REPUBLIQUE ALGERIENNE DEMOCRATIQUE ET POPULAIRE MINISTERE DE L'ENSEIGNEMENT SUPERIEUR ET DE LA RECHERCHE SCIENTIFIQUE

UNIVERSITE « Dr. TAHAR MOULAY » DE SAIDA

FACULTE DES SCIENCES

DEPARTEMENT DE PHYSIQUE

Présenté en vue de l'obtention du diplôme de

MASTER Spécialité : PHYSIQUE

Option : Physique des rayonnements

Par

SAYAH SALIH

Sur le thème

Etude complète des ambiguités des paramètres de l'hamiltonien de la bande v_4 de la molécule ¹²CD₄

Soutenu le : 03/07/2019 devant le jury composé de :

Mr. BOUDALI Abdelkader	Pr	Université Dr. Tahar Moulay de Saida	Président
Mr. KAAROUR Abdelkrim	MCB	Université Dr. Tahar Moulay de Saida	Encadreur
Mr. MESKINE Mohamed	MCA	Université Dr. Tahar Moulay de Saida	Co-encadreur
Mlle. SAADAOUI Fatiha	MAB	Université Dr. Tahar Moulay de Saida	Examinateur

Année Universitaire 2018 – 2019

A mon très cher père« MOHAMMED »

Ríen au monde ne vaut les efforts fournís jour et nuit pour mon éducation et mon bien être.

A ma très chère mère «KHADIDJA»

Affable, honorable, aímable : Tu représentes pour moi le symbole de la bonté par excellence, la source de tendresse et l'exemple du dévouement qui n'a pas cessé de m'encourager et de prier pour moi.

Puísse Díeu, le tout puíssant, te préserver et t'accorder santé, longue vie et bonheur.

A toute les roses de vie qui aide moi et en courage pour le succès : ma mère A mon très cher frère : **BOUBAKER, QADA (JALALE)**

A mes très chères sœurs :

Hanía , Khayera, Rekaya, Zana, mahjouba,aícha . A toute la famílle SAYAH et CHAHTOU

A tout mes chères amís

Spécialement : «ABD ELHADI, NORDINE, FATEH, ABD EL HAKE»

A toute la promotion du Spectroscopie 2018-2019 Spécialement : «BARKAT, MEZOUAR, FADILA»

Remerciements

Nous tenons tout d'abord à remercíer **ALLAH** le tout puissant et miséricordieux, qui nous a donné la force et la patience d'accomplir ce modeste travail.

En second lieu, nous tenons à remercier notre encadreur : Monsieur KAAROUR, pour sa disponibilité, sa patience, son précieux conseil et son aide qui ont contribué à orienter et à réaliser notre recherche et notre réflexion durant toute la période du travail.

Nous remercions de tout cœur les enseignants de département de science de la matière.

Nos vífs remercíements vont également aux membres du jury pour l'intérêt qu'ils ont porté à notre recherche en acceptant d'examiner notre travail et de l'enrichir par leurs propositions.

Un remerciement exceptionnel pour *Messadi Tayfoure* et *Madani Abd Kader*

Enfín, nous adressons nos plus síncères remercíements à toutes les personnes quí ont participé de près ou de loin à la réalisation de ce travail.

Sommaire

Introduction1
I. Symétrie moléculaire :
I.1. Introduction :
I.2. Symétries et Groupes:
I.2.1.Symétrie moléculaire :
I.2.2.Opérations de symétrie :4
I.2.3. Eléments de symétrie et opérations de symétrie :4
I.2.4.Différents types d'opération de symétrie :5
I.3.Les groupes ponctuels finis de symétrie :8
I-4 molécules tetraedriques11
I.5 représentation d'un groupe et notions de caractères :
I-6- Les modes normaux de vibration des molécules Tétraédriques :
II- Hamiltonien de vibration-rotation d'une molécule :
II.1 Hamiltonien d'une molécule isolé :
II.1.1 Approximation de Born-Oppenheimer :21
II.1.2 Propriété générale de L'Hamiltonien :23
II.1.3 L'énergie à l'approximation zéro :
II.1.3.1 L'Hamiltonien vibrationnel24
II.1.3.2 l'Hamiltonien rotationnels25
II-2 : Hamiltonien de vibration-rotation d'une molécule26
II.2.1- L'Hamiltonien rovibrationnel des molécules XY426
II.2.1.1- opérateur rotationnels :
II.2.1.2-Opérateurs vibrationnels :
II.2.1.3- Opérateurs rovibrationnels :
II.2.3- Expression des paramètres de l'hamiltonien :
III- Méthodes numériques utilisées dans les analyses des données
Expérimentales
III.1 Ajustement des paramètres de l'Hamiltonien par la méthode des
moindres carrés itératives :
III.2. PROGRAMMES UTILISEES :
III.2.1. Installation de XTDS et explication des instructions

III.3. Programmes utilisés	
III.3.1. Programme de codage des opérateurs rovibrationnel de l'hamiltonien effectif39)
III.3.2. Programme de codage des fonctions de base40)
III.3.3. Programme de calcul et stockage des éléments matriciels non nuls de l'hamiltonien rovibrationnel effectif42	1
III.3.4. Programme qui calcule les valeurs et vecteurs propres d'un hamiltonien effectif4	2
III.3.5. Programme de calcul du spectre (fréquences et moment de transition)4	12
III.3.6. Programme qui calcule le spectre de transition	43
III.4. programme d'attribution	44
IV.ANALYSE DES POSITIONS DES RAIESS4	17
IV.1. Données expérimentales4'	7
IV.2THEORIE: Modèle tensoriel de l'Hamiltonien4	7
IV.3.Analyse de v_4 -GS	9
IV.4.ETUDE PRELIMINAIRE DES AMBIGUITES DES PARAMETRES DE TYPE q ² J ⁴ DE L MOLECULE ¹² CD ₄	.A 2
CONCLUSION	9

Introduction

La spectroscopie moléculaire joue un rôle important dans l'étude et l'identification des systèmes moléculaires qui composent les atmosphères terrestres et planétaires. Parmi les systèmes moléculaires qui occupent une place importante dans le domaine de la recherche, les molécules tétraédriques XY_4 , et dans ce travail on s'est intéressé à la molécule ¹²CD₄ et plus précisément à son spectre d'absorption infrarouge.

Historiquement, Shaffer, Nielson et Thomas (1939) [1] ont considéré en détail l'hamiltonien de vibration rotation des molécules tétraédriques XY4. Au second ordre d'approximation, à la même époque, Jahn (1938) [2] interprète la structure fine des niveaux d'énergie de la bande fondamentale v_4 .

Les travaux utilisés sont ceux de Hecht en (1960) [3] et Moret Bailly (1961) [4] construisent les fonctions d'ondes et les opérateurs de l'hamiltonien sous forme de tenseurs sphériques irréductibles en employant la théorie des groupes. Ainsi Hecht (1960) [5] étend le développement jusqu'au troisième ordre et considère en détail les termes vibrationnels anharmoniques.

Moret Bailly (1960) [6] et graçe à la théorie des tenseurs sphériques adaptée à la symétrie cubique développe un hamiltonien transformé formel quasi diagonal jusqu'au quatrième ordre.

Dorney et Watson [7] étudient ensuite (en 1972) l'hamiltonien effectif relatif aux niveaux de base tendit que Kirschner et al [8], Ozeir [9] et Hilico, Champion et Pierre [10] développent des formalismes s'appliquant aux états excités.

Tous les travaux antérieurs ont contribués et ont conduis ensuite J. P. Champion [11] a proposé une méthode générale systématique de construction des opérateurs de l'hamiltonien (formalisme tétraédrique).

Avec le même principe de construction des opérateurs tensoriels que celui de J. P. Champion, M. Loete (1984) [12] propose un développement formel du moment dipolaire des molécules tétraédrique.

C'est ces deux formalismes qui seront utilisés dans nos programmes pour le calcul, d'une part des niveaux d'énergie (modèle de champion), et d'autre part dans le calcul des intensités rovibrationnelles, et plus précisément dans le calcul des opérateurs du moment dipolaire (modèle de Loete).

Dans cette étude où nous nous sommes proposé d'étudier les fréquences du spectre infrarouge de la molécule ¹²CD4 dans la région qui s'étend de 918 cm⁻¹ à 1268 cm⁻¹ (bande v_4). Nous analyserons les 520 fréquences de raies relatives à cette étude.

Cette analyse nous permet de déterminer un jeu de paramètres de l'hamiltonien, pour suite étudier leurs ambigüités.

Dans le premier chapitre, on va exposer les notions de symétrie moléculaires et la théorie de groupe, éléments essentielles à la spectroscopie moléculaire.

Dans le deuxième chapitre nous allons expliciter toutes les formules permettant de construire l'Hamiltonien des molécules tétraédriques XY₄

Dans le troisième chapitre, nous donnons les méthodes d'analyses utilisés qui permettant à calculer les fréquences de la bande nu 4 à partir des paramètres de l'Hamiltonien déterminés et décrire aussi les programmes et logiciels et les s utilisés à savoir XTDS et SPEVIEW.

Le dernier chapitre sera consacré à l'étude de la bande v_4 et les ambiguïtés sur les paramètres de l'Hamiltonien et après que nous décrirons les logiciels et les programmes utilisés au cours de ce travail, nous allons donner les résultats que nous avons obtenus lors de cette étude. Une interprétation et une conclusion de ces résultats seront ensuite données à la fin de ce chapitre.

I. Symétrie moléculaire :

I.1. Introduction :

Une opération de symétrie est un déplacement, selon des règles bien définies, d'un point ou d'un ensemble de points, par rapport à un élément géométrique qui peut être un point (centre), une droite (axe) ou un plan.

Bien que l'opération soit toujours liée logiquement à l'élément, il convient de ne pas confondre ces deux notions. Le symbole mathématique de l'opération est l'opérateur.

Le produit Ô de deux (ou plusieurs) opérations Ô1 et Ô2 est l'opération résultant de l'exécution successive de ces opérations ; symboliquement

 $\hat{O} = \hat{O}1.\hat{O}2$ signifie qu'on a transformé un objet selon $\hat{O}2$ puis que le résultat obtenu est à son tour transformé selon $\hat{O}1$.

Si une molécule coïncide avec elle-même après avoir subi une opération de Symétrie Ô par rapport à un élément O, on dit qu'elle admet cet élément O comme élément de symétrie. Dans la suite, pour ne pas alourdir l'écriture, on utilisera le même symbole pour désigner l'élément et l'opération.

L'opération identité, en général notée E correspond à la transformation de chaque point en lui-même.[13]

I.2. Symétries et Groupes:

I.2.1.Symétrie moléculaire :

L'élément de symétrie est l'objet par rapport à quel on effectue une opération de symétrie, cet élément peut être une droit, un plan ou un point, l'élément de symétrie par rapport auquel la rotation a été effectué est une droit perpendiculaire au plan de l'objet au point, Chaque élément de symétrie est associée une ou plusieurs opération de symétrie.

Jusqu'à maintenant on a parlé de la symétrie dans le cas général (symétrie des objets), cette rotation est aussi empotée par les chimistes et les physiciens sur les molécules. C'est ce qu'on appelle la symétrie moléculaire .cette dernière, nous fournit une méthode formelle pour la description de la géométrie des molécules et aussi pour étudier quelques propriétés chimique surtout la spectroscopie moléculaire. Les éléments et les opérations de symétrie des molécules sont classés leurs forme.

I.2.2.Opérations de symétrie :

Une **opération de symétrie** est une action qui laisse un objet identique après son application. Par exemple si nous prenons une molécule d'eau et que nous la tournons de 180° selon un axe traversant l'atome d'oxygène, elle sera inchangée. De même elle sera inchangée par réflexion au travers de deux plans miroirs. [14]

Figure (1) : La rotation de 180° d'une molécule d'eau autour d'un axe la laisse inchangée, ainsi que la réflexion au travers de deux plans miroirs :

Chaque opération de symétrie possède un **élément de symétrie**, qui sera un axe un plan ou un point suivant l'opération effectuée. L'élément de symétrie est constitué des points qui restent en place au cours de l'opération. Pour une rotation, par exemple, la ligne de points qui restent en place constitue l'axe de symétrie. Pour une réflexion ces points constituent un plan de symétrie.

I.2.3. Eléments de symétrie et opérations de symétrie :

Elément de symétrie : une entité géométrique par rapport à laquelle s'effectue (ent) une ou plusieurs opération (s) de symétrie (par rapport à un point, à une droite, un plan, etc.). Différence notable entre éléments de symétrie et opération de symétrie **Tableau (1)** : La symétrie d'une molécule est déterminée par la totalité des opérations desymétrie qu'elle possède.

Elément de symétries	Opération
Axe de rotation, Cn	Rotation d'un angle de $2\pi/n$ par rapport
	à l'axe de rotation Cn
Axe de rotation impropre, Sn	Rotation de $2\pi/n$ puis réflexion par
	rapport au plan perpendiculaire à l'axe
	Cn
Plan vertical, σ_v	Reflexion / plan
Plan horizontal, σ_h	Réflexion / plan
Centre diversion, I	Inversion
Aucun, E	Ne rien faire à la molécule

I.2.4.Différents types d'opération de symétrie :

L'identité : L'identité E est une opération de symétrie qui consiste à ne rien faire à la molécule. Ainsi, chaque atome reste dans sa position de symétrie

Axe propres de rotation Cn : Un axe propre de symétrie est une droit autour de quelle on effectue une rotation propre de symétrie.

La molécule d'eau possède une structure plane, les deux hydrogène et l'oxygène appartiennent au même plan, une rotation propre de α =180 autour de l'axe bissecteur de l'angle H₁-O-H₂ laisse la molécule inchangée .cette rotation est associée à l'axe propre de rotation C₂ d'ordre n=2 $\pi/2$ =2 π/π =2

Figure(2) : L'effet de rotation de l'axe C₂.

Plans de symétries σ :

Il existe trois types de plan de symétrie selon son positionnement par rapport à l'axe principal :

Plan σ_h : Le plan de symétrie est noté σ_h s'il est perpendiculaire à l'axe principal.la lettre [«] h [»] en indice signifie horizontal

Plan \sigma v: Le plan de symétrie est noté σ_v s'il contient l'axe principal, la lettre [«] v [»] en indice signifie vertical.

Figure(3) : Effet de l'opération de symétrie plan.

Plan σ_d : Le plan de symétrie est note σ_d s'il contient l'axe principal et au même temps il est bissecteur d'un angle formé par deux axes C₂, la Lattre [«] d [»] en indice signifie diagonal.

Figure (4): Les plans σ_d

Centre d'inversion « i » :L'opération de symétrie associée à un centre d'inversion consiste à faire une réflexion par rapport à un point, est noté par la Lattre [«] i [»]

Figure(5) : Effet de l'opération d'inversion i sur la molécule de SF₆

Axe de rotation impropre Sn : Rotation impropre $2\pi/4$ ou $6\pi/4$ auteur d'axe S₄ sont orientes dans les directions des axes X, Y, Z.

Figure(6) : Rotation impropre S₄

I.3.Les groupes ponctuels finis de symétrie :

Tous les axes et les plans de symétrie d'une molécule doivent avoir au moins un point commun, si toutes les transformations d'un groupe de symétrie d'une molécule conservent inchangé au moins un point, les groupe de symétrie des molécules sont appelés groupe ponctuels de symétrie.

Une molécule ne peut possède tous les éléments de symétrie, aussi on groupe les molécules possédant les mêmes éléments de symétrie, et on les classe par rapport à ces éléments :

1)-<u>les groupes</u> C_n :

Quand il n'existe qu'un axe C $_n$ et aucun autre élément de symétrie à part I, on dit que l'objet appartient au groupe ponctuel C $_n$.

2)-<u>les groupes</u> S_n :

Seulement un axe impropre S_n .ces groupes ne sont utilisés que pour n pair, car pour n impair ils se ramènent à d'autres groupes.

 S_2 : équivalent à i est noté C i Ex : cl Br HC-CH Br cl trans ;

```
S_4: implique \ C_2 \ ;
```

 S_6 : implique C_3 et i etc. ;

3)-<u>les groupes</u> C_{nV} :

Une axe C $_n$ et n plans verticaux σ $_v$ passant par l'axe

 C_{1v} : un seul plan de symétrie, ce qui s'écrit conventionnellement $C_{s}\xspace$;

C_{2v:}H₂O ion formicates HCOO⁻ "ionique";

C_{3v:}NH_{3;} CH₃Cl;

 C_{4v} :PtCL₄⁻⁻

 C_{5v} : les molécules X_5Y_{10} non planes.

C or := 17 : les molécules linéaires asymétriques(HCN).

4)-<u>les groupes</u> D_n :

Un axe C $_n$ plus n axe C $_2$ répartis régulièrement dans un plan perpendiculaire à C $_n$, le

Symbole D vient du mot "dièdre".

 $D_1:\acute{e}quivalant\ a\ C_2\ ;$

 D_2 : souvent désigné par V (de vierergruppe ; $D_2 \equiv V$).

5)-<u>les groupes</u> C_{nh} : Un axe C_n plus un plan σ_h perpendiculaire à C_n

 C_{1h} : équivalent a C_5 .EX ion $C_2H_2CL_2$ transe N_2F_2 transe.

6)-<u>les groupes</u> D_{nh} :

Un axe C _n plus n axes C₂ perpendiculaires a C _n plus n plans σ_d passant par C _n et bissecteur des n C₂ ce groupe dérive donc de D_n avec en plus les n plans σ_d .

 D_{1d} : ne peut auster, car σ_{d} n'a pas de sons s'el est tout seul ;

 D_{2d} :s'écrit aussi V_d . EX l'allène $CH_2=C=CH_2$; Les plans contenant les $=CH_2$ étant perpendiculaire.

7)-<u>le groupe</u> D_{nH}:

Un axe C_n plus σ_v faisant entre eux un angle de $2\pi/2n$ comme dans C_{nv}, plus un plan σ_h normale C_n, Ces élément de symétrie entretuent aussi la présence de n C₂ qui son les intersections de σ_v avec la σ_h .

 $D_{1h}: identique \mathrel{\grave{a}} C_{2v} \ ;$

 D_{2h} : s'écrit également V _h EX C_2H_4 plan ;

 D_{3h} : les molécules planes NO_3^- , $CO3^-$;

D_h : les modèles linéaires symétriques CO₂.

8)-<u>les groupes</u> T :

Ce sont les groupes tétraédriques qui font partie des groupes cubiques, les groupe tétraédrique se subdivisent en traies groupes :

<u>les groupe T</u> : D2 + quatre axe C₃ disposés comme dans le tétraèdre régulier EX le néo pentane $C(CH_3)_4$; Ce groupe est donc de symétrie inferieure à celle du tétraèdre régulier.

-<u>le groupe</u> T_d : l'un des groupes les plus importants c'est ce lui du tétraèdre régulier (D₂), plus 4 C₃ plus 6 σ_d bissectant chaque paire de C₃ EX : NH₄⁺.CH4.

-<u>le groupe</u> T_h : si ou ajoute à la symétrie T_d un centre d'inversion i, ou obtient les groupe T_h Ex aucune molécule connue à ce jour. 9)-<u>le groupe</u> O :

Ces groupes appartiennent également au groupe cubique et se subdivisent en deux groupes.

-<u>le groupe</u> O :

Les éléments de symétrie sont : $3C_4$ mutuellement perpendiculaires plus $4C_3$ respectivement de même orientation que le C_2 et le C_3 du tétraèdre .En conséquence le groupe O possède aussi $6C_2$ en plus des C_2 coïncidant avec les C_4 .Ce groupe est moins symétrique que l'octaèdre régulier.

-<u>les groupe</u> O_h : c'est le groupe de l'octaèdre régulier qui dérive du groupe O en lui ajoutant un centre d'inversion donc : $O + I \rightarrow O_h$

Ex : SF6, **Pt** Cl⁻⁻, ect

Tableau(2) :Les systèmes d'axes et de plans de symétrie des groupes ponctuels sont résumés dans le tableau suivant :

Groupes	Axes et plans de symétrie
Cs	Plan de symétrie
Ci	Centre de symétrie
Cn	Axe de symétrie d'ordre n
S _{2n}	Axe de symétrie d'ordre n + plan horizontal
Cnh	Axe de symétrie d'ordre n + n plans verticaux
Cnv	Axe de symétrie d'ordre n + n axes horizontaux d'ordre 2
Dnh	Axe de symétrie d'ordre n + n axes horizontaux d'ordre 2 + un plan
	horizontal + n plans verticaux contenant les axes d'ordre 2
Dnd	Axe de symétrie d'ordre n + n axes horizontaux d'ordre 2 + n plans
	verticaux bissecteurs des angles formés par les axes horizontaux
	d'ordre 2
T _d	Tétraèdre

I-4-Molécules tétraédriques :

Une molécule tétraédrique est une molécule qui est constituée d'un atome central X, et d'un groupe de 4 atomes de Y (voir figure 7).

Figure(7) : Molécule tétraédrique

Sa configuration d'équilibre est un tétraèdre régulier, ou les atomes Y, occupent les sommets. La (figure 8) montre la disposition tétraédrique.

Figure(8) : Configuration d'équilibre de la molécule XY4.

Coordonnées des atomes Y : Y1 (a, a, a) ; Y2 (-a, -a, a) ; Y3 (a, -a, -a) ; Y4 (-a, a, -a)

Une molécule XY₄ contient 5 atomes, elles a 15 degrés de liberté :

- 3 degrés de liberté correspondent à la translation de la molécule.
- •
- 3 degrés de liberté à sa rotation autour de son centre d'inertie.
- •
- 9 degrés de liberté restant correspondent aux vibrations de la molécule.

I.5. représentation d'un groupe et notions de caractères :

Considérons un groupe de symétrie **G** quelconque contient g éléments de symétrie et k classe ($k \leq g$). L'opération de symétrie R peut être considéré comme un opérateur O_R transforme tout vecteur Ψ de n'importe quel espace fonctionnel F a un vecteur Ψ ' de ce même espace (O_R Ψ = Ψ '). Supposons qu'une base de l'espace fonctionnel ($\Psi_1, ..., \Psi_n$). On peut décrire l'effet de O_R sur tout vecteur de base :

$$O_R \Psi_k = \sum_{j=1}^n [D(R)]_{jk} \Psi_j$$

avec : $k=1,\ldots,n$

Les cœfficients $[D(R)]_{jk}$ peuvent s'écrire suivant une matrice carrée D \in à n ligne et n colonne. Le nombre $[D(R)]_{jk}$ est l'élément appartenant à la j^{ème} ligne et la k^{ème} colonne.

