REPUBLIQUEALGERIENNEDEMOCRATIQUEETPOPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHESCIENTIFIQUE

UNIVERSITE« Dr. TAHAR MOULAY »DE SAIDA

FACULTE DES SCIENCES

MEMOIRE

Présenté en vue de l'obtention du diplôme de

MASTER

Spécialité : PHYSIQUE

Option : physique des rayonnements

Par

M^{elle} **BOUCIF** Siham

Sur le thème

Diagnostic spectroscopie en température des régions actives solaires basé sur les raies d'émission X

Soutenu le07/07/2019 devant le jury composé de :

M. MESKINE Mohammed	Maître de Conférences A	Université de Saïda	Président
M. FEROUANI Abdelkarim	Maître de Conférences A	ESSA-Tlemcen	Rapporteur
M. LAASRI Boumediene	Professeur	Université de Saïda	Co-rapporteur
M. BOUDRAA Kamel-Eddine	Maître de Conférences A	Université de Saïda	Examinateur
M. DOUMI Bendouma	Maître de Conférences A	Université de Saïda	Examinateur

Année Universitaire 2018 - 2019

Remerciements

Avant tout je remercie **Allah** le tout puissant, de m'avoir guidée toutes ces années d'études et m'avoir donnéé la volonté, la patience et le courage pour terminer mon travail.

J'adresse un grand remerciement à mon encadreur **Dr. FEROUANI Abdel Karim** Maître de Conférences classe "A" à l'Ecole Supérieure des Sciences Appliquées-Tlemcen, que je remercie vivement pour ses conseils précieux et sa disponibilité, je lui en serais sans cesse reconnaissante.

Ces années ont été pour moi pleines de richesses scientifiques et humaines grâce notamment au **Pr. LASRI Boumediene** qui a été pour moi un Co-Encadreur de Mémoire de Master absolument parfait. Il a été présent pour me soutenir, m'aider et m'a également fait confiance en me laisser libre de faire mes propres choix. Pour tout cela et bien d'autres choses encore, mille mercis LASRI.

J'adresse mes plus vifs remerciements à **Dr. MESKINE Mohammed**, Maître de Conférences classe "A" à l'Université de Saïda, pour m'avoir fait l'honneur de présider le Jury de mon Mémoire et pour l'intérêt qu'il a porté à ce travail.

Je remercie **Dr. Boudraa Kamel eddine**, Maître de Conférences classe "A" à l'Université de Saïda de m'avoir faire l'honneur et le plaisir d'examiner mon travail.

Mes plus sincères remerciements vont également à **Dr. DOUMI Bendouma**, Maître de Conférences classe "A" à l'Université de Saïda qui a bien voulu faire partie du jury et examiner nom manuscrit.

Résumé

Dans ce travail, nous nous intéressons au diagnostic spectroscopique en température électronique d'un plasma photoionisé, qui est basé sur le rapport d'intensité de raies appropriées émises par des ions héliumoïdes de numéro atomique Z relativement petit. Comme raies appropriées, nous avons considéré les trois raies correspondant aux transitions à partir des niveaux excités 1s2l vers le niveau fondamental 1s² S₀. Plus précisément, la raie de résonance w due à la transition $1s2p^{1}P_{1} \rightarrow 1s^{2} {}^{1}S_{0}$, la raie d'intercombinaison (*x*,*y*) $1s2p {}^{3}P_{2,1} \rightarrow 1s^{2}$ ${}^{1}S_{0}$ ainsi que la raie interdite z due à la transition $1s2s {}^{3}S_{1} \rightarrow 1s^{2} {}^{1}S_{0}$. Ces raies apparaissent clairement dans les spectres des plasmas astrophysiques. Comme ion héliumoïde (He-like), nous avons choisi deux, celui Magnésium et silicium. Nous avons effectué des calculs du rapport d'intensité G=(z+x+y)/w de Mg¹⁰⁺ et Si¹²⁺ en fonction de la température électronique dans la gamme allant de 10⁵ à 10⁷ K. Nous verrons que, comme il a été montré par Gabriel et Jordan en 1969, ce rapport peut être très sensible à la température électronique et pratiquement indépendant de la densité électronique. Par voie de conséquence, le rapport G peut servir à déterminer de manière fiable la température électronique du plasma observé.

Mots clés

Plasmas photoionisés, ions fortement chargés, raies d'émission X, recombinaison radiative et diélectronique

Abstract

In this work, we are interested in the diagnostics in electronic temperature of a plasma purely photoionized, based on the intensity ration of lines emitted by ions helium-like, witch have an atomic number Z relatively small. We considered the three lines corresponding to the transitions starting from the excited levels 1s2l towards the fundamental level 1s² S₀, like appropriate lines. More precisely, the line of resonance *w* due to the transition $1s2p^{1}P_{1} \rightarrow 1s^{2} {}^{1}S_{0}$, the line of intercombinaison (*x*, *y*) $1s^{2}p^{3}P_{2,1} \rightarrow 1s^{2} S_{0}$ as well as prohibited line *z* due to the transition $1s2s {}^{3}S_{1} \rightarrow 1s^{2} {}^{1}S_{0}$. These lines appear clearly in the spectra of astrophysical plasmas. As helium-like ion, we chose two, Magnésium and **silicium**. We carried out calculations of the ration of lines intensity G=(z+x+y)/wof Mg¹⁰⁺ and according to the electronic temperature in the range going from 10⁵ to 10⁷ K. We will see that, like it was shown by Gabriel and Jordan in 1969, this intensity ration can be very sensitive to the temperature electronic and practically independent of the electronic density. Consequently, the ration G can be used to determine in a reliable way the electronic temperature of plasma observed.

Key words:

Photoionized plasmas, strongly charged ions, lines emission, radiative and dielectronic recombination,

ملخص

نعرض في طيات هذا العمل، إهتمامنا بالتشخيص الطيفي للبلازما الضوئية في درجة الحرارة الإلكترونية، والتي ترتكز أساساً على نسبة شدة الخطوط المناسبة المنبعثة من الأيونات الهيليومويدية ذات العدد الذري z صغير نسبياً. حسب الأسطر المناسبة، درسنا الخطوط الثلاثة المقابلة للتحولات من مستويات الإثارة 1s21 إلى المستوى الأساسي 2¹ s² بتعبير أدق، خط الرنين W الخطوط الثلاثة المقابلة للتحولات من مستويات الإثارة 1s21 إلى المستوى الأساسي 2¹ s² بتعبير أدق، خط الرنين W الخطوط الثلاثة المقابلة للتحولات من مستويات الإثارة 1s21 إلى المستوى الأساسي 2¹ s² بتعبير أدق، خط الرنين W المحطوط الثلاثة المقابلة للتحولات من مستويات الإثارة 1s22 إلى المستوى الأساسي 2¹ s² بتعبير أدق، خط الرنين W المحطوط الثلاثة المقابلة للتحولات من مستويات الإثارة 1s21 (x,y) وكذلك الخط المحظور z بسبب الانتقال 1s2s ¹ so المح¹ s² so المواد (يشبه) ، اخترنا اثنين +1s² و si¹⁰⁺ . Mg¹⁰⁺ المدة المالازما الفيزيائية الفلكية. كما أيون وكذلك الخط المحظور الميليومويد (يشبه) ، اخترنا اثنين +Si² و Si¹⁰⁺ . Mg¹⁰⁺ المدة المالات نسبة الشدة المدة المالية الفلكية.

لدرجة الحرارة الإلكترونية في النطاق من 10⁵ إلى 10⁷.

يمكن أن تكون هذه النسبة حساسة للغاية لدرجة الحرارة الإلكترونية ومستقلة تقريبًا عن كثافة الإلكترون. نتيجة لذلك لتحديد درجة حرارة الإلكترون بالبلازما المرصودة بشكل موثوق، يمكن استخدام النسبة G

قيم اتخمال حراماكا

البلازما المؤينة والأيونات المشحونة بشدة وخطوط الانبعاث و التركيب الإشعاعي والالكترونيات

Introduction Générale	1
Références	5
I-) Les processus atomiques dans les plasmas	6
I-1) Introduction	7
I-2) Processus atomique	8
1-2-1) Excitation et désexcitation collisionnelles	8
1-2-2) Désexcitation radiative spontanée	12
1-2-3) Ionisation et recombinaison	12
1-2-4) La recombinaison radiative et la photoionisation	14
1-2-5) La recombinaison diélectronique et autoionisation	15
Références	18
II-) Les modèles de plasmas pour le Warm Absorber	19
II-1) Les Noyaux Actifs de Galaxies	20
II-2) Warm Absorber dans N.A.G	20
II-3) Les modèles de plasmas pour W.A	21
II-3-1) Les modèles photoionisés	22
II-3-2) Les plasmas hybrides	23
Références	24

III-) Diagnostic spectroscopie en Te électronique		
III-1) Introduction	27	
III-2) Intensité d'une raie spectrale d'émission	29	
III-3) Diagnostic en température électronique	30	
III-3-1) Données atomiques	33	
III-3-1) Résultats & discussion	35	
Références	39	
Conclusion générale	40	

INTRODUCTION GENERALE

Introduction Générale

Les plasmas astrophysique tendent à être très chauds dont la température électronique peut atteindre quelques millions de degrés qui compose de nombreux objets astronomiques, et qui sont largement présents dans l'univers, comme le soleil, étoiles, galaxies...., ces plasmas s'intéressent beaucoup les physiciens, car elles ressemblent plus aux plasmas astrophysiques produit au laboratoire et ceux étudies dans les expériences d'énergie à fusion qui représente un enjeu majeur pour l'humanité.

En astrophysique, les mécanismes élémentaires d'interaction (photoionisation, excitation, ionisation ...) interviennent lors de la formation d'objets cosmologiques tels que les disques d'accrétion autour des trous noirs [1]. La connaissance de ces mécanismes permet ainsi d'analyser les phénomènes galactiques. Dans le domaine de la fusion thermonucléaire, l'étude des phénomènes d'ionisation et d'excitation est fondamentale pour le développement de la physique des plasmas de fusion, dans lesquels les collisions conduisent à la production d'ions excités dont la désexcitation se traduit par l'émission de rayons X [2].

