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Introduction

Stochastic differential equations (SDEs) were first initiated and developed by K. Itô

(1942). Today they have become a very powerful tool applied to mathematics, physics,

chemistry, biology, medical sciences, and almost all sciences. Let us explain why we

need SDEs.

In nature, physics, society, engineering and so on we always meet two kinds of func-

tions with respect to time: one is deterministic, and another is random. For example,

in financial market we deposit money πt in a bank. This can be seen as our having

bought some units η0t of a bond, where the bond’s price P 0
t satisfies the following

ordinary differential equation

dP 0
t = P 0

t rtdt, P
0
0 = 1, t ∈ [0, T ]

where rt is the rate of the bond, and the money that we deposit in the bank is

πt = η0tP
0
t = η0t exp[

∫ t

0
rsds]. Obviously, usually, P 0

t = exp[
∫ t

0
rsds] is non-random,

since the rate rt is usually deterministic. However, if we want to buy some stocks

from the market, each stock’s price is random. For simplicity let us assume that in

the financial market there is only one stock, and its price is P 1
t . Obviously, it will

satisfy a differential equation as follows:

dP 1
t = P 1

t (bt dt+ d(a stochastic perturbation)), P 1
0 = P 1

0 , t ∈ [0, T ]

where all of the above processes are 1-dimensional. Here the stochastic perturbation is

very important, because it influences the price of the stock, which will cause us to earn

or lose money if we buy the stock. One important problem aries naturally. How can

we model this stochastic perturbation? Can we make calculations to get the solution
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of the stock’s price P 1
t , as we do in the case of the bond’s price P 0

t ? The answer is

positive, usually a continuous stochastic perturbation will be modeled by a stochastic

integral
∫ t

0
σsdws, where wt, t ≥ 0 is the so-called Brownian motion process (BM), or

the Wiener process. The 1-dimensional BM wt, t ≥ 0 has the following nice properties:

1) (independent increment property). It has an independent increment property,

that is, for any 0 < t1 < · · · < tn the system {w0, wt1 − w0, wt2 − wt1 , · · · , wtn −

wtn−1} is an independent system. Or say, the increments, which happen in disjoint

time intervals, occurred independently. 2) (Normal distribution property). Each

increments is Normally distributed. That is, for any 0 ≤ s < t the increment wt −ws

on this time interval is a normal random variable with mean m, and variance σ2(t−s).

We write this as wt − ws ∼ N(m, σ2(t − s)). 3) (Stationary distribution property).

The probability distribution of each increment only depends on the length of the

time interval, and it does not depend on the starting point of the time interval. That

is, the m and σ2 appearing in property 3) are constants. 4) (Continuous trajectory

property). Its trajectory is continuous. That is BM wt, t ≥ 0 is continuous in t.

Since the simplest or say, the most basic continuous stochastic perturbation, intu-

itively will have the above four properties, the modeling of the general continuous

stochastic perturbation by a stochastic integral with respect to this basic BM wt,

t ≥ 0 is quite natural. However, the 1-dimensional BM also has some strange prop-

erty: Even though it is continuous in t, it is nowhere differentiable in t. So we cannot

define the stochastic integral
∫ t

0
σs(ω)dws(ω) for each given ω. That is why K. Itô

(1942) invented a completely new way to define this stochastic integral.

Our first task in this work is to introduce the Itô stochastic integral and to establish

the Itô formula and discuss its applications: solving SDE. The second task is to

introduce the concepts of solutions and to discuss their existence and uniqueness and

the related important theory. Since, actually, in the realistic world we will always

meet some jump type stochastic perturbation.

This memory is organized as follows:

An introduction where we place our work and its plan.

The first chapter is devoted to the theory of stochastic calculus.

In the second chapter, we will discuss kinds of stochastic differential equations (SDE)
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with jumps.

In the last chapter discussing solutions for stochastic differential equations (SDEs)

with jumps and with non-Lipschitzian coefficients, is necessary and useful from the

practical point of view.
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Chapter 1

Stochastic calculus

1.1 Martingale theory and stochastic integral for

point processes

A stochastic integral is a kind of integral quite different from the usual determin-

istic integral. However, its theory has broad and important application in science,

mathematics itself, economic, finance, and elsewhere. A stochastic integral can be

completely characterized by martingale theory. In this chapter we will discuss the

elementary martingale theory, which forms the foundation of stochastic analysis and

stochastic integral. As a first step we also introduce the stochastic integral with

respect to a point process.

1.1.1 Concept of martingale

In some sense the martingale conception can be explained by a fair game. Let us

interpret it as follows: in a game suppose that a person at the present time s has

wealth xs for the game, and at the future time t he will have the wealth xt. The

expected money for this person at the future time t is naturally expressed as E[xt/Fs],

where E[·] means the expectation value of ·, Fs means the information up to time s,

which is known by the gambler, and E[·/Fs] is the conditional expectation value of(.)

under given Fs. Obviously, if the game is fair, then it should be
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E[xt/Fs] = xs, ∀t ≥ s.

This is exactly the definition of a martingale for a random process xt, t ≥ 0. Let

us make it more explicit for later development. Let (Ω,F,P) be a probability space,

{Ft}t≥0 be an information family, which satisfies the so-called "usual conditions":

(i) Fs ⊂ Ft, as 0 ≤ s ≤ t;

(ii) Ft+ = ∩h>0Ft+h.

Here condition (i) means that the information increases with time, and condition (ii)

that the information is right continuous, or say, Ft+h ↓ Ft, as h ↓ 0. In this case we

call {Ft}t>0 a σ-field filtration .

Definition 1.1.1. A real random process {xt}t≥0 is called a martingale (super-

martingale, sub-martingale) with respect to {Ft}t≥0,or {xt,Ft}t≥0 is a martingale

(super-martingale, sub-martingale), if

(i) xt is integrable for each t ≥ 0; that is, E|xt| < ∞, ∀t ≥ 0;

(ii) xt is Ft-adapted; that is, for each t ≥ 0, xt is Ft-measurable;

(iii) E[xt/Fs] = xs,(respectively, ≤,≥), a.s. ∀0 ≤ s ≤ t.

For the random process {xt}t∈[0,T ] and the random process {xn}
∞
n=1 with discrete time

similar definitions can be given.

1.1.2 Stopping times, predictable process

Definition 1.1.2. A random variable τ(ω) ∈ [0,∞] is called a Ft-stopping time, or

simply, a stoping time, if for any t ≥ 0, {τ(ω) ≤ t} ∈ Ft.

The intuitive interpretation of a stopping time is as follows: if a gambler has a right

to stop his gamble at any time τ(ω), he would of course like to choose the best time to

stop. Suppose he stops his game before time t, i.e. he likes to make τ(ω) ≤ t, then the

maximum information he can get about his decision is only the information up to t, i.e

{τ(ω) ≤ t} ∈ Ft. The trivial example for a stopping time is τ(ω) ≡ t, ∀ω ∈ Ω. That is

to say, any constant time t actually is a stopping time. For a discrete random variable

τ(ω) ∈ {0, 1, 2, · · · ,∞} the definition can be reduced to that τ(ω) is a stopping time,

if for any n ∈ N , {τ(ω) = n} ∈ Fn, since {τ(ω) = n} = {τ(ω) ≤ n}−{τ(ω) ≤ n−1},
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and {τ(ω) ≤ n} = ∪n
k=1{τ(ω) = k}. The following properties of general stopping

times will be useful later.

Lemma 1.1.1. [70] τ(ω) is a stopping time, if and only if {τ(ω) < t} ∈ Ft, ∀t.

Lemma 1.1.2. [70] Let σ, τ, σn, n ∈ N⋆ be stopping times. Then

(i) σ ∧ τ, σ ∨ τ ,

(ii) σ = lim
n→∞

σn, when σn ↑ orσn ↓,

are all stopping times.

Proposition 1.1.1. [70] Let σ, τ, σn, n = 1, 2, · · · be stopping times.

1. If σ(ω) ≤ τ(ω), ∀ω, then Fσ ⊂ Fτ .

2. If σn(ω) ↓ σ(ω), ∀ω, then ∩∞
n=1Fσn = Fσ.

3. σ ∈ Fσ.(we use f ∈ Fσ to mean that f is Fσ -measurable).

Definition 1.1.3. An R
d -valued process {xt}t≥0 is called measurable (respectively,

progressive measurable), if the mapping

(t, ω) ∈ [0,∞)× σ → xt(ω) ∈ R
d

(respectively, for each t ≥ 0, (s, ω) ∈ [0, t]×Ω → xt(ω) ∈ R) is B([0,∞))× F/B(R)-

measurable); (respectively, B([0, t])× Ft/B(R)-measurable); that is, {(t, ω) : xt(ω) ∈

B} ∈ B([0,∞)) × F, ∀B ∈ B(Rd); (respectively, {(s, ω) : s ∈ [0, t], xs(ω) ∈ B} ∈

B([0, t])× Ft, ∀B ∈ B(Rd)).

Let us introduce two useful σ-algebras as follows: Denote by P(respectively,O ) as

the smallest σ-algebra on [0,∞)×Ω such that all left-continuous (respectively, right-

continuous) Ft-adapted processes

yt(ω) : [0,∞)× Ω → yt(ω) ∈ R
d

are measurable. P (respectively, O) is called the predictable (respectively, optional)

σ-algebra. Thus, the following definition is natural.

Definition 1.1.4. A process {xt}t≥0 is called predictable (optional), if the mapping
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(t, ω) ∈ [0,∞)× Ω → xt(ω) ∈ R
d

is P/B(Rd)-measurable (respectively O/B(Rd)-measurable).

Theorem 1.1.1. [70] If {xt}t≥0 is a R
d-valued progressive measurable process, then

for each stopping time σ, ZσIσ<∞ is Fσ-measurable.

1.1.3 Martingales with discrete Time

Theorem 1.1.2. [70] Let {xn}n∈N be a martingale (super-martingale, sub-

martingale), σ ≤ τ be two bounded stopping times. Then {xn}n∈N is a strong mar-

tingale (respectively, strong super-martingale, strong sub-martingale), i.e.

E[xτ/Fσ] = xσ(respectivly,≤,≥), a.s.

Theorem 1.1.3. [70] Let {xn}n∈N be a sub-martingale. Then for every λ > 0 and

natural number N

λP(max0≤n≤N xn ≥ λ) ≤ E(xN1max 0≤n≤Nxn ≥ λ) ≤ E(x+
N)

≤ E|xN |,

λP(min0≤n≤N xn ≤ −λ) ≤ −Ex0 + E(xNImin 0≤n≤Nxn > −λ) ≤ E
−
x0

+ E(x+
N)

≤ E|x0|+ E|xN |.

1.1.4 Uniform integrability

It is well known in the theory of real analysis that if a sequence of measurable functions

is dominated by an integrable function, then one can take the limit under the integral

sign for the function sequence. That is the famous Lebesgue’s dominated convergence

theorem. However, sometimes it is difficult to find such a dominated function. In this

case the uniform integrability of that function sequence can be a great help. Actually,

in many cases it is a powerful tool .

Definition 1.1.5. family of functions A ⊂ L1(Ω,F,P) is called uniformly integrable,

if lim
λ→∞

sup
f∈A

E(f1|f |>λ) = 0 , where L1(Ω,F,P) is the totality of random variables ξ,

(that is, all ξ are F-measurable) such that E|ξ| < ∞.
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Lemma 1.1.3. [70] Suppose that {xn}
∞
n=1 ⊂ L1(Ω,F,P) is uniformly integrable and

as n → ∞, xn → x, in probability i.e. ∀ε > 0, lim
n→∞

P(|xn − x| > ε) = 0, then

lim
n→∞

E|xn − x| = 0. (i.e. xn → x, in L1(Ω,F,P) )

In particular, lim
n→∞

E(xn) = E(x)

Lemma 1.1.4. [70] Suppose that A ⊂ L1(Ω,F,P). Any one of the following

conditions makes A uniformly integrable:

1. There exists an integrable g ∈ L1(Ω,F,P) such that |x| ≤ g, ∀x ∈ A.

2. There exists a p > 1 such that sup
x∈A

E|x(ω)|P < ∞ .

Theorem 1.1.4. [70] Suppose that {xn}
∞
n=1 ⊂ L1(Ω,F,P). Then the following two

statements are equivalent:

1. {xn}
∞
n=1 is uniformly integrable.

2. sup
n≥1

E|xn| < ∞; and ∀ε > 0, ∃δ > 0 such that ∀B ∈ F, as P(B) < δ,

sup
n≥1

E|xn|1B < ε.

3. Furthermore, if there exists an x ∈ L1(Ω,F,P) such that as n → ∞, xn → x,

in probability; then the following statement is also equivalent to (1).

4. xn → x, in L1(Ω,F,P).

1.1.5 Martingales with continuous time

Theorem 1.1.5. [70] Let {xt}t≥0 be a real right- continuous martingale (super-

martingale, sub-martingale) with respect to {Ft}, and {σt}t∈[0,∞] be a family of bounded

stopping times such that P(σt ≤ σs) = 1, if t < s. Then {xt}t≥0 is a strong martingale

(respectively, strong super-martingale, strong sub-martingale), i.e. as t<s,

E[xσs
/Fσt

] = xσt
(respectively, ≤, ≥), a.s.
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1.1.6 Doob-Meyer decomposition theorem

In the incomplete financial market to price some option will involve the problem

connected to the Doob-Meyer decomposition of some sub-martingales or super-

martingales. Besides, this decomposition theorem is also a fundamental tool in

stochastic analysis and its applications.

Theorem 1.1.6. [70] Let {xn}n∈N be a sub-martingale. The there exists a unique

decomposition such that

xn = Mn + An, n ∈ N,

where {Mn}n∈N is a martingale, and {An}n∈N is an increasing process, both

are {Fn}n∈N -adapted, and {An}n∈N is predictable, where predictable means that

An ∈ Fn−1, ∀n = 1, 2, · · · , and A0 = 0.

1.1.7 Poisson random measure

A dynamical system will always encounter some jump stochastic perturbations. The

simplest type comes from a stochastic point process. To understand it properly

requires some preparation. Let (Z,Bz) be a measurable space.

Definition 1.1.6. A map µ(B, ω) : Bz ×Ω → R+∪{∞} is called a random measure

on Bz × Ω, if

1. for any fixed B ∈ Bz, µ(B, ·) is a random variable but with values in R+∪{∞};

2. for any fixed ω ∈ Ω, µ(·, ω) is a σ-finite measure. (Here, σ-finite means that

there exists {Un}
∞
n=1 ⊂ Bz such that Z = ∪n=1Un and µ(Un, ω) < ∞, ∀n).

Here the definition of a random variable taking values in R+{∞}, is the same as that

taking values in R. Let us introduce the Poisson random measure as follows:

Definition 1.1.7. A random measure µ(B, ω) is called a poisson random measure on

Bz × Ω, if it is non-negative integer valued (possibly ∞) such that

1. for each B ∈ Bz, µ(B, ·) is poisson distributed; i.e.
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P ({ω : µ(B, ω) = n}) = e−λ(B) λ(B)n

n
, n ∈ N ;

where λ(B) = Eµ(B, ω), ∀B ∈ Bz, is usually called the mean measure, or the

intensity measure of µ;

2. if Bz ⊃ {Bj}
m
j=1 are disjoint, then {µ(Bj, ·)}

m
j=1 are independent.

Here as in the real analysis we still define 0.∞ = 0. Thus if λ(B) = ∞, then all

P({ω : µ(B, ω) = n}) = 0, n ∈ N, hence µ(B, ω) = ∞,P a.s. The existence of a

Poisson random measure is given by the following theorem.

Theorem 1.1.7. [70] For any σ-finite measure λ on (Z,Bz) there exists a Poisson

random measure µ with λ(B) = Eλ(B), ∀B ∈ Bz.

1.1.8 Poisson point process

Now let us introduce the concept of random point processes. Assume that (Z,Bz) is

a measurable space. Suppose that Dp ⊂ (0,∞) is a countable set, then a mapping

p: Dp → Z, is called a point function (valued) on Z. Endow (0,∞) × Z with the

product σ-field B((o,∞))×Bz, and define a counting measure through p as follows:

Np ((0, t]× U) = ♯{s ∈ Dp : s ≤ t, p(s) ∈ U}, ∀t > 0, U ∈ Bz)

where ♯ means the numbers of · counting in the set {·}. Now let us consider a function

of two variables p(t, ω) such that for each ω ∈ Ω, p(·, ω) is a point function on Z, i.e.

p(·, ω) : Dp(·,ω) → Z, where Dp(·,ω) ⊂ (0,∞) is a countable set. Naturally, its counting

measure is defined by

Np((0, t]× U, ω) = Np(ω)((0, t]× U) = ♯{s ∈ Dp : s ≤ t, p(s, ω) ∈ U}, ∀t > 0, U ∈ Bz

and we introduce the definition as follows:

Definition 1.1.8. 1. If Np((0, t] × U, ω) is a random measure on (B((0,∞)) ×

Bz)× Ω, then p is called a (random) point process.

2. If Np((0, t]×U, ω) is a Poisson random measure on (B((0,∞))×Bz)×Ω, then

p is called a Poisson point process.
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3. For a Poisson point process p if its intensity measure np(dtdx) = E(Np((dtdx))

satisfies that

np(dtdx) = π(dx)dt

where π(dx) is some measure on (Z,Bz), then p is called a stationary Poisson

point process. π(dx) is called the characteristic measure of p.

One sees that the concept of a Poisson point process is finer than a Poisson pro-

cess, because it also considers where jumps occur, as well as the jumps themselves.

Sometimes to such situations more attention should be paid. For example, in many

cases to count how many times the degree of an earthquake exceeds some level (that

is, the point process drops in some area), where the earthquake happened in some

area, is more important than counting all of the times it has happened. Actually, the

forecast of an earthquake is only that its power is stronger than some degree. When

the earthquake is very very small, usually, it is not necessary to forecast it. So the

point process is more realistic.

1.1.9 Stochastic integral for point process

In a dynamical system the stochastic jump perturbation usually can be modeled as a

stochastic integral with respect to some point process (i.e. its counting measure), or

its martingale measure. In this section we will discuss how to define such stochastic

integral. The idea is first to define it in the simple case by Lebesgue-Stieltjes integral

for each or almost all ω ∈ Ω (is said to define it pathwise). Then consider it in the

general case through some limits. For this now let us consider a probability space

(Ω,F,P) with an increasing σ-field family {Ft}t≥0, which satisfies the usual condition

explained in the first section of this chapter. From now on all random variables and

random processes are defined on it if without further explanation.

Definition 1.1.9. Suppose that p is a point process on Z, and

Np(t, U) =
∑

s∈Dp,s≤t

1U(p(s))

is its counting measure.
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1. p is called Ft-adapted, if its counting measure is Ft-measurable for each t ≥ 0

and each U ∈ Bz.

