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Abstract

T his work provides an important step in the construction, definition and the study of

a class of H-sssi stochastic processes (self-similar with stationary increments), which

have marginal probability density function that evolves in time according to a differential

equation of fractional type. This construction is based on the theory of finite measures

on functional spaces.

First, we brought the reader through the fundamental notions of stochastic processes

and stochastic integration as well. In particular, within the study of H−sssi processes.

Then, we focused on fractional Brownian motion (fBm), and introduced the theory of

fractional integrals and derivatives, which indeed turns out to be very appropriate for

studying and modeling systems with long-memory properties. We introduced and stud-

ied the generalized grey Brownian motion (ggBm), which is actually a parametric class

of H−sssi processes. The ggBm has been defined canonically in the so called grey noise

space. However, we have been able to provide a characterization notwithstanding the un-

derline probability space. We also pointed out that the generalized grey Brownian motion

is a direct generalization of a Gaussian process and in particular it generalizes Brownain

motion and fractional Brownain motion as well.

Key words: Self-similar processes, Brownian motion, Fractional Brownain motion,

Fractional derivatives and integrals, Mittag-Leffler function, Grey noise, Grey Brownian

motion.
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Résumé

Ce travail constitue une étape importante dans la construction, la définition et l’étude

d’une classe des processus stochastiques H-sssi (auto-similaires à accroissements sta-

tionnaires), qui ont une densité de probabilité marginale qui évolue dans le temps selon

une équation différentielle fractionnaire. Cette construction est basée sur la théorie des

mesures finies sur les espaces fonctionnels.

D’abord, nous avons donné au lecteur les notions fondamentales des processus stochas-

tiques, l’intégration stochastiques. En particulier, dans l’étude de H- sssi processus. En-

suite, nous nous sommes concentrés sur le mouvement Brownien fractionnaire (fBm), et

nous avons introduit ensuite la théorie des intégrales et des dérivées fractionnaires, ce qui

s’avère très approprié pour étudier et modéliser des systèmes avec la propriété de la longue

mémoire. On a introduit et étudié le mouvement brownien gris généralisé (ggBm), qui est

en fait une classe des processus H-sssi. Le ggBm a été défini canoniquement dans l’espace

de bruit gris. Cependant, nous avons été en mesure de donner la caractérisation de ce

processus sur un espace de probabilité. Nous avons également souligné que le mouvement

Brownien gris généralisé est une généralisation directe d’un processus Gaussien et en par-

ticulier il généralise le mouvement Brownien et le mouvement Brownien fractionnaire.

Mots clés: Processus auto-similaires, mouvement Brownien, mouvement Brownien

fractionnaire, dérivées et intégrales fractionnaires, fonction Mittag-Leffler, bruit gris, mou-

vement Brownien gris.
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Introduction

In everyday life as well as in the sciences, conceptual models are used to try to under-

stand the world around us. One time-honored theme is the idea that nothing changes,

that history repeats itself. More recently, as people learned about the rules governing

galaxies and microscopic worlds, the idea emerged that size doesn’t make much differ-

ence. Mathematical models are used along with the conceptual ones to understand and

solve practical problems. Mathematically, these two conceptual models above are closely

related to the concepts of stationarity and self-similarity, respectively.

In the last few decades, new developments in self-similarity have been obtained, in-

cluding the appearance of new classes of (Gaussian or non-Gaussian) self-similar processes

and new techniques to study their behavior, related to the stochastic calculus. Self-similar

processes are stochastic processes that are invariant in distribution under suitable scal-

ing of time and space. The first rigorous probabilistic study of self-similar processes is

due to J. Lamperti [12] at the beginning of the sixties. These processes can be used to

model many space-time scaling random phenomena and have been applied with some

success in diverse areas such as physics, biology , hydrology (cf. Montanari (2003), [13]),

geophysics, medicine, genetics (growth and genealogy of population), financial economics

(option pricing , Willinger and al. (1999) , [34]) and more recently in modeling In-

ternet traffic patterns (Leland and al. (1994), [34]), various areas of image processing,

climatology, environmental science and other fields. Additional applications are given in

Goldberger and West (1987), Stewart and al. (1993), Buldyrev and al. (1993), Ossandik

and al. (1994), Percival and Guttorp (1994) and Peng and al. (1992,)[28, 20, 21].

