équation de Schrödinger indépendante du temps qui s'écrit sous la forme :

$$\mathbf{H}\boldsymbol{\Psi} = \mathbf{E}\,\boldsymbol{\Psi} \tag{I.1}$$

Où : **E** est l'énergie totale du système, Ψ sa fonction d'onde et **H** est l'opérateur hamiltonienne. Le problème général peut être posé sous la forme d'une équation du mouvement de toutes les particules présentes dans le cristal. L'hamiltonien exact du cristal (non relativiste) résulte de la présence des forces électrostatiques d'interaction : Répulsion ou attraction suivant la charge des particules (ions, électrons)⁵.

⁵Schrödinger, E.. Ann. Physik. (1926) ,84, 361.

$$H_{total} = T_e + T_n + V_{e-e} + V_{e-n} + V_{n-n}$$
 (I.2)

Où :

$$\begin{split} \mathbf{T}_{\mathbf{e}} &= -\sum_{i}^{n} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} \colon \text{L'énergie cinétique des électrons.} \\ \mathbf{T}_{n} &= -\sum_{i}^{N} \frac{\hbar^{2}}{2M} \nabla_{i}^{2} \colon \text{L'énergie cinétique des noyaux.} \\ \mathbf{V}_{n-n} &= +\frac{1}{2} \sum_{I < J} \frac{Z_{I} Z_{J} e^{2}}{|\mathbf{\overline{R}_{I}} - \mathbf{\overline{R}_{J}}|} \colon \text{L'énergie potentielle d'interaction entre les noyaux.} \\ \mathbf{V}_{e-n} &= -\sum_{i,I} \frac{Z_{I} e^{2}}{|\mathbf{\overline{r}_{i}} - \mathbf{\overline{R}_{I}}|} \colon \text{L'énergie potentielle d'attraction noyaux-électrons,} \\ \mathbf{V}_{e-e} &= +\frac{1}{2} \sum_{i < j} \frac{e^{2}}{|\mathbf{\overline{r}_{i}} - \mathbf{\overline{r}_{j}}|} \colon \text{L'énergie potentielle de répulsion entre les électrons.} \end{split}$$

Où E est l'énergie associée à la fonction d'onde $\Psi(r_1, r_2, ..., r_N)$, obtenue en résolvant l'équation de Schrödinger indépendante du temps :

$$H\Psi(r_1, r_2, ..., r_N) = E\Psi(r_1, r_2, ..., r_N)$$
(I.3)

Qui n'est autre que l'équation aux valeurs de l'hamiltonien **H**. Les fonctions Ψ_i solutions de l'équation (**I.3**) sont appelées états stationnaires du système associé aux énergies E_i . L'état Ψ_0 associé à l'énergie la plus basse E_0 est appelé état fondamental du système. A l'équation (**I.3**) de Schrödinger, pour un système de **N** noyaux et **n** électrons indépendante du temps, où **E** est l'énergie et **H** l'hamiltonien du système, correspond l'hamiltonien non relativiste du système de charges ponctuelles :

$$H\Psi = \left[-\sum_{i}^{N} \frac{\hbar^{2}}{2m} \nabla_{i}^{2} - \sum_{I}^{A} \frac{\hbar^{2}}{2M} \nabla_{i}^{2} - \sum_{i,I} \frac{\mathbf{z}_{I} \mathbf{e}^{2}}{\left|\vec{\mathbf{r}}_{i} - \vec{\mathbf{R}}_{I}\right|} + \frac{1}{2} \sum_{i < j} \frac{\mathbf{e}^{2}}{\left|\vec{\mathbf{r}}_{i} - \vec{\mathbf{r}}_{j}\right|} + \frac{1}{2} \sum_{I < j} \frac{\mathbf{z}_{I} \mathbf{z}_{J} \mathbf{e}^{2}}{\left|\vec{\mathbf{R}}_{I} - \vec{\mathbf{R}}_{J}\right|} \right] \Psi = \mathbf{E} \Psi$$

$$(I.4)$$

La solution de l'équation (II.4) conduit à la résolution d'un problème à N corps qui n'est accessible qu'au prix de certaines approximations. Ces dernières doivent refléter une certaine réalité physique.

Où ∇_k^2 est le Laplacien du k^{ime} électron :

$$\nabla_{k}^{2} = \frac{\partial^{2}}{\partial x_{k}^{2}} + \frac{\partial^{2}}{\partial y_{k}^{2}} + \frac{\partial^{2}}{\partial z_{k}^{2}}$$
(I.5)

Les propriétés moléculaires qui peuvent être calculées par la résolution de l'équation de Schrödinger sont multiples. On peut citer entre autres :

- Structures et énergies moléculaires
- Energies et structures des états de transition
- Fréquences de vibration
- Spectres IR et Raman
- Propriétés thermochimiques
- Energies de liaison
- Chemins réactionnels
- Orbitales moléculaires
- Charges atomiques
- Moments multipolaires
- Déplacements chimiques RMN et susceptibilités magnétiques
- > Affinités électroniques et potentiels d'ionisation
- Polarisabilités et hyperpolarisabilités
- Potentiels électrostatiques et densités électroniques
- ▶ etc.

I-2-2 Approximation de Born-Oppenheimer (adiabatique)

L'approche de Born-Oppenheimer est fondée sur le fait que les électrons, dont la masse est beaucoup plus faible que celle des noyaux, se déplacent beaucoup plus rapidement que ces derniers. En d'autres termes, ils s'adaptent presque instantanément aux positions des noyaux. Leur comportement n'est donc pratiquement pas modifié par les faibles déplacements des noyaux, que l'on peut considérer comme figés dans leurs positions instantanées. On considère donc que les électrons se déplacent dans un champ de noyaux figés, ce qui permet de poser :

$$\mathbf{H} = \mathbf{H}_{\mathbf{e}} + \mathbf{T}_{\mathbf{n}} \tag{I.6}$$

donc

$$\Psi(\mathbf{r}, \mathbf{R}) = \Psi_{\mathbf{R}}(\mathbf{r}) \,\phi_{\mathbf{r}} \left(\mathbf{R}\right) \tag{I.7}$$

avec

$$\mathbf{H}_{e}\Psi(\mathbf{r},\mathbf{R}) = \mathbf{E}_{e}\Psi(\mathbf{r},\mathbf{R}) \tag{I.8}$$

et

$$\mathbf{H}_{n} \boldsymbol{\varphi}_{r} \left(\mathbf{r}, \mathbf{R} \right) = \mathbf{E}_{n} \boldsymbol{\varphi}_{r} \left(\mathbf{r}, \mathbf{R} \right)$$
(I.9)

Où $\Psi(\mathbf{r}, \mathbf{R})$ est la fonction d'onde totale à n électrons et N noyaux ; $\Psi_{\mathbf{R}}(\mathbf{r})$ est la fonction d'onde électronique correspondant à un jeu de positions **R** de noyaux figés, mais pas forcément à l'équilibre ; $\varphi_{\mathbf{r}}(\mathbf{R})$ est la fonction d'onde nucléaire, décrivant le mouvement des noyaux ; **r** et **R** symbolisant les coordonnées des électrons et des noyaux, respectivement⁶.

La fonction d'onde électronique $\Psi(\mathbf{r})$ ne dépend pas du mouvement des noyaux, mais seulement de leurs positions. Dans cette approche, l'énergie cinétique des noyaux peut être négligée, tandis que la répulsion entre les noyaux peut être considérée comme constante. Ainsi, si l'on remplace $\Psi(\mathbf{r}, \mathbf{R})$ par $\Psi_{\mathbf{R}}(\mathbf{r}) \phi(\mathbf{R})$ dans l'équation de Schrödinger (équation **I.3**), on obtient :

$$H \Psi_{k}(\vec{r})\varphi(R) = -\frac{1}{2} \frac{\partial \Psi_{R}(\vec{r})}{\partial r_{2}} \varphi(\vec{r}) + V_{ne}\Psi(\vec{r})\varphi(\vec{r}) + V_{ee}\Psi_{R}(\vec{r})\varphi(\vec{r})$$
$$-\sum_{\nu}^{N} \frac{1}{2M_{\nu}} \frac{\partial \Psi_{R}(\vec{r})}{\partial R} \Psi_{R}(r) - \sum_{\nu}^{N} \frac{1}{2M_{\nu}} (2\frac{\partial \Psi_{R}(\vec{r})}{\partial r}\frac{\partial \varphi(\vec{r})}{\partial R} + \frac{\partial_{e}\Psi_{R}(\vec{r})}{\partial R_{1}}\varphi(\vec{r}))$$
$$+V_{nn}\Psi_{R}(\vec{r})\varphi(\vec{r}) \qquad (I.10)$$

$$H \Psi_{R}(\vec{r}) \varphi(R) = (T_{e} + V_{n-e} + V_{e-e}) + \Psi_{R}(\vec{r}) \varphi_{r}(\vec{r}) + (T_{n} + V_{n-n}) \Psi_{R}(\vec{r}) \varphi(\vec{r})$$

= $(E_{e} + T_{nn} + V_{nn}) \Psi_{R}(\vec{r}) \varphi_{R}(\vec{r}) = E \Psi_{R}(\vec{r}) \varphi_{R}(\vec{r})$
 $H_{e} \Psi_{R}(\vec{r}) = E_{0} \Psi_{R}(\vec{r})$ I.11)

avec

$$H_e = -\frac{1}{2} \sum_{k}^{n} \nabla_k^2 - \sum_{k}^{n} \sum_{\nu}^{N} \frac{Z_{\nu}}{r_{k\nu}} + \frac{1}{2} \sum_{k}^{n} \sum_{l \neq k}^{N} \frac{1}{r_{kl}}$$
(I.12)

Cette équation ne contient plus que des termes cinétiques relatifs aux électrons, des termes d'interactions électron-noyau et électron-électron. La résolution de l'équation de Schrödinger pour ce hamiltonien électronique mène aux fonctions d'ondes électroniques. Une fonction d'onde électronique donnée dépend paramétriquement des coordonnées nucléaires, dans le sens où, pour un différent choix de ces paramètres, on obtient différentes fonctions d'ondes électroniques.

⁶ Born, D; Oppenheimer, J.R. Ann. Phys. Rev. (1927), 84, 457.

I-2-3 Approximation Hartree (des électrons libres)

L'approximation de Hartree⁷ consiste à chercher les fonctions propres de l'hamiltonien Hsous la forme approchée :

$$\Psi_{app} = \Psi_{1}(r_{1}) \cdot \Psi_{2}(r_{2}) \dots \Psi_{N}(r_{N})$$
 (I. 13)

Cette approximation est basée sur l'hypothèse d'électrons libres ce qui revient à ne pas tenir compte des interactions entre les électrons et des états de spin. Ceci a deux conséquences importantes

- ♦ La répulsion coulombienne totale V_{e-e} du système électronique est surestimée.
- ✤ Le principe d'exclusion de Pauli n'est pas pris en compte.

Cette seconde conséquence étant plus grave que la première, l'approximation de «Hartree-Fock»⁸ a été introduite pour prendre en compte le spin des électrons pour la résolution de l'équation de Schrödinger. L'énergie moyenne électronique est obtenue par minimalisation de l'opérateur hamiltonien par la méthode variationnelle :

$$\langle \mathbf{H} \rangle = \frac{\langle \Psi | \mathbf{H} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$$
 (I. 14)

Le calcul variationnel montre que chaque fonction d'onde $\Psi_i(\mathbf{r})$ doit, pour rendre minimale l'énergie moyenne $\langle \mathbf{H} \rangle$, être elle-même solution d'une équation différentielle du second ordre qui a la forme d'une équation de Schrödinger à une particule :

$$[-\nabla^2 + \mathbf{W}(\mathbf{r}) + \mathbf{U}_i(\mathbf{r})]\Psi_i(\mathbf{r}) = \mathbf{E}_i\Psi_i(\mathbf{r}) \tag{I.15}$$

Le premier terme potentiel $W(\mathbf{r})$ d'équation (I.15) est issu directement du hamiltonien H. Il représente l'interaction coulombienne de l'électron avec tous les noyaux du cristal, et il possède la périodicité du réseau de Bravais.

Le second terme potentiel $U_i(\mathbf{r})$ de l'équation (I.15) appelé potentiel moyen auto-cohérent représente la répulsion coulombienne exercée sur l'électron i par tous les autres électrons $j \neq i$, Chacun étant dans son état Ψ_j :

$$U_{i}(\mathbf{r}) = \iiint \frac{q^{2}\rho_{i}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^{3}\mathbf{r}' \qquad (I.16)$$

Où :

⁷D. R. Hartree, Proc. Combridge Philos. Soc, (1928), 24, 89.

⁸V. Fock, Z. Phys. (1930), 61, 126.

$$\rho_{i}(r') = \sum_{j \neq i} |\Psi_{i}(r')|^{2}$$
 (I.17)

Pour chaque densité électronique au point \mathbf{r}' , il existe **N** équations de la forme (**I.15**), toutes différentes et couplées entre elles par les différents potentiels **U**(\mathbf{r}). Le calcul est donc sans solution en pratique si l'on ne procède pas à des approximations supplémentaires. Par conséquent, il faut résoudre l'équation par approximations successives, jusqu'à ce qu'il y ait auto-cohérence des solutions trouvées.

Résoudre l'équation de Schrödinger avec **N** électrons doit utiliser des méthodes approximatives qui permettent de reproduire le plus exactement les quantités physiques contenant le plus d'informations. La théorie de la fonctionnelle de la densité (**DFT**) offre ainsi des perspectives intéressantes puisque, en principe, elle permet d'obtenir la densité électronique **p**et l'énergie totale du système exactement.La méthode est basée sur le postulat proposé par Thomas⁹ et Fermi¹⁰ à la fin des aimées 30. Il stipule que les propriétés électroniques peuvent être décrites en terme de fonctionnelles de la densité électronique**p** définie sur l'espace usuel **R**³.La densité électronique **p**(**r**)étant la probabilité de présence un électron dans un volume unitaire en**r**. Cette quantité est définie de la façon suivante ¹¹:

$$\rho(\vec{r}_1) = N \int_{\text{tout } l' \text{éspace}...} \int_{\text{tout } l' \text{éspace}} \Psi^*(\vec{r}_1 \dots \vec{r}_N) \Psi(\vec{r}_1 \dots \vec{r}_N) d\vec{r}_1 \dots d\vec{r}_N \qquad (I. 18)$$

et :

$$N = \int_{\text{tout } l' \text{éspace}} \rho(\vec{r}) d\vec{r}$$
 (1.19)

Cette propriété, sur laquelle se base les techniques du calcul DFT, a été démontré par Pierre Hohenberg et Walter Kahn (prix Nobel de chimie en 1998).

I-2-4 Méthode Hartree-Fock

L'approximation orbitalaire décrit la fonction d'onde à n électrons comme un produit de n fonctions d'espace et de spin associées à chaque électron (ou spin-orbitales). Ceci est valable pour un modèle de particules indépendantes où le terme de répulsion interélectronique de l'hamiltonien est omis. L'équation de Schrödinger à **n** électrons peut être

⁹L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc. (1927), 23, 542.

¹⁰ E. Fermi, Statistical method to determine some properties of atoms, E Fermi - Rend. Accad. Naz. Lincei, (1927), 6, 602.

¹¹R. G. Pan and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford). Science Publication), (1989).

séparée en **n** équations à un électron. Cependant la fonction d'onde à **n** électrons décrite de cette manière ne satisfait pas au principe de Pauli (les électrons sont des fermions), car elle n'est pas asymétrique sous une permutation de deux électrons. Ce problème est levé par la description de la fonction d'onde comme un déterminant de Slater construit à partir des n spin-orbitales (les n spin-orbitales Ψ proviennent des **n/2** orbitales spatiales combinées avec deux fonctions de spin α et β).

$$\Psi = \frac{1}{\sqrt{(2n)!}} \begin{vmatrix} \Psi_1(1)\Psi_1(2) & \dots & \Psi_1(n) \\ & & & \\ \Psi_n(1) & \dots & \Psi_n(n) \end{vmatrix}$$
(I.20)

I-2-5 Equations Hartree-Fock

De par la méthode variationnelle, le choix des meilleures spin-orbitales correspond au minimum de l'énergie électronique (\mathbf{E}^{e}). Cette fonction d'onde électronique optimale, atteinte pour l'énergie la plus basse, sera toujours au-dessus de l'énergie exacte. La procédure de minimisation de l'énergie est une procédure auto-cohérente avec des contraintes d'orthonormalité pour les orbitales. La méthode Hartree-Fock est l'application du principe variationnel pour minimiser l'énergie calculée, en utilisant une fonction d'onde par exemple de type Slater ($\boldsymbol{\varphi}$). Les équations Hartree-Fock (**HF**) peuvent être vues comme les équations de Schrödinger pour un électron se déplaçant dans un potentiel créé par les noyaux et les autres électrons. Les valeurs propres de cette équation sont les énergies mono-électroniques associées aux fonctions d'ondes qui sont, dans ce cas, les orbitales.

$$H^{HF}\varphi_i = \varepsilon_i \varphi_i \tag{I.21}$$

L'énergie calculée avec l'hamiltonien électronique H du système a pour expression :

$$E = \sum_{k \langle \chi_{k}(1) | H^{c} | \chi_{k}(1) \rangle + \sum_{k \sum_{l > k}} \left[\left\langle \chi_{k}(1) \chi_{l}(2) \right| \frac{1}{r_{12}} \left| \chi_{k}(1) \chi_{l}(2) \right\rangle - \left\langle \chi_{k}(1) \chi_{l}(2) \right| \frac{1}{r_{12}} \left| \chi_{k}(2) \chi_{l}(1) \right\rangle \right]$$
(1.22)

Soit χ_{l} la spin orbitale que l'on a choisi de modifier. La modification peut se mettre sous la forme :

$$\chi_l' = \chi_l + \varepsilon_i \chi_t \tag{I.23}$$

La fonction Ψ est alors modifiée en Ψ' qui, conformément aux propriétés des déterminants, peut s'écrire :

$$\Psi' = \Psi + \varepsilon_i \Psi_l^t \tag{I.24}$$

Où Ψ_1^t est le déterminant Ψ dans lequel la colonne χ_1 est remplacée par la colonne χ_t La variation de $\langle \mathbf{E} \rangle$ s'écrit, au premier ordre en $\boldsymbol{\varepsilon}_t$:

$$\delta E = 2\varepsilon_t \langle \Psi | H | \Psi_l^t \rangle \tag{I.25}$$

On pose :

$$F_{lt} = 2\varepsilon_t \langle \Psi | H | \Psi_l^t \rangle \tag{I.26}$$

L'expression **F**_{lt}se développe en :

$$F_{lt} = \langle \chi_l(1) | H^c | \chi_t(1) \rangle + \left[\sum_i \left\langle \chi_l(1) \chi_l(2) \right| \frac{1}{r_{12}} \left| \chi_t(1) \chi_i(2) \right\rangle - \left\langle \chi_l(1) \chi_l(2) \right| \frac{1}{r_{12}} \left| \chi_t(2) \chi_i(1) \right\rangle \right]$$
(I.27)

On définit l'opérateur ou l'hamiltonien de Fock par la relation :

$$F(1) = H^{c}(1) + \sum_{i} [j_{i}(1) - K_{i}(1)]$$
 (I.28)

Où $H^{c}(1)$ est l'hamiltonien relatif à 1 électron, $J_{i}(1)$ est un opérateur coulombien défini par :

$$J_i(1) = \int \chi_i^* (2) \frac{1}{r_{12}} \chi_i (2) d\tau_2$$
 (I.29)

 $K_i(1)$ est un opérateur d'échange défini par son action sur une fonction $\chi_t(1)$

$$K_i(1)\chi_i(1) = \chi_i(1) \int \chi_i^*(2) \frac{1}{r_{12}} \chi_t(2) d\tau_2$$
 (I.30)

Les équations Hartree-Fock, prennent la forme :

$$F\chi_k = e_k\chi_k \tag{I.31}$$

I-2-6Fonction de Base

Les méthodes *ab-initio* permettent d'obtenir des informations à partir de la résolution de l'équation de Schrödinger sans paramètre de lissage ou de données expérimentales. Cependant, une des approximations inhérentes à ces méthodes consiste en l'introduction d'un ensemble de fonctions de base. Il y a quatre types de fonctions de base (également nommées orbitales atomiques) communément utilisées pour le calcul de structure électronique :

- Les orbitales de type Slater ou STO de l'anglais Slater Type Orbitals¹²
- Les orbitales de type Gaussienne ou GTO de l'anglais Gaussien Type Orbitales¹³

¹²J. C. Slater, Phys. Rev, (1930), 57, 57.

¹³S. F. Boys, Proc. Roy. Soc (London), (1950), A200, 542.

- Les fonctions de base numérique
- Les ondes planes

Les orbitales de type Slater, en coordonnées sphériques, sont de la forme :

$$\chi_{\zeta,n,l,m}(\vec{r},\theta,\varphi) = NY_{lm}(\theta,\phi)r^{n-1}e^{(-\zeta r)}$$
(I.32)

où N est un facteur de normalisation, χ est l'exposant orbitalaire, **n,l,m** sont les nombres quantiques et Y_{lm} , est une fonction harmonique sphérique usuelle.

Il est à noter qu'une **STO** ne possède pas de nœuds radiaux comme on pourrait s'y attendre pour la description d'une orbitale atomique. Ces nœuds seront donc introduits par le biais de combinaisons linéaires de **STO**. Ces fonctions présentent une décroissance correcte, de type exponentielle avec r et ont un bon comportement près du noyau : elles présentent des effets de pointe traduisant une annulation de leur dérivée à l'origine.

Les orbitales de type Gaussienne peuvent être formulées comme suit :

$$\chi_{\mu}(\vec{r}-\vec{R}_{A}) = P(\vec{r}-\vec{R}_{A})\sum_{p}d_{p\mu}g_{p}(\alpha_{p\mu},|\vec{r}-\vec{R}_{A}|)$$
(I.33)

Ou g_p et $P(\vec{r})$ sont définies par :

$$\begin{cases} g_p(\alpha, \vec{r}) = e^{(-\alpha r^2)} \\ P(\vec{r}) = C x^n y^m z^l \end{cases}$$
(I.34)

Chaque fonction est centrée sur un atome défini par sa position \vec{R}_A . Elle possède une certaine ressemblance avec les orbitaux atomiques correspondants aux solutions des équations **HF** pour les atomes isolés. La partie angulaire P(r) de la fonction est constituée d'un polynôme de degré variable. En fonction du degré de ce polynôme 0,1,2, ..., *ect*, il sera possible de définir des gaussiennes de type **s**, **p**, **d**, etc. La partie radiale de la fonction est définie, pour sa part, comme une combinaison linéaire de gaussiennes primitives, g_p . Les différents paramètres nécessaires à l'expression des **GTO** (les coefficients et exposants du polynôme, les coefficients $d_{p\mu}$ et les exposants $\alpha_{p\mu'}$ de la contraction) sont fixés et définissent la base de travail.

Les bases qualifiées de minimales comportent un nombre de fonctions suffisant pour décrire tous les électrons d'un atome. De manière générale, les primitives à petit exposant - qui sont diffuses – ne sont pas contractées tandis que les autres sont réparties dans des contractions, initialement groupées pour reproduire les STO¹⁴.En pratique les orbitales atomiques OA de Slater (STO) sont approchées par une combinaison de plusieurs OA

¹⁴E. Clementi, IBM J. Res et Dev,(1965), 9, 2.

gaussiennes (**GTO**). La plus simple est la base **STO-3G** encore appelée base minimale. Ceci signifie que les orbitales de type Slater sont représentées par trois fonctions gaussiennes. Dans la base minimale **STO-3G**, on utilise 3 gaussiennes pour approcher chacune des orbitales de type Slater.

Si cette base donne une assez bonne description de la densité électronique aux distances éloignées du noyau $(\mathbf{r} \rightarrow \infty)$, la description du comportement de la fonction d'onde exacte au voisinage du noyau $(\mathbf{r} \rightarrow \mathbf{0})$, est assez mauvaise. Pour cette raison, plusieurs bases gaussiennes étendues ont été élaborées. Ces dernières diffèrent par le nombre des fonctions contractées et les coefficients de contraction.

On appelle une fonction gaussienne contractée (CGTO) une combinaison linéaire de gaussiennes primitives (PGTOs) :

$$G^{CGTO} = \sum_{\lambda=1}^{k} d_{\lambda} g_{\lambda}^{PGTO}$$
(I.35)

 d_{λ} étant le coefficient de contraction de la gaussienne primitive g_{λ} . K est le degré de contraction.

On peut ainsi définir les bases suivantes :

- La base single- ζ ou SZ dans le cas d'une seule contraction
- La base double- ζ ou **DZ** dans le cas de 2 contractions
- La base triple- ζ ou **TZ** dans le cas de 3 contractions etc...

Par exemple, une base **DZ** est construite en doublant le nombre de fonctions de base minimale pour décrire la fonction d'onde avec plus de souplesse et de précision.

On peut également privilégier les orbitales de valence avec des bases Split-Valence – SV – qui sont construites en augmentant uniquement le nombre de fonctions de la couche de valence et en ne conservant qu'une seule fonction de chaque type de symétrie pour les niveaux de cœur.

Au final, l'ajout de fonctions de polarisation permettra d'accroître la qualité des résultats ; ces fonctions décrivant la distorsion du nuage électronique par rapport à la symétrie sphérique de l'atome.

A partir de là, les bases dites de Pople¹⁵,¹⁶ sont de type Split Valence et définies par :

- **n-ijG** pour les bases **DZ** (pour la valence),
- **n-ijkG** pour les bases **TZ** (pour la valence),

¹⁵J. A. Pople, R. Ditchfield, et W. J. Hehre, J. Chem. Phys, (1971), 54, 724.

¹⁶J. A. Pople, R. Ditchfield, et W. J. Hehre, J. Chem. Phys, (1972), 56, 2257.

Chapitre I : Méthodes de Calculs Théoriques

où **n** est le nombre de primitives pour les orbitales internes et **i**, **j**, **k** sont les nombres de primitives pour les orbitales de valence. L'adjonction de fonction de polarisation amènera à une notation du type **n-ijG****.

Par exemple, la base **3-21G** est une Split Valence-Double Zeta (**SV-DZ**), où chaque orbitale atomique des couches internes est décrite par une contraction de 3 gaussiennes primitives. Les orbitales de la couche de valence sont réparties en deux groupes : les orbitales proches du noyau sont décrites par une contraction de 2 primitives, et les orbitales éloignées par une seule gaussienne primitive. La base **6-311G** est une Split Valence-Triple Zeta (**SV-TZ**) dans laquelle les orbitales de cœur (couches internes) sont exprimées par une contraction de 6 gaussiennes primitives. Les orbitales de la split couche de valence sont exprimées par des contractions de 3, 1 et 1 primitives respectivement.

D'autres bases gaussiennes ont été proposées par Dunning ¹⁷et Huzinaga¹⁸. Malgré les divers perfectionnements apportés à la base gaussienne, l'utilisation de ces bases présente plusieurs inconvénients¹⁹. Pour cette raison, la recherche d'une base plus fiable et plus pratique reste toujours un centre d'intérêt de première importance des chimistes théoriciens, et on assiste ces dernières années à un retour, même s'il est un peu timide, vers les orbitales de Slater de qualité supérieure à celle des GTOs²⁰.On note également que plusieurs programmes moléculaires utilisant les STOs commencent à faire leur apparition. A titre d'exemple, nous citons les programmes ALCHEMY, STOP²¹et ADF (Amsterdam Functional Theory)²².