2. p is called σ-finite, if ∃ {Un}
∞
n=1 ⊂ Bz, such that ENp(t, Un) < ∞, ∀t > 0, ∀n,

and Z = ∪∞
n=1Un.

From now on we only discuss the Ft-adapted and σ-finite point process p. Denote

Γp = {U ∈ Bz : ENp(t, U) < ∞, ∀t > 0} . Obviously, for any U ∈ Γp, Np(t, U) is a

sub-martingale, since it is non- negative and increasing in t. Hence by Doob-Meyer’s

decomposition Theorem 1.1.6 there exists a unique Ft-adapted martingale Ñp(t, U)

and a unique Ft-adapted natural increasing process N̂p(t, U) such that

Np(t, U) = Ñp(t, U) + N̂p(t, U) (1.1)

Notice that the equality only holds true P− a.s. for the given U . Hence N̂p(t, U)

may not be a measure for U ∈ Bz, a.s. Moreover, it also may not be continuous in t.

However, in most practical case we need N̂p(t, U) to have such properties.

Definition 1.1.10. A point process p is said to be of class (QL) (meaning Quasi

Left-continuous) if in the D-M decomposition expression 1.1:

(i) N̂p(t, U) is continuous in t for any U ∈ Γp;

(ii) N̂p(t, U) is a σ-finite measure on (Z,Bz) for any given t ≥ 0, P− a.s.

We will call N̂p(t, U) the compensator of Np(t, U) (or p). We now introduce the

following definition for the Ft-Poisson point process.

Definition 1.1.11. A point process p is called an Ft-Poisson point process, if it is

a Poisson point process,Ft-adapted, and σ-finite, such that Np(t+ h, U)−Np(t, U) is

independent of Ft for each h > 0 and each U ∈ Γp.

Notice that F̃t = σ[Np((0, s] × U); s ≤ t, U ∈ Bz] ⊂ Ft, and in general these may

not equal to each other. This is why we have to assume that for a Poisson point

process Np(t + h, U) − Np(t, U) is independent of Ft. From now on we only discuss

point processes which belong to class (QL). By definition one can consider that the

following proposition holds true.
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Proposition 1.1.2. [70] A (Ft−) point processes p is a stationary (Ft)-Poisson point

process of class (QL), if and only if its compensator has the form:

N̂p(t, U) = tπ(U), ∀t > 0, U ∈ Γp, where π(·) is a σ-finite measure on Bz.

Now let us discuss the integral with respect to the point process. In the simple case it

can be defined by the Lebesgue-Stieltjse integral. First, we have the following Lemma.

Lemma 1.1.5. [70] For any given U ∈ Bz and any bounded Ft-predictable process

f(t, ω) let

xt(ω) =

∫ t

0

f(s, ω)dÑp(s, U) =

∫ t

0

f(s, ω)dNp(s, U)−

∫ t

0

f(s, w)dN̂p(s, U) =

∑

s≤t,s∈Dp(ω)

f(s, ω)1U(p(s, ω))−

∫ t

0

f(s, ω)dN̂p(s, U).

Then xt is a Ft-martingale.

The integral defined in the above lemma motivates us to define the stochastic integrals

with respect to the counting measure and martingale measure generated by a point

process of the class (QL) for some class of stochastic processes as the integrands thru

Lebesgue-Stieltjes integral.

1.2 Brownian motion, stochastic integral and Itô’s

formula

For a dynamic system the simplest continuous stochastic perturbation is naturally

considered to be a Brownian motion (BM), since it is a Normal process (or say, a

Guassian process) with independent increments which are also normally distributed.

In general, a continuous stochastic perturbation will be modeled as some stochastic

integral with respect to the BM. However, the BM has the strange property that

even though its trajectory is continuous in t, it is not differentiable for all t. So for

a stochastic integral with respect to BM one has to use a different approach - the

martingale approach is used to define it.
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1.2.1 Brownian motion and its nowhere differentiability

Definition 1.2.1. A d-dimensional random process {xt}t≥0 is called a Brownian Mo-

tion (BM) or a Weiner process, if

1. its initial probability law is given by some probability measure µ, i.e. ∀Γ ∈

B(Rd),P(x0 ∈ Γ) = µ(Γ);

2. it has independent increments, i.e. ∀0 = t0 < t1 < · · · < tm, the increments

xt0 , xt1 − xt0 , xt2 − xt1 , · · · , xtm − xtm−1 are independent;

3. ∀0 ≤ s < t, xi
t − xi

s ∼ N(0, (t − s)), i = 1, 2, · · · , d, i.e. each real component

increment xi
t−xi

s is Normally distributed with the mean E(xt−xs) = 0 and the

variance V (xt − xs) = (t − s); where xt = (x1
t , x

2
t , · · · , x

d
t ), and {xi

t}
d
i=1 is an

independent random variable family for each t > 0;

4. it is continuous in t, a.s, that is, for almost all ω ∈ Ω the trajectory xt(ω) is

continuous in t.

Now for t > 0, x ∈ R
d let p(t, x) = (2πt)d/2 exp[−|x|2/2t].

Now let us set W d = the set of all continuous d-dimensional functions w(t) defined for

t ≥ 0. B(W d) = the smallest σ-field including all Borel cylinder sets in W d, where a

Borel cylinder set means a set B ⊂ W d of the following form

B = {w : (w(t1), · · · , w(tn)) ∈ A},

for some finite sequence 0 ≤ t1 < t2 < · · · < tn and A ∈ B(Rnd). From above

one sees that given a Brownian motion {xt}t≥0, this will lead to the generation of

a probability measure P defined on B(W d). Such a probability measure is called

a Wiener measure with the initial measure (or say, the initial law) µ. Conversely,

if we have a Wiener measure P with initial measure µ on B(W d), let (Ω,F,P) =

(W d,B(W d),P), x(t, w) = w(t), ∀t ≥ 0, w ∈ W d, then we obtain a BM {xt}t≥0

defined on the probability space (Ω,F,P). So the BM is in one to one correspondence

with the Wiener measure. Now a natural question arises: does the BM , that is, the
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Wiener measure exist? The existence of the Brownian motion is established by the

following theorem.

Theorem 1.2.1. [70] For any probability measure µ on (Rd,B(Rd)) the Wiener

measure Pµ with the initial law µ exists uniquely.

Definition 1.2.2. If a d-dimensional BM {xt}t≥0 is such that P(x0 = 0) = 1, that

is, µ = δ0 the probability measure concentrated at the single point {0}, then it is called

the standard BM and denoted by {wt}t≥0.

From now on we always discuss the standard Brownian motion, and it is simply

denoted by BM . Brownian motion has some nice properties. For example, its trajec-

tory is continuous, i.e. {xt}t≥0 is continuous. Moreover, it can be a square integrable

martingale.

Corollary 1.2.1. [70] If {xt}t≥0 is a d-dimensional Ft-BM and E|x0|
2 < ∞, then

1. {xt}t≥0 is a square integrable Ft-martingale;

2. xi
tx

j
t − δijt is a Ft-martingale.

However, a BM also has the following strange properties.

Theorem 1.2.2. [70] Suppose that {xt}t≥0 is a 1-dimensional BM , then P− a.s, for

any given α > 1
2
, {xt}t≥0 is not Hölder-continuous with index α for each t ≥ 0.

Definition 1.2.3. We say that {xt}t≥0 is Hölder-continuous with index α at t0 > 0,

if ∀ε > 0, ∃δ > 0 such that as |t− t0| < δ, |xt − xt0 | < ε|t− t0|
α.

theorem 1.2.2 actually tells us that the trajectory of BM is not Lipschitzian continu-

ous at each point t, so it is nowhere differentiable for t ≥ 0. Hence it is also not finite

variational on any finite interval of t, since each finite variational function of t should

be almost everywhere differentiable for t. Thus we arrive at the following corollary.

Corollary 1.2.2. [70]

1. The trajectory of a BM is nowhere differentiable for t ≥ 0, P-a.s.

2. The trajectory of a BM is not finite variational on any finite interval of t,

P-a.s.
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1.2.2 Spaces L0 and L2

To discuss Itô’s integral we first need to consider its integrand processes.

Definition 1.2.4. Let

L2 =





{f(t, ω)}t≥0 : it isFt − adapted, real such that∀T > 0

‖ f ‖22,T= E

∫ T

0

f 2(t, ω)dt < ∞.





,

L0 =





{f(t, ω)}t≥0 : it isFt − adapted, real and

∃ : 0 = t0 < t1 < · · · < tn < · · · → ∞, and

∃ϕi(ω) ∈ Fti , supi ‖ ϕi ‖∞ such that

f(t, ω) = ϕ0(ω)1t=0(t) +
∞∑

i=0

ϕi(ω)1[ti,ti+1](t).





L2
T =

{
{f(t, ω)}t∈[0,T ] : {f(t, ω)}t≥0 ∈ L2

}

L0
T =

{
{f(t, ω)}t∈[0,T ] : {f(t, ω)}t≥0 ∈ L0

}

Here ‖ ϕi ‖∞= ess sup |ϕi(t, ω)|. Now let us discuss the relationship between L2 and

L0.

Lemma 1.2.1. [70] For f = {f(t, ω)}t≥0 ∈ L2 let

‖ f ‖2=
∞∑

n=0

1

2n
(‖ f ‖2,n ∧1)

Then

1. ‖ · ‖2 is a metric, and L2 is complete under this metric, if we make the identi-

fication f = f ′, ∀f, f ′ ∈ L2, as ‖ f − f ′ ‖2,n= 0, ∀n.

2. L0 is dense in L2 with respect to the metric ‖ · ‖2 .

1.2.3 Ito’s integrals on L2

First, we will define the Itô integral for L0. Suppose that a Ft-Brownian motion

{wt}t≥0 (Wiener process) is given on (Ω,F,P).



22 CHAPTER 1. STOCHASTIC CALCULUS

Definition 1.2.5. For every f = {f(t, ω)}t≥0 ∈ L0:

f(t, ω) = ϕ0(ω)1t=0(t) +
∞∑

i=0

ϕi(ω)1[ti,ti+1](t)

define for tn ≤ t < tn+1, n ∈ N,

I(f)(t, ω) =

∫ t

0

f(s, ω)dw(s, ω) =
n∑

i=0

ϕi(ω)(w(ti+1, ω)− w(ti, ω)).

Firstly, it is easily seen that the stochastic integral also has an expression, which is

actually a finite sum for each 0 < t < ∞,

I(f)(t) =
∞∑

i=0

ϕi(w(ti+1 ∧ t)− w(ti ∧ t)),

moreover, I(f)(t) is continuous in t. Secondly, it has the following property.

Proposition 1.2.1. [70]

1. I(f)(0)=0, a.s. and for any α, β ∈ R; f, g ∈ L0

I(αf + βg) = αI(f) + βI(g)

2. ∀ ∈ L0, and for each t > s ≥ 0,

E[(I(f)(t)− I(f)(s))2/Fs] = E

[∫ t

s

f 2(u, ω)du/Fs

]
.

Definition 1.2.6. I(f) defined above is called the stochastic integral or the Itô integral

of f ∈ L2 with respect to a BM {w(t)}t≥0, and it is denoted by

I(f)(t) =

∫ t

0

f(s)dw(s) =

∫ t

0

f(s, ω)dw(s, ω).

Beware of the fact that the integral is not defined pathwise. So, actually,

I(f)(t)(ω0) =

(∫ t

0

f(s)dw(s)

)
(ω0) =

(∫ t

0

f(s, ω)dw(s, ω)

)
(ω0),P− a.s.
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1.2.4 Itô’s integrals on L2,loc

First, let us introduce the concept of local martingales.

Definition 1.2.7. 1. An Ft-adapted real random process {xt}t≥0 is called a local

Ft-martingale and denoted by {xt}t≥0 ∈ Mloc, if ∃ σn ↑ ∞, σn < ∞ is a Ft-

stopping time for each n, such that {xt∧σ}t≥0 is a Ft-martingale for each n.

2. In addition, if {xt∧σn
}t≥0 is a square integrable Ft-martingale for each n, then

{xt}t≥0 is called a locally square integrable Ft-martingale, and it is denoted by

{xt}t≥0 ∈ M2,loc.

3. Write

M2,loc,c =
{

{xt}t≥0 ∈ M2,loc : {xt}t≥0 is cotinuous in t withx0 = 0
}
.

Now consider the definition of Itô’s integral on L2,loc. For each f ∈ L2,loc, that is
∫ t

0

|f(s, ω)|2ds < ∞, a.s., let σn = inf{t ≥ 0 :

∫ t

0

|f(s, ω)|2ds > n} ∧ n. Then

σn ↑ ∞, σn < ∞ is a stopping time for each n. Obviously, {f(t, ω)1t≤σn
}t≥0 ∈ L2 for

each n, since

E

∫ T

0

|f(t, ω)1t≤σn
|2dt = E

∫ T∧σn

0

f 2(t, ω)dt ≤ n < ∞, ∀T > 0.

Define in a natural way

I(f)(t ∧ σn) =

∫ t∧σn

0

f(s, ω)dws =

∫ t

0

f(s, ω)1s≤σn
dws, ∀n ∈ N∗.

This stochastic integral is well defined, since for m > n,

∫ t∧σn

0

f(s, ω)1s≤σm
dws =

∫ t

0

f(s, ω)1s≤σm
1s≤σn

dws =

∫ t

0

f(s, ω)1s≤σn

Moreover, by definition {I(f)(t)}t≥0 ∈ M2,loc,c.
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Definition 1.2.8. ∀f ∈ L2,loc, define {I(f)(t)}t≥0 ∈ M2,loc,c as above, then it is called

the stochastic integral or the Itô integral of f with respect to the BM {w(t)}t≥0, and

it is always denoted by

I(f)(t) =

∫ t

0

f(s, ω)dws(ω) =

∫ t

0

f(s)dws.

All of these integrals are called stochastic integrals.

Finally, let us consider an r-dimensional Ft BM

{w(t)}t≥0 = {w1(t), · · · , wr(t)}t≥0

Suppose that fi ∈ L2,loc, i = 1, · · · , r. Then the stochastic integral

{ ∫ t

0

fi(s, ω)dw
i
s

}

t≥0

∈ M2,loc,c.

is defined for each i = 1, · · · , r. We have the following proposition.

Proposition 1.2.2. [70] There exist σn ↑ ∞, σn < ∞ is a Ft-stopping time such that

for each n and ∀t > s ≥ 0

E

[ ∫ t∧σn

s∧σn

fi(u, ω)dw
i
u

∫ t∧σn

s∧σn

fj(u, ω)dw
j
u/Fs

]
= δijE

[ ∫ t∧σn

s∧σn

(fifj)(u, ω)ds/Fs

]
.

1.2.5 Stochastic integrals with respect to martingales

In this section we are going to discuss the stochastic integral

∫ t

0

f(s, ω)dMs, where

{Mt}t≥0 ∈ M2. Recall that the procedure for defining Itô’s integral

∫ t

0

f(s, ω)dws

is as follows: First we define it for f ∈ L0 which is a simple process, and find

that

∫ t

0

f(s, ω)dws ∈ M2,c. Then, after establishing the one to one correspondence

between space L2 and M2,c with the same metric, for each f ∈ L2, we can take a

sequence of {fn}
∞
n=1 ⊂ L0 which tends to f in L2. So the corresponding sequence of

integrals
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{ ∫ t

0

fn(s, ω)dws

}∞

n=1

∈ M2,c

will also tend to a limit in M2,c, which we denote by

∫ t

0

f(s, ω)dws, and define it to

be the stochastic integral for f . Note that for a BM {wt}t≥0 we have that

w2
t = a martingale + t, ∀t ≥ 0,

and we establish a one to one correspondence as follows: for each T > 0,

f ∈ L2
T ⇐⇒

{ ∫ t

0

f(s, ω)dws

}

t∈[0,T ]

∈ M2,c
T ,

with the same norm ‖ f ‖2,T=

[ ∫ t

0

f 2(s, ω)dws

]1/2
. Now for a {Mt}t≥0 ∈ M2 we

want to do the same thing. So first we need a D −M decomposition for its square.

For simplicity we discuss the one-dimensional processes.

Proposition 1.2.3. [70]

1. If {Mt}t≥0 ∈ M2, then {M2
t }t≥0 has a unique D−M decomposition as follows:

M2
t = a martingale + 〈M〉t,

where 〈M〉t is a natural (predictable) integrable increasing process, and it is

called the (predictable) characteristic process for Mt

2. If {Mt}t≥0, {Nt}t≥0 ∈ M2, then {MtNt}t≥0 has a unique decomposition (it may

be still called the D −M decomposition) as follows:

MtNt = a martingale + 〈M,N〉t,

where 〈M,N〉t is a natural (predictable) integrable finite variational process, i.e.

it is the difference of two natural (predictable) integrable increasing processes,

and it is called the cross (predictable) characteristic process (or (predictable)

quadratic variational Ft-adapted process) for Mt and Nt.
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3. If {Mt}t≥0, {Nt}t≥0 ∈ M2,loc, then

(i) ∃σn ↑ ∞, σn < ∞ is a stopping time for each n such that

{Mt∧σn
}t≥0, {Nt∧σn

}t≥0 ∈ M2 for each n;

(ii) there exist a unique predictable process {〈M,N〉t}t≥0 such that

〈M,N〉t∧σn
= 〈MσnNσn〉t, ∀n and ∀t > 0,

where we write Mσn

t = Mt∧σn
, and Nσn

t = Nt∧σn

For the continuity of 〈M,N〉t we have the following proposition.

Proposition 1.2.4. [70] Any one of the following conditions makes 〈M,N〉t contin-

uous in t:

(i) {Ft}t≥0 is continuous in time, i.e. if σn ↑ σ and they are all stopping times, then

Fσ = ∨nFσn
; (ii) M,N ∈ M2,c.

For stochastic integrals with respect to the martingale {Mt}t≥0 ∈ M2, we need to

introduce the space of integrand processes as in the case with respect to BM {wt}t≥0 ∈

M2,c.

Definition 1.2.9. 1. Write

L2
M =





{f(t, ω)}t≥0 : it isFt − predictable such that∀T > 0

(‖ f ‖M2,T )
2 = E

∫ T

0

f 2(t, ω)d〈M〉t < ∞.





.

For f = {f(t, ω)}t≥0 ∈ L2
M set

‖ f ‖M2 =
∞∑

n=1

1

2n
(‖ f ‖M2,n ∧1).

2. L2,loc
M =





{f(t, ω)}t≥0 : it isFt − predictable such that if∃σn ↑ ∞, σn

is aFt − stopping time for each n, and

E

∫ T∧σn

0

f 2(t, ω)d〈M〉t < ∞, ∀T > 0, ∀n





.



1.2 Brownian motion, stochastic integral and Itô’s formula 27

3. L0 is defined the same as in Definition 1.2.4.

Note that if E

∫ T∧σn

0

f 2(t, ω)d〈M〉t < ∞, ∀T > 0, ∀n, then P− a.s.