Dans des plasmas astrophysiques exposés à des sources avoisinantes intenses de rayonnement X, la photoionisation peut constituer un mécanisme important pour la production des ions hautement chargés. De tels plasmas photoionisés font l'objet, depuis ces quelques dernières années ([3-4]), d'études intensives par les astrophysiciens. Les raies d'émission à partir de ces plasmas sont formées principalement par les processus de recombinaisons radiative et diélectronique.

Les plasmas astrophysiques émettant dans le domaine des rayons X existent dans une variété extrêmement large de conditions physiques, allant des plasmas chauds (10^7 - 10^8 K) et raréfiés (10^3 cm⁻³) rencontrés dans le milieu inter-amas au sein des amas de galaxies jusqu'aux plasmas relativement froids (10^4 - 10^5 K) et denses (> 10^{11} cm⁻³) rencontrés dans les régions d'accrétion dans les sources binaires X [5]. De tels plasmas astrophysiques sont, du fait des taux élevés de déclin radiatif associés aux transitions X, généralement hors équilibre thermodynamique local, excepté aux très hautes densités telles que celles dans les photosphères des étoiles à neutrons,

Les principales méthodes de diagnostic des plasmas sont des méthodes faisant appel au rayonnement électromagnétique émis par ces plasmas. L'analyse spectroscopique du rayonnement sur l'ensemble du spectre électromagnétique est interprétée au moyen de modèles théoriques qui décrivent les différents mécanismes de production et d'émission du rayonnement [6-8]. L'étude de ce rayonnement permet de déterminer la nature des atomes (ions), leur répartition et leurs niveaux d'énergie. De plus, les intensités relatives de certaines raies émises par les ions du plasma fournissent de précieux renseignements sur les conditions physiques (densité et température électronique, état d'ionisation,....) qui règnent dans le plasma rayonnant.

En termes de processus de physique atomique, les plasmas émissifs X astrophysiques peuvent se diviser en deux larges catégories: ceux dont l'ionisation est due de façon dominante aux collisions par les électrons et ceux dont l'ionisation est due de façon dominante à la photoionisation. Dans cette deuxième catégorie, la photoionisation est assurée par une source intense de rayonnement située au voisinage. Parmi les plasmas photoionisés on peut citer l'exemple du "Warm Absorber" (W.A) qui est un milieu totalement ou partiellement photoionisé localisé dans les régions centrales des N.A.G (Noyaux Actifs de Galaxies) [9-10].

Dans ce travail de Mémoire, nous nous intéressons au diagnostic en température électronique d'un plasma photoionisé, qui est basé sur le rapport d'intensité de raies appropriées émises par des ions héliumoïdes (He-like) de numéro atomique Z relativement petit. Comme raies appropriées, nous avons considéré les quatre raies correspondant aux transitions à partir des niveaux excités 1s2l vers le niveau fondamental $1s^2$ ${}^{1}S_0$. Plus précisément, la raie de résonance w due à la transition 1s2p ${}^{1}P_1 \rightarrow 1s^2$ ${}^{1}S_0$, la raie d'intercombinaison (x,y) 1s2p ${}^{3}P_{2,1} \rightarrow 1s^2$ ${}^{1}S_0$ ainsi que la raie interdite z due à la transition 1s2s ${}^{3}S_1 \rightarrow 1s^2$ ${}^{1}S_0$. Ces raies apparaissent clairement dans les spectres des plasmas astrophysiques. Comme ion héliumoïde, nous avons choisi deux : **Magnésium** Mg¹⁰⁺ (Z=12) et **Silicium** Si¹²⁺ (Z=14). Nous avons effectué des calculs du rapport d'intensité G = (z+x+y)/w de Mg¹⁰⁺ et Si¹²⁺ en fonction de la température électronique T_e . Nous verrons que, comme il a été montré par Gabriel et Jordan en 1969 [11], ce rapport peut être très sensible à la température

électronique et pratiquement indépendant de la densité électronique. Par voie de conséquence, le rapport G peut servir à déterminer de manière fiable la température électronique du plasma observé.

Nous avons organisé le travail développé dans ce Mémoire selon le plan suivant. Dans le chapitre I nous rappelons les différents processus atomiques intervenant dans les plasmas considérés, parmi lesquels on peut citer l'excitation et désexcitation collisionnelle, transition radiative spontanée, recombinaison radiative et photoionisation, autoionisation et recombinaison diélectronique.

Nous abordons dans le chapitre II les différents processus d'ionisation de plasmas rencontrés lors de l'étude du Warm Absorber. Nous avons considéré non seulement des plasmas purement photoionisés mais également des plasmas hybrides qui sont des plasmas photoionisés mais où un processus d'ionisation supplémentaire entre en jeu tel que les collisions dues aux électrons libres.

Le chapitre III est consacré aux diagnostics en température électronique des plasmas photoionisés basés sur le rapport d'intensité *G* des raies émises par l'ion héliumoïde Mg¹⁰⁺ et Si¹²⁺. Nous avons établi l'expression de *G* dans le cas d'un plasma purement photoionisé et partiellement photoionisé en faisant intervenir des coefficients de taux d'excitation, de recombinaison radiative et diélectronique ainsi que le rapport d'abondance des ions hydrogénoïdes sur ceux héliumoïdes. Nous avons présenté et discuté dans ce chapitre nos résultats numériques sur les variations du rapport d'intensité G = (z+x+y)/w en fonction de la température électronique dans un large intervalle.

Nous terminons notre travail par une conclusion générale.

Références

- [1] A. D. Whiteford, N. R. Badnell, C. P. Ballance et *al.*, Journal of Physics B : Atomic, Molecularand Optical Physics, **35**, 3729, 2002.
- [2] W. A. Schroeder, T. R. Nelson, A. B. Borisov et *al.*, Journal of Physics B : Atomic, Molecularand Optical Physics, **34**, 297, 2001.
- [3] I. Miskovicova, N. Hell, M. Hanke et *al.*, Astronomy and Astrophysics, **590**, A114, 2016.
- [4] A. K. Pradhan and S. N. Nahar, Atomic Astrophysics and Spectroscopy, Cambridge, 2011.
- [5] D. Porquet, J. Dubau and N. Grosso, Space. Sci. Rev., 157, 103, 2010.
- [6] D. Porquet, Thèse de Doctorat, Université de Paris VI, 1999.
- [7] A. K. Ferouani, Thèse de Doctorat, Université de Tlemcen, 2013.
- [8] L. Tahar, Mémoire de Master, Université de Tlemcen, 2013.
- [9] D. Porquet, A. M. Dumont, S. Collin and M. Mouchet, Astron. Astrophys., 341, 58, 1999.
- [10] F. Wang, B. Han, D. Salzmann and G. Zhao, Physics of Plasmas, 24, 041403, 2017.
- [10] A. H. Gabriel et C. Jordan, Mon. Not. R. Astron. Soc, 145, 241, 1969.

PROCESSUS ATOMIQUES DANS LES PLASMAS

I-1) Introduction

Le plasma est souvent présenté comme le quatrième état de la matinière. Il s'agit en fait d'un gaz partiellement ou totalement ionisé, c'est à dire une collection de particules chargées qui interagissent entre elles via les forces de Coulomb et de Lorentz. Ce milieu gazeux se distingue d'un gaz classique, composé exclusivement de particules électriquement neutres, par la nature de l'interaction qui existe entre particules chargées. Il faut savoir que plus de 99% de la matière observable dans l'univers se trouve sous la forme de plasma. Par rapport aux solides, liquides et gaz, les plasmas sont donc omniprésents. Mais ce qui les différencie réellement, c'est que les plasmas s'étendent sur des domaines de température et de densité beaucoup plus importants que les trois autres états de la matière [1].

Il existe actuellement plusieurs dispositifs permettant de créer en laboratoire des plasmas chauds comme ceux à confinement magnétique (Tokamaks), à confinement par lasers (fusion inertielle) ou par compression magnétique (Z-pinch). Ces plasmas sont créés à des densités relativement élevées par rapport à ceux existant dans l'Univers, de l'ordre de 10¹⁴ jusqu'à 10²² cm⁻³. On arrive à produire des plasmas dont la température électronique dépasse aisément 10⁸ K [2].

Lors de l'interaction entre un électron et un ion, plusieurs processus peuvent se produire comme par exemple l'excitation, l'ionisation, la recombinaison radiative et la recombinaison diélectronique. L'importance relative de ces processus varie selon l'énergie de l'électron incident. Un nombre important de travaux consacrés aux collisions électron-ion ont été particulièrement effectués durant ces dernières décennies, guidés principalement par des applications diverses dans l'astrophysique, la physique des plasmas..., qui nécessitent pour leurs interprétations, des données exactes sur ces collisions [3].

I-2) Processus atomiques

Parmi les processus importants d'émission de rayonnement par un plasma chaud ($T_e > 10^5$ K) on trouve l'excitation, l'ionisation et la recombinaison par suite des collisions électron-ion ou bien après photoionisation. Dans ce qui suit nous allons donné un aperçu sur ces processus. Je noterai dorénavant les ions sous la forme X^{z+} avec X le symbole chimique de l'élément considéré, et z la charge de l'ion (z=0 pour un atome neutre et z = Z pour un ion complètement ionisé). Le symbole (*) signifie que l'ion est dans un état excité, c'est-à-dire qu'il n'est pas dans son état fondamental.