On dit que :

- L'ensemble des matrices de tous les éléments du groupe G que c'est une représentation du groupe G.
- Les fonctions Ψ_1, \ldots, Ψ_n constituent **la base** de la représentation.
- Le nombre n de ces fonctions est **la dimension** de la représentation.

 La somme des éléments diagonaux (la trace) de la matrice représentant l'élément g du groupe est son caractère Noté χ(g) tel que :

$$\chi(g) = k \tag{I.4}$$

- La matrice de transformation identique est diagonale dans toutes les représentations. Ces éléments diagonaux sont égaux à 1.
- Le caractère $\chi \in$ est donc simplement égal à la dimension de la représentation.
- le group **G** possède exactement k représentations irréductibles Γ_1 , Γ_2 ,... Γ_k .dont les dimensions : k_1, k_2, \dots, k_k . Satisfont la relation :

$$k_1^2 + k_2^2 + \dots + k_k^2 = g$$
 (I.5)

Théorie des caractères

soient :

 $\chi_i^{(\mu)}$: Le caractère d'un élément appartenant à la classe k_i dans la représentation irréductible Γ_{μ} .

Le caractère $\chi_i^{(\mu)}$ des différentes représentations irréductibles satisfait les relations suivantes :

$$\sum_{i=1}^{k} g_i \chi_i^{*(\mu)} \chi_i^{(\nu)} = g \delta_{\mu\nu}$$
(I.6)

où :

$\chi^{*(\mu)}_i$: Le Complexe conjugué de $\chi_i^{(\mu)}$.
Κ	: Le nombre des représentations irréductibles (classes d'éléments)
G	: Le nombre d'éléments de symétrie du groupe G .
$\chi_{i}^{(\upsilon)}$: Le caractère d'un élément de symétrie appartenant à
701	la classe k _i . dans la représentation Γ_{v}
$\delta_{\mu\nu}$: Le symbole de kronecker.

L'énumération des représentations irréductibles Γ_{μ} Contenant dans une représentation réductible Γ est :

$$a_{\mu} = \frac{1}{g} \sum_{i=1}^{k} g_i \chi_i^{*(\mu)} \chi^{(\Gamma)}$$
(I.7)

 a_{μ} : Le nombre de fois où Γ_{μ} apparaît dans la représentation réductible Γ . [13]

La méthode des opérateurs de projection nous permet de déterminer une base qui sert à décomposer une représentation réductible comme suit :

$$P^{(\mu)}f_g^{(\nu)} = \frac{g}{n_{\mu}}\delta_{\mu\nu}\delta_{ig}f_i^{(\mu)}$$
(I.8)

tel que :

 $P^{(\mu)}$

$$P^{(\mu)} = \sum \chi^{*(\mu)}(g) g$$
 (I.9)

: Opérateur de projection dans la base de la représentation irréductible Γ_{μ}

$$f_{g}^{(\upsilon)}$$
: Vecteurs de base de la représentation irréductible Γ_{ν}
 $\chi_{i}^{*(\mu)}$: Le Complexe conjugué de $\chi_{i}^{(\mu)}$.
 $\delta_{\mu\nu}, \delta_{ig}$: Symboles de kronecker.
 $f_{i}^{(\mu)}$: Vecteurs de base de la représentation irréductible Γ_{μ} .
N_µ: La dimension de la représentation irréductible Γ_{μ} .

Le caractère d'une symétrie R dans Γ_0 est :

$$\chi_0(R) = \sum_{i=1}^{3n} [D_0(R)]_{ii}$$
 (I.10)

avec :

 $[D_0(R)]_{ii}$: Définissent les éléments diagonaux d'une matrice à 3n colonnes et 3n lignes.

L'ensemble des matrices $[D_0(R)]$ représentant tous les éléments du groupe ponctuel de la molécule forme une représentation Γ du groupe ponctuel. [15]

Le caractère d'une symétrie R vérifie :

$$\chi_0(R) = n_R \chi_R \tag{1.11}$$

où :

n _{R :} Le nombre des noyaux que R laisse dans leurs positions initiales.

$$\chi(R) = 1 + 2\cos(\alpha) \qquad \text{Si} \quad R = C(\alpha) \qquad \text{(I.12)}$$

$$\chi(R) = -1 + 2\cos(\alpha) \qquad \text{Si} \quad R = S(\alpha) \qquad \text{(I.13)}$$

Le caractère $\chi_t(R)$ vaut :

$$\chi_t(R) = \chi_R$$
 (I.14)

Le tableau ci-dessous présente les caractères de quelques opérations de symétrie.

Symétrie R	Е	C (α)	σ	S (α)	i
Caractère X _R	3	1+2cos (a)	1	-1+2cos (α)	-3

I-6- Les modes normaux de vibration des molécules Tétraédriques :

Un mode de vibration d'une molécule est un mouvement pour lequel tous les atomes de la molécule vibrent en phase, à la même fréquence mais dans des directions ou avec des amplitudes différentes. Ce n'est pas toujours facile de reconnaître dans un mouvement désordonné les modes de vibration qui le composent mais on peut toujours le décomposer dans les modes de vibration de la molécule (formant ainsi une combinaison linéaire des modes). Il est donc important de connaître ces modes. Chaque atome d'une molécule a 3degrés de liberté ; il y a donc 3N degrés de liberté dans une molécule formée de N atomes.

Mais comme parmi ces 3N degrés il y en a 3 pour la translation globale de la molécule et3 pour la rotation, il n'en reste que 3N-6 pour les mouvements relatifs des atomes formant ce que l'on appelle les modes de vibration de la molécule. Il faut toutefois ajouter que pour une molécule linéaire, il n'y a que 3N-5 modes de vibration puisque il n'y a pas de degré

de liberté associé à la rotation de la molécule autour de son axe principal (il n'y a pas de moment d'inertie autour de cet axe).

En résumé : 3N – 6 degrés de liberté pour une molécule non linéaire.

3N – 5 degrés de liberté pour une molécule linéaire.

Théorème :

Formule de réduction donnant, nombre de fois où apparaît la ième RI dans la représentation réductible Γ réduction d'une RR

$$a_{\mu} = \frac{1}{g} \sum_{i=1}^{k} g_i \, k \mathcal{X}_i^{\mu} \mathcal{X}_i^{\Gamma} \tag{I-1}$$

g : est l'ordre du groupe.

 g_{l} :est le nombre d'éléments (l'ordre) de la 2ième classe d'opérations.

 $\boldsymbol{\mathcal{X}}_{i}^{\mu}$: est le caractère de la matrice des opérateurs Ok de cette classe dans la RI.

 X_i^r : est le caractère de la matrice du ou des opérateur(s) de cette classe k dans la RR.

Les coordonnées normales de vibrations et leur type de symétrie de la molécule tétraédrique (td).

Td	E	8C3	3C2	6S4	$6\sigma_d$	
n_r	5	2	1	1	3	
χ_R	3	0	-1	-1	1	
$\Gamma_{\rm vib}$	9	0	1	-1	3	

Tableau (4): L'analyse de Γ_{vib}

 n_r : nombre d'atomes non déplacés par la symétrie R.

 X_R : caractère correspondant à la symétrie R.

Γvib: caractère de la représentation réductible vibrationnelle.

Exemple : réduction de la représentation de t_d de ${}^{12}CD_4$

Td	E	8C3	3C2	6S4	$6\sigma_d$
A1	1	1	1	1	1
A2	1	1	1	-1	-1
Е	2	-1	2	0	0
F1	3	0	-1	1	-1
F2	3	0	-1	-1	1
$\mathcal{X}_i^{\scriptscriptstyle \Gamma}$	9	0	1	-1	3

Tableau(5): Table de caractères du groupe T_d.

$$a(A_{1}) = \frac{1}{24}(1 \times 9 \times 1 + 8 \times 0 \times 1 + 3 \times 1 \times 1 + 6 \times -1 \times 1 + 6 \times 3 \times 1) = 1$$

$$a(A_{2}) = \frac{1}{24}(1 \times 9 \times 1 + 8 \times 0 \times 1 + 3 \times 1 \times 1 + 6 \times -1 \times 1 + 6 \times 3 \times -1) = 0$$

$$a(E) = \frac{1}{24}(1 \times 9 \times 2 + 8 \times 0 \times -1 + 3 \times 1 \times 2 + 6 \times -1 \times 0 + 6 \times 3 \times 0) = 1$$

$$a(F_{1}) = \frac{1}{24}(1 \times 9 \times 3 + 8 \times 0 \times 0 + 3 \times 1 \times -1 + 6 \times -1 \times 1 + 6 \times 3 \times -1) = 0$$

$$a(F_{2}) = \frac{1}{24}(1 \times 9 \times 3 + 8 \times 0 \times 0 + 3 \times 1 \times -1 + 6 \times -1 \times -1 + 6 \times 3 \times 1) = 2$$

$$\Gamma_{\rm vib} = A_1 + E + 2F_2$$

Pour déterminer la symétrie des vibrations fondamentales et ultérieurement leurs activités en **Infrarouge** il faut d'abord chercher le caractère de la représentation réductible vibrationnelle Γ_{Vib} établie sur la base des 3n-6 coordonnées décrivant tous les mouvements de vibrations de la molécule.

Comme toutes les molécules tétraédriques XY₄, ¹²CD₄ possède quatre modes normaux de vibration qui sont déterminés de la façon suivante :

Une molécule XY₄ possède 5 noyaux, donc 3n-6=9 coordonnées normales de vibrations. La molécule ${}^{12}CD_4$ a 24 éléments de symétrie groupés en 5 classes conjuguées. Toutes les symétries de T_d laissent le noyau de carbone invariant mais déplacent un nombre n_R variable de noyaux D de leur position d'équilibre.

Les 5 classes de T_d sont : E, pour lequel $n_R = 5$ (tous les noyaux restent invariants). Les rotations C_3 autour des liaisons C-D qui ne laissent qu'un noyau D en sa position initiale (sans compter le noyau du carbone C) et pour lesquelles $n_R = 2$.les rotations C_2 autour des axes d'ordre 2 qui déplacent tous les noyaux D et pour lesquelles $n_R = 1$. Les rotations impropres S_4 autour des mêmes axes pour lesquelles $n_R = 1$. Les symétries σ_d par rapport aux plans contenant deux liaisons C-D qui laissent deux noyaux D invariants et pour lesquelles

 $n_R = 3$.

Les caractères χ_{vib} pour les différentes symétries du groupe $T_d \;\;$ sont donnés dans le tableau suivant :

Caractères xvib pour les symétries du groupe Td

	Е	8C ₃	$3C_2$	$6S_4$	$6\sigma_d$
$\mathbf{n}_{\mathbf{R}}$: nombres d'atomes non déplacées par l'opération \mathbf{R}	5	2	1	1	3
$\chi_{\mathbf{R}}$: caractère de la symétrie R	3	3	-1	-1	1
χ_{vib} : caractères de la représentation Γ_{Vib} de T_d	9	0	0	-1	3

À l'aide de la table de caractères du groupe T_d on décompose la représentation Γ_{vib} en quatre représentations irréductibles [15]

$$\Gamma_{\rm Vib} = A_1 \oplus E \oplus 2F_2$$

Les neufs coordonnés de vibrations correspondent à quatre fréquences fondamentales différentes : une fréquence non dégénéré de type A_1 , une fréquence doublement dégénérée de type E et deux fréquences trois fois dégénérée avec le même type de symétrie F_2 .Ces quatre fréquences sont :

- v_1 (A₁) (modes d'étirement, oscillateur non dégénéré)
- v2 (E) (modes de flexion, oscillateur doublement dégénéré)
- v₃ (F₂) (modes d'étirement, oscillateur triplement dégénéré)
- v4 (F2) (modes de flexion, oscillateur triplement dégénéré)

Les fréquences fondamentales sont approximativement liées entre eux par la relation suivante :

$$\nu_1(A_1) \approx \nu_3(F_2) \approx 2\nu_2(A_1) \approx 2\nu_4(F_2)$$

Ce qui conduit à une structure de poliades bien définie, avec chaque poliade P_n défini par le nombre entier n en tant que :

$$n = 2(v_1 + v_3) + v_2 + v_4$$

Où le $v_i = 0, 1, 2...$ (i = 1 à 4) sont les nombres quantiques vibrationnels. P₀ est l'état fondamental (GS) .Chaque ensemble (v_1, v_2, v_3, v_4) définit un niveau de vibration. En raison de la dégénérescence de trois des vibrations normales, chaque niveau vibrationnel contient un certain nombre de sous-niveaux vibrationnels, dont les symétries sont calculées au moyen des méthodes de la théorie des groupes [15].

Ainsi :

- Le niveau de base où tous les v_i sont nuls, est noté GS (Ground State) ou P_0
- La diade (v_2, v_4) sera notée P_1
- La pentade $(2v_4, v_2+v_4, v_1, 2v_2, v_3)$ sera notée P_2
- L'octade $(3v_4, v_2+2v_4, v_1+v_4, v_3+v_4, 2v_2+v_4, v_1+v_2, v_2+v_3, 3v_2)$ sera notée P₃

Pour construire l'Hamiltonien rovibrationnel des molécules tétraédriques, on fait intervenir le groupe complet des rotations O(3) et les coefficients de couplages de la chaîne de groupe $O(3) \supset T_d$ [16].

II- Hamiltonien de vibration-rotation d'une molécule :

II.1 Hamiltonien d'une molécule isolé :

L'Hamiltonien d'une molécule isolé constituée de N Noyaux et n électrons s'écrit :

$$H = T_e + T_n + V_{ee} + V_{nn} + V_{en}$$
(II - 1)

où les différents termes représentent respectivement

Te: L'énergie cinétique des électrons

T_n: L'énergie cinétique des noyaux

Vee: L'énergie coulombienne d'interaction électron-électron

V_{nn}: L'énergie coulombienne d'interaction noyaux-noyaux

Ven: L'énergie coulombienne d'interaction électron-noyaux

Les niveaux d'énergies E (de rotation-vibration) d'une molécule sont solution de l'équation de Schrödinger indépendante du temps :

$$H\Psi = E\Psi \tag{II.2}$$

Comme le nombre des particules entrant en interaction est très grand, on ne pourra jamais résoudre l'équation (II.2)donc pour surmonter ce problème on fait appel à des méthodes d'approximations.

II.1.1 Approximation de Born-Oppenheimer :

L'approximation de Born Oppenheimer [17], se base sur le fait que les électrons sont beaucoup plus légers et se déplacent plus rapidement que les noyaux.

Cette approximation nous autorise à traiter indépendamment les mouvements des électrons et ceux des noyaux.

L'Hamiltonien relatif au mouvement des noyaux se limite aux termes suivants:

$$H_n = T_n + (II.3)$$

Vn

L'énergie correspondante s'écrit :

$$E_n = E_t + E_s + E_{rv} + E_i$$
(II. 4)

dont les différents thermes représentent respectivement

 E_t : l'énergie translationnelle que nous ne considérons pas, elle introduit un simple terme additif constant:

E_S : l'énergie du au spin nucléaire

Er: l'énergie de rotation -vibration

Ei: L'énergie d'interaction entres les termes précédents.

Les contributions énergétiques dues au spin (Es) et aux interactions (Ei) sont généralement négligeables devant l'énergie de rotation –vibration

Pour calculer les niveaux d'énergies de rotation vibration on résout l'équateur de Schrödinger

$$H_{rv}\psi = E_{rv}$$
(II.5)

Les fonctions d'ondes s'écrivent comme le produit de trois fonctions

$$\psi = \psi_t \psi_s \psi_{rv} \tag{II.6}$$

Où ψ_t , ψ_s et ψ_{rv} se rapportent respectivement à la translation, au spin nucléaire et à la rotation vibration.

Dans l'approximation de Born -Oppenheimer la fonction ψ_t est totalement découplée et la fonction ψ_s intervient seulement dans la dégénérescence de la fonction d'onde totale.

Après avoir éliminé l'énergie de translation de la molécule, L'Hamiltonien de vibrationrotation H_{rv} de Darling-Denison [18]simplifié par Watson[19] s'écrit:

$$H_{\rm rv} = \sum_{\alpha\beta} (J_{\alpha} - P_{\alpha})\mu_{\alpha\beta} (J_{\beta} - P_{\beta}) + \frac{1}{2} \sum_{\alpha\beta} P_{\rm k}^2 - \frac{h^2}{8} \sum_{\alpha} \mu_{\alpha\alpha} + V$$
(II. 7)

Avec :

 J_{α} : Les composantes du moment angulaire total (selon les axes moléculaires)

 $\mu_{\alpha\beta}$:les composants de l'inverse du tenseur d'inertie effectif

 P_{α} sont les composantes du moment angulaire vibrationnel (selon les axes moléculaires) et qui

s'écrivent :

$$P_{\alpha} = \sum_{k,l} \zeta_{k,l}^{\alpha} Q_k P_l \tag{II} \cdot 8)$$

 α et β désignent les axes moléculaires : $\alpha = x, y$ ou z

k et l désignent les 3N-6 coordonnées de vibrations de la molécule

 Q_k : coordonnées normales

 P_k : moment conjugué de la coordonnée normale Q_k

$$P_{k} = -i\hbar \frac{\partial}{\partial Q_{k}}$$
(II. 9)

 ζ_{kl}^{α} : constante de Coriolis

V : l'énergie potentielle ne dépendant que des coordonnés normales des noyaux.

En se plaçant dans l'approximation des petites oscillations, nous pouvons développer l'Hamiltonien de rotation- vibration H_{rv} en une formeconvergenteen fonction des coordonnées normales ,des moments conjugués et des composantes du moment angulaire total .

$$H_{rv} = H_0 + \lambda H_1 + \lambda^2 H_2 + \cdots$$
 (II. 10)

Ou le terme H_0 est la somme de l'Hamiltonien associé au rotateur rigide et la somme des Hamiltoniens relatifs des oscillateurs harmoniques indépendants. Les termes H_1, H_2 ...sont considérés comme des termes de perturbations traduisant l'interaction entre la rotation et la vibration et l'anharmonicité du potentiel.

II.1.2 Propriété générale de L'Hamiltonien :

L'Hamiltonien de vibration – rotation doit être

- Hermétique
- Invariant dans un renversement du temps
- Totalement symétrique dans le groupe de recouvrement de la molécule

II.1.3 L'énergie à l'approximation zéro :

A l'approximation zéro le mouvement de rotation est indépendant de celui de la vibration, donc on peut écrire L'Hamiltonien de rotation vibration de la manière suivante:

$$H_0 = H_v + H_r \tag{II.11}$$

 H_v : l' Hamiltonien de vibration

 H_r : L'Hamiltonien de rotation

II.1.3.1 L'Hamiltonien vibrationnel :

L'Hamiltonien de vibration est une somme d'Hamiltonien relatifs à des oscillateurs harmoniques indépendants

$$H_{v} = \frac{\hbar}{2} \sqrt{\lambda_{s}} \left(\frac{P_{s\sigma}^{2}}{\hbar^{2}} + q_{s\sigma}^{2} \right)$$
(II. 12)

où:

 $P_{s\sigma}etq_{s\sigma}sont$ respectivement la coordonnée normale et son moment conjugué

s: désigne le mode normale de vibration

 σ : différencié les composantes de cette vibration dans le cas ou elle est dégénérée

 λ_s :coefficient lié aux fréquences propres de vibration des oscillateurs

L'énergie de vibration d'une telle molécule s'écrit donc :

$$E_{v} = \sum_{s} \omega \left(v_{s} + \frac{g_{s}}{2} \right)$$
(II. 13)

avec :

 ω_s :le nombre d'onde de l'oscillateur $\ s$

 v_s : le nombre quantique principal de vibration un entier ≥ 0

g_s:les dimensions (dégénérescence) de l'oscillateur s

La fonction d'onde vibrationnelle ψ_v est le produit des fonctions propres des différents oscillateurs harmoniques ψ_{v_s} , ψ_{v_s,l_s} , ψ_{v_s,l_s,m_s}

où,

 $\psi_{v_s}\,$: sont les fonctions d'onde de l'oscillateur non dégénérée ne dépendent que $\,dev_s$

 ψ_{v_s,l_s} : sont les fonctions d'onde de l'oscillateur doublement dégénéré

 ψ_{v_s,l_s,m_s} : sont les fonctions d'onde de l'oscillateur triplement dégénérée

II.1.3.2 l'Hamiltonien rotationnels :

L'Hamiltonien de rotation H_r est celui du rotateur rigide et il s'écrit donc :

$$H_{\rm r} = \frac{1}{2} \sum_{\alpha} \frac{J_{\alpha\alpha}^2}{I_{\alpha\alpha}^{\rm e}} \tag{II. 14}$$

 J_{α} : représente les composantes du moment angulaire de rotation (totale) $I_{\alpha\alpha}^{e}$: Les moments principaux d'inertie de la molécule à l'équilibre L'énergie rotationnelle pour une molécule toupie sphérique

$$E_r = B_e J(J+1)$$
 (II. 15)

Ou $B_e = \frac{h}{8\pi^2 c I_{\alpha\alpha}^e}$ est la Constante d'inertie de la molécule à l'équilibre et J désigne le nombre quantique principal de rotation associé à la longueur du moment angulaire total. Les états quantiques de rotation sont décrits par les fonctions propres d'un rotateur rigide qui sont obtenues à partir des harmoniques sphériques de Wigner.