∫ N∧σn

0

f 2(t, ω)d〈M〉t < ∞, ∀n, ∀N = 1, 2, · · · . Therefore,

∫ T

0

f 2(t, ω)d〈M〉t <

∞, ∀T > 0,P-a.s. In general, the inverse is not necessary true. However, if 〈M〉t

is continuous in t, then the inverse is also true. Reasoning almost completely in the

same way as in lemma 1.2.1, one arrives at the following lemma.

Lemma 1.2.2. [70] L0 is dense in L2
M with respect to the metric ‖ · ‖M2 .

Now we can define the stochastic integral

∫ t

0

f(s, ω)dMs with respect to {Mt}t≥0 ,

first for f ∈ L0, and then for f ∈ L2
M , and finally for f ∈ L2,loc

M in completely the

same way as when defining

∫ t

0

f(s, ω)dws. However, we would like to define it in

another way, even if it is more abstract and different, because it is then faster and

easier to show all of its properties.

Definition 1.2.10. For M ∈ M2,loc and f ∈ L2,loc
M (or M ∈ M2 and f ∈ L2

M) if

X = {xt}t≥0 ∈ M2,loc(X = {xt}t≥0 ∈ M2) satisfies that

〈M,N〉(t) =

∫ t

0

f(u)d〈M,N〉(u), (1.2)

∀N ∈ M2,loc(N ∈ M2), ∀t ≥ 0, then set xt = IM(f)(t), and call it the stochastic

integral of f with respect to martingale M .

In the rest of this section we always assume that M ∈ M2,loc. First let us show the

uniqueness of X ∈ M2,loc in Definition 1.2.10. In fact, if there is another X ′ ∈ M2,loc

such that 1.2 holds, then 〈X−X ′, N〉 = 0, ∀N ∈ M2,loc. Hence by taking N = X−X ′

one finds that X = X ′. Secondly, we need to show that such a definition is equivalent

to the usual one, which was explained before this definition.
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Proposition 1.2.5. [70] If f ∈ L2
M is a stochastic step function, i.e. f ∈ L2

M , and

∃ σn ↑, σ0 = 0, σ0 an is a Ft-stopping time for each n such that

f(t, ω) = f0(ω)1t=0 +
∞∑

n=0

fn(ω)1[σn,σn+1](t),

where fn ∈ Fσn
, then

IM(f)(t) =
∞∑

n=0

fn(ω)(Mt∧σn+1 −Mt∧σn
) =

∫ t

0

f(u)dM(u) (1.3)

Lemma 1.2.3. [70] If M,N ∈ M2, f ∈ L2
M , g ∈ L2

N , then

∫ t

0

|f · g|(u)d|〈M,N〉|u ≤ |

∫ t

0

f 2(u)d〈M〉u|
1/2|

∫ t

0

g2(u)d〈N〉u |1/2,

where |〈M〉|u is the total variation of Mt, t ∈ [0, u]. Note that we always write

d|〈M,N〉|u = |d〈M,N〉|u.

1.2.6 Itô’s formula for continuous semi-Martingales

In calculus if f(x), x(t) ∈ C1 and both are non-random, then

df(x(t)) = f ′(x(t))dx(t).

However, this formula for a random process x(t, ω) is not necessary true.

For example, one can show that

|w(t)|2 = 2

∫ t

0

w(s)dw(s) + t, (1.4)

or symbolically, we can denote it by

d|w(t)|2 = 2w(t)dw(t) + dt,

where w(t) is the 1-dimensional standard BM . Actually, this is a special case of the

famous Itô’s formula. So one can understand how important and useful Itô’s formula

is in stochastic analysis and stochastic calculus.
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Proposition 1.2.6. [70] If f(x) ∈ C2(R), and M ∈ M2,loc,c, then

f(Mt)− f(M0) =

∫ t

0

f ′(Ms)dMs +
1

2

∫ t

0

f ′′(Ms)d〈M〉s. (1.5)

Now let us consider Itô’s formula for the continuous semi-martingale. Suppose that

xt = x0 + At +Mt,

where x0 ∈ F0, {At}t≥0 is a continuous finite variational (Ft-adapted) process with

A0 = 0, {Mt}t≥0 ∈ M2,loc,c. We will call such an xt a continuous semi-martingale.

The same proof will show the following result.

Theorem 1.2.3. [70] If f(x) ∈ C2(R), then

f(xt)− f(x0) =

∫ t

0

f ′(xs)dAs +

∫ t

0

f ′(xs)dMs +
1

2

∫ t

0

f ′′(xs)d〈M〉s (1.6)

1.2.7 Itô’s formula for semi-Martingales with jumps

In the practical case we will always encounter some stochastic perturbation with

jumps. So we need an Itô’s formula for a semi-martingale with jumps. Consider

xt = x0 + At +Mt +

∫ t+

0

∫

Z

(s, z, ω)Np(ds, dz) +

∫ t+

0

∫

Z

g(s, z, ω)Ñp(ds, dz),

where x0, {At}t≥0 and {Mt}t≥0 are the same as in theorem 1.2.3, and p is a F-point

process of the class (QL), f ∈ Fp, g ∈ F2,loc
p such that f(s, z, ω)g(s, z, ω) = 0. We will

call such a xt a semi-martingale with jumps. Here the last two terms are called jump

terms. All jumps of xt are caused by them, and the condition f(s, z, ω)g(s, z, ω) = 0

means that the last two terms do not have the same jump times. We have the following

general Itô’s formula:

Theorem 1.2.4. [70] If F (x) ∈ C2(R), then

F (xt)− F (x0) =

∫ t

0

F ′(xs)dAs +

∫ t

0

F ′(xs)dMs +
1

2

∫ t

0

F ′′(xs)d〈M〉s
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+

∫ t+

0

∫

Z

[F (xs− + f(s, z, ω))− F (xs−)]Np(ds, dz)

+

∫ t+

0

∫

Z

[F (xs− + g(s, z, ω))− F (xs−)]Ñp(ds, dz)

+

∫ t+

0

∫

Z

[F (xs + g(s, z, ω))− F (xs)− F ′(xs)g(s, z, ω)]N̂p(ds, dz). (1.7)

holds. Moreover, 1.7 also can be rewritten as

F (xt)− F (x0) =

∫ t

0

F ′(xs)dAs +

∫ t

0

F ′(xs)dMs +
1

2

∫ t

0

F ′′(xs)d〈M〉s

+

∫ t+

0

∫

Z

F ′(xs−)g(s, z, ω)Ñp(ds, dz) +

∫ t+

0

∫

Z

F ′(xs−)f(s, z, ω)Np(ds, dz)

+

∫ t+

0

∫

Z

[F (xs− + f(s, z, ω))− F (xs−)− F ′(xs−)f(s, z, ω)]Np(ds, dz)

+

∫ t+

0

∫

Z

[F (xs− + g(s, z, ω))− F (xs−)− F ′(xs−)g(s, z, ω)]Np(ds, dz)

or, more simply,

F (xt)− F (x0) =

∫ t

0

F ′(xs−)dxs +
1

2

∫ t

0

F ′′(xs)d〈M〉s

+

∫ t+

0

∫

Z

[F (xs− + f(s, z, ω))− F (xs−)− F ′(xs−)f(s, z, ω)]Np(ds, dz)

+

∫ t+

0

∫

Z

[F (xs− + g(s, z, ω))− F (xs−)− F ′(xs−)g(s, z, ω)]Np(ds, dz) (1.8)
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1.2.8 Itô’s formula for d-dimensional semi-martingales and in-

tegration by parts

The above Itô’s formula for one-dimensional semi-martingales with jumps is eas-

ily generalized to that for the n-dimensional case. Consider a d-dimensional semi-

martingales with jumps as follows: xt = (x1
t , · · · , x

d
t ), where for i = 1, 2, · · · , d

xi
t = xi

0 + Ai
t +M i

t

+

∫ t+

0

∫

Z

f i(s, z, ω)Np(ds, dz) +

∫ t+

0

∫

Z

gi(s, z, ω)Ñp(ds, dz)

where x0 ∈ F0, {At}t≥0 is a finite variational (Ft-adapted) process, and {Mt}t≥0 ∈

M2,loc,c , all are d-dimensional, and p is a Ft-point process of the class (QL), f ∈

Fp, g ∈ F2,loc
p such that f i(s, z, ω)gj(s, z, ω) = 0, ∀i, j = 1, 2, · · · , d. Then we have the

following theorem.

Theorem 1.2.5. [70] If a real function F (x) ∈ C2(Rd), then

F (xt)− F (x0) =
d∑

i=1

∫ t

0

F ′
xi(xs−)dx

i
s +

1

2

d∑

i,j=1

∫ t

0

F ′′
xixj(xs)d〈M

i,M j〉s

+

∫ t+

0

∫

Z

[F (xs− + f(s, z, ω))− F (xs−)−
d∑

i=1

F ′
xi(xs−)f

i(s, z, ω)]Np(ds, dz)

+

∫ t+

0

∫

Z

[F (xs− + g(s, z, ω))− F (xs−)−
d∑

i=1

F ′
xi(xs−)g

i(s, z, ω)]Np(ds, dz), (1.9)

or,

F (xt)− F (x0) =

d∑

i=1

∫ t

0

F ′
xi(xs−)dA

i
s +

d∑

i=1

∫ t

0

F ′
xi(xs−)dM

i
s +

1

2

d∑

i,j=1

∫ t

0

F ′′
xixj(xs)d〈M

i,M j〉s

+

∫ t+

0

∫

Z

[F (xs− + g(s, z, ω))− F (xs−)]Ñp(ds, dz)
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+

∫ t+

0

∫

Z

[F (xs− + f(s, z, ω))− F (xs−)]Np(ds, dz),

+

∫ t+

0

∫

Z

[F (xs− + g(s, z, ω))− F (xs−)−
d∑

i=1

F ′
xi(xs−)g

i(s, z, ω)]N̂p(ds, dz),

Remark 1.2.1. 1. If we denote

[xi, xj]t = 〈xic, xjc〉t +
∑

s≤t

(∆xi∆xj) = 〈M i,M j〉t +
∑

s≤t

(∆xi∆xj),

which is called the cross quadratic variational process (cross characteristics) of

semi-martingales {xi
t}t≥0 and {xj

t}t>≥0, then 1.9 can be rewritten as

F (xt)− F (x0) =
d∑

i=1

∫ t

0

F ′
xi(xs−)dx

i
s +

1

2

d∑

i,j=1

∫ t

0

F ′′
xixj(xs)d[x

i, xj]s

+

∫ t+

0

∫

Z

[F (xs− + f(s, z, ω))− F (xs−)−
d∑

i=1

F ′
xi(xs−)f

i(s, z, ω)

−
1

2

d∑

i,j=1

∫ t

0

F ′′
xixj(xs−)f

i(s, z, ω)f j(s, z, ω)]Np(ds, dz)

+

∫ t+

0

∫

Z

[F (xs− + g(s, z, ω))− F (xs−)−
d∑

i=1

F ′
xi(xs−)g

i(s, z, ω)

−
1

2

d∑

i,j=1

∫ t

0

F ′′
xixj(xs−)g

i(s, z, ω)gj(s, z, ω)]Np(ds, dz)

2. Ito’s formula 1.9 can also be written symbolically in differential form as
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dF (xt) =
d∑

i=1

F ′
xi(xt−)dx

i
t +

1

2

d∑

i,j=1

F ′′
xixj(xt)d〈M

iM j〉t

∫

Z

[F (xt− + f(s, z, ω))− F (xt−)−
d∑

i=1

F ′
xi(xt−)f

i(s, z, ω)]Np(dt, dz),

∫

Z

[F (xt− + g(s, z, ω))− F (xt−)−
d∑

i=1

F ′
xi(xt−)g

i(s, z, ω)]Np(dt, dz),

or,

dF (xt) =
d∑

i=1

F ′
xi(xt−)dx

i
t +

1

2

d∑

i,j=1

F ′′
xixj(xt−)d[x

i, xj]t

+ dηt(F, g) + dηt(F, f) (1.10)

where

dηt(F, g) =

∫

Z

[F (xt− + g(t, z, ω))− F (xt−)−
d∑

i=1

F ′
xi(xt−)g

i(t, z, ω)]

−
1

2

d∑

i,j=1

F ′′
xixj(xt−)g

i(t, z, ω)gj(t, z, ω)]Np(dt, dz),

and dηt(F, f) is similarly defined.

By Itô’s formula one easily derives the formula of integration by parts for semi-

martingales with jumps. Suppose the semi-martingale {xi
t}t≥0 are given as above,

i = 1, 2, · · · , d. Then we have the following theorem (integration by parts).

Theorem 1.2.6. [70] We have:

dxi
tx

j
t = xi

tdx
j
t + xj

tdx
i
t + d[xi, xj]t,

or equivalently,

xi
tx

j
t − xi

0x
j
0 =

∫ t

0

xi
sdx

j
s +

∫ t

0

xj
sdx

i
s + [xi, xj]t.
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1.2.9 Independence of BM and poisson point processes

As an application of Itô’s formula we can prove the independence of BM and Poisson

point processes, which is very important in stochastic analysis. For simplicity let

us first discuss the independence of a 1-dimensional Brownian motion and a Poisson

point process.

Theorem 1.2.7. [70] Assume that {xt}t≥0 is a 1-dimensional Ft-semi-martingale,

and p is a Ft-point process of class (QL). If

1. Mt = xt − x0 ∈ M2,loc,c, 〈M〉t = t;

2. The compensator N̂p(dt, dz) of p is a non-random σ-finite measure on [0,∞)×Z;

then {xt}t≥0 is a 1-dimensional Ft-BM, and p is a Ft-Poisson point process such

that they are independent.

The above theorem is easily generalized to the d-dimensional case.

Theorem 1.2.8. [70] Assume that {xt}t≥0 is a d-dimensional Ft-semi-martingale,

where xt = (x1
t , · · · , x

d
t ), and pi, i = 1, 2, · · · , n, are Ft-point processes of class (QL)

on state spaces Zi, i = 1, 2, · · · , n, respectively. If

1. M i
t = xi

t − xi
0 ∈ M2,loc,c, 〈M iM j〉t = δijt; i, j = 1, 2, · · · , d,

2. the compensator N̂pi(dt, dz) of pi is a non-random σ-finite measure on [0,∞)×

Z, i = 1, 2, · · · , n; and the domains Dpi(ω), i = 1, 2, · · · , n, are mutually disjoint,

a.s. Then {xt}t≥0 is a d-dimensional Ft-BM, and pi(i = 1, 2, · · · , n) is a Ft-

Poisson point process such that they are mutually independent.

1.2.10 Strong Markov property of BM and poisson point pro-

cesses

The martingale characterization of BM and Poisson point processes (theorem 1.2.8)

can be used to show that a BM is still a BM if it starts again from any stopping time,

and this property is also true for a stationary Poisson point process.
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Theorem 1.2.9. [70] If xt = (x1
t , · · · , x

d
t ) is a d-dimensional Ft-BM, and σ is a Ft-

stopping time with P(σ < ∞) = 1, then {x∗
t}t≥0 = {xt+σ}t≥0 is a d-dimensional F∗

t =

Ft+σ − BM . In particular, {w∗
t }t≥0 = {xt+σ − xσ}t≥0 is a standard BM independent

of F∗
0 = Fσ.

Theorem 1.2.10. [70] If p is a stationary Ft-Poisson point process on some space

Z with the characterictic measure π(dz),and σ is a {Ft}t≥0-stopping time with

P(σ < ∞) = 1, then p∗ = {p∗(t)}t∈Dp∗
= {p(t + σ)}t+σ∈Dp

is a stationary

{F∗
t}t≥0 = {Ft+σ}t≥0-Poisson point process with the same characterictic measure

π(dz).

By the previous two theorems one immediately sees that a standard BM and a sta-

tionary Poisson point processes are both stationary strong Markov processes. That

is to say, if {wt}t≥0 is a d-dimensional Ft-standard BM, then for any Ft-stopping time

σ with P(σ < ∞) = 1, it satisfies ∀A ∈ B(Rd), ∀t > 0,

P(wt+σ ∈ A/Fσ), a.s.

In fact, by Theorem 1.2.9 one has that it is equivalent to

P(w∗
t ∈ A/F∗

0) = P(wt ∈ A/F0) ⇔ P(w∗
t ∈ A) = P(wt ∈ A)

where {w∗
t }t≥0 is a F∗

t -BM. The last equality is obviously true. It is natural to define

the strong Markov property of a stationary Ft-point process p as follows: If p satisfies

that ∀t > 0, ∀k = 1, 2, · · · ,

P(Np((0, t+ σ]× U) = k/Fσ) = P(Np((0, t]× U) = k/F0) a.s.,

then p is called a strong Markov Ft-point process. Thus we arrive at the following

corollary.

Corollary 1.2.3. [70] The Ft-standard BM and Ft-stationary Poisson point processes

are both stationary strong Markov processes.



36 CHAPTER 1. STOCHASTIC CALCULUS

1.2.11 Martingale representation theorem

The martingale representation theorem is very useful in the mathematical financial

market and in the filtering problems. More precisely, we have the following theorem.

Theorem 1.2.11. [70] Let m(t) be a square integrable R
d-valued F

w,k
t -martingale,

where F
w,k
t is the σ-algebra generated (and completed) by {ws, ks, s ≤ t}, and {wt}t≥0

is a d1-dimensional BM, {kt}t≥0 is a stationary d2-dimensional poisson point pro-

cess of the class (QL) such that the components {k1
t }t≥0, · · · , {k

d2
t }t≥0 have disjoint

domains and disjoint ranges. Then there exists a unique (qt, pt) ∈ L2
Fw,k(R

d⊗d1) ×

F 2
Fw,k(R

d⊗d2) such that

m(t) = m(0) +

∫ t

0

qsdws +

∫ t

0

∫

Z

ps(z)Ñk(ds, dz).

Here we write

L2
F(R

d⊗d1) = {f(t, ω) : f(t, ω) is Ft − adapted,Rd⊗d1 − valued such that

E

∫ T

0

|f(t, ω)|2dt < ∞, for any T < ∞}

and

F 2
F (R

d⊗d2) = {f(t, z, ω) : f(t, z, ω)} is R
d⊗d2 − valued,−Ft predictable such that

E

∫ T

0

∫

Z

|f(t, z, ω)|2π(dz)dt < ∞, ∀T < ∞}



Chapter 2

Stochastic differential equations

In the practical case a dynamical system will always be disturbed by some stochas-

tic perturbation, one type of which is continuous, and it can be modeled by some

stochastic integral with respect to the BM, and the other is of the jump type, which

is usually modeled by some stochastic integral with respect to the martingale measure

generated by a point process. In this chapter we will discuss such kinds of stochastic

differential equations (SDE) with jumps.

2.1 Strong solutions to SDE with jumps

2.1.1 Notation

Suppose we are given a probability space (Ω,F,P) with a σ-field filtration {Ft}t≥0.