I-2-1) Excitation et désexcitation collisionnelles. Coefficient de taux

Sous l'effet d'une collision inélastique entre un électron incident d'énergie ε_i et un ion cible X^{z+} se trouvant initialement dans le niveau *i* d'énergie E_i , une excitation (ou une désexcitation) de l'ion X^{z+} vers le niveau *j* d'énergie ($E_j > E_i$) (ou $E_j < E_i$) peut intervenir avec diffusion d'un électron d'énergie ε_j selon :

$$X^{z+}(i) + e^{-}(\varepsilon_i) \rightarrow X^{z+}(j) + e^{-}(\varepsilon_i)$$

L'excitation (ou la désexcitation) d'un ion par collision électronique est caractérisée par la section efficace $\sigma(i \rightarrow j)$ ayant la dimension d'une surface, et représentant la probabilité pour que l'ion cible X^{z+} soit porté au niveau *j* à partir du niveau *i*. Cette section efficace dépendra du type de la transition $(i \rightarrow j)$ ainsi que de l'énergie ε_i de l'électron incident. Le nombre d'excitations (ou de désexcitations) $(i \rightarrow j)$ subies par un ion par unité de temps sous l'action de tous les électrons libres du plasma ayant une distribution de vitesses $f(v_i)$ s'écrit comme le produit de la densité des électrons N_e par le coefficient de taux d'excitation (ou de désexcitation) $C(i \rightarrow j)$ [4]:

$$W_{ij} = N_e C(i \to j) \tag{I-1}$$

avec:

$$C(i \to j) = \langle v_i \ \sigma(i \to j) \rangle \tag{I-2}$$

où $\langle \rangle$ désigne la moyenne sur la distribution de vitesses $f(v_i)$ des électrons de collision, i.e :

$$C(i \rightarrow j) = \int_{a}^{\infty} v_i \ \sigma(i \rightarrow j) f(v_i) \ dv_i$$
(I-3)

L'intégration sur la vitesse v_i ($v_i = \sqrt{2\varepsilon_i / m_e}$, m_e étant la masse de l'électron) dans l'équation précédente s'effectue de $a = \sqrt{2 \Delta E_{ij} / m_e}$ à l'infini dans le cas de l'excitation (ΔE_{ij} représente l'énergie du seuil d'excitation) et de a = 0 à l'infini dans le cas de la désexcitation.

Il convient souvent d'utiliser la force de collision Ω plutôt que la section efficace σ . L'intérêt d'utiliser Ω réside dans le fait que c'est une quantité sans dimension et qu'elle est symétrique, i.e. $\Omega(i \rightarrow j) = \Omega(j \rightarrow i)$. La relation entre la force de collision et la section efficace s'écrit :

$$\sigma(i \to j) = \frac{\pi a_0^2}{g_i \epsilon_i} \Omega(i \to j)$$
(I-4)

où g_i est le poids statistique du niveau initial *i*, l'énergie cinétique ε_i de l'électron incident est en Rydberg (1 Ry = 13.605 eV) et a_0 est le rayon de Bohr (a_0 = 0,529 Å). Souvent, les électrons libres dans les plasmas peuvent être décrits par la fonction de distribution de vitesses de Maxwell dont l'expression est :

$$f(v_i) = \sqrt{\frac{2}{\pi}} \left(\frac{m_e}{kT_e}\right)^{3/2} v_i^2 \exp\left(-\frac{m_e v_i^2}{2kT_e}\right)$$
(I-5)

Cette distribution de Maxwell est choisie normalisée, c'est-à-dire :

$$\int_{0}^{\infty} f(v_{i}) dv_{i} = 1$$
 (I-6)

En substituant les équations (I-4) et (I-5) dans (I-3) on trouve :

$$C(i \rightarrow j) = \frac{\pi a_0^2}{g_i} \sqrt{\frac{2}{\pi}} \left(\frac{m_e}{kT_e}\right)^{3/2} \int_0^\infty \frac{v_i^3}{\varepsilon_i} \Omega(i \rightarrow j) exp\left(-\frac{m_e v_i^2}{2kT_e}\right) dv_i \qquad (I-7)$$

D'après le principe de conservation de l'énergie totale du système (électron plus ion) on a : $E_i + \varepsilon_i$ (avant collision) = $E_j + \varepsilon_j$ (après collision) Or $\varepsilon_i = m_e v_i^2 / 2 = \varepsilon_j + \Delta E_{ij}$ avec $\Delta E_{ij} = E_j - E_i$ l'énergie de transition.

On effectue le changement de variable $v_i \rightarrow \varepsilon_j$. En tenant compte de $v_i dv_i = v_j dv_j$,

l'équation (I-7) devient :

$$C(i \rightarrow j) = \frac{\pi a_0^2}{g_i} \sqrt{\frac{2}{\pi}} \left(\frac{m_e}{kT_e}\right)^{3/2} \int_0^\infty \frac{v_i^2}{\varepsilon_i} \Omega(i \rightarrow j) \exp\left(-\frac{\varepsilon_j + \Delta E_{ij}}{kT_e}\right) v_j dv_j \qquad (I-8)$$

Du fait que : $d\varepsilon_j = m_e v_j dv_j$ et $v_i^2 / \varepsilon_i = 2 \text{ R} / m_e$ avec R = 1 Ry, nous pouvons réécrire l'équation précédente sous la forme suivante :

$$C_{ij} = \frac{\pi a_0^2}{g_i} \frac{2R}{m_e} \sqrt{\frac{2}{\pi}} \left(\frac{m_e}{kT_e}\right)^{1/2} exp\left(-\frac{\Delta E_{ij}}{kT_e}\right) \times \int_0^\infty \Omega(i \to j) exp\left(-\frac{\varepsilon_j}{kT_e}\right) d\left(\frac{\varepsilon_j}{kT_e}\right) \quad (I-9)$$

Nous remplaçons maintenant les constantes $R = m_e e^4 / 2\hbar^2$ et $a_0 = \hbar^2 / m_e e^2$ dans l'équation (I-9), nous trouvons :

$$C(i \rightarrow j) = \frac{\pi a_0^2}{g_i} \frac{2\hbar}{\sqrt{2m_e a_0}} \sqrt{\frac{2}{\pi}} \left(\frac{R}{kT_e}\right)^{1/2} exp\left(-\frac{\Delta E_{ij}}{kT_e}\right)$$
$$\times \int_0^\infty \Omega(i \rightarrow j) exp\left(-\frac{\varepsilon_j}{kT_e}\right) d\left(\frac{\varepsilon_j}{kT_e}\right)$$
(I-10)

$$C(i \rightarrow j) = 2\sqrt{\pi} \left(\frac{R}{kT_{e}}\right)^{1/2} \frac{a_{0}\hbar}{g_{i}m_{e}} exp\left(-\frac{\Delta E_{ij}}{kT_{e}}\right)$$
$$\times \int_{0}^{\infty} \Omega(i \rightarrow j) exp\left(-\frac{\varepsilon_{j}}{kT_{e}}\right) d\left(\frac{\varepsilon_{j}}{kT_{e}}\right)$$
(I-11)

Sachant que $2\sqrt{\pi} a_0 \hbar / m_e = 2,1716 \times 10^{-8} \text{ cm}^3 \text{ s}^{-1}$ et en utilisant (2,1716 × 10⁻⁸ $\sqrt{13,605}$ = 8,010 × 10⁻⁸), l'équation précédente devient :

$$C(i \rightarrow j) = \frac{8,010 \times 10^{-8}}{g_i T_e^{1/2}} exp\left(-\frac{\Delta E_{ij}}{kT_e}\right) \times \int_0^\infty \Omega(i \rightarrow j) exp\left(-\frac{\varepsilon_j}{kT_e}\right) d\left(\frac{\varepsilon_j}{kT_e}\right)$$
(I-12)

où T_e qui concerne $T_e^{1/2}$ multipliant g_i est exprimé en eV. Si ce T_e est exprimé en K alors :

$$C(i \rightarrow j) = \frac{8.63 \times 10^{-6}}{g_i T_e^{1/2}} exp\left(-\frac{\Delta E_{ij}}{kT_e}\right) \times \int_0^\infty \Omega(i \rightarrow j) exp\left(-\frac{\varepsilon_j}{kT_e}\right) d\left(\frac{\varepsilon_j}{kT_e}\right)$$
(I-13)

Nous faisons un deuxième changement de variable tel que : $x = \varepsilon_j / \Delta E_{ij}$ ce qui implique $d\varepsilon_j = \Delta E_{ij} dx$. Nous obtenons finalement comme expression pour le coefficient de taux d'excitation $i \rightarrow j$ ($\Delta E_{ij} > 0$) en cm³ s⁻¹ :

$$C(i \rightarrow j) = \frac{8.63 \times 10^{-6}}{g_i T_e^{1/2}} \left(-\frac{\Delta E_{ij}}{k T_e} \right) \times \int_{1}^{\infty} \Omega(i \rightarrow j) exp\left(-\frac{\Delta E_{ij}}{k T_e} x \right) dx$$
(I-14)

On peut immédiatement déduire à partir de $C(i \rightarrow j)$ le coefficient de taux de désexcitation $C(j \rightarrow i)$ pour la transition inverse $j \rightarrow i$ grâce à la relation suivante [1] :

$$C(j \to i) = C(i \to j) \frac{g_i}{g_j} exp\left(\frac{\Delta E_{ij}}{kT_e}\right)$$
(I-15)

Notons que ces dernières équations sont valables tant que la distribution des électrons libres du plasma est Maxwellienne.

I-2-2) Désexcitation radiative spontanée

Dans un ion excité, la transition spontanée d'un électron d'un niveau supérieur j d'énergie E_j vers un niveau inférieur i d'énergie E_i avec émission d'énergie sous forme de rayonnement électromagnétique est un processus qui permet à l'ion de retrouver sont état fondamental. Dans les ions fortement chargés, plusieurs types de transitions radiatives peuvent intervenir. La plus importante transition radiative est de type dipolaire électrique, communément appelée transition optiquement permise. Cependant, les transitions de type quadrupolaire électrique, dipolaire et quadrupolaire magnétiques, appelées transitions optiquement interdites, peuvent dans certains cas jouer un rôle important. Les règles de sélection pour chacun de ces quatre types de transition sont résumées dans le tableau I.1. Les raies interdites émises des plasmas chauds peuvent être observées avec une intensité comparable que celle des raies optiquement permises pourvu que le plasma émissif soit de faible densité [5].

I-2-3) Ionisation et recombinaison

L'ionisation et la recombinaison, qui sont des processus inverses l'un de l'autre, jouent un rôle fondamental dans les plasmas. La recombinaison d'un électron à un ion s'effectue le plus souvent sur un état excité, puis l'ion recombiné se désexcite par une cascade de transitions, jusqu'à atteindre l'état fondamental ou un état métastable proche du fondamental.