Le code de calcul GAUSSIAN09²³ dispose d'une grande variété de fonctionnelles d'échange-corrélation, les fonctionnelles hybrides y sont présentes, d'autres part, ilest possible d'ajuster **la B3LYP** en la transformant en **B3LYP**** par l'ajout des mots clés correspondants. C'est avec ce code de calcul que nous avons pu optimiser les structures et calculer ainsi les propriétés ONL à partir de ce code de calcul.

I-2-7Formulation de la Corrélation Electronique

¹⁷ S. Huzinaga, J. Chem. Phys. (1965), 42, 1293

¹⁸T. H. Dunning, J. Chem. Phys. (1971), 55,716

¹⁹ M. Yoshimine, B. H. Lengsfield, P. S. Bagus, McLean, and B. Liu, Alchemy II(IBM, Inc., 1990) from MOTECC-90.

²⁰S. M. Mekelleche, Thèse de doctorat d'état, Université de Tlemcen, (2000).

²¹A. Bouferguène, M. Fares, and p. E. Hoggan, Int. J. Quant. Chem. (1996), , 57 ,810.

²²E. Van Lenthe, R. Van Leeuwen, E. J. Baerends, and J. G. Snijders, «in New challenges in Computational Quantum Chemistry», (Ed Bagus, Groningen, (1994), 93.

²³Gaussian 09, Revision A.02, M. J. Frisch, and all, Gaussian, Inc., Wallingford CT, (2009).

Une fonction d'onde représentée par un seul déterminant de Slater ne sera jamais égale à la fonction d'onde exacte. Cela signifie donc que la quantité **HFE** est nécessairement supérieure à l'énergie exacte de l'état fondamental. En effet, la théorie Hartree-Fock ne tient pas compte de tous les effets de corrélation entre les mouvements des électrons au sein d'un système moléculaire. La corrélation entre deux électrons de spins parallèles (dite de Fermi) est en partie décrite dans les méthodes Hartree-Fock. Outre cette corrélation de Fermi, il existe, par ailleurs, la corrélation de Coulomb due à la répulsion électrostatique entre les électrons.

La différence entre les résultats obtenus en **HF** et ceux issus de la solution exacte de l'équation de Schrödinger est appelée énergie de corrélation, définie par :

$$\boldsymbol{E_{corr}} = \boldsymbol{E_0} - \boldsymbol{E_{HF}} < 0 \tag{I.36}$$

*E*_{corr}est une mesure de l'erreur introduite par l'approximation **HF** et elle est principalement due à la répulsion quasi instantanée des électrons dont ne tient pas compte le potentiel effectif HF, V_{eff}. Dans un schéma de ce type, on peut considérer que les électrons sont souvent proches les uns des autres car l'interaction électrostatique n'est traitée que par des termes moyennes. Le terme de répulsion inter électronique est donc trop grand et l'énergie HFE est plus grande que l'énergie exacte E_0 . Cet écart pouvant être d'une grande importance, il est nécessaire de pouvoir le prendre en compte pour le calculs des propriétés d'un système moléculaire - contenant, en particulier, des ions métalliques - et de pouvoir l'intégrer au sein d'un calcul de structure électronique. Avant de présenter les différentes approches permettant de tenir compte de ces effets de corrélation électronique, il est utile d'introduire les concepts de corrélation dynamique et de corrélation statique. Le terme de corrélation dynamique est employé pour évoquer la répulsion entre deux électrons lors de leurs déplacements respectifs. Le terme de corrélation statique est quant à lui relié à l'existence de déterminants de Slater dégénérés en énergie. Cet effet est présent lorsque l'état fondamental d'un système électronique ne peut être décrit par un seul déterminant de Slater, cas rencontré par exemple lors de la séparation dans l'espace d'une paire d'électrons, notamment lors de processus dissociatifs entre deux atomes. Un exemple typique en est la dissociation de la molécule deH_2 .

I-3Théorie de la Fonctionnelle de la Densité

L'étude détaillée des propriétés électroniques d'un système moléculaire nécessite la prise en compte des effets de corrélation électronique et ce, tout particulièrement, si celui-ci contient des métaux. Nous avons vu que les méthodes Post Hartree-Fock permettent

Chapitre I : Méthodes de Calculs Théoriques

d'intégrer ces effets mais sont souvent lourdes et limitantes quant à la taille de systèmes étudiés. C'est pourquoi, au cours de ces trente dernières années, la Théorie de la Fonctionnelle de la Densité ou **DFT** de l'anglais Density Functionnal Theory a été considérablement développée pour l'étude des systèmes chimiques et s'est imposée comme une alternative performante aux méthodes Post **HF**.

Initialement conçue et appliquée aux problèmes de l'état solide, plusieurs raisons ont contribué à sa popularité quant aux applications chimiques :

- Cette théorie inclut dans son formalisme une grande part de corrélation électronique.
- La méthode peut être appliquée à tout type de système : covalent, ionique ou métallique.

Les ressources informatiques requises sont moins importantes que pour les calculs de type Post **HF**, rendant ainsi accessibles les études des systèmes moléculaires de plus grandes tailles.

L'aspect mono déteminantal permet une interprétation « chimique » de la fonction d'onde issue de ce type de formalisme.

I-3-1Théorèmes de Hohenberg et Kohn

Le formalisme de base de la **DFT** est basé sur les théorèmes de Hohenberg-Kohn²⁴ (1964). Cette approche s'applique pour tout système à plusieurs particules en interaction évoluant dans un potentiel externe. Elle repose sur deux théorèmes :

<u>Théorème 1</u>: Ce théorème montre que la densité électronique $\rho(\mathbf{r})$ est la seule fonction nécessaire pour obtenir toutes les propriétés électroniques d'un système quelconque. En d'autres termes, il existe d'une correspondance biunivoque entre la densité électronique de l'état fondamental $\rho_0(\mathbf{r})$ et le potentiel externe $V_{ext}(\mathbf{r})$ et donc entre $\rho_{fond}(\mathbf{r})$ et la fonction d'onde de l'état fondamental Ψ_{fond} .

$$\mathbf{E} = \mathbf{E}[\rho_{\text{fond}}] = \mathbf{F}_{\text{HK}}[\rho_{\text{fond}}] + \int \mathbf{V}_{\text{e-n}}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r}$$
(I.37)

Avec :

$$\mathbf{F}_{\mathrm{HK}}[\boldsymbol{\rho}_{\mathrm{fond}}] = \mathbf{T}[\boldsymbol{\rho}] + \mathbf{V}[\boldsymbol{\rho}] \tag{I.38}$$

Où: $\mathbf{F}_{HK}[\rho_{fond}]$ La fonctionnelle de Hohenberg et Kohn ; $\mathbf{T}[\rho]$: L'énergie cinétique ; $\mathbf{V}[\rho]$: L'interaction électron-électron.

²⁴P. Hohenberg and W. Kohn, Phys. Rev. (1964), 136, B864.

Nous savons que la densité électronique de l'état fondamental est suffisante pour obtenir toutes les propriétés de cet état mais comment savoir si une densité quelconque est celle de l'état fondamental ? Ceci est l'objet du deuxième théorème de Hohenberg et Kohn.

<u>Théorème 2</u>: Ce théorème montre que la fonctionnelle d'énergie $E[\rho]$ est minimum quand une densité électronique quelconque $\rho[r]$ correspond à la densité électronique de l'état fondamental $\rho_{fond}(r)$.

$$\mathbf{E}(\boldsymbol{\rho}_{fond}) = \mathbf{MinE}(\boldsymbol{\rho}) \tag{I.39}$$

C'est-à-dire, d'après le premier théorème, une densité électronique d'essai ρ_{test} définit son propre hamiltonien et de même sa propre fonction d'onde d'essai Ψ_{test} . A partir de là, nous pouvons avoir une correspondance entre le principe variationnel dans sa version fonction d'onde et dans sa version densité électronique telle que :

$$\langle \Psi_{\text{test}} | \mathbf{H} | \Psi_{\text{test}} \rangle = \mathbf{E} | \rho_{\text{test}} | \ge \mathbf{E}_{\text{fond}} = \langle \Psi_{\text{fond}} | \mathbf{H} | \Psi_{\text{fond}} \rangle \tag{I.40}$$

En résumé : toutes les propriétés d'un système défini par un potentiel externe V_{ext} peuvent être déterminées à partir de la densité électronique de l'état fondamental. L'énergie du système $E(\mathbf{r})$ atteint sa valeur minimale si et seulement si la densité électronique est celle de l'état fondamental. Cependant, il reste un problème de taille à régler, comment réécrire une formulation analytique exacte de la fonctionnelle $F_{H,K}[\rho]$ pour un système à N électrons interagissant ?

I-3-2Les équations de Kohn-Sham

En 1965 Walter Kahn et Lu Sham²⁵ proposent une méthode pratique permettant d'utiliser la théorie de la fonctionnelle de la densité. Tout d'abord ils supposent qu'il existe un système fictif de **N** électrons indépendants ayant la densité dans son état fondamental $\rho_{fond}(\mathbf{r})$. L'intérêt vient du fait que les expressions de l'énergie cinétique et de l'énergie potentiel pour ce système fictif sont connues. Puis, ils montrent que pour qu'il en soit ainsi, ces électrons doivent être plongés dans un potentiel extérieur effectif, c'est la première équation de Kohn-Sham (**K.S**) $V_{eff}[\rho(\vec{\mathbf{r}})]$:

$$\mathbf{V}_{eff}[\boldsymbol{\rho}(\vec{r})] = \mathbf{V}_{e-n}(\vec{r}) + \mathbf{V}_{Hartee}(\vec{r}) + \mathbf{V}_{XC}[\boldsymbol{\rho}(\vec{r})] \tag{I.41}$$

Avec $V_{\text{Hartree}}(\vec{r})$ le potentiel de Hartree qui définie par : Avec $V_{\text{Hartree}}(\vec{r})$ le potentiel de Hartree qui définie par :

$$V_{\text{Hartee}}(\vec{r}) = \int \frac{\rho(\vec{r'}) d\vec{r'}}{\left|\vec{r} - \vec{r'}\right|}$$
(I.42)

²⁵W. Kohn, L. Sham, Phys. Rev, A(1965),1133, 140.

 $etV_{XC}[\rho(\vec{r})]$ le potentiel d'échange et corrélation

$$V_{\rm XC}[\rho(\vec{r})] = \frac{\delta E_{\rm xc}[\rho]}{\delta \rho(\vec{r})} \tag{I.43}$$

Dans cette expression E_{xc} est l'énergie d'échange-corrélation, qui regroupe tout ce qui n'est pas connu dans le système, à savoir les effets de corrélations dues à la nature quantique des électrons. Ce terme définie par :

$$E_{xc}[\rho] = F_{HK}[\rho] - \frac{e^2}{8\pi\epsilon_0} \int d^3r' \frac{\rho(\vec{r'})d\vec{r'}}{\left|\vec{r} - \vec{r'}\right|} - T_{fond}[\rho] \qquad (I.44)$$

 $T_0[\rho]$ est l'énergie cinétique des électrons de Kohn-Sham et le second terme le terme électrostatique de Hartree.

Pour calculer la densité électronique ρ_{fond} et l'énergie **E** du système, ils ont ainsi remplacé le problème de départ :

$$E \begin{cases} H\Psi_j = E_j \Psi_j \\ \rho_{fond}(\vec{r}) = \int d^3 r_2 \dots d^3 r_n |\Psi_{fond}(\vec{r}, \vec{r}_2, \dots, \vec{r}_n)|^2 \end{cases}$$
(I.45)

Par le problème plus simple :

$$\mathsf{E}' \begin{cases} \mathsf{H}_{\mathsf{KS}} \varphi_{j}(\vec{r}) = \varepsilon_{j} \varphi_{j}(\vec{r}) \Leftrightarrow \left(\frac{\hbar^{2}}{2m} \nabla^{2} + V_{eff}\right) \varphi_{j}(\vec{r}) = \varepsilon_{j} \varphi_{j}(\vec{r}) \\ \rho_{fond}(\vec{r}) = \sum_{J=1}^{N} \left| \varphi_{j}(\vec{r}) \right|^{2} \end{cases}$$
(I.46)

Le problème E' est plus simple que le problème E car :

- On a résoudre une équation de Schrödinger à une seule particule (mono-électronique) utilisant le potentiel V_{eff} qui permet d'obtenir la seconde équation de Kohn-Sham à N_e états ϕ_j .
- On donne l'expression de la densité électronique en fonction des N_e fonctions d'onde ϕ_i .C'est la troisième équation de Schrödinger.

I-3-3 Fonctionnelle d'échange et corrélation

Pour pouvoir faire le calcul il nous faut maintenant une approximation pour le terme d'échange et corrélation, qui est le dernier terme pour lequel nous ne connaissons pas d'expression en fonction de la densité ou des orbitales. La recherche d'approximation précise pour l'échange et corrélation est toujours d'actualité et nous ne présentons ici que les fonctionnelles standards, qui ont déjà été largement utilisées.

I-3-3-1 Approximation de la densité locale (LDA)

L'approximation la plus répandue pour calculer le terme d'échange et corrélation est la Local Density Approximation, ou LDA. Cette approximation fait l'hypothèse que la densité fluctue assez lentement. Elle remplace donc le potentiel d'échange et corrélation en chaque point de l'espace par celui d'un gaz uniforme d'électrons qui interagissent. Le gaz d'électrons est pris de la même densité que la densité au point calculé. Ceci permet d'en donner une expression exacte en interpolant des calculs Monte-Carlo. Ceci a été fait au début des années 80²⁶. La LDA est souvent une approximation efficace, même quand la densité fluctue de manière non négligeable. Cependant, elle a certains désavantages, comme une sous-estimation systématique de l'énergie de cohésion des solides et des paramètres de maille²⁷,²⁸.L'erreur sur les paramètres structuraux est souvent faible (de l'ordre de 1 à 2 %), mais peut devenir importante quand des liaisons de types Van der Vaals sont en jeu.

I-3-3-2 Approximation du gradient généralisé (GGA)

La plus grande source d'erreur de la LDA provient de l'énergie d'échange qui est souvent sous-estimée tandis que l'énergie de corrélation est souvent surestimée même si, en valeur absolue, sa contribution à l'énergie totale est plus petite. Ces deux erreurs ont tendance à s'annuler. Pour améliorer la précision des calculs DFT, nous avons besoin de meilleures approximations pour la fonctionnelle d'échange-corrélation. Certains auteurs ont eu l'idée de définir une fonctionnelle de la densité qu'ils ont associée à ses dérivées propres dans le but de prendre en compte l'inhomogénéité du système. Dans un premier temps, la LDA fut traitée comme le premier terme d'un développement en série de Taylor :

$$E_{xc}^{GAE}[\rho] = \int \epsilon_{xc}^{GEA}(\rho(r))\rho(r)dr + \int C_{xc}(\rho(r))\frac{|\nabla_{\rho}(r)|}{\rho_{3/4}(r)}dr + \cdots$$
(I.47)

Cette forme de fonctionnelle est l'approximation du gradient (GEA ou Gradient Expansion Approximation en anglais). Malheureusement, ceci donne de plus mauvais résultats que la LDA. En effet, le trou d'échange-corrélation ne satisfait plus les conditions qui assuraient à la LDA un certain sens physique. Afin de corriger ces problèmes, la fonctionnelle ci-dessus a été modifiée pour la forcer à respecter les principales conditions aux limites. Nous

²⁶D. M. Ceperley and B. J. Adler, Phys. Rev. Lett. (1980). 45, 566.

²⁷R. O. Jones and O. Gunnarsson, Reviews of Modern Physics , (1989).61, 689 .

²⁸J. Kübler and V. Eyert, Electronic structure calculations dans : Electronic

and Magnetic Properties of Metals and Ceramics (K. H. J. Buschow (VCH Verlagsgesellschaft), Weinheim, (1992).

obtenons alors l'approximation du gradient généralisé (GGA ou Generalized Gradient Approximation en anglais) à l'origine du succès de la DFT :

$$E_{xc}^{GGA}[\rho; \nabla \rho] = \int \epsilon_{xc}^{GGA}(\rho(r), \nabla \rho(r)) dr \qquad (I.48)$$

Souvent les contributions pour l'échange et la corrélation sont développées séparément :

$$E_{xc}^{GGA}[\rho;\nabla\rho] = (\rho,\nabla\rho) + \epsilon_c^{GGA}(\rho,\nabla\rho)(I.49)$$

Le problème majeur de la LDA provenant de l'échange, une attention toute particulière fut portée sur le développement de cette partie :

$$\varepsilon_{c}^{GGA}(\rho, \nabla \rho) = \varepsilon_{x}^{LDA} + \int F(s(r))\rho^{3/4}(r)dr \qquad (I.50)$$

Où F est une fonction du gradient de densité réduite (sans dimension) :

$$\mathbf{s}(\mathbf{r}) = \frac{|\nabla \ \rho(\mathbf{r})|}{\rho_{3/4}(\mathbf{r})} \tag{I.51}$$

Parmi les fonctionnelles développées les plus connues et les plus utilisées on peut citer les fonctionnelles de Perdew-Wang (PW86)²⁹,Becke (B88)18³⁰ et Perdew-Wang (PW91)³¹pour l'échange, et les fonctionnelle de Perdew (P86)³², Lee, Yang, Parr (LYP)³³, et Perdew-Wang (PW91)²⁷ pour la corrélation.

Plus récemment, une nouvelle classe de fonctionnelles dépendantes de la densité, de son gradient et aussi du laplacien ont été développées. Elles ont été désignées sous le nom de méta-GGA (M-GGA). Ces fonctionnelles ont présenté du progrès important par rapport à celle précédentes dans la détermination de nombreuses propriétés telle que les énergies d'atomisation³⁴. Cependant, elles sont plus couteuses en terme de calcul et l'optimisation des paramètres pour son élaboration est plus délicate³⁵. Parmi les fonctionnelles M-GGA on peut citer : B95³⁶, KCIS³⁷, TPSS³⁸ et VSXC27³⁹.

²⁹ Perdew, J. P.; Wang, Y., Phys. Rev. B (1986), 33, 8800.

³⁰ Becke, A. D., Phys. Rev. A: Gen. Phys. (1988), 38, (6), 3098-100.

³¹ Perdew, J. P.; Burke, K.; Wang, Y., Phys. Rev. B: Condens. Matter (1996), 54, (23), 16533-16539.

³² Perdew, J. P., J. Phys. Rev. B (1986), 33, 8822.

³³ Lee, C.; Yang, W.; Parr, R. G., Phys. Rev. B: Condens. Matter (1988), 37, (2), 785-9.

³⁴ Sousa, S. F.; Fernandes, P. A.; Ramos, M. J., J. Phys. Chem. A (2007), 111, (42), 10439-10452.

³⁵ Chermette, H. Actual. Chim. (1996), (7), 10-15.

³⁶ Becke, A. D., J. Chem. Phys. (1996), 104, (3), 1040-6.

³⁷ Krieger, J. B.; Chen, J.; Iafrate, G. J.; Savin, A., Electron Correl. Mater. Prop., [Proc. Int. Workshop],

¹st, Crete, Greece, June 28-July 3, (1998-1999), 463-477.

³⁸ Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E., Phys. Rev. Lett, (2003), 91, (14), 146401/1-146401/4.

³⁹ Van Voorhis, T.; Scuseria, G. E., J. Chem. Phys. (1998), 109, (2), 400-410.

L'approximation GGA présente des améliorations significatives par rapport à la LDA surtout dans l'estimation de l'énergie totale, des énergies d'atomisation, et des barrières énergétiques. Par contre en ce qui concerne le calcul des potentiels d'ionisation et des affinités électroniques les résultats des deux fonctionnelles paraissent identiques.

I-3-4Fonctionnelles hybrides

Le principe sur lequel sont fondées ce type de fonctionnelles c'est de partir de l'expression de l'échange-corrélation des fonctionnelles GGA et de lui ajouter un certain pourcentage de l'échange vrai ou exact, qui est l'échange Hartree-Fock. La quantité exacte de l'échange Hartree-Fock est déterminée d'une façon semi-empirique. Les résultats obtenus avec ce genre de fonctionnelles montrent que ces derniers sont les meilleures dans la description des structures électroniques de molécules et de propriétés associées. Parmi les fonctionnelles hybrides les plus connues, on cite celles de Becke : B3LYP⁴⁰, B3P86⁴¹, B3PW91³⁷, ainsi que d'autres, comme : O3LYP⁴², MPW1K^{43,44,45}

I-3-5Succès et limites de la DFT

La **DFT** permet souvent d'obtenir, à plus faible coût, des résultats d'une précision proche de celle obtenue avec des calculs post-Hartree-Fock. De plus, elle peut être utilisée pour étudier des systèmes relativement gros, contenant jusqu'à plusieurs centaines d'électrons, ce que les calculs post-Hartree-Fock ne peuvent pas traiter. Ceci explique que la **DFT** soit aujourd'hui très utilisée pour étudier les propriétés de systèmes moléculaires complexes ou même biologiques.

Les nombreux travaux effectués ces dernières années montrent que les calculs **DFT** donnent de bons résultats pour les états fondamentaux de systèmes très divers (métalliques, ioniques, organométalliques, métaux de transition...) pour de nombreuses propriétés (structures moléculaires, fréquences de vibration, potentiels d'ionisation...) et en particulier la fonctionnelle hybride **B3LYP**.

⁴⁰Lee, C.; Yang, W.; Parr, R. G., Phys. Rev. B: Condens. Matter (1988), 37, (2), 785-9.

⁴¹Becke, A. D., Phys. Rev. A: Gen. Phys. (1988), 38, (6), 3098-100.

⁴²Schultz, N. E.; Zhao, Y.; Truhlar, D. G., J. Phys. Chem. A (2005), 109, (49), 11127-11143.

⁴³Adamo, C.; Barone, V., J. Chem. Phys. (1998), 108, (2), 664-675.

⁴⁴Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G., J. Phys. Chem. A (2000), 104, (21), 4811-4815.

⁴⁵Lynch, B. J.; Zhao, Y.; Truhlar, D. G., J. Phys. Chem. A (2003), 107, (9), 1384-1388.

Chapitre I : Méthodes de Calculs Théoriques

Toutefois, ces méthodes souffrent encore de plusieurs défauts. Ainsi, il semblerait, jusqu'à preuve du contraire, que les forces de dispersion ou vanderWaals ne sont pas encore traitées correctement en **DFT** sauf dans les fonctionnelles développées spécialement. Par ailleurs, on ne comprend pas toujours les bons ou les mauvais résultats de la **DFT** sur certains systèmes. De plus, il n'existe aucun véritable critère pour choisir une fonctionnelle plutôt qu'une autre. Il est en outre difficile de trouver des critères permettant d'améliorer une fonctionnelle donnée, ce qui rend parfois l'utilisation de la DFT délicate. Une limitation forte est que les états excités ne sont pas accessibles dans le formalisme développé ci-dessus. Cependant, des développements récents en utilisant un formalisme dépendant du temps (**TD-DFT**) dans le cadre de la théorie de la réponse linéaire permettent une description des états excités.

Chapítre II

Etude des propriétés Géométriques de dérivés d'Uracile et Thiouracile

II-1 Dérivés d'Uracile et Thiouracil

Les dérivés de l'Uracile et Thiouracil sont des composés très demandés en raison de leurs activités biologiques exceptionnelles^(46,47).Ils ont subi un développement rapide en raison de leur utilisation dans les traitements anti-cancéreux⁴⁸, antiviral et antibactériens⁴⁹, analgésique (antidouleur)⁵⁰, anti-oxydantes, anti-inflammatoires⁵¹ et antithyroïdien.

La structure de Thiouracil est Disponible dans la nature. En effet, le Thiouracil a été isolé à partir des graines de Brassica et de Cruciferae et de chaux.

Figure II. 1 Graines de Brassica (colza) et les choux

Remarque : Les plantes appartenant à la famille des Brassicaceae (choux, navet, colza, moutarde, raifort, cresson...)

II-2 Etude des propriétés géométriques de dérivés d'Uracile

II-2-1 Conformation moléculaire calculée à partir d'HF et de la DFT

La géométrie la plus stable pour la molécule F-U (6-fluoro-5-isopropylpyrimidine-2,4(1H,3H)-dione) correspond aux énergies minimales de formation : -628.4473272, -632,0114133 et -631,3823382 u.a. obtenues à partir des calculs d'HF et de la DFT avec les fonctionnelles B3LYP, et HSEH1PBE, respectivement.

La géométrie la plus stable pour la molécule Cl-U (6-chloro-5-isopropylpyrimidine-2,4(1H,3H)-dione) correspond aux énergies minimales de formation :-988.4880006, -992,3693778 et -991,6779754 u.a et pour la molécule Br-U (6-bromo-5-isopropylpyrimidine-

⁴⁶Omar A. Al-Deeb, Ali A. El-Emam, Abdulghafoor A. Al-Turkistani, Seik Weng Ng and Edward R.

T. Tiekink, Acta Cryst, (2012), E68, 0676–0677

⁴⁷ Biserka Kojić-Prodić, Živa Ružić-Toroš AND EMIL COFFOU, Acta Cryst, (1976), B32, 1099

⁴⁸ El-Gazzar, A.-R. B. A. & Hafez, H. N, Bioorg. Med. Chem, (2009), 19, 3392–3397.

⁴⁹ Mohamed, N. R., El-Saidi, M. M. T., Alia, Y. M. & Elnagdib, M. H. Bioorg. Med. Chem, (2007), 15, 6227–6235.

⁵⁰ Youssif, S. & Mohamed, S. F, Chem. Monthly, (2008), 139, 161–168.

⁵¹ Alagarsamy, V., Vijayakumar, S. & Solomon, V. R. Biomed. Pharmacother, (2007), 61, 285–291.

Chapitre II : Etude des propriétés Géométriques de dérivés d'Uracile et Thiouracile

2,4(1H,3H)-dione) l'énergie minimales de formation : -3098.8953148, -3103,8792214 et -3102,9792873 u.a obtenues à partir des calculs d'HF et de la DFT avec les fonctionnelles B3LYP, et HSEH1PBE, respectivement. Les meilleurs résultats de l'étude conformationnelle ont été obtenus par la méthode DFT en utilisant la méthode hybride B3LYP.

II-2-2Analyse des données géométriques

Du point de vue général, la détermination de structures géométriques moléculaires est très intéressante pour l'étude de toutes les propriétés physico-chimiques. Ces dernières années des nombreux travaux ont été réalisé, montrent que les calculs basés sur les méthodes ab initio et la théorie de la fonctionnelle de la densité permettent de donner des prédictions très précises pour l'optimisation géométrique, sur les positions atomiques dans la maille, les distances inter-atomiques, les angles de valence et les angles de torsion. Par ailleurs, le choix de la méthode de calcul est un outil important pour attester les résultats expérimentaux.

Généralement une structure est décrite par les différentes positions des atomes qui la constituent. A partir des positions atomiques il est possible de calculer les distances interatomiques, les angles de valence et les angles de torsion d'un composé. Nous présentons ci-dessous la description des structures duF-U, Cl-U et Br-U.