II-2: Hamiltonien de vibration-rotation d'une molécule :

II.2.1- L'Hamiltonien rovibrationnel des molécules XY4:

Pour construire l'Hamiltonien rovibrationnel des molécules tétraédriques, on fait intervenir le groupe complet des rotations O(3) et les coefficients de couplages de la chaîne de groupe $O(3) = T_d$. [16]

La manière dont ces opérateurs sont construits est indiquée dans les deux paragraphes suivants. :

L'Hamiltonien rovibrationnel complet s'exprime comme une combinaison linéaire des opérateurs rovibrationnels **[21]**

$$H = \sum_{\text{tous les indices}} t_{\{n_s\}\{m_s\}}^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2} \otimes T_{\{n_s\}\{m_s\}}^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2}$$
(II. 18)

Cet opérateur $T^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2}_{\{n_s|m_s\}}$ est obtenu par couplage d'opérateurs

rotationnels R et d'opérateurs vibrationnelsV, s'écrivant d'une manière générale par:

$$T_{\{n_s|m_s\}}^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2} = (R^{\Omega(k,n\Gamma)} \otimes (-1)kV_{\{n_s|m_s\}}^{\Gamma_1\Gamma_2(\Gamma)})^{A1}$$
(II. 19)

où: $\log T_{\{n_s|m_s\}}^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2}$ sont des paramètres rovibrationnel de l'Hamiltonien dépendant des constantes moléculaire (masses, distance, angles, moment d'inerte......)

et $T^{\Omega(k,n\Gamma)\Gamma_1\Gamma_2}_{\{n_s|m_s\}}$: est un opérateur rovibrationnel

Ces opérations sont totalement symétriques dans le groupe T_d , donc de symétrie A_I . Ils sont aussi hermétique, et invariant dans un renversement du temps. Le degré de ces opérateurs par rapport aux variables Q_{sr} , p_{sr} , p_{α}

est:
$$\mathbf{d} = \boldsymbol{\Omega} + \sum (\boldsymbol{n}_s + \boldsymbol{m}_s)$$
(II. 20)

La manière dont ces opérateurs sont construits est indiquée dans les deux

paragraphes suivants :

II.2.1-1 opérateur rotationnels :

MORET-BAILLY, les opérateurs rotationnels **[22]** sont construits à partir de l'opérateur tensoriel élémentaire $A^{(1)}$ de composantes ($\frac{2 p_{\alpha}}{\hbar}, \alpha = x, y, z$), expriment les opérateurs rotationnels sous forme tensoriels dans le groupe des rotations **O(3)**, ou les p α désignent les composantes du moment angulaire de la molécule, par suite les opérateurs rotationnels dans le groupe **T**_d s'expriment par

$$R^{\Omega(k,n\Gamma)} = \begin{bmatrix} A^1 \otimes A^1 \otimes A^1 \otimes \dots \otimes A^1 \\ \Omega \text{ operateurs} \end{bmatrix} \quad (k,n\Gamma)$$
(II. 21)

 $R^{\Omega(k,n\Gamma)}$ est un polynôme homogène de degré Ω par rapport aux composantes

 p_{α} , il représente des tenseurs sphériques irréductibles de rang K.

Le rang tensoriel dans O (3) prend les valeurs : K= Ω, Ω-2, Ω-4....1 ou 0

 Γ =désigne la symétrie des représentations.

" = distingue les représentations de même symétrie

Les opérateurs $A^{(1)}$ sont de parité **g** dans **O** (3).

II.2.1-2 Opérateurs vibrationnels :

Les opérateurs vibrationnels sont construits en utilisant un schéma de couplage non symétrie d'opérateurs d'annihilation et de création élémentaire associe à chaque mode normale de vibration de la molécule

$$a_{s,\sigma}^{c} = \frac{1}{\sqrt{2}} (q_{s,\sigma} + ip_{s,\sigma})^{(c)}$$
(II.22)

$$a_{s,\sigma}^{c} = \frac{1}{\sqrt{2}} (q_{s,\sigma} - ip_{s,\sigma})^{(c)}$$
(II.23)

(C): désigne la symétrie dans le groupe T_d de l'oscillateur s.

 $\sigma\;$: désigne les composantes des représentations associées (c), soit :

C=A₁ pour s=1 et σ =1

- C=E pour s=2 et σ =1,2
- C=F₂ pour s=3 ou 4 et σ =1, 2,3

En couplant **n**_s opérateurs $a_s^{+(C)}$, on obtient un opérateur de création de symetrie Γ_I noté $a_{n_s}^{(\alpha_1,\Gamma_1)}$

$$a_{n_{s}}^{(\alpha_{1},\Gamma_{1})} = \left[\frac{a^{+c} \otimes a^{+c} \otimes a^{+c} \otimes \dots \otimes a^{+c}}{n_{s} \text{ operateurs}}\right] \quad (\alpha_{1},\Gamma_{1}) \tag{II. 24}$$

En couplant **m**_s opérateurs $a_s^{(c)}$, ou obtient un opérateur d'annihilation de symétrie Γ_2

noté $\pmb{a}_{\mathrm{m}_{\mathrm{s}}}^{(\pmb{lpha}_{2},\pmb{\Gamma}_{2})}$

$$a_{m_{s}}^{(\alpha_{2},\Gamma_{2})} = \begin{bmatrix} \frac{a^{c} \otimes a^{c} \otimes a^{c} \otimes \cdots \otimes a^{c}}{m_{s} \text{ operateurs}} \end{bmatrix} \quad (\alpha_{2},\Gamma_{2})$$
(II. 25)

-les indices s peuvent être les mêmes ou différents.

-les $\{n_s\}$ ou $\{m_s\}$ est la suite des nombres s

Les α_1, α_2 distinguent respectivement les tenseurs de même symétrie Γ_1 et Γ_2 et précisent les couplages intermédiaires.

On construit deux opérateurs vibrationnels de symétrie \varGamma

$$A_{n_s m_s}^{\Gamma_1 \Gamma_2} = (a_{n_s}^{(\alpha_1, \Gamma_1)} \otimes a_{m_s}^{(\alpha_2, \Gamma_2)})^{\boldsymbol{\Gamma}}$$
(II. 26)

$$B_{m_s n_s}^{\Gamma_1 \Gamma_2} = (a_{m_s}^{(\alpha_2, \Gamma_2)} \otimes a_{n_s}^{(\alpha_1, \Gamma_1)})^{\Gamma}$$
(II. 27)

 Γ satisfait la relation triangulaire $\Delta(\Gamma_1 \Gamma_2 \Gamma) = 0$

II.2.1-3- Opérateurs rovibrationnels :

L'hamiltonien d'une molécule quelconque est totalement symétrique dans le groupe de recouvrement de la molécule. En particulier, l'hamiltonien rovibrationnel des molécules toupie sphérique XY4 sont totalement sphérique dans le groupe T_d. Il doivent également vérifiée les propriétés d'hermicité et d'invariance dans un renversement du temps suivant le formalisme développé dans ce travail.

Leur forme générale est la suivante [18] :

$$T_{\{n_{s}|m_{s}\}}^{\Omega(kg,n\Gamma)\Gamma_{1}\Gamma_{2}} = (R^{\Omega(k,n\Gamma)} \otimes (-1)k V_{\{n_{s}|m_{s}\}}^{\Gamma_{1}\Gamma_{2}(\Gamma)})^{A1}$$
(II.28)

Le degré de ces opérateurs est :

$$d=\boldsymbol{\Omega} + \sum (n_s + m_s) \tag{II.29}$$

II.2.3- Expression des paramètres de l'hamiltonien :

À partir des opérateurs définis dans les paragraphes précédents, en peut construire l'hamiltonien rovibrationnel complet sous la forme :

$$H = \sum t_{\{n_s \mid m_s\}}^{\Omega(kg,n\Gamma)_{\Gamma_1 \Gamma_2}} \cdot T_{\{n_s \mid m_s\}}^{\Omega(kg,n\Gamma)_{\Gamma_1 \Gamma_2}}$$
(II. 30)

Dans cette équation, $t_{\{n_S|m_S\}}^{\Omega(kg,n\Gamma)_{\Gamma_1\Gamma_2}}$ sont les paramètres de l'hamiltonien et les $T_{\{n_S|m_S\}}^{\Omega(kg,n\Gamma)_{\Gamma_1\Gamma_2}}$ sont les opérateurs rovibrationnels définis comme étant :

$$T_{\{n_s|m_s\}}^{\Omega(kg,n\Gamma)\Gamma_1\Gamma_2} = (R^{\Omega(k,n\Gamma)} \otimes (-1)k \ V_{\{n_s|m_s\}}^{\Gamma_1\Gamma_2(\Gamma)})^{A1}$$
(II. 31)

où B : est donné par [19] :

$$B = \begin{cases} \sqrt{\Gamma_1} \left(\frac{-\sqrt{3}}{4} \right)^{\frac{\alpha}{2}} & pour \quad (k, n \ \Gamma) = (0, n \ A_1) \\ 1 & pour \quad (k, n \ \Gamma) \neq (0, n \ A_1) \end{cases}$$
(II. 32)

III. Méthodes numériques utilisées dans les analyses des données Expérimentales :

Dans ce chapitre, nous allons décrire les méthodes d'analyses utilisées dans la détermination des paramètres de l'Hamiltonien et ceux du moment dipolaire. Et c'est ces paramètres qui seront utilisés dans notre travail, pour toute prédiction de spectres.

III.1 Ajustement des paramètres de l'Hamiltonien par la méthode des moindres carrés itératives :

Concernant la détermination des paramètres de l'Hamiltonien à partir d'un ensemble de fréquences observées, on utilise une méthode des moindres carrée itérative. Cette méthode est décrite dans ce paragraphe.

Soit une grandeur Y mesurée n fois, et dont les valeurs calculées s'écrivant en fonction de p paramètres t_i (j=1,...p) de la façon suivante :

$$y_i^c = \sum_{j=1}^p t_j x_{ij}$$
 (*i* = 1, ..., *n*) (III. 1)

où x_{ij} sont des constantes théoriques connues et t_j sont les paramètres à déterminer. Si ces grandeurs physiques sont mesurées (y_1^0, \dots, y_n^0) , on peut toujours écrire

$$y_i^0 = y_i^c + \epsilon_i$$
 $i = 1, ..., n$ (III.2)

Où ϵ_i représentent les différents résidus de différentes mesures :

Soient e_i et β_j les meilleurs estimateurs de ϵ_i et t_j respectivement.

Ajuster les paramètres β_i par la technique des moindres carrés, c'est résoudre le système :

$$y_{i}^{0} = \sum \beta_{j} x_{ij} + e_{i}$$

$$\sum_{i=1}^{n} e_{i}^{2} \quad \text{minimum}$$
(III.3)

 $\sum e_i^2$ dépend des p paramètres β_j , sa différentielle totale s'écrit :

$$d\left(\sum_{i=1}^{n} e_{i}^{2}\right) = \sum_{i=1}^{p} \frac{\partial(\sum_{i=1}^{n} e_{i}^{2})}{\partial\beta_{l}} d\beta_{l}$$
(III.4)
$\sum e_i^2$ est extremum si sa différentielle totale est nulle, donc si

$$\frac{\partial (\sum e_i^2)}{\partial \beta_l} = 0 \qquad \forall \quad l = 1 \dots \dots p \qquad (III.5)$$

$$\begin{split} \frac{\partial (\sum e_i^2)}{\partial \beta_l} &= \frac{\partial}{\partial \beta_l} \sum_{i=1}^n \left(y_i^0 - \sum_{j=1}^p \beta_j x_{ij} \right)^2 \\ &= \sum_{i=1}^n (-2x_{ij}) \left(y_i^0 - \sum_{j=1}^p \beta_j x_{ij} \right) \\ &= -2 \left[\sum_{i=1}^n x_{ij} y_i^0 - \sum_{i,j}^{n,p} x_{il} x_{ij} \beta_j \right] \end{split}$$

et l'équation (II. 5) devient :

$$\sum_{i=1}^{n} y_{i}^{0} x_{il} = \sum_{i,j}^{n,p} x_{il} x_{ij} \beta_{j} \qquad \forall l = 1 \dots p \qquad (III.6)$$

Sous forme matricielle cette dernière équation peut s'écrire :

$$[x]^{t}(y^{0}) = [x]^{t}[x](\beta)$$
(III.7)

d'où on tire la matrice des paramètres :

$$(\beta) = ([x]^{t}[x])^{-1}[x]^{t}(y^{0})$$
(III.8)

[x] est la matrice des x_{ij} n lignes p colonnes.

 (y^0) est la matrice – colonne des observées (à n lignes).

(β) est la matrice – colonne des paramètres (à p lignes).

La condition (II.5) n'est qu'une condition d'extremum, mais on montre qu'elle donne uniquement des minimums de $\sum e_i^2$.

Si les mesures sont d'inégales précisions, il préférable d'utiliser une méthode pondérée .Le même raisonnement donne :

$$(\beta) = ([x]^{t}[P][x])^{-1}[x]^{t}[P](y^{0})$$
(III.9)

où [p] est la matrice (n,n) diagonale dont les termes sont les poids statistiques p_i . Si la précision de la k^{ième} mesure est plus grande que celles de la h^{ième}, le poids p_k sera plus grand que p_h .

On montre qu'un estimateur sans biais de la variance des écarts est :

$$\begin{cases} \sigma^{2} = \frac{1}{n-p} \sum_{i=1}^{n} (y_{i}^{0} - y_{i}^{c})^{2} & \text{cas non ponderé} \\ \sigma^{2} = \frac{1}{n-p} \sum_{i=1}^{n} P_{i} (y_{i}^{0} - y_{i}^{c})^{2} & \text{cas ponderé} \end{cases}$$
(III. 10)

où n-p est le nombre de degrés de libertés du système (qui doit, bien sûr, être positif). La matrice de variance des paramètres s'écrit :

$$\begin{cases} \operatorname{var}(\beta) = [\theta] = \sigma^2 ([x]^t [x])^{-1} \operatorname{cas} \operatorname{non} \operatorname{ponder}\acute{e} \\ \\ \operatorname{var}(\beta) = [\theta] = \sigma^2 ([x]^t [P] [x])^{-1} \operatorname{cas} \operatorname{ponder}\acute{e} \end{cases}$$
(III.11)

L'écart- type $\Delta \beta_i$ sur un paramètre β_i est estime par :

$$\Delta\beta_j = \sqrt{\theta_{jj}} \tag{III.12}$$

III.2. PROGRAMMES UTILISEES :

III.2.1. Installation de XTDS et explication des instructions :

Nous avons téléchargé **XTDS**, ensemble de logiciels développés au niveau de laboratoire de physique l'université de bourgogne. Ce groupe de logiciels, qui utilise la programmation **Java** pour son exécution, permet de faire toutes sortes d'études spectroscopiques concernant les molécules tétraédriques Td.

Il permet entre autre de :

- analyser les fréquences d'un spectre infrarouge ou Raman
- analyser les intensités de spectre.
- faire, des prédictions de spectre et dessiner ainsi :
 - le spectre (raies en traits).
 - la simulation du spectre (avec les formes de raies)
 - le diagramme énergétique.

Après son téléchargement, et puisque cet ensemble de logiciels est à interface **Java**, il faut tout d'abord, et à partir du site :

http://java.sun.com/j2se/1.4.2/downlod.html

télécharger et installer tout les logiciels concernant l'exécution des interfaces Java.

L'installation de **XTDS** sous linux ou sous Windows doit être faite exactement comme s'est indique dans le fichier (Readme.txt).

Quand on exécute **XTDS**, la première fenêtre qui apparaît est celle donnée en image 1, où il faut tout d'abord se positionner à **"Create à Jobs"**, ce qui permet à l'utilisateur de choisir :

- quel package l'utilisateur veut utiliser STDS, HTDS,.....

- quelle est la molécule à étudier.
- quel travail, on veut exécuter.

E RODUZASION		000
File Pieto	and the second differences with the second se	
Create a jub	Choose a Package i 51D5 -	
	Choices the type of the to create: Parameter File Creation Inb Creat Jab Spectrum Jun	
	⊖ Fit Jab	

image 1 : première fenêtre de l'exécution de XTDS

Notons que dans notre étude, et puisqu'il s'agit d'une molécule XY_4 , il faut choisir le package **STDS** (Spherical Top Data Software) et par exemple pour calculer le spectre de la molécule on choisir (spectrum.job) (voir image 2).

Une fois on a remplis, tout ce qu'il y'a dans''**Create à Jobs**'' nous pouvons par exemple calculer une simulation de spectre (image 2) où l'utilisateur doit introduire les informations suivantes :

- 1- molécule à étudier.
- 2- Jmax.
- 3- caractéristiques du niveau inférieur et supérieur (codées)
- 4- l'ordre de développement de l'hamiltonien.
- 5- le type de transition.
- 6- Fmax (fréquence maximale en cm⁻¹).
- 7- Fmin (fréquence minimale en cm⁻¹).
- 8- température de vibration.
- 9- température de rotation.
- 10- seuil d'intensité.
- 11- l'ordre de développement de tenseur de polarisabilité.

Help Create	e a job 🕅 🕅 e po	C Vierolice (B	antes Recomple	a packing? Creater	roller Mt					
ameter File Crea	ation for STDS									
ASICS			-							
			Molecule 12	CD4	•					
New Para <mark>, Fil</mark> e	C:\Users\kaaro	ur\Desktop\A PEN	ITADE\Pentad_GS							
lyad Scheme	[[P]n =	2	▼*v1+	1	▼ *v2+	2	▼*v3+	1	▼ *v4	
wer Polvad										
vad Number 0										
anta Limit vi	-		0	-	0		0		0	
	a		U		0		U		0	
el. Order					POD	8				
per Polyad										
yad Number 1				interes 11				Tabana II.		
an ta Lim it vi	¢=		1	*	1	•	1	×	1	
el. Order			P0 D		*		1	P1 D 4		
ANSITION MOM	FNT									
-										
el. Order					D 2					
er Polyad	PÛ									
N1 D6 00	00									
er Polvad	p1									

image 2 : deuxième fenêtre de l'exécution de XTDS

Notons que, en ce qui concerne notre travail, et après avoir choisi la valeur du nombre quantique rotationel Jmax on choisit :

- niveau inférieur où tous les v_s sont nuls (v1 ; v2 ; v3 ; v4) = (0 ; 0 ; 0 ; 0).
- niveau supérieur
- l'ordre de développement de l'hamiltonien
- le type de transition de notre molécule est de type Infrarouge
- la fréquence minimale
- la fréquence maximale
- la température de vibration
- la température de rotation.
- seuil d'intensité.
- l'ordre de développement de tenseur moment dipolaire

💥 Yennying 2005 Jobs	
File Help	
Contraction of the second seco	Contraction and a state area (Contraction)
	1. Choose a job Choose a job
	2. Choose a directory where to run the job Choose a directory
	3. Run the Job Run the job

image 3 : troisième fenêtre de l'exécution de XTDS

Notons que tous ce qu'on vient d'expliquer permettent seulement de créer le job voulu, et une fois ceci est fait on peut le faire tourner et obtenir les résultats voulus.

Ainsi, et sur la base de l'exemple donné ci dessus (job=spectrum), et en lançant ce job par l'intermédiaire de**''Run à Jobs**''(image 3), on obtient des fichier suivants :

- spectr.t

- spectr.xy
- énergie.

Une fois, les jobs fabriqués et exécutes on peut visualiser les résultats sous formes de graphismes et de valeurs numériques et ceci en cliquant sur" **Visualize results** "

Ainsi on peut rècaputiler les deux dernières étapes en :

Run a jobs : (voir image 3) cette partie de logiciel permet de lancer les jobs après avoir créé le fichier de travail (fichier d'entré) (job-spe-) son exécution permet d'obtenir :

-spectr.t : qui contient toutes les informations sur la molécule (l'intensité de la raie la plus intense, l'intensité de la raie la moins intense, la fréquence minimale du spectre, la fréquence maximale du spectre, l'intensité sommée sur toutes les raies, le nombre des transitions relatif à chaque valeur Jmax) ainsi que le spectre complet.

-spectr.xy : qui permet de tracer le graphe.

Visualize results : cette partie de logiciel permet de tracer le graphe à partir des fichiers de sorties (spectr.xy) (voir image 4).

image (4) : quatrième fenêtre de l'exécution de XTDS

Pour expliquer brièvement, la façon de faire tourner ces jobs, on s'est basé sur le job (spectrum.job), notons qu'il existe dans **XTDS** d'autres jobs qui sont :

- Simulation.jobs : permet à partir d'un spectre (spectr.xy), déjà obtenu par l'exécution du précèdent job, de dessiner le spectre complet avec les formes de raies. Donc ce qui sous entend qu'on doit entrer dans ce job les données suivants :

- Jmax.
- le type de transition.
- fréquence maximale.
- fréquence minimale
- température.
- seuil d'intensité.
- pression.
- la résolution

- **Fit-jobs :** ce job permet et à partir d'un fichier contenant les attributions de déterminer les paramètres de l'analyse en question.

Le fichier des attribués doit être fabriqué, par **SPVIEW** qui sera explique en détail par la suite.

L'ensemble de ces jobs sont basés sur les modèles de **Champion** [33] et **Loete** [36] et utilisent des programmes qui peuvent être résumes comme l'indique la paragraphe suivant.

III.3. Programmes utilisés :

III.3.1. Programme de codage des opérateurs rovibrationnel de l'hamiltonien effectif :

Ce programme permet de coder les opérateurs rovibrationnels de l'hamiltonien effectif pour une restriction donnée d'une polyade vibrationnelle de type **XY**₄. Après la lecture des symboles G (les symboles 6C et les facteurs isoscalaires)

Ce programme calcule tous les symboles qui entrent dans la formule donnant les éléments matriciels d'un opérateur rovibrationnel de l'hamiltonien .

Où :

Les symboles G sont les éléments matriciels qui permettent le passage de la base sphérique à la base cubique.

Après ce calcul, ce programme fait les étapes suivantes :

-Lecture des niveaux vibrationnels.

- codage des sous niveaux vibrationnels.

-détermination des opérateurs de création.

-détermination des opérateurs d'annihilation.

-couplage des opérateurs création, annihilation.

-détermination des opérateurs rotationnels possibles.

- calcul et codage des éléments matriciels rovibrationnels ces éléments seront notés (EMRV).

- Codage des opérateurs rovibrationnels.