Self-similar processes appear in various parts of probability theory, it is well known

that Brownian motion is selfsimilar, some well known examples are: stable Lévy process,

Feller branching diffusion, Bessel processes, Brownian sheet. Fractional Brownian motion

is also a Gaussian selfsimilar process with stationary increments.

12



In the same line of thought, long-range dependence is related to the concept of self-

similarity for a stochastic process in that the increments of a self-similar process with sta-

tionary increments exhibit long-range dependence under some conditions. The probability

theory of self-similarity and long-range dependence is discussed in [23]. In recent years

fractional Brownian motion and processes related to fractional dynamics have become

more and more an object of study. The reason for this interest from the mathematical

and applied science point of view is two fold: on one hand the processes in general lack

both the Markov and the (semi-)martingale property, which make them mathematically

challenging and not accessible by classic methods from stochastic analysis.

On the other hand, due to these properties, it is possible to model processes with long-

range self interaction and memory effects with the help of fractional differential equations.

By investigating the time-fractional equation, i.e. where the time derivative is a Caputo

derivative of fractional order, Schneider introduced the notion of grey Brownian motion in

[32]. This stochastic processes, is more general than the classical standard and fractional

Brownian motions. The link between grey Brownian motion and fractional differential

equations is also studied by Mura and Mainardi [20, 21] in the framework of fractional

diffusion equations, where they could show that the marginal probability density function

of grey Brownian motion solves the time-fractional heat equation, and they introduced

the generalized grey Brownian motion (denoted by ggBm for short, in [20]) and from now

denoted simply by gBm, which, by construction, is made up of self-similar processes with

stationary increments. Grey Brownian motion is constructed on a probability space with

a non-Gaussian measure, called Mittag-Lefler measure (or grey noise (reference) measure),

whose characteristic function is given by the Mittag-Lefler function, see e.g. [2, 20, 21, 16].

The Present master thesis is devoted to the study of this class of H − sssi stochastic

processes. And it’s divided into four chapters, it’s organized as follows:

In Chapter 1 we gather some preliminary results. In particular, we introduce the

notion and the basic theory of stochastic processes. We give the notion of filtration and

martingales. Then, we define stationary processes and self-similarity. After introduced

the mathematical definition of Brownian motion and its properties, we focus on Markov

13



processes and we study H-sssi processes. Then, we introduce the Itô integral and the

so called Itô calculus.

Chapter 2 focuses on fractional Brownian motion. Fractional Brownian motion is

the most well known self-similar process with stationary increments. It includes standard

Brownian motion as a particular case. The applications of this process are now widely

recognized. In this chapter, we first survey the definition of fBm and some of the basic

properties of this process. Then, we study integral representation of fractional Brownian

motion.

In Chapter 3 we introduced the theory of fractional integrals and derivatives, which

turns out to be very appropriate for studying and modeling systems which exhibit long-

memory properties. We first introduce the notion of fractional integral/derivatives. Then,

we study many of its properties. Finally, we see how fractional Brownian motion can be

represented as a fractional integral of a Gaussian white noise, and this actually gives rea-

son of its name.

The core of this master thesis is the Chapter 4 in this chapter, we introduce an other

related processes that have recently emerged in scientific research, is grey Brownian mo-

tion. we introduce the parametric class of generalized grey Brownian motion. This class

includes non-Markovian stochastic models either for slow and fast-anomalous diffusion.

After having presented and motivated the mathematical construction (Nuclear spaces,

characteristic functionals, Minlos’ theorem, canonical noises), in particular the develop-

ment of the grey noise space, we show that this class is made up of H-sssi processes and

contain either Gaussian and non-Gaussian processes, like fractional Brownian motion and

grey Brownian motion. We study different characterizations of the ggBm notwithstanding

the underline probability space.

Finally, a conclusion is given. In witch we summarize the main results of this master

thesis, an appendix is also given.

14



Chapter 1

Background on stochastic calculus

In this chapter, the definitions and main properties of stochastic processes are dis-

cussed and some concepts are clarified, especially self-similarity and long-range-dependence.