L'optimisation géométrique en utilisant le logiciel Gaussian 09a été effectuée avec la base d'orbitale atomique 6-31G (d,p) qui décrit une orbitale atomique par la combinaison de six fonctions gaussiennes par orbitale de cœur, de trois autres pour la description des électrons de valence et d'une dernière pour description des électrons de valence les plus éloignés du noyau. Nous avons effectué des calculs d'optimisation de géométrie de **de dérivés d'Uracile** de type ab initio (HF) et la théorie de la fonctionnelle de la densité en utilisant le fonctionnelle B3LYP etHSEH1PBE avec la base de calcul 6-31G (d,p). Les paramètres géométriques trouvés par nos analyses des résultats de calcul sont donnés dans les tableaux (II.1), (II.2), (II.3), respectivement, dans lesquelles nous avons représenté Les longueurs de liaison, les angles de valences et les angles dièdres obtenus à partir les méthodes d'HF et la DFT (Pour la numérotation des atomes, voir la figure II.2).

Tous les calculs théoriques ont été effectués à l'aide du programme Gaussian09 et le programme Gauss-View⁵².

⁵²A. E. Frisch, A. B. Nielsen, A. J. Holder, Gauss view, Gaussian Inc., Pittsburg, USA (2003).

Chapítre II : Etude des propriétés Géométriques de dérivés d'Uracile et Thiouracile

La comparaison des paramètres géométriques, obtenus avec les deux méthodes théoriques abinitio et DFT, montre de légères fluctuations au niveau des distances de liaison en passant d'un calcul à l'autre. En HF, toutes les liaisons sont plus courtes qu'en B3LYP et HSEH1PBE. Les longueurs des liaisons du F-U, Cl-U et Br-U calculées par la fonctionnelle HSEH1PBE sont légèrement plus courtes par rapport à celles trouvées par la fonctionnelle PBEPBE.

Figure II. 2 Numérotation des atomes des molécules F-U, Cl-U et Br-U

1.33686	1.34457	1.32817
1.35051	1.36218	1.34766
1.37163	1.37470	1.36531
1.39479	1.40443	1.38754
1.21546	1.22517	1.21169
1.38127	1.38734	1.37457
1.41276	1.42162	1.40402
1.22284	1.23387	1.21901
1.46676	1.46773	1.46089
1.51889	1.51893	1.51002
1.54080	1.54231	1.53160
1.54078	1.54232	1.53167
123.06436	122.99269	123.09052
111.81221	112.11986	111.92374
122.98383	123.23101	122.98311
122.88317	122.86017	122.84309
112.07146	111.66803	112.17671
116.07067	116.30738	116.06994
125.65922	125.90746	125.56122
121.18820	121.11113	121.05545
111.35758	111.27285	111.29931
111.59994	111.39603	111.37177
179.99347	179.99347	-179.99440
-179.89813	-179.89813	-179.91937
179.88338	179.88338	179.86693
-0.00869	-0.00869	-0.01324
62.45888	62.45888	62.44253
-62.43535	-62.43535	-62.44868
-0.01754	-0.01754	0.00986
-179.98938	-179.98938	179.96195
	1.35080 1.35051 1.37163 1.39479 1.21546 1.38127 1.41276 1.22284 1.46676 1.51889 1.54080 1.54078 123.06436 111.81221 122.98383 122.88317 112.07146 116.07067 125.65922 121.18820 111.35758 111.59994 179.99347 -179.89813 179.88338 -0.00869 62.45888 -62.43535 -0.01754 -179.98938	1.33086 1.34457 1.35051 1.36218 1.37163 1.37470 1.39479 1.40443 1.21546 1.22517 1.38127 1.38734 1.41276 1.42162 1.22284 1.23387 1.46676 1.46773 1.51889 1.51893 1.54080 1.54231 1.54078 1.54232 123.06436 122.99269 111.81221 112.11986 122.98383 123.23101 122.88317 122.86017 112.07146 111.66803 116.07067 116.30738 125.65922 125.90746 121.18820 121.11113 111.35758 111.27285 111.59994 113.39603 179.99347 179.99347 -179.89813 -179.89813 179.88338 179.88338 -0.00869 -0.00869 62.45888 62.45888 -62.43535 -62.43535 -0.01754 -0.01754 -179.98938 -179.98938

Tableau II.1 Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°) calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (F-U)

Lorsque en comparant les valeurs théoriques à celles obtenues par l'expérience, quelques écarts apparaissent au niveau des paramètres géométriques (Distances, Angle, Angles de torsion). Cet écart est dû au fait que dans les calculs, on considère la molécule isolée dans son état fondamental, alors que dans l'analyse par rayons X, la molécule est décrite en tenant compte des interactions intermoléculaires telles que les liaisons hydrogène, les interactions de Van Der Waals, les interactions de type π - π ..., qui peuvent avoir lieu avec les molécules voisines dans le système cristallin.

			(u,p) uu (CI U)	52
Distances (A)	HF	B3LYP	HSEH1PBE	DRX ³³
Cl1-C6	1.72797	1.74810	1.81690	1.7200
C6-N4	1.37705	1.37965	1.38497	1.370
C6-C9	1.33302	1.35590	1.36646	1.342
N4-C7	1.36923	1.39179	1.40733	1.364
C7-N5	1.36588	1.38109	1.39272	1.360
C7-O2	1.19262	1.21578	1.25017	1.222
N5-C8	1.38483	1.40541	1.41839	1.386
C8-C9	1.48039	1.47606	1.47593	1.457
C8-O3	1.19520	1.22278	1.25907	1.226
C9-C10	1.51964	1.51964	1.52212	1.516
C10-C11	1.54151	1.54151	1.54950	1.500
C10-C15	1.54148	1.54148	1.54946	1.507
Angles (°)				
Cl1-C6-C9	123.98411	123.98411	123.65016	123.17
Cl1-C6-N4	112.18985	112.18985	112.16615	112.13
N4-C6-C9	123.82604	123.82604	124.18369	124.69
C7-N4-C6	123.80145	123.80145	123.43278	121.92
O2-C7-N4	122.88119	122.88119	122.74652	122.60
O2-C7-N5	124.85866	124.85866	125.05124	123.07
4N-C7-5N	112.26015	122.88119	112.20224	114.32
C9-C8-O3	125.13221	125.13221	125.08873	124.43
C11-C10-C15	111.52145	111.52145	111.23056	111.5
C9-C10-C11	111.71658	111.71658	111.56141	110.49
C7-N5-C8	128.16161	128.16163	128.04527	126.87
C9-C10-C15	111.71197	111.71203	111.57072	114.38
C5-C8-O3	119.17921	119.17920	119.10443	119.22
N5-C8-C9	115.68858	115.68862	115.80680	116.35
C6-C9-C8	116.26216	116.26210	116.32921	115.60
C6-C9-C10	124.63576	124.63582	124.44345	123.76
C8-C9-C10	119.10207	119.10207	119.22734	120.54
Angles de torsion (°)			-	
Cl1-C6-C9-C8	179.99657	179.99732	-179.99571	179.85
Cl1-C6-N4-C7	-179.98286	-179.96485	179.98255	-175.53
Cl1-C6-C9-C10	0.00228	0.00229	0.00039	3.6
N4-C7-N5-C8	0.01720	0.01717	0.02852	4.4
C10-9C-C8-O3	-0.01114	-0.01113	0.01819	-5.7
C11-C10-C9-C8	63.21328	62,86007	62.54520	-70.8
C10-C9-C8-N5	179.98948	179.98583	-180.00000	173.89
C11-C10-C9-C6	-116.78655	-117.14502	-117.45081	105.3
C6-C9-C10-C15	117.14929	117.14925	117.45595	-128.0
C8-C9-C10-C15	-62.84562	-62.84564	-62.54811	56.0

Tableau II.2Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°) calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Cl-U)

⁵³ Nadia G. Haress, Hazem A. Ghabbour, Ali A. El-Emam, C. S. Chidan Kumar and Hoong-Kun Fun, Acta Cryst. (2014). E70, o1144–o1145

Distances (Å)	HF	B3LYP	HSEH1PBE
Br-C5	1.91568	1.92558	1.91777
C5-N3	1.37625	1.37877	1.37689
N3-C6	1.37437	1.40096	1.38816
C6-O1	1.21036	1.51839	1.23762
N4-C6	1.37003	1.38842	1.37965
N4-C7	1.38569	1.40883	1.40012
C7-O2	1.21555	1.24167	1.24461
C7-C8	1.47323	1.47180	1.46560
C8-C9	1.51523	1.51794	1.51077
C14-C9	1.54464	1.55054	1.53711
C8-C5	1.32405	1.34664	1.35238
Angle (°)			
Br-C5-N3	111.85176	112.43322	112.96412
Br-C5-C8	124.07649	123.92957	123.28040
C5-C8-C7	116.77941	117.30316	116.57949
N3-C6-N4	112.79936	111.95298	112.76111
O1-C6-N4	124.07649	124.97949	124.41958
O1-C6-N3	123.12416	123.06753	122.81932
O2-C7-N4	119.61615	119.54577	119.27698
C8-C9-C14	111.02626	110.77912	111.65940
Angles de torsion (°)			
Br-C5-C8-C7	-179.99560	-180.00000	179.99915
Br-C5-N3-C6	179.99056	179.99925	179.99966
C5-C8-C7-O2	-179.99441	179.99925	179.99354
C7-C8-C9-C14	-61.97233	-61.57804	-62.67353
C5-N3-C6-O1	180.00000	-179.99950	-179.99486
C7-C8-C9-C10	61.96182	61.56832	62.66586
C6-N4-C7-O2	-179.99734	-179.99586	-179.99588
N4-C6-N3-C5	0.00730	0.00000	-0.00124
O1-C6-N4-C7	179.99832	-179.99925	179.99759
Br-C5-C8-C9	-0.00079	-0.00071	-0.00057

Tableau II.3 Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°) calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Br-U)

II-3Etude des propriétés géométriques de dérivés de Thiouracile II-3-1Conformation moléculaire calculée à partir d'HF et de la DFT

La géométrie la plus stable pour la molécule F-TU (correspond aux énergies minimales de formation : -951.0776123,-954.9665326 et -954,2694673 u.a. obtenues à partir des calculs d'HF et de la DFT avec les fonctionnelles B3LYP, et HSEH1PBE, respectivement. La géométrie la plus stable pour la molécule Cl-TU corresponds aux
Chapítre II : Etude des propriétés Géométriques de dérivés d'Uracíle et Thiouracíle

énergies minimales de formation :-1311.1186345, -1315,324553 et -1314,5651623u.a et pour la molécule Br-TU l'énergie minimales de formation : -3421.5260558, -3426,8345264 et -3428,4329623 u.a obtenues à partir des calculs d'HF et de la DFT avec les fonctionnelles B3LYP, et HSEH1PBE, respectivement. Les meilleurs résultats de l'étude conformationnelle ont été obtenus par la méthode DFT en utilisant la méthode hybride B3LYP.

II-3-2Analyse des données géométriques

Dans cette partie de notre travail, nous avons procédé à une étude théorique détaillée utilisant les méthodes de chimie quantique afin de déterminer les propriétés structurales de **dérivés de Thiouracile**. Les méthodes de chimie computationnelles jouent un rôle très important dans la détermination des géométries moléculaires et de la prédiction de diverses propriétés physico-chimie. Les méthodes de corrélation ab initio couteuses sont requises pour la détermination des propriétés hautement précises pour les molécules isolés , la méthode de la théorie de la densité fonctionnelle (DFT) offre une alternative de méthodes computationnelles moins couteuses qui pourrait relativement gérer des molécules larges. Tous les calculs théoriques ont été effectués à l'aide du programme Gaussian09 et les géométries optimisées ont été visualisées à l'aide de l'interface graphique du programme Gauss View.

Les paramètres géométriques trouvés par nos analyses des résultats de calcul sont donnés dans les tableaux (II.4), (II.5), (II.6), respectivement, dans lesquelles nous avons représenté Les longueurs de liaison, les angles de valences et les angles dièdres obtenus à partir les méthodes ab-initio (HF) et (DFT/B3LYP, DFT/ HSEH1PBE) avec la base 6-31G (d,p) (Pour la numérotation des atomes, voir la figure II.3).

Figure II. 3 Numérotation des atomes des molécules F-TU, Cl-TU et Br-TU

La comparaison des paramètres géométriques, obtenus avec les deux méthodes théoriques abinitio et DFT, montre de légères fluctuations au niveau des distances de liaison en passant d'un calcul à l'autre. En HF, toutes les liaisons sont plus courtes qu'en B3LYP et HSEH1PBE. Les longueurs des liaisons du F-TU, Cl-TU et Br-TU calculées par la

Chapitre II : Etude des propriétés Géométriques de dérivés d'Uracile et Thiouracile

fonctionnelle HSEH1PBE sont légèrement plus courtes par rapport à celles trouvées par la fonctionnelle PBEPBE.

TableauII.4 Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°) calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (F-TU)

Distances (Å)	HF	B3LYP	HSEH1PBE
F20-C4	1.30914	1.33513	1.32627
C4-C7	1.32832	1.35116	1.34830
C4-N2	1.36754	1.37213	1.36586
N2-C5	1.35275	1.37739	1.37053
C5- S21	1.66081	1.66365	1.65508
C6-O1	1.19340	1.22131	1.21739
N3-C6	1.39907	1.41772	1.40870
C6-C7	1.46684	1.46515	1.45944
C7-C8	1.51932	1.51780	1.50894
C8-C9	1.53457	1.54105	1.53188
C8-C13	1.53457	1.54105	1.53188
Angle (°)			
F20-C4-C7	123.75565	123.26903	123.31469
F20-C4-N2	111.03599	111.78464	111.90290
C4-N2-C5	122.83146	123.18174	123.15144
N2-C5-S21	122.47880	122.64298	122.58477
N2-C5-N3	113.50481	112.53233	112.68654
C4-C7-C6	115.16871	115.79306	115.84243
C7-C6-O1	125.73950	126.08467	125.98528
C8-C7-C6	121.53695	121.29313	121.12713
C13-C8-C9	111.69068	111.40122	111.33470
C7-C8-C13	111.74031	111.50525	111.28274
Angles de torsion (°)			
F20-C4-C7-C6	179.99722	179.99811	-179.99893
F20-C4-N2-C5	179.99843	-179.99890	180.00000
C4-N2-C5-S21	179.99583	179.99654	179.99912
F20-C4-C7-C8	-0.00079	-0.00149	0.00080
C6-C7-C8-C9	62.98772	62.61358	62.40304
C13-C8-C7-C6	-62.98352	-62.61154	-62.40030
C8-C7-C6-O1	-0.00366	-0.00369	0.00493
C5-N3-C6-O1	-179.99540	179.99844	179.99669

Distances (Å)	HF	B3LYP	HSEH1PBE	DRX ⁵⁴
Cl1-C5	1.79749	1.74521	1.72699	
C5-N3	1.37885	1.38075	1.37422	1.3717
C5-C8	1.32173	1.35674	1.35406	1.3483
N3-C6	1.34789	1.37471	1.36797	1.3521
C6-S21	1.71967	1.66403	1.65545	1.6735
C6-N4	1.34460	1.36655	1.36043	1.3579
N4-C7	1.39853	1.41014	1.40167	1.3879
C7-O2	1.21141	1.22132	1.21744	1.2269
C7-C8	1.47264	1.47381	1.46734	1.4486
C9-C8	1.51491	1.51880	1.50947	1.4987
C10-C9	1.54471	1.54184	1.53258	
C9-C14	1.54473	1.54174	1.53250	
Angles (°)				
Cl1-C5-C8	123.86508	124.16216	124.01193	
C8-C5-N3	124.26468	123.60022	123.45680	122.25
N3-C6-S21	122.17924	122.64381	122.58305	122.57
C7-N4-C6	127.36033	128.13748	128.15451	126.53
O2-C7-N4	119.49488	118.13748	119.06128	119.11
O2-C7-C8	125.43314	125.57412	125.49305	125.09
C5-C8-C7	116.17778	116.05418	116.13143	117.40
C8-C9-C14	110.51637	111.61370	111.37153	
C8-C9-C10	110.76246	111.59540	111.36211	
C5-C8-C9	125.32415	124.72114	123.71227	123.74
C10-C9-C14	111.07518	111.57039	111.51322	
N4-C6-S21	123.36316	124.60169	124.51465	122.80
N4-C7-C8	116.34039	115.48967	115.44567	115.80
N3-C5-C8	124.26468	123.60022	123.45680	
C6-N3-C5	122.66763	123.96382	123.90928	123.37
N3-C6-N4	114.45762	112.75450	112.90230	114.63
C7-C8-C9	118.49809	116.05418	119.15630	118.86
Angles de torsion (°)				
Cl1-C5-C8-C7	179.84945	-179.99219	-179.99599	
Cl1-C5-N3-C6	-175.52927	179.99258	179.99108	
Cl1-C5-C8-C9	3.63493	-0.00508	0.00047	
C5-C8-C7-O2	177.94691	-179.96605	-179.99376	
C5-C8-C9-C10	-127.98655	-117.19633	117.43428	
02-C7-C8-C9	-5.70726	0.04609	0.00958	
C5-C8-C9-C14	105.26371	117.20290	-117.40272	
C7-C8-C9-C10	55.97780	62.79040	62.59363	
C7-C8-C9-C14	-70.77193	-62.81037	-62.56937	
N4-C7-C8-C9	173.90234		-179.98114	

Tableau II.5 Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°) calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Cl-TU)

⁵⁴ S. Swaminathan and K. K. Chacko, Acta Cryst. (1978). B34, 3108-3110

Distances (Å)	HF	B3LYP	HSEH1PBE
Br-C4	1.88218	1.90166	1.88818
C4-N2	1.37964	1.37935	1.37262
C4-C7	1.33241	1.35573	1.35095
C7-C8	1.52075	1.51839	1.50774
C7-C6	1.47825	1.47469	1.46829
C6-O1	1.19315	1.66406	1.21130
C6-N3	1.39090	1.40988	1.40056
N2-C5	1.34729	1.37469	1.35905
C5-S21	1.72241	1.36701	1.65440
C8-C9	1.53520	1.54136	1.53140
C8-C13	1.53520	1.54137	1.53140
Angle (°)			
Br-C4-N2	111.46883	111.90703	112.35536
Br-C4-C7	124.88537	124.40416	124.10658
C4-N2-C5	123.72242	123.96517	123.86523
N2-C5-S21	122.58705	122.67039	122.59927
O1-C6-N3	119.07729	118.98904	119.19532
C5-N3-C6	127.52247	128.13120	128.08673
C9-C8-C7	111.81789	111.67549	111.54107
C9-C8-C13	111.94264	111.65411	111.66844
Angles de torsion (°)			
Br-C4-C7-C6	179.99968	179.99792	179.99954
Br-C4-N2-C5	179.99963	179.99556	179.99970
C4-N2-C5-S21	-179.99935	-179.99440	-179.99954
N2-C5-N3-C6	0.00151	0.00697	0.00064
C8-C7-C6-O1	-0.00244	-0.02850	-0.00278
S21-C5-N3-C5	0.00485	-0.00359	-179.99952
C4-C7-C6-O1	179.99764	179.97008	179.99733
C9-C8-C7-C6	63.21345	62.89706	62.81565
C13-C8-C7-C6	-63.21605	117.07565	-62.81714
C9-C8-C7-C4	-116.78664	-117.10139	-117.18447

Tableau. II.6. Longueurs de liaisons (Å), angles de valences (°) et angles de torsion (°) calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Br-TU)

Chapítre III

Analyse víbratíonnelle de dérívés d'Uracíle et Thíouracíle

III-1 Introduction

Apres la guerre Mondiale, la méthode de spectroscopie vibrationnelle d'absorption infrarouge (IR) est devenue la méthode la plus répandue, principalement à cause du fait qu'elle est beaucoup plus facile à utiliser. La spectroscopie vibrationnelle joue un rôle important dans la recherche, et peut être la méthode instrumentale la plus simple et la moins couteuse pour des analyses structurales qui puisse être dans toutes les branches de la chimie et de la physique. Elle donne des informations utiles sur leur structure chimique, conformationnelle, cristalline et morphologique. Cette technique s'intéresse aux vibrations des liaisons entre atomes au sein d'une molécule. Les radiations infrarouges se situent dans la partie du spectre électromagnétique comprise entre la région visible et celle des micro-ondes. La spectroscopie IR est la moyenne la plus simple, la plus rapide et souvent la plus fiable pour ordonner une substance dans une classe de composé. Elle fournit des informations qualitatives et quantitatives de l'échantillon étudié. Les spectroscopies Raman et infrarouge sont deux techniques complémentaires pour étudier ces vibrations. L'absorption d'une radiation infrarouge a pour effet de faire vibrer les atomes en modifiant les distances interatomiques ou les angles normaux des liaisons. Ces vibrations créent un champ électromagnétique de même fréquence⁵⁵.

III-2 Vibration dans les molécules poly-atomiques

Considérons une molécule composée de N atomes. 3N coordonnées sont alors nécessaires pour repérer les différentes positions des atomes. Le mouvement global de cette molécule est repéré par 6 coordonnées (3 pour la translation du centre de gravité, et 3 pour les rotations du système autour de celui-ci) ou seulement 5 dans le cas des molécules linéaires (la rotation autour de l'axe de la molécule n'a pas de signification physique), il reste par conséquent 3N-6 (ou 3N-5 pour les molécules linéaires)

III-3 Modes de vibrations moléculaires

Les vibrations moléculaires dépendent de la géométrie de la molécule, des atomes qui la composent et de la nature des liaisons entre les atomes. Une vibration moléculaire se produit lorsque les atomes d'une molécule sont dans un mouvement périodique pendant que la molécule dans son ensemble subit un mouvement de translation et de rotation. La fréquence

⁵⁵**R. M.SilVerstein**, G. C. Basler, T.C. Morill, Identification spectrométrique de composes organique, Editeur WILEY & SONS (1991).

du mouvement périodique est appelée fréquence de vibration. Une vibration est un mouvement oscillatoire, donc on peut modéliser la molécule comme un ensemble d'oscillateurs liés les uns aux autres.

Tous les atomes de la molécule vibrent avec une fréquence autour de leur position d'équilibre. Chacune de ces vibrations est appelée mode normal de vibration. Les modes normaux des molécules poly-atomiques sont indépendant les uns des autres, chacun d'entre eux impliquant des vibrations simultanées des différentes parties de la molécule. Les vibrations simples peuvent être classées en deux grands groupes : les vibrations d'élongation (stretching) et les vibrations de déformation (bending).

III-3-1 Élongation

Nommé aussi vibration de valence ou «stretching», ce mode concerne la vibration de la molécule le long de l'axe des liaisons. Ce mouvement implique une variation de la distance interatomique. Les vibrations d'élongation sont symbolisées par « ν ». Ces vibrations se situent dans la région du spectre allant de 4000 à 1000 cm-1. Ce mode de vibration peut être symétrique ou asymétrique (Figure III.1).

III-3-1-1 Vibration symétrique (ν_s) : c'est une vibration avec conservation de la symétrie moléculaire.

III-3-1-2 Vibration asymétrique (ν_{as}) :c'est une vibration avec une perte d'un ou plusieurs éléments de symétrie de la molécule ce qui exige plus d'énergie.

III-3-2 Déformation dans et hors du plan

Considérons la molécule H_2O (Figure III.1) en plus de la vibration d'élongation l'angle des liaisons peut varier : il y a flexion ou déformation. Lors de ce mouvement, la distance interatomique reste constante. Ces déformations peuvent avoir lieu dans le plan des deux liaisons concernées ou hors du plan. La figure III.1 et la figure III.2 présente les modes de vibrations pour deux molécules H_2O et CH_2 .Les vibrations de déformations sont d'intensité plus faible que celle d'élongation. Elles sont nombreuses et beaucoup plus sensibles à l'environnement car elles ont besoin pour se produire d'un volume plus important et risquent donc d'être entravées par la présence d'atomes voisins.

Figure III.1 Modes propres de vibration de la molécule d'eau

Les différents modes de vibration du groupe méthylène (CH_2) ou plus généralement d'un carbone tétraédrique sont similaires, mais du fait de la présence d'autres substituant, il possède six modes (**FigureIII.2**).

Figure III.2 Modes propres de vibration demolécule CH₂

III-3-3 Influence de divers facteurs sur les fréquences de vibration

Les fréquences d'élongation relation entre la fréquence d'oscillation, les masses atomiques et la constante de force de la liaison, ce dernier se présente par l'équation suivante :

$$\nu = \frac{2}{2\pi c} \sqrt{\frac{k}{\mu}}....(\text{III.1})$$

- $v = fréquencedevibration(cm^{-1})$
- $c = vitessedelalumière(\frac{cm}{s})$

- $K = constant edeforce delaliaison \left(\frac{dyne}{cm}\right)$
- $\mu = masseréduite\mu = \frac{m_x m_y}{m_x + m_y}$

Ordre de grandeur de k

On peut remarquer que la fréquence augmente avec la force de la liaison (k), et diminue quand la masse des atomes augmente.

Influence de μ

L'augmentation de la masse réduite μ déplace logiquement La fréquence de vibration ν vers les basses fréquences. Ainsi, en passant de C-H à C-D, la fréquence est à peu près divisée par

Influence de la multiplicité

La constante de force k augmente avec la multiplicité. On a donc $\nu_{C-C} < \nu_{C=C} < \nu_{C=C}$ et ces fréquences sont très approximativement.

Influence des liaisons hydrogène

Les liaisons hydrogènes apparaissent dans tout système contenant un groupe donneur de proton (X....H) et un groupe accepteur de proton (Y). Les liaisons hydrogène modifient la constante de force des deux groupes ; ainsi, les fréquences des vibrations d'élongation et de déformation angulaire sont modifiées. Les bandes d'élongation X....H se déplacent vers des fréquences plus basses et Avec un accroissement d'intensité et d'un élargissement de la bande. Les liaisons hydrogène intramoléculaires se forment quand le donneur et l'accepteur de proton sont présents dans une même molécule ayant une configuration spatiale permettant le recouvrement des orbitales. Les liaisons hydrogène intermoléculaires impliquent l'association de deux ou de plusieurs molécules de composés identiques ou différents. Les liaisons intermoléculaires peuvent former les dimères ou des polymériques.

III-3-4 Différentes zones du spectre en infrarouge

D'une manière générale, les masses des atomes étudiés en chimie organique (C, N, O...) sont quasiment identiques, de même, les énergies des liaisons sont relativement semblables, ce qui conduit à dégager différentes zones du spectre en fonction de l'absorption observée. La figure III.3représente les différentes zones du spectre infrarouge :

Figure III.3Différentes zones du spectre infrarouge

Vibrations d'élongation des liaisons O-H et N-H

En phase gazeuse, les vibrations d'élongation des liaisons O-H et N-H se présentent sous la forme d'une bande fine, respectivement entre 3590 et 3650 cm⁻¹ et 3862,94 cm⁻¹. En solution ou en liquide pur, les hydrogènes sont engagés dans des liaisons H, ce qui a pour effet, d'une part d'affaiblir la liaison (baisse du nombre d'onde) et d'autre part de provoquer un élargissement des raies par effet de solvatation.