- Dimensionnement, détermination des parités et désignation des représentations de T_d

Ce programme nommé HMODEL peut être schématisé par :

CTRL : fichier de control qui contient toutes les informations

Sur la restriction à étudier. (Fichier d'entré).

MH_P1_D04: ce fichier contient le codage des opérateurs rovibrationnels. (Fichier de sortie de notre programme).

III.3.2. Programme de codage des fonctions de base :

Ce programme fait les étapes suivantes :

-Détermination des indices des fonctions d'ondes des sous espaces J, C.

- Détermination des indices des fonctions d'onde dans le bloc J, C représentant H.
- Placement et dimensionnement des sous espaces dans l'espace total des fonctions d'onde.

Ce programme, nommé **ROVBAS**, peut être schématisé par :

Avec :

MH_P1_D04 : Le fichier d'entré de ce programme (fichier de sortie

Du programme précédent)

FN_P1 : (Fichier de sortie de notre programme).

III.3.3. Programme de calcul et stockage des éléments matriciels non nuls de l'hamiltonien rovibrationnel effectif :

Ce programme permet de calculer les éléments matriciels T de l'Hamiltonien A partir de la formule suivant :

$$\left\langle \left[\Psi_{r}^{(j,n^{\circ}C_{r}^{\circ})} \otimes \Psi_{\nu}^{(C_{\nu}^{\circ})} \right]^{(C)} \middle| T_{\{n_{s}\}}^{\Omega(k,n\Gamma)} \middle| \left[\Psi_{r}^{(j,n^{\circ}C_{r}^{\circ})} \otimes \Psi_{\nu}^{(C_{\nu}^{\circ})} \right]^{(C)} \right\rangle = \frac{1}{\sqrt{\Gamma}} \left(-1 \right)^{\Gamma+C+C_{r}^{\circ}+C_{r}^{\circ}} \left(\begin{array}{c} C_{\nu}^{\circ} & C_{r}^{\circ} & C\\ C_{r}^{\circ} & C_{\nu}^{\circ} & \Gamma \end{array} \right) \left\langle \Psi_{r}^{(j,n^{\circ}C^{\circ})} \middle| R^{\Omega(k,n\Gamma)} \middle| \Psi_{\nu}^{(j,n^{\circ}C^{\circ})} \right\rangle$$
(III-13)
$$\left\langle \Psi_{\nu}^{(C_{\nu}^{\circ})} \middle| V^{(\Gamma)} \middle| \Psi_{\nu}^{(C_{\nu}^{\circ})} \right\rangle$$

.Ce programme fait les étapes suivantes :

-Lecture des caractéristiques générales à partir des données issues de programme HMODEL.

-Lecture des éléments matriciels réduits.

-Calcul de tous les symboles entrant dans la formule de base

-Stockage de tous les éléments matriciels non nuls de l'hamiltonien rovibrationnel.

Ce programme est nommé HMATRI et peut être schématisé par :

MH_P2_D664: fichier de sortie du programme HMODEL.

FN_P2 : fichier contient les éléments matriciels vibrationnels réduits.

HA_P2_D664 : fichier de sortie, contenant les éléments matriciels non

Nuls de l'hamiltonien rovibrationnel.

III.3.4. Programme qui calcule les valeurs et vecteurs propres d'un hamiltonien effectif :

Ce programme permet la diagonalisation de la matrice H et le calcul les valeurs propres et les vecteurs propres, en effectuant les étapes suivants :

-Lecture des paramètres.

- par diagonalisation on détermine les valeurs et les vecteurs qui permettent cette diagonalisation.

Ce programme est nommé HDI et peut être schématisé par :

Où :

HA_P1_D04: le fichier de sortie du programme précédent.

PARA_File: fichier d'entré qui contient tous les paramètres de l'hamiltonien.

E N_P1 : fichier de sortie qui contient les valeurs propres.

VP_P1 : fichier de sortie qui contient les vecteurs propres de l'hamiltonien.

III.3.5. Programme de calcul du spectre (fréquences et moment de transition)

Ce programme permet de calculer les fréquences et les éléments matriciels réduits du moment de la transition.

Passant par les étapes suivantes :

- Lecture des paramètres de H.
- Lecture et stockage des paramètres du moment de transition.

Ce programme est nommé TRA et peut être schématisé par :

Où :

EN_P0 : fichier contenant les valeurs propres de niveau P0(fichier d'entrer).

EN_Pk : fichier contenant les valeurs propres de niveau P1(fichier d'entrer).

TR_PkmP0_D0 : fichier contenant les éléments matriciels non

Nuls du moment de transition (fichier d'entrer)

TRANS.t : fichier contient les fréquences et les éléments matriciels réduits du moment de la transition (fichier de sortie).

III.3.6. Programme qui calcule le spectre de transition

Ce programme et nommé **SPECT** permet de calculer les intensités de transitions rovibrationnelles.

Nous pouvons le schématiser par :

Où :

Trans.t : fichier de sortie du programme TRA.

PREDIC_Spect : fichier contient la prédiction totale du spectre de la bande (P0_Pk) (fichier de sortie).

III.4. programme d'attribution :

Un spectre expérimental non réattribué, ne contient en général, pour chaque raie, que la fréquence et l'intensité. La précision expérimentale sur chaque raie peut aussi être délivrée dans le spectre expérimental, où en général, elle sera utilisée dans l'expression du poids statistique.

Ainsi, si on veut, analyser un spectre expérimental il faut que nous sachions, avant l'analyse, quelle sont les caractéristiques rovibrationnelles de chaque raie $i = (\Omega, k, n, \Gamma, \Gamma_r, \Gamma_r)$. Ainsi, et dans toutes les expressions de l'analyse numérique du spectre, nous pourrons faire correspondre à chaque raie expérimentale, les caractéristiques d'une raie calculée donnée : c'est ce qu'on appelle l'attribution des raies.

Historiquement, l'attribution se faisait manuellement, c'est-à-dire, qu'on fait tout d'abord un calcul de spectre avec des paramètres plus au moins proches des vrais paramètres. Et en comparant le spectre expérimental au spectre calculé on attribue les raies expérimentales dont on ait sûr (sur la base de différence entre la fréquence calculé et expérimental) à des raies calculées et on commence à les analyses.

Les premiers paramètres détermines permettent de faire un autre calcul plus proche et de faire ainsi une autre attribution. et ainsi de suite.

Actuellement, les membres du laboratoire de l'institut Carnot Bourgogne, ont mis au point un logiciel " **SPVIEW** " qui permet d'attribuer automatiquement les raies et de fabriquer ainsi un fichier des attribués, qui a son tour peut être utilisé dans l'analyse. Ce programme **SPVIEW** peut être schématise par :

Après avoir installé le logiciel **SPVIEW** sur notre machine, nous avons d'abord fabriqué et grâce à **XTDS** une première simulation de notre spectre et ceci en choisissant :

- le niveau inférieur où tous les v_s sont nuls (v₁; v₂; v₃; v₄) = (0; 0; 0; 0).
- niveau supérieur soitla bande nu 4 soit la diade soit la pentade soit octade
- l'ordre de développement de l'hamiltonien on choisir égale à 6.
- le type de transition de notre molécule est de type Infrarouge
- la fréquence minimale
- la fréquence maximale
- la température de vibration
- la température de rotation
- seuil d'intensité
- l'ordre de développement du tenseur Moment Dipolaire
- Résolution
- Drawing Steps
- Press Broad coéff
- Masse molaire
- Intensité
- pression

En lançant, **SPVIEW**, et en chargeant le fichier Simul.xy (fabriqué avec **XTDS**) et le fichier expérimental on peut facilement fabriquer le fichier des attribués

Ce fichier, contient les informations suivantes :

1^{ère} colonne : numéro de l'attribué.

2^{eme} colonne : fréquence observée.

 3^{eme} colonne : le " + " indique que la raie sera analysé.

Le "-" oblige le programme d'analyse à ne pas

Prendre en charge la raie.

4^{eme} colonne : l'intensité observée.

Les 6 dernières colonnes : les caractéristiques rovibrationnelles,

attribuée à la raie expérimentale.

La partie du "job XTDS" nommé "fit", sert à analyser, soit les fréquences d'un spectre soit les intensités.

Ce programme peut être schématisé par :

Pour son exécution ce programme a besoin d'un fichier de contraintes, d'un fichier d'attribués (fabriqué a partir de **SPVIEW**) et du fichier de paramètres d'entrée.

IV.ANALYSE DES POSITIONS DES RAIESS

IV.1. Données expérimentales :

Le spectre infrarouge relatif aux différentes bandes des molécules XY₄ est généralement enregistré à l'aide du spectromètre à transformer de fourrier. Après préparation de l'échantillon, il est soumis à une irradiation lumineuse polychromatique. Les échanges d'énergies entre les molécules de l'échantillon et le champ électromagnétique se feront non seulement en quanta mais aussi si les deux phénomènes sont en résonance. Macroscopiquement chaque raie absorbée a une fréquence et une intensité, qui se traduit, microscopiquement par une transition entre un niveau d'énergie inférieur vers un niveau d'énergie supérieure .Cette transition n'est possible que si les règles de sélection rovibrationnelles sont satisfaites.

Lors d'un précèdent travail, A. Valentin et al [23] ont enregistrés et analysé les nombres d'ondes des raies de transitions entre la diade et le niveau de base GS. dans cette étude et puisque A. Valentin et al [23] n'avaient pas en leurs possessions des données expérimentales sur les transitions GS-GS, il étaient obligés de fixer les paramètres relatifs au niveau de base et de déterminer que ceux relatifs à la diade.

À partir de cette étude, et parce que SPVIEW permet de tracer (à partir d'un fichier expérimental contenant les nombres d'onde et les intensités) une ligne vertical "Pick " (représentant la raie expérimentale), nous comparons ces raies expérimentales aux raies calculées, ce qui nous permet d'attribuer 520 raies relatives à la bande v_4 de la molécule (${}^{12}CD_4$).

Ce fichier de 520 raies constitue notre première source de données expérimentales. Dans notre étude, nous nous sommes proposés de déterminer les paramètres relatifs à la bande v_4 , tout en fixant les 10 paramètres du niveau de base GS [24,25,26].

IV.2 THEORIE: Modèle tensoriel de l'Hamiltonien :

La molécule ¹²CD₄, et comme toutes les molécules tétraédriques possède les modes de vibration stretching $v_1(A1)/v_3(F2)$ et bending $v_2(E)/v_4(F2)$. Les modes $v_3(F2)$ et $v_4(F2)$ sont

triplement dégénérés tandis que le mode $v_2(E)$ est doublement dégénéré et le mode $v_1(A1)$ est non dégénéré.

Comme avec toutes les molécules tétraédriques XY₄, ¹²CD₄ possède les modes stretching $v_1(A1)$ et $v_3(F2)$ et les modes bending $v_2(E)$ et $v_4(F2)$. Le mode $v_1(A1)$ est un oscillateur non dégénéré, tandis que le mode $v_2(E)$ est doublement dégénéré et que les deux modes $v_3(F2)$ et $v_4(F2)$ sont triplement dégénérés. Les fréquences fondamentales présentent une relation approximative simple: $v_1(A_1) \simeq v_3(F_2) \simeq 2v_2(E) \simeq 2v_4(F_2)$, et cette relation conduit à une structure polyad bien définie, chaque polyad Pn défini par le entier n comme:

$$n = 2(\nu_1 + \nu_3) + \nu_2 + \nu_4 \tag{IV-1}$$

où $v_i = 0, 1, 2...$ (i = 1 à 4) sont les nombres quantiques vibrationnels. P0 est l'état fondamental (GS) ou Monad. Chaque ensemble de nombres quantiques vibrationnels (c'est-àdire v_1, v_2, v_3, v_4) définit un niveau vibratoire. En raison de la dégénérescence de trois des vibrations normales, chaque niveau vibratoire contient un certain nombre de sous-niveaux vibrationnels, dont les symétries peuvent être déterminées au moyen de méthodes théoriques de groupe [15].

Le modèle théorique utilisé dans cet article est basé sur le formalisme tensoriel tétraédrique développé à Dijon, en France. Les détails concernant les notations et les constructions des opérateurs sont décrits dans les références. [11,12,16,27,28,29,30]

Considérons une molécule XY_4 pour laquelle les niveaux de vibration sont regroupés dans une série de polyads Pk (k = 0..., n) tels que définis ci-dessus. Si l'étude est dans un schéma polyad, l'opérateur Hamiltonien effectif peut être construit sous la forme suivante:

$$\breve{H} = \breve{H}_{\{P_0\}} + \breve{H}_{\{P_1\}} + \dots + \breve{H}_{\{P_k\}}$$
(IV-2)

Dans ce travail, où la bande isolée v_4 sera étudiée, nous utilisons l'Hamiltonien effectif suivant:

$$\breve{H}^{\langle \nu_{3} \rangle} = \breve{H}^{\langle \nu_{4} \rangle}_{\{GS\}} + \breve{H}^{\langle \nu_{4} \rangle}_{\{\nu_{4}\}}$$
(IV-3)

[Texte]

Chaque terme de cette dernière équation est défini par [19-23]:

$$\breve{H} = \sum_{tous \ les \ indices} \check{t}^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu}\Gamma}_{\{n_s\}\{m_s\}} T^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu}\Gamma}_{\{n_s\}\{m_s\}}$$
(IV-4)

 $\check{t}_{\{n_s\}\{m_s\}}^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}}$ sont les paramètres effectifs de l'Hamiltonien, et qui sont déterminés par

l'analyse des données expérimentales et les $T^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}\Gamma_{\nu'}}_{\{n_s\}\{m_s\}}$ sont les opérateurs rovibrationnels.

L'ordre de développement est définie par :

$$\Omega_H = \Omega + \Omega_\nu - 2 \tag{IV-5}$$

Où Ω_{ν} est le degré dans les opérateurs d'annihilation de de création.

Pour déterminer les fonctions propres, il est commode de diagonaliser numériquement la matrice de l'Hamiltonien effectif :

$$\check{H}^{eff} | \psi_{\sigma}^{j, c\alpha} \rangle = E | \psi_{\sigma}^{j, c\alpha} \rangle \tag{IV-6}$$

 α =1, 2, ... est le nombre des fonctions d'ondes dans le même bloc J.

Afin de calculer les intensités de transition (comme dans le cas, par exemple, de la spectroscopie d'absorption infrarouge), l'opérateur du moment dipolaire est développé de la même manière que pour l'Hamiltonien. Dans ce travail en utilisant un moment dipolaire développé à l'ordre zéro avec les mêmes méthodes .

IV.3. Analyse de v_4 -GS

 $\widetilde{H}_{\{GS\}}^{(\nu_4)}$ et $\widetilde{H}_{\{\nu_4\}}^{(\nu_4)}$ sont développés aux ordres 6 et 6 respectivement. la bande froide ν_4 est étudiée dans ce travail, est ceci en utilisant une source de donnée enregistré à Wuppertal (Source: La source de donnée est le Laboratoire de Physique de l'Université de Bourgogne, Dijon, France). Le développement de l'Hamiltonien effectif $\widetilde{H}^{(\nu_4)}$ donne 37 paramètres $\widetilde{t}_{\{s\}\{s'\}}^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}}$, parmi lesquels 10 sont relatifs au niveau de base GS. Ces paramètres sont déterminés par l'analyse des positions des raies expérimentales. Dans ce travail nous utilisons SPVIEW (pour les attributions) et XTDS (pour les analyses) [25]. SPVIEW est une application multiplateforme Java qui nous permet, d'une part de visualiser des spectres expérimentaux et simulés à haute résolution (format ASCII), et d'autres parts, de pouvoir attribuer des raies.

Se basant sur l'écriture tensorielle de tous les opérateurs, XTDS est une application Java contenant des logiciels qui permettent de fabriquer tous les jobs nécessaires pour les analyses et les simulations des spectres.

Avec les logiciels inclus dans XTDS, nous avons analysés les 520 données expérimentales, et parmi les 37 paramètres du type $\tilde{t}^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}}_{\{s\}\{s'\}}$ utilisés dans le développement de l'Hamiltonien effectif $\tilde{H}^{(\nu_4)}$, 26 paramètres sont déterminés.

Un nombre total de N = 520 positions de raies expérimentales a été utilisé. La méthode des moindres carrés non linéaire minimise la déviation standard:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} \left(\frac{\widetilde{\nu}_{i}^{e} - \widetilde{\nu}_{i}^{c}}{\Delta \widetilde{\nu}_{i}^{e}}\right)^{2}}$$
(IV-7)

Ou \tilde{v}_i^c sont les nombres d'onde calculés et les \tilde{v}_i^e sont les incertitudes expérimentales (chaque position de raie expérimentale \tilde{v}_i^e à un poids $\frac{1}{\Delta \tilde{v}_i^e}$).

La Figure 1 montre les différences entre positions de raies observées et calculées pour les différentes Transitions de la bande v_4 , et la figure 2 montre les niveaux d'énergies supérieurs réduits pour la bande froide v_4 définis par :

$$\tilde{v}_{red}^c = \tilde{v}^c - \sum_{\Omega} t_{\{GS\}\{GS\}}^{\Omega(0,0A_1)A_1A_1} \left(J(J+1) \right)^2$$
$$= \frac{E}{hc} - B_0 J(J+1) + D_0 J^2 (J+1)^2 - \cdots$$
(IV-8)

Fig	2 I es	niveaux	d'énergie	réduits	de niveau	ν.
rıg.	2.Les	mveaux	u energie	reduits	ue mveau	v4

XTDS permet d'ajuster les paramètres de l'Hamiltonien, en utilisant des données attribuées par "SPVIEW". A partir du spectre expérimental, on a déterminé l'ensemble des paramètres (Tab 01) de l'Hamiltonien relatif à la bande v_4 -GS de la molécule ¹²CD₄, à l'ordre 6 pour le niveau GS et à l'ordre 6 pour le niveau v_4 . D'où 10 paramètres relatifs au niveau GS et 27 autres relatifs au niveau v_4 . En utilisant le logiciel SPVIEW développé à Dijon, nous avons attribué 520 raies expérimentales, qui nous ont permis de déterminer parmi les 27 relatifs au niveau v_4 , 26 paramètres avec un EQM=2.602. 10^{-3} cm⁻¹.

L'ensemble des paramètres sont regroupés dans le tableau 01, où la 1^{ère} colonne correspond au nombre de paramètre, la 2^{ème} contient les caractéristiques rovibrationnelles de chaque paramètre et les autres colonnes contiennent les valeurs des paramètres pour différents ordre de développement (4, 5 et 6 respectivement) où la déviation standard est indiquée entre parenthèses.

Notons ici que lorsqu'on donne la valeur (0.*), cela veut dire que, ce paramètres a été éliminé est sa valeur est nulle. Les dix premiers paramètres t_i (t_i=1, 2, ..., 10) sont relatifs au niveau de base GS et sont fixés, durant l'analyse, aux valeurs de la référence [24].

i	Ω(K,nΓ)	$n_s \Gamma_1$	$m_s \Gamma_2$	Г	Hmn	Value/cm ⁻¹	St.Dev./cm ⁻¹
1	2(0,0,1)	000011	000011	.1	0.2	0.20222202005.01	0.000000=.00
	2(0,0A1)	0000A1	0000A1	AL	02	0.26327202000E+01	0.000000E+00
2	4(0,0A1)	0000A1	0000A1	AL	04	-0.2756600000E-04	0.000000E+00
3	4(4,0A1)	0000A1	0000A1	AL	04	-0.74567790000E-06	0.000000E+00
4	6(0, 0A1)	0000A1	0000A1	AL	06	0.69400000000000000000000000000000000000	0.000000E+00
5	6(4,0A1)	0000A1	0000A1	AL	06	-0.20080100000E-10	0.000000E+00
6	6(6,0A1)	0000A1	1A0000	AL	06	-0.64303000000E-11	0.000000E+00
/	8(0,0A1)	1A0000	1A0000	AL	08	0.1040000000E-12	0.000000E+00
8	8(4,0A1)	0000A1	0000A1	Al	08	-0.5242000000E-15	0.000000E+00
9	8(6,0A1)	0000A1	0000A1	A1	08	-0.3468000000E-15	0.000000E+00
10	8(8,0A1)	0000A1	0000A1	A1	08	-0.28940000000E-16	0.000000E+00
11	0(0,0A1)	0001F2	0001F2	A1	20	0.99787317264E+03	0.3458777E-03
12	1(1,0F1)	0001F2	0001F2	F1	21	0.37713724959E+01	0.2799035E-03
13	2(0,0A1)	0001F2	0001F2	A1	22	-0.44623624673E-01	0.1281279E-04
14	2(2,0E)	0001F2	0001F2	Е	22	0.63301876559E-01	0.3286876E-04
15	2(2,0F2)	0001F2	0001F2	F2	22	-0.62962900001E-01	0.2504223E-04
16	3(1,0F1)	0001F2	0001F2	F1	23	0.10708668428E-02	0.2408806E-05
17	3(3,0F1)	0001F2	0001F2	F1	23	0.86178877642E-03	0.1671327E-05
18	4(0,0A1)	0001F2	0001F2	A1	24	0.29175119709E-04	0.1283557E-06
19	4(2,0E)	0001F2	0001F2	Е	24	0.19090928919E-04	0.2191310E-06
20	4(2,0F2)	0001F2	0001F2	F2	24	0.0000000000E+00	0.000000E+00
21	4(4,0A1)	0001F2	0001F2	A1	24	0.97649041105E-05	0.7193474E-07
22	4(4,0E)	0001F2	0001F2	Е	24	0.27995954360E-04	0.2421560E-06
23	4(4,0F2)	0001F2	0001F2	F2	24	0.39743119101E-05	0.1711851E-06
24	5(1,0F1)	0001F2	0001F2	F1	25	0.64769245801E-07	0.7366684E-08
25	5(3,0F1)	0001F2	0001F2	F1	25	0.44329800498E-06	0.1200582E-07
26	5(5,0F1)	0001F2	0001F2	F1	25	0.16651992825E-06	0.1211920E-07
27	5(5.1F1)	0001F2	0001F2	F1	25	-0.60187791045E-06	0.7464739E-08
28	6(0,0A1)	0001F2	0001F2	A1	26	-0.23594518122E-07	0.3875189E-09
29	6(2,0E)	0001F2	0001F2	Е	26	0.12424898236E-07	0.4364333E-09
30	6(2,0F2)	0001F2	0001F2	F2	26	0.46711808651E-08	0.3399782E-09
31	6(4,0A1)	0001F2	0001F2	A1	26	0.82128362827F-08	0.8276510F-10
32	6(4.0F)	0001F2	0001F2	F	$\overline{26}$	0.15550084241F-07	0.3577992F-09
33	6(4,0F2)	0001F2	0001F2		$\bar{26}$	0.85750178172F-08	0.5484465F-09
34	6(6,0A1)	0001F2	0001F2	A1	$\bar{26}$	-0.28938501483F-08	0.7139185E-10
35	6(6.0F)	0001F2	0001F2	F	26	-0.13302747455F-08	0.3567859E-09
36	6(6,0F2)	0001F2	0001F2	F2	26	0.13896213432F-07	0.4296603E-09
37	6(6.1F2)	0001F2	0001F2	F2	26	-0.16151243402F-08	0.3697767E-09

Tableau 1: Valeurs des paramètres de l'Hamiltonien relatif à la bande v_4 de ${}^{12}CD_4$, avec Jsup ≤ 20 .