Consider the following SDE with jumps in d-dimensional space :

xt = x0 +

∫ t

0

b(s, xs, ω)ds+

∫ t

0

σ(s, xs, ω)dws

+

∫ t

0

∫

Z

c(s, xs−, z, ω)Ñk(ds, dz), t ≥ 0 (2.1)

where wT
t = (w1

t , · · · , w
d1
t ), 0 ≤ t, is a d1-dimensional Ft-adapted standard Brown-

ian motion (BM), wT
t is the transpose of wT

t ; k
T = (k1, · · · , kd2) is a d2-dimensional
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Ft-adapted stationary Poisson point process with independent components, and

Ñki(ds, dz) is the Poisson martingale measure generated by ki satisfying

Ñki(ds, dz) = Nki(ds, dz)− π(dz)ds, i = 1, · · · , d2.

Here π(·) is a σ-finite measure on a measurable space (Z,B(Z)), and Nki(ds, dz) is

the Poisson counting measure generated by ki. From now on, for simplicity, we will

always denote the integral

∫ t

0

=

∫

(0,t]

=

∫ t+

0

.

Definition 2.1.1. {xt}t≥0 (or, simply, xt) is said to be a (Ft)-solution of 2.1, if

{xt}t≥0 satisfies 2.1. In the case that xt ∈ F
w,k
t , ∀t ≥ 0, where F

w,k
t is the σ-algebra

generated (and completed) by ws, ks, s ≤ t, and then it is called a strong solution.

From Definition 2.1.1 it is seen that for discussing the solution of 2.1 we always need

to assume that the coefficients satisfy the following assumption:

(A)1: b and σ : [0,∞) × R
d × Ω → R

d, c : [0,∞) × R
d × Z × Ω → R

d are jointly

measurable and Ft-adapted where, furthermore, c is Ft-predictable. Moreover,

to simplify the discussion of , we will also suppose that all Nki(ds, Z), 1 ≤ i ≤ d2,

have no common jump time; i.e. we always make the following assumption

(A)2: Nki({t}, U)Nkj({t}, U) = 0, as i 6= j, for all U ∈ B(Z).

Definition 2.1.2. We say that the pathwise uniqueness of solutions to 2.1 holds,

if for any two solutions {xi
t}t≥0, i = 1, 2 satisfying 2.1 on the same probability

space with the same Brownian motion {wt}t≥0 and Poisson martingale measure

Ñk(dt, dz),P

(
sup
t≥0

|x1
t − x2

t | = 0

)
= 1.

2.1.2 A priori estimate and uniqueness of solutions

Now let us introduce some notation which is useful later.

S2,loc
F (Rd) =





f(t, ω) : f(t, ω) isFt − adapted,Rd − valued such that

E sup
t∈[0,T )

|f(t, ω)|2 < ∞, ∀T < ∞,



.
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Lemma 2.1.1. Assume that xt is a solution of 2.1, and assume that

1. E|x0|
2 < ∞, and

2. 〈x · b(t, x, ω)〉 ≤ c(t)(l + |x|2),

|σ(t, x, ω)|2 +

∫

Z

|c(t, x, z, ω)|2π(dz) ≤ c(t)(1 + |x|2),

where 0 ≤ c(t) is non-random, such that CT =

∫ T

0

c(t)dt < ∞, for any T < ∞.

Then

E( sup
t∈[0,T )

|xt|
2) ≤ kT < ∞,

where kT ≥ 0 is a constant only depending on Ct and E|x0|
2 . Hence one has that

under the assumption of this lemma the solution of 2.1 always satisfies {xt}t≥0 ∈

S2,loc
F (Rd).

Proof. Let τN = inf{t ≥ 0 : |xt| > N}. By Itô’ formula

|xt∧τN |
2 = |x0|

2 + 2

∫ t∧τN

0

xs · b(s, xs, ω)ds+ 2

∫ t∧τN

0

xs · σ(s, xs, ω)dws

+

∫ t∧τN

0

|σ(s, xs, ω)|
2ds+ 2

∫ t∧τN

0

∫

Z

xs · c(s, xs−, z, ω)Ñk(ds, dz)

+

∫ t∧τN

0

∫

Z

|c(s, xs−, z, ω)|
2Nk(ds, dz). (2.2)

Since for any T < ∞, as t ∈ [0, T ],

E

∫ t∧τN

0

|xs · σ(s, xs, ω)|
2ds = E

∫ t∧τ
N−

0

|xs · σ(s, xs, ω)|
2ds

≤ N2

∫ t

0

c(s)(1 + |N |2)ds < ∞.
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Hence

{ ∫ t∧τN

0

xs · σ(s, xs, ω)dws

}

t∈[0,T ]

is a martingale. A similar conclusion

holds for

∫ t∧τN

0

∫

Z

xs · c(s, xs−, z, ω)Ñk(ds, dz). Hence by the martingale inequality

E‖x‖2t∧τN ≤ E|x0|
2 + k0E

∫ t∧τN

0

c(s)(1 + ‖x‖2s)ds

+
1

2
E‖x‖2t∧τN ≤ E|x0|

2 +
1

2
E‖x‖2t∧τN + k0

∫ t

0

c(s)(1 + E‖xs∧τN‖
2)ds, (2.3)

where we write ‖x‖2t = sup
s≤t

|xs|
2, and we have used the fact that

2E sup
s≤t

∣∣∣∣
∫ s∧τN

0

xs · σ(s, xs, ω)dws

∣∣∣∣ ≤ k′
0E

√∫ t∧τN

0

|xs · σ(s, xs, ω)|
2ds

≤
1

4
E‖x‖2t∧τN + k

′2
0 E

∫ t∧τN

0

|σ(s, xs, ω)|
2ds

≤
1

4
E‖x‖2t∧τN + k

′2
0 E

∫ t∧τN

0

c(s)(1 + ‖x‖2s)ds,

and a similar inequality also holds for

2E sup
s≤t

∣∣∣∣
∫ t∧τN

0

∫

Z

xs · c(s, xs−, z, ω)Ñk(ds, dz)

∣∣∣∣ .

Therefor

1

2
E‖x‖2t∧τN ≤ E|x0|

2 + k0

∫ t

0

c(s)(1 + E‖xs∧τN‖
2)ds.

By Gronwall’s inequality one finds that when t ∈ [0, T ]

E‖x‖2t∧τN ≤ k′
T exp

(
2k0

∫ T

0

c(s)ds

)
= kT < ∞, (2.4)

where k′
T = 2E|x0|

2 + 2

∫ T

0

c(s)ds. Letting N ↑ ∞, by Fatou’s lemma one finds that

E‖x‖2T ≤ kT ,
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where kT =

(
2E|x0|

2 + 2

∫ T

0

c(s)ds

)
exp

(
2k0

∫ T

0

c(s)ds

)
depends on E|x0|

2 and

∫ T

0

c(s)ds only.

Lemma 2.1.2. Assume that b(t, x, ω) and σ(t, x, ω) are uniformly locally bounded in

x, that is, for each 0 < r < ∞,

|b(t, x, ω)|+ |σ(t, x, ω)| ≤ kr, as |x| ≤ r,

where kr ≤ 0 is a constant depending only on r; and assume that for each N =

1, 2, · · · , T < ∞ there exist non-random functions cNT (t) and ρNT (u) such that as

|x1|, |x2| ≤ N ; and t ∈ [0, T ]

2(x1 − x2) · (b(t, x1, ω)− b(t, x2, ω)) + |σ(t, x1, ω)− σ(t, x2, ω)|
2

+

∫

Z

|c(t, x1, z, ω)− c(t, x2, z, ω)|
2π(dz) ≤ cNT (t)ρ

N
T (|x1 − x2|

2),

where cNT (t) is non-negative such that

∫ T

0

cNT (t)dt < ∞, and ρNT (u) defined on u ≥ 0,

is non-negative, increasing, continuous and concave such that

∫

0+

du/ρNT (u) = ∞.

Then the solution of 2.1 is pathwise unique.

Proof. Assume {xi
t}t≥0, i = 1, 2 are two solutions of 2.1 with the same BM {wt}t≥0

and Poisson martingale measure Ñk(dt, dz). Let

Xt = x1
t − x2

t , b̂(s, x
1
s, x

2
s, ω) = b(s, x1

s, ω)− b(t, x2
s, ω),

and

τN = inf{t ≥ 0 : |x1
t |+ |x2

t | > N} .

Then by Itô’s formula as in 2.2 one sees that
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Zt∧τN = E|Xt∧τN |
2] = E

∫ t∧τN

0

[
2Xs · b̂(s, x

1
s, x

2
s, ω) + |σ̂(s, x1

s, x
2
s, ω)|

2

+

∫

Z

|ĉ(s, x1
s, x

2
s, z, ω)|

2π(dz)

]
ds ≤ E

∫ t∧τN−

0

cNT (s)ρ
N
T (|Xs|

2)ds

≤

∫ t

0

cNT (s)ρ
N
T (Zs∧τN )ds, as t ∈ [0, T ].

Hence by the following Lemma 2.1.3 for any T < ∞,P− a.s. Zt∧τN = 0, ∀t ∈ [0, T ].

Letting N → ∞ one finds that P− a.s.

Zt = 0, ∀t ∈ [0, T ].

By the RCLL (right continuous with left limit) property of {xi
t}t≥0, i = 1, 2 the

conclusion now follows.

Lemma 2.1.3. If ∀t ≥ 0 a real non-random function yt satisfies

0 ≤ yt ≤

∫ t

0

ρ(ys)ds < ∞,

where ρ(u) defined on u ≥ 0, is non-negative, increasing such that ρ(0) = 0, ρ(u) > 0,

as u > 0; and

∫

0+

du/ρ(u) = ∞,

then

yt = 0, ∀t ≥ 0.

Proof. Let

zt =

∫ t

0

ρ(ys)ds.
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Obviously, one only needs to show that ∀t ≥ 0, zt = 0. Indeed, zt is absolutely

continuous, increasing and,

żt = ρ(yt) ≤ ρ(zt). (2.5)

Set

t0 = sup{t ≥ 0 : zs = 0, ∀s ∈ [0, t]}.

If t0 < ∞, then zt > 0, as t > t0. Hence by assumption and from 2.5 for any δ > 0

∞ =

∫

(0,z(t0+δ))

du/ρ(u) =

∫

(t0,t0+δ)

dzt/ρ(zt) ≤

∫

(t0,t0+δ)

dt ≤ δ.

This is a contradiction. Therefore t0 = ∞.

2.1.3 Existence of solutions for the Lipschitzian case

In this section we are going to discuss the existence and uniqueness of solution to

SDE 2.1. First, we introduce a notation which will be used later.

L2
F(R

d) =





f(t, ω) : f(t, ω) isFt − adapted,Rd − valued

such thatE

∫ τ

0

|f(t, ω)|2dt < ∞





Theorem 2.1.1. Assume that

1. b and σ : [0,∞)× Rd × Ω → R
d,

c : [0,∞)×Rd × Z × Ω → R
d

are jointly measurable and Ft-adapted, where furthermore, c is Ft-predictable

such that P− a.s.

|b(t, x, ω)| ≤ c(t)(1 + |x|),

|σ(t, x, w)|2 +

∫

Z

|c(t, x, z, ω)|2π(dz) ≤ c(t)(1 + |x|2),
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where c(t) is non-negative and non-random such that

∫ T

0

c(t)dt < ∞;

2. |b(t, x1, ω)− b(t, x2, ω)| ≤ c(t)|x1 − x2|,

|σ(t, x1, ω)− σ(t, x2, ω)|
2 +

∫

Z

|c(t, x1, z, ω)− c(t, x2, z, ω)|
2π(dz)

≤ c(t)|x1 − x2|
2,

where c(t) satisfies the same conditions as in (1);

3. x0 ∈ F0,E|x0|
2 < ∞.

Then 2.1 has a pathwise unique Ft-adapted solution {xt}t≥0 ∈ S2,loc
F (Rd). In the case

that b(t, x, ω) and σ(t, x, ω) are F
w,Ñk

t -adapted, and c(t, x, z, ω) is F
w,Ñk

t -predictable,

then the solution is also F
w,Ñk

t -adapted, i.e. it is a strong solution.

Proof. Let us use the contraction mapping principle to prove this result. Introduce a

new norm as follows: for any given T < ∞ and for (x·) ∈ B̃ = L2
F(R

d) let

‖(x·)‖
2
M = sup

t∈[0,T ]

e−b0A(t)
E‖x‖2t ,

where ‖x‖t = sup
s≤t

|xs|, and b0 ≥ 0 is a constant, which will be determined later, and

A(t) =

∫ t

0

c(s)ds

write

H = {(x.) ∈ B̃ : ‖(x.)‖M < ∞}.

Then H is a Banach space. For any (x̄i.) ∈ H, i = 1, 2, denote (xi.), i = 1, 2, by the

following SDE:
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xi
t = x0 +

∫ t

0

b(s, x̄i
s, ω)ds+

∫ t

0

σ(s, x̄i
s, ω)dws

+

∫ t

0

∫

z

c(s, x̃i
s−, z, ω)Ñk(ds, dz), 0 ≤ t, i = 1, 2.

By assumption (1) one easily sees that (xi.) ∈ H, i = 1, 2. Let

Xt = x1
t − x2

t .

Similarly, define X̄t. Then by Itô’s formula as in 2.2, and discussing similarly as in

2.3, one has that

E[‖X‖2t ] ≤ γ−1

∫ t

0

k0c(s)E‖X̄‖2sds+ γ

∫ t

0

k0c(s)E‖X‖2sds

= γ−1I1t + γ

∫ t

0

k0c(s)E‖X̄‖2sds

≤ γ−1I1t +

∫ t

0

exp(γk0(A(t)− A(s)))k0c(s)I
1
sds

where k0 ≥ 1 is a fixed constant, and we have applied Lemma 2.1.4 below. Note that

0 ≤ A(t) is increasing, so that

e−b0A(t)I1t = e−b0A(t)

∫ t

0

k0c(s)E‖X̄‖2sds

≤ sup
s≤t

e−b0A(s)
E‖X̄‖2s

∫ t

0

e−b0(A(t)−A(s))k0c(s)ds

≤ sup
s≤t

e−b0A(s)
E‖X̄‖2s · k

′
0

∫ t

0

c(s)ds

≤ k′′
T sup

s≤T
e−b0A(s)

E‖X̄‖2s.

where k′′
T > 0 is a constant depending on

∫ T

0

c(s)ds only. Thus, if we write u(s) =

E|X̄s|
2, then

e−b0A(t)

∫ t

0

exp(γk0((A(t)− A(s))))k0c(s)I
1
sds
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≤ sup
s≤t

e−b0A(s)I1s

∫ t

0

e
−k0(

b0
k0

−γ)(A(t)−A(s))
k0c(s)ds

≤ k′′
T sup

s≤t
e−b0A(s)u(s)(

b0
k0

− γ)−1 ≤ k′′
T sup

s≤T
e−b0A(s)u(s)(

b0
k0

− γ)−1.

Hence

‖(X.)‖2M ≤ max(k′′
Tγ

−1, k′′
T (

b0
k0

− γ)−1)‖(X̄.)‖2M .

After appropriately choosing γ and b0 to make

max(k′′
Tγ

−1, k′′
T (

b0
k0

− γ)−1) < l

by the contraction mapping principle one finds that there exist a unique solution

{x̄t}t≥0 ∈ L2
F(R

d) satisfying 2.1. Let us show the following result: there exists a

version {xt}t≥0 of {x̄t}t≥0, that is, for each t ∈ [0, T ] P(xt 6= x̄t) = 0, such that

{xt}t≥0 is RCLL (right continuous and with left limit) and {xt}t≥0 is a solution of

2.1. In fact, write

xt = x0 +

∫ t

0

b(s, x̄s, ω)ds+

∫ t

0

σ(s, x̄s, ω)dws

+

∫ t

0

∫

z

c(s, x̄s−, z, ω)Ñk(ds, dz), t ∈ [0, T ];

yt = x0 +

∫ t

0

b(s, xs, ω)ds+

∫ t

0

σ(s, xs, ω)dws

+

∫ t

0

∫

z

c(s, xs−, z, ω)Ñk(ds, dz), t ∈ [0, T ].

Then E

∫ T

0

|xt − x̄t|
2dt = 0. So, there exists a set Λ1 × Λ2 ∈ ([0, T ]) × F such that

E

∫ T

0

1Λ1×Λ2(t, ω)dt = 0, and xt(ω) = x̄t(ω), as (t, ω) does not belong Λ1×Λ2. Hence,

for each t ∈ [0, T ],
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E|xt − yt|
2 ≤ 3

[
E

∣∣∣∣
∫ t

0

|b(s, x̄s)− b(s, xs)|ds

∣∣∣∣
2

+ E

∫ t

0

|σ(s, x̄s)− σ(s, xs)|
2ds

+E

∫ t

0

∫

Z

|c(s, x̄s−, z)− c(s, xs−, z)|
2π(dz)ds

]
= 0.

So, the above fact holds true. Now, by Lemma 2.1.1 and 2.1.2 the solution is also

pathwise unique such that E( sup
t∈[0,T ]

|xt|
2) ≤ kT < ∞, for each T < ∞, where kT is

a constant depending on T and

∫ T

0

c(s)ds only. So we have show that there is a

unique solution {xt}t∈[0,T ] for each given T < ∞. By the uniqueness of the solution

we immediately obtain a solution {xt}t≥0 , which is also unique. When all coefficients

are F
w,Ñk

t -adapted, then by construction one easily sees that {xt}t≥0 is also F
w,Ñk

t -

adapted, i.e. it is a strong solution.

Lemma 2.1.4. [70] (Gronwall’s inequality)

If 0 ≤ yt ≤ γvt +

∫ t

0

c(s)ysds, ∀t ≥ 0, where γ > 0 is a constant, and c(s) ≥ 0, then

∀t ≥ 0

yt ≤ γvt +

∫ t

0

exp

( ∫ t

s

c(r)dr

)
c(s)vsds.

2.2 Examples of weak solutions

For the existence and weak uniqueness of a weak solution of SDE with jumps we have

the following examples.

Example 2.2.1. Assume that

|b(t, x)| ≤ k0,

|σ(t, x)|2 +

∫

Z

|c(t, x, z)|2π(dz) ≤ k0(1 + |x|2),
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and for each N = 1, 2, · · · there exist a non-random function cN(t) such that as |x1|

and |x2| ≤ N ,

|σ(t, x1, ω)− σ(t, x2, ω)|
2 +

∫

Z

|c(t, x1, z, ω)− c(t, x2, z, ω)|
2π(dz) ≤ cN(t)|x1 − x2|

2,

where cN(t) ≥ 0 satisfies that

∫ T

0

cN(t)dt < ∞ for each T < ∞; and σ−1(t, x) exists

and is bounded |σ−1(t, x)| ≤ k0, where x, b, c ∈ R
d, σ ∈ Rd⊗d. Then the following SDE

with jumps in d-dimensional space on t ∈ [0, T ]:

xt = x0 +

∫ t

0

b(s, xs)ds+

∫ t

0

σ(s, xs)dws +

∫ t

0

∫

Z

c(s, xs−, z)Ñk(ds, dz), (2.6)

where x0 ∈ R
d is a constant vector, has a weak unique weak solution.