Vibrations d'élongation des liaisons C-H

Les bandes de vibration d'élongation des liaisons C-H s'étendent sur une plage allant de 2850 à 3100 cm⁻¹. Un des intérêts principaux est que les vibrations des liaisons C-H dépendent largement de l'atome de carbone portant l'hydrogène : les hydrogènes liés à un carbone saturé présentent leurs bandes de vibration en deçà de 3000 cm⁻¹, alors que dans le cas d'un carbone insaturé, ces bandes sont au-delà de 3000 cm⁻¹.

Vibrations d'élongation des liaisons C=O

La vibration d'élongation de la liaison C=O absorbe entre 1973 et 1951 cm⁻¹, région peu sollicitée par d'autres absorptions, et est donc facilement reconnaissable. De nombreuses informations peuvent être obtenues à partir de la position de la bande d'absorption.

Vibrations de déformations angulaires dans les composés aromatiques

Les vibrations de déformation ont en général une fréquence d'absorption plus basse et une intensité plus faible que les vibrations d'élongation, ce qui amène les bandes dans la zone d'empreinte digitale et rend leur repérage et leur analyse délicate. Toutefois, dans le cas des composés aromatiques, les bandes de déformation hors du plan, situées entre 680 et 900 cm⁻¹, sont intenses et permettent de déterminer les différentes substitutions du cycle aromatique.

Mode de		
Vibration	Groupe Fonctionnel	Bande d'absorption (cm-1)
Stretching	О-Н	3590-3650
Stretching	С-Н	2850-3300
Stretching	C-0	900-1200
Stretching	C-Cl	700
Stretching	C-F	1100
Stretching	C=C	1600-1680
Stretching	C=O	1700-1750
Stretching	C=C	2000-2200
Stretching	C=N	2200-2300
Bending	CH2	1300-1600
Bending	C=CH2	890
Bending	HC=CHcis	690
Bending	HC=CHtrans	965
Bending	C=CH trisubstitué	790-840

Tableau III.1Quelques exemples de modes de vibrations avec les fréquencescorrespondantes

III-3-5-Calcul analytique des spectres IR

Les constantes de force permettent le calcul des fréquences vibrationnelles harmoniques. Elles sont obtenues en coordonnées cartésiennes à partir des dérivées secondes analytiques de l'énergie par rapport aux coordonnées nucléaires $(\frac{\partial^2 E}{\partial x^2}, \frac{\partial^2 E}{\partial y^2}, \frac{\partial^2 E}{\partial z^2}, \frac{\partial^2 E}{\partial x \partial y}, \dots)$, déterminées pour chaque géométrie optimisée en utilisant la technique de différenciation analytique grâce au programme Gaussian 09. Ces constantes de force cartésiennes sont ensuite transformées en constantes de force exprimées en coordonnées internes pour chaque mode de vibration par le programme VEDA 4 (Vibrational Energy Distribution Analysis version 4)⁵⁶ .Outre les fréquences vibrationnelles, un calcul de modes normaux permet aussi d'obtenir les distributions d'énergie potentielle PED qui donnent des informations sur les contributions relatives (exprimées en %) des constantes de force à l'énergie potentielle d'un mode normal de vibration. La PED est une donnée importante qui constitue la seule indication permettant de savoir si une fréquence calculée est conforme ou non à l'attribution en termes de vibration

⁵⁶ M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.

de groupe. Les calculs de la PED et des vecteurs propres ont été effectués pour chaque mode de vibration à partir des constantes de force exprimées en coordonnées locales de symétrie grâce au programme VEDA 4.

III-4 Etude vibrationnellesde dérivés d'Uracile et Thiouracile

Le calcul des modes normaux de vibration de dérivés d'Uracile notée (F-U), (Cl-U), (Br-U), et Thiouracile notée (F-TU), (Cl-TU) et (Br-TU) a été effectué à l'aide du programme de calcul quantique Gaussian 09. Les calculs théoriques aux niveaux HF et DFT ont permis de déterminer les nombres d'onde de vibration, l'intensité infrarouge. Les composés étudiés sont constituées de 21 atomes, qui subissent 57 modes de vibration normaux. Nous avons observé que toutes les valeurs de fréquences calculées obtenues à partir de la DFT et HF sont positives, donc il n'ya pas des fréquences imaginaires, ce qui explique le bon choix des énergies et les fonctionnelles utilisées dans notre étude. Les assignations des modes vibratoires ont été effectuées à l'aide de la distribution d'énergie potentielle (PED) en utilisant le programme VEDA4. Les spectres IR calculés pour les dérivés d'Uracile et Thiouracile aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G(d,p) sont présentés sur les figures III.4 et III.6.Les nombres d'onde de vibration calculés par les deux méthodes ainsi que les intensités infrarouges sont rassemblés dans les tableaux III.2, III.3, III.4, III.5, III.6, III.7

Figure III.4 Nombres d'onde, intensités IR calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (F-U), (Cl-U) et (Br-U)

Ν	N HF		B3LY	Р	HSEH1	PBE	F-U			
	Fréquences	Ι	Fréquences	Ι	Fréquences	Ι	Prédiction de modes de vibration			
	calculées		calculées		calculées					
57	3808.0940	185.5886	3650.7336	132.3292	3687.1266	147.1156	vNH(100)			
56	3786.2954	114.9614	3622.1122	72.5976	3659.6624	82.9767	vNH (100)			
55	3310.6746	15.7311	3149.6909	20.7811	3175.7839	15.7835	vasCH ₃ (94)			
54	3303.9423	1.3107	3145.5602	1.8382	3172.4062	2.3654	vasCH ₃ (88)			
53	3256.1934	7.3844	3115.7826	47.7797	3148.5394	40.8830	vasCH ₃ (100)			
52	3255.4411	51.6003	3112.6364	19.6716	3146.0956	16.5520	vasCH ₃ (99)			
51	3251.4883	22.3465	3063.0477	14.6635	3084.9171 12.0251		vCH (86)			
50	3203.6586	20.5608	3050.0294	21.7843	3069.5141	22.4729	vCH (83)			
49	199.8976	38.3385	3046.5219	34.8980	3066.7127	32.1884	vsCH ₃ (97)			
48	1959.0954	770.9126	1850.6779	705.4960	1885.9689	737.3439	vOC (78)			
47	1909.7090	843.8494	1779.6789	458.5863	1814.3711	484.7786	vOC (80)			
46	1896.5465	74.1546	1722.2081	260.6698	1754.0508	263.8561	vCC (69)			
45	1692.2077	10.5309	1535.5516	4.6369	1555.0610	280.6184	δHCH (70)+ <mark>ζHCCC</mark> (18)			
44	1675.6997	1.4056	1525.2740	233.5274	1530.7894	17.0790	vNC (36)+ δHNC (14) + δCCN (19)			
43	1675.1677	32.7000	1517.1325	0.6357	1510.6680	0.8956	δHCH (72)+ <mark>ζHCCC</mark> (14)			
42	1659.0327	0.1565	1513.9087	44.5009	1509.4847	23.6717	δHCH (64)+ (HCCC (13)			
41	1653.9474	203.9298	1499.6590	0.2258	1493.0536	0.3344	δHCH(69)+ <mark>(HCCC</mark> (13			
40	1584.1007	23.4980	1428.4947	11.3909	1445.7811	90.8822	δНСН (92)			
39	1568.1058	16.3838	1414.9087	103.6899	1422.0579	14.8945	vNC (52)+ δCNC (10)			
38	1563.0284	11.8660	1407.1344	5.7509	1406.8650	0.6752	δНСН (89)			
37	1528.3065	19.5825	1395.6825	7.1841	1401.7257	10.4564	δHNC (60)			
36	1505.9097	282.5388	1388.4019	15.7531	1388.2900	16.0587	δHCC(65)			
35	1477.3132	0.9700	1350.2674	2.5142	1347.1387	1.0665	δHCH (10)+ <mark>ζHCCC</mark> (71)			
34	1419.5142	35.0439	1292.7257	18.0677	1318.5796	13.4141	δHNC (30)+ δCCN (16)			
33	1329.9925	2.0780	1240.6376	13.1992	1263.1942	19.5456	vNC (25)+ vCC (16)+ δHNC (13)			
32	1322.0809	24.1016	1205.6253	30.9688	1223.6718	37.5802	vNC (13)+ CHCCC (21)			
31	1295.1991	34.7984	1172.5609	28.1506	1186.5603	11.3927	vNC (17)+ CHCCC (20)			
30	1236.4375	77.1041	1133.9072	46.4014	1148.7542	1.8146	vNC (36)+ CHCCC (23)			
29	1229.5922	11.3402	1131.2062	2.2575	1146.3625	50.0924	vCC (46)			
28	1115.0975	43.1387	1028.2256	46.0590	1039.3453	46.1675	vNC (14)+ δCNC (10)+ <mark>ζHCCC</mark> (16)			
27	1085.5734	9.0931	1007.1659	3.6144	1023.1467	2.5164	vNC (51)+ δHNC (11)			
26	1056.2438	2.7087	968.0415	0.0259	976.2118	0.2828	vCC (38)+ δHCH (13)+ ζHCCC (42)			
25	1035.3778	3.0660	938.4595	2.0746	934.7404	2.6294	δHCH (15)+ <mark>ζHCCC</mark> (74)			
24	1014.5914	359.7335	896.5585	0.0280	914.3466	0.0651	vCC (62)			
23	946.1861	0.0599	766.2256	14.1528	775.8907	17.9648	βONCC (75)			
22	904.5580	29.1478	739.2771	60.7261	753.2331	65.5766	βONNC (88)			
21	873.3007	0.1766	726.7598	14.3228	737.3069	15.3981	νCC (22)+ δNCN (26)			
20	783.0481	20.6568	689.9520	49.0445	699.3761	44.2726	βHNCC (84)			
19	746.6520	54.2332	673.2979	0.6896	677.7350	0.7419	δNCF (63)			
18	736.3197	0.3319	628.3785	21.9439	638.6961	25.8883	βFCNC (76)			
17	686.7877	91.4469	619.7880	2.6171	631.1940	2.7131	vNC (43)+ δCNC (18)			
16	660.9479	2.3673	521.6435	20.6035	525.7581	19.7617	vNC (10)+ δNCF (13)+ δCNC (42)			
15	567.2808	24.7042	506.6938	82.1471	515.6298	89.6268	ζΗΝCΝ (80			
14	538.4149	7.0159	487.7421	9.1688	488.9383	7.5983	δNCN (19)+ δCCN (20)+ βCCCC (20)			
13	513.8507	2.2493	434.3835	4.3046	439.3744	10.1632	δ CCC (21)+ δ NCN (12)+ β CCCC (19)			
12	472.4825	5.5846	434.2734	13.8861	435.4477	3.7566	δCCC (33)+ <mark>ζΗΝCΝ</mark> (15)+ βCCCC (13)			
11	429.9231	26.0721	392.3437	16.1782	395.5378	17.7620	δCNC (71)			
10	393.2208	9.2233	365.7000	8.6743	369.2490	9.0488	δCNC (77)			
9	296.2273	1.1482	270.7943	2.2337	273.3630	1.4569	vCC (13) + δ CCC (32) + ζ HCCC (14)			
8	288.7593	5.7936	256.8508	1.8258	260.4581	2.5459	δCCC(24)+ ζHCCC (51)			
7	276.5569	0.0369	. 238.4543	0.1395	242.9158	0.1415	ζHCCC (90)			
6	232.2619	4.3706	189.6108	0.0420	191.4819	0.0003	<u>CNCC</u>(70)			
5	220.5744	0.0006	183.2730	1.5728	184.8564	0.2377	δCCC (67)+ βCCCC (13)			
4	208.5950	1.8307	183.2168	0.3735	183.2507	1.6366	δCCC (12)+ βCCCC (59)			
3	208.4936	4.4063	145.1223	0.8858	149.3279	1.0114	CONCN (79)+CONCC (15)			
2	92.4568	0.0502	74.5247	0.0041	76.3592	0.0092	PULLU (81)			
1	/8.4526	0.1118	06.1457	0.1838	07.3551	0.2047	<u><u>SUNUN (80)</u></u>			

Tableau III.2 Nombres d'onde (cm^{-1}) , intensités IR calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (F-U)

Ν	HF		B3LY	(P	HSEH1	PBE	Cl-U
	Fréquences	Ι	Fréquences	I	Fréquences	I	Prédiction de modes de vibration
	calculées		calculées		calculées		
57	3893.4516	162.4686	3651.2088	121.4551	3568.0783	108.3309	vNH (100)
56	3861.9653	116.3205	3620.2305	76.4716	3539.0853	65.3286	vNH (100)
55	3300.9279	31.8465	3155.4987	17.4718	3095.4748	12.8440	vasCH ₃ (87)
54	3294.7555	1.3094	3151.3202	1.1593	3092.1448	1.3907	vasCH ₃ (86)
53	3251.8714	9.9299	3116.2039	45.3048	3065.6510	36,1930	vasCH ₃ (99)
52	3248.5046	68.9835	3113.2631	18.5614	3063.4848	15.8525	$vasCH_{3}(98)$
51	3244.2630	24.0266	3080.0508	8.3043	3005.7428	7.7695	vCH (83)
50	3190.0504	24.4932	3051.4894	23.6070	2990.4006	24.9350	vCH (87)
49	3185,7956	48.3567	3048.0487	34.1388	2987.8093	30.9685	vsCH ₂ (95)
48	2013 0499	895 1132	1848 2426	705 9041	1801 1413	621 8032	vOC(76)
40	1970 8882	780 1399	1775 1988	445 8536	1718 9901	374 8283	vOC (81)
46	1831 3117	273 4896	1659 7321	181 1489	1610 5245	151 6658	vCC(70)
45	1648 5909	273.4070	1535 9578	8 2022	1486 1936	8 0988	δHCH (66)+ ('HNCN (22)
43	1644 1405	22.3312	1517 0146	0.7304	1466 1240	0.0200	δ HCH (76)+ ζ HNCN (17)
44	1631 6204	242.9401 0 8011	1517.9140	15 33/3	1400.1249	16 6031	$\delta HCH (70) + \zeta HNCN (17)$
42	1630 4405	21 07/0	1/00 7/68	0 2455	1404.0252	0 3260	$\delta HCH (72) + \zeta HNCN (13)$
42	1615 4043	21.9749	1499.7400	0.2455	1447.0474	0.5200	$\frac{1}{2} = \frac{1}{2} + \frac{1}$
41	1013.4043	23.3429	1400.0913	12 2042	1430.0703	243.0302	$\frac{1}{2} \operatorname{VNC} (19) + \operatorname{SHCH} (42)$
40	1500.5275	195./1/5	1427.5225	15.5945	13/1./302	70.0735	VNC (10) + OHCH (42)
39	1557.7938	0.4217	1416.9208	162.9910	1309.2787	70.8417	VNC (19)+ OHCH (52)
38	1552.5120	40.4051	1406.1453	5.5/41	1349.1501	8.0577	OHCH (89)
31	1537.2452	4.9491	1396.7928	7.0917	1342.8253	5.6165	OHNC (56)
30	1512.1774	4.9910	138/.03/5	10.0386	1333.8820	5.7065	OHCC (61)
35	1467.5087	1.0746	1348.4961	2.2076	1296.7048	1.9522	ζΗΝCΝ (76)
34	1411.3435	38.8193	1268.2526	16.9392	1228.4528	6.5345	$vNC(25)+vCC(16)+\delta CCN(17)+\zeta HNCN(10)$
33	1329.9925	29.8116	1230.9142	22.3235	1198.2830	24.5448	vNC (13)+ vCC (15)+ δHNC (13)+ ζHNCN (12)
32	1293.5933	2.8683	1180.7957	15.4777	1141.7365	14.1672	δHCH (13)+ ζHNCN (43)
31	1266.9630	40.6513	1170.5059	7.9848	1137.0107	1.6870	vNC (56)
30	1225.1092	2.6601	1128.7590	1.5085	1101.0379	1.2394	vCC (55)+ ζHNCN (21)
29	1163.9437	66.7338	1066.1552	62.0275	1031.3730	61.0278	δCCN(20)+ ζHNCN (33)
28	1106.9243	31.4460	1013.7866	28.6861	982.5954	27.2985	vNC (32)+ ζHNCN (33)
27	1041.1893	0.1796	968.9043	0.0338	943.5759	0.0888	vCC (32)+ δHCH (12)+ ζHNCN (51)
26	1013.6641	1.1433	938.5984	2.1579	904.7566	2.8377	δНСН (15)+ ζНΝСΝ (75)
25	984.3963	28.3272	903.7550	22.3419	885.3350	13.2789	vCC (53)
24	953.5912	2.5763	888.0081	15.8601	868.9287	31.1548	vNC (17)+ vCC (12)+ vClC (23)
23	875.4824	70.3907	777.2791	13.2254	744.7391	7.3113	βONCC (69)+ βCCCC (15)
22	850.2881	69.0874	741.5784	63.5829	705.8137	60.7793	βONNC (85)
21	773.4880	15.1745	718.9945	14.0720	702.2835	14.0807	vCC (21)+ δNCN (41)
20	743.8731	80.1583	691.0944	66.5661	673.3216	58.6464	ζНΝСС (79)
19	715.1348	0.3259	655.1446	0.5146	631.8864	0.8889	δOCN(53)+ δCCC (12)
18	651.8053	6.6785	588.9433	0.1450	569.9418	0.0364	ζHNCC(13)+ βONCC (13)+ βCINCC (46)
17	633.1756	0.4618	581.7764	0.1614	564.5226	0.1581	vNC (34)+ vClC (11)+ δCNC (12)
16	556.0151	96.2237	524.2907	77.1410	510.1012	71.8638	ζHNCN (69)
15	547.8584	24.9436	505.9955	17.1655	488.6689	14.6552	δΟCN (16)+ δCNC (21)+ βCCCC (13)
14	477.9143	14.4264	437.6877	5.0904	424.2349	4.8711	δNCN(11)+ δCCC (26)+ βCCCC (20)
13	469.1066	6.3195	433.8530	8.6546	417.2640	7.4687	δCCC (30)+ ζHNCN (15)+ βCINCC (17)
12	456.8110	32.1084	418.5646	28.2710	404.3809	26.1034	vClC (26)+ δNCO(22)+ δCNC (14)
11	405.5768	5.9408	369.9131	369.9131	358.2645	2.5717	vClC (19)+ δCNC(16)+ δNCO (40)
10	336.0392	0.4887	311.8727	0.3533	303.0993	0.3287	δССС (53)
9	265.5903	0.5236	258.4411	0.0742	258.9007	0.0607	(THNCN (78)
8	251.7834	0.3074	239.9493	0.2497	238.3650	0.2361	ČHNCN (92)
7	248.8837	3.4006	. 232.8349	3.8990	226.4324	3.8786	δССС (58)
6	204.8627	0.2765	192.2996	0.2175	186.3157	0.1845	δCCC (19)+ ζNCNC (14)+ BCCCC (40)
5	200.0016	0.9334	186.5187	0.9841	180.4739	1.0482	$\delta CCC (67) + \beta CCCC (14)$
4	166.5393	0.3230	154.4115	0.1742	149.3051	0.1006	CCNC (30)+ CNCNC (30)+ BCINCC (16)
3	· · · · · · · · ·	1.3758	142.1686	1.4979	134.6950	1.2879	CCNC (38)+ CNCNC (16)+ CNCN(20)+ BCINCC
-	157.4172						(11)
2	72.7591	0.1892	69.2082	0.1126	66.5867	0.1512	(NCNC (20)+ CNCN(57)
1	65.4749	0.0332	64.6152	0.0396	61.6017	0.0159	(CNCN(75)
-	~~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						

Tableau III.3 Nombres d'onde (cm⁻¹), intensités IR calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Cl-U)