Avec ces paramètres (Ω_{max} =6), qui sont déterminés avec une déviation standard de 2,670. 10⁻³ cm⁻¹, nous avons fait un calcul du spectre complet de ¹²CD₄ jusqu'à J≤20 de la bande froide v₄. 2858 transitions calculées à T=78 °K

XTDS et SPVIEW,, qui permettent de simuler des spectres, nous ont permis de vérifier et de comparer le spectre expérimental au spectre simulé pour différentes régions de la bande froide v_4 de 12 CD₄ .La figure 3 illustre quelques comparaisons entre les deux spectres calculé et expérimental, et les 520 données expérimentales comparées avec les raies calculées sont reportée dans la Tableau 2.

Dans ce tableau, la 1^{ère} et la 3^{ème} colonne contiennent, respectivement les fréquences expérimentales et calculées de chaque raie attribuée. Dans la 2^{ème} colonne est indiquée l'écart entre les deux valeurs expérimentale et calculée. L'énergie supérieure est reportée dans la 4^{ème} colonne, les dernières colonnes indiquent les caractéristiques de chaque raie attribuée.

Fig.3.Comparaison entre spectre expérimental et spectre simule.

						-		, , , ,		
ехр	$\sigma_{exp} - \sigma_{cal}$	σ_{cal}	Esup	Carac	teris	tiques	Carac	teristiqu	es	
				ROVID	ratio	nneile	ROVID	rationnei	Ie	
Nombre d'anda avn	/10-3cm-1	Nombre	Niveaux d'énorgie	s u infár	es III iouro	veaux	s ues	rieures		es
/10-3cm-1	/10 Cm	/10-3cm-1	sun	me	i cui c	.5	Supe	reares		ъ
/10 0		/ 10	/10 ⁻³ cm ⁻¹	Jinf	С	N	Jsun	с	N	an
			,	•	-		- Sup	•		Ъ В
										_
992 605900	0.657	992 605243	997 870573	1	c 1	1	0	⊑2	1	D
992.003900	-2 375	000 106575	000 106575	1 0	∧1	1	1	r2 A2	1	г D
080 155800	2.575	080 152200	1001 012102	2	E E	1	1	AZ E	1	R D
989.133800	1 602	000 042607	1004.340430	2	с г 2	1	1	с г1	1	г D
966.944500	0.770	900.942097 004 025021	1016 101000	2	FZ	1	1 2		1	P
904.030000 005 712700	1 120	904.033021 005 712020	1010.424007	נ ר	AZ F	1	2		1	P
995.712700	-1.139	993.713039	1011.009120	2	E E2	1	2	E r1	1	Q
1001 072000	-1.090	1001 0750020	1011.091443	2	F2 F2	1	2		2	Q
1001.078000	2.1/7	1001.073823	1010.071170	1	г <u>с</u>	1	2	F1 F2	1	Q
1002.010200	-2.102	1002.021303	1017 200420	2	F1	1	2	F2 E2	2	к D
006 167000	0 421	006 160221	1017.200433	2	×2	1	2	Γ <u>ζ</u>	1	P
990.107900	-0.431	990.100331	102/./3/39/	2	AZ	1	2	AL A2	1	Q R
302.244300 1006 003000	2.099	1006 006001	1034.001070	4 2		1	2	AZ F	1	P
1000.095000	-3.000	1000.090000	1021.0921/0	2	Е Г	1	2	E F	2	ĸ
901.003000 1006 045100	2.934	901.000000 1006 049920	1034.323919	4	E F2	1	2	E F1	2	P
1000.043100	-3.729	1000.040029	1021.044104	2	F2	1	2		1	ĸ
1002 078200	-3.344	1002 077491	1021.044104	2	F2 F2	1	2		2	Q
1002.078500	0.019	1002.077461	1033.000221	2	F2	1	2		2 2	Q
974.309000	-0.754	974.309734	1027.215900	4	F2	1	2		2	P
961.022600	1 200	901.021909	1035.000221	4	F2	1	2	F1	2	P
995.257900	-1.290	995.259190 1002 001027	1020.04/000	3		1	3	F2	1	Q
1002.986000	4.103	1002.981837	1034.570315	3		1	3	F2	2	Q
981.931400	4.011	981.927389	1034.570315	4	+1 •2	1	3	F2	2	P
1009.086000	-3.038	1009.089658	1040.078724	3	AZ	1	4	AL	1	ĸ
994.414400	-1.1//	994.415577	1047.058040	4	AL	1	4	AZ F	1	Q
994.907300 1002 F40F00	-0.989	994.900409 1002 F20000	1047.011742	4	E	1	4	E	1	Q
1003.340300	1 257	1003.339909	1030.103102	4	E	1	4	E	2	Q
900.032200	-1.337	900.033337	1047.011742	2	Е Г	1	4	E F	2	P
1000 208000	2 505	9//.2249// 1000 211505	1030.103102	ر د	с г 2	1	4	E r1	2	P
1017 105200	-5.595	1009.211393	1040.000334	2	F2 E2	1	4		2	к D
1017.103300	0 010	1017.070110	1040.030030	2	F2 F2	1	4		2	ĸ
990.013600	2 547	990.014010 078 122752	1040.030030	4 5	F2 E2	1	4		2	Q D
1000 214600	2 602	1000 210202	1040 006770	2	г <u>с</u>	1	4	F1 F2	1	г D
1003.314000	-0.370	1003.310232	1055 024006	د ۸	гт с1	1	4	FZ E2	3	N N
1003.280800	6 203	1003.281170	1057 507722	4	гт с1	1	4	FZ E2	ر ۸	Q
076 064800	-0.688	076 065/88	1057.307723	4 5	F1	1 2	4	F2 E2	4	Q D
970.904800	6 008	970.903488	1057 507722	5	гт с1	2 1	4	FZ E2	ر ۸	г D
978.338600	3 026	970.332702	108/ 000100	6	^2	1	5	Γ <u>2</u> ∧1	1	г
1012 573300	_2 795	1012 576005	1065 218564	1	AZ A1	1	5	A1 A2	1	г D
972 /82900	_2 829	972 185729	1083 015509	6	۸1	1	5	A2 A2	2	D
1012 359600	-2 964	1012 362564	1065 005817	4	F	1	5	F	1	R
995 669700	-0.868	995 670568	1074 628753	5	F	1	5	F	2	0
974 938700	6 477	974 932223	1085 454180	6	F	1	5	F	3	P
1012 136000	-2 495	1012 138495	1064 782726	4	E2	1	5	E F1	1	R
1004 882300	0.042	1004 882258	1083 838161	5	F2	1	5	F1	3	0
962 437500	-0 169	962 437669	1072 965365	6	F2	2	5	F1	2	P
973 310400	-0.065	973 310465	1083 838161	6	F2	2	5	F1	3	P
974 822200	5 925	974 816275	1085 338622	6	F2	1	5	F1	4	P
1012 446200	-3 042	1012 449242	1065 092169	4	F1	1	5	F2	1	R
1022.198600	-1.000	1022.199600	1074.842526	4	F1	1	5	F2	3 3	R
1030.764300	-2.352	1030.766652	1083.409578	4	F1	1	5	F2	4	R
993.675900	-0.324	993.676224	1072.631246	5	F1	1	5	F2	2	0
995.883100	-0.817	995.883917	1074.842526	5	F1	2	5	F2	3	ò
962.102300	-0.143	962.102443	1072.631246	6	F1	1	5	F2	2	P
972.878800	-1.976	972.880776	1083.409578	6	F1	1	5	F2	4	P
992,932400	1.688	992,930712	1103.454238	6	A2	1	6	AI	1	0
1006.821800	2.485	1006.819315	1117.342841	6	A2	1	6	A1	2	Q

Tableau 2: Les 520 raies expérimentales attribuées comparées aux raies calculées de v₄ de ¹²CD₄.

[Texte]

					_				
956.108900	1.339	956.107561	1103.454238	7	A2	1	6	A1	1 P
969.998700	2.536	969.996164	1117.342841	7	A2	1	6	A1	2 Р
996 059800	-0 562	996 060362	1106 590142	6	Δ1	1	6	Δ2	1 0
1015 151000	1 202	1015 152102	100/ 111260	E E		1	ĉ	- -	1 D
1013.131900	-1.205	1013.133183	1094.111308	5	E	1	0	E	L K
1037.175100	-3.189	1037.178289	1116.1364/4	5	E	1	6	E	3 R
1005.611500	-3.016	1005.614516	1116.136474	6	E	1	6	E	3 Q
968,783000	-2.881	968.785881	1116.136474	7	F	1	6	F	3 P
1015 504400	_1 507	1015 505007	100/ /61800	5	- 	1	ĥ	_ _1	1 p
1013.304400	-1.397	1013.303997	1105 720102	5	FZ	1	ç	F1	
1026.772500	-0.760	1026.773260	1102.729103	5	FΖ	T	6	ΡT	3 K
983.932000	-2.203	983.934203	1094.461899	6	F2	2	6	F1	1 Q
992.683400	1.033	992.682367	1103.204715	6	F2	1	6	F1	20
995 200700	-0 767	995 201467	1105 729163	6	⊑2	2	6	F 1	3 0
1006 021000	1 524	1006 022424	1116 545701	c c	F2	1	ĉ	-1	J Q
1006.021900	-1.554	1006.023434	1110.343/01	0	FZ	1	0	FL	4 Q
955.856700	1.209	955.855491	1103.204715	7	F2	2	6	F1	2 P
958.379100	-0.840	958.379940	1105.729163	7	F2	2	6	F1	3 P
969 194700	-1 857	969 196557	1116 545781	7	F2	2	6	F1	4 P
071 100100	5 262	071 102020	1110 112606	. 7		1	ĉ	-1	5 0
971.109100	3.202	971.103838	1110.445000	/	FZ	1	0	F1	3 P
1015.085800	-1.18/	1012.086987	1094.045595	5	FL	2	6	FZ	L R
1015.672600	-2.131	1015.674731	1094.629752	5	F1	1	6	F2	2 R
1036.615000	-3.948	1036.618948	1115,573970	5	F1	1	6	F2	4 R
984 099000	_1 950	984 100950	100/ 620752	ĥ	c1	1	Ã	 ⊏2	2 0
1005 041200	-1.900	1005 045100	1115 572070	0	F1	1	ç	-2	2 Q
1005.041300	-3.868	1005.045168	1112.2/39/0	6	FT	T	6	FZ	4 Q
1008.121800	6.759	1008.115041	1118.643843	6	F1	1	6	F2	5 Q
947.275600	-1.452	947.277052	1094.629752	7	F1	2	6	F2	2 Р
958 792400	-0 823	958 793223	1106 145924	7	F1	2	6	F2	3 р
069 217400	2 860	069 221260	1115 572070	7	F1	2	ĉ	F2	л 1 1 р
908.217400	-3.009	900.221209	1110.073970	<u>/</u>	F1	2	0	FZ	4 P
971.311500	6.632	971.304868	1118.643843	/	FΤ	T	6	FΖ	5 P
1018.558500	-1.392	1018.559892	1129.083418	6	A2	1	7	A1	1 R
1031.053300	-0.816	1031.054116	1141.577642	6	A2	1	7	A1	2 R
981.735000	-1.741	981.736741	1129.083418	7	A2	1	7	A1	1 0
994 229900	-1 065	994 230965	1141 577642	7	Δ2	1	7	Δ1	2 0
1017 00000	0 221	1017 000670	1120 110100	, c	A1	1	7	^ <u>7</u>	1 0
1017.888900	0.221	1017.000079	1120.410459	0	AL	1	4	AZ	
967.754000	6.559	967.747441	1157.147902	8	AL	T	1	AZ	Z P
1018.776800	-0.105	1018.776905	1129.298862	6	Е	1	7	Е	1 R
1031.884000	-3.896	1031.887896	1142.409854	6	Е	1	7	Е	2 R
1042.905100	-4.047	1042.909147	1153.431105	6	F	1	7	F	3 R
981 947800	-0 469	981 948269	1129 298862	7	F	1	7	F	1 0
1006 076600	2 012	1006 000512	1152 /21105	7	-	1	7	-	2 0
1006.076600	-3.912	1000.080312	1155.451105	<u>/</u>	E	1	4	E	S Q
1009.571800	5.547	1009.566253	1156.916846	/	Е	T	1	Е	4 Q
952.986700	-0.279	952.986979	1142.409854	8	Е	2	7	Е	2 P
964.004000	-4.230	964.008230	1153.431105	8	Е	2	7	Е	3 P
967 520200	5 090	967 515110	1156 916846	8	F	1	7	F	4 P
1018 107200	0 088	1018 107112	1128 634808	Ğ	- 	2	7	_ _1	1 p
1010.107200	0.000	1010.107112	1120.034000	C C	F2	1	'	F 1	
1018.723000	-0.288	1018.723288	1129.245635	6	FZ	1	<u>′</u>	FT	ZK
1031.557200	-0.555	1031.557755	1142.080102	6	F2	1	7	F1	4 R
1044.828400	-0.054	1044.828454	1155.356150	6	F2	2	7	F1	6 R
981.285700	0.116	981.285584	1128.634808	7	F2	2	7	F1	1 0
981 896600	0 188	981 896412	1129 245635	7	F2	2	7	F1	2 0
001 205400	2 265	001 202125	1120 72100/	. 7		1	7	-1	2 0
391.393400	5.205	991.392133	11/2 000102	<i>'</i>	-2	1	4	F 1	J Q
994.730600	-0.278	994.730878	1142.080102	/	FZ	2	1	FΤ	4 Q
1005.744800	-5.120	1005.749920	1153.099144	7	F2	2	7	F1	5 Q
1008.017600	1.299	1008.016301	1155.356150	7	F2	1	7	F1	6 Q
1008.008100	1.174	1008.006926	1155.356150	7	F2	2	7	F1	6 0
939 209900	-0.806	939 210706	1128 634808	8	F2	2	7	E1	1 P
040 221000	2 172	040 217929	1120.004000	0	F2	1	'	-1	2 0
949.321000	5.172	949.317828	1130.731904	0	FZ	1	<u>′</u>	F1	5 P
952.665400	-0.546	952.665946	1142.080102	8	FZ	T	1	FL	4 P
952.655700	-0.300	952.656000	1142.080102	8	F2	2	7	F1	4 P
963.670500	-4.542	963.675042	1153.099144	8	F2	2	7	F1	5 P
965.943200	1.206	965.941994	1155.356150	8	F2	1	7	F1	6 P
1017 988600	0 014	1017 988586	1128 517388	6	F1	1	7	F2	1 R
1022 678000	0.011	1022 670201	11/2 20700/	e e	F1	1	7	F2	2 0
1032.078000	-0.281	1032.078281	1145.207064	0		1	4	FZ	<u> эк</u>
991.259600	2.513	991.257087	1138.590001	/	FΤ	T	1	۲Z	2 Q
995.853800	-0.583	995.854383	1143.207084	7	F1	2	7	F2	3 Q
1006.841200	-3.519	1006.844719	1154.183694	7	F1	1	7	F2	4 Q
949.180200	2.934	949.177266	1138.596061	8	F1	2	7	F2	2 P
964.761500	-3 399	964.764899	1154.183694	Ř	F1	2	7	F2	4 P
967 610700	5 172	967 605272	1157 006527	Q	1	1	7	- 2 - 2	5 0
1021 100100	J.420	1021 105175	1160 531053	07	~ <u>7</u>	1	6) P 1 r
1021.100100	2.925	1021.1001/0	1100.001002	/	AZ	Ţ	ð	AL	тк
958./14900	-4.179	958./19079	1195.459263	9	AZ	1	8	A1	2 P
989.684300	2.608	989.681692	1179.082153	8	A1	1	8	A2	1 Q
1007.721400	-4.441	1007.725841	1197.126302	8	A1	1	8	A2	2 Q
942.355100	2.748	942.352352	1179.082153	9	A1	1	8	A2	1 P
960 392000	-4 501	960 396501	1197 126302	à	Δ1	-	8	Δ2	 2 D
1020 065100		1020 06/22/	1160 21/010	5	~T	⊥ 1	0	~ <u>~</u>	2 F 1 p
1020.0001UU	0.770	1020.004324	1104 002210	<u>/</u>	- -	1	0	- -	<u>т к</u>
T021.2TT200	-0.123	T021.2TT052	1104.002219	1	E	T	Ő	E	3 K