In the case that the SDE 2.6 has no jump term, that is, c = 0, if σ = σ(x) does not

depend on t, then we can weaken the condition on σ to get a weak solution. However,

in this case the weak uniqueness is not necessarily true.

Example 2.2.2. Assume that σ = σ(x) does not depend on t, and

|b(t, x)| ≤ k0,

|σ(x)|2 ≤ k0(1 + |x|2),

and σ−1(x) exists and is bounded |σ−1(x)| ≤ k0, where x, b ∈ R
d, σ ∈ Rd⊗d

Then for any T < ∞

xt = x0 +

∫ T

0

b(s, xs)ds+

∫ t

0

σ(xs)dws, t ∈ [0, T ],

has a weak solution, where x0 ∈ R
d is a constant vector.



Chapter 3

Stochastic differential equations with

non-Lipschitzian coefficients

In this chapter we will use the smoothness method and the Skorokhod weak conver-

gence technic to discuss the existence and uniqueness of strong solutions and weak

solutions for SDE with jumps and with non- Lipschitzian coefficients.

3.1 Strong solutions, continuous Coefficients with ρ-

conditions

In this section we will use the smoothness method to obtain the existence and unique-

ness of a strong solution for a SDE with continuous coefficients, which satisfy some

so-called ρ-condition. Consider the following SDE with jumps:

xt = x0 +

∫ t

0

b(s, xs, ω)ds+

∫ t

0

σ(s, xs, ω)dws

+

∫ t

0

∫

z

c(s, xs−, z, ω)Ñk(ds, dz), ∀t ≥ 0 (3.1)

where {wt}t≥0 is a d-dimensional BM, Ñk(ds, dz) is the Poisson martingale measure

generated by a Poisson point process k(·) such that Ñk(ds, dz) = Nk(ds, dz)−π(dz)dt,
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where Nk(ds, dz) is the counting measure with the compensator π(dz)dt generated

by k(·), π(·) is a σ-finite measure on some measurable space (Z,Bz), and b ∈ R
d, σ ∈

Rd⊗d, c ∈ R
d. In 3.1 if c = 0, we get a continuous SDE. Furthermore, if σ = 0, then

3.15 will be reduced to a continuous ODE for each fixed ω. So we will call the case

σ = 0 a degenerate case, no matter if c = 0 or not. We will use the smoothness

technic to show the results.

Theorem 3.1.1. [70]

1. Assume that

b = b(t, x, ω) : [0,∞)× R
d × Ω → R

d,

σ = σ(t, x, ω) : [0,∞)× R
d × Ω → Rd⊗d,

c = c(t, x, ω) : [0,∞)× R
d × Z × Ω → R

d,

are F
w,Ñk

t - adapted and measurable processes such that P- a.s.

|b(t, x, ω)| ≤ c1(t)(1 + |x|),

|σ(t, x, ω)|2 +

∫

Z

c(t, x, z, ω)|2π(dz) ≤ c1(t)(1 + |x|2),

where F
w,Ñk

t is the σ-field generated by w and Ñk up to time t, that is, Fw,Ñk

t =

σ(ws, Ñk((0, s], U), ∀U ∈ Bz, s ≤ t), and c1(t) is non-negative and non-random

such that for each T < ∞

∫ T

0

c1(t)dt < ∞;

2. b(t, x, ω) and σ(t, x, ω) are continuous in x; and

lim
h→0

∫

Z

|c(t, x+ h, z, ω)− c(t, x, z, ω)|2π(dz) = 0;
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3. for each N = 1, 2, · · · , and each T < ∞,

2〈(x1 − x2), (b(t, x1, ω)− b(t, x2, ω))〉

+|σ(t, x1, ω)− σ(t, x2, ω)|
2 +

∫

z

c(t, x1, z, ω)− c(t, x2, z, ω)|
2π(dz)

≤ cNT (t)ρ
N
T (|x1 − x2|

2),

as |xi| ≤ N, i = 1, 2, t ∈ [0, T ]; where

∫ T

0

cNT (t)dt < ∞; and ρNT (u) ≥ 0,as

u ≥ 0, is non-random, strictly increasing, continuous and concave such that

∫

0+

du/ρNT (u) = ∞.

Then for any given constant x0 ∈ R
d 3.1 has a pathwise unique strong solution.

First, let us give an example of the existence of a solution to an SDE in the case that

∀T < ∞,

∫ T

0

c1(t)dt < ∞, c1(t) is unbounded and, moreover, b1 is also unbounded

and non-Lipschitzian continuous in x.

Example 3.1.1. Let b(t, x) = −1t 6=01x 6=0t
−α1x|x|−β, where α1 < 1, 0 < β < 1, and

suppose that σ and c satisfy (1) and (2) in Theorem 3.1.1, and satisfy the condition

(3) in Theorem 3.1.1 with b = 0. Then 3.1 has a pathwise unique strong solution.

Obviously, c(t) = 1s 6=0s
−α1, is unbounded in t, and b is also unbounded in t and x,

and is non-Lipschitz continuous in x.

Proof. Notice that ∀x, x′ ∈ R
d

〈x− x′,−x|x|−β + x′|x′|−β〉 = −|x|2−β − |x′|2−β

+|x′|−β〈x, x′〉+ |x|−β〈x, x′〉 ≤ −|x|2−β − |x′|2−β

+|x′|−β+1|x|+ |x|−β+1|x′| = (|x| − |x′|)(|x′|1−β − |x|1−β) ≤ 0.
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Hence Theorem 3.1.1 applies.

Before we prove Theorem 3.1.1, let us first establish a lemma.

Lemma 3.1.1. Under assumptions (1) and (2) in Theorem 3.1.1 there exist bn, σn

and cn, n = 1, 2, · · · , satisfying the following conditions:

1. |bn(t, x, ω)| ≤ 2c1(t)(l + |x|), as n ≥ N0;

|σn(t, x, ω)|2 +

∫

Z

cn(t, x, z, ω)|2π(dz) ≤ 8c1(t)(1 + |x|2),

where N0 > 0 is a constant;

2. as x, x′ ∈ R
d

|bn(t, x, ω)− bn(t, x′, ω)| ≤ knc1(t)|x− x′|,

|σn(t, x, ω)− σn(t, x′, ω)|2 +

∫

Z

|cn(t, x, z, ω)− cn(t, x′, z, ω)|2π(dz)

≤ knc1(t)|x− x′|,

where kn ≥ 0 is a constant only depending on n,

3. for any N > 0 and for each t ≥ 0, ω ∈ Ω, as n → ∞

sup
|x|≤N

|bn(t, x, ω)− b(t, x, ω)| → 0,

sup
|x|≤N

|σn(t, x, ω)− σ(t, x, ω)|2

+ sup
|x|≤N

∫

Z

|cn(t, x, z, ω)− c(t, x, z, ω)|2π(dz) → 0.

Proof. Let us smooth out b only with respect to x to get bn, i.e. define
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bn(t, x, ω) =

∫

Rd

b(t, x− n−1x̄, ω)J(x̄)dx̄,

where for all u ∈ R
d

Jd(u) =

{
cd exp(−(1− |u|2)−1), for |u| < 1,

0, otherwise,

and the constant cd, satisfies

∫

Rd

(u)du = 1. Then

|bn(t, x, ω)| ≤

∫

Rd

|b(t, x− n−1x̄, ω)|J(x̄)dx̄

≤ c1(t)

∫

Rd

(1 + |x− n−1x̄|)J(x̄)dx̄

≤ c1(t)(1 + |x|+ n−1

∫

Rd

|x̄|J(x̄)dx̄) = c1(t)(1 + |x|+ n−1k0)

≤ (1 + n−1k0)c1(t)(1 + |x|) ≤ 2c1(t)(1 + |x|), as n > k0.

So bn satisfies (1). On the other hand,

|bn(t, x, ω)− bn(t, x′, ω)| = |nd

∫

Rd

b(t, x̄, ω)J(n(x− x̄))dx̄

−nd

∫

Rd

b(t, x̄, ω)J(n(x′ − x̄))dx̄| ≤ nd

∫

Rd

|b(t, x̄, ω)||J(n(x− x̄))

−J(n(x′ − x̄))|dx̄ ≤ ndc1(t)|x− x̄|

×

∫

Rd

∫ 1

0

(1 + |x̄|)grad [J(n(x− x̄+ θ(x′ − x)))] dθdx̄ ≤ knc1(t)|x− x′|.

So (2) is established for bn. Now by Heine-Borel’s finite covering theorem for any

N > 0 and any given ǫ̃ > 0 one can find a δ > 0, δ may depend on t and ω such that

1

n
< δ, |b(t, x−n−1, ω)−b(t, x, ω)| < ǫ̃, ∀|x| ≤ N ; because b is continuous in x. Hence,

as n ≥
1

δ
,
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sup
|x|≤N

|bn(t, x, ω)− b(t, x, ω)|

≤ |

∫

Rd

sup
|x|≤N

|b(t, x− n−1x̄, ω)− b(t, x, ω)|J(x̄)dx̄|

= |

∫

|x̄≤1|

sup
|x|≤N

|b(t, x− n−1x̄, ω)− b(t, x, ω)|J(x̄)dx̄ < ǫ̃.

Thus (3) is also true for bn. Now, defining σn and cn similarly, it is easily seen that

σn, n = 1, 2, · · · , also satisfy (1), (2) and (3). For cn the proof is also similar. In fact,

∫

Z

|cn(t, x, z, ω)|2π(dz) =

∫

Z

|

∫

Rd

c(t, x− n−1x̄, z, ω)J(x̄)dx̄|2π(dz)

≤

∫

Z

∫

Rd

|c(t, x− n−1x̄, z, ω)|2J(x̄)dx̄|2π(dz)

≤ c1(t)

∫

Rd

(1 + |x− n−1x̄|2)J(x̄)dx̄ ≤ 2c1(t)(1 + 2|x|2

+2n−1

∫

Rd

|x̄|2J(x̄)dx̄ ≤ 2c1(t)(1 + 2|x|2+2n−1k̃0 )

≤ 4c1(t)(1 + |x|2), as n > 2k̃0

So (1) is proved for cn. On the other hand,
∫

Z

|cn(t, x, z, ω)− cn(t, x′, z, ω)|2π(dz)

≤ nd

∫

Rd

|c(t, x̄, z, ω)|2π(dz)|J(n(x− x̄)− J(n(x′ − x̄))|2dx̄

≤ ndc1(t)|x− x′|2
∫

Rd

∫ 1

0

(1 + |x̄|2)|grad[J(n(x− x̄+ θ(x′ − x)))]2|dθdx̄

≤ knc1(t)|x− x̄|.

So for cn (2) is also established. Finally, by a similar proof as in bn one easily derives

that (3) is also true for cn.

Now let us prove Theorem 3.1.1.

Proof. For bn, σn and cn obtained from the above lemma by theorem, there exists a

pathwise unique strong solution (xn
t ) satisfying the following SDE
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xn
t = x0 +

∫ t

0

bn(s, xn
s , ω)ds+

∫ t

0

σn(s, xn
s , ω)dws

+

∫ t

0

∫

Z

cn(s, xn
s−, z, ω)Ñk(ds, dz). (3.2)

By Ito’s formula

E[|xm
t − xn

t |
2] = 2E[

∫ t

0

(xm
s − xn

s ) · (b
m(s, xm

s , ω)− bn(s, xn
s , ω))ds

+

∫ t

0

|σm(s, xm
s , ω)− σn(s, xn

s , ω)|
2ds

+

∫ t

0

∫

Z

|cm(s, xm
s , z, ω)− cn(s, xn

s , z, ω)|
2π(dz)ds]

= E[

∫ t

0

∫

Rd

[2(xm
s − xn

s )× (b(s, xm
s −m−1x̄, ω)

−b(s, xn
s − n−1x̄, ω)) + |σ(s, xm

s −m−1x̄, ω)− σ(s, xn
s − n−1x̄, ω)|2

+

∫

Z

|c(s, xm
s −m−1x̄, z, ω)− c(s, xn

s − n−1x̄, z, ω)|2π(dz)].J(x̄)dx̄]

≤ E

∫ t

0

∫

Rd

{c1(s)ρ(|x
m
s − xn

s − (m−1 − n−1)x̄|2)

+20c1(s)|(m
−1 − n−1)x̄|}J(x̄)dx̄ds.

Hence as t ∈ [0, T ]

E[|xm
t − xn

t |
2 ≤ k′

T (m
−1 + n−1)

+ k′
0

∫ t

0

{c1(s)

∫

Rd

ρ(E|xm
s − xn

s − (m−1 − n−1)x̄|2)J(x̄)dx̄}ds (3.3)

So for all n and ∀T < ∞

E(sup
t≤T

|xn
t |

2)ds ≤ kT < ∞, (3.4)

Hence, by Fatou’s lemma, it is easily seen that
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limm,n→∞E[|xm
t − xn

t |
2] ≤ k̃T

∫ t

0

c1(s)ρ1
(
limm,n→∞E|xm

s − xn
s |

2
)
ds,

where ρ1(u) = ρ(u) + u. Therefore, limm,n→∞E|xm
t − xn

t |
2 = 0. By 3.3 one also finds

that for each T < ∞limm,n→∞E

∫ T

0

|xm
t −xn

t |
2dt = 0. So there exists an (xt) ∈ L2

F(R
d)

such that for each T < ∞

limn→∞E

∫ T

0

|xn
t − xt|

2dt = 0.

On the other hand, by the above result one also has that for each t ≥ 0

limn→∞E|xn
t − xt|

2 = 0.

So xn
t → xt, in probability for each t, and one can choose a subsequence {nk} of {n}

, denoted by {n} again, such that P− a.s. as n → ∞,

xn
t → x0

t , ∀t = rk, k = 1, 2, · · · ;

where {rk}
∞
k=1 ⊂ [0, T ] is the totality of rational numbers in [0, T ]. Hence by Fatou’s

lemma

E sup
t≤T

|x0
t | ≤ E[sup

k
lim
n→∞

|xn
rk
|2] ≤ limn→∞E[sup

t≤T
|xn

t |
2] ≤ kT . (3.5)

So, we have

∫ t

0

∫

Z

cn(s, xn
s−, z, ω)Ñk(ds, dz) →

∫ t

0

∫

Z

c(s, xs−, z, ω)Ñk(ds, dz), inP (3.6)

one may assume that sup
t≤T

|xn
t | ≤ k0, ∀n and sup

t≤T
|xt| ≤ k0. However, in this case, as

t ∈ [0, T ], for any ǫ > 0

P

(∣∣∣∣
∫ t

0

∫

Z

cn(s, xn
s−, z, ω)Ñk(ds, dz)−

∫ t

0

∫

Z

c(s, xs−, z, ω)Ñk(ds, dz)

∣∣∣∣ > ǫ

)

≤
1

4ǫ2
E

∫ T

0

∫

Z

|cn(s, xn
s , z, ω)− c(s, xn

s , z, ω)|
2
1|xn

t |≤k01|xt|≤k0π(dz)ds



3.1 Strong solutions, continuous Coefficients with ρ- conditions 57

+
1

4ǫ2
E

∫ T

0

∫

Z

|c(s, xn
s−, z, ω)− c(s, xs, z, ω)|

2
1|xn

t |≤k01|xt|≤k0π(dz)ds

≤
1

ǫ2

∫ T

0

sup
|x|≤k0

∫

Z

|cn(s, x, z, ω)− c(s, x, z, ω)|2π(dz)ds

+
1

4ǫ2
E

∫ T

0

∫

Z

|c(s, xn
s , z, ω)− c(s, xs, z, ω)|

2
1|xn

t |≤k01|xt|≤k0π(dz)ds

= I1,n + I2,n.

Notice from Lemma 3.1.1 one finds that

sup
|x|≤k0

∫

Z

|cn(t, x, z)|2π(dz) ≤ 8c1(t)(1 + k2
0), and

lim
n→∞

sup
|x|≤k0

∫

Z

|cn(s, x, z)− c(s, x, z)|2π(dz) = 0.

Thus one can apply Lebesgue’s dominated convergence theorem to get

lim
n→∞

I1,n = 0 (3.7)

Moreover, one also finds that as n → ∞,

E

∫ T

0

∫

Z

|c(s, xn
s , z, ω)− c(s, xs, z, ω)|

2
1|xn

t |≤k01|xt|≤k0π(dz)ds → 0. (3.8)

In fact,

P

(∫

Z

|c(s, xn
s , z, ω)− c(s, xs, z, ω)|

2
1|xn

t |≤k01|xt|≤k0π(dz) > ǫ

)

≤ P(|xn
s − x0

s| > δ)

+P(1|xn
s−x0

s|≤δ,|xn
s |≤k0,|x0

s|≤k0

∫

Z

|c(s, xn
s , z)− c(s, x0

s, z)|
2π(dz) > ǫ)

= Jn,δ
1 + Jn,δ

2 .
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Now since

lim
h→0

sup
|x|≤k0

∫

Z

|c(s, x+ h, z)− c(s, x, z)|2π(dz) = 0,

one can take a small enough δ > 0 such that

sup
|x|≤k0,|h|≤δ

∫

Z

|c(s, x+ h, z)− c(s, x, z)|2π(dz) < ǫ.

Hence for this δ > 0, Jn,δ
2 = 0. Furthermore, for arbitrary given ǫ̃ > 0 there exists a

Ñ such that as n ≥ Ñ , Jn,δ
1 < ǫ̃. Thus, for each s, as n → ∞,

∫
Z
|c(s, xn

s , z, ω)− c(s, xs, z, ω)|
2
1|xn

t |≤k01|xt|≤k0π(dz) → 0, in P.

Hence, Lebesgue’s dominated convergence theorem applies, and 3.8 holds. Thus 3.6

follows. By the same token one easily shows that as n → ∞,

∫ t

0

bn(s, xn
s , ω)ds →

∫ t

0

b(s, xs, ω)ds, in P;

and
∫ t

0

σn(s, xn
s , ω)ds →

∫ t

0

σ(s, xs, ω)dws, in P.

Therefore, (xt) is a solution of 3.1.

3.2 The Skorokhod weak convergence technic

To discuss the existence of a weak solution for a SDE under some weak conditions

the following Skorokhod weak convergence technic is very useful and we will use it

frequently in this chapter. Let us establish a lemma, which is very useful in the

discussion of the existence of a weak solution to an SDE. In the rest of this Chapter

let us assume that

Z = R
d − {0}, and

∫

Z

|x|2

1 + |x|2
π(dz) < ∞.