I-2-3-1) L'ionisation collisionnelle et la recombinaison à trois-corps

L'ionisation collisionnelle est un processus d'interaction entre un ion X^{z+} et un électron libre qui est suivi par la diffusion de l'électron incident et d'un autre électron de l'ion cible :

$$X^{z_{+}} + e^{-} \rightarrow X^{(z_{+1})_{+}} + e^{-} + e^{-}$$

Le processus inverse est appelé recombinaison à trois corps. Il implique une interaction d'un ion avec deux électrons libres dans laquelle il y a capture de l'un des deux électrons et diffusion simultanée du second. Le processus d'ionisation peut être soit direct soit indirect (excitation de couche interne suivie par autoionisation)[3].

	Di	pôle	Quadrupôle		
Type de la transition	Electrique $Q^{(1)}$ Magnétique $M^{(1)}$		Electrique $Q^{(2)}$	Magnétique $M^{(2)}$	
Configuration	$\Delta \tau \neq 0$	$\Delta \tau = 0$	$\Delta \tau = 0$	$\Delta \tau \neq 0$	
Parité	Changement de	Pas Changement de	Pas Changement de	Changement de	
π	π	π	π	π	
l	$\Delta l = \pm 1$	$\Delta l = 0$	$\Delta l = 0,\pm 2$	$\Delta l = \pm 1$	
S	$\Delta S = 0$	$\Delta S = 0$	$\Delta S = 0$	$\Delta S = 0, \pm 1$	
L	$\Delta L = 0, \pm 1$ $(0 \nleftrightarrow 0)$	$\Delta L = 0$	$\Delta L = 0, \pm 1, \pm 2$ $(0 \nleftrightarrow 0, 0 \nleftrightarrow 1)$	Si $\Delta S = 0, \Delta L = 0, \pm 1, \pm 2$ Si $\Delta S = \pm I, \Delta L = 0, \pm 1$ (0 \(\lefty\) 0)	
J	$\Delta J = 0, \pm 1$ $(0 \nleftrightarrow 0)$	$\Delta J = 0, \pm 1$ $(0 \nleftrightarrow 0)$	$\Delta J = 0, \pm 1, \pm 2$ $(0 \nleftrightarrow 0, 0 \nleftrightarrow 1)$ $(\frac{1}{2} \nleftrightarrow \frac{1}{2})$	$\Delta J = 0, \pm 1, \pm 2$ $(0 \nleftrightarrow 0, 0 \nleftrightarrow 1)$ $(\frac{1}{2} \nleftrightarrow \frac{1}{2})$	
М	$\Delta M = 0, \pm 1$	$\Delta M = 0, \pm 1$	$\Delta M = 0, \pm 1, \pm 2$	$\Delta M = 0, \pm 1, \pm 2$	

Tableau I.1 : Règles de sélection des probabilités de transition radiative pour les différents types.

For the second secon

L'ion diffuse l'électron incident et un de ses électrons liés est arraché directement lors de l'interaction. Dans ce cas, il faut que l'énergie de l'électron incident soit supérieure à celle de la liaison de l'électron arraché de l'ion. Si l'énergie cinétique de l'électron incident est suffisamment grande pour y avoir une extraction d'un électron appartenant à une couche interne de l'ion, cela aboutit à un ion $X^{(z+1)+}$ dans un état simplement ou doublement excité qui peut se désexciter radiativement. Donc, ce processus est susceptible de contribuer à la formation de raies. Par exemple, l'ionisation de la sous-couche interne 1*s* des ions lithiumoïdes, initialement dans leur état fondamental $1s^22s$, produit des ions héliumoïdes dans les niveaux excités 1s2s conformément à [3]:

$$X^{z_{+}}(1s^{2}2s) + e^{-} \rightarrow X^{z_{+}}(1s2s) + e^{-} + e^{-}$$

> Ionisation indirecte (excitation-autoionisation)

L'électron incident peut, s'il est suffisamment énergétique, exciter un électron appartenant à une sous-couche interne de l'ion cible X^{z+} . Cela donne naissance à un niveau autoionisant de l'ion, qui peut être suivi par l'autoionisation. Dans cette deuxième voie d'ionisation, il faut que l'énergie de l'électron incident soit supérieure ou égale à la première énergie d'ionisation de l'ion. Cette ionisation indirecte qui a été étudiée à partir du milieu des années 1960 joue souvent un rôle capital dans la détermination de l'état d'ionisation d'un plasma chaud [6].

Dans la recombinaison à trois-corps, un électron peut entrer en collision avec un autre électron au voisinage d'un ion, il peut alors se recombiner avec l'ion en libérant son énergie au deuxième électron. La recombinaison à trois-corps n'est importante que dans le cas de plasmas denses ($N_e > 10^{19}$ cm⁻³)[3].

I-2-4) La recombinaison radiative et la photoionisation

La recombinaison radiative et la photoionisation appartiennent aux processus radiatifs de base caractérisant l'interaction du rayonnement électromagnétique avec des atomes ou des ions. L'émission radiative résultant des collisions électron-ion est responsable de l'apparition de raies spectrales intenses dans les régions des VUV et X, qui sont fréquemment utilisées pour la recherche sur les interactions fondamentales radiatives et collisionnelles et pour la détermination spectroscopique des propriétés de base du plasma, comme par exemple la température électronique, la densité électronique, la polarisation du rayonnement et la distribution des états de charge. Les propriétés de photoionisation et de recombinaison radiative ont été considérées dans plusieurs articles et revues [6-9].

I-2-4-1) La recombinaison radiative

Dans le processus de la recombinaison radiative (RR) un électron libre d'énergie E, en s'approchant d'un ion $X^{(z+1)+}$, est capturé par celui-ci dans une de ses sous-couches vacantes. L'excédent d'énergie résultant de la capture de l'électron libre est directement transformé en l'émission d'un photon :

$$X^{(z+1)+} + e^- \rightarrow X^{z+} + hv$$

I-2-4-2) La photoionisation

L'ionisation radiative est aussi appelée photoionisation. Elle se caractérise par l'absorption d'un photon énergétique par un ion et l'éjection d'un électron de ce dernier. Le photon doit avoir une énergie hv plus grande que l'énergie du seuil d'ionisation E_{ionis} de l'ion :

$$X^{z+} + h\nu \rightarrow X^{(z+1)+} + e^{-}$$

La photoionisation correspond au processus inverse de la photorecombinaison ou la recombinaison radiative (RR).

I-2-5) La recombinaison diélectronique et autoionisation

Plusieurs processus de recombinaison électron-ion peuvent se produire dans les plasmas chauds. Au début des études des plasmas chauds, ceux coronaux, on ne tenait compte que de la recombinaison radiative. Ce processus a été initialement pris en compte par Seaton à la fin des années 1950 pour déterminer la température électronique T_e de la couronne solaire par la théorie de l'équilibre d'ionisation. Mais la température obtenue était en désaccord significatif avec la température déterminée à partir des mesures des largeurs de raies spectrales dues à l'effet Doppler (agitation thermique). Les mesures des largeurs Doppler des raies impliquaient des températures nettement plus élevées que celles trouvées théoriquement en ne tenant compte que de la recombinaison radiative. Ceci pouvait suggérer que le coefficient de taux de recombinaison était sous-estimé. Pour cela, Unsold avait proposé d'inclure un deuxième processus de recombinaison qui est la recombinaison diélectronique. Bien après, il a été montré par Burgess (1964) [10-12] que ce dernier processus est dominant aux hautes températures dans les plasmas de faibles densités qui le cas de la couronne solaire et des restes de Supernovae. L'inclusion de la recombinaison diélectronique a permis de lever le désaccord entre la température T_e de la couronne solaire mesurée par l'élargissement Doppler et celle calculée.

La recombinaison diélectronique s'effectue en deux étapes qui sont les suivantes:

Capture diélectronique: la capture diélectronique (aussi appelée capture non-radiative) est le processus inverse de l'autoionisation. Un électron libre entre en collision avec un ion X^{z+} à une énergie cinétique juste en dessous du seuil d'excitation d'une transition de résonance et forme un état doublement excité : X^{(z-1)+**}, au-dessus de la première limite d'ionisation de l'ion X^{(z-1)+}. C'est la première étape de l'ensemble du processus de recombinaison diélectronique.

$$X^{z+} + e^- \rightarrow X^{(z-1)+**}$$

Si l'autoionisation suit, le système retourne à son état original et aucune recombinaison n'aura eu lieu.

$$X^{(z-1)+**} \longrightarrow X^{z+} + e^{-z}$$

◆ Stabilisation radiative: alternativement l'état autoionisant X^{(z-1)+**} de l'ion doublement excité a la possibilité de se désexciter par transition radiative spontanée vers un état situé au-dessous de la première limite d'ionisation X^{(z-1)+*}. Ce processus de stabilisation dans l'ion X^{(z-1)+} résulte en l'émission d'une raie définie comme le satellite (hv) de la transition parente (hv₀) (raie de résonance ou permise) de l'ion X^{z+}.

$$X^{(z-1)+**} \longrightarrow X^{(z-1)+*} + hv$$

Pour de plus amples détails sur la recombinaison diélectronique, il convient de consulter l'article-revue de Dubau et Volonté (1980) [13].