	Ν	HF	ŗ	B3L		HSEHI	PBE	Br-U			
scaladies caladies 5819.784 252.767 11.187 3586.7674 88.4410 vNI (100) 56 3787.0802 11.6.3511 3019.6556 77.1877 3556.7674 88.4410 vNI (100) 54 315.319 0.017 3149.7602 1.3708 3175.9734 1.4546 vasCH, 168) 52 3254.6665 52.0214 3112.4154 17.7414 3146.2733 14.7109 vasCH, 168) 51 3250.8545 52.09172 3049.3642 vCH (86) vCH (86) 51 3250.8542 80.122 187.4895 716.69266 472.4484 vCT (80) 41 1900.2265 77.9582 176.5671 1895.656 472.448 vCT (80) 41 163.9124 818.1212 187.4895 116.73757 167.613 152.7554 9998 910241 vCT (7) 41 163.9266 82.4124 14.8235 171.8567 1895.666 42.4449 vCT (7) 41 163.9366 91.2241 <		Fréquence	I	Fréquences	I	Fréquences	I	Prédiction de modes de vibration			
		s calculées		calculées		calculées					
6 3797.0802 116.3511 309.656 77.1877 3656.774 88.4410 vM1 (00) 5 332.179 12202 3153833 3175.9734 1.4546 vac(H ₁ (87) 52 323.179 0.4917 3149.7602 1.3708 3175.9734 1.4546 vac(H ₁ (87) 52 323.152 3.379.9704 3140.702 vac(H ₁ (88) vac(H ₁ (88) 51 3250.542 50.912 316.522 45.455 3141.103 7.1185 51 3250.542 80.122 187.4996 716.637 1807.656 47.4489 vC(18) 42 1900.226 87.1900 315.671 1807.656 47.4489 vC(18) 41 163.122 187.4895 716.563 152.0755 199.98 1011 (6)+ 211CCC (12) 42 1683.816 0.122 135.3389 149.2248 vC(23) 110CC (16) 41 163.3966 52.141 48.4273 34.3289 149.2249 32.3477 110CC (16) 41	57	3819,7842	157.6744	3652.6769	114.1887	3686.6320	124.9481	vNH (100)			
58 332,1707 12.202 135,3833 3153,833 317,90201 12.4071 $vac(\Pi, (97))$ 53 3381,7550 3,83793 3116,7020 45,4355 3144,7020 12.7070 vac(\Pi, (98)) 51 3254,6842 20,9172 3074,3644 7,7104 3146,2733 14.7019 vac(\Pi, (98)) 51 3250,8454 20,9172 3074,3644 7,9110 309,11630 7,7185 vC(III (85)) 51 3204,1637 384,8622 3047,1300 33,7776 306,76315 31,1781 vCH3 (95) 52 3024,1213 ISL 16,0526 1572,2052 1773,8392 447,6637 1809,5666 472,4407 VCC (70) 41 1673,7237 153,5165 871,1357 1683,4531 1674,4747 VCC (70) 42 1683,8166 1529 154,2648 14,4527 365,3454 173,3776 1611(169)+ G1CCC (12) 43 1674,5428 301,231 154,2648 14,21677 156,216 1161(-173) 41	56	3787.0802	116.3511	3619.6556	77.1877	3656.7874	88.4410	vNH (100)			
54 313.319 0.6917 1149.7022 1.3708 3175.9714 1.4546 vac(Ti, (86) 52 3281.756 53.0174 1112.4154 17.7404 3146.2733 14.7019 vac(Ti, (86) 52 3281.566 52.0014 1112.4154 17.7404 3146.2733 14.7019 vac(Ti, (85) 50 3281.513 21.7709 305.3177 306.76115 31.1718 vG(Fs) 51 328.1294 801.2122 1817.4667 1808.5664 472.448 vOC (78) 61 813.1348 18.1097 1655.63451 171.3576 1665.6449 VOC (78) 61 813.1438 18.1097 1655.63451 171.3576 1658.449 VOC (78) 61 633.1438 18.1097 1655.63451 171.3576 1658.449 VOC (78) 61 633.1438 18.1097 1655.4359 8.716.3 1525.7554 9.0908 HCH (69)+ CH (CC (2) 61 633.1438 18.1291 151.2008 101.4191 101.1191 <	55	3323.1707	12.2920	3153.8533	3153.8533	3179.0201	12.4071	vasCH ₃ (87)			
53 321,750 331,750 3115,020 45,4355 3144,129 38,5562 vac(Tr, 08) 51 3254,645 20,9172 9174,4374 41,4523 14,779 vac(Tr, 08) 51 3250,854 20,9172 904,9344 7,9110 3091,1630 7,7185 vCH (8) 61 320,1537 38,4562 3907,197 3007,415 31,7781 wCH (8) 61 933,112 81,1127 16,0324 47,6637 1809,565 472,4480 VOC (80) 61 1033,1141 15,1292 1534,656 171,3376 1808,4511 167,4440 VOC (70) 64 1833,1436 142,4288 147,1385 1510,2974 116,177 116,177,972 1591,5 1517,2008 8,4841 1510,3445 9,0998 81CH (70), GUCC (10) 61 1633,118 1647,4105 130,4274 116,1297 116,177 7 1800,100 2,5388 1442,273 142,4107 136,5121 81CH (70) 1803,5726 2,7388 </td <td>54</td> <td>315.3319</td> <td>0.6917</td> <td>3149.7602</td> <td>1.3708</td> <td>3175.9734</td> <td>1.4546</td> <td>vasCH₃ (86)</td>	54	315.3319	0.6917	3149.7602	1.3708	3175.9734	1.4546	vasCH ₃ (86)			
21 23 234:686 52.0014 3112.4154 17.7404 314.62733 14.7019 warCh: (98) 50 320.4121 21.7070 305.0347 24.1052 306.9440 23.3123 vCH (86) 50 320.4121 21.7070 305.03776 307.613 31.7181 wCH (80) 48 933.1294 801.122 1847.4987 71.69326 1883.2688 749.2648 vOC (78) 47 1900.226 872.952 197.4667 1808.5664 472.449 vOC (78) 46 183.1438 181.0907 1655.6345 171.376 1665.75754 90988 811CH (64)- GDCC (22) 41 167.7327 1.5915 1517.2008 0.8484 1510.9445 105.4518 81CH (70)- GDCC (12) 42 1658.8616 0.1529 1.985.8730 2.33129 10.222 10.723 10.111 (70)- GDCC (12) 41 163.30952 1.573.31 81.611 (40)- GDCC (12) 10.111 (10)- GDCC (12) 10.111 (10)- GDCC (12) 41 163.30953 <t< td=""><td>53</td><td>3281.7550</td><td>3.8379</td><td>3115.0229</td><td>45.4355</td><td>3148,1298</td><td>38.5562</td><td>vasCH₃ (98)</td></t<>	53	3281.7550	3.8379	3115.0229	45.4355	3148,1298	38.5562	vasCH ₃ (98)			
1 329.8545 20.972 3074.9544 7.310 309.1630 7.7185 wTH (85) 0 3204.513 21.770 306.3417 24.162 306.9040 32.3123 wTH (86) 49 3208.5037 38.4562 3047.1900 33.776 3067.6115 31.1781 wTH (86) 49 1908.2268 772.9552 1773.899 447.667 1809.566 472.4480 vOC (70) 45 1693.9141 15.31220 1534.5508 871.63 1529.754 90.908 HICH (64)+ (10)+ (10CC (21) 45 1674.523 30.1231 1517.2008 8.4844 1510.9477 1.6671 HICH (10)+ (10)+ (10CC (10) 41 1653.9665 8.224 H42.2733 4.128.2810 2.34778 HICH (10)+ (10)+ (10CC (21) 42 1658.6460 1.30853 1442.1677 1.66.511 HICH (10)+ (11) 1.1073 31 1569.905 2.7389 144.352 1.5731.6 HICH (10)+ (11) 1.108.39 31 1563.9199 2.42084	52	3254.6865	52.0204	3112.4154	17.7404	3146.2733	14.7019	vasCH ₃ (98)			
	51	3250.8545	20.9172	3074.9364	7.9310	3091.1630	7.7185	vCH(85)			
9 2008/337 38.452 3047.1090 33.776 3067.615 31.781 \sqrt{CB} \sqrt{CB} 48 1953.1294 801.812 1874.4995 716.9326 1882.458 749.2445 \sqrt{CC}	50	3204.1213	21.7790	3050.3417	24.1052	3069.9040	23.3123	vCH (86)			
198 $195X_{12}$ $194X_{12}$ $194X_{14}$ $190X_{12}$ $110X_{12}$ <t< td=""><td>49</td><td>3200.5037</td><td>38.4562</td><td>3047.1900</td><td>33.7776</td><td>3067.6315</td><td>31.1781</td><td>vsCH3 (95)</td></t<>	49	3200.5037	38.4562	3047.1900	33.7776	3067.6315	31.1781	vsCH3 (95)			
17 1900.226 372.2552 177.33302 447.6577 1890.5663 472.4450 $\sim OC(80)$ 46 183.1488 181.0907 1655.845 171.3576 1658.4531 167.4047 $\sim C(70)$ 44 1677.7327 1.5915 1517.2008 0.8484 1510.4445 1674.3478 61CH (164)+ GICCC (17) 41 1673.3484 301.231 1514.2038 1.47188 1510.2997 1.1677 61CH (73)+ GICCC (17) 42 1655.8616 0.1529 1498.6837 0.1985 1592.5660 233.4778 61ICH (73)+ GICCC (16) 41 1633.0965 8.54214 1482.2733 2342.588 NC (23)+ 61ICC (24) 40 1582.8130 23.3140 1428.6975 6.2098 1407.4616 3.6972 NC (37)+ 61ICH (25) 31 150.9969 12.0966 1405.4975 6.2098 1407.4616 3.6972 NC (37)+ 61ICH (23) 36 151.7326 385.4437 1390.0392 2.5751 1438.7382 4.9121 61ICC (76) 31	48	1953,1294	801.8122	1847.4895	716.9326	1883.2658	749.2645	vOC(78)			
i i< i< i< i< i< i< i<	47	1900.2265	572.9552	1773.8392	447.6657	1809.5665	472.4480	vOC (80)			
45 1693.9141 152.9129 1534.8089 8.7163 1529.7534 9.0098 611CH (64)+ [IICCC (2) 44 1677.732 15315 1517.2008 0.8484 1510.9445 105.4518 611CH (7b)+ [IICCC (2) 42 1653.8466 0.1529 1498.6887 0.1985 1509.5660 233.4778 611CH (7b)+ [IICCC (10) 41 1653.956 55.2412 1482.2733 233.288 0.2228 vNC (2)+ 611NC (4)+ (10CC (12) 40 1552.8130 23.3140 142.8649 13.0835 1442.1677 136.5121 61CH (4)+ (10C (2)) 31 1550.7969 12.0966 1405.4975 6.2098 1407.4616 3.6972 vNC (3)+ 611NC (5)+ 61CC (12) 36 157.1397 11.6516 1399.5904 11.0594 vNC (2)+ 61CC (12) 1102 36 1547.488 50.0292 2.5751 1345.7754 1.1432 GICC (10) 110X (4)+ [IICCC (12) 31 1350.782 1350.0292 2.5751 1345.7754 1.1432 GICC (2)+ 61CC (13) 32 1365.0128 135.6015 122.5164 2.6258 <td>46</td> <td>1833.1438</td> <td>181.0907</td> <td>1655.6345</td> <td>171.3576</td> <td>1688.4531</td> <td>167.4047</td> <td>vCC(70)</td>	46	1833.1438	181.0907	1655.6345	171.3576	1688.4531	167.4047	vCC(70)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	45	1693.9141	15,2192	1534,5050	8,7163	1529.7554	9.0998	δ HCH (64)+ (HCCC (22)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	44	1677 7327	1 5915	1517 2008	0 8484	1510 9445	105 4518	$\delta H C H (76) + (H C C C (17))$			
1 1658.3612 0.122 1498.6387 0.1985 1505.8660 233.4778 8HCH (69)+ GUCCC (12) 1 1633.905 88.4214 1422.733 243.2889 1492.2594 0.3228 vVC (23)+ 6HC (49) 30 1550.3605 27.5389 1442.6871 136.512 167.731 6HCH (22) 37 1533.902 50.4121 1397.9382 156.16 1399.5804 11.6594 vVC (37)+ 6HCH (22) 35 1474.4829 0.7985 1350.292 2.5751 1345.7754 1.1432 GHCC (76) 31 1335.725 0.7037 1222.61718 15.6915 1247.1734 1.1432 GHCC (76) 31 1364.643 14.1204 1180.7469 15.66638 198.9559 1.1605 6HCH (19)+ CCC (10) 31 1264.322 10.0232 3.4827 1066.0368 9.9010 vCC (60)+ CC (10)+ 6HCC (20) 31 1264.329 10.3939 169.903 14.294 169.306 9.9011 vCC (60) 31 1264.32	43	1674.5428	30.1231	1514,2038	14,7188	1510.2997	1.1677	$\delta H C H (73) + (H C C C (16))$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	42	1658.8616	0.1529	1498.6387	0.1985	1505.8669	233.4778	$\delta H C H (69) + (H C C C (12))$			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	41	1633 9056	85 4214	1482 2733	243 2889	1492 2504	0 3228	$vNC(23) + \delta HNC(49)$			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	40	1582 8130	23 3140	1402.2755	13 0835	1442 1677	136 5121	ансе (25) ⁺ описе (45) ансн (73)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1569 9695	27 5389	1414 8525	187 9815	142.1077	15 7731	биси (75) 8HCH (90)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	38	1561 7969	12 0966	1414.0525	6 2008	1407 4616	3 6972	$vNC(37) + \delta HCH(22)$			
37 123.352.3 35.4147 1390.370.2 11.25.79 11.15.79 1	37	1533 8028	50 4121	1307 0382	11 5616	1300 5804	11 0594	$vNC (10) + \delta HNC (52) + \delta HCC (12)$			
35 1471422 0.0242 2.5751 1350.502 2.5751 1350.502 2.5751 1350.754 1.142 (HCCC (76) 34 1379.8875 69.7037 1262.1718 15.6915 1294.7134 11.3547 WC (25)+ vCC (18)+ δCCN (14)+ ζ HCCC (10) 33 1335.7282 1.75.704 1232.6625 18.9194 129.1560 24.2245 vNC (16)+ vCC (11)+ 8HNC (14)+ ζ HCCC (12) 31 1264.322 30.0289 1169.905 4.8279 1184.2998 12.5870 vNC (60) 30 1227.511 7.4484 1128.5685 1.3161 1145.3966 0.9001 vCC (55)+ ζ HCCC (20) 28 1091.2201 34.0255 1010.1202 28.5472 1025.7154 26.2880 vNC (31)+ 6CC (75) 21 103.0383 93.93838 1.8289 935.0772 2.2100 011C1 (15)+ ζ HCCC (52) 102.123 293.2939 87.6624 4.181 916.1192 4.5218 vCC (63) 24 953.1277 12.7561 856.1073 28.6935 877.8724 28.4007 vNC (3)+ 6CC (14) 23 94.7865 75.0320 <td>36</td> <td>1555.0020</td> <td>385 4437</td> <td>1397.0302</td> <td>9 6490</td> <td>1399.3804</td> <td>4 9121</td> <td>δHCC (58)</td>	36	1555.0020	385 4437	1397.0302	9 6490	1399.3804	4 9121	δHCC (58)			
35 1474-02.2 2.57.53 154.57.74 11.42.7 11.44.7 11.42.7 11.44.7 11.42.7 11.44.7	35	1/7/ /820	0 7085	1350.0202	2 5751	1345 7754	1 1/32	CHCCC (76)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	1379 8875	69 7037	1262 1718	15 6915	1294 7134	11 3547	$vNC(25) + vCC(18) + \delta CCN(14) + \delta HCCC(10)$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1335 7282	11 7504	1202.1710	18 010/	12/9.7154	24 2545	$vNC (16) + vCC (11) + \delta HNC (14) + \zeta HCCC (12)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	1306 6463	14 1204	1252.0025	15 6658	1249.1300	1 1050	SHCH (13)+ 7HCCC (43)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	31	1264 3220	30 0280	1160.7409	13.0030	1190.9339	1.1050	wNC (60)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	30	1204.5223	7 4484	1109.9055	1 3161	1145 9368	0 9001	$v_{1} \in (00)$ $v_{1} \in (00)$			
251175.352155.403105.403105.3531005.30637.4130.0C (1) Gree (22)2734.02551.2925968.39570.0502976.12140.3056 $vCC (31) + \deltaRCC (25)$ 261037.344910.3083939.38381.8289935.07722.2100 $\delta HCH (15) + \zeta HCCC (75)$ 251020.1253293.2994897.66264.1811916.11924.5218 $vCC (63)$ 24953.127712.7561856.107328.6935877.872428.4007 $vNC (33) + vBC (21) + \delta CNC (14)$ 23925.493912.1863780.007014.3664789.811017.8665 $\beta ONCC (70) + \beta CCCC (14)$ 24953.127712.7561876.107328.6935877.872428.4007 $vNC (33) + vBC (21) + \delta CNC (14)$ 23925.493912.1863780.007014.3664789.811017.8665 $\beta ONCC (70) + \beta CCCC (14)$ 24914.786957.2618742.904459.4281756.732062.4612 $\beta ONNC (87)$ 20768.552919.9966692.666170.4518699.932470.4268 $\zeta HNCC (80) + \delta CCC (18)$ 19711.56580.4664648.95250.4985551.35260.0147 $vNC (20) + \delta CNC (27) + \beta BrNCC (41)$ 17688.579830.9010572.84990.0345581.35260.0147 $vNC (20) + \delta CNC (27) + \beta BrNCC (41)$ 16622.47710.3369531.921869.9606540.915274.8241(HNCN (67)15551.104819.7266502.8120 </td <td>20</td> <td>1227.3911</td> <td>73 0/88</td> <td>1050 4603</td> <td>61 3025</td> <td>1145.5500</td> <td>59 4105</td> <td>$VCC (35)^{+}$ $CCC (20) = SCCN (20) + (HCCC (32))$</td>	20	1227.3911	73 0/88	1050 4603	61 3025	1145.5500	59 4105	$VCC (35)^{+}$ $CCC (20) = SCCN (20) + (HCCC (32))$			
10100.120120.3472102.3472102.3474102.3474102.3660vCC (31)6HCH (12)+ ζHCCC (52)261037.344910.3083939.38381.8289935.07722.2100 $\delta HCH (15)+ ζHCCC (52)$ 251020.1253293.2994897.66264.1811916.11924.5218vCC (3)+ wBrC (21)+ \delta CNC (14)23925.493912.1863780.007014.3664789.811017.8665 $\beta ONCC (70)+ \beta CCCC (14)$ 22914.786957.2618742.904459.4281756.732062.4612 $\beta ONNC (87)$ 21863.37154.9806715.928714.1396726.934115.4507vCC (22)+ δ CNC (39)20768.552919.9966692.666170.4518699.932470.4268ζHNCC (80)+ δ CCC (18)19711.56580.4664648.95250.4985654.05920.7776δ OCN (53)18709.70791.4506583.19570.4193590.38980.4220ζHNCC (27)+ $\beta ONCC (12)+ \beta BrNCC (41)$ 15551.104819.7266502.812015.6911504.348615.4118δ CCC (22)+ β CCCC (15)14516.7300439.990439.15985.4907δ CCC (30)+ ζHNCN (11)+ ζCCNC (10)+ β BrNCC (41)15551.104819.7366503.3440.0997306.67300.8433δ CCC (22)+ β CCCC (18)13476.47028.8108437.30204.8990439.15985.4907δ CCC (30)+ ζHNCN (11)+ ζCCNC (10)+ β BrNCC (18)14516.74063.7808437	29	1001 2201	34 0255	1039.4003	01.5025	1000.0300	26 2880	$vNC(31) \pm \delta CNC(25)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	34 0255	1 2025	068 3057	20.5472	1025.7154 076 121 <i>4</i>	0 3056	$V(C (31) + \delta HCH (12) + \ell HCCC (52)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1037 3440	1.2923	030 3838	1 8280	970.1214	2 2100	8HCH (15)+ 7HCCC (75)			
2.51020.125.3253.25.7057.02041.011710.119242.010VCC (00)24953.127712.7561856.107328.6935877.872428.4007vCC (03)+ vBrC (21)+ δCNC (14)23925.493912.1863780.007014.3664789.811017.8665 β ONCC (70)+ β CCCC (14)21863.37154.9806715.928714.1396726.934115.4507vCC (22)+ δCNC (39)21863.37154.9806715.928714.1396726.934115.4507vCC (22)+ δCNC (39)20768.552919.9966692.666170.4518699.932470.4268 ζ HNCC (80)+ δCCC (12)+ βBrNCC (41)19711.56580.4664648.95250.4985654.05920.7776 δ OCN (53)18709.707091.4506583.19570.4193590.38980.4220 ζ HNCC (27)+ β ONCC (12)+ β BrNCC (41)17688.579830.9010572.84990.0345581.35260.0147vNC (20)+ δ CNC (27)16622.47710.3369531.921869.9606540.915274.8241 ζ HNCN (67)15551.104819.7266502.812015.6911504.348615.4118 δ CNC (20)+ β CCC (18)13476.47028.108437.41375.4087442.95403.2853 δ CNC (10)+ δ NCO (10)12440.644431.7009399.844426.8135402.313826.4832 δ CNC (10)+ ζ NCN (10)14364.630.334840.0997306.67300.0843 </td <td>20</td> <td>1020 1253</td> <td>203 2004</td> <td>807 6626</td> <td>1.0207</td> <td>016 1102</td> <td>2.2100 4 5218</td> <td>$\operatorname{vCC}(63)$</td>	20	1020 1253	203 2004	807 6626	1.0207	016 1102	2.2100 4 5218	$\operatorname{vCC}(63)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	953 1277	12 7561	856 1073	28 6935	910.1192 877 8724	4.5210 28 4007	$v \in (03)$ $v \in (33) + v Br C (21) + \delta C \otimes C (14)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	025 4030	12.7501	780.0070	14 3664	780 8110	17 8665	RONCC (70) + RCCCC (14)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	923.4939	12.1005 57 2618	742 9044	59 4281	756 7320	62 4612	$\begin{array}{c} \text{PONCe} (10)^{+} \text{ pecce} (14) \\ \text{BONNC} (87) \end{array}$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	863 3715	<i>4</i> 0806	715 0287	1/ 1306	726 03/1	15 4507	$vCC(22) \pm \delta CNC(30)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	768 5529	10 0066	692 6661	70 4518	600 0324	70 4268	$(22)^+ (00)(00) + \delta C C C (18)$			
111	10	711 5658	0 4664	648 9525	0.4985	654 0592	0.7776	SOCN (53)			
1610.101011.800050.1570.415550.5500.4220 (11) (C(2)) (D) (C(2)) (D) (C(1))17688.579830.9010572.84990.0345581.35260.0147 $vNC(20) + \delta CNC(27)$ 16622.47710.3369531.921869.9606540.915274.8241 $\zeta HNCN(67)$ 15551.104819.7266502.812015.6911504.348615.4118 $\delta CNC(35) + \beta CCCC(15)$ 14516.74063.7808437.41375.4087442.95403.2853 $\delta CCC(22) + \beta CCCC(18)$ 13476.47028.8108437.30204.8990439.15985.4907 $\delta CCC(30) + \zeta HNCN(11) + \zeta CCNC(10) + \beta BrNCC(18)$ 12440.644431.7009399.844426.8135402.313826.4832 $\delta CNC(10) + \delta NCO(64)$ 11334.38180.1366303.34840.0997306.67300.0843 $\delta CCC(48)$ 10320.36990.9105293.93760.2394300.54480.1108v BrC(42) + $\delta CNC(10)$ 9285.99580.6287248.09290.2016253.31990.1916 $\zeta HCCC(74)$ 8279.63830.0640237.37360.2415241.16440.2390 $\zeta HCCC(17) + \zeta NCNC(15) + \zeta CCCC(11) + \beta CCCC(32)$ 7235.29963.5587208.53163.1723210.14993.1767 $\delta CCC(71)$ 4172.01000.5988152.49090.9814155.79091.1367 $\zeta CCNC(12) + \zeta CNCN(63)$ 3164.51411.0779134.33890.9363136.7	18	709 7070	91 4506	583 1957	0.4703	590 3898	0.4220	(35) (HNCC (27)+ BONCC (12)+ BBrNCC (41)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	17	688 5798	30 9010	572 8499	0.4125	581 3526	0.4220	$VNC (20) + \delta CNC (27)$			
100.22.47/10.50.000.51.02.100.00000.40.01.0274.05.11 ζ (IIII (0.7)15551.104819.7266502.812015.6911504.348615.4118 δ CNC (35)+ β CCCC (15)14516.74063.7808437.41375.4087442.95403.2853 δ CCC (22)+ β CCCC (18)13476.47028.8108437.30204.8990439.15985.4907 δ CCC (30)+ ζ HNCN (11)+ ζ CCNC (10)+ β BrNCC (18)12440.644431.7009399.844426.8135402.313826.4832 δ CNC (10)+ δ NCO (64)11334.38180.1366303.34840.0997306.67300.0843 δ CCC (48)10320.36990.9105293.93760.2394300.54480.1108vBrC (42)+ δ CNC (10)9285.99580.6287248.09290.2016253.31990.1916 ζ HCCC (74)8279.63830.0640237.37360.2415241.16440.2390 ζ HCCC (91)7235.29963.5587208.53163.1723210.14993.1767 δ CCC (55)6230.46810.8395190.73160.0858191.69810.0531 δ CCC (71)4172.01000.5988152.49090.9814155.79091.1367 ζ CNCN (12)+ ζ CNCN (63)3164.51411.0779134.33890.9363136.72470.8475 ζ CNN (12)+ ζ NCNC (15)+ β BrNCC (18)281.37680.075465.66510.164366.21610	16	622 4771	0 3369	531 9218	69 9606	540 9152	74 8241	(HNCN (67)			
1315.416015.416015.417015.417015.417015.417015.417015.417014516.74063.7808437.41375.4087442.95403.2853 δ CCC (22)+ β CCCC (18)13476.47028.8108437.30204.8990439.15985.4907 δ CCC (20)+ ζ HNCN (11)+ ζ CCNC (10)+ β BrNCC (18)12440.644431.7009399.844426.8135402.313826.4832 δ CNC (10)+ δ NCO (64)11334.38180.1366303.34840.0997306.67300.0843 δ CCC (42)+10320.36990.9105293.93760.2394300.54480.1108vBrC (42)+ δ CNC (10)9285.99580.6287248.09290.2016253.31990.1916 ζ HCCC (74)8279.63830.0640237.37360.2415241.16440.2390 ζ HCCC (91)7235.29963.5587208.53163.1723210.14993.1767 δ CCC (17)+ ζ NCNC (15)+ ζ CCCC (11)+ β CCCC (32)6230.46810.8395190.73160.0858191.69810.0531 δ CCC (71)4172.01000.5988152.49090.9814155.79091.1367 ζ NCNC (12)+ ζ NCNC (15)+ β BrNCC (18)281.37680.075465.66510.164366.21610.1932 ζ CCNC (17)+ ζ NCNC (37)+ ζ CCCC (12)+ β CCCC (16)172.03130.088156.64290.047854.65440.0269 ζ CCCC (42)+ β CCCC (12)+ β CCCC (16)	15	551 1048	19 7266	502 8120	15 6911	504 3486	15 4118	$S_{CNC}(07)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	14	516 7406	3 7808	437 4137	5 4087	442 9540	3 2853	$\delta CCC (22) + \beta CCCC (18)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13	476 4702	8 8108	437 3020	4 8990	439 1598	5 4907	$\delta CCC (30) + (HNCN (11) + (CCNC (10) + BBrNCC (18))$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12	440 6444	31 7009	399 8444	26 8135	402 3138	26 4832	$\delta CNC (10) + \delta NCO (64)$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	11	334 3818	0 1366	303 3484	0.0997	306 6730	0.0843	$\delta CCC (48)$			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	320 3699	0.1300	293 9376	0 2394	300.5448	0.1108	$vBrC(42) + \delta CNC(10)$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	9	285 9958	0.6287	248 0929	0.2016	253 3199	0.1916	(HCCC (74)			
7 235.2996 3.5587 208.5316 3.1723 210.1499 3.1767 $\delta CCC(55)$ 6 230.4681 0.8395 190.7316 0.0858 191.6981 0.0531 $\delta CCC(17) + \zeta NCNC(15) + \zeta CCCC(11) + \beta CCCC(32)$ 5 207.2544 4.7810 158.4674 0.6148 159.8905 0.5591 $\delta CCC(71)$ 4 172.0100 0.5988 152.4909 0.9814 155.7909 1.1367 $\zeta NCNC(12) + \zeta CNCN(63)$ 3 164.5141 1.0779 134.3389 0.9363 136.7247 0.8475 $\zeta CCNC(42) + \zeta NCNC(15) + \beta BrNCC(18)$ 2 81.3768 0.0754 65.6651 0.1643 66.2161 0.1932 $\zeta CCNC(17) + \zeta NCNC(12) + \zeta CCCC(12) + \beta CCCC(16)$ 1 72.0313 0.0881 56.6429 0.0478 54.6544 0.0269 $\zeta CCCC(42) + \beta CCCC(13)$	8	279.6383	0.0640	237.3736	0.2415	241.1644	0.2390	(HCCC (91)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7	235,2996	3.5587	208.5316	3.1723	210.1499	3.1767	δCCC (55)			
5 207.2544 4.7810 158.4674 0.6148 159.8905 0.5591 δCCC (1) ⁺ γCCCC (1) ⁺ γ	6	230,4681	0.8395	190.7316	0.0858	191.6981	0.0531	$\delta CCC (17) + (NCNC (15) + (CCCC (11) + BCCCC (32))$			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	207.2544	4.7810	158.4674	0.6148	159.8905	0.5591	$\delta CCC (71)$			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	4	172.0100	0.5988	152.4909	0.9814	155.7909	1.1367	(NCNC (12)+ (CNCN (63)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3	164 5141	1.0779	134.3389	0.9363	136.7247	0.8475	CCNC (42) + CNCNC (15) + RR+NCC (18)			
1 72.0313 0.0881 56.6429 0.0478 54.6544 0.0269 (CCCC (62)+ BCCCC (12)+ pCCCC (10)	2	81 3768	0 0754	65 6651	0 1643	66 2161	0 1932	$\zeta CCNC (17) + \zeta NCNC (13) + \zeta CCCC (13) + RCCCC (14)$			
	1	72.0313	0.0881	56.6429	0.0478	54.6544	0.0269	CCCC(62)+ BCCCC(13)			

Tableau III.4Nombres d'onde (cm⁻¹), intensités IR calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Br-U)

Mode N°57 à 3650.7336cm⁻¹ Mouvement élongation de Liaison N-H

Mode N°49 à 3046.5219 cm⁻¹ (symétrique) Mouvement élongation des liaisons CH₃

Mode N°57 à <mark>3651.2088</mark>cm⁻¹ Mouvement élongation de Liaison N-H

Mode N°49 à 3048.0487 cm⁻¹ (symétrique) Mouvement élongation des liaisons CH₃

Mode N°57 à <mark>3652.6769</mark>cm⁻¹ Mouvement élongation de Liaison N-H

Mode N°49 à 3047.1900 cm⁻¹ (symétrique) Mouvement élongation des liaisons CH₃

Mode N°52 à <mark>3112.6364</mark> cm⁻¹ (Asymétrique) Mouvement élongation des liaisons CH₃

Mode N°47 à 1779.6789cm⁻¹ Mouvement élongation de liaison C=O

Mode N°52 à 3113.2631 cm⁻¹ (Asymétrique) Mouvement élongation des liaisons CH₃

Mode N°47 à 1775.1988cm⁻¹ Mouvement élongation de liaison C=O

Mode N°52 à 3112.4154 cm⁻¹ (Asymétrique) Mouvement élongation des liaisons CH₃

Mode N°47 à 1773.8392cm⁻¹ Mouvement élongation de liaison C=O

Mode N°51 à 3063.0477 cm⁻¹ Mouvement élongation des liaisons CH

Mode N°46 à <mark>1722.2081</mark>cm⁻¹ Mouvement élongation de liaison C=C

Mode N°51 à 3080.0508 cm⁻¹ Mouvement élongation des liaisons CH

Mode N°46 à 1659.7321cm⁻¹ Mouvement élongation de liaison C=C

Mode N°51 à <mark>3074.9364</mark>cm⁻¹ Mouvement élongation des liaisons CH

Mode N°46 à 1655.6345cm⁻¹ Mouvement élongation de liaison C=C

Figure III.5 Représentation de quelques modes théoriques de (F-U) et (Cl-U) et (Br-U)

Figure III.6Nombres d'onde, intensités IR calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du , (F-TU), (Cl-TU) et (Br-TU)