Lemma 3.2.1. Suppose that
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|bn(t, x, ω)| ≤ c1(t)(1 + |x|), as n ≥ N0;

|σn(t, x, ω)|2 +

∫

Z

|cn(t, x, z, ω)|2π(dz) ≤ c1(t)(1 + |x|2),

where N0 > 0 is a constant. Assume that for each n = 1, 2, · · · , xn
t is the solution of

the following SDE:

xn
t = x0 +

∫ t

0

bn(s, xn
s )ds+

∫ t

0

σn(s, xn
s )dws

+

∫ t

0

∫

Z

cn(s, xn
s−, z)q(ds, dz),

where we denote q(dt, dz) = Ñk(dt, dz) the Poisson martingale measure with the com-

pensator π(dz)dt such that q(dt, dz) = p(dt, dz)− π(dz)dt and

p(dt, dz) = Nk(dt, dz).

Then the following fact holds, this fact we may call "the result of SDE from the

Skorokhod weak convergence technic": There exists a probability space (Ω̃, F̃, P̃) (ac-

tually, Ω̃ = [0, 1], F̃ = B([0, 1])) and a sequence of RCLL processes (x̃n
t , w̃

n
t , ζ̃

n
t ), n =

0, 1, 2, · · · , defined on it such that (x̃n
t , w̃

n
t , ζ̃

n
t ), n = 1, 2, · · · have the same finite prob-

ability distributions as those of (xn
t , wt, ζt), n = 1, 2, · · · , where

ζt =

∫ t

0

∫

|z|≤1

zÑk(ds, dz) +

∫ t

0

∫

|z|>1

zNk(ds, dz)

and as n → ∞, ∀t ≥ 0,

η̃nt → η̃0t , in probability, as η̃nt = x̃n
t , w̃

n
t , ζ̃

n
t , n = 0, 1, 2, · · ·

Write

p̃n(dt, dz) =
∑

s∈dt

1(0 6=∆ζ̃ns ∈dz)
(s), q̃n(dt, dz) = p̃n(dt, dz)− π(dz)dt,



60

CHAPTER 3. STOCHASTIC DIFFERENTIAL EQUATIONS WITH

NON-LIPSCHITZIAN COEFFICIENTS

∀n = 0, 1, 2, · · ·

Then p̃n(dt, dz) is a Poisson random counting measure with the compensator π(dz)dt

for each n = 0, 1, 2, · · · , and it satisfies the condition

ζ̃nt =

∫ t

0

∫

|z|≤1

zq̃n(ds, dz) +

∫ t

0

∫

|z|>1

zp̃n(ds, dz), n = 0, 1, 2, · · ·

Moreover, w̃n
s and w̃0

t are BMs on the probability space (Ω̃, F̃, P̃) and, P̃ n(dt, dz)

and p̃0(dt, dz) are Poisson martingale measures with the same compensator π(dz)dt.

Furthermore, (x̃n
t ) satisfies the following SDE with w̃n

t and q̃n(dt, dz) on (Ω̃, F̃, P̃).

x̃n
t = x0 +

∫ t

0

bn(s, x̃n
s )ds+

∫ t

0

σn(s, x̃n
s )dw̃

n
s

+

∫ t

0

∫

Z

cn(s, x̃n
s−, z)q̃

n(ds, dz).

Proof. By the properties of bn, σn, and cn, we have

sup
n

E(sup
t≤T

|xn
t |

2) ≤ kT .

Moreover, as r ≤ t ≤ T ;

E|xn
t − xn

r |
2 ≤ 3E|

∫ t

r

bn(s, xn
s )ds|

2 + 3E

∫ t

r

|σn(s, xn
s )|

2ds

+3E

∫ t

r

∫

Z

|cn(s, xn
s , z)|

2π(dz)ds ≤ 6(t− r)

∫ t

r

E(1 + |xn
s |)

2c1(s)ds

+24

∫ t

r

E(1 + |xn
s |)

2c1(s)ds ≤ k′
T (t− r).

So

sup
n

sup
t1,t2≤T ;|t1−t2|≤h

E(|xn
t1
− xn

t2
|2) ≤ k′

Th.

Thus for each T ≥ 0, ǫ > 0
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lim
N→∞

sup
n

sup
t≤T

P{|xn
t | > N} ≤ lim

N→∞

kT
N2

= 0,

lim
h↓0

sup
n

sup
t1,t2≤T,|t1−t2|≤h

P{|xn
t1
− xtn2

| > ǫ} ≤ lim
h↓0

k′
Th = 0,

Therefore,∀n ≥ 1





lim
N→∞

sup
n

sup
t≤T

P(|xn
t | > N) = 0,

lim
h↓0

sup
n

sup
t1,t2≤T,|t1−t2|≤h

P(|xn
t1
− xtn2

| > ǫ) = 0.
(3.9)

Now write

ζt =

∫ t

0

∫

|z|≤1

zÑk(ds, dz) +

∫ t

0

∫

|z|>1

zNk(ds, dz) = ζ1t + ζ2t .

Let us show that ζt also satisfies 3.9. In fact, by the martingale inequality

E sup
t≤T

|ζ1t |
2 ≤

∫ T

0

∫

|z|≤1

|z|2π(dz)ds ≤ 2T

∫

|z|≤1

|z|2

1 + |z|2
π(dz) < ∞.

Hence lim
N→∞

sup
t≤T

P(|ζ1t | > N) → 0.

Write Ī2t =

∫ t

0

∫

|z|>1

|z|Nk(ds, dz).

Since Ī2t is RCLL, {0 < s ≤ T : ∆Ī2s > 1} is a finite set, so

∑

0<s≤T

∆Ī2s I(∆Ī2s>1) =

n(ω)∑

k=1

|zk(ω)|1|zk(ω)|>1 < ∞.

Hence P(sup
t≤T

|I2t | < ∞) = 1. In particular, lim
N→∞

sup
t≤T

P(|ζ2t | > N) = 0. Now for

arbitrary ǫ > 0

P(|ζt − ζs| > ǫ) ≤ P(

∣∣∣∣
∫ t

s

∫

|z|≤1

zÑk(ds, dz)

∣∣∣∣ > ǫ/2)

+P(

∣∣∣∣
∫ t

s

∫

|z|>1

zÑk(ds, dz)

∣∣∣∣ > ǫ/2) = J1 + J2.
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It is evident that as |t− s| ≤ h → 0

J1 ≤ (2/ǫ)2E

∣∣∣∣
∫ t

s

∫

|z|≤1

zÑk(ds, dz)

∣∣∣∣
2

≤ (2/ǫ)2
∫

|z|≤1

|z|2π(dz)|t− s|

≤ 2(2/ǫ)2
∫

|z|≤1

|z|2

1 + |z|2
π(dz)|t− s| → 0.

Notice that Nk(dt, dz) is a Poisson random measure with the compensator

π(dz)dt, as|t− s| ≤ h → 0

J2 ≤ P(Nk((s, t], |z| > 1) > 0) = 1− exp(−

∫ t

s

∫

|z|>1

π(dz)dr)

≤ 1− exp(−π(|z| > 1)h) → 0,

where π(|z| > 1) =

∫

|z|>1

π(dz) = 2

∫

|z|>1

|z|2

1 + |z|2
π(dz) < ∞. Hence ζt satisfies 3.9,

that is,

lim
N→∞

sup
t≤T

P(|ζt| > N) = 0, and

lim
h↓0

sup
t1,t2≤T,|t1−t2|≤h

P(|ζt1 − ζt2 | > ǫ) = 0.

Since E|wt − ws|
2 = |t − s|. One also easily shows that 3.9 holds for wt. Hence

Skorokhod’s theorem applies to {xn
t , ζt, wt}.

Remark 3.2.1. By this lemma one sees that if "the result of SDE from the Skorokhod

weak convergence technic " holds, and we can prove that

∣∣∣∣
∫ t

0

(bn(s, x̃n
s )− b(s, x̃0

s))ds

∣∣∣∣ → 0, in probability P̃,

∫ t

0

σn(s, x̃n
s )dw̃

n
s →

∫ t

0

σ(s, x̃0
s)dw̃

0
s , in P̃,
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∫ t

0

∫

Z

cn(s, x̃n
s−, z)q̃

n(ds, dz) →

∫ t

0

∫

Z

cn(s, x̃0
s−, z)q̃

0(ds, dz), in P̃, (3.10)

then (Ω̃, F̃, (F̃t)t≥0, P̃; {w̃
0
t }t≥0, q̃

0(dt, dz), {x̃0
t}t≥0), or say x̃0

t , is a weak solution of

3.11 in the next section.

3.3 Weak solutions, Continuous coefficients

The technic used in proving Theorem 3.1.1 motivates us to obtain an existence the-

orem for weak solutions of SDE with jumps and with σ, which can be degenerate.

Consider the following SDE with non-random coefficients: ∀t ≥ 0,

xt = x0 +

∫ t

0

b(s, xs)ds+

∫ t

0

σ(s, xs)dws +

∫ t

0

∫

Z

c(s, xs−, z)Ñk(ds, dz). (3.11)

Theorem 3.3.1. Assume that

1.

b = b(t, x) : [0,∞)× R
d → R

d,

σ = σ(t, x) : [0,∞)× R
d → Rd⊗d,

c = c(t, x, z) : [0,∞)× R
d × Z → R

d,

are jointly Borel measurable such that P− a.s.

∫

Z

|c(t, x, z)|2π(dz) ≤ c1(t)(1 + |x|2),

where c1(t) is non-negative such that for each T < ∞

∫ T

0

c1(t)dt < ∞;

2. |b(t, x)|2 + |σ(t, x)| ≤ c1(t)(1 + |x|2), where c1(t) has the same property as in

(1);

3. b(t, x) is continuous in x and σ(t, x) is jointly continuous in (t, x); and
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lim
h,h′→0

∫

Z

|c(t+ h′, x+ h, z)− c(t, x, z)|2π(dz) = 0;

4. Z = R
d−{0},

∫

Z

|z|2

1 + |z|2
π(dz) < ∞. Then for any given constant x0 ∈ R

d 3.11

has a weak solution.

Proof. We can smooth out b, σ and c only with respect to x to get bn, σn, and cn,

respectively. Then we have a pathwise unique strong solution xn
t satisfying a SDE

similar to 3.2, but here all coefficients bn, σn, and cn do not directly depend on ω.

Now applying Lemma 3.2.1 "the result of SDE from the Skorokhod weak convergence

technic" holds. So we only need to show 3.10 in Remark 3.2.1 holds. However, since

∀t ≥ 0,

x̃0
t → x̃0

t , in probability P̃, as n → ∞,

as in the proof of Theorem 3.1.1 one finds that 3.4 and 3.5 hold. So, we

may assume that all {x̃n
t , t ∈ [0, T ]}∞n=0 are uniformly bounded, that is,

|x̃n
t | ≤ k0, ∀t ∈ [0, T ], ∀n = 0, 1, 2, · · · in all following discussion on the conver-

gence in probability. Now for an arbitrary given ǫ > 0

P̃

(∣∣∣∣
∫ t

0

∫

Z

cn(s, x̃n
s−, z)q̃

n(ds, dz)−

∫ t

0

∫

Z

c(s, x̃0
s−, z)q̃

0(ds, dz)

∣∣∣∣ > ǫ

)

≤ P̃

(∣∣∣∣
∫ t

0

∫

Z

(cn(s, x̃n
s−, z)− c(s, x̃n

s−, z))q̃
n(ds, dz)

∣∣∣∣ > ǫ/3

)

+ P̃

(∣∣∣∣
∫ t

0

∫

Z

(cn(s, x̃n
s−, z)− c(s, x̃0

s−, z))q̃
n(ds, dz)

∣∣∣∣ > ǫ/3

)

+ P̃

(∣∣∣∣
∫ t

0

∫

Z

cn(s, x̃0
s−, z)q̃

n(ds, dz)−

∫ t

0

∫

Z

c(s, x̃0
s−, z)q̃

0(ds, dz)

∣∣∣∣ > ǫ/3

)

=
3∑

i=1

Ini .

Obviously,

In1 ≤
9

ǫ2
E

P̃

∫ t

0

sup
|x|≤k0

∫

z

|cn(s, x, z)− c(s, x, z)|2π(dz)ds = In11, and

In2 ≤
9

ǫ2
E

P̃

∫ t

0

|cn(s, x̃n
s , z, ω)− c(s, x̃n

s , z, ω)|
2
1|x̃n

t |≤k01|x̃t|≤k0π(dz)ds = In21,



3.3 Weak solutions, Continuous coefficients 65

Now as the proof of 3.7 and 3.8 one finds that

lim
n→∞

In1 ≤ lim
n→∞

In11 = 0, and

lim
n→∞

In2 ≤ lim
n→∞

In21 = 0

Let us show that lim
n→∞

In3 = 0. In fact, for any 0 < T < ∞,

In3 ≤ 2

(
12

ǫ

)2

E

∫ T

0

∫

0<|z|<δ

|c(s, x̃0
s, z)|

2π(dz)ds

+P̃

(∣∣∣∣
∫ t

0

∫

|z|≥δ

1|x̃0
s|≤k0c(s, x̃

0
s−, z)q̃

n(ds, dz)−

∫ t

0

∫

|z|≥δ

1|x̃0
s|≤k0c(s, x̃

0
s−, z)q̃

0(ds, dz)

∣∣∣∣ >
ǫ

6

)

= Iδ2 + In,δ3 .

Notice that as δ ↓ 0,

E

∫ T

0

∫

{0<|z|<δ}

|c(s, x̃0
s, z)|

2π(dz)ds < ∞, and {0 < |z| < δ} ↓ ∅.

So one can take a small enough δ > 0 such that Iδ2 < ǫ̃/3. Observe that

In,δ3 ≤ 2

(
18

ǫ

)2

E

∫ T

0

∫

|z|≥δ

1sup
s≤T

|x̃0
s| ≤ k0

|c(s, x̃0
s−, z)|

−
2m−1∑

i=0

|c(
iT

2m
, x̃0

iT
2m

, z)1
( iT
2m

,
(i+1T )

2m
]
(s)|2π(dz)ds

+P̃(
2m−1∑

i=0

1sup
s≤T

|x̃0
s| ≤ k0

|

∫ (i+1)T
2m

iT
2m

∫

|z|≥δ

c

(
iT

2m
, x̃0

iT
2m

, z

)
p̃n(ds, dz)

−

∫ (i+1)T
2m

iT
2m

∫

|z|≥δ

c

(
iT

2m
, x̃0

iT
2m

, z

)
p̃0(ds, dz) >

ǫ

6

= Im31 + Im,δ
32 ,
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where 0 <
T

2m
<

2T

2m
< · · · <

iT

2m
< · · · < T is a division on [0, T ]. Since by conditions

(1) − (3) lim
m→∞

Im31 = 0, one can choose a large enough m such that Im31 < ǫ̃/6. For

these given m, δ there exists a Ñ such that as n ≥ Ñ , Im,δ
32 < ǫ̃/6. So, we have proved

that lim
n→∞

In3 = 0, and eventually we obtain that

lim
n→∞

3∑

i=1

Ini = 0

That is, the third limit in 3.10 holds. The proofs of the remaining results are similar

and even simpler. Thus x̃0
t is a weak solution.

For that the coefficient b can be greater than linear growth we can establish the

following thoerem.

Theorem 3.3.2. Assume that

|b(t, x)| ≤ c1(t)(1 + |x|Πm
k=1gk(x)),

|b(t, x)| ≤ k0(1 + |x|2Πm
k=1gk(x)),

where c1(t) ≥ 0 and gk(x) is such that

gk(x) = 1 + ln(1 + ln(1 + · · · ln︸ ︷︷ ︸
k−times

(1 + |x|2n0))),

(n0 is some natural number).

Then for any given constant x0 ∈ R
d 3.11 has a weak solution on t ≥ 0.

Proof. For each n = 1, 2, · · · introduce a real smooth function W n(x), x ∈ R
d, such

that 0 ≤ W n(x) ≤ 1 and W n(x) = 1, as |x| ≤ n;W n(x) = 0, as |x| ≥ n+ 1. Write

bn(t, x) = b(t, x)W n(x), σn(t, x) = σ(t, x)W n(x).

Then by Theorem 3.3.1 for each n there exists a weak solution xn
t with a BM xn

t and

a Poisson martingale measure Ñkn(dt, dz), which has the same compensator π(dz)dt,

defined on some probability space (Ωn,Fn, {Fn
t },P

n) such that P
n− a.s. ∀t ≥ 0,
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xn
t = x0 +

∫ t

0

bn(s, xn
s )ds+

∫ t

0

σn(s, xn
s )dw

n
s +

∫ t

0

∫

Z

c(s, xn
s−, z)Ñkn(ds, dz).

Construct a space Ωn = D ×W0 ×D, where D and W0 are the totality of all RCLL

real functions and all real continuous functions f(t) with f(0) = 0, defined on [0,∞),

respectively. Map (xn(., ω), wn(., ω), ζn(., ω)) into the Ω, where

ζnt =

∫ t

0

∫

|z|<1

zÑkn(ds, dz) +

∫ t

0

∫

|z|≥1

zNkn(ds, dz),

and

Nkn((0, t], U) =
∑

0<s≤t

10 6=∆ζns ∈U , fort ≥ 0, U ∈ B(Z),

Ñkn(dt, dz) = Nkn(dt, dz)− π(dz)dt.

From this map we get a probability law P
n
x0

on Ωn. Now let

Ω = Π∞
n=1Ω

n,F = Π∞
n=1F

n,P = Π∞
n=1P

n
x0
,

where Fn = BD ×BW0 ×BD, and define ∀ω = (ω1, · · · , ωn, · · · ) ∈ Ω,

x̃1
t (ω) = x̃1

t (ω
1), w̃1

t (ω) = w̃1
t (ω

1), ζ̃1t (ω) = ζ1t (ω
1),

. . . . . .

x̃n
t (ω) = x̃n

t (ω
n), w̃n

t (ω) = w̃n
t (ω

n), ζ̃nt (ω) = ζnt (ω
n),

. . . . . .

Then one finds that for each n, x̃n
t satisfies the following SDE: P− a.s.

x̃n
t = x0 +

∫ t

0

bn(s, x̃n
s )ds+

∫ t

0

σn(s, x̃
n
sdw̃

n
s )

+

∫ t

0

∫

Z

c(s, x̃n
s−, z)Ñk′n(ds, dz), ∀t ≥ 0,

where

Nk′n((0, t], U) =
∑

0<s≤t

I0 6=∆ζ̃ns ∈U
, for t ≥ 0, U ∈ B(Z),

Ñk′n(dt, dz) = Nk′n(dt, dz)− π(dz)dt,
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and

ζ̃nt =

∫ t

0

∫

|z|<1

zÑk′n(ds, dz) +

∫ t

0

∫

|z|≥1

zNk′n(ds, dz).