C'est le processus de stabilisation radiative qui rend la recombinaison diélectronique effective. Les raies satellites sont observées dans le spectre des ions avec $Z \ge 14$. Le rapport de l'intensité des raies satellites et de celle des raies de résonance est essentiellement dépendant de la température et dans certains cas de la densité électronique. Finalement, lorsque la transition de stabilisation prend place, l'état une seule fois excité cascade vers le niveau fondamental :

$$X^{(z-1)+*} \longrightarrow X^{(z-1)+} + h\nu' + h\nu''$$

Références

- [1] J. L. Delcroix, Physique des plasmas, CNRS Éditions, 1994.
- [2] A. K. FEROUANI, Mémoire de Magister, Université de Tlemcen, 2006.
- [3] D. Salzman, Atomic Physics in Hot Plasmas, Oxford University Press, 1998.
- [4] M. K. Inal, Cours physique atomique, Université de Tlemcen, 2017.
- [5] A. K. FEROUANI, Thèse de Doctorat, Université de Tlemcen, 2013.
- [6] J. V. Paradijs and A. M. Bleeker, X-Ray Spectroscopy in Astrophysics, Springer, Netherlands, 1997.
- [7] A. K. Pradhan and S. N. Nahar, Atomic Astrophysics and Spectroscopy, Cambridge, 2011.
- [8] D. Naujoks, Plasma-Material Interactionin Controlled Fusion, Springer, Berlin, 2006.
- [9] D. H. Sampson, Atomic Photoionization, Springer, Berlin, 1982.
- [10] A. Burgess, Astrophys. J., **139**, 776, 1964.
- [11] A. Burgess, Astrophys. J., **141**, 1885, 1965.
- [12] A. Burgess, Annales d'astrophysique, **28**, 774, 1965.
- [13] J. Dubau et S. Volonte, Reports of Progress in Physics, 43, 199, 1980.

LES MODELE DE PLASMAS POUR LE WARM ABSORBER

II-1 Les Noyaux Actifs de Galaxies

Les galaxies actives se distinguent des autres galaxies car elles libèrent une énergie qui n'est pas reliée à des processus stellaires ordinaires. Cette activité est localisée dans une petite partie de la région centrale et est souvent associée à de fortes raies en émission. Les noyaux de telles galaxies sont appelés des Noyaux Actifs de Galaxies (N.A.G). Les N.A.G sont des sources de rayonnement très intenses qui existent dans environ 1 à 10% de toutes les galaxies. Elles émettent sur un très vaste domaine de longueur d'onde de la radio aux rayons gamma. Leurs luminosités bolométriques s'étendent de 10⁴¹ à 10⁴⁸ erg s⁻¹ environ, et elles peuvent être jusqu'à 1000 fois plus intenses que celle de leur galaxie hôte. Une des propriétés vraiment communes à tous les objets actifs est leur émission intense de rayonnement X. En effet, l'émission en X est l'une des principales composantes de la luminosité bolométrique totale, contribuant souvent à plus de 10% de l'énergie observée. Le domaine X montre une variabilité qui a la plus grande amplitude et est la plus rapide de l'ensemble du domaine du continu indiquant par conséquent que l'émission X provient des régions les plus petites, i.e. très proches de la source centrale [1]. Les deux principaux types de composantes d'un N.A.G sont [2-3] :

- ✓ une source centrale très compacte qui libère une grande quantité d'énergie sous forme de rayonnement continu et de particules à haute énergie.
- ✓ différents milieux (tore, disque d'accrétion, nuages denses, Warm Absorber...) qui réfléchissent et/ou absorbent une partie de ce rayonnement et émettent un rayonnement continu et des raies.

II-2) Warm Absorber dans les N.A.G

Le Warm Absorber (WA) est un milieu totalement ou partiellement photoionisé localisé dans les régions centrales des N.A.G (Noyaux Actifs de Galaxies) et plus particulièrement dans les galaxies de Seyfert 1 voir la Figure II-1. Cependant le ou les processus d'ionisation ne sont pas encore clairement déterminés ; en effet la photoionisation n'est peut-être pas le seul processus d'ionisation. Ce milieu est caractérisé par de grandes densités de colonne 10^{21} - 10^{23} cm⁻².

Fig II.1 : Représentation schématique simplifiée du schéma unifié reliant les galaxies de Seyfert (courbe transversale), d'après Antonucci et Miller (1985) [4].

L'existence de ce milieu a été proposée pour la première fois par Halpern en 1984 [5] pour expliquer le spectre X d'un Quasar observé avec le satellite Einstein. Quelques années plus tard, avec le satellite X ROSAT, une large absorption vers 0.8 keV est mise en évidence dans la galaxie de Seyfert 1. Ce milieu depuis qu'il a été découvert, connaît un intérêt croissant car c'est un outil très important dans la compréhension de la structure des régions centrales des Noyaux Actifs de Galaxies NAGs, de la « Broad Line Region » (B.L.R) responsable des raies larges en émission à celle où est formée les raies étroites « Narrow Line Region » (N.L.R). La région interne du "Warm Absorber" serait à une distance analogue à celle de la B.L.R.

II-3) Les modèles de plasmas pour le W.A

D'après Kallman et McCray (1982) [5], il existe deux principales classes de source de rayonnement X :

- Les sources diffuses (gaz interstellaire chaud, reste de Supernovae et gaz intergalactique dans les amas de galaxies), où l'émission X et l'ionisation résultent essentiellement des collisions électroniques dans un gaz optiquement mince et chaud (10⁶ à 10⁸ K), de faible densité atomique (~ 10⁻⁴ cm⁻³ dans un amas de galaxies à 1 cm⁻³ dans les restes de Supernovae). Ils sont appelés plasmas collisionnels ou coronaux et sont définis principalement par leur température.
- Les sources compactes (NAGs, binaires X galactiques) consistent en une source centrale de continu X entourée par du gaz. La structure d'ionisation et l'émissivité sont contrôlées principalement par la photoionisation et la fluorescence plutôt que par les collisions électroniques. La température associée aux électrons dans les sources compactes est relativement faible comparativement aux sources diffuses (~10⁴ à 10⁵ K).

II-3-1) Les modèles photoionisés

Les plasmas photoionisés constituent une part importante des sources de rayonnement X dans l'univers. Ils incluent quelques unes des sources les plus brillantes du ciel. Ce sont des milieux en équilibre thermique radiatif. La photoionisation se caractérise par un photon énergétique interagissant avec un ion qui arrache un électron de cet ion.

Comme il été montré par Tarter et *al.* (1969)[6], l'état du gaz dépend seulement du paramètre d'ionisation ξ , qui est proportionnel au rapport du flux ionisant (*F*) et de la densité du gaz (*n_H*), et non pas de la température comme c'est le cas dans les plasmas collisionnels. Ce paramètre d'ionisation ξ est donné par :

$$\xi = \frac{4 \pi F}{n_H} = \frac{L}{n_H R^2}$$
(II-1)

où L est la luminosité et R est la distance à la source centrale (dilution géométrique). Les plasmas photoionisés différent par certains aspects importants des plasmas coronaux. La température est plus faible pour un niveau donné d'ionisation dans le cas d'un plasma photoionisé que dans le cas coronal. Les raies en émission sont formées de façon prépondérante par recombinaisons radiatives et diélectroniques, plutôt que par excitations collisionnelles dues aux électrons. Cela mène à des spectres d'émission très différents pour un même ion. C'est le cas par exemple des raies les plus intenses des ions héliumoïdes (raies de résonance, interdite, d'intercombinaison) comme nous le verrons dans le chapitre III.

II-3-2) Les plasmas hybrides

Un plasma n'est pas forcément soit photoionisé, soit collisionnel. Dans certains cas, plusieurs types de processus d'ionisation peuvent participer simultanément à l'ionisation du milieu. C'est le cas du W.A (Warm Absorber) qui est généralement supposé photoionisé mais pour lequel un processus d'ionisation supplémentaire n'est pas exclu.

Pour l'étude du Warm Absorber (Porquet et *al.* [7], Porquet et Dubau [8]), nous avons considéré non seulement des plasmas purement photoionisés mais également des plasmas hybrides. Ce que nous appelons plasmas hybrides sont des plasmas photoionisés où un processus d'ionisation supplémentaire entre en jeu tel que les collisions dues aux électrons libres. Le modèle de Warm Absorber est schématisé par la figure II-2.

Fig II.2 : Représentation schématique simplifiée du modèle de Warm Absorber. R est la distance W.A à la source d'ionisation et ΔR est l'épaisseur géométrique du W.A.

.

Références

- [1] D. Porquet, Thèse de Doctorat, Université de Paris VI, 1999.
- [2] S. Collin, C. Boisson, and M. Mouchet et al., Astronomy & Astrophysics, 388, 771, 2002
- [3] D. Porquet, A. M. Dumont and et al., Astronomy & Astrophysics, 341, 58, 1999.
- [4] R. R. J. Antonucci and J. S. Miller, The Astrophysical Journal, 297, 621, 1985.
- [5] T. R. Kallman and R. McCray, Astrophysical Journal Supplement Series, 50, 363, 1982.
- [6] C. B. Tarter, W. H. Tucker et E. E. Salpeter, The Astrophysical Journal, 156, 943, 1969.
- [7] D. Porquet, J. Dubau and N. Grosso, Space. Sci. Rev., 157, 103, 2010.
- [8] D. Porquet et J. Dubau, Astron. Astrophys. Suppl. Ser., 143, 495, 2000.

DIAGNOSTIC SPECTROSCOPIE EN TEMPERATURE ELECTRONIQUE -LE RAPPORT G-

Dans ce chapitre nous intéressons au diagnostic en spectroscopie en température électronique des régions actives solaires basé sur les raies d'émission X. Qui est basé sur le rapport d'intensité (G) de raies appropriées émises par des ions héliumoïdes (He-like) de numéro atomique *Z* relativement petit. Comme raies appropriées, nous avons sélectionné la raie résonance $1s2p \ ^{1}P_{1} \rightarrow 1s^{2} \ ^{1}S_{0}$, le doublet confondu de raies désigné (x,y) due aux transitions d'intercombinaison $1s2p \ ^{3}P_{2,1} \rightarrow 1s^{2} \ ^{1}S_{0}$, respectivement, ainsi que la raie désignée z due à la transition interdite $1s2s \ ^{3}S_{1} \rightarrow 1s^{2} \ ^{1}S_{0}$. Comme ion héliumoïde (He-like), nous avons choisi deux, celui **Magnésium** Mg¹⁰⁺ (*Z*=12) et celui de **silicium** Si¹²⁺ (*Z*=14).

III-I) Introduction

Les ions héliumoïdes (i.e. ions à deux électrons) sont très abondants dans les plasmas et ceci dans un large domaine de température du fait de la stabilité de leur structure électronique en couche fermée 1s², qui nécessite une quantité d'énergie relativement grande pour qu'ils soient ionisés ou même excités.