080 806500	2 71/	080 802786	1170 204522	Q	Г	1	Q	E	2 0
989.800300	5.714	989.802780	11/9.204323	0	E	1	0	E	2 Q
995.438800	-0.543	995.439343	1184.862219	8	E	2	8	E	3 Q
1009 284200	-0.126	1009 284326	1198 707202	8	F	2	8	F	4 0
048 120200	0.120	048 140201	1104 002210	ő	-	1	0	2	2 2
948.139300	-0.961	948.140261	1184.862219	9	E	T	ð	E	3 P
961.985200	-0.044	961.985244	1198.707202	9	Е	1	8	E	4 P
1020 972700	1 315	1020 971385	1168 320609	7	F2	2	8	F1	1 P
1020.372700	1.313	1020.571505	1100.020000	<u>'</u>	-2	2	0	-1	
1021.760300	0.238	1021.760062	1103.033311	/	FZ	T	8	FL	2 R
1035.661900	-0.394	1035.662294	1183.002142	7	F2	1	8	F1	3 R
1048 511700	-1 220	1048 515920	1105 855760	7	⊑2	1	8	c 1	5 P
1040.511700	-4.220	1040.515520	1195.055705	<u>′</u>	-2	1	0	-4	5 K
1048.502200	-4.345	1048.506545	1195.855769	7	F2	2	8	F1	5 R
978 907500	1 047	978 906453	1168 320609	8	F2	1	8	F1	1 0
070 696100	0 245		1160 000011	0	-2	1	õ	-1	
979.686100	0.345	9/9.005/55	1103.033311	ð	FΖ	T	ð	FΤ	2 Q
993.587400	-0.586	993.587986	1183.002142	8	F2	1	8	F1	3 Q
995 700900	-0 447	995 701347	1185 125448	8	F2	2	8	F1	4 0
1000 427000	4 012	1000 441012	1105 055700	0	-2	1	0	-1	· Q
1006.437600	-4.013	1006.441613	TTA2.922/0A	ð	FΖ	T	ð	FΤ	5 Q
946.264000	0.100	946.263900	1183.002142	9	F2	2	8	F1	3 P
948 422500	-0 462	948 422962	1185 125448	9	F2	1	8	F1	4 P
040.200400	0.402	040 207202	1105 125440	5	-2	2	8	-1	
948.386400	-0.806	948.387206	1185.125448	9	FΖ	Z	ð	ΡT	4 P
959.113300	-4.226	959.117526	1195.855769	9	F2	2	8	F1	5 P
963 927700	/ 101	963 923509	1200 625996	à	⊑2	1	8	c 1	6 P
303.327700	4.191	1020 710202	1200.023330	5	-1	1 2	0	-2	0 F
1020.711600	1.31/	1020.710283	1108.062983	/	ΡT	Z	ð	FΖ	T K
1021.851200	1.047	1021.850153	1169.189128	7	F1	1	8	F2	2 R
1036 271000	0 580	1036 270411	1182 600285	7	⊏1	1	Q	E2	4 P
1010.271000	0.309	1010.270411	1100 220200	<u>′</u>	ст - <	1 1	0	FZ	+ K
1048.984/00	-4.345	1048.989045	1190.328020	7	FI	1	8	F2	5 R
1051.136700	-0.616	1051.137316	1198.476290	7	F1	1	8	F2	6 R
979 771700	1 367	979 770222	1169 120172	Q	E1	2	R	⊑2	2 0
373.771700	1.307	979.770555	1109.109120	0	LT.	2	0	F2	2 Q
989.764100	3.255	989.760845	1179.162111	8	F1	1	8	F2	3 Q
994,191300	0.710	994,190590	1183.609385	8	F1	2	8	F2	4 0
1000 074700	0 225	1000 075025	1109 476200	0	F 1	1	ō	F2	6 0
1009.074700	-0.323	1009.073023	1198.470290	0	L T	1	0	FZ	U Q
1009.05/000	-0.496	1009.05/496	1198.476290	8	Fl	2	8	F2	6 Q
942.441900	3.298	942.438602	1179.162111	9	F1	2	8	F2	3 P
042 420800	2 450	042 426250	1170 162111	0	F 1	2	ō	F2	2 0
942.429800	5.450	942.420330	11/9.102111	9	FI	5	0	FZ	5 P
946.886600	0.723	946.885877	1183.609385	9	F1	2	8	F2	4 P
946.874300	0.675	946.873625	1183.609385	9	F1	3	8	F2	4 P
050 599200	2 060		1106 228020	õ	-1	2	õ		5 D
939.388300	-3.900	939.392200	1190.328020	9	FI	5	0	FZ	JP
961.752200	-0.582	961.752782	1198.476290	9	F1	2	8	F2	6 P
964.053200	4.858	964.048342	1200.750003	9	F1	1	8	F2	7 Р
005 921100	0 609	005 921709	1222 571002	0	× 2	1	õ	۸ <u>1</u>	1 0
993.831100	-0.098	993.031790	1232.371982	9	AZ	T	9	AL	I Q
1012.774500	2.629	1012.771871	1249.512055	9	A2	1	9	A1	2 Q
960 279000	2 751	960 276249	1249 512055	10	Δ2	1	9	Δ1	2 Р
1024 022100		1024 020505	1214 220000	±0	A 1	1	õ	<u>, 1</u>	1 0
1024.932100	2.595	1024.929505	1214.329966	8	AL	1	9	AZ	ТК
1040.637600	1.725	1040.635875	1230.036336	8	A1	1	9	A2	2 R
1056 599500	-1 572	1056 601072	1246 001533	8	Δ1	1	9	Δ2	3 R
077 00000	2 424	077 00100	1214 220000	ő	A1	1	õ	~ 2	J (
977.602600	2.454	977.000100	1214.329900	9	AL	T	9	AZ	ΙQ
993.308300	1.764	993.306536	1230.036336	9	A1	1	9	A2	2 Q
1009 270100	-1 633	1009 271733	1246 001533	9	Δ1	1	9	Δ2	3 0
040 70000	1 720		1220 026226	10	A 1	1	õ	<u>, </u>	2 2
940.760800	1./38	940.759062	1230.036336	10	AL	T	9	AZ	2 P
956.722500	-1.759	956.724259	1246.001533	10	A1	1	9	A2	3 P
1023 514000	2 570	1023 511430	1212 934305	8	F	2	9	F	1 R
1024 02000	0 227	1024 020462	1214 220200	0	-	1	õ	-	2 0
1024.828800	0.557	1024.828405	1214.230200	0	E	T	9	E	ZK
1039.941300	0.081	1039.941219	1229.342956	8	Е	1	9	E	3 R
1054 364500	-3 268	1054 367768	1243 769505	8	F	1	9	F	4 R
1054 242000	_2 720	1054 246620	12/3 760505	0	F	2	õ		/ n
1014.141900	-2.730	TO14.140020	1211 222222	0	с -	2	2	-	ч к
977.508600	0.358	977.508242	1214.230200	9	E	1	9	E	2 Q
992.620900	-0.098	992.620998	1229.342956	9	Е	1	9	Е	30
1007 044900	-2 647	1007 047547	1243 760505	à	F	1	à	F	1 0
	2.04/	TOO1 1041 341	1242 700000	10	-	± 2	5	-	T V
954.477500	-2.702	954.480202	1243.769505	10	E	2	9	E	4 P
960.411800	3.654	960.408146	1249.642880	10	Е	1	9	Е	5 P
1023 446500	1 976	1023 111521	1212 868625	8	=2 =2	2	à		1 p
1023.440300	1.570	1023.444324	1212.000025	0	-2	2	5	-4	
1024.023300	4.634	1024.018666	1213.432822	8	F2	1	9	Fl	2 R
1042.723400	-0.002	1042.723402	1232.137558	8	F2	1	9	F1	4 R
1053 857600	_1 850	1053 850/50	12/13 272606	Q	 _ ?	1	õ	c1	5 0
1013.03/000	-1.030	1013.039430	1243.2/3000	0	r2	Ť	2	г <u>т</u>	э к
1057.854900	-0.929	1057.855829	1247.279931	8	F2	2	9	Fl	6 R
976.698500	3.920	976.694580	1213.432822	9	F2	2	9	F1	20
988 044700	2 122	988 042272	1224 744750	<u> </u>	E2	1	à		2 0
005 00000	2.420	JOD. 042272	1222 12====	2	FZ	т 2	2	F 1	s Q
992.398900	-0.415	995.399315	1232.13/558	9	F2	2	9	FΤ	4 Q
1010.576800	-0.644	1010.577444	1247.279931	9	F2	1	9	F1	60
1010 541200	-0 488	1010 541688	1247 279931	à	F2	2	a	F1	6 0
1010.041200	2 120	1010.071000	1004 744750	10	- 2	2	č	- 1	
935.482700	2.129	933.48U5/1	1224./44/59	T0	►Z	2	9	۲٦	3 P
942.873500	0.130	942.873370	1232.137558	10	F2	2	9	F1	4 P
942 845100	0 191	942 844909	1232 137558	10	F2	2	9	F1	4 P
052 070700	2.121	052 000057	1042 072000	10	- 2 - 2	ر د	õ	- 1 - 1	
222.2/0/00	-2.23/	322.30032/	1243.2/3000	TO	۲Z	5	9	Γ⊥	2 P
958.015100	-0.643	958.015743	1247.279931	10	F2	2	9	F1	6 P
960 371300	3 341	960 367959	1249 603032	10	F2	1	9	F1	7 P
1022 727200	J.J-T		1010 155140	T0	-Z	± 2	5	E 2	<i>i</i> F 1 5
1023./3/300	0.949	TO52.13032T	1213.155140	ŏ	ΓL	Z	9	FZ	тк

1024 867200	1 505	1024 865695	121/ 266960	8	c1	1	Q [=2 2 P	
1024.807200	1.303	1024.803033	1214.200900	0	ГŢ	Ŧ	9 1	-2 2 K	
1040.114000	0.217	1040.113783	1229.515048	8	F1	1	9 F	.=2 4 R	
1040 000100	0 1 5 2	1040 000252	1220 515049	0	-1	h	0 -	-2 4 5	
1040.096100	-0.122	1040.096255	1229.313048	0	FT	Z	9 1	-2 4 K	
1042.255900	-7.080	1042.262980	1231.664246	8	F1	1	9 F	F2 5 R	
1042 245400	0 0 1	1042 245451	1221 664246		=1	-	0 -	-2 5 5	
1042.245400	-0.051	1042.245451	1231.004240	ð	ΡT	Z	9 1	-2 5 K	
976.432200	0.563	976.431637	1213.155146	9	F1	2	9 F	F2 1 0	
076 420400	1 014	076 410306	1212 155146	0	-1	-	0 -		
976.420400	1.014	976.419386	1213.155146	9	ΡT	3	9 F	-2 I Q	
977 544900	1 448	977 543452	1214 266960	9	F1	2	9 6	F2 2 0	
007 007500	1 (0)	007 005000	1224 607460	Š	-1	-	0 -	-2 -2 -2	
987.997500	1.692	987.995808	1224.697469	9	ΡT	T	9 F	-2 3Q	
992 792100	0 560	992 791540	1229 515048	9	F1	2	9 6	F2 4 0	
552.752100	0.300	552.751510	1220.515010	5	-4	2		-2 1 2	
992.779700	0.412	992.779288	1229.515048	9	ΡT	3	9 F	-2 4 Q	
994 940200	-0.537	994 940737	1231 664246	9	F1	2	9 F	F2 5 0	
004 020200	0.305	004 020405	1221 664246	Š	-1	-	0 -		
994.928200	-0.285	994.928485	1231.664246	9	ΡT	3	9 F	-2 5 Q	
1007 532700	-3 192	1007 535892	1244 237552	9	F1	1	9 F	F2 6 0	
1007 510400	2 644	1007 514044	1244 227552	Š	-1	-	0 -		
1007.510400	-3.644	1007.514044	1244.237552	9	ΡT	2	9 F	-2 6 Q	
1007 498500	-3 292	1007 501792	1244 237552	9	F1	3	9 F	F2 6 0	
1007.150500	5.252	1007.3017.32	1211.257552		- 4	5	5 1		
1010.156300	-1.649	1010.157949	1246.859609	9	FL	T	9 F	-2 / Q	
1010 134400	-1 701	1010 136101	1246 859609	9	F1	2	9 6	F2 7 0	
1010 132400	1 440	1010 10000	1246 050000		-4	-		-2 7 2	
1010.122400	-1.449	1010.123849	1246.859609	9	FL	3	9 F	-2 / Q	
935 431500	1 716	935 429784	1224 697469	10	F1	1	9 6	E7 3 P	
040 220200	1.7 10	040 020742	1220 515040	10	-1	-	0 -	-2 4 5	
940.229300	0.558	940.228742	1229.515048	10	ΡT	2	9 F	-2 4 P	
954 948100	-3 146	954 951246	1244 237552	10	F1	2	9 F	E2 6 P	
057 500400	1 525	057 501005	1246 050600	10	-1	-	0 -	-2 7 5	
957.590400	-1.525	921.281852	1246.859609	10	FΤ	T	9 1	-2 / P	
957.571800	-1.503	957.573303	1246.859609	10	F1	2	9 F	F2 7 Р	
1026 072500	2 274	1026 071126	1262 011210	ò	<u>۸</u> 2	1	10	л1 1 р	
1020.075300	2.3/4	1020.071120	1202.011310	9	AZ	<u>_</u>	10 /	41 I K	
1064.559000	-0.603	1064.559603	1301.299787	9	A2	1	10 A	41 3 R	
986 139500	-0 663	986 1/0163	1275 375060	10	۸2	1	10 /	A1 2 0	
300.133300	-0.005	500.140105	1273.373303	10	AZ	1	10 4	1 2 0	
1012.063300	-0.681	1012.063981	1301.299787	10	A2	1	10 A	41 3 Q	
954 267500	-0 663	954 268163	1301 299787	11	Δ2	1	10 4	Δ1 З Р	
1020 505200	1 0 2 0	1020 507020	1202 22021		A 1	1	10 /	1 1 1	
1026.505200	-1.830	1026.507030	1263.236831	9	AL	T	10 A	42 I R	
1046.256800	-0.219	1046.257019	1282.986820	9	Δ1	1	10 A	42 2 R	
072 057200	2 2 7 7		1202 220021	10	.1	1	10	1 1 0	
973.957300	-2.257	9/3.95955/	1203.230831	10	AL	T	10 4	42 I Q	
1026.866000	5.251	1026.860749	1263.582706	9	E	1	10 E	E 1 R	
1047 419600	0 222	1047 419267	1201 110221	Ó	-	1	10 г	с 2 р	
1047.418000	0.333	1047.410207	1204.140224	9	E	1	10 6	<u> эк</u>	
1059.648700	0.411	1059.648289	1296.370246	9	Е	1	10 E	. 4 R	
074 208800	5 207	07/ 202/02	1262 582706	10	E	2	10 6	= 1 0	
574.250000	5.557	574.255405	1203.302700	10		2	10 1	- 1 Q	
986.101100	-2.218	986.103318	1275.338052	10	E	1	10 E	E 2Q	
1007 081400	0 457	1007 080943	1296 370246	10	F	2	10 F	F 4 0	
1007.001100	0.157	1007 10000 15	1206 270246	11	-	2	10 1		
949.295500	0.687	949.294813	1296.370246	ΤT	E	2	T0 F	= 4 P	
953.641300	-1.940	953,643240	1300.680731	11	F	1	10 F	= 5 р	
1020 151000	1 050	1000 140040	1202 000001			-	10 5		
1026.151800	1.952	1026.149848	1262.888091	9	FΖ	2	T0 F	-1 1 K	
1027.869500	-0.251	1027.869751	1264.572238	9	F2	1	10 F	F1 2 R	
1044 025400	0 240	1044 025640	1200 720126	Ó	F 2	1	10 г	с1 / р	
1044.023400	-0.249	1044.023049	1280.728130	9	FZ	1	10 1	-1 4 K	
1064.192800	-1.926	1064.194726	1300.932969	9	F2	2	10 F	<i>-</i> 17 R	
975 308000	_0 050	075 208050	1761 577728	10	E 2	2	10 0	=1 2 0	
575.500000	-0.000	575.500050	1204.372230	10	-2	2	10 1	-1 2 Q	
986.113700	-1./86	986.115486	1275.350559	10	F2	1	10 F	F1 3Q	
991 463900	-0 048	991 463948	1280 728136	10	F2	2	10 6	=1 4 0	
551.105500	0.010	551.105510	1200.720150	10		2	10 1	± 1 Q	
995.594500	-0.333	995.594833	1284.859020	10	FΖ	2	T0 F	-L 5 Q	
995.565900	-0.471	995.566371	1284.859020	10	F2	3	10 F	F1 5 0	
1007 007800	0 451	1007 00001	1200 002428	10	-2	- -	10 5		
1007.697800	-0.451	1007.098231	1296.962438	10	FΖ	Z	T0 F	-1 6 Q	
1011.638600	-1.719	1011.640319	1300.932969	10	F2	3	10 F	F1 7 0	
033 657800	_0 406	033 658206	1280 728136	11	⊏2	2	10 0	=1 / D	
933.037800	-0.400	933.038200	1280.728130	11	F2	5	10 1	-1 4 P	
949.892100	-0.408	949.892508	1296.962438	11	F2	3	10 F	-1 6 P	
953 896400	-1 372	953 897772	1300 932960	11	F2	2	10 🖬	F1 7 P	
	1 422	050 710000	1202 704152		-2		10 -	- / F	
930.712400	1.432	A20.110308	1303./04152	ΤT	۲Z	T	TO P	-т 8 Р	
1026.254000	1.843	1026.252157	1262.987917	9	F1	3	10 F	F2 1 R	
1026 702600	1 116	1026 780404	1263 511002	õ	E1	- -	10 -	= 2 - 1 - 1	
1020.192000	4.110	1020./00404	TCO2.2TT222	9	г⊥	2	TO P	- <u> </u>	
1027.921000	1.810	1027.919190	1264.620851	9	F1	1	10 F	.=2 3 R	
1044 285200	0 853	1044 284347	1280 986007	9	F1	1	10 6	=7 <u>4</u> R	
1044.205200	0.000	1044.204347	1200.000007	5	-4	±	10 1		
1046.990000	1.029	1046.988971	1283./24731	9	F1	3	TO E	-2 5 R	
1059 280300	1 312	1059 278988	1296 002497	9	F1	2	10 F	E2 6 R	
1050 267000	1 160	1050 260727	1206 002407	Š	- 1 - 1	2	10 -	-	
T023.50/200	T.T03	TO2A'500\3\	1290.00249/	9	ΡT	3	TO E	-∠ 6 R	
1062.674000	-1.573	1062.675573	1299.377233	9	F1	1	10 F	F2 7 R	
975 355000	1 822	975 252167	1264 620851	10		1	10 7	=2 2 0	
575.555000	1.000	717.222710/	1207.0200JI	10	ст 	Ŧ	10 1	∠ 3 Q	
991.719200	0.877	991.718323	1280.986007	10	F1	1	10 F	FZ 4 Q	
991,700200	0.499	991,699701	1280 986007	10	F1	2	10 🖬	F7 4 n	
1000 735000	0.007	1000 734012	1200.000.007	10	-1	-	10 -		
TOOP.132800	0.98/	1006./34813	1296.00249/	10	FΤ	1	TO E	-2 6 Q	
1010.108200	-1.349	1010.109549	1299.377233	10	F1	1	10 F	F2 7 0	
1010 089700	_1 227	1010 000027	1200 277222	10		2	10 7	= 7 0	
1010.009/00	-1.221	TOTO 020221	TC22.211C22	10	Г <u>Т</u>	2	10 1	- <u> </u>	
933.932000	1.033	933.930967	1280.986007	11	F1	2	10 F	FZ 4 P	
948 925800	1 124	948 924676	1296 002497	11	F1	2	10 🖬	F2 6 P	
	1 202	052 222102	1200 277222		-1	2	10 -	-	
902.320800	-1.393	927.355183	TTAA.21/533	ΤT	۲H	2	TO E	-2 / P	
956.768700	2.161	956.766539	1303.759155	11	F1	1	10 F	F2 8 P	
1030 860000	_3 274	1030 864224	1320 100020	10	A.2	1	11 4	۰ ۱ ۱ ۱	
T020.000300	-5.524	1030.004224	T250.T00030	TO	AZ	T	11 A	∙⊥ ⊥ K	
1047.842600	-1.931	1047.844531	1337.080337	10	A2	1	11 A	41 2 R	

1065.735100	2.022	1065.733078	1354.968885	10	A2	1	11 A1	3 R
973 064800	-3 606	973 068406	1320 100030	11	^2	1	11 \1	1 0
973.004800	-3.000	973.008400	1320.100030	11	AZ	1	II AI	I Q
990.046800	-1.913	990.048713	1337.080337	11	A2	1	11 A1	2 Q
1007 939800	2 539	1007 937261	1354 968885	11	Δ2	1	11 A1	3 0
2007 19990000	2.333	20071001201	1254 000005	12		1	11 .1	
944.894600	2.444	944.892156	1354.908885	12	AZ	T	II AI	3 P
1029.213000	6.451	1029.206549	1318.483823	10	A1	1	11 A2	1 R
1064 308600	4 365	1064 304235	1353 581508	10	۸1	1	11 ^2	2 R
1004.300000	4.305	1004.304233	1353.301300	10	.1	- -	11 .2	2 1
943.495600	4.445	943.491155	1353.581508	12	AL	2	II AZ	2 P
953.140400	0.593	953.139807	1363.106737	12	A1	1	11 A2	3 P
1028 827400	_0 054	1028 827454	1218 116757	10	E	2	11 E	1 р
1028.827400	-0.034	1020.027434	1318.110737	10	E .	2		L K
1030.911000	0.370	1030.911230	1320.145965	10	E	T	II E	2 R
973.108900	0.425	973.108475	1320.145965	11	Е	1	11 E	2 0
990 296400	0 600	000 205800	1227 222200	11		1	11 E	3 0
990.290400	0.000	990.293800	1337.333290	11	E	1	TT C	J Q
995.069600	0.365	995.069235	1342.144669	11	Е	2	11 E	4 Q
1011.067000	-0.640	1011.067640	1358,105130	11	F	1	11 F	5 0
1011 020000	0 606	1011 020606	1250 105120	11	-	2	11 r	5 0
1011.029000	-0.090	1011.029090	1338.103130	11	E	2	TT E	3 Q
948.051100	-0.764	948.051864	1358.105130	12	Е	2	11 E	5 P
953 085800	-0.242	953 086042	1363 053654	12	F	1	11 F	6 P
1028 721700	1 200	1028 720414	1218 012004	10		2	11 -1	1 5
1028.721700	1.200	1028.720414	1518.015064	10	FZ	2	II FI	LR
1029.679300	4.983	1029.674317	1318.938505	10	F2	2	11 F1	2 R
1030 895600	-0.662	1030 896262	1320 131335	10	F2	1	11 F1	3 R
1048 005700	0 471	1048 006171	1227 241244	10	-2	1	11 -1	
1040.005/00	-0.4/1	1040.0001/1	100/.241244	T0	۲Z	T	TT PT	ъκ
1051.784100	0.673	1051.783427	1341.047615	10	F2	2	11 F1	6 R
1065 136600	3 038	1065 133562	1354 397750	10	F2	2	11 ⊏1	7 P
1060 5516000	0 700	1060 55302	1357 707770	10	-2		11 -1	
1008.221000	-0.702	1068.552302	1357.787376	10	FΖ	T	TT PT	8 K
1068.522100	-1.088	1068.523188	1357.787376	10	F2	2	11 F1	8 R
1070 886900	_1 /02	1070 888302	1360 180951	10	⊏2	3	11 ⊏1	Q P
1070.000900	-1.402	1070.000302	1300.100331	10	-2	5		5 K
971.874000	5.425	9/1.8685/5	1318.938202	ΤT	FΖ	3	TT PT	2 Q
973.095400	-0.739	973.096139	1320.131335	11	F2	2	11 F1	3 Q
984 067400	-5 705	984 073105	1331 066290	11	F2	1	11 F1	4 0
000 205500	0.547	000 00017	1227 241244	11	-2	2	11 -1	+ Q
990.205500	-0.547	990.206047	1337.241244	ΤT	FΖ	2	TT PT	5 Q
990.170600	-0.714	990.171314	1337.241244	11	F2	3	11 F1	5 Q
993 978500	0 815	993 977685	1341 047615	11	F2	3	11 F1	6 0
1007 20000	2 447	1007 202552	1254 207750	11	-2	2	11 -1	0 0
1007.366000	3.447	1007.362553	1354.397750	ΤT	FΖ	Z	TT PT	7 Q
1007.331300	3.480	1007.327820	1354.397750	11	F2	3	11 F1	7 Q
1010 751100	-1 079	1010 752179	1357 787376	11	F2	2	11 ⊑1	8 0
1010.751100	1.075	1010 717440	1257.707370	11	-2	2		0 0
1010./10000	-0.846	1010.717446	1357.787376	11	FZ	5	TT PT	8 Q
1013.186900	-0.866	1013.187766	1360.180951	11	F2	1	11 F1	9 Q
944.317700	3.417	944.314283	1354.397750	12	F2	3	11 F1	7 P
047 720700	0 724	047 720424	1257 707276	10	-2	2	11 -1	, i
947.729700	-0.754	947.750454	1337.787370	12	FZ	2	II FI	0 P
947.702900	-1.009	947.703909	1357.787376	12	F2	3	11 F1	8 P
950.158300	-0.846	950.159146	1360.180951	12	F2	1	11 F1	9 P
1028 022400	0 552	1020 022052	1210 200250	10	-1	-	11 -2	1 0
1028.922400	-0.335	1028.922933	1318.209239	10	FI	2	II FZ	L K
1050.857200	0.420	1050.856/80	1340.124464	10	Fl	1	11 F2	4 R
1050.838500	0.342	1050.838158	1340.124464	10	F1	2	11 F2	4 R
1064 696600	3 787	1064 692813	1353 960/97	10	c1	1	11 =2	6 P
1004.030000	5.707	1004.092013	1252.000497	10	-1	1	11 -2	0 K
1064.678000	3.809	1064.674191	1353.960497	10	Fl	2	11 F2	6 R
971.153500	-0.719	971.154219	1318.209259	11	F1	2	11 F2	1 Q
971 766100	2 514	971 763586	1318 818626	11	F1	2	11 ⊑2	2 0
571.700100	2.514	571.705500	1221 052700	11	-1	2	11 12	2 Q
984.054600	-6.565	984.061165	1331.053780	11	FL	T	II FZ	3 Q
993.069800	0.376	993.069424	1340.124464	11	F1	2	11 F2	4 Q
995 374300	-0 361	995 374661	1342 452481	11	F1	3	11 ⊑2	5 0
1000 880500	2 024	1000 992070	1252 000407	11	-1	2	11 -2	,
1000.000300	5.024	T000.0070/0	100049/	11	FL	5	<u>⊥⊥</u> ⊢∠	υų
1012.785200	-2.403	1012.787603	1359.780219	11	F1	1	11 F2	7 Q
1012.699900	-2.498	1012,702398	1359,780219	11	F1	3	11 F2	7 0
043 877300	1 151	0/3 8731/0	1353 060407	12	E1	2	11 = 2	6 0
		040 754072	1250 700210	12	гт =1	2	11 -2	0 P 7 -
949./51/00	-2.373	949.754073	1328./80219	12	F1	2	11 F2	/ P
953.104500	-0.062	953.104562	1363.071942	12	F1	1	11 F2	8 P
1032 522500	6 453	1032 516047	1379 547671	11	^2	1	12 A1	1 P
1052.522500	0.700	1052.510047	1402 221020	11	AZ	1	12 AI	
T020.500600	0.394	1020.200206	1403.231829	11	AZ	1	12 Al	2 R
1073.744100	-0.019	1073.744119	1420.775743	11	A2	1	12 A1	3 R
969 491400	20 458	969 470942	1379 547671	12	Δ2	1	12 ∆ 1	1 0
	20.400	002 155100	1402 221020	12	~~~	1	12 .1	- Y
22.T22000	0.500	AA2.T22T00	1403.231829	12	AZ	T	TT AT	2 Q
1010.699200	0.186	1010.699014	1420.775743	12	A2	1	12 A1	3 Q
942.490800	-0.010	942,490810	1420.775743	13	Α2	1	12 ∆1	3 P
005 152200	_0 101	005 152101	1/05 5/2755	10	<u>۸</u> 1	- 2	12 ^2	2 0
JJJ.4323UU	-0.101	333.4324UL	1403.342/33	12	AL	2	IZ AZ	2 Q
1013.980400	-3.717	1013.984117	1423.951047	12	A1	1	12 A2	3 Q
1013.857100	-3.593	1013.860693	1423.951047	12	A.1	2	12 A2	3 0
945 720200	_3 526	0/15 702006	1/23 0510/7	12	A 1	1	12 ^2	2 1
373.720300	-3.330	JHJ./2000	1270 122521	1 T D	AT	т 2	12 AZ) r 1 -
T03T.32/100	-0.991	1031.328091	13/8.433524	11	Е	2	12 E	1 R
1032.360600	-2.587	1032.363187	1379.400678	11	Е	1	12 E	2 R
1055 123800	0 346	1055 123454	1402 160944	11	F	1	12 F	4 P
1060 077300	2 5 5 7 7		1/17 011107	11	-		10 -	
тора. 8//500	3.523	TOPA.2/30//	141/.01116/	11	E	1	12 E	5 R
969.345000	-2.411	969.347411	1379.400678	12	Е	2	12 E	2 0
992 108000	0.322	992 107678	1402 160944	12	F	2	12 F	$\overline{4}$ $\hat{0}$
	J. JLL	2251101010			-	4	L	· Y