Let us show that the following facts hold for ηnt = ζ̃nt , w̃
n
t , and x̃n

t :

lim
N→∞

sup
n

sup
t≤T

P(|ηnt | > N) = 0,

lim
h↓0

sup
n

sup
t1,t2≤T,|t1−t2|≤h

P(|ηnt1 − ηnt2 | > ǫ) = 0, (3.12)

In fact, as the proof of Lemma 3.2.1 one easily sees that ζnt satisfies the condition:

lim
N→∞

sup
n

sup
t≤T

P(|ζ̃nt | > N)

= lim
N→∞

sup
n

sup
t≤T

P
n
x0
(|ζnt | > N)

= lim
N→∞

sup
t≤T

P
1
x0
(|ζ1t | > N) = 0,

and

lim
h↓0

sup
n

sup
t1,t2≤T,|t1−t2|≤h

P(|ζ̃nt1 − ζ̃nt2 | > ǫ)

= lim
h↓0

sup
n

sup
t1,t2≤T,|t1−t2|≤h

P
n
x0
(|ζnt1 − ζnt2 | > ǫ)

= lim
h↓0

sup
t1,t2≤T,|t1−t2|≤h

P
1
x0
(|ζ1t1 − ζ1t2 | > ǫ) = 0,

because all {ζnt }t≥0, n = 1, 2, · · · have the same probability laws. So 3.12 holds for

ζnt . Similarly, w̃n
t also satisfies the 3.12. Now applying Itô’s formula to gm+1(x̃

n
t ), one

finds that P− a.s.
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gm+1(x̃
n
t ) = gm+1(x0) +

∫ t

0

g′m+1(x̃
n
s )b

n(s, x̃n
s )ds

+

∫ t

0

g′m+1(x̃
n
s−)σ(s, x̃

n
s )dws +

1

2

∫ t

0

‖g′′m+1(x̃
n
s )σ(s, x̃

n
s )‖

2ds

+

∫ t

0

∫

Z

g′m+1(x̃
n
s−)c(s, x̃

n
s−, z)Ñk′n(ds, dz)

+

∫ t

0

∫

Z

[gm+1(x̃
n
s−c(s, x̃

n
s−, z))− gm+1(x̃

n
s−)

− g′m+1(x̃
n
s−)c(s, x̃

n
s−, z)]Nk′n(ds, dz),

where we write g′m+1(x) = gradgm+1(x), and g′′m+1(x) =

[
∂2

∂xi∂xj

gm+1(x) =

]d

i,j=1

By evaluation and from the assumption one sees that

|g′m+1(x)b
n(s, x)| ≤ Πm

k=1g
−1
k (x)

2n0|x|
2n0−2

1 + |x|2n0
|x · bn(s, x)| ≤ k0c1(t),

‖g′′m+1(x)σ(s, x)‖
2

≤
d∑

i,j,l=1

{Πm
k=1g

−1
k (x)

[
2n0δij|x|

2n0−2 + 4n0(n0 − 1)xixj|x|
2n0−4

1 + |x|2n
−

4n2
0xixj|x|

4n0−4

(1 + |x|2n0)2

]

−Πm
k=1g

−1
k (x)

4n2
0xixj|x|

4n0−4

(1 + |x|2n0)2

m∑

k=0

Πm
l=1g

−1
l (x)}(σilσjl)(t, x) ≤ k0,

‖g′′m+1(x)‖
2 ≤ k0,

where k0 > 0 is a constant, and we write g0(x) = 1. Hence using the fact that

sup
t≤T

ln(1 + |xt|) = ln(1 + sup
t≤T

|xt|)

one finds that as T < ∞, ∀n, when N → ∞,

P(sup
t≤T

|x̃n
t | > N) ≤

1

gm+1(N)
Egm+1(N)(sup

t≤T
|x̃n

t |)

=
1

gm+1(N)
E sup

t≤T
gm+1(N)(|x̃n

t |) ≤ k′
0(1 +

∫ T

0

c1(t)dt)/gm+1(N) → 0
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This means that

lim
N→∞

sup
n=1,2,···

(P sup
t≤T

|x̃n
t | < N) = 0. (3.13)

Furthermore, by Itô’s formula to gm+1(x̃
n
s − x̃n

r ), s ∈ (r, t], one finds that P− a.s.

gm+1(x̃
n
s − x̃n

r ) = 1 +

∫ t

r

g′m+1(x̃
n
s − x̃n

r )b
n(s, x̃n

s )ds

+

∫ t

r

g′m+1(x̃
n
s − x̃n

r )σ(s, x̃
n
s )dws +

1

2

∫ t

r

‖g′′m+1(x̃
n
s − x̃n

r )σ(s, x̃
n
s )‖

2ds

+

∫ t

r

∫

Z

g′m+1(x̃
n
s− − x̃n

r )c(s, x̃
n
s−, z)Ñk′n(ds, dz)

+

∫ t

r

∫

Z

[g′m+1(x̃
n
s− − x̃n

r c(s, x̃
n
s−, z))g

′
m+1(x̃

n
s− − x̃n

r )

− g′m+1(x̃
n
s− − x̃n

r )c(s, x̃
n
s−, z)Nk′n(ds, dz).

Thus one similarly has that ∀ǫ > 0, 0 ≤ t− r ≤ h, t ≤ T, ∀n,

P(|x̃n
t − x̃n

r | > ǫ) ≤ sup
n

P(sup
t≤T

|x̃n
t | > N)

+
1

gm+1(ǫ)− 1
E(gm+1(x̃

n
t − x̃n

r )− 1)1sup
t≤T

|x̃n
t | ≤ N

≤ k′
0

[∫ t

r

c1(t)dt+ (t− r)

]
/(1− gm+1(ǫ)) → 0,whenh → 0.

Therefore, 3.12 holds for ηnt = x̃n
t . Hence Skorokhod’s theorem applies. By this and

by "the result of SDE from the Skorokhod weak convergence technic" holds. (See

Lemma 3.2.1 and Remark 3.2.1). So we only need to show that 3.10 in Remark 3.2.1

holds. For this let us first show that lim
N→∞

P(sup
t≤T

|x̃0
t | > N) = 0. In fact,
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P(sup
t≤T

|x̃0
t | > N) = P( sup

k=1,2,···
|x̃0

rk
| > N)

≤ P( sup
k=1,2,···

|x̃0
rk
− x̃nk

rk
| >

N

2
) + P( sup

k=1,2,···
|x̃nk

rk
| >

N

2
)

≤ P( sup
k=1,2,···

|x̃0
rk
− x̃nk

rk
| >

1

2
) + P( sup

k=1,2,···
|x̃nk

rk
| >

N

2
) = I1 + IN2

where {rk}
∞
k=1 is the set of all rational numbers in [0, T ]. However, for arbitrary given

ǫ̃ > 0 and for each rk we may take an nk large enough such that P(|x̃0
rk
− x̃nk

rk
| >

1

2
) <

ǫ̃

2k+1
, k = 1, 2, · · · . Hence I1 ≤

∞∑

k=1

ǫ̃

2k+1
=

ǫ̃

2
. On the other hand, by 3.13 there exists

a Ñ such that as ∀N ≥ Ñ , IN2 <
ǫ̃

2
. Therefore, lim

N→∞
P(sup

t≤T
|x̃0

t | > N) = 0 holds true.

Now let us prove the second limit in 3.10. Notice that from 3.13 and the result just

proved we may assume that |x̃n
t | ≤ k0, ∀t ∈ [0, T ], ∀n = 0, 1, 2, · · · . Now for any given

ǫ > 0

P̃(

∣∣∣∣
∫ t

0

σn(s, x̃n
s )dw̃

n
s −

∫ t

0

σ(s, x̃0
s)dw̃

0
s

∣∣∣∣ > ǫ)

≤

(
2

ǫ

)2

E

∫ t

0

∣∣σn(s, x̃n
s )− σ(s, x̃0

s)
∣∣2 1|x̃n

s |≤k01|x̃0
s|≤k0ds

+ P(

∣∣∣∣
∫ t

0

1|x̃0
s|≤k0σ(s, x̃

n
s )dw̃

n
s −

∫ t

0

1|x̃0
s|≤k0σ(s, x̃

0
s)dw̃

0
s

∣∣∣∣ >
ǫ

2
)

= In3 + In4 .

Notice that for any ǫ > 0 as n > k0,

P̃(|σn(s, x̃n
s )− σ(s, x̃0

s)|
2
1|x̃n

s |≤k01|x̃0
s|≤k0 > ǫ)

= P̃(|σ(s, x̃n
s )− σ(s, x̃0

s)|
2
1|x̃0

s|≤k01|x̃0
s|≤k0 > ǫ

≤ P̃(|x̃n
s − x̃0

s| > η)

+ P̃(|σ(s, x̃n
s )− σ(s, x̃0

s)|
2
1|x̃0

s|≤k01|x̃0
s|≤k01|x̃n

s−x̃0
s|>η > ǫ).

Since σ(s, x) is continuous in x, so it is uniformly continuous in |x| < k0 Hence one

can choose a small enough η > 0 (which can depend on s) such that as |x′ − x”| ≤ η
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and |x′|, |x′′| ≤ k0, |σ(s, x
′) − σ(s, x”)| < ǫ. This means that we can have the result

that as n → ∞,

P̃(|σn(s, x̃n
s )− σ(s, x̃0

s)|
2
1|x̃n

s |≤k01|x̃0
s|≤k0 > ǫ) ≤ P̃(|x̃n

s − x̃0
s| > η) → 0

So, by Lebesgue’s dominated convergence theorem as n → ∞, In3 → 0. Now notice

that σ(t, x) is jointly continuous, so if we write σm(t, x) as its smooth functions, then

lim
m→∞

|σm(t, x)− σ(t, x)|2 = 0, ∀t, x;

and

|σm(t, x)− σm(s, y)| ≤ km[|t− s|+ |x− y|],

where km ≥ 0 is a constant depending only on m. Observe that

In4 ≤ 2

(
2

ǫ

)2

E

∫ T

0

∣∣σ(s, x̃0
s)− σm(s, x̃

0
s)
∣∣2 1|x̃0

s|≤k0ds

P(

∣∣∣∣
∫ t

0

1|x̃0
s|≤k0σm(s, x̃

n
s )dw̃

n
s −

∫ t

0

1|x̃0
s|≤k0σm(s, x̃

0
s)dw̃

0
s

∣∣∣∣ >
ǫ

3
)

= Im41 + Im,n
42

So for any given ǫ̃ > 0 by Lebesgue’s dominated convergence theorem we can choose

a large enough m such that Im41 < ǫ̃/2. Then we can have lim
n→∞

Im,n
42 = 0. Thus we

obtain that lim
n→∞

In4 = 0, and the second limit in 3.10 is established. The proof for the

remaining results are similar.

3.4 Existence of strong solutions and applications to

ODE

Applying the above results and using the Yamada-Watanabe type theorem, we im-

mediately obtain the following theorems on the existence of a pathwise unique strong

solution to SDE 3.15.
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Theorem 3.4.1. [70] Under the assumption of Theorem 3.3.2 if, in addition, the

following condition for the pathwise uniqueness holds: (PWU1) for each N = 1, 2, · · ·

, and each T < ∞,

2〈(x1 − x2), (b(t, x1)− b(t, x2)〉

+|σ(t, x1)− σ(t, x2)|
2 +

∫

Z

|c(t, x1, z)− c(t, x2, z)|
2π(dz)

≤ cNT (t)ρ
N
T (|x1 − x2|

2),

as |xi| ≤ N, i = 1, 2, t ∈ [0, T ]; where cnT (t) > 0 such that

∫ T

0

cNT (t)dt < ∞; and

ρNT (u) ≥ 0, as ≥ 0, is strictly increasing, continuous and concave such that

∫

0+

du/ρNT (u) = ∞;

then 3.11 has a pathwise unique strong solution.

Furthermore, by using Theorem 3.3.2 and Theorem 3.4.1 we immediately obtain a

result on the ODE.

Theorem 3.4.2. 1. If b(t, x) is jointly Borel measurable and continuous in x such

that

|b(t, x)| ≤ c1(t)(1 + |x|Πm
k=1gk(x)),

where c1(t) and gk(x) have the same properties as in Theorem 3.3.2, then the

ODE

xt = x0 +

∫ t

0

b(s, xs)ds, t ≥ 0 (3.14)

has a solution. (It is not necessary unique).

2. In addition, if b(t, x) is such the (PWU1) condition only for b in Theorem 3.4.1,

then ODE 3.14 has a unique solution.
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Proof. (1) is obtained by Theorem 3.3.1 by setting σ = 0, c = 0; and (2) follows from

Theorem 3.4.1 by letting σ = 0, c = 0.

Example 3.4.1. Let b(t, x) = 1t 6=01x 6=0t
−α1x|x|−β, where α1 < 1, 0 < β < 1. Then

ODE 3.14 has a solution. Let b(t, x) = −1t 6=01x 6=0t
−α1x|x|−β where α1 < 1, 0 < β < 1.

Then ODE 3.14 has a unique solution.

3.5 Weak solutions, measurable coefficient case

In this section we will discuss the existence of weak solutions of SDEs with measurable

coefficients. In this case we have to assume that the SDEs are non-degenerate. In this

case one sees that the Krylov type estimate is a very powerful tool for establishing the

existence theorem for weak solutions of SDE with jumps under very weak conditions.

Consider a d-dimensional SDE with jumps as follows: t ≥ 0,

xt = x0 +

∫ t

0

b(s, xs)ds+

∫ t

0

|σ(s, xs)dws +

∫ t

0

∫

Z

c(s, xs−, z)Ñk(ds, dz), (3.15)

where wt and Ñk(dt, dz) have the same meaning as in 3.1 and all coefficients b, σ and

c are non-random.

Theorem 3.5.1. [70] Assume that

1. Z = R
d − {0}, and π(dz) = dz/|z|d+1;

2. |b(t, x)| + |σ(t, x)| +

∫

Z

|c(t, x, z)|2π(dz) ≤ k0, where k0 > 0 is a constant, b, σ

and c are Borel measurable functions;

3. there exists a constant δ0 > 0 such that for all µ ∈ R
d,

〈σ(t, x)µ, µ〉 ≥ |µ|2δ0.

Then there exists a weak solution for 3.15.

Before we prove this theorem let us establish the following lemma.
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Lemma 3.5.1. Under assumption of Theorem 3.5.1 there exist smooth functions:

∀n = 1, 2, · · ·

bn(t, x), σn(t, x), (t, x) ∈ [0,∞)× R
d,

which are the smoothness functions of b(t, x), σ(t, x), on [0,∞)×R
d, respectively; and

there exist smooth functions: ∀n = 1, 2, · · ·

c̃n(t, x, z), (t, x, z) ∈ [0,∞)× R
d × {ǫn ≤ |z| ≤ ǫ−1

n } = An,

which are the smoothness functions of c(t, x, z), on An, where en ǫn ↓ 0, such that set

cn(t, x, z) = c̃n(t, x, z)1{ǫn≤|z|≤ǫ−1
n }, then

1. |bn(t, x)| ≤ k0, |σ
n(t, x)| ≤ k0,

∫

Z

|cn(t, x, z)|2π(dz) ≤ 2k0, ∀n = 1, 2, · · · ;

2. ∀µ ∈ R
d, ∀(t, x) ∈ [0,∞)× R

d,

〈σn(t, x)µ, µ〉 ≥ |µ|2δ0;

3. ∀n = 1, 2, · · · , ∀t ≥ 0, ∀x, x′ ∈ R
d,

|bn(t, x)− bn(t′, x′)|+ |σn(t, x)− σn(t′, x′)| ≤ knk0[|x− x′|+ |t− t′|],

∫

{ǫn≤|z|≤ǫ−1
n }

|cn(s, x, z)− cn(s, x′, z)|2π(dz) ≤ knk0[|x− x′|2 + |t− t′|2],

4. for each T < ∞, ∀N = 1, 2, · · · , ∀q ≥ 1, as n → ∞,

‖bn − b‖q,[0,T ]×SN
+ ‖σn − σ‖q,[0,T ]×SN

→ 0. and

‖

∫

{ǫn≤|z|≤ǫ−1
n }

|cn − c|2π(dz)‖q,[0,n]×Sn
<

1

2n
,
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where Sn = {x ∈ R
d : |x| ≤ n

5. ‖

∫

Z

|cn − c|2π(dz)‖q,[0,T ]×SN
→ 0 as n → ∞; ∀T,N < ∞.

Proof. Let us smooth out σ to get σn, i.e. let for all u ∈ Rd+1

Jd+1(u) =

{
cd+1 exp(−(1− |u|2)−1), for|u| < 1,

0, otherwise,

such that the constant cd+1 satisfies the condition

∫

Rd+1

Jd+1(u)du = 1.

and write for (t, x) ∈ [0,∞)× R
d, n = 1, 2, · · ·

σn(t, x) =

∫

Rd+1

σ(t− n−1t̄, x− n−1x̄)J(t̄, x̄)dt̄dx̄

=

∫

Rd

∫

R1

σ(t− n−1t̄, x− n−1x̄)J(t̄, x̄)dt̄dx̄

where we define σ(t, x) = 0, for t < 0. σn are usually called the smoothness functions

of σ on [0,∞)×R
d. For these σn, n = 1, 2, · · · let us show that they satisfy (1)− (4).

In fact, ∀µ ∈ R
d

|σn(t, x)| ≤

∫

Rd+1

σ(t− n−1t̄, x− n−1x̄)J(t̄, x̄)dt̄dx̄ ≤ k0,

〈σnµ, µ〉 =

∫

Rd+1

〈σ(t− n−1t̄, x− n−1x̄)µ, µ〉J(t̄, x̄)dt̄dx̄ ≤ k0 ≥ |µ|2δ0,

Moreover, because the σn(t, x) are the smoothness functions of σ(t, x), so σn(t, x) →

σ(t, x), a.s. [7],[28]. Hence for any q > 0, for each T < ∞ and N = 1, 2, · · · , as

n → ∞,

‖σn − σ‖q,[0.T ]×[−N,N ]⊗d → 0. (3.16)

Furthermore, one easily sees that for each n = 1, 2, · · · as x, x′ ∈ R
d
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|σn(t, x)− σn(t, x′)| ≤ k0k0|x− x′|.