Ν	HF		B3L	YP	HSE	H1PBE	F-TU
	Fréquences	Ι	Fréquences	Ι	Fréquence	Ι	Prédiction de modes de vibration
	calculées		calculées		s calculées		
57	3871.9827	159.4382	3632.9601	112.2889	3666.0552	121.9923	vNH (99)
56	3852.1689	123.2245	3612.0261	76.9942	3647.3743	86.8762	vNH (99)
55	3292.6444	35.2278	3150.3520	20.2398	3176.4258	15.4926	vasCH (89)
54	3287.1883	2.1709	3146.2165	1.7772	3173.0429	2.2031	vasCH (95)
53	3251.3455	72.3324	3117.8990	46.8087	3150.8068	39.9719	vasCH (99)
52	3246.9845	23.9501	3114.9558	18.2540	3148.5831	15.3267	vasCH (99)
51	3225.0502	15.3263	3063.5460	15.1844	3086.1393	12.0355	vCH (85)
50	3190.5582	23.5407	3051.4522	23.2165	3071.0761	23.9421	vsCH (89)
49	3186.5312	46.4501	3048.2000	33.1168	3068.5141	30.3386	vsCH (92)
48	1980.8370	582.7037	1785.1409	418.6132	1820.7735	438.1826	vOC (82)
47	1888.9867	478.6895	1712.9855	282.6240	1744.3102	297.2710	vC = C(71)
46	1737.0305	1161.9308	1576.0720	837.5191	1602.0609	912.1613	$vNC (34) + \delta HNC (44)$
45	1646 7335	11 0336	1534 8155	11 4421	1530 5633	13 9599	$\delta H C H (77) + (H C C C (15))$
43	1631 3669	7 3500	1516 6151	0 7078	1511 9416	6 6587	$\delta HCH (78) + (HCCC (20))$
43	1629 7634	0 7580	1516 2585	14 1141	1509 8845	0.0507	$\delta HCH (69) + (HCCC (23))$
42	1616 4382	126 3220	1510.2565	0 3082	1496 6943	97 0749	$\delta HCH (0) + \zeta HCCC (19)$
41	1615 4210	0 2390	1467 7295	01 1892	1494 2399	0 4395	$vNC (19) + \delta HNC (34)$
40	1559 4248	7 6680	1407.7275	11 8079	1424 2599	37 7400	8HCH (95)
30	1540 2313	56 1273	1408 3393	5 6040	1421 5607	10 2587	биси (93) 8HCH (87)
38	1530 0337	5 1801	1307 /831	20 4211	1403 1374	10.1285	$_{\rm NNC}$ (40)+ $_{\rm SHCC}$ (10)+ $_{\rm SCCN}$ (15)
37	1512 4833	15 0503	1397.4031	13 1078	1386 5427	13 7704	8HCC (63)
36	1312.4033	1 2176	1340 6684	2 2310	1346 5254	13.7704	2HCCC (76)
25	1400.2410	1.2170	1345.0004	2.2319	1340.3234	12 0806	$y_{\rm NC} (10) \pm 8CCN (45)$
33	1403.7900	21.2100 65 4601	1320.0142	13.1270	1343.3093	13.0000	$v_{NC} (10)^+ 0CCN (43)$ $v_{NC} (25)^+ v_{CC} (13)$
22	21.2100	100 4441	1200.5059	31.7333	1291.1321	154 2029	$VIAC (35)^+ VCC (15)$
33	1320.0024	190.4441	1220.1190	140.0412	1255.0001	154.2950	$\int \Pi(UU) (17)$ $_{\rm NNC} (15) \pm 8 \Pi NC (12) \pm 8 \Pi C \Pi (11) \pm 7 \Pi C C C (22)$
32	1201.5705	171.3344	1101.0252	130.2250	1169.0205	03.9000 50 4500	$VNC (15)^+ 0 nNC (12)^+ 0 nCn (11)^+ SnCCC (22)$
31	1245.0019	151./100	1144.0105	40.0352	1102.1907	30.4300 1 5454	$VNC (34) + \zeta HCCC (30)$
20	1220.3493	3.3973	1129.7004	1.9304	114/.40/4	1.5454	$VCC (45)^+ \zeta \Pi CCC (20)$
29	1101.4240	99.0730	100.0022	40.2034	1119.2990	41.3412	VINC (33) VINC (11) + SCNC (10) + ZHCCC (14)
20	1102.1225	24.2052	1010.5490	47.0500	1020.0205	40.2009	$VNC (11)^+ 0CNC (10)^+ GUCC (14)$
21	1005.1540	52.7469	1000.2290	9.0455	1010./420	12.0000	VINC (39) VCC (41) + CHCCC (43)
20	1040.2032	0.2005	900.0013	0.0505	027 2618	0.5091	SHCH $(16) + $ CHCCC (43)
25	1014./155	1.0512	940.3932	2.0922	957.2010	2.0440	OPCH(10) + SPCCC(02)
24	952.2242	1.0957	091.4/9/ 766 2140	0.1504	910.2155 776 0170	0.1329	VCC (00) BONCC (74)
23	003.3970 706 1453	00.0224 50.0660	700.2140	43.2427	770.9179	51.4502	$\frac{1}{2}$
22	790.1455	50.0009 24 5110	/25.1941	55.7020	702 7268	50.5009 18 8150	$\zeta_{\text{IINUU}}(79)$
21	730.0755	24.3119	641 2107	9 2624	103.1300	10.0139	PECNIC (79)
20	752.5005	20.2720	676 0648	0.2024	632.0063	10.7070	$\frac{\text{prenc}(76)}{8CCC} (10) \pm 8CNC (57)$
19	704.1000 680 7636	0.2320	020.3040 624 4801	2.0307	632.0628	0.9000	$\frac{1}{10} + 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0$
10	626 0112	4.3740	024.4001 567 5770	0.0331	576 2120	2.0047	$\frac{\text{prene}(72)}{\text{vNC}(24) \pm 8\text{CNC}(24)}$
16	612 7681	2 2722	566 7212	0.044J 90.1629	575 5222	83 1602	$\mathcal{E}_{\text{HNCN}}(00)$
15	560 4678	3.2723 10 5004	500.7512	00.1020 14 5300	575.5255	13 0555	vNC (14) + 8CNC (52)
13	507.4078	19.3094	327.0224	14.3309	352.7350	13.3333	$V_{11} C (14)^+ OCINC (52)$ $Z_{11} C C C (12)^+ RCCCC (20)$
14	304.3703 480 3721	20.2300	400.7301	10.3019	400.0092	9.3379	$\zeta_{11} = \zeta_{12} + \beta_{12} = \zeta_{12} = \zeta$
13	407.3721	0.4150	444.2393	0.0707	447.4714	12 5719	$SCCC (30)^+$ pCCCC (25) ⁺ pCCCC (12) SCCC (20) + SCNC (15)
12	444.0021 401.1020	4 4210	413.2247	14.3120	410.1372	12.3710	$SNCE (27)^+ OUNC (13)$
11	401.1050	4.4210	260.0011	4.4703	373.0734	3.3407	8CCC (15) + 7HCCC (22)
10	200.7040	5.0105	209.9011	2.2/04	272.0309	1.0095	SCCC(15) + SHCCC(52)
9	2/4.2094	0.5215	250.4210	2.0917	201.5075	5.0597	$SCCC (40)^{+} SUCC (25)$
0	204.034/	1.5/20	251.00/2	0.0511	232.3830	0.4000	
1	240./041 010 78/7	0.1391	240.0047	0.150/	244.0591	0.1410	СПСС (04) ССМСС (75)
0	412.7007	0.3030	193.2913	U.109/ 0.1047	193.8340	0.12/5	
3 4	190.2000	0.0900	103./020	0.1945	103.9825	0.105/	0000 (20)+ p0000 (34) 8000 (41)+ 80000 (14)
4	182.0401	U.3834 2.6702	1/1.5120	0.0291	1/1./512	0.0309	OUUU (01)+ PUUUU (14) ZONOG (10)+ ZOOOG (11)+ ZONON ((2)
3	133.8/99	3.0/02	138.0901	2.3489 0.1265	141./140	2.5/4/	LUNUU (10)+ LUUU (11)+ LUNUN (02) RCCCC (76)
4	14.3743 62.701 <i>F</i>	0.1010	/0.931/	0.1305	12.3431	0.1402	росос (70) 20000 (60) 20NON (12)
1	02.7915	0.0025	38.0514	0.0016	59.0544	0.0002	SULL (00)+ SUNUN (12)

Tableau III.5Nombres d'onde (cm⁻¹), intensités IR calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du(F-TU)

Ν	HF		B3LY	(P)	HSEH	1PBE	CI-TU			
	Fréquences	I	Fréquences	T	Fréquence	T	Prédiction de modes de vibration			
	calculées	-	calculées	-	s calculées	-				
57	3879 1457	144 5285	3633 3946	100 9695	3664 6719	107 5972	vNH (99)			
56	3852.0643	123 9428	3610 2069	78 8804	3645 7421	89 5414	vNH(99)			
55	3301 0626	30 9370	3154 7739	16 9840	3178 7273	12 5495	vasCH (88)			
53	3204 8200	1 3750	3150 6441	1 2185	3175 4853	1 6776	vasCH (85)			
53	3252 0806	1.3733	3117 8732	1.2105	3150 8644	37 3023	vasCH (00)			
55	3252.9090	62 6248	3117.0732	17 1642	21/2 0556	14 4270	vasCH (00)			
52	3231.4203	02.0340	3113.2272	17.1045 8.6252	3140.9330	14.4270 8 1126	vasCII (77)			
51	3247.3020	21.0031	3050.4102	0.0333	2071 5404	0.1150	vCII (63)			
50 40	3191./034	24.0205	3052.4100	25.2590	30/1.5090	24.7004	VSCH (09)			
49	310/./90/	40.3024	3049.3310	32.4934	3009.3130	29.5015	VSCH (90)			
48	1980.1022	05/.2204	1//9.2519	441.1010	1015.3330	402.2432	VOC(83)			
4/	1828.1148	251,5128	1048.89/1	200.7544	1000./8/0	211.0348	V = U(72)			
46	1730.8590	1057.6069	1565.5305	753.9487	1587.7056	839.8036	VNC (29)+ 6HNC (54)			
45	1647.6213	9.4391	1534.4586	8.9442	1529.6422	10.1432	$\delta HCH (63) + \zeta HCCC (22)$			
44	1631.0202	10.2525	1516.6834	0.8051	1510.8697	13.8607	$\delta HCH (77) + \zeta HCCC (16)$			
43	1630.9923	1.9765	1515.9189	16.3861	1509.5904	1.1084	$\delta HCH (70) + \zeta HCCC (23)$			
42	1615.5255	0.2739	1500.3607	0.2948	1493.6848	0.4533	бНСН (69)+ СНССС (12)			
41	1603.9742	190.9693	1451.6691	164.8424	1484.3650	166.0047	vNC (42)+ δHNC (14)+ δCCN (12)			
40	1559.0837	8.4889	1429.2295	15.7420	1423.1471	20.2062	δНСН (95)			
39	1545.1306	90.0283	1408.0185	5.5028	1405.1034	15.6479	δНСН (92)			
38	1538.0320	4.8328	1394.3229	19.2971	1402.1056	9.8958	vNC (10)+ δHNC (47)+ δHCC (22)			
37	1511.0858	4.6299	1390.1979	17.8334	1388.9050	5.2652	δНNC (12)+ δНСС (53)			
36	1466.7653	0.8653	1349.3640	1.9402	1345.7870	0.7985	ζНССС (78)			
35	1428.4351	40.0355	1286.9581	37.1257	1322.1984	33.3182	vNC (13)+ vCC (12)+ δCCN (23)			
34	1329.4676	155.9505	1229.0296	74.3536	1245.0334	64.9054	νNC (15)+ νCC (14)+ ζHCCC (16)			
33	1300.9885	165.1045	1198.1636	186.0949	1220.2673	143.0899	vNC (19)+ vSC (11)+ δHNC (14)+ ζHCCC (10)			
32	1266.3511	93.8774	1172.5127	11.2494	1185.8725	46.3931	νNC (27)+ ζHCCC (17)			
31	1234.3952	180.9226	1147.5604	81.5394	1167.7042	64.9875	vNC (23)+ vSC (17)+ ζHCCC (11)			
30	1224.1171	2.2641	1127.6428	1.2467	1145.3780	0.8968	νCC (47)+ ζHCCC (29)			
29	1158.0401	35.6831	1065.7397	30.6344	1076.7491	32.3766	vNC (15)+ δCCN (13)+ ζHCCC (20)			
28	1089.7627	4.7355	1007.0140	20.0805	1022.3289	22.1628	vSC (11)+ δCNC (25)+ δNCN (10)+ ζHCCC (11)			
27	1041.8296	0.2452	969.7330	0.0338	977.6154	0.2776	νCC (38)+ ζHCCC (46)			
26	1014.6793	1.1118	942.1649	2.1977	938.4953	2.6958	δНСН (12)+ ζНССС (77)			
25	954.5761	3.3437	892.5710	0.3333	911.4580	0.4219	vCC (61)			
24	930.6697	57.2973	857.0967	50.8544	883.3061	51.9282	vSC (12)+ vClC (32)+ δNCN (14)			
23	876.6451	65.6112	777.4447	32.3131	787.5572	37.0241	βONCC (71)+ ζCNCN (11)			
22	795.9891	89.7851	726.9017	74.0090	735.2788	73.5257	CHNCC (87)			
21	736.1821	32.8602	690.9687	24.2863	702.1569	25.2436	vCC (20)+ δCNC (12)+ δNCN (15)			
20	722.6590	10.5336	639.7617	3.2106	650.0071	3.4163	βSNNC (82)			
19	654.1052	2.5097	606.9400	2.0485	612.2024	2.2786	δCNC (10)+ δCCC (14)+ δNCCl (33)			
18	653.7982	0.0654	591.7024	34.6477	599.2852	37.4050	(HNCN (67)			
17	644.9892	92.9262	579.6009	37.1247	587.7682	37.9804	(HNCN (72)			
16	594.0899	2.8846	547.5420	2.3779	554.7743	2.1871	vNC (12)+ vSC (11)+ δCNC (25)+ δNCCl (25)			
15	508.5903	21.2648	475.0559	9.4682	476.8254	9.0650	δCNC (14)+ δNCCl (12)+ βCCCC (24)			
14	488.3756	0.1969	443.2203	0.2824	447.2551	0.1257	δCCC (32)+ ζHNCN (15)+ βCCCC (19)			
13	446.5377	12.1472	417.5759	8.9976	421.5525	7.3327	vSC (10)+ δ CCC (34)+ β CCCC (11)			
12	443.2321	14.5267	408,7697	13.4622	415.7623	12.1652	vClC (45)			
11	353.6014	6.5079	326.6066	4.5955	330.1370	5.4220	δNCCI (46)+ δNCN (15)			
10	286.2820	5.2397	268.8208	3.4410	270.7638	3.1869	$vCC (11) + \delta NCC (15) + \delta CCC (22) + \zeta HCCC (15)$			
9	260.8142	0.4827	247.7564	0.6943	250.5168	0.8587	δCCC (12)+ ζΗCCC (79)			
8	251.5869	0.2444	235.0902	0.2579	235.8364	0.2680	CHCCC (81)			
7	218.8748	3.2524	202.1271	3.0057	204.6418	2.9500	δΝCCL (76)			
6	203.2735	0.0884	189.5653	0.0978	190.1841	0.0759	$\delta CCC (17) + (HCCC (12) + BCCCC (43))$			
5	191.2866	0.4348	178.3242	0.4634	177.5933	0.5270	$\delta CCC (56) + \beta CCCC (15)$			
4	167.8217	0.0096	155.9984	0.0056	158.4062	0.0164	(CNCC (75) + (HNCN (11))			
3	148,1537	4.4273	133.2521	3.3660	136.2740	3.3135	(CNCN (63)			
2	66 0516	0.0101	65 5285	0.0023	64 6367	0 0000	CCCCC (77)			
1	61 8178	0.0154	57 6100	0.0025	58 1254	0.0000	(CNCN (79)			
-	01.01/0	0.0020	01101//	0.0010	20.1227	0.0040	5011011(17)			

Tableau III.6 Nombres d'onde (cm-1), intensités IR calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du (Cl-TU)

Ν	HI	F	B3LY	P	HSEH1F	PBE	Br-TU
	Fréquences	Ι	Fréquences	Ι	Fréquences	Ι	Prédiction de modes de vibration
	calculées		calculées		calculées		
57	3881.9497	137.9635	3635.9536	95.4982	3666.5732	101.9322	vNH (99)
56	3852.0747	124.7685	3610.7535	78.9688	3645.0042	89.2352	vNH (100)
55	3301.2791	30.3795	3155.0017	16.2347	3180.8613	12.0205	vasCH (88)
54	3294.9727	1.2057	3151.1549	1.0785	3177.8511	1.2201	vasCH (84)
53	3254.3767	8.1953	3117.8232	44.6960	3150.2176	37.7949	vasCH (99)
52	3251.0409	68.3934	3115.3109	16.4709	3148.4330	13.6648	vasCH (99)
51	3246.9588	21.2204	3077.6815	8.1234	3092.5377	7.8846	vCH (83)
50	3191.4739	25.5197	3052.3367	25.5705	3071.5702	24.5242	vs(H (89)
4 9	3187 4404	45 5184	3049 4047	32,2926	3069 4687	29 6519	vsCH (96)
48	1979 8364	669 1253	1780 1943	449 1562	1815 3532	470 9226	vOC(81)
40	1821 1966	228 9894	1645 0337	191 0984	1677 6322	201 3358	v C = C (70)
	1730 5506	1036 5416	1564 8514	755 2365	1586 1615	201.5550 840 0160	vC = C(70) $vNC(23) + \delta HNC(58)$
45	1647 3388	0 1218	1535 2302	8 6633	1530 7186	0 0 0 3 2	SHCH (66)+ (HCCC (21)
	1630 8028	7.4240 11 /110	1535.2502	0.0033	1510 0047	1 2338	δHCH (00) ⁺ ζHCCC (21)
12	1630.0720	0.0721	1510.7790	16 2401	1510.0047	1.2350	SHCH (77)+ ⁷ HCCC (20)
43	1615 4074	0.9721	1314.7401	0 2220	1309.0090	13.0040	опси (70)+ упссс (20) 8НСН (72)+ 7НССС (24)
42	1013.4974	100 1544	1490.7930	101 1522	1492.0230	100 0004	$\frac{OHCH}{(72)^{+}} \subseteq HCCC(24)$
41	1002.1039	196.1500	1449./4/2	101.1552	1401.9470	100.9094	VIC(44)+0HIVC(19)+0CCIV(12)
40	1550.4922	1.5029	1427.0497	14./124	1420.0315	19.0777	
39	1546.0080	116.2393	1404.9850	5.9042	1405.2016	19.6483	OHCH (90)
38 27	1537.4099	5.3021	1390.1333	15.0651	1398.8923	10.5552	000000000000000000000000000000000000
31	1513.4312	4.5038	1391.0585	32.6744	1391.3934	4.33/1	VNC $(19)+\delta$ HNC $(25)+\delta$ HCC (30)
36	1466.2446	1.0900	1348.4406	2.3530	1344.7341	1.0683	CHCCC (78)
35	1421.8552	45.0477	1280.9071	40.9325	1316.4351	37.4693	$vNC(20)+vCC(13)+\delta CCN(20)$
34	1331.5002	160.8432	1231.9113	82.0178	1248.3327	74.8250	vNC (21)+vCC (14)+ ζHCCC (17)
33	1297.6212	163.5650	1196.3996	178.8023	1215.6599	137.4616	vNC (17)+δHNC (15)+ ζHCCC (16)
32	1263.7713	94.9707	1170.7663	4.8140	1186.0092	40.2560	νNC (41)+ ζHCCC (15)
31	1228.3713	166.3112	1146.4053	81.4182	1166.6871	59.2643	vNC (44)+ ζHCCC (12)
30	1224.3339	1.9536	1126.6979	1.0839	1144.2106	0.7069	vCC (48)+ ζHCCC (27)
29	1152.8458	38.9362	1060.3130	34.8191	1070.5323	35.7867	vNC (10)+ δCNC (22)+ δCCN (11)+ ζHCCC (16)
28	1087.8009	5.4669	1004.5239	19.9180	1020.0199	21.9432	vSC (12)+ δ CNC (23)+ ζ HCCC (14)
27	1041.8731	0.2866	969.2151	0.0718	977.1123	0.3394	vCC (38)+ <mark>δHCH</mark> (10)+ ζHCCC (48)
26	1014.7358	0.9078	937.8287	1.8010	933.4047	2.1618	<mark>δHCH</mark> (13)+ ζHCCC (75)
25	952.7772	0.3977	892.5442	0.1889	911.4997	0.2252	vCC (64)+ ζHCCC (10)
24	879.3119	63.7162	812.0772	38.8691	834.5269	39.8220	vSC (26)+vBrC (23)+δNCO (14)+ δCNC (14)
23	877.1074	48.8389	780.4232	30.0585	790.7657	34.7126	βΟΝCC (67)+ βCCCC (17)
22	796.2523	92.5420	729.1753	77.2966	737.7729	77.1444	ζΗΝCC (86)
21	735.7438	36.4389	689.4924	27.2304	700.6679	28.1468	vCC (21)+ δCNC (23)
20	724.0868	10.3186	640.9879	4.0360	651.3234	4.3744	βSNNC (83)
19	653.9410	76.2711	603.8722	53.9873	612.1797	57.1401	HNCN (90)
18	648.1054	2.4991	601.7151	2.1503	606.8333	2.4208	δCNC (56)
17	639.2073	5.3558	575.2671	7.4627	582.8525	7.0417	βΟΝCC (13)+ βBrNCC (47)+ βCCCC (12)
16	589.3611	3.0329	543.1527	2.7191	550.0114	2.5546	vSC (19)+ δNCO (47)
15	507.1818	20.5258	470.4557	10.0996	470.8897	9.5603	βCCCC (32)
14	487.7621	0.0286	443.3741	0.0217	447.5048	0.0001	δCCC (32)+ζCCNC (11)+ βBrNCC (13)+ βCCCC (13)
13	444.3236	15.8079	415.7862	8.5246	417.7861	7.3588	δCNC (50)
12	360.2971	13.7648	332.5067	13.9436	338.2774	13.2933	vSC (11)+vBrC (21)+ δCNC (56)
11	323.7495	0.2774	298.9065	0.0507	305.5109	0.2724	vBrC (37)+δCNC (33)+
10	284.6725	4.9124	269.0728	2.5405	271.9066	2.3560	vCC (10)+ δCNC (25)+ζHCCC (33)
9	258.8537	0.7531	250.9960	1.4338	255.2212	1.6796	δCNC (17)+ ζΗCCC (60)
8	252.1537	0.2346	238.3095	0.2247	242.7338	0.2405	ζHCCC (84)
7	204.1258	0.0755	189.7912	0.0982	190.1595	0.0799	δ CCC (15)+ ζNCNC (10)+ βCCCC (40)
6	183.2620	1.0467	171.2031	0.9124	174.0408	0.9201	δCCC (63)
5	167.9960	0.9602	155.2296	0.9706	157.5787	0.9054	δCCC (75)
4	161.3078	0.8911	151.1051	0.5384	153.8310	0.6145	ζCCNC (15)+ ζNCNC (59)+ βBrNCC (12)
3	141.1534	3.5759	127.4333	2.9522	129.7105	2.8620	ζCCNC (40)+ ζNCNC (17)+ βBrNCC
2	62.7231	0.0000	57.7997	0.0006	58.2296	0.0111	ζ NCNC (11)+ β CCCC (66)
1	55.8993	0.0880	54.1439	0.0347	55.6473	0.0239	ζCCNC (15)+ ζNCNC (51)+ ζNCNC (17)+ βCCCC (10)

Tableau III.7 Nombres d'onde (cm⁻¹), intensités IR calculés aux niveaux HF, B3LYP et HSEH1PBE avec la base 6-31G (d,p) du(Br-TU)

v: élongation; δ : déformation dans le plan; ζ : torsion; β : déformation hors du plan; s:

asymétrique; as: antisymétrique.

Mode N°57 à <mark>3632.9601</mark>cm⁻¹ Mouvement élongation de liaisonN-H

Mode N°49 à 3048.2000 cm⁻¹ (symétrique) Mouvement élongation des liaisons CH₃

Mode N°57 à <mark>3633.3946</mark>cm⁻¹ Mouvement élongation de liaisonN-H

Mode N°50 à <mark>3052.4108</mark> cm⁻¹ (symétrique) Mouvement élongation des liaisons CH₃

Mode N°57 à <mark>3635.9536</mark>cm⁻¹ Mouvement élongation de liaison N-H

Mode N°50 à <mark>3052.3367</mark>cm⁻¹ (symétrique) Mouvement élongation des liaisons CH₃

Mode N°52 à <mark>3114.9558</mark> cm⁻¹ (Asymétrique) Mouvement élongation des liaisons CH₃

Mode N°48 à 1785.1409 cm⁻¹ Mouvement élongation de liaison C=O

Mode N°55 à <mark>3115.2272</mark> cm⁻¹ (Asymétrique) Mouvement élongation des liaisons CH₃

Mode N°48 à <mark>1779.2519</mark> cm⁻¹ Mouvement élongation de liaison C=O

Mode N°55 à <mark>3155.0017</mark> cm⁻¹ (Asymétrique) Mouvement élongation des liaisons CH₃

Mode N°48 à <mark>1780.1943</mark>cm⁻¹ Mouvement élongation de liaison C=O

Mode N°51 à <mark>3063.5460</mark> cm⁻¹ Mouvement élongation de liaisonCH

Mode N°47 à<mark>1712.9855</mark>cm⁻¹ Mouvement élongation de liaisonsC=C

Mode N°51 à <mark>3080.4102</mark> cm⁻¹ Mouvement élongation de liaison CH

Mode N°47 à <mark>1648.8971</mark>cm⁻¹ Mouvement élongation de liaisonC=C

Mode N°51 à 3077.6815cm⁻¹ Mouvement élongation de liaison CH

Mode N°47 à 1645.0337cm⁻¹ Mouvement élongation de liaison C=C

Figure III.7Représentation de quelques modes théoriques de (F-TU) et (Cl-TU) et (Br-TU)

Chapítre IV

Etude des propriétés physico-chimie de dérivés d'Uracile et Thiouracile

IV-1 Propriétés électroniques moléculaires IV-1-1 Energies des orbitales moléculaires HOMO-LUMO d'Uracile

Les deux orbitales moléculaires HOMO et LUMO appelées orbitales frontières, jouent un rôle particulier au niveau du comportement des molécules vis-à- vis du milieu environnant. HOMO (Highest Occupied Molecular Orbital) traduit le caractère électro-donneur de la molécule. Plus l'énergie de cette orbitale moléculaire est élevée, plus la molécule cèdera facilement des électrons⁵⁷. Alors que LUMO (Lowest Unoccupied Molecular Orbital) traduit le caractère électro-accepteur de la molécule, plus l'énergie de cette orbitale moléculaire est faible, plus la molécule acceptera facilement des électrons. La valeur du l'écart énergétique HOMO-LUMO(le gap énergétique (ΔE) est la différence entre les deux niveaux HOMO et LUMO) joue un rôle intéressant dans les propriétés électriques et optiques. Les énergies des orbitales moléculaires frontières HOMO et LUMO et utilisée pour étudier la bioactivité des molécules à partir de l'étude du transfert de charge intramoléculaire et expliquer la réactivité chimique de la molécule⁵⁸.Quand l'écart énergétique HOMO-LUMO est élevé, l'écoulement des électrons à l'état d'énergie plus élevée est difficile (stable), ce qui rend la molécule dure et moins réactif. D'autre part, le gap énergétique HOMO-LUMO plus faible, a pour conséquence un écoulement facile des électrons, ce qui rend la molécule molle.

Les énergies des orbitales moléculaires frontières (FMO) sont très utiles pour déterminer plusieurspropriétés moléculaires, tels que le potentiel d'ionisation(*I*), l'affinité électronique(*A*), l'indice électrophile(ω), potentiel chimique électronique(μ)⁵⁹, l'électronégativité (χ)définie par Mulliken⁶⁰et la duretéglobale (η)^(61,62,63)

⁵⁷S.W. Xia, X. Xu, Y.L. Sun, Y.L. Fan, Y.H. Fan, C.F. Bi, D.M. Zhang, L.R. Yang, Chin. J.Struct.Chem. 25, 849 (2006)

 ⁵⁸I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London (1976)
 ⁵⁹J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, Electrophilicity-based charge transfer descriptor. J. Phys. Chem. A 111.1358–1361 (2007)

⁶⁰R.S. Mulliken, J. Chem. Phy. 2,782 (1934)

⁶¹R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512 (1983)

⁶²R.G. Parr, W. Yang, Density functional theory for atoms and molecules, Oxford University Press, New York (1982)

⁶³R.G. Parr, L. von Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc. 121, 1922 -1924 (1999)

Avec :

$$I = -E_{HOMO}$$
(IV.1)

$$A = -E_{LUMO}$$
(IV.2)

$$\omega = \frac{\mu^2}{2\eta} \tag{IV.3}$$

$$\mu = -\frac{[I+A]}{2} \tag{IV.4}$$

$$\chi = \frac{I+A}{2} = -\frac{[E_{LUMO} + E_{HOMO}]}{2}$$
(IV.5)

$$S = \frac{1}{2\eta}$$
(IV.6)

La figure IV-1 montre la présentation HOMO et LUMO de la molécule F-U, Cl-U et Br-U. Les énergies de ces niveaux sont calculées moyennant la méthode DFT/PBE dans la base 6-31(d,p).