1006 961700	3 799	1006 957901	1417 011167	12	F	2	12	F 50	5
1014 426200	0.050	1014 436356	1424 402060	12	-	-	12		2
1014.436300	-0.056	1014.436356	1424.403968	12	E	T	12	E 6Q	2
938 700700	3 844	938 696856	1417 011167	13	F	2	12	F 5 0	,
550.700700	0.0011	046 1000000	1424 402060	10	-	-	12		
946.183000	0.324	946.182676	1424.403968	13	E	T	12	E 6 P	,
1031,499200	-4.309	1031.503509	1378.573439	11	F2	3	12	F1 1 R	2
1022 422200	1 212	1022 421000	1270 457105	11	-2	2	12		
1032.423200	1.212	1032.421988	15/9.45/165	11	FZ	2	12	ғт ск	
1055.360500	0.746	1055.359754	1402.394951	11	F2	2	12	F1 5 R	2
1055 226100	1 070	1055 225021	1402 204051	11		-	10		
1022.350100	1.079	1055.325021	1402.394951	ΤT	FΖ	3	12	н эк	L L
1057.550200	0.266	1057.549934	1404.585131	11	F2	2	12	F1 6 R	2
1057 515000	0 500	1057 515201	1404 505131	11	-2	-	10		
1021.212000	0.599	1021.212501	1404.303131	11	FZ	2	12	ғт ок	
1070.399800	3.591	1070.396209	1417.431405	11	F2	2	12	F1 7 R	2
1074 422100	0 572	1074 421520	1421 466725	11	F 2	2	10	r1 9 n	,
1074.452100	0.572	1074.451528	1421.400725	11	FZ	2	12	ғт ок	i.
969.400900	0.657	969.400243	1379.457185	12	F2	2	12	F1 2 Q)
970 824800	_1 210	970 829040	1280 850845	12	E2	1	12	F1 3 0	, ,
970.824800	-4.240	970.829040	1380.830843	12	ГZ	T	12	FI JQ	ł.
988.629700	-2.547	988.632247	1398.654052	12	F2	1	12	F1 4 Q	2
992 338700	0 601	002 338000	1/02 30/051	12	⊏2	2	12	F1 5 0	,
552.550700	0.051	552.550005	1402.334331	12	12	2	12		2
994.528800	0.611	994.528189	1404.585131	12	F2	2	12	F1 6 Q	2
994 502300	0 636	994 501664	1404 585131	12	F2	3	12	F1 6 0	5
554:502500	0.050	554.501004	1404.303131	12	-2	5	12		2
1007.378100	3.63/	1007.374463	1417.431405	12	F2	2	12	F1 / Q	2
1011 409800	0 017	1011 409783	1421 466725	12	F2	2	12	F1 8 0)
1011 202100	0 1 5 0	1011 202250	1421 400725	10		-	10		-
1011.383100	-0.128	1011.383238	1421.400725	12	FΖ	5	12	FI 8 Q	2
939,125200	3.691	939,121509	1417,431405	13	F2	3	12	F1 7 P	,
040 440400	2 052	040 451452	1427 001200	10		1	10	-1 0 5	
949.449400	-2.052	949.451452	1427.601298	13	FΖ	T	12	FI 9 P	, ,
1031.299700	-0.324	1031.300024	1378.377844	11	F1	3	12	F2 1 R	2
1021 056000	1 052	1021 051047	1270 006000	11	-1	2	10		
1021.020000	4.000	1031.031947	13/0.900900	11	FΤ	2	12	FZ Z K	i.
1033.873600	-1.498	1033.875098	1380.867714	11	F1	1	12	F2 3 R	2
1051 766700	0 070	1051 766770	1200 750205	11	F1	1	10		,
1031.700700	-0.079	1031.700779	1230./23232	11	FΤ	T	12	FZ 5 K	i.
1069.544300	3.655	1069.540645	1416.595686	11	F1	2	12	F2 7 R	ł.
1074 043000	0 555	1074 042445	1422 020265	11	E 1	2	12	C) 8 D	,
1074.943000	0.555	1074.942449	1422.020203	11	LT.	5	12	FZ 0 K	•
1077.204100	-0.711	1077.204811	1424.282632	11	F1	3	12	F2 9 R	ί.
970 840100	-1 168	970 8/1568	1380 867714	12	⊏1	2	12	E2 3 0	、
570.040100	1.400	570.041500	1000.007714	12	-4	2	12	12 5 0	2
988.733200	-0.049	988.733249	1398.759395	12	Fl	2	12	F2 5 Q	2
995 012700	0 279	995 012421	1405 099769	12	F1	3	12	F2 6 0)
1000 512000	2.662	1000 500220	1416 505605	12	-1	5	12		2
1006.512000	3.662	1006.508338	1416.595686	12	FL	3	12	FZ 7 Q	2
1011.994400	0.281	1011,994119	1422.020265	12	F1	2	12	F2 8 0)
1014 214400	0.050	1014 215252	1424 202022	10	-1	-	10	-2 0 0	
1014.314400	-0.852	1014.315252	1424.282632	12	FΤ	T	12	FZ 9 Q	Į
1014.194100	-1.184	1014.195284	1424.282632	12	F1	3	12	F2 90)
020 200600	2 552	020 277040	1416 505696	12	F1	1	10		
930.200000	5.552	950.277040	1410.393000	T2	FΤ	4	12	FZ 7 P	
943.755600	0.304	943.755296	1422.020265	13	F1	3	12	F2 8 P	,
046 058800	0 022	046 050622	1424 202622	12	F1	2	10		•
940.038800	-0.025	940.039023	1424.202032	1.2	FT.	2	12	FZ 3 F	
949.472700	-1.454	949.474154	1427.623642	13	F1	1	12	F2 10 P	,
1034 084300	-10 620	1034 004020	1444 171657	12	^2	1	12	л1 1 р	,
1034.004300	-10.025	1034.034323	1444.171037	12	AZ	1	10 /		•
992.985700	2.797	992.982903	1471.267836	13	A2	1	13 /	A1 2 Q	2
945 797100	-3 722	945 800822	1497 331281	14	Δ2	1	13	Δ1 3 P	5
1022 001200	1 012	1022 00222	1442 002666	10	. 1	-	10		
1033.801300	-1.012	1033.802312	1443.892666	12	AL	2	T3 1	AZ IR	ł.
1036.810800	-0.359	1036.811159	1446.778089	12	Δ1	1	13	A2 2 R	2
1055 344000	2 200	1055 240712	1405 207042	10	A 1	- 1	10	• 2 2 5	
1055.344000	3.288	1055.340/12	1465.307642	12	AL	T	13 /	AZ 3 R	L L
968.550300	-0.577	968.550877	1446.778089	13	A1	1	13	A2 2 0)
0.97 0.94100	2 660	097 090421	1465 207642	12	۸1	1	12	AD 2 0	
967.064100	5.009	967.060451	1403.307042	T2	AL	T	T2 /	AZ 5 Q	Į
939.931300	6.461	939.924839	1491.599282	14	A1	1	13	A2 4 P	,
1034 511400	2 578	103/ 508822	1444 562088	12	E	2	13	с 1 р	,
1034.311400	2.570	1034.300022	1444.302000	12	L .	2	13		•
1055.253700	-1.832	T022.5222	1465.223143	12	E	1	13	ь З R	ι –
1062.686400	0.615	1062 685785	1472 739051	12	F	2	13	E 4 R	ł
1074 700500	E 100	1074 004000	1404 057062	10	-	-	10		
1014.199500	-2.130	10/4.804696	1484.85/962	12	E	2	T2	E SR	i.
987.000000	-1.852	987.001852	1465.223143	13	Е	1	13	E 30	2
994 124600	_0 140	001 121710	1/72 720051	12	F	- ר	12	E 4 0	\
JJ4.424000	-0.140	JJ4.424/4U	THIT'LDDDT	τ2		2	10	L 4 Q	L
1012.233800	-0.167	1012.233967	1490.548277	13	Е	2	13	E 6Q	2
938 857400	-0 286	938 857686	1490 548277	11	F	2	13	F 6 1	,
	4 200	1000 011000	1444 005155	14		2	10	L U P	
1033.93/400	-4.289	1033.941689	1444.025155	12	F2	3	13	⊦ı 1 R	ι –
1034,437800	0.699	1034,437101	1444,494043	12	F2	2	13	F1 2 R	2
1025 240000	2.000	1025 220000	1445 250005	1 2			1 2		
1035.240600	2.511	T022.52808A	1443.239895	17	F2	T	13	r⊥ 3 R	ί.
1062.209200	1.056	1062.208144	1472.265086	12	F2	2	13	F1 6 R	ł
1074 446000	-6 201	1074 152101	1/0/ 510100	10	E.2	- 2	12	c1 7 n	,
1074.440900	-0.201	10/4.433101	T404. 2TOTC2	12	٢2	2	12	гт / К	•
1079.484700	-0.089	1079.484789	1489.506594	12	F2	1	13	F1 8 R	٤ - ١
991 323900	-6 967	991 330867	1469 6037/1	12	F2	2	13	F1 5 0)
JJT. JZJ300	-0.907	JJT.JJ0007	1460 603741	10	-2	2	10	-1 -1 -	2
991.293800	-0.045	991.293845	1469.603741	13	F2	3	13	FL 5Q	Į
993 992800	0 588	993 997717	1472 265086	13	F2	2	13	F1 6 0)
002 055000	0.710	002 055100	1472 205000	12	-2	2	10		£
223.22200	0./10	AA2.A22TAO	1472.265086	13	۲L	3	τs	нт рб	Į –
1015.692600	2.433	1015,690167	1493.840014	13	F2	1	13	F1 9 0)
027 70/200	0 052	027 70/2/0	1480 506504	11	E2	2	12		- >
331.194300	0.052	JJ1./J4240	1403.300394	14	۲2	5	тэ	гт од	•
942.220300	2.319	942.217981	1493.840014	14	F2	2	13	F1 9 P	,
1035 153000	-7 367	1035 160367	1445 186512	17	F 1	2	12	⊑? ² □	,
1055.133000	-7.307	1022.100307	T442 320 323	12	F 1	2	10	-2 -2 -	
1055.283000	-0.057	1055.283057	1465.250437	12	F1	1	13	FZ 5 R	ł
1059 209400	-1 396	1059 210796	1469 236942	12	F1	2	13	F2 6 P	,
	1.550	1075 200051	1405 200115	12	ст – 4	2	10	-2 0 K	
1075.265900	-4.071	1075.269971	1485.296117	12	Fl	2	13	⊢∠ 8 R	L I

987 027300	-0.128	987 027428	1465 250437	13	F1	2	13	F2	5 0
000 070000	1 074	000 071074	1400 220042	10	-1	-	1 2		
990.970900	-1.074	990.971974	1409.230942	12	FT	2	12	FZ	υQ
995.109600	0.811	995.108789	1473.427426	13	F1	4	13	F2	7 Q
1007 027000	-1 118	1007 031148	1/85 206117	12	c 1	3	12	⊑2	8 0
1007.027000	4.140	1007.051140	1403.250117	10	-4	5	10	-2	0 0
1012.734900	1.329	1012./335/1	1490.956580	13	FL	2	13	FZ	9 Q
1012.639300	1.357	1012.637943	1490.956580	13	F1	4	13	F2	90
030 273800	1 550	020 2722/1	1400 056580	11	⊏1	2	12	⊏2	0 D
939.273800	T. 339	939.272241	1490.930380	14	LT.	2	13	Г2	5 F
942.033800	-0.428	942.034228	1493.659353	14	F1	1	13	F2	10 P
1079.001200	-35.022	1079.036222	1557.321155	13	Δ2	1	14	Δ1	3 R
1027 800600	16 607	1027 007207	1516 124410	10	A 1	- 1	14	A 2	1 0
1037.890600	-10.007	1037.907207	1510.154410	12	AL	T	14	AZ	L K
1062.988200	-6.946	1062.995146	1541.222358	13	A1	1	14	A2	2 R
989 540900	-7 014	989 547914	1541 222358	14	Δ1	1	14	Δ2	2 0
1026 205400	4 5 70	1026 200070	1514 714200	12		2	14	- -	1 0
1030.393400	-4.579	1020.222212	1514.714290	12	E	2	14	E	I K
1037.976100	1.809	1037.974291	1516.195582	13	Е	1	14	E	2 R
1063 383000	0 619	1063 382381	1541 603673	13	F	1	14	F	4 R
000 012000	0.010	000 012001	1541 002072	14	-	2	14	-	1 0
989.913600	0.519	989.913081	1541.603673	14	E	Z	14	E	4 Q
994.509300	1.227	994.508073	1546.263508	14	Е	3	14	E	5 Q
1011 837900	-1 798	1011 839698	1563 595134	14	F	3	14	F	6 0
1011.057.500	1.750	1011.055050	1562 505124	15	-	5	14	-	0 0
933.260100	-0.329	933.260429	1563.595134	15	E	2	14	E	6 P
1036.467800	-6.912	1036.474712	1514.784608	13	F2	3	14	F1	1 R
1037 015200	-5 564	1037 020764	1515 203638	12	⊏2	2	1/	⊏1	2 P
1057.015200	5.004	1057.020704	1515.255050	10	-2	2	14	-1	
1058.725200	5.298	1028./19905	1536.869748	13	FZ	T	14	FL	5 R
1079.349700	-32.611	1079.382311	1557.655185	13	F2	2	14	F1	8 R
002 211400	1 026	002 200464	1544 021910	14	-2	2	1/	-1 -1	6 0
992.311400	1.930	992.309404	1344.021810	14	FZ	5	14	FI	υų
1013.342900	-2.856	1013.345756	1564.967789	14	F2	2	14	F1	9 Q
934 663700	-2.860	934 666560	1564 967789	15	F2	3	14	F1	9 P
1020 22200	1 000	1020 224400	1514 642027	10	-1	4	14		1 5
1030.322600	-1.800	1036.324400	1514.643037	13	ΡT	4	14	FΖ	T K
1037.139000	-0.811	1037.139811	1515.404779	13	F1	3	14	F2	2 R
1037 950200	-3 647	1037 953847	1516 176856	13	F1	2	14	⊑2	3 P
1050 755000	0 704	1059 740000	1526.2700000	10	-1	1	14	-2	
1028.722800	9.794	1058.746006	1536.895494	13	ΡT	T	14	FΖ	э к
1063.235000	-2.194	1063.237194	1541.460203	13	F1	2	14	F2	6 R
1066 977100	-1 390	1066 978490	1545 243459	13	F1	3	14	F2	7 R
002 402600	1 470	002 404070	1545 242450	14	F1	2	1/		7 0
995.492000	-1.470	993.494070	1343.243439	14	FT	5	14	FZ	7 Q
1011.481100	-3.056	1011.484156	1563.233545	14	F1	3	14	F2	9 Q
935,468500	11.264	935.457236	1565.744839	15	F1	2	14	F2	10 P
1062 085600	22.007	1062 062702	1612 502252	14		- 1	1 5	۰ <u>–</u>	2 0
1002.083000	22.007	1002.002793	1013.393232	14	AZ	T	1.2	AL	2 R
1039.811100	6.843	1039.804257	1591.478701	14	A1	1	15	A2	1 R
1071.351300	-4.314	1071.355614	1623.030058	14	Α1	1	15	A2	2 R
1038 836800	_0 831	1028 827621	1500 503066	1/	E	2	15	E	1 P
1038.830800	-0.031	1038.837031	1390.393000	14	E	5	10	E	I K
1039.636600	-12.515	1039.649115	1591.339707	14	E	2	15	E	2 R
1062.107600	31.196	1062.076404	1613.606453	14	Е	1	15	Е	4 R
001 300000	_2 277	001 212222	1621 647027	15		2	15		5 0
991.309000	-3.322	991.912322	1021.047027	1.7	E _ 2	2	10	E _ 4	J Q
1038./91/00	1.16/	1038.790533	1590.549468	14	F2	4	15	FI	1 R
1039.297700	-6.079	1039.303779	1591.016125	14	F2	3	15	F1	2 R
1040 689600	7 266	1040 682334	1592 304367	1/	⊏2	2	15	⊏1	3 р
1040.009000	20. 250	1062 071041	1612 602025	14	-2	2	15	F1	
1062.100200	28.359	1062.071841	1613.602025	14	FΖ	T	12	ΡT	6 K
1067.031500	3.160	1067.028340	1618.650373	14	F2	2	15	F1	7 R
988 352300	3 156	988 349144	1618 650373	15	F2	3	15	F1	7 0
004 202800	2 774	004 300030	1624 700205	10	-2	4	10	-1	
994.392800	2.//4	994.390026	1624.790295	12	FΖ	4	12	ΡT	8 Q
1038.929800	-4.671	1038.934471	1590.683860	14	F1	3	15	F2	1 R
1040 658200	-6 183	1040 664383	1592 289508	14	F1	1	15	F2	3 R
1000 850200	7 007	1000 904707	1618 480022	14	-1	1	10		
1000.030000	-7.997	1000.004/9/	1010.409922	14	FT	1	T2	FZ	р к
988.194300	-8.020	988.202320	1618.489922	15	F1	2	15	F2	5 Q
993.853000	1.078	993.851922	1624,247489	15	F1	4	15	F2	7 0
1041 207700	11 022	1041 106677	1671 600767	15	^2	2	16	۸ <u>1</u>	1 0
1041.207700	11.025	1041.190077	1071.000707	15	A2	2	10	AT	I K
1043.388800	37.196	1043.351604	1673.564281	15	AZ	T	16	AL	2 R
1041.403800	5.510	1041.398290	1671.787314	15	A1	1	16	A2	1 R
992 060700	1 682	992 059018	1706 231953	16	۸1	2	16	۸2	3 0
1041 012000	1.002	1041 022621	1672 157226	10	<u> </u>	2	10	A2	J Q
1041.813000	-9.631	1041.822631	16/2.15/336	12	E	2	10	E	ΙK
1043.363400	12.425	1043.350975	1673.567582	15	Е	1	16	Е	2 R
1041 251700	9 439	1041 242261	1671 642531	15	F2	4	16	F1	1 P
1042 272100	20 052	10/2 2512/7	1672 566407	1 -	- 2 - 2	т Э	10	- 1 - 1	2 5
1043.372100	20.853	1045.35124/	10/3.30040/	τ2	۲Z	Z	тр	ЬТ	3 K
1074.008000	11.813	1073.996187	1704.297416	15	F2	3	16	F1	7 R
1012,981000	-3.428	1012.984428	1727.071001	16	F2	2	16	F1	10 0
1015 /12200	1 006	1015 400104	1720 640752	10		-	10	E1	11 0
1013.413200	4.090	1013.409104	1/23.040/00	T0	FZ	4	10	F 1	TT Q
1041.308400	7.363	1041.301037	16/1.696604	15	F1	4	16	F2	1 R
1041.749800	-11.292	1041.761092	1672.102574	15	F1	3	16	F2	2 R
1042 351700	9 021	1042 342660	1672 630271	15	F1	2	16	F2	2 D
1044 045000	10 522	1044 004102	1750 227000	10	· -	2	17	. 2	J N 1 -
1044.045600	-10.233	1044.064133	1/30.23/068	Τ0	AT	2	1/	AZ	⊥ R
989.094400	-4.424	989.098824	1792.248058	17	Е	2	17	Е	5 Q
1046.046500	82,617	1045,963883	1759,950174	16	F2	1	17	F1	4 R
1073 082600	3 710	1073 078800	1787 065197	16	. <u>-</u> 2	1	17	E1	6 0
1013.302000	2.710	T012.310030	1707.303102	10	FZ	Ť	17	F 1	UK
984.900900	-6.721	984.907621	1/8/.965182	17	F2	2	17	F1	6 Q
1073.960700	3.938	1073.956762	1787.945289	16	F1	2	17	F2	7 R
1046.838100	16.951	1046 821149	1849.935283	17	Δ2	1	18	Δ1	1 R

992.949700	1.285	992.948415	1890.298450	18	F2	4	18	F1	9	Q
1081.730100	1.204	1081.728896	1884.777086	17	F1	3	18	F2	8	R
987.476200	0.993	987.475207	1884.777086	18	F1	3	18	F2	8	Q
993.410400	6.023	993.404377	1890.861145	18	F1	4	18	F2	9	Q
1049.193900	-4.873	1049.198773	1946.467325	18	F2	3	19	F1	3	R
1101.701700	-0.737	1101.702437	1999.052473	18	F2	4	19	F1	11	R
992.030400	-7.075	992.037475	1988.849193	19	F2	5	19	F1	10	Q

IV.4.ETUDE PRELIMINAIRE DES AMBIGUITES DES PARAMETRES DE TYPE q^2J^4 DE LA MOLECULE ${}^{12}CD_{4:}$

Sur la base des 520 données expérimentales de la bande fondamentale v_4 (de symétrie F_2) de la molécule¹²CD₄, l'ambigüité de l'Hamiltonien effectif pour les états triplement dégénérés(F_2) est étudiée

On montré qu'il en bonne accord avec le résultat théorique, et que tous les paramètres du type q^2J^4 ne peuvent être déterminés d'une façon unique sur la base des 520 données

[31,32] ces paramètres ne peuvent pas être par conséquent des constantes spectroscopiques.