Thus σn, n = 1, 2, · · · , satisfy (1)−(4). In the same way one can construct bn(t, x), n =

1, 2, · · · , such that they satisfy (1), (3) and (4). However, for the smoothness of c, to

meet our purpose we need more discussion. First we take a sequence en ǫn ↓ 0. Set

cǫn = c1{ǫn≤|z|≤ǫ−1
n }(z), and

cm(t, x, z) = 1{ǫn≤|z|≤ǫ−1
n }(z) · c̃

m(t, x, z),

where

c̃m(t, x, z) =

∫

R1×Rd×Z

cǫn(t−m−1t̄, x−m−1x̄, z −m−1z̄)J(t̄, x̄, z̄)dt̄dx̄dz̄,

where we define c(t, x, z) = 0, as t < 0. That is, c̃m(t, x, z) is the smoothness function

of c(t, x, z) on An = [0,∞)× R
d × {ǫn < |z| < ǫ−1

n }. Then

∫

Z

|cm|2π(dz) ≤

∫

{ǫn≤|z|≤ǫ−1
n }

∫

Rd

∫

R1

∫

{ǫn≤|z|≤ǫ−1
n }

|c(t−m−1t̄, x−m−1x̄, z −m−1z̄)|2

|z −m−1
n z̄|d+1

dz
|z −m−1z̄|d+1

|z|d+1
J(t̄, x̄, z̄)dt̄dx̄dz̄

≤ k0

∫

{ǫn≤|z|≤ǫ−1
n }

∫

Rd

∫

R1

2J(t̄, x̄, z̄)dt̄dx̄dz̄ ≤ 2k0,

where we have used the fact that for ǫn ≤ |z̄| ≤ ǫ−1
n , and ǫn ≤ |z| ≤ ǫ−1

n

|z −m−1z̄|d+1

|z|d+1
≤ (1 +

∣∣∣∣
z̄/m

z

∣∣∣∣)
d+1 ≤ 2,

if we take m >
1

ǫ0
ǫ−2
n , and ǫ0 > 0 is a constant such that (1 + ǫ0)d+1 ≤ 2. Thus we

have proved that

∫

Z

|cm|2π(dz) ≤ 2k0, as m >
1

ǫ0
ǫ−2
n . Now for each ǫn by assumption

k0 ≥

∫

{ǫn≤|z|≤ǫ−1
n }

|c|2
dz

|z|d+1
≥

∫

{ǫn≤|z|≤ǫ−1
n }

|c|2ǫd+1
n dz.
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So for each ǫn, SN and T < ∞

∫

[0,T ]×SN×{ǫn≤|z|≤ǫ−1
n }

|c|2dtdxdz < ∞. Thus by the

property of the smoothness functions as m → ∞,

∫

[0,T ]×SN×{ǫn≤|z|≤ǫ−1
n }

|c− cm|2dtdxdz

=

∫

[0,T ]×SN×{ǫn≤|z|≤ǫ−1
n }

|c− c̃m|2dtdxdz → 0.

Hence as m → ∞,

∫

[0,T ]×SN×{ǫn≤|z|≤ǫ−1
n }

|c− cm|2
dtdxdz

|z|d+1

≤

∫

[0,T ]×SN×{ǫn≤|z|≤ǫ−1
n }

|c− cm|2
dtdxdz

ǫd+1
n

→ 0,

for each fixed n,N and T < ∞. This deduces that as m → ∞,

∫

{ǫn≤|z|≤ǫ−1
n }

|c− cm|2
dz

|z|d+1
→ 0, a.e.(t, x) ∈ [0, T ]× SN .

(Otherwise, a contradiction is easily derived). Now applying Lebesgue’s dominated

convergence theorem one finds that for any q ≥ 1 as m → ∞,

‖

∫

{ǫn≤|z|≤ǫ−1
n }

|c− cm|2
dz

|z|d+1
‖Lq([0,T ],×SN ) → 0, for eachn,N andT.

From this for each n one easily choose a mn such that mn >
1

ǫ0
ǫ−2
n and

‖

∫

{ǫn≤|z|≤ǫ−1
n }

|c− cmn |2
dz

|z|d+1
‖Lq([0,T ],×SN ) <

1

2n
.

For simplicity write cn for cmn . Since cn is smooth in t and x, so

∫
{ǫn≤|z|≤ǫ−1

n }
|cn(t, x1, z)− cn(t, x2, z)|

2 dz

|z|d+1

≤

∫

{ǫn≤|z|≤ǫ−1
n }

kn[|x1 − x2|
2 + |t1 − t2|

2]
dz

|z|d+1
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≤ k′
n[|x1 − x2|

2 + |t1 − t2|
2].

Finally, as n → ∞,

‖

∫

Z

|cn − c|2π(dz)‖q,[0,T ]×SN
≤ ‖

∫

{0<|z|<ǫ−1
n }∪{ǫ−1

n <|z|}

|c|2π(dz)‖q,[0,T ]×SN

+‖

∫

{ǫn≤|z|≤ǫ−1
n }

|cn − c|2π(dz)‖q,[0,T ]×SN
→ 0.

The Proof is complete.

Now let us prove Theorem 3.5.1

Proof. For bn, σn and cn, which are constructed in the previous lemma, for each

n = 1, 2, · · · there exists a unique strong solution (xn
t ) of the following SDE, t ≥ 0:

xn
t = x0 +

∫ t

0

bn(s, xn
s )ds+

∫ t

0

σn(s, xn
s )dws

+

∫ t

0

∫

Z

cn(s, xn
s−, z)Ñk(ds, dz). (3.17)

Now applying Lemma 3.2.1 "the result of SDE from the Skorokhod weak convergence

technic" holds. So we only needs to show 3.10 Remark 3.2.1 holds. As in the proof

of Theorem 3.3.1 we may assume that |x̃n
t | ≤ k0, ∀t ∈ [0, T ], ∀n = 0, 1, 2, · · · . Notice

that for any given ǫ > 0

P̃(

∣∣∣∣
∫ t

0

(bn(s, x̃n
s )− b(s, x̃0

s))ds

∣∣∣∣ > ǫ) ≤
ǫ

3
E
P[

∫ t

0

|(bn − bn0)(s, x̃n
s )|1|x̃n

s |≤k0ds

+ P̃(

∣∣∣∣
∫ t

0

(bn0(s, x̃n
s )− bn0(s, x̃0

s))ds

∣∣∣∣ >
ǫ

3
)

+
ǫ

3
E
P

∫ t

0

|(bn0 − b)(s, x̃0
s)|1|x̃0

s|≤k0ds]

= In,n0

1 + In0,n
2 + In0

3 .

Obviously, by (4) in Lemma 3.5.1 and by the Krylov type estimate there exists a Ñ

such that as n ≥ Ñ , n0 ≥ N ,
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In,n0

1 + In0
3 ≤ 2 ·

ǫ

3
‖bn − bn0‖d+1,[0,T ]×Sk0

< 2ǭ/4.

Now for each n0 ≥ Ñ , by 3.9 as n → ∞, ∀t ∈ [0, T ].

In0,n
2 → 0

Thus the first limit in 3.10 is proved. Now notice that for each n0 = 1, 2, · · ·

P̃(

∣∣∣∣
∫ t

0

∫

Z

cn(s, x̃n
s−, z)q̃

n(ds, dz)−

∫ t

0

∫

Z

c(s, x̃0
s−, z)q̃

0(ds, dz)

∣∣∣∣ > ǫ)

≤

(
3

ǫ

)2

E

∫ t

0

∫

Z

∣∣∣(cn − cn
0

)(s, x̃n
s , z)

∣∣∣
2

1|x̃n
s |≤k0π(dz)ds

+ P̃(|

∫ t

0

∫

Z

cn
0

(s, x̃n
s−, z)q̃

n(ds, dz)

−

∫ t

0

∫

Z

cn
0

(s, x̃0
s−, z)q̃

0(ds, dz)|1 sup
t∈[0,T ]

|x̃n
t |+ sup

t∈[0,T ]

|x̃0
t | ≤ 2k0

>
ǫ

3
)

+

(
3

ǫ

)2

E

∫ t

0

∫

Z

∣∣∣(cn0

− c)(s, x̃0
s, z)

∣∣∣
2

1|x̃0
s|≤k0π(dz)ds

= In,n
0

2 + In
0,n

3 + In
0

4 .

For an arbitrary given ǭ > 0, as above (by using the Krylov estimate) one can show

that there exist a large enough Ñ such that for any fixed n0 ≥ Ñ , as n ≥ Ñ

In,n
0

2 + In
0

4 <
3

4
ǭ.

On the other hand, one also finds that as n → ∞, ∀n0

In
0,n

3 → 0. (3.18)
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In
0,n

3 ≤ P̃(

∣∣∣∣
∫ t

0

∫

Z

(cn
0

(s, x̃n
s−, z)− cn

0

(s, x̃0
s−, z))1|x̃n

s |≤k0,|x̃0
s|≤k0 q̃

n(ds, dz)

∣∣∣∣ >
ǫ

6
)

+ P̃(

∣∣∣∣
∫ t

0

∫

Z

cn
0

(s, x̃n
s−, z)q̃

n(ds, dz)−

∫ t

0

∫

Z

cn
0

(s, x̃0
s−, z)q̃

0(ds, dz)

∣∣∣∣ >
ǫ

6
)

≤

(
6

ǫ

)2

E

∫ t

0

∫

Z

∣∣∣cn0

(s, x̃n
s , z)− cn

0

(s, x̃0
s, z)

∣∣∣
2

1|x̃n
s |≤k0,|x̃0

s|≤k0π(dz)ds

+

(
12

ǫ

)2

E

∫ t

0

∫

{|z|≤δ}∪{|z|≤δ−1}

∣∣∣cn0

(s, x̃0
s, z)

∣∣∣
2

π(dz)ds

+ P̃(|

∫ t

0

∫

δ<|z|<δ−1

1|x̃0
s|≤k0c

n0

(s, x̃0
s−, z)p̃

n(ds, dz)

−

∫ t

0

∫

δ<|z|<δ−1

1|x̃0
s|≤k0c

n0

(s, x̃0
s−, z)p̃

0(ds, dz)| >
ǫ

12
)

=
3∑

i=1

In
0,n

3i .

Notice that ∀s ≥ 0, x̃n
s → x̃0

s, in probability, as n → ∞, so applying Lebesgue’s

dominated convergence theorem,

In
0,n

31 ≤ kn0E

∫ t

0

|x̃n
s − x̃0

s|
2
1|x̃n

s |≤k0,|x̃0
s|≤k0ds → 0, as n → ∞.

Now by E

∫ t

0

∫

z

|cn
0

(s, x̃0
s, z)|

2π(dZ)ds ≤ k0t < ∞ for any ǭ > 0 one can choose a

small enough δ > 0 such that

In
0,n

32 < ǭ/3.

Let us show that for any δ > 0 and n0, as n → ∞,

In
0,n

33 → 0. (3.19)

To show this we make a division: 0 = s0 < s1 < · · · < sm+1 = t. Then
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In
0,n,N

33 ≤ P̃(|

∫ t

0

∫

δ<|z|<δ−1

1|x̃0
s|≤k0c

n0

(s, x̃0
s−, z)p̃

n(ds, dz)

−
k∑

i=0

∫ si+1

si

∫

δ<|z|<δ−1

1|x̃0
s|≤k0c

n0

(si, x̃
0
si−

, z)p̃n(ds, dz)| >
ǫ

12
)

+ P̃(|
k∑

i=0

∫ si+1

si

∫

δ<|z|<δ−1

1|x̃0
s|≤k0c

n0

(si, x̃
0
si−

, z)p̃n(ds, dz)

−
k∑

i=0

∫ si+1

si

∫

δ<|z|<δ−1

1|x̃0
s|≤k0c

n0

(si, x̃
0
si−

, z)p̃0(ds, dz)| >
ǫ

12

+ P̃(|

∫ t

0

∫

δ<|z|<δ−1

1|x̃0
s|≤k0c

n0

(si, x̃
0
si−

, z)p̃0(ds, dz)

−
k∑

i=0

∫ si+1

si

∫

δ<|z|<δ−1

1|x̃0
s|≤k0c

n0

(si, x̃
0
si−

, z)p̃0(ds, dz)| >
ǫ

12

= In
0,n

331 + In
0,n

332 + In
0,n

333 .

Because cn
0

is a smooth function satisfying the condition that as ǫn0 ≤ δ

∫

δ<|z|<δ−1

|cn
0

(s, x, z)− cn
0

(s′, x′, z)|2π(dz)

≤ kn0 k̃0[|x− x′|2 + |s− s′|], and |cn0(s, x, z)| ≤ k̃n0,δ,k0 ,

as (s, x, z) ∈ [0, T ]× {|x| ≤ k0} × {δ < |z| < δ−1},

where kn0,δ > 0 is a constant only depending on n0 and δ; k̃n0,δ,k0 > 0 is a constant

only depending on n0, δ and k0; and x̃0
s is right continuous such that s ↓ si ⇒

xs → si. So by using Lebesgue’s dominated convergence theorem, one finds that as

λ = max
i=0,··· ,m

(si+1 − si) → 0

In
0,n

331 , In
0,n

33 ≤

(
12

ǫ

)2

E

∫ t

0

∫

δ<|z|<δ−1

|1|x̃0
s|≤k0c

n0

(s, x̃0
s−, z)

−
k∑

i=0

1|x̃0
s|≤k0c

n0

(si, x̃
0
si
, z)1(si+1,si](s)|

2π(dz)ds → 0

For any given division,
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lim
n→∞

In
0,n

332 = 0.

Therefore, 3.19 holds. Thus 3.18 is proved, and the third limit in 3.10 is also estab-

lished. Finally, the second limit in 3.10 can be similarly proved. In fact, for arbitrary

ǫ > 0

P(|

∫ t

0

σn(s, x̃n
s )dw̃

n
s −

∫ t

0

σ(s, x̃0
s)dw̃

0
s | > ǫ)

≤

(
3

ǫ

)2

E

∫ t

0

|(σn − σn0

)(s, x̃n
s )|

2
1|x̃n

s |≤k0ds

+P̃(|

∫ t

0

σn0

(s, x̃n
s )dw̃

n
s −

∫ t

0

σn0

(s, x̃0
s)dw̃

0
s |

×1 sup
t∈[0,T ]

|x̃n
t | ≤ 2k0 + sup

t∈[0,T ]

|x̃0
t | ≤ 2k0

>
ǫ

3
)

+

(
3

ǫ

)2

E

∫ t

0

∫

Z

|(σn0

− σ)(s, x̃0
s)|

2I|x̃0
s|≤k0ds

= In,n
0

2 + In,n
0

3 + In
0

4 .

Now the proof can be completed. So the second limit in 3.10 is established. Thus we

have proved that {x̃0
t}t≥0 satisfies the following SDE on probability space (Ω̃, F̃, P̃)

for any T < ∞ as t ∈ [0, T ]

x̃0
t = x0 +

∫ t

0

b(s, x̃0
s)ds+

∫ t

0

σ(s, x̃0
s)dw̃

0
s +

∫ t

0

∫

Z

c(s, x̃0
s−, z)q̃

0(ds, dz),

where w0
t and q̃0(dt, dz) are a BM and a Poisson martingale with the compensator

π(dz)dt, respectively.

By using Theorem 3.5.1 and the Girsanov type theorem we can obtain the existence

of a weak solution to a BSDE with jumps under much weaker conditions.

Theorem 3.5.2. Assume that b, σ and c are Borel measurable functions such that

1. Z = R
d − {0}, and π(dz) = dz/|z|d+1;
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2. |σ(t, x)|+

∫

Z

|c(t, x, z)|2π(dz) ≤ k0,

where k0 > 0 is a constant;

3. there exists a δ0 > 0 such that for all µ ∈ R
d,

〈σ(t, x)µ, µ〉 ≥ |µ|2δ0.

4. 〈x, b(t, x)〉 ≤ c1(t)(1 + |x|2Πm
k=1gk(x)),.

Furthermore, b(t, x) is locally bounded for x, that is, for each r > 0, as |x| ≤

r, |b(t, x)| < kr,

where kr > 0 is a constant only depending on r.

Then there exists a weak solution for 3.15.

Proof. In fact, by Theorem 3.5.1 there exists a weak solution for the following SDE

with jumps: ∀t ≥ 0,

xt = x0 +

∫ t

0

σ(s, xs)dws +

∫ t

0

∫

Z

c(s, xs−, z)Ñk(ds, dz).

Notice that by Skorokhod theorem we know that the above SDE holds in a probability

space (Ω,F,P), where Ω = [0, 1],F = B([0, 1]),P = Lebesgue measure on [0, 1]. Since

such (Ω,F) is a standard measurable space. So the conclusion follows on ∀t ≥ 0.

In the above theorem we assume that σ is bounded. Now we relax the coefficient σ to

be less than linear growth, (so, it can be unbounded). In this case we have to assume

that σ and c are jointly continuous.

Theorem 3.5.3. Assume that conditions (1), (3) and (4) in the previous theorem

hold, and assume that

1.

∫

Z

|c(t, x, z)|2π(dz) ≤ c1(t),

2. σ(t, x) is jointly continuous in (t, x); and
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lim
h,h′→0

∫

Z

|c(t+ h′, x+ h, z)− c(t, x, z)|2π(dz) = 0;

3. there exists a δ0 > 0 such that σ|(t, x)| ≥ δ0, and

|σ(t, x)|2 ≤ c1(t)(1 + |x|2)

Then for any given constant x0 ∈ R
d 3.15 has a weak solution on t ≥ 0.

Now let us prove Theorem 3.5.3.

Proof. The proof can be completed by applying Theorem 3.3.1 and the Girsanov type

theorem. Since it is completely similar to the proof of the previous theorem. We do

not repeate it.

Finally, applying the above results and applying the Yamada-Watanabe type theorem

we immediately obtain the following theorems on the existence of a pathwise unique

strong solution to SDE 3.15.

Theorem 3.5.4. [70] Under the assumption of Theorem 3.5.3 if, in addition, the

(PWU1) condition in Theorem 3.4.1 holds, then 3.15 has a pathwise unique strong

solution.
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Conclusion

In many cases we need to minimize some target functional subject to a controlled

dynamical system; for example, to minimize the energy expended by the controlled

system during a period of time, like, minimizing E

∫ T

0

|xu
t |

2dt, where u(·) is a control,

xu
t is the solution of the system corresponding to the applied control u(·). We will

find that the minimal value of the target functional will be obtained when we can

apply some extreme solution of the dynamic system. For this example the idea is that

at each time when the trajectory of the state process leaves the point 0, we should

immediately use a feedback control to fully pull back the trajectory directed towards

0, because if the state xu
t is closer to 0, then the energy |xu

t |
2 expended is also closer to

zero and so it is smaller, even though it cannot be 0. Such an extreme feedback control

is called a Bang-Bang control. Obviously, such a feedback control is not Lipschitz

continuous, and so it also makes the coefficients of the system non-Lipschitzian, for

example, when the system is linear with respect to the control u(·) : the system

coefficient is A(t)xt + B(t)ut. However, we need the state of the system, that is,

the solution, to exist for such a control, so the system can be controlled. Therefore,

discussing solutions for stochastic differential equations (SDEs) with jumps and with

non-Lipschitzian coefficients, is necessary and useful from the practical point of view.

The interesting thing is also that in the ordinary differential equation (ODE) case,

if its coefficients are only continuous then a solution, even when it exists, is not

necessary unique. However, in the SDE case we can have a unique solution even

when the coefficients are not continuous. This means that a stochastic perturbation

can some- times improve the nice properties of the solution. The stochastic integral

term is very important in the financial market. Actually, its coefficient corresponds to
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a part of a portfolio of investment of the stocks by an investor in the financial market.

In the optimal consumption problem the SDEs with non-Lipschitzian coefficients also

need to be considered.
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