Les quatre principales raies en émission de ces ions sont les raies de résonance $(w : 1s2p {}^{1}P_{1} \rightarrow 1s^{2} {}^{1}S_{0})$, d'intercombinaisons $(x,y : 1s2p {}^{3}P_{2,1} \rightarrow 1s^{2} {}^{1}S_{0})$, respectivement) et interdite $(z : 1s2s {}^{3}S_{1} \rightarrow 1s^{2} {}^{1}S_{0})$. Toutes ces raies correspondent aux transitions de la couche n=2 vers la couche n=1 (niveau fondamental). Ces raies sont situées dans le domaine des rayons X : 0,1—100 Å. Les règles de sélection ainsi que les définitions de ces différents types de raies sont explicitées dans le chapitre I (Tableau I-1). Ces raies sont rapportées dans le diagramme de Gotrian d'un ion héliumoïde qui montre le niveau fondamental (couche n=1) numéroté 1 et les différents niveaux excités de la couche n=2 numérotés 2 à 7 (Figure III-1). Ces quatre raies sont, depuis longtemps, souvent utilisées comme diagnostics de densité et de température électronique pour le soleil et ses éruptions et quelques fois pour les restes de Supernovae et le milieu interstellaire, i.e. pour les plasmas collisionnels [1-2]. En effet, Gabriel et Jordan (1969) [3-5] avaient montré que les rapports de leurs intensités définis ci-dessous sont sensibles à la densité électronique (rapport appelé *R*) et à la température électronique (rapport appelé *G*) :

$$R(N_e) = \frac{z}{x + y}$$
(III-1)

$$G(T_e) = \frac{z + (x + y)}{w}$$
(III-2)

Ces diagnostics ont l'avantage que les raies sont émises par un même ion, ce qui leur permet d'être indépendants de l'abondance des éléments, et par conséquent d'éliminer un paramètre libre lors des diagnostics. Ces types de diagnostics pourront être utilisés non seulement pour les plasmas collisionnels mais également pour les plasmas photoionisés [6].

Figure III-1 : Diagramme de Gotrian des ions héliumoïdes limité aux couches n=1 et n=2. Trait en continu: excitation collisionnelle, trait en discontinu: désexcitation radiative, tirets courbés: recombinaisons radiative et diélectronique.

Comme il a été mentionné auparavant (Chapitre II), le processus ou les processus d'ionisation du "Warm Absorber" (W.A) ne sont pas encore très bien déterminés. En effet, même si le W.A est communément supposé photoionisé, un processus d'ionisation supplémentaire (par exemple collisionnel) n'est pas exclu [7-8]. C'est pourquoi, ces deux types de plasmas doivent être étudiés. Par la suite, je référerai comme plasma "purement photoionisé" un plasma où la photoionisation est le processus d'ionisation dominant (source d'ionisation externe au plasma). Pour un tel plasma, les recombinaisons des ions hydrogénoïdes (H-like) vers les ions héliumoïdes (He-like) sont dominantes par rapport aux excitations collisionnelles électroniques à partir du niveau fondamental des ions héliumoïdes. En effet, les différences d'énergie entre le niveau fondamental de la couche n=1 et les niveaux excités de la couche n=2 sont très grandes et nécessitent une très grande température

pour permettre la transition d'un électron. Ce qui explique que les raies sont principalement formées par recombinaison.

Un plasma "hybride" signifiera un plasma partiellement photoionisé, i.e. avec un processus supplémentaire d'ionisation, ici collisionnel (source interne d'ionisation). Dans ce type de plasma, les processus d'excitation collisionnelle à partir du niveau fondamental peuvent être aussi importants, sinon plus, que les recombinaisons des ions hydrogénoïdes. Dans ce cas la température est assez élevée pour permettre le passage d'un électron de la couche n=1 à la couche n=2 et les raies sont formées par l'action combinée de l'excitation collisionnelle et de la recombinaison.

Dans le cas d'un plasma photoionisé pur, la recombinaison radiative est le processus dominant aux basses températures alors que la recombinaison diélectronique est dominante aux hautes températures. Les excitations collisionnelles à l'intérieur des niveaux de la couche n=2 peuvent être également très importantes lorsque la densité des électrons est assez grande. En effet, la différence d'énergie entre les niveaux de la couche n=2 est très petite et par conséquent une température même modérée caractéristique des plasmas photoionisés est suffisante pour exciter un électron du niveau métastable 1s2s ${}^{3}S_{1}$ vers l'un des niveaux du terme 1s2p ${}^{3}P$. Le transfert collisionnel de population de 1s2s ${}^{3}S_{1}$ vers 1s2p ${}^{3}P_{0,1,2}$ n'est, en fait, efficace que si la densité des électrons de collision est assez élevée pour contrecarrer la désexcitation radiative spontanée de 1s2s ${}^{3}S_{1}$.

III-2) Intensité d'une raie spectrale d'émission

L'intensité d'une raie spectrale émise d'un plasma optiquement mince et due à la transition d'un niveau supérieur j vers un niveau inférieur <u>i</u> dans un atome (ou ion) X est donnée par la relation suivante :

$$I(j \rightarrow i) = N_j A(j \rightarrow i) h$$
 (III-3)

où N_j désigne la densité des atomes X dans le niveau supérieur j (en cm⁻³), $A(j \rightarrow i)$ est la probabilité de transition radiative spontanée de j vers i (en s⁻¹) et hv est l'énergie du photon émis lors de la transition (en eV). Chapitre III

Nous nous intéressons ici au rapport $G(T_e)$ qui est défini par l'équation (III-2) et rappelé ci-dessous :

$$G(T_e) = \frac{I(2^{3}S_1 \to 1^{1}S_0) + \left[I(2^{3}P_1 \to 1^{1}S_0) + I(2^{3}P_2 \to 1^{1}S_0)\right]}{I(2^{1}P_1 \to 1^{1}S_0)}$$
(III-4)

L'expression de ce rapport devient après avoir appliqué l'équation (III-3).

$$G(T_e) = \frac{N_2 A_{21} h v_z + (N_4 A_{41} h v_x + N_5 A_{51} h v_y)}{N_4 A_{71} h v_w} = \frac{N_2 A_{21} + (N_4 A_{41} + N_5 A_{51})}{N_7 A_{71}}$$

Cette expression peut être approximée par :

$$G(T_e) = \frac{N_2 A_{21} + N_4 A_{41}}{N_7 A_{71}}$$
(III-5)

en utilisant le fait que $A_{51} << A_{52}$ et $hv_z \approx hv_x \approx hv_y \approx hv_w$. En effet, pour des ions de Z petit le niveau 5 se dépeuple par émission spontanée essentiellement vers le niveau 2. Dans l'ion Mg^{10+} considéré ici (par exemple), le rapport de branchement pour la transition radiative de 5 vers 2, $A_{52}/(A_{51}+A_{52})$, vaut 0,98, comme il sera vu ultérieurement.

III-3) Diagnostic en température électronique - rapport G -

Nous introduisons le paramètre ρ_{ion} qui représente le rapport des abondances relatives des ions hydrogénoïdes (H-like) sur les ions héliumoïdes (He-like) qui sont tous les deux très majoritairement dans leur niveau fondamental. Par exemple, pour le Magnésium, cela correspond au rapport des populations des niveaux fondamentaux Mg¹¹⁺/ Mg¹⁰⁺. Une forte valeur de ρ_{ion} signifie que le nombre d'ions hydrogénoïdes est très supérieur à celui des ions héliumoïdes. Par conséquent, il y aura largement plus de recombinaison radiative et diélectronique (H-like \rightarrow He-like) que d'excitations collisionnelles venant du niveau fondamental de l'ion héliumoïde

vers les niveaux excités de la couche n=2 de ce même ion. L'importance des processus de recombinaison (radiative et diélectronique) est proportionnelle à ρ_{ion} .

- ➢ Dans le cas d'un plasma photoionisé pur, la température électronique est relativement basse, les processus généralement dominants de peuplement des niveaux excités sont les recombinaisons radiatives et diélectroniques. Il y a lieu aussi de tenir compte du processus d'excitation collisionnelle à partir du niveau métastable 2 ³S₁ vers les niveaux voisins 2 ³P_{0,1,2} qui nécessite des énergies faibles des électrons de collision. Les niveaux 2 ³P_{0,1,2} sont dépeuplés essentiellement par des transitions radiatives d'intercombinaison (*x*,*y*) vers le niveau fondamental 1 ¹S₀ et par des transitions radiatives optiquement permises vers le niveau fondamental 1 ¹S₀ par une transition interdite (de type dipolaire magnétique relativiste) appelée *z* (Fig.III-1). Il peut être aussi dépeuplé collisionnellement vers le niveau fondamental 1 ¹S₀ par la transition de résonance *w*.
- Dans les plasmas hybrides la température électronique étant assez élevée de l'ordre de 10⁶ K, il y a lieu d'inclure comme processus de peuplement des niveaux excités les excitations collisionnelles à partir du niveau fondamental 1 ¹S₀ noté 1, vers les niveaux supérieurs, notés 2, 3, 4, 5 et 7 (Figure III-1).