Figure IV.1Orbitales moléculaires de F-U, Cl-U et Br-U

Nous avons regroupé les résultats de gap énergétique (ΔE) obtenus dans le tableau IV.1 .On remarque que la valeur de (ΔE) est comprise entre 3,74976 eV et 5,72724 eV. Il apparaît clairement que la plus grande valeur de (ΔE) est obtenue en utilisant fonctionnelle B3LYP et HSEH1PBE.Cette valeur est généralement associée à une réactivité importante de la molécule, traduisant une interaction importante par transfert de charge au sein de la molécule, ce qui favorise la bioactivité de la molécule

(η) , et l ³	'indice d'élec	$trophile(\omega)$	de dérivé	s d'Uraci	ile calcul	és par Dl	FT au niv	eau 6-310	G(d,p)						
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$														
		(a,u)	(a,u)	(a,u)	(u,a)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
F-U	B3LYP	-632,0114133	-0,24772	-0,03560	0,21212	-6,68844	-0,9612	5,72724	6,68844	0,9612	-3,82482	3,82482	2,86362	1,43181	2,55432774
	HSEH1PBE	-631,3823382	-0,24242	-0,04170	0,20072	-6,54534	-1,1259	5,41944	6,54534	1,1259	-3,83562	3,83562	2,70972	1,35486	2,71466808
	PBE	-631,3002702	-0,21201	-0,06295	0,14906	<mark>-5,72427</mark>	<mark>-1,69965</mark>	<mark>4,02462</mark>	5,72427	1,69965	-3,71196	3,71196	2,01231	1,006155	3,42358957
	BVP86	-632,0530212	-0,21660	-0,06757	0,23586	-5,8482	-1,82439	4,02381	5,8482	1,82439	-3,836295	3,836295	2,011905	1,0059525	3,65751845
	LSDA	-628,7420559	-0,23627	-0,08651	0,23586	-6,37929	-2,33577	4,04352	6,37929	2,33577	-4,35753	4,35753	2,02176	1,01088	4,69592526
	HCTH	-631,9032518	-0,21868	-0,06492	0,23586	-5,90436	-1,75284	4,15152	5,90436	1,75284	-3,8286	3,8286	2,07576	1,03788	3,53079787
	TPSSTPSS	-632,0986958	-0,21456	-0,06003	0,23586	-5,79312	-1,62081	4,17231	5,79312	1,62081	-3,706965	3,706965	2,086155	1,0430775	3,29352074
Cl-U	B3LYP	-992,3693778	-0,25010	-0,04903	0,23586	-6,7527	-1,32381	5,42889	6,7527	1,32381	-4,038255	4,038255	2,714445	1,3572225	3,00383751
	HSEH1PBE	-991,6779754	-0,24481	-0,05628	0,18853	-6,60987	-1,51956	5,09031	6,60987	1,51956	-4,064715	4,064715	2,545155	1,2725775	3,24575675

Tableau IV.1Energie de gap (ΔE), potentiel d'ionisation(*I*), affinité électronique(*A*), potentiel chimique(μ), électronégativité (χ), la dureté (η), et l'indice d'électrophile(ω) de dérivés d'Uracile calculés par DFT au niveau 6-31G(d,p)

	11551155	-032,0980958	-0,21450	-0,00003	0,23580	-5,/9512	-1,02081	4,17231	5,79512	1,02081	-3,700905	3,700905	2,080155	1,0430775	3,29352074
Cl-U	B3LYP	-992,3693778	-0,25010	-0,04903	0,23586	-6,7527	-1,32381	5,42889	6,7527	1,32381	-4,038255	4,038255	2,714445	1,3572225	3,00383751
	HSEH1PBE	-991,6779754	-0,24481	-0,05628	0,18853	-6,60987	-1,51956	5,09031	6,60987	1,51956	-4,064715	4,064715	2,545155	1,2725775	3,24575675
	PBE	-991,550657	-0,21555	-0,07563	0,13992	-5,81985	-2,04201	3,77784	5,81985	2,04201	-3,93093	3,93093	1,88892	0,94446	4,09022369
	BVP86	-992,4447417	-0,21994	-0,08002	0,23586	-5,93838	-2,16054	3,77784	5,93838	2,16054	-4,04946	4,04946	1,88892	0,94446	4,340609
	LSDA	-988,4019718	-0,23956	-0,09935	0,14021	-6,46812	-2,68245	3,78567	6,46812	2,68245	-4,575285	4,575285	1,892835	0,9464175	5,52959789
	HCTH	-992,3389411	-0,22186	-0,07795	0,14391	-5,99022	-2,10465	3,88557	5,99022	2,10465	-4,047435	4,047435	1,942785	0,9713925	4,21604297
	TPSSTPSS	-992,4574571	-0,21792	-0,07291	0,14501	-5,88384	-1,96857	3,91527	5,88384	1,96857	-3,926205	3,926205	1,957635	0,9788175	3,93717054
Br-U	B3LYP	-3103,8792214	-0,24872	-0,04914	0,23586	-6,71544	-1,32678	5,38866	6,71544	1,32678	-4,02111	4,02111	2,69433	1,347165	3,00062087
	HSEH1PBE	-3102,9792873	-0,24359	-0,05681	0,18678	-6,57693	-1,53387	5,04306	6,57693	1,53387	-4,0554	4,0554	2,52153	1,260765	3,26116865
	PBE	-3102,8573855	-0,21452	-0,07564	0,13888	-5,79204	-2,04228	3,74976	5,79204	2,04228	-3,91716	3,91716	1,87488	0,93744	4,09203321
	BVP86	-3104,1863777	-0,21897	-0,08003	0,13894	-5,91219	-2,16081	3,75138	5,91219	2,16081	-4,0365	4,0365	1,87569	0,937845	4,34329027
	LSDA	-3098,2654977	-0,23865	-0,09946	0,13919	-6,44355	-2,68542	3,75813	6,44355	2,68542	-4,564485	4,564485	1,879065	0,9395325	5,54385381
	HCTH	-3105,1792158	-0,22052	-0,07761	0,23586	-5,95404	-2,09547	3,85857	5,95404	2,09547	-4,024755	4,024755	1,929285	0,9646425	4,19809743

-1,97316

-5,85711

TPSSTPSS

-3103,83381

-0,21693

-0,07308

0,14385

5,85711

3,88395

1,97316

-3,915135

3,915135

1,941975

0,9709875

3,94657039

IV-2Propriétés optiques non linéaires

Depuis de nombreuses années, les matériaux optiques non linéaires ONL sont largement étudiés en raison de leur importance dans plusieurs domaines d'application^{64,65} tels que les télécommunications et le traitement de signal optique⁶⁶, la modulation optique, la mémoire optique et les interconnexions optiques. Les molécules présentant des propriétés optiques non linéaires(ONL) sont des molécules avec des électrons facilement polarisables c'est-à-dire des électrons π .Ce non linéarité optique caractérise les molécules organiques conjuguées qui contiennent un groupe accepteur d'électrons et un groupe donneurs. En effet Davydov⁶⁷a montré que les propriétés ONL moléculaires provenaient des interactions donneur-accepteur. Les équations utilisées pour calculer la grandeur du moment dipolaire total(μ_{tot}), la polarisabilité totale (α_{tot}) et l'hyperpolarisabilité du premier ordre (β_{tot}) sont les suivantes :

$$\mu = \left(\mu_x^2 + \mu_y^2 + \mu_z^2\right)^{1/2}$$
 (IV.7)

$$\alpha_{tot} = \frac{\alpha_{xx} + \alpha_{yy} + \alpha_{zz}}{3}$$
(IV.8)

$$\beta_{tot} = \left(\beta_x^2 + \beta_y^2 + \beta_z^2\right)^{1/2}$$
 (IV.9)

Où :

- $\beta_x = \beta_{xxx} + \beta_{xyy} + \beta_{xzz}$
- $\beta_y = \beta_{yyy} + \beta_{xxy} + \beta_{yzz}$
- $\beta_z = \beta_{zzz} + \beta_{xxzz} + \beta_{yyz}$

Cependant, les valeurs de β et de α sont exprimées en unités atomiques (a.u), avec :

- $\alpha : 1 a. u = 0.1482 \times 10^{-24} esu$
- β : 1 a. u = 8.6393 × 10⁻³³ esu

⁶⁴P. Sen, G. YaşaAtmaca, A. Erdoğmuş, N. Dege, H. Genç, Y. Atalay, S. ZekiYildiz, Journal of Fluorescence 25(5), 1225 (2015).

⁶⁵Ch. Bosshard, K. Sutter, P. H. Pretre, J. Hulliger, M. Florsheimer, P. Kaatz, P. Gunter, Organic Nonlinear Optical Materials, Advances in Nonlinear Optics, vol. 1, Gordon and Breach, Amsterdam. (1995).

⁶⁶H. S. Nalwa, S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press, Boca Raton, 1997.

⁶⁷ **B.L. Davydov**, L.D. Dekacheva, V.V. Dunina, M.E. Zhabotinski, V.F. Zolin, L.G. Korenevaet M.A. Samokhina. JETP Lettres, 12, 16 (**1970**).

IV-2-1 Propriétés optiques non linéaires de dérivés d'Uracile

Dans la seconde partie de notre travail nous avons étudié les propriétés optiques non linéaires **de dérivés d'Uracile.** La détermination de ces propriétés (ONL) avec précision reste difficile et demande une attention particulière notamment pour le choix de la base. Les géométries ont été obtenues par la méthode DFT avec la base 6-31G (d,p). Le choix de cette méthode est justifié par le fait qu'elle donne des bons résultats en ce qui concerne les paramètres géométriques moléculaires. La valeur maximale du moment dipolaire a été obtenue avec la fonctionnelle HSEH1PBE (2.8310D) pour F-U, Par contre la plus basse valeur a été obtenue parla fonctionnelle PBE (2.7795, 2.4239D) pour F-U, Cl-U.

Tableau IV.2 Moment dipolaire $\mu_{tot}(D)$ de dérivés d'Uracile calculés par DFT au niveau 6-31G (d,p)

		μ _x	μ_{y}	μ_z	μ_{tot}
F-U	B3LYP	0,4733	2,7470	0,0013	2,7875
	HSEH1PBE	0,4314	2,7979	0,0004	2,8310
	PBE	0,3766	2,7538	0,0006	2,7795
	BVP86	0,4110	2,7505	-0,0004	2,7811
	LSDA	0,1837	2,8231	-0,0002	2,8291
	HCTH	0,4806	2,7601	0,0008	2,8016
	TPSSTPSS	-0,4472	2,7467	0,0006	2,7829
		0.5126	2 4504	0.0002	2 5510
CI-U	B3LYP	0,7126	2,4504	0,0002	2,5519
	HSEH1PBE	0,6913	2,5201	0,0002	2,6132
	PBE	0,5716	2,3555	-0,0001	2,4239
	BVP86	0,6046	2,3642	0,0008	2,4402
	LSDA	0,4034	2,4863	-0,0003	2,5188
	HCTH	0,6770	2,3912	-0,0006	2,4852
	TPSSTPSS	0,6429	2,3623	0,0004	2,4482
Br-∐	R3LVP	-2 7336	-0 5035	0 0005	2 7796
DI-C	USELI USELIDRE	2,7536	0 5031	0,0002	2,1150
	DDE	-2,7520	-0,3731	0,0008	2,0130
		2,5424	-0,0545	0,0009	2,0252
	BVP86	2,5477	-0,6314	-0,0004	2,6248
	LSDA	2,6696	-0,4168	-0,0005	2,7020
	НСТН	2.5153	-1.0249	-0.0001	2.7161
	TPSSTPSS	-2.5540	-0.6661	-0.0001	2.6394

Généralement, l'activité optique non linéaire est directement liée aux valeurs de la polarisabilité α_{tot} et de l'hyperpolarisabilité de premier ordre β_{tot} . A partir des géométries optimisées, les composantes du tenseur de polarisabilité sont obtenues en calculant les dérivées premières, et secondes de l'énergie par rapport aux coordonnées

cartésiennes du champ électrique. Nous avons regroupé les résultats des propriétés ONL obtenus dans les tableaux IV.3 et IV.4. On remarque que la valeur de la polarisabilité α_{tot} est comprise entre $1,32675 \times 10^{-23}$ (esu) et $1,69122 \times 10^{-23}$ (esu).Il apparaît clairement que la plus grande valeur de l'hyperpolarisabilité est obtenue en utilisant fonctionnelle B3LYP et HSEH1PBE.

L'urée (μ (1,3732 Debye) et β (0,3728×10⁻³⁰esu)) est l'une des molécules prototypiques utilisées dans l'étude des propriétés NLO des systèmes moléculaires et elle a été utilisée comme une valeur seuil pour faire la comparaison.L'hyperpolarisabilité du premier ordre de l'urée calculée par H. Tanak et al⁶⁸ est considéré comme une référence qui est utilisée dans l'étude des propriétés ONL des systèmes moléculaires.

Figure IV.2 Variation du moment dipolaire, polarisabilités et l'hyperpolarisabilités de F-U, Cl-U et Br-U obtenus au niveau DFT

⁶⁸H. Tanak, Y. Köysal, Ş. Işık, H. Yaman, V. Ahsen, Korean Chem. Soc, (2011),32, 2 673.

		$\alpha_{\rm xx}$	α_{xy}	α_{yy}	$\alpha_{\rm xz}$	$\alpha_{\rm vz}$	azz	a _{tot} (a,u)	α_{tot}
F-U	B3LYP	122,229692	-6,3030257	90,9522201	-0,0034454	0,0057346	57,6657947	90,2825689	1,33799
	HSEH1PBE	120,9494083	-6,2732931	89,9467565	-0,0014909	0,0000043	57,6771198	89,5244282	1,32675
	PBE	129,1850483	-5,5405998	94,5932478	-0,0018792	0,0001136	59,3203587	94,3662183	1,39851
	BVP86	129,6137154	-5,5622571	94,9017508	-0,0003425	-0,0045882	59,5817343	94,6990668	1,40344
	LSDA	127,3763223	-5,1492091	92,6508279	0,0007187	-0,0020421	58,9953014	93,0074839	1,37837
	HCTH	125,3058195	-5,6289324	92,6323461	-0,0001636	0,0001126	58,1374827	92,0252161	1,36381
	TPSS	128,2075314	5,7754504	94,1470069	-0,0001177	0,0042543	59,0086999	93,7877461	1,38993
CL-U	B3LYP	128,7611847	-5,7417091	114,994413	0,0011644	0,0066485	61,1106437	101,62208	1,50604
	HSEH1PBE	127,4745123	-5,9111308	113,5299805	-0,0005301	0,0000789	61,1090707	100,704521	1,49244
	PBE	135,9258062	-4,692458	120,0770464	0,0003407	-0,002525	62,7502397	106,251031	1,57464
	BVP86	136,3865071	-4,7078744	120,611379	-0,0016155	0,0004663	63,0068072	106,668231	1,58082
	LSDA	134,1489155	-4,7199901	117,7284436	-0,0018173	-0,0094877	62,4348648	104,770741	1,5527
	HCTH	131,8659687	-4,7297146	117,1649234	-0,0004263	-0,0005153	61,5199044	103,516932	1,53412
	TPSS	134,8703955	-4,9006982	119,3902478	0,0010475	0,0078145	62,4041277	105,554924	1,56432
Br-U	B3LYP	123,9445405	0,5720979	136,3773422	-0,0003861	-0,0012164	65,778813	108,700232	1,61094
	HSEH1PBE	122,1629406	0,3204826	135,2929665	-0,0011275	0,0009334	65,8259933	107,760633	1,59701
	PBE	131,1835889	0,9712551	142,4495709	0,0011321	-0,0015755	67,4966315	113,70993	1,68518
	BVP86	131,7077152	0,9799769	142,90715	-0,0105903	0,0049495	67,7381819	114,117682	1,69122
	LSDA	128,0462602	-0,7569236	140,5734242	-0,0108159	0,0031495	67,0080555	111,875913	1,6580
	HCTH	128,331186	2,2900771	138,0599218	0,0000926	-0,0000421	66,2079178	110,866342	1,64304
	TPSS	130,2683369	-1,0613851	141,5754976	0,0013495	0,0006863	67,2010696	113,014968	1,67488

Tableau IV.3 Polarisabilités α_{tot} . 10–²³ (esu) dedérivés d'Uracile calculés par DFT au niveau 6-31G (d,p)

Tableau IV.4Hyperpolarisabilités β_{tot} . 10–³¹ (esu) de dérivés d'Uracile calculés parDFT au niveau 6-31G (d,p)

		β _{xxx}	β _{xxy}	β _{xyy}	\mathbf{B}_{yyy}	B _{xxz}	B _{xyz}	β _{yyz}	β _{xzz}	β _{yzz}	β _{zzz}	β _{tot} (a,u)	β _{tot}
F-U	B3LYP	170,9391597	36,175773	-107,8308934	-91,3762498	0,7915493	-0,4505104	-0,4584284	3,7508203	24,322396	0,5577654	73,650438	6,36288
	HSEH1PBE	172,4385299	39,3275955	-105,5487265	-88,9954762	0,9390836	-0,2499887	-0,56865	2,6661417	25,6515785	-0,1806118	73,5856528	6,35729
	PBE	137,2826646	34,4795504	-109,4643378	-89,7980497	0,5248733	-0,0245899	0,4655872	7,1223796	24,8924953	-0,2226515	46,3377191	4,00325
	BVP86	141,2645522	35,7502604	-111,826105	-90,4473871	0,8036485	-0,0191605	0,2915731	6,9434452	25,6052318	-0,1903926	46,5918358	4,02521
	LSDA	130,7855445	37,0210377	-109,6995087	-86,937845	0,8487073	-0,0351921	-0,3764919	6,6352965	28,5394701	-0,0195028	35,0095381	3,02458
	HCTH	128,2945337	31,2979633	-106,5470182	-83,3265122	-1,4405929	-0,5244716	-0,0868482	5,1860254	21,7723599	-0,2520821	40,5465079	3,50293
	TPSSTPSS	-150,8592888	38,4833407	107,7157916	-86,477709	0,7932055	0,255293	-0,3652437	-6,2415901	24,2173452	0,0591208	54,8130543	4,73546
Cl-U	B3LYP	201,1295312	52,7578903	-114,7621529	-123,2225411	-1,4672506	-0,7069247	-1,8585928	2,9063664	20,4592339	0,7406911	102,357346	8,84296
	HSEH1PBE	200,1721566	55,7777766	-114,434625	-130,1799809	0,0896846	0,2708439	0,2847262	2,0496878	19,82593	-0,0211346	103,369678	8,93042
	PBE	168,1247537	60,8702307	-111,2749192	-101,0119745	-0,7622452	0,5270083	2,056785	5,1335741	18,7996366	0,4430749	65,5777995	5,66546
	BVP86	171,0064962	62,9646944	-112,7695537	-100,1718424	-0,7426435	-0,2079251	1,9576476	5,313608	19,3172629	0,4679037	66,042052	5,70557
	LSDA	160,3298754	62,6964125	-117,6043977	-117,0312027	-2,9372381	-0,2860101	2,1515942	6,4611147	21,7352102	-0,3003538	59,0189197	5,09882
	HCTH	156,7137363	56,1548936	-110,2634168	-94,8869172	-0,5747861	0,1309697	1,0990684	2,6195231	17,262393	-0,0021274	53,5636737	4,62753
	TPSSTPSS	179,143164	65,5009559	-113,3087372	-92,1745808	0,9590201	-0,0283962	-1,1733372	3,2404877	21,8216745	-0,2347279	69,2465658	5,98242
BR-U	B3LYP	140,362259	73,5052427	-146,367627	15,9196526	1,3289606	0,6105401	0,2089657	-24,5327727	-8,8671549	0,4185059	86,1739822	7,44483
	HSEH1PBE	144,0842338	85,4953534	-142,4150827	11,0387431	0,3325691	-0,5264876	-0,7052695	-24,4761484	-9,6348438	1,3816878	89,8479677	7,76224
	PBE	-89,2272279	72,2250735	143,0382272	-33,2460024	1,4139753	-1,4563559	-2,3534645	25,7517559	-7,6491366	1,1628495	85,5093369	7,38741
	BVP86	-83,9669033	71,4939237	148,4069305	-36,1548834	0,6828006	-0,157673	-1,4234316	25,5317262	-7,7436615	0,9859649	94,1088812	8,13035
	LSDA	-144,3948812	4,4163974	154,9349855	29,2153775	1,1488233	0,1483071	-1,3368666	28,1768533	-4,1499368	0,8204018	48,6680743	4,20458
	HCTH	-46,3699848	117,9200094	94,5061511	-90,295307	0,4525674	-0,4000333	-1,0393599	21,3499293	-12,3025229	-0,0011932	71,1577992	6,14754
	TPSSTPSS	75,4498888	83,7472516	-142,7516193	-40,7797442	-0,1521383	0,1574727	0,0947735	-26,0211664	-10,0888416	1,2890998	98,9529531	8,54884

IV-3 Energies des orbitales moléculaires HOMO-LUMO deThiouracile

Les valeurs énergétiques des orbitales moléculaires HOMO et LUMO permettent de prévoir et d'expliquer les différents types de réaction dans les molécules conjugués. Le calcul de l'écart d'énergie (ΔE) nous aide à caractériser la réactivité chimique et la stabilité cinétique de la molécule. Pour une molécule possédant une petite différence d'énergie (ΔE) est polarisable et généralement associé à une réactivité élevée, et une basse stabilité cinétique et se nomme une molécule douce. L'écart énergétique (ΔE) détermine également la réactivité chimique comme le potentiel chimique électronique (Une molécule à faible potentiel est un bon électrophile), l'électronégativité, la dureté, la mollesse, l'électrophilicité. La figure IV.3 montre la présentation HOMO et LUMO de de F-TU, Cl-TU et Br-TU. Les énergies de ces niveaux sont calculées moyennant la méthode DFT dans la base 6-31(d, p).

Nous avons regroupé les résultats de gap énergétique (ΔE) obtenus dans le tableau IV.5. On remarque que la valeur de (ΔE) est comprise entre 3,05343 eV et 4,95207 eV. Il apparaît clairement que la plus grande valeur de (ΔE) est obtenue en utilisant fonctionnelle B3LYP et HSEH1PBE.Cette valeur est généralement associée à une réactivité importante de la molécule, traduisant une interaction importante par transfert de charge au sein de la molécule, ce qui favorise la bioactivité de la molécule .

Chapítre IV :Etude des propriétés physico-chimie de dérivés d'Uracile et Thiouracile

Figure IV.3 Orbitales moléculaires de F-TU, Cl-TU et Br-TU

		Е	HOMO	LUMO	ΔE	HOMO	LUMO	ΔΕ	I(ev)	A(ev)	μ (ev)	χ (ev)	η (ev)	S (ev)	ω (ev)
		(a,u)	(a,u)	(a,u)	(u,a)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)	(eV)
F-TU	B3LYP	-954.9665326	-0,23517	-0,05176	0,23586	-6,34959	-1,39752	4,95207	6,34959	1,39752	-3,873555	3,873555	2,476035	1,2380175	3,02993058
	HSEH1PBE	-954,2694673	-0,20331	-0,07471	0,1286	-5,48937	-2,01717	3,4722	5,48937	2,01717	-3,75327	3,75327	1,7361	0,86805	4,05709224
	PBE	-954,144 4172	-0,19932	-0,07752	0,1218	-5,38164	-2,09304	3,2886	5,38164	2,09304	-3,73734	3,73734	1,6443	0,82215	4,24731201
	BVP86	-955,0350349	-0,20331	-0,08171	0,1216	-5,48937	-2,20617	3,2832	5,48937	2,20617	-3,84777	3,84777	1,6416	0,8208	4,5094219
	LSDA	-951,0124648	-0,22250	-0,10012	0,12238	-6,0075	-2,70324	3,30426	6,0075	2,70324	-4,35537	4,35537	1,65213	0,826065	5,74084601
	HCTH	-954,9129998	-0,20479	-0,08005	0,12474	-5,52933	-2,16135	3,36798	5,52933	2,16135	-3,84534	3,84534	1,68399	0,841995	4,39035853
	TPSS	- 955,0544167	-0,20331	-0,07471	0,1286	-5,48937	-2,01717	3,4722	5,48937	2,01717	-3,75327	3,75327	1,7361	0,86805	4,05709224
Cl-TU	B3LYP	-1315,324553	-0,23529	-0,06116	0,23586	-6,35283	-1,65132	4,70151	6,35283	1,65132	-4,002075	4,002075	2,350755	1,1753775	3,40669366
	HSEH1PBE	-1314,5651623	-0,23201	-0,06888	0,16313	-6,26427	-1,85976	4,40451	6,26427	1,85976	-4,062015	4,062015	2,202255	1,1011275	3,74615243
	PBE	-1314,3947616	-0,20047	-0,08724	0,11323	-5,41269	-2,35548	3,05721	5,41269	2,35548	-3,884085	3,884085	1,528605	0,7643025	4,93460256
	BVP86	-1315,4267125	-0,20440	-0,09131	0,11309	-5,5188	-2,46537	3,05343	5,5188	2,46537	-3,992085	3,992085	1,526715	0,7633575	5,21929196
	LSDA	-1310,6723892	-0,22341	-0,11006	0,11335	-6,03207	-2,97162	3,06045	6,03207	2,97162	-4,501845	4,501845	1,530225	0,7651125	6,6221008
	HCTH	-1315,348669	-0,20565	-0,08981	0,11584	-5,55255	-2,42487	3,12768	5,55255	2,42487	-3,98871	3,98871	1,56384	0,78192	5,08677597
	TPSS	-1315,4131407	-0,20430	-0,08461	0,11969	-5,5161	-2,28447	3,23163	5,5161	2,28447	-3,900285	3,900285	1,615815	0,8079075	4,70729108
Br-TU	B3LYP	-3426,8345264	-0,23436	-0,06113	0,23586	-6,32772	-1,65051	4,67721	6,32772	1,65051	-3,989115	3,989115	2,338605	1,1693025	3,40225016
	HSEH1PBE	-3428,4329623	-0,23735	-0,07558	0,16177	-6,40845	-2,04066	4,36779	6,40845	2,04066	-4,224555	4,224555	2,183895	1,0919475	4,08601717
	PBE	-3428,2623462	-0,20821	-0,09499	0,11322	-5,62167	-2,56473	3,05694	5,62167	2,56473	-4,0932	4,0932	1,52847	0,764235	5,48073768
	BVP86	-3429,7373363	-0,21208	-0,09896	0,11312	-5,72616	-2,67192	3,05424	5,72616	2,67192	-4,19904	4,19904	1,52712	0,76356	5,7729376
	LSDA	-3423,0823593	-0,23224	-0,11886	0,11338	-6,27048	-3,20922	3,06126	6,27048	3,20922	-4,73985	4,73985	1,53063	0,765315	7,33886636
	HCTH	-3430,7428197	-0,21305	-0,09681	0,11624	-5,75235	-2,61387	3,13848	5,75235	2,61387	-4,18311	4,18311	1,56924	0,78462	5,57544075
	TPSS	-3429,3649381	-0,21090	-0,09135	0,11955	-5,6943	-2,46645	3,22785	5,6943	2,46645	-4,080375	4,080375	1,613925	0,8069625	5,15806501

Tableau IV.5 Energie de gap (ΔE), potentiel d'ionisation(I), affinité électronique(A), potentiel chimique(μ), électronégativité (χ), la dureté (η), et l'indice d'électrophile(ω) de dérivés de Thiouracile calculés par DFT au niveau 6-31G(d,p)
IV-4 Propriétés optiques non linéaires de dérivés de Thiouracile

Au cours de cette étude les géométries ont été obtenues par la méthode DFT avec la base 6-31G (d,p). La valeur maximale du moment dipolaire a été obtenue avec la fonctionnelle TPSS (3.4306 D) pour F-TU, Par contre la plus basse valeur a été obtenue par la fonctionnelle LSDA (3.1416 3.3914D) pour F-TU, Cl-TU.