Le but de ce paragraphe est de faire une étude préliminaire numérique complète sur les ambiguïtés des paramètres de type q^2J^4 . Cette étude, qui est basée sur une série d'analyses des520 énergies expérimentales de v_4 de la molécule ${}^{12}CD_4$, elle nous permet de vérifier les conclusions théoriques basées sur les transformations PTZ [31,20]

et d'obtenir les constantes spectroscopiques de type q^2J^4 pour l'état (0001) de ${}^{12}CD_4$, utiles dans le raffinement des champs de forces moléculaires.

L'origine de ce type d'ambiguïtés, est que l'Hamiltonien n'est pas déterminé d'une façon unique et sans ambiguïtés, seulement par la connaissance des valeurs propres. En général, toute procédure de perturbation telle que la transformation de contact est ambiguë [31, 32] pour la même raison. Pour éclaircir tout ceci, considérons une transformation unitaire d'un Hamiltonien effectif dans une base de fonctions d'ondes de vibration-rotation associé à un état considéré F_2 :

$$\widetilde{H}^{eff} = exp(iS)H^{eff}exp(-iS)$$
(IV-9)

Cette transformation ne change pas les valeurs propres $E_{J\Gamma n}$ de l'Hamiltonien effectif, mais fait changer leurs fonctions propres $\psi_{J\Gamma n}$:

$$\tilde{\psi}_{J\Gamma n}^{eff} = exp(iS)\psi_{J\Gamma n}^{eff}$$
(IV-10)

Les transformations définies par l'équation (12), affecte les valeurs des paramètres à l'ordre $\Omega \ge 4$, $\Gamma \ne A1$, et la transformation de l'Hamiltonien effectif H^{eff} a la même forme, exactement que celle de (4), et mêmes chose pour les valeurs propres $E_{J\Gamma n}$. Cependant, il a une autre base propre pour certains paramètres $t_{\{s\}\{sr\}}^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}}$, ce qui est résumé dans le tableau (3), où les paramètres $t_{\{s\}\{sr\}}^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}}$ ne coincident pas avec les paramètres $t_{\{s\}\{sr\}}^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}}$ pour $\Omega \ge 4$, $\Gamma \ne A1$.

Tableau 3 : Schéma de la transformation *exp(iS)*.

	Hamiltonien	Ensemble de	Valeurs propres	Fonctions
	effectif	paramètres		propres
Avant <i>exp(iS)</i>	H ^{eff}	$t^{\Omega(k,n\Gamma)\Gamma_{ u}\Gamma_{ u'}}_{\{s\}\{s'\}}$	$E_{ m J\Gamma n}$	$\psi^{eff}_{J\Gamma n}$
Après $exp(iS)$	\widetilde{H}^{eff}	$ ilde{t}_{\{s\}\{s'\}}^{\Omega(k,n\Gamma)\Gamma_{ u}\Gamma_{ u'}}$	$E_{ m J\Gamma n}$	$ ilde{\psi}^{eff}_{J\Gamma n}$

Si, on change un paramètre de type q^2J^4 , par exemple $t^{4(2, 0F2)}$, de manière arbitraire, les paramètres doivent varient corrélativement selon les équation de PTZ :

$$\tilde{t}_{\{s\}\{s'\}}^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}} = t_{\{s\}\{s'\}}^{\Omega(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}} \quad (si \ \Omega \le 3) \ or \ (si \ \Omega = 4 \ et \ \Gamma = A_1)$$
(IV-11)

$$\tilde{t}_{\{s\}\{s\prime\}}^{4(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}} = t_{\{s\}\{s\prime\}}^{4(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}} + d_{\{s\}\{s\prime\}}^{4(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}} \left(\tilde{t}_{\{s\}\{s\prime\}}^{4(2,0F_2)\Gamma_{\nu}\Gamma_{\nu'}} - t_{\{s\}\{s\prime\}}^{4(2,0F_2)\Gamma_{\nu}\Gamma_{\nu'}}\right)$$
(IV-12)

Les valeurs des énergies propres sont inchangées pours des valeurs des constantes $d_{\{n_s\}\{m_s\}}^{4(k,n\Gamma)\Gamma_{\nu}\Gamma_{\nu'}}$ théoriques suivantes [31, 32]

$$d_{\{s\}\{s'\}}^{4(2,0\,E)} = -1; \ d_{\{s\}\{s'\}}^{4(4,0\,E)} = \sqrt{7/3}; \ d_{\{s\}\{s'\}}^{4(4,0\,F_2)} = \sqrt{21/4}$$
(IV-13)

On change légèrement la valeur du paramètre $t^{4(2, 0F2)}$ de L'Hamiltonien développé à l'ordre 6 (Ω_{max} =6), et à chaque fois on le fixe pour faire une analyse et on enregistre la variation des autres paramètres $t^{4(2, 0F2)}$, $t^{4(2, 0E)}$ et $t^{4(4, 0F2)}$, et on note la valeur de la déviation standard. Puis, on refait le même travail pour différents ordres de développement de l'Hamiltonien (Ω_{max} =4 et Ω_{max} =5]. Les résultats obtenus sont reportés au tableau 04.

Le comportement des paramètres ajustés obéit aux équations linéaires (15) avec une précision raisonnable, alors que le paramètre $t^{4(2, 0F2)}$ varie dans son ordre de grandeur des valeurs négatives aux valeurs positives, y compris zéro.

Cependant, les paramètres expérimentales $d^{4(k, n\Gamma)}$ des équations PTZ dépendent dans une certaine mesure de l'écart type moyen obtenu dans l'ajustement. On a constaté que leurs valeurs approchent des valeurs théoriques (16) si la précision de l'ajustement est comparable à la précision expérimentale. Sinon, on observe une tendance systématique des valeurs expérimentales des coefficients $d^{4(k, n\Gamma)}$.

Ce point est assez important pour l'utilisation des valeurs ajustées des paramètres $t^{4(2,0F2)}$ avec $\Gamma \neq A1$ pour affiner les champs de forces moléculaires (puisque les formules relatives à $t^{4(2,0F2)}$ aux paramètres moléculaires sont disponibles). En effet, la procédure de transformation des contacts est déjà disponible pour le calcul de tous les paramètres de la fonction potentielle jusqu'à l'ordre 8.

Afin de clarifier la situation, nous présenterons les résultats d'une série d'ajustements avec différents écarts-types σ selon Ω_{max} .

En utilisant les résultats du tableau 04, on trace, point par point, les valeurs des paramètres $t^{4(2, 0F2)}$, $t^{4(2, 0E)}$ et $t^{4(4, 0F2)}$ en fonction des valeurs du paramètre $t^{4(2, 0F2)}$. Les figures montre que, les valeurs des paramètres $t^{4(2, 0F2)}$, $t^{4(2, 0E)}$ et $t^{4(4, 0F2)}$ appartiennent à une droite, comme

l'indique les équations (14) et (15). Donc, nos résultats sont en bon accord avec la théorie, car

la variation de chaque paramètre est linéaire, et les transformations PTZ sont vérifiées.

Le calcul de la pente de chaque droite permet d'obtenir les valeurs expérimentales des $d^{4(k,n\Gamma)}$, et qui sont on bon accord avec les résultats théoriques. Les résultats sont regroupés dans le tableau 05.

Table 4 : Valeurs des paramètres analysés de la bande v_4 de la molécule ${}^{12}CD_{4,.}$ (jmax=20, Ω_{max} =4, 5, 6).

r		1		[
i	$t_i = t^{\Omega(\mathbf{k},\mathbf{n}\Gamma)} \left(cm^{-1} \right)$	Valeurs de t _i	Valeurs de t_i	Valeurs de t _i
	- (4 -)	avec $\Omega \leq 4$	avec $\Omega \leq 5$	avec $\Omega \leq 6$
1	$t_i = t^{2(0,0A1)}/10^{+1}$	0.26327202000	0.26327202000	0.26327202000
2	$t_i = t^{4(0,0A1)}/10^{-4}$	-0.27566000000	-0.27566000000	-0.27566000000
3	$t_i = t^{4(0,0A1)}/10^{-6}$	-0.74567790000	-0.74567790000	-0.74567790000
4	$t_i = t^{6(0,0A1)}/10^{-9}$	0.6940000000	0.6940000000	0.6940000000
5	$t_i = t^{6(4,0A1)} / 10^{-10}$	-0.20080100000	-0.20080100000	-0.20080100000
6	$t_i = t^{6(6,0\mathrm{A1})} / 10^{-11}$	-0.64303000000	-0.64303000000	-0.64303000000
7	$t_i = t^{8(0,0A1)}/10^{-12}$	0.1040000000	0.1040000000	0.1040000000
8	$t_i = t^{8(4,0A1)}/10^{-15}$	-0.52420000000	-0.52420000000	-0.52420000000
9	$t_i = t^{8(6,0\mathrm{A1})} / 10^{-15}$	-0.34680000000	-0.34680000000	-0.34680000000
10	$t_i = t^{8(8,0A1)}/10^{-16}$	-0.2894000000	-0.28940000000	-0.28940000000
11	$t_i = t^{0(0,0A1)}/10^{+3}$	0.99780746374	0.99784456425	0.99787317264
12	$t_i = t^{1(1,0F1)}/10^{+1}$	0.37256760592	0.37703760534	0.37713724959
13	$t_i = t^{2(0,0A1)}/10^{-1}$	-0.42927471485	-0.43640414625	-0.44623624673
14	$t_i = t^{2(2,0E)}/10^{-1}$	0.60226987317	0.61912737644	0.63301876559
15	$t_i = t^{2(2,0F2)}/10^{-1}$	-0.59343291755	-0.62092877938	-0.62962900001
16	$t_i = t^{3(1,0\text{F}1)}/10^{-2}$	0.76289494562	0.10421344425	0.10708668428
17	$t_i = t^{3(3,0\text{F1})}/10^{-3}$	0.65413982705	0.72696997328	0.86178877642
18	$t_i = t^{4(0,0A1)}/10^{-4}$	0.16950517421	0.19714393033	0.29175119709
19	$t_i = t^{4(2,0E)}/10^{-4}$	0.18356255685	0.13938497308 ^E	0.19090928919
20	$t_i = t^{4(2,0F2)}/10^{-5}$	-0.60934400913	-0.34028556945	0.*
21	$t_i = t^{4(4,0A1)}/10^{-5}$	0.36115215516	0.47633733212	0.97649041105
22	$t_i = t^{4(4,0E)}/10^{-4}$	0.23085970179	0.15422569369	0.27995954360
23	$t_i = t^{4(4,0\text{F2})}/10^{-6}$	-0.46537818916	0.24110472814	0.39743119101
24	$t_i = t^{5(1,0F1)}/10^{-6}$	0.*	0.11079084129	0.64769245801
25	$t_i = t^{5(3,0\text{F1})}/10^{-6}$	0.*	0.79846296861	0.44329800498
26	$t_i = t^{5(5,0\text{F1})}/10^{-7}$	0.*	0.63874740754	0.1665199282
27	$t_i = t^{5(5,1F1)}/10^{-6}$	0.*	-0.40587653819	-0.60187791045
28	$t_i = t^{6(0,0A1)}/10^{-7}$	0.*	0.*	-0.23594518122
29	$t_i = t^{6(2,0E)}/10^{-8}$	0.*	0.*	0.12424898236
30	$t_i = t^{6(2,0F2)}/10^{-8}$	0.*	0.*	0.46711808651
31	$t_i = t^{6(4,0A1)}/10^{-8}$	0.*	0.*	0.82128362827
32	$t_i = t^{6(4,0E)}/10^{-8}$	0.*	0.*	0.15550084241
33	$t_i = t^{6(4,0\text{F2})}/10^{-8}$	0.*	0.*	0.85750178172
34	$t_i = t^{6(6,0A1)}/10^{-8}$	0.*	0.*	-0.28938501483
35	$t_i = t^{6(6,0E)}/10^{-9}$	0.*	0.*	-0.13302747455
36	$t_i = t^{6(6,0\text{F2})}/10^{-8}$	0.*	0.*	0.13896213432
37	$t_i = t^{6(6,1F2)}/10^{-8}$	0.*	0.*	-0.16151243402
	d_{RMS}/cm^{-1}	51.185	20.446	2.602
	Standard Dev.	51.948	20.847	2.670

Fig. 4. Comportement de la déviation standard et des angles entre les t^{4(2, 0F2)}, t^{4(2, 0E)} et t^{4(4, 0F2)} en fonction du paramètre t^{4(2, 0F2)} pour l'ordre de développement de l'Hamiltonien $\Omega_{max} = 4$

Chapitre IV

Fig. 5. Comportement de la déviation standard et des angles entre les t^{4(2, 0F2)}, t^{4(2, 0E)} et t^{4(4, 0F2)} en fonction du paramètre t^{4(2, 0F2)} pour l'ordre de développement de l'Hamiltonien $\Omega_{max} = 5$

Fig. 6. Comportement de la déviation standard et des angles entre les $t^{4(2, 0F2)}$, $t^{4(2, 0E)}$ et $t^{4(4, 0F2)}$ en fonction du paramètre $t^{4(2, 0F2)}$ pour l'ordre de développement de l'Hamiltonien $\Omega_{max} = 6$

Table 5 : Comparaison entre les valeurs théoriques et expérimentales des pentes $d^{4(k,n\Gamma)}$

$d^{4(k,n\Gamma)}$	Théorique	Expérimental	Expérimental	Expérimental
		$\Omega_{max} = 4$	$\Omega_{max} = 5$	$\Omega_{max} = 6$
d ^{4(2,0E)}	-1	-1.0007 ±0.007	-1.0088 ±0.0088	-0.9998 ±0.0002
d ^{4(4,0E)}	$\sqrt{7/3} = 1.5275$	1.4953 ±0.0322	1.3890 ±0.1385	0.9051 ±0.6224
$d^{4(4,0F2)}$	$\sqrt{\frac{21}{4}} = 1.1456$	0.9043 ±0.2413	0.9136 ±0.232	0.9051 ±0.2405

CONCLUSION

Dans ce travail, on a fait une analyse complète du spectre des transitions rovibrationnelles de la bande v_4 de la molécule ¹²CD₄, dans la région (918-1268 cm⁻¹). En utilisant un ensemble de 37 (dont 10 sont relatifs au niveau de base GS) paramètres de l'Hamiltonien développé à l'ordre 6.

Sur la base d'un spectre expérimental, et l'utilisation des deux logiciels XTDS et SPVIEW, on a pu attribuer 520 raies, qui nous ont permis ensuite de déterminer parmi les 33 paramètres relatifs au niveau v_4 , 26 paramètres avec un EQM = 2.672. 10^{-3} cm⁻¹ très proche de la précision expérimentale, pour une valeur de J_{max}=20

Sur la base de notre ensemble de 520 ajustements de données expérimentales pour v_4 de $^{12}CD_4$, les ambiguïtés de l'Hamiltonien effectif de l'état triplement dégénéré F₂ sont vérifiées, que, et en accord avec la théorie. Aucun des paramètres de type q^2J^4 ne peut être déterminé à partir de données expérimentales d'une manière unique, et ces paramètres ne peuvent pas être considérés comme des constantes spectroscopiques.

Et pour surmonter cette question, au moins deux façons de régulariser les modèles mathématiquement mal définis correspondants sont connus. On peut soit ajuster des paramètres invariants qui sont indépendants dans la base de l'Hamiltonien effectif, à condition que la précision expérimentale soit atteinte [33], ou fixer un sous-ensemble de paramètres ambigus à des valeurs ab-initio comme décrit dans la réf. [34].

Comme perspective, après ce travail, les effets de couplage de résonance sur l'ambiguïté des paramètres ${}^{12}CD_4$ empiriques seront bientôt étudiés [35, 36].

REFERENCES

- [1] Shaffer W.H , Nielson H.H et Thomas L.H. (1939) phys. rev. <u>57</u>, 128.
- [2] Jahn H.A. (1938). Proc. R. soc. A168, 469
- [3] K. T. Hecht, J. Mol, Spectrosc, <u>5</u>, 355, (1960).
- [4] J. Moret Bailly, can. Phys., <u>15</u>,237 (1961).
- [5] K. T. Hecht, J. Mol, Spectrosc, <u>5</u>, 390, (1960).
- [6] J. Moret Bailly, thèse d'état, université de Bourgogne, Dijon, France, (1961).
- [7] Dorney .A.J et Watson .J. (1972) J. Mol. Spectrosc. <u>42</u>. 135
- [8] Kirschner. S. M et Watson. J. K. G. (1973) J. Mol. Spectrosc. <u>47</u>. 347
- [9] Ozeir. I. (1974) J. Mol. Spectrosc. 53. 336
- [10] Hilicot. J. C., Champion. J. P et Pierre. G. (1976) J. Mol. Spectrosc. <u>19</u>. 247
- **[11]** Jean Paul Champion, thèse d'état, université de Bourgogne, Dijon, France, (1978).
- [12] M, Loete, thèse d'état, université de Bourgogne, Dijon, France, (1961).
- [13] : p .chaquin LCT.UPMC (opération et éléments de symétrie moléculaire
- [14] D. S. Scholland, «La symétrie moléculaire » ; collection ''Enseignement de chimie'' GOULLIER VILARS.
- [15] G. Herzberg, Molecular Spectra and Molecular Structure: Infrared and Raman Spectra, vol. II, Van Nostrand, Toronto, 1945.
- [16] J.-P Champion, Can.phys.55, 1802-1828(1977)
- [17] P.BARCHEWITZ, Spectroscopie Atomique et Moléculaire (MASSON 71)
- [18] B.T.Darling et D.M.Dennison, Phys.Rev.57, 128 (1940).
- [19] J.K.G.Watson, Mol .Phys.15, 479 (1968).
- [20] W.H.Childs et H.A.Jahn, Proc.Soc.A169, 451(1939
- [21] J.C.Hilico, Phys. 19, 328(1965).
- [22] J.Moret-Bailly, Cah.Phys.15,334(1965).
- [23] A. Valentin, J. Chazelas, and L. Henry, J. Mol. Spectrosc. 99, 63-86 (1983
- [24]. O. Ouardi, M.Meskine, A. Karrour, Can. J. Phys. Can. J. Phys. 95: 412-422 (2017)
- [25] O. Ouardi, A.Kaarour, M.Meskine, J. Mol. Spectrosc. 306 (2014) 26-32
- [26] O. Ouardi, A.Kaarour, J. Mol. Spectrosc. (2015), 312, 58-67
- [27]N. Cheblal, M. Loëte, V. Boudon, J. Mol. Spectrosc. 197 (1999) 222.
- [28]A. Nikitin, J. P.Champion, V.G. Tyuterev, J. Quant. Spectrosc. Radiat. Transfer 82 (2003) 239.

[29]V. Boudon, J.P. Champion, T. Gabard, M. Loëte, F. Michelot, G. Pierre, M. Rotger, C. Wenger, M. Rey, J. Mol. Spectrosc. 228 (2004) 620.

[30]C. Wenger, J.P. Champion, J. Quant. Spectrosc.Radiat.Transfer 59 (1998) 471.

[31]. I. Perevalov, VL.G.Tyuterev, and B.I.Zhilinskii, Dokl. Acad.NAUK SSSR 263, 868-872(1982).

[32]V. I. Perevalov, VL.G.Tyuterev, and B.I Zhilinskii, J. Mol. Spectrosc. 103, 147-159 (1984).

- [33] L.G.Tyuterev, J. P. Champion, G.Pierre. V.I. Perevalov, J.Mol.Spectrosc.105 (1984) 113-138.
- [34L.G.Tyuterev, S.A.Tashkun, M. Rey, R.Kochanov, A.V.Nikitin, T.Delahaye, J. Phys. Chem. A. 117 (2013) 13779-13805.
- [35]A. V. Nikitin, M. Rey, J. P. Champion and V. G. Tyuterev, Chem. Phys. Lett., 1984, 104, 455-461

[36] A. V. Nikitin, M. Rey, J. P. Champion and V. G. Tyuterev, J. Quant. Spectrosc. Radiat. Transfer, 113 (2012), 1034-1042.