Compte tenu des processus de peuplement et dépeuplement sus-mentionnés, les 6 équations régissant les populations des niveaux 2,3,4,5 et 7 s'écrivent comme :

$$N_{2}(A_{21} + N_{e}\sum_{i=3}^{5}C_{2i}) = N_{1}N_{e}C_{12} + N_{3}A_{32} + N_{5}A_{52} + N_{H}N_{e}C_{2}^{r}$$
(III-6)

$$N_3 A_{32} = N_1 N_e C_{13} + N_2 N_e C_{23} + N_H N_e C_3^r$$
(III-7)

$$N_4 A_{41} = N_1 N_e C_{14} + N_2 N_e C_{24} + N_H N_e C_4^r$$
(III-8)

$$N_5 A_{52} = N_1 N_e C_{15} + N_2 N_e C_{25} + N_H N_e C_5^r$$
(III-9)

$$N_7 A_{71} = N_1 N_e C_{17} + N_H N_e C_7^r$$
(III-10)

$$N_1 + N_2 + N_3 + N_4 + N_5 + N_7 = N_{He}$$
(III-11)

où N_H désigne la densité des ions à l'état hydrogénoïde présents dans le plasma émissif (en cm⁻³), N_{He} désigne la densité des ions héliumoïdes dans tous ses états, présents dans le plasma émissif (en cm⁻³), N_e la densité électronique (en cm⁻³), N_i la population du niveau *i* et C_i^r représente le coefficient de taux de recombinaisons radiative (RR) et diélectronique (RD) (en cm³ s⁻¹) vers les niveaux *i*

Les populations N_i (avec i=2-7) de chaque niveau excité de l'ion héliumoïde sont négligeables devant la population N_1 du niveau fondamental, ce qui entraîne que $N_{He} \approx N_1$. En substituant les deux équations (III-7) et (III-9) dans (III-6), on peut écrire comme équation :

$$N_2 A_{21} = N_1 N_e (C_{12} + C_{13} + C_{15}) + N_H N_e (C_2^r + C_3^r + C_5^r) - N_2 N_e C_{24}$$
(III-12)

En substituant maintenant les équations (III-12), (III-8) et (III-10) dans l'équation (III-5), on obtient comme expression finale pour le rapport d'intensité G=(z+x+y)/w en fonction de la température électronique T_e :

$$G(T_e) = \frac{C_{12} + C_{13} + C_{14} + C_{15} + \rho_{ion} (C_2^r + C_3^r + C_4^r + C_5^r)}{C_{17} + \rho_{ion} C_7^r}$$
(III-13)

où $\rho_{\text{ion}} = N_H/N_1$. On note que le rapport *G* est indépendant de la densité N_e . Dans la limite des basses températures, tous les coefficients de taux d'excitation C_{1j} (j = 2-7) sont vraiment négligeables par rapport aux coefficients de taux de recombinaison C_i^r et $G(T_e)$ peut être approximé par :

$$G(T_e) = \frac{C_2^r + C_3^r + C_4^r + C_5^r}{C_7^r}$$
(III-14)

Dans l'autre limite, celle des hautes températures, la situation est inverse, c'est-à-dire que les coefficients C_{i} sont très faibles devant les coefficients C_{1j} , ce qui permet de faire l'approximation :

$$G(T_e) = \frac{C_{12} + C_{13} + C_{14} + C_{15}}{C_{17}}$$
(III-15)

III-3-1) Données atomiques

III-3-1-1) Ions Mg¹⁰⁺

Nous présentons dans le tableau III-1 les valeurs utilisées des coefficients de taux de recombinaison C_i^r (incluant aussi bien la recombinaison radiative (RR) que diélectronique (RD)) vers les cinq niveaux *i*=2,3,4,5 et 7 de l'ion Mg¹⁰⁺ pour diverses températures électroniques comprises entre 2.0×10^5 et 8.0×10^6 K. Ces valeurs ont été prises de la référence Porquet et Dubau (2000) [9].

<i>T</i> _e (K)	C_2^r (cm ³ /s)	C_{3}^{r} (cm ³ /s)	C_4^r (cm ³ /s)	$C_{5}r$ (cm ³ /s)	$C_{7}r$ (cm ³ /s)
2.0 [5]	2.45 [-12]	7.21 [-13]	2.17 [-12]	3.61 [-12]	2.03 [-12]
4.0 [5]	1.62 [-12]	4.32 [-13]	1.30 [-12]	2.16 [-12]	1.21 [-12]
8.0 [5]	1.40 [-12]	2.49 [-13]	7.48 [-13]	1.25 [-12]	6.97 [-13]
2.0 [6]	5.19 [-13]	1.12 [-13]	3.36 [-13]	5.61 [-13]	3.19 [-13]
4.0 [6]	3.55 [-13]	6.05 [-14]	1.84 [-13]	3.05 [-13]	2.31 [-13]
8.0 [6]	2.49 [-13]	3.50 [-14]	1.11 [-13]	1.80 [-13]	2.21 [-13]

Tableau III-1: Coefficients de taux de recombinaison C_i^r vers les cinq niveaux *i*=2, 3, 4, 5 et 7 pour six températures électroniques T_e choisies. Ces coefficients ont été obtenus en additionnant ceux de recombinaison radiative (RR) et ceux de recombinaison diélectronique (RD). Notons que x[y] désigne = x×10^y.

Dans le tableau III-2 nous donnons les valeurs utilisées des coefficients de taux d'excitation collisionnelle à partir du niveau fondamental 1 ${}^{1}S_{0}$, noté 1, vers les cinq niveaux supérieurs 2 ${}^{3}S_{1}$, 2 ${}^{3}P_{0,1,2}$ et 2 ${}^{1}P_{1}$, notés 2,3,4,5 et 7, respectivement, pour diverses températures électroniques T_{e} considérées dans le tableau précédent III-1. Ces données ont été calculé à partir des forces de collision (Zhang et Sampson (1987) [10]), en appliquant la formule I-14 du Chapitre I. Ce calcul impliquant une

<i>T</i> _e (K)	2.0 [5]	4.0 [5]	8.0 [5]	2.0 [6]	4.0 [6]	8.0 [6]
$C_{12} ({\rm cm}^3/{\rm s})$	9.64 [-45]	3.97 [-28]	6.66 [-20]	4.23 [-15]	1.29 [-13]	5.34 [-13]
$C_{13} ({\rm cm}^3/{\rm s})$	2.99 [-45]	1.74 [-28]	3.43 [-20]	2.36 [-15]	7.23 [-14]	2.94 [-13]
$C_{14} ({\rm cm}^3/{\rm s})$	8.98 [-45]	5.20 [-28]	1.03 [-19]	7.08 [-15]	2.17 [-13]	8.83[-13]
$C_{15}(\mathrm{cm}^3/\mathrm{s})$	1.50 [-44]	8.68 [-28]	1.71 [-19]	1.18 [-14]	3.62 [-13]	1.47 [-12]
$C_{17} ({\rm cm}^3/{\rm s})$	2.06 [-44]	1.62 [-27]	3.94 [-19]	3.59 [-14]	1.49 [-12]	9.28 [-12]

intégration sur l'énergie des électrons de collision a été effectuée au moyen de *Mathematica*.

Tableau III-2 : Coefficients de taux d'excitation collisionnelle C_{ij} à partir du niveau fondamental *i*=1 vers les niveaux *j*=2,3,4,5,7 pour plusieurs valeurs de la température électronique T_e . Notons que x[y] désigne = x×10^y.

III-3-1-2) Ions Si¹²⁺

Comme pour l'ion Mg^{10+} nous présentons dans les tableaux suivants toutes les données atomiques concernant l'ion Si¹²⁺, et qui sont nécessaires au calcul du rapport *G* en fonction de *T*_e. Ainsi, dans le tableau III-3 nous donnons les valeurs utilisées des coefficients de taux de recombinaison C_i^r (incluant aussi bien la recombinaison radiative (RR) que diélectronique (RD)) vers les cinq niveaux *i*=2,3,4,5 et 7 de l'ion Si¹²⁺ pour diverses températures électroniques comprises entre 2.8×10⁵ et 1.1×10⁷ K. Ces valeurs ont été prises de la référence Porquet et Dubau (2000) [9].

<i>T</i> _e (K)	C_2^r (cm ³ /s)	C_{3}^{r} (cm ³ /s)	C_4^{r} (cm ³ /s)	C_5^r (cm ³ /s)	$C_{7}r$ (cm ³ /s)
2.8 [5]	2.87 [-12]	8.49 [-13]	2.55 [-12]	4.25 [-12]	2.40 [-12]
5.5 [5]	1.88 [-12]	5.09 [-13]	1.53 [-12]	2.55 [-12]	1.43 [-12]
1.1 [6]	1.20 [-12]	2.93 [-13]	8.81 [-13]	1.47 [-12]	8.23 [-13]
2.8 [6]	6.35 [-13]	1.32 [-13]	3.96 [-13]	6.61 [-13]	3.77 [-13]
5.5 [6]	4.05 [-13]	7.04 [-14]	2.13 [-13]	3.54 [-13]	2.58 [-13]
1.1 [7]	2.72 [-13]	3.90 [-14]	1.21 [-13]	1.98 [-13]	2.22 [-13]

Tableau III-3: Coefficients de taux de recombinaison C_i^r vers les cinq niveaux *i*=2, 3, 4, 5 et 7 pour six températures électroniques T_e choisies. Ces coefficients ont été obtenus en additionnant ceux de recombinaison radiative (RR) et ceux de recombinaison diélectronique (RD). Notons que x[y] désigne = x×10^y.

Enfin, nous exposons dans le tableau III-4 les valeurs des coefficients de taux d'excitation collisionnelle C_{ij} pour diverses températures électroniques T_e dans le domaine 2.8×10^5 - 1.1×10^7 K, qui sont consignés dans le tableau III-3. Ces données ont été calculées à partir des valeurs trouvées dans l'article de Zhang et Sampson (1987) [10], en utilisant une méthode d'interpolation au moyen de *Mathematica*.

T_e (K)	2.8 [5]	5.5 [5]	1.1 [6]	2.8 [6]	5.5 [6]	1.1 [7]
$C_{12} ({\rm cm}^3/{\rm s})$	1.60 [-44]	2.03 [-28]	3.75 [-20]	2.86 [-15]	7.84 [-14]	3.29 [-13]
$C_{13} ({\rm cm}^3/{\rm s})$	5.51 [-45]	9.26 [-29]	1.97 [-20]	1.61 [-15]	4.40 [-14]	1.80 [-13]
$C_{14} ({\rm cm}^3/{\rm s})$	1.65 [-44]	2.78 [-28]	5.91 [-20]	4.84 [-15]	1.32 [-13]	5.39 [-13]
$C_{15} ({\rm cm}^3/{\rm s})$	2.76 [-44]	4.63 [-28]	9.86 [-20]	8.07 [-15]	2.20 [-13]	8.99 [-13]
$C_{17} ({\rm cm}^3/{\rm s})$	4.06 [-44]	8.89 [-28]	2.29 [-19]	2.47 [-14]	8.98 [-13]	5.63 [-12]

Tableau III-4 : Coefficients de taux d'excitation collisionnelle C_{ij} à partir du niveau fondamental *i*=1 vers les niveaux *j*=2,3,4,5,7 pour plusieurs valeurs de la température électronique T_{e} . Notons que x[y] désigne = x× 10^y.