Nous avons regroupé les résultats des propriétés ONL obtenus dans les tableaux IV.7 et IV.8. On remarque que la valeur de la polarisabilité α_{tot} est comprise entre 1,64079 $\times 10^{-23}$ (esu) et 3,70166 $\times 10^{-23}$ (esu).Il apparaît clairement que la plus grande valeur de l'hyperpolarisabilité est obtenue en utilisant la fonctionnelle HSEH1PBE. Il apparaît clairement que la plus grande valeur de l'hyperpolarisabilité est obtenue en utilisant fonctionnelle TPSS (9,36044 $\times 10^{-31}$ (esu)).

Les propriétés électroniques et optoélectroniques des matériaux sont principalement régies parl'écart électronique (ΔE), diverses études théoriques ont été effectuées afin de trouver une relation entre cet écart énergétique et la structure chimique.

	(/1	/			
		μ _x	$\mu_{\rm v}$	μ_z	μ_{tot}
F-TU	B3LYP	1.9941	2.7485	0.0004	3.3957
	HSEH1PBE	1.9616	2.8059	0.0001	3.4236
	PBE	1.9561	2.7628	0.0003	3.3852
	BVP86	1.9432	2.7554	0.0002	3.3717
	LSDA	1.6341	2.8385	0.0003	3.2752
	HCTH	2.0314	2.7594	0.0004	3.4265
	TPSS	2.0427	2.7562	0.0000	3.4306
Cl-TU	B3LYP	-2.3301	2.4263	-0.0001	3.3640
	HSEH1PBE	-2.3196	2.4961	-0.0001	3.4075
	PBE	2.2178	2.3397	0.0002	3.2238
	BVP86	-2.2061	2.3468	0.0006	3.2209
	LSDA	-1.9350	2.4750	0.0002	<mark>3.1416</mark>
	нстн	-2.3032	2.3671	0.0003	3.3027
	TPSS	-2.3081	2.3463	0.0002	3.2913
Br-TU	B3LYP	-2.9424	-2.0994	0.0003	3.6145
	HSEH1PBE	1.9616	2.8059	0.0001	3.4236
	PBE	2.8039	-2.0531	0.0003	3.4752
	BVP86	2.7779	-2.0503	0.0012	3.4526
	LSDA	2.5527	-2.2327	-0.0004	<mark>3.3914</mark>
	нстн	2.9670	-2.0176	0.0000	3.5880
	TPSS	2.9024	-2.0172	0.0001	3.5345

Tableau IV.6 Moment dipolaire $\mu_{tot}(D)$ de dérivés de Thiouracile calculés par DFT au niveau 6-31G (d,p)

La maximisation des valeurs des hyperpolarisabilités de ces molécules est directement liée à l'écart énergétique HOMO–LUMO, une relation inverse a été trouvé entre le gap énergétique et l' hyperpolarisabilité.

Figure IV.4 Variation du moment dipolaire, polarisabilités et l'hyperpolarisabilités de F-TU, Cl-TU et Br-TU obtenus au niveau DFT

		axx	α_{xy}	a_{yy}	$\alpha_{\rm xz}$	α_{yz}	azz	atot (a,u)	$\alpha_{\rm tot}$
F-TU	B3LYP	171,3900237	-5,3221818	98,8613148	0,0014399	0,0037005	64,06385	111,438396	1,65152
	HSEH1PBE	169,6015317	-5,2447267	97,9355677	0,0074264	-0,0000984	64,0865236	110,541208	1,63822
	PBE	180,8645514	-4,540609	102,3860102	0,0093359	0,0011513	65,6972901	116,315951	1,7238
	BVP86	173,814528	-4,1903799	98,5294513	-0,0003511	0,0006908	64,83695	112,393643	1,66567
	LSDA	174,3293303	-4,0968544	98,5222372	0,0001768	0,0003673	64,8023313	112,5513	1,66801
	HCTH	171,0393285	-4,2514132	97,2707656	0,0007115	0,0001902	63,8333305	110,714475	1,64079
	TPSSTPSS	179,5292891	-4,7595964	102,1682536	0,0083807	0,0014546	65,4831842	115,726909	1,71507
Cl-TU	B3LYP	178,6927475	4,4910348	123,4502522	-0,0034304	0,001057	67,4946331	123,212544	1,82601
	HSEH1PBE	176,857062	4,6586593	122,1052984	-0,0031586	0,0007438	67,5031086	122,155156	1,81034
	PBE	188,7072389	-3,4691572	128,3259029	-0,0014399	0,0001087	69,1138109	128,715651	1,90757
	BVP86	180,5365902	-1,3385323	127,4735579	0,0057217	-0,001881	63,5214943	123,843881	1,83537
	LSDA	180,7587423	-1,318629	127,2788147	0,0057533	-0,0019353	63,5114488	123,849669	1,83545
	HCTH	176,8172046	3,5045681	125,5402159	0,0057365	0,0013383	62,2671326	121,541518	1,80125
	TPSS	179,0806588	-1,0828026	126,8395083	0,0054945	-0,0019484	63,117968	123,012712	1,82305
BrT-U	B3LYP	180,8450561	-11,9814164	138,4425688	0,0002056	-0,0007691	72,1048501	130,464158	1,93348
	HSEH1PBE	186,7 274734	12,6899481	142,8353958	0,0056619	-0,0001758	74932159	24977496,2	3,70166
	PBE	200,9929947	12,3030112	151,0619129	0,0065037	-0,0022794	77,2871434	143,114017	2,12095
	BVP86	129,8246119	0,3482018	140,7420049	0,0004756	0,0062799	67,2737789	112,613465	1,66893
	LSDA	129,7095321	0,5478341	140,941438	0,0004742	0,0062776	67,1896394	112,613537	1,66893
	HCTH	128,1263966	0,281742	138,7434199	0,0004875	0,0052262	66,264357	111,044725	1,64568
	TPSS	129,0190413	0,1504202	140,0057727	0,0005066	0,006314	66,94653	111,990448	1,6597

Tableau IV.7Polarisabilités α_{tot} .10–²³(esu) de dérivés de Thiouracile calculés par DFT au niveau 6-31G (d,p)

,

		β _{xxx}	β _{xxy}	β _{xyy}	B _{yyy}	B _{xxz}	B _{xyz}	β _{yyz}	β _{xzz}	β _{yzz}	β _{zzz}	β _{tot} (a,u)	β_{tot}
F-TU	B3LYP	102,2197666	-11,8176039	113,4316103	54,0399469	-0,087235	0,4895918	1,3069188	-9,0442432	22,0402701	1,109566	216,383032	1,8694
	HSEH1PBE	-330,3924968	-1,3279982	144,5756827	-76,0454627	0,4920319	-0,1488369	-0,1999459	9,145863	19,6561088	0,0221529	185,860207	1,6057
	PBE	223,8978223	-8,3498105	-122,0959993	-51,7739651	0,2149397	-0,1460791	-1,9867249	-5,8166262	22,8840767	0,7430137	102,961214	8,89513
	BVP86	175,7036794	-2,676768	-107,3274921	-51,1917468	0,3611664	-0,3051678	0,1520145	-6,9951713	21,0009559	0,9312001	69,6418824	6,01657
	LSDA	145,1062808	0,6439064	-107,4876753	-49,665985	2,9043679	-0,4124815	-0,8270984	-10,8131027	22,3306484	0,863842	37,9422925	3,27795
	HCTH	163,884666	-2,0536936	-108,4899092	-48,7346591	0,1153731	-0,3757582	0,139126	-7,3541005	19,6259761	0,1329907	57,26385	4,9472
	TPSS	114,734339	1,1127349	-128,0209025	-47,9910547	5,1410577	2,6772214	-1,108559	-13,1244164	24,2254978	0,7640617	35,1240259	3,03447
Cl-TU	B3LYP	-329,6318015	-1,5189345	141,9604478	-73,8530657	-0,5759592	-0,7210215	-0,0820269	8,0856019	19,036935	0,0370707	188,215481	1,62605
	HSEH1PBE	-330,3924968	-1,3279982	144,5756827	-76,0454627	0,492031	-0,1488369	-0,1999459	9,145863	19,6561088	0,0221529	185,860207	1,6057
	PBE	222,7553556	19,7188709	-131,2028813	-43,8453149	0,143883	0,1636552	1,1069704	-9,4813259	18,9361596	0,0795418	82,2458656	7,10547
	<mark>BVP86</mark>	<mark>-87,5048736</mark>	<mark>56,9073174</mark>	119,7370655	<mark>-57,7993047</mark>	<mark>0,1884812</mark>	<mark>-0,1171976</mark>	-0,2842455	<mark>5,6181046</mark>	<mark>23,6742824</mark>	<mark>-0,1038649</mark>	44,1782499	3,81669
	LSDA	<mark>-57,4777476</mark>	<mark>56,2415516</mark>	<mark>122,9927606</mark>	<mark>-65,5595398</mark>	<mark>0,5865341</mark>	<mark>0,3326322</mark>	<mark>0,2157119</mark>	<mark>7,5771069</mark>	<mark>23,8825441</mark>	<mark>-0,1107386</mark>	74,5322914	6,43907
	HCTH	-86,7082118	24,2869134	128,5485903	-24,5035157	0,153182	-0,0052963	-0,0673727	4,3151169	22,3924741	-0,000912	51,206506	4,42388
	TPSS	<mark>-104,8211425</mark>	<mark>54,1114344</mark>	120,1183686	<mark>-66,5130171</mark>	<mark>1,4154811</mark>	<mark>0,5404049</mark>	<mark>0,30394</mark>	<mark>4,8006501</mark>	<mark>22,6338225</mark>	<mark>0,0173378</mark>	22,6194538	1,95416
	_												
BR-	B3LYP	-316,4977889	109,0404794	121,6841771	-32,8770766	0,1866663	0,4626554	0,053172	0,3776512	-24,9777881	-0,1422094		
TU												201,060487	1,73702
	HSEH1PBE	113,433487	-102,8706736	-44,0813886	-0,3079092	-0,3496679	-0,2344855	38,7178695	-1,9748725	113,433487	102,870673	156,822426	1,35484
	PBE	46,8460218	-72,0627371	-137,0752009	-1,2339808	1,5439347	4,9694946	45,0325131	-4,1640071	46,8460218	-72,062737	101,288024	8,75058
	BVP86	<mark>80,265712</mark>	<mark>57,8538481</mark>	151,1629109	-11,2361058	<mark>0,1748937</mark>	<mark>-0,4589827</mark>	<mark>-1,9435934</mark>	<mark>25,3785146</mark>	<mark>-5,9808976</mark>	1,4597535	260,002605	2,24624
	LSDA	-93,5792477	56,2291708	147,8313945	-32,3126388	1,3269224	0,4 447282	-1,1363627	24,1709414	-9,3541257	1,3490948	79,7785371	6,89231
	HCTH	-89,6457873	56,324023	142,0383954	-19,0721695	1,9573162	-0,9582676	-1,9397931	23,2443632	-6,9665899	0,2129625	81,4751603	7,03888
	TPSS	-79,2123621	59,9052511	155,1066159	-9,0712163	-0,006159	0,5020296	1,1137253	24,512878	-10,2312053	1,8818336	108,347212	9,36044

Tableau IV.8Hyperpolarisabilités β_{tot} (esu) de dérivés de Thiouracile calculéspar DFT au niveau 6-31G (d,p)

Conclusion générale

Nous avons effectué une étude théorique des propriétés géométriques, propriétés Vibrationnelles de dérivés d'Uracile et de Thiouracile. Pour ce faire, nous avons utilisé la méthode de Hartree Fock et la théorie de la fonctionnelle de la densité (DFT) avec la fonctionnelle d'échange-corrélation B3LYP et HSEH1PBE avec la base 6- 31G (d, p). Les calculs d'optimisation de géométrie de ces molécules ont été effectués en utilisant le logiciel Gaussian 09. A ce stade de travail, les résultats obtenus par la méthode DFT sont meilleurs que ceux obtenus par la méthode HF. Les fréquences de vibration sont étudiés en utilisant la méthode d'HF et la DFT avec la base 6-31G (d, p) .Chaque fréquence de vibration est attribuée sur la base de la distribution d'énergie potentielle (PED).

L'énergies HOMO – LUMO, le gap énergétique, moment dipolaire, polarisabilité et l'hyperpolarisabilité ont été calculés en utilisant la méthode de la DFT utilisant les fonctionnelles B3LYP , HSEH1PBE, PBE, BVP86, LSDA, HCTH et TPSS avec la base 6-31G(d,p). Nous pouvons dire que la DFT reste la méthode la plus appropriée pour ce type de paramètres. Par conséquent, ces résultats montrent que ces composés présentent une délocalisation électronique importante et ils peuvent avoir des applications diverses en relation avec le transfert d'électrons. Ces simulations numériques permettent néanmoins d'obtenir des informations fiables sur le rôle de la structure géométrique, et de la nature des substituant sur les propriétés ONL. Elles constituent un outil précieux pour prédire l'évolution des caractéristiques moléculaires, et permettent ainsi d'optimiser le choix des molécules, avant de les synthétiser. Il pourrait être intéressant de synthétiser les composés ayant le plus grand valeur de β et la plus petite valeur de l'écart énergétique

Bíbliographies

1. Berbouche Dalila, Etude théorique et modélisation des quelques molécules biologiques actives, thèse de doctorat, Université Med Khider Biskra ,2014

- 2. C.C.J. Roothaan. Rev. Mod. Phys, (1951), 23, 69.
- 3. A. D. Becke. J. Chem. Phys, (1993), 98, 5648.
- 4. A. D. Becke, J. Chem. Phys (1372), 1993, 98.
- 5. Schrödinger, E., Ann. Physik. (1926), 84, 361.
- 6. Born, D; Oppenheimer, J.R. Ann. Phys. Rev. (1927), 84, 457.
- 7. D. R. Hartree, Proc. Combridge Philos. Soc, (1928), 24, 89.
- 8. V. Fock, Z. Phys. (1930), 61, 126.

9. L. H. Thomas, The calculation of atomic fields, Proc. Cambridge Phil. Soc. (1927), 23, 542.

10. E. Fermi, Statistical method to determine some properties of atoms, E Fermi - Rend. Accad. Naz. Lincei, (1927), 6, 602.

11. R. G. Pan and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford). Science Publication), (1989).

- 12. J. C. Slater, Phys. Rev, (1930), 57, 57.
- 13. S. F. Boys, Proc. Roy. Soc (London), (1950), A200, 542.
- 14. E. Clementi, IBM J. Res et Dev,(1965), 9, 2.
- 15. J. A. Pople, R. Ditchfield, et W. J. Hehre, J. Chem. Phys, (1971), 54, 724 .
- 16. J. A. Pople, R. Ditchfield, et W. J. Hehre, J. Chem. Phys, (1972), 56, 2257.
- 17. S. Huzinaga, J. Chem. Phys. (1965), 42, 1293.
- 18. T. H. Dunning, J. Chem. Phys. (1971), 55, 716.

19. M. Yoshimine, B. H. Lengsfield, P. S. Bagus, McLean, and B. Liu, Alchemy II(IBM, Inc., 1990) from MOTECC-90.

20. S. M. Mekelleche, Thèse de doctorat d'état, Université de Tlemcen, (2000).

21. A. Bouferguène, M. Fares, and p. E. Hoggan, Int. J. Quant. Chem. (1996), 57, 810.

22. E. Van Lenthe, R. Van Leeuwen, E. J. Baerends, and J. G. Snijders, «in New challenges in Computational Quantum Chemistry», (Ed Bagus, Groningen, (1994), 93.

23. Gaussian 09, Revision A.02, M. J. Frisch, and all, Gaussian, Inc., Wallingford CT, (2009).

24. P. Hohenberg and W. Kohn, Phys. Rev. (1964), 136, B864.

25. W. Kohn, L. Sham, Phys. Rev, A (1965), 1133, 140.

26. D. M. Ceperley and B. J. Adler, Phys. Rev. Lett. (1980). 45, 566.

27. R. O. Jones and O. Gunnarsson, Reviews of Modern Physics, (1989).61, 689.

28. J. Kübler and V. Eyert, Electronic structure calculations dans: Electronic and Magnetic Properties of Metals and Ceramics (K. H. J. Buschow (VCH Verlagsgesellschaft), Weinheim, (1992).

29. Perdew, J. P.; Wang, Y., Phys. Rev. B (1986), 33, 8800.

30. Becke, A. D., Phys. Rev. A: Gen. Phys. (1988), 38, (6), 3098-100.

Bíbliographies

31. Perdew, J. P.; Burke, K.; Wang, Y., Phys. Rev. B: Condens. Matter (1996), 54, (23), 16533-16539.

32. Perdew, J. P., J. Phys. Rev. B (1986), 33, 8822.

33. Lee, C.; Yang, W.; Parr, R. G., Phys. Rev. B: Condens. Matter (1988), 37, (2), 785-9.

34. Sousa, S. F.; Fernandes, P. A.; Ramos, M. J., J. Phys. Chem. A (2007), 111, (42), 10439-10452.

35. Chermette, H. Actual. Chim. (1996), (7), 10-15.

36. Becke, A. D., J. Chem. Phys. (1996), 104, (3), 1040-6.

37. Krieger, J. B.; Chen, J.; Iafrate, G. J.; Savin, A., Electron Correl. Mater. Prop., [Proc. Int. Workshop], 1st, Crete, Greece, June 28-July 3, (1998-1999), 463-477.

38. Tao, J.; Perdew, J. P.; Staroverov, V. N.; Scuseria, G. E., Phys. Rev. Lett, (2003), 91, (14), 146401/1-146401/4.

39. Van Voorhis, T.; Scuseria, G. E., J. Chem. Phys. (1998), 109, (2), 400-410.

40. Lee, C.; Yang, W.; Parr, R. G., Phys. Rev. B: Condens. Matter (1988), 37, (2), 785-9.

41. Becke, A. D., Phys. Rev. A: Gen. Phys. (1988), 38, (6), 3098-100.

42. Schultz, N. E.; Zhao, Y.; Truhlar, D. G., J. Phys. Chem. A (2005), 109, (49), 11127-11143.

43. Adamo, C.; Barone, V., J. Chem. Phys. (1998), 108, (2), 664-675.

44. Lynch, B. J.; Fast, P. L.; Harris, M.; Truhlar, D. G., J. Phys. Chem. A (2000), 104, (21), 4811-4815.

45. Lynch, B. J.; Zhao, Y.; Truhlar, D. G., J. Phys. Chem. A (2003), 107, (9), 1384-1388.

46. Omar A. Al-Deeb, Ali A. El-Emam, Abdulghafoor A. Al-Turkistani, Seik Weng Ng and Edward R. T. Tiekink, Acta Cryst, (2012), E68, o676–o677

47. Biserka Kojić-Prodić, Živa Ružić-Toroš AND EMIL COFFOU, Acta Cryst, (1976), B32, 1099

48. El-Gazzar, A.-R. B. A. & Hafez, H. N, Bioorg. Med. Chem, (2009), 19, 3392–3397.

49. Mohamed, N. R., El-Saidi, M. M. T., Alia, Y. M. & Elnagdib, M. H. Bioorg. Med. Chem, (2007), 15, 6227–6235.

50. Youssif, S. & Mohamed, S. F, Chem. Monthly, (2008), 139, 161–168.

51. Alagarsamy, V., Vijayakumar, S. & Solomon, V. R. Biomed. Pharmacother, (2007), 61, 285–291.

52. A. E. Frisch, A. B. Nielsen, A. J. Holder, Gauss view, Gaussian Inc., Pittsburg, USA (2003).

53. Nadia G. Haress, Hazem A. Ghabbour, Ali A. El-Emam, C. S. Chidan Kumar and Hoong-Kun

Fun, Acta Cryst. (2014). E70, o1144–o1145

54.S. Swaminathan and K. K. Chacko, Acta Cryst. (1978). B34, 3108-3110

55. R. M.SilVerstein, G. C. Basler, T.C. Morill, Identification spectrométrique de composes organique, Editeur WILEY & SONS (1991).

Bíblíographies

56. M.H. Jamroz, Vibrational Energy Distribution Analysis VEDA 4, Warsaw, 2004.

57. S.W. Xia, X. Xu, Y.L. Sun, Y.L. Fan, Y.H. Fan, C.F. Bi, D.M. Zhang, L.R. Yang, Chin. J.Struct.Chem, (2006), 25, 849.

58. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley, London (1976)

59. J. Padmanabhan, R. Parthasarathi, V. Subramanian, P.K. Chattaraj, Electrophilicity-based charge transfer descriptor. J. Phys. Chem, (2007) A (111).1358–1361.

60. R.S. Mulliken, J. Chem. Phy,(1934), 2,782.

61. R.G. Parr, R.G. Pearson, J. Am. Chem. Soc, (1983), 105, 7512.

62. R.G. Parr, W. Yang, Density functional theory for atoms and molecules, Oxford University Press, New York (1982).

63. R.G. Parr, L. von Szentpaly, S. Liu, Electrophilicity index. J. Am. Chem. Soc, (1999), 121, 1922 -1924

64. P. Sen, G. YaşaAtmaca, A. Erdoğmuş, N. Dege, H. Genç, Y. Atalay, S. ZekiYildiz, Journal of Fluorescence, (2015),25(5), 1225.

65. Ch. Bosshard, K. Sutter, P. H. Pretre, J. Hulliger, M. Florsheimer, P. Kaatz, P. Gunter, Organic Nonlinear Optical Materials, Advances in Nonlinear Optics, vol. 1, Gordon and Breach, Amsterdam. (1995).

66. H. S. Nalwa, S. Miyata, Nonlinear Optics of Organic Molecules and Polymers, CRC Press, 67. B.L. Davydov, L.D. Dekacheva, V.V. Dunina, M.E. Zhabotinski, V.F. Zolin, L.G. Korenevaet M.A. Samokhina. JETP Lettres, (1970), 12, 16.

68. H. Tanak, Y. Köysal, Ş. Işık, H. Yaman, V. Ahsen, Korean Chem. Soc, (2011), 32, 2 673.

Résumé

Ce travail porte sur une étude théorique de dérivés d'Uracile et de Thiouracile, Les calculs théoriques ont été réalisées à l'aide de l'approximation Hartree-Fock (HF) et la théorie de la fonctionnelle de la densité (DFT/ B3LYP), (DFT/ HSEH1PBE) avec les bases 6-31G (d, p). Les résultats de calcul réalisés par (DFT) avec la Fonction HSEH1PBE et les bases 6-31G (d,p) conduit à des résultats similaires dans les angles et longueurs de liaison par rapport à l'expérience.

Les calculs de spectroscopie IR ont permis d'attribuer des fréquences aux différents modes de vibration de la molécule.

Cette étude a été réalisée pour plusieurs propriétés telles que les propriétés électroniques et les propriétés optiquement non-linéaires .Celles-ci ont été calculées en utilisant les méthodes DFT avec les Fonctionnelles B3LYP, HSEH1PBE, PBE, BVP86, LSDA, HCTH et TPSS.

Le moment dipolaire électrique μ , la polarisabilité α et l'hyperpolarisabilité β ont été calculés en utilisant les méthodes DFT et HF. Les calculs d'HOMO, LUMO et ΔE montrent clairement la relation inverse de l'écart HOMO-LUMO avec l'hyperpolarisabilité.

Mots clés : DFT, Uracile, Thiouracile, ONL, HOMO, LUMO

Abstract

This work deals with a theoretical study of Uraciland Thiouracil derivatives. Theoretical calculations achieved using the Hartree-Fock (HF) approximation and (DFT/ B3LYP), (DFT/ HSEH1PBE) with 6-31G (d, p) basis set. The computational results realized by (DFT) with the HSEH1PBE Function and the 6-31G (d,p) bases leads to similar results in the binding angles and lengths compared to the experiment. Calculations of IR spectroscopy held allowed the attribution of frequencies to the different vibration modes of the molecule.

This study was done for several properties such as electronics and NLO properties. These were calculated using the DFT methods and B3LYP, HSEH1PBE, PBE, BVP86, LSDA, HCTH and TPSS fonctionels.

The electric dipole moment μ , the polarisability α and the hyperpolarizability β were calculated using the DFT and HF methods. Calculations of the HOMO, LUMO and ΔE show clearly the inverse relationship of the HOMO- LUMO gap with the hyperpolarizability.

Key words: DFT, Uracil, Thiouracil, ONL, HOMO, LUMO

ملخص

يهدف هذا العمل الى اجراء دراسة نظرية لبعض مشتقات يورسيل و تيوراسيل النتائج الحسابية للميكانيكا الكمومية التي تحققها (DFT) مع التابع HSEH1PBE و التابع B3LYP والقاعدة (DFT) مع التحليل الطيفي إلى نتائج مماثلة في زوايا الربط وأطوالها مقارنة مع التجربة مسمحت الحسابات النظرية من التحليل الطيفي بتحديد أنماط مختلفة من اهتزاز الجزيء. تم إجراء الحسابات النظريةللخصائص الالكترونية و الخصائص الضوئية الغير خطية باستخدام تقريب (HF) Hartree-Fock (HF) ونظرية وتابع دالة الكثافة DFT مع التوابع الضوئية الغير خطية باستخدام تقريب (HF) Hartree-Fock (HF) ونظرية وتابع دالة الكثافة DFT مع التوابع حساب عزم ثنائى القطب μ و الخواص الضوئية الغير خطية مثل الاستقطاب α و الأوراط في الاستقطاب بطريقة HF و DFT أظهرت حسابات محسابات الوفرق بينهما AC المعافي مع التوابع حساب عزم ثنائى القطب الم و الخواص الضوئية الغير خطية مثل الاستقطاب α و الأوراط في الاستقطاب بطريقة HF و DFT أظهرت حسابات OMO و الفرق بينهما AE انه يوجد علاقة عكسية بين

الكلمات المفتاحية : يور اسيل ,تيور اسيل DFT,ONL, HOMO, LUMO