Notons que pour les trois premières températures (i.e $T_e \sim 10^6$ K) présentés dans les tableaux III-2 et III-4, tous les coefficients de taux d'excitation à partir du niveau fondamental sont très faibles et par conséquent le rapport *G* est essentiellement déterminé par les coefficients de taux de recombinaison conformément à l'équation (III-14). Il est intéressant de préciser que pour ces trois températures, par contre les coefficients de taux d'excitation à partir du niveau métastable, C_{2j} (j = 3,4,5), ne sont pas négligeables mais n'interviennent pas dans *G*.

III-3-2) Résultats et discussion

En utilisant toutes les données atomiques contenues dans les tableaux III-1 à III-4, nous avons calculé, à partir de la formule III-13, le rapport d'intensité des raies interdite z, d'intercombinaison (x,y) et résonance w, G=(z+x+y)/w, en fonction de la température électronique T_e variant dans un large domaine et en prenant le paramètre $\rho_{ion} = 10^n$ avec les valeurs suivantes de n : n = -1,0,1,2,3 et 4. Ce calcul a été effectué pour les deux ions émetteurs Mg¹⁰⁺ et Si¹²⁺ en recourant au logiciel *Mathematica*. Les résultats de nos calculs sont donnés dans la figure III-2 et la

figure III-3, qui représentants le rapport *G* en fonction de la température électronique T_e (en échelle logarithmique) pour différentes valeurs du paramètre ρ_{ion} .

Figure III-2 : Variations du rapport d'intensité G=(z+x+y)/w en fonction de la température électronique pour l'ion Mg¹⁰⁺. Le nombre *n* associé à chaque courbe est tel que $\rho_{ion} = 10^n$, où ρ_{ion} désigne le rapport d'abondance des ions hydrogénoïdes sur les ions héliumoïdes, i.e. ici le rapport des populations du niveau fondamental de Mg¹¹⁺/Mg¹⁰⁺. Notons que pour les températures relativement basses, ρ_{ion} grand correspond à un plasma purement photoionisé, des valeurs de plus en plus petites de ρ_{ion} correspondent à des plasmas de plus en plus hybrides, voire collisionnels.

Figure III-3 : Variations du rapport d'intensité G=(z+x+y)/w en fonction de la température électronique pour l'ion Si¹²⁺. Le nombre *n* associé à chaque courbe est tel que $\rho_{ion} = 10^n$, où ρ_{ion} désigne le rapport d'abondance des ions hydrogénoïdes sur les ions héliumoïdes, i.e. ici le rapport des populations du niveau fondamental de Si¹³⁺/ Si¹²⁺. Notons que pour les températures relativement basses, ρ_{ion} grand correspond à un plasma purement photoionisé, des valeurs de plus en plus petites de ρ_{ion} correspondent à des plasmas de plus en plus hybrides, voire collisionnels.

Il apparaît dans les deux figures III-2--III-3 que dans le domaine des faibles températures pour chacun des deux ions, par exemple : dans le cas Mg^{10+} , T_e varie entre 2.0 ~8.0×10⁵ K et dans le cas Si¹²⁺, T_e varie entre 2.8×10⁵ ~1.0×10⁶ K, le rapport G est pratiquement indépendant de T_e et en même temps de ρ_{ion} (rapport des abondances relatives des ions hydrogénoïdes sur les ions héliumoïdes), et atteint une

valeur autour de ~5.23 pour Mg^{10_+} et ~4.67 pour Si¹²⁺. Dans ce domaine de température, le plasma est purement photoionisé et les différentes raies sont formées essentiellement par recombinaison, la température n'étant pas assez élevée pour permettre l'excitation d'un électron de la couche *n*=1 à la couche *n*=2.

A plus forte température, on voit que *G* devient très sensible aux deux paramètres (T_e , ρ_{ion}) et ceci pour les deux figures (ρ_{ion} pris, par exemple, égal à 10 (n = 1)); à titre d'exemple : pour la figure III-2 le rapport *G* décroît de la valeur 4.75 à la valeur 2.85 lorsque la température augmente de 2.0×10^6 à 4.0×10^6 K et pour la figure III-2 on voit que le rapport *G* décroît de la valeur 4.82 à la valeur 1.05 lorsque la température augmente de 2.8×10^6 à 1.1×10^7 K.

Pour des valeurs élevées de ρ_{ion} les processus de recombinaison (radiative plus diélectronique) des ions hydrogénoïdes vers les ions héliumoïdes sont très importants du fait du très grand nombre d'ions hydrogénoïdes par rapport aux ions héliumoïdes. Dans ce cas, les raies intervenant dans *G* sont produites principalement par recombinaison (plasma purement photoionisé). Dans le cas contraire (valeurs faibles de ρ_{ion}) les raies sont produites principalement par les excitations collisionnelles (plasmas hybrides).

Mentionnons que nous avons obtenu des résultats presque identiques à ceux qui ont été publiés par Porquet et al. (2010).

En conclusion, on peut affirmer que le rapport G est un bon indicateur de la température électronique dans un certain domaine.

Références

- [1] Z. Bedrane, M. K. Inal and S. Fritzsche, J. Phys. B : Atom. Molec. Phys., 42, 055701, 2009.
- [2] A. K. Ferouani, M. K. Inal and G. Csanak, J. Phys. B : Atom. Molec. Phys., A6, 085701, 2013.
- [3] A.H. Gabriel and C. Jordan, Mon. Not. R. Astron. Soc., 145, 241, 1969.
- [4] A. H. Gabriel and C. Jordan, Interpretation of spectral intensities from laboratory and astro-physical plasmas, "Case studies in atomic collision physics", McDaniel, McDowell (eds.), vol.2, 1972.
- [5] A. H. Gabriel and C. Jordan, Astrophys. J., 186, 327, 1973.
- [6] A. K. Pradhan, Astrophys. J., **288**, 824, 1985.
- [7] D. A. Liedahl, The X-ray spectral properties of photoinized plasmas and transient plasmas, dans "X-ray spectroscopy in Astrophysics", EADN School, Amsterdan, 1997, eds Jan van Paradjis, Johan A. M. Bleekers, 1999.
- [8] A. K. Ferouani and M. K. Inal, Rev. sci. fond. app., 1, 1, 2009.
- [9] D. Porquet and J. Dubau, Astron. Astrophys. Suppl. Ser., 143, 495, 2000.
- [10] H.L. Zhang and D.H. Sampson, Astrophys. J. Suppl. Ser., 63, 487, 1987.
- [11] D. Porquet, J. Dubau and N. Grosso, Space. Sci. Rev., **157**, 103, 2010.

CO NCLUSION GENERALE

Au cours de ce travail de Mémoire, nous avons étudié la sensibilité en température électronique du rapport d'intensité impliquant quatre raies émises par des ions héliumoïdes de Mg¹⁰⁺ & Si¹²⁺, présents dans des plasmas "purement photoionisés" ou "partiellement photoionisés". Le but de cette étude est son application future aux diagnostics en température électronique de certains milieux astrophysiques tels que le "Warm Absorber" (W.A) existant dans des Noyaux Actifs de Galaxies.

Les quatre raies qui ont été considérées sont, d'une part la raie interdite z (1s2s ${}^{3}S_{1} \rightarrow 1s^{2} {}^{1}S_{0}$) et les raies d'intercombinaison x, y (1s2p ${}^{3}P_{2,1} \rightarrow 1s^{2} {}^{1}S_{0}$), et d'autre part la raie de résonance w (1s2p ${}^{1}P_{1} \rightarrow 1s^{2} {}^{1}S_{0}$). Ces raies peuvent apparaître très intenses pour tous les types de plasmas, "purement photoionisés" ou "partiellement photoionisés", ceci dans un certain domaine assez large de la température électronique. Lors du calcul du rapport d'intensité G (T_{e}) = (z+x+y)/w, nous avons pris en compte les principaux processus atomiques de peuplement et de dépeuplement des niveaux supérieurs des raies. Parmi ces processus, il y a les recombinaisons radiative et diélectronique à partir des ions hydrogénoïdes, soit directement soit indirectement via les cascades radiatives. Il y a aussi les excitations collisionnelles à partir tant du niveau fondamental $1s^{2} {}^{1}S_{0}$ que du niveau métastable $1s2s {}^{3}S_{1}$. Nous avons sélectionné dans la littérature les meilleures données atomiques qui sont nécessaires au calcul du rapport G (T_{e}). Les populations des niveaux supérieurs des raies ont été évaluées dans le cadre du modèle collisionnel radiatif incluant un grand nombre de niveaux.

Les résultats que nous avons obtenus ont montré qu'il existe un domaine de valeurs de température de l'ordre de 10^6 K, pour lequel le rapport *G* est pratiquement indépendant de T_e et du paramètre ρ_{ion} défini comme le rapport d'abondance relative des ions hydrogénoïdes sur les ions héliumoïdes. Dans ce domaine de température, le plasma est alors dominé par l'ionisation due aux photons. Les raies sont formées principalement par recombinaison puisque la température n'est pas assez élevée pour

permettre l'excitation collisionnelle du niveau fondamental 1s²¹S₀ vers les niveaux 1s2*l*.

Dans le domaine des hautes valeurs de température ($\geq 10^6$ K), le rapport *G* devient sensible aux deux paramètres (T_e , ρ_{ion}). Pour de fortes valeurs de ρ_{ion} les processus de recombinaison (radiative plus diélectronique) des ions hydrogénoïdes vers les ions héliumoïdes sont très importants du fait du très grand nombre d'ions hydrogénoïdes par rapport aux ions héliumoïdes. Dans ce cas, les raies sont produites par recombinaison (plasma purement photoionisés). Dans le cas contraire (valeurs faibles de ρ_{ion}) les raies sont produites par les excitations collisionnelles à partir du niveau fondamental (plasmas hybrides).