Clearly distinguishing these concepts will help the understanding of the models to be dis-

cussed in the next chapters. This chapter provides theoretical basis for the rest of this

work. There already exists a vast literature that treats different aspects of stochastic

process, we refer the reader to the most of them [5, 17, 24, 22, 6, 8, 10] for more detail.

1.1 Basics in stochastic processes

Let (Ω,F ,P) be a probability space. A random variable X is a rule for assigning

to every outcome ω of an experiment Ω a number X(ω). A stochastic process Xt is a

rule for assigning to every ω ∈ Ω a function Xt(ω). Thus, a stochastic process could be

seen as a family of time functions depending on the parameter ω (a collection of paths or

trajectories) or, equivalently, a family of random variables depending on a time parameter

t, or a function of t and ω as well.

1.1.1 Stochastic processes and filtration

Definition 1.1.1. (Stochastic process) We define real valued (one − dimensional)

stochastic process a family of random variables {Xt}t∈I defined on (Ω,F ,P):

Xt : Ω −→ R, t ∈ I ⊆ R+.

15



1.1.1 Stochastic processes and filtration 16

A stochastic process could be a discrete time or a continuous time process, according to

the set I is countable or continuous.

Definition 1.1.2. (Finite dimensional distributions) For any natural number k ∈ N

and a "time" sequence {ti}i=1,...,k ∈ I, the finite-dimensional distributions of the real valued

stochastic process Xt = {Xt}t∈I are the measures µt1,...,tk , defined on Rk, such that

µt1,...,tk(A1 × · · · × Ak) = P({Xt1 ∈ A1, · · · , Xtk ∈ Ak}), (1.1)

where {A1, . . . , Ak} are Borel sets on R, (B).

Theorem 1.1.1. (Kolmogorov extension theorem,[17]) For all {ti}i=1,...,k ∈ I , k ∈ N

let νt1,...,tk be probability measures on Rk,such that :

1. for all permutations π on {1, 2, . . . , k},

νtπ(1),...,tπ(k)(A1 × ...× Ak) = νt1,...,tk(Aπ−1(1) × · · · × Aπ−1(k))

2. for any m ∈ N ,

νt1,...,tk(A1 × · · · × Ak) = νt1,...,tk,tk+1,...,tk+m(A1 × · · · × Ak × R× · · · × R),

where of course the set on the right side as a total of k + m factors. Then, there

exists a probability space (Ω,F ,P) and a real valued stochastic process X defined on

it, such that:

νt1,...,tk(A1 × ...× Ak) = P({Xt1 ∈ A1, ..., Xtk ∈ Ak}),

for any ti ∈ I , k ∈ N and Ai ∈ B.

Definition 1.1.3. (Filtration) An increasing family Ft = {Ft}t∈I of complete sub σ-

fields of F is said a filtration on (Ω,F ,P).

Consider a stochastic process X = {Xt}t∈I and let:

FXt = σ({Xs; 0 ≤ s ≤ t}) = σ({N ∪ {X−1
s (H); 0 ≤ s ≤ t,H ∈ B}}),

where B is the Borel σ-algebra and N indicates the class of null-sets. Clearly if 0 ≤ s ≤ t

one has

FXs ⊆ FXt ⊆ F .

Therefore ,FX = {FXt }t∈I defines a filtration, termed natural filtration of {Xt}t∈I .
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Definition 1.1.4. (Adapted process) A stochastic process {Xt}t∈I is said adapted to

the filtration {Ft}t∈I if for each t ≥ 0 :

FXt ⊆ Ft.

In other words, for each t, the r.v. X(t) is Ft-measurable.

Definition 1.1.5. (Martingale) A stochastic process M = {Mt}t≥0 is a martingale

with respect to the filtration Ft and the measure P if, for any t ≥ 0, one has:

1. Mt ∈ L1(Ω,P);

2. E(Mt|Fs) = Ms, for any 0 ≤ s ≤ t.

This means that Mt is Ft-adapted. Moreover, the expected value of Mt does not

depend on time. Indeed,

E(Mt) = E(E(Mt|F0)) = E(M0).

Definition 1.1.6. (Gaussian process) A real stochastic process {Xt}t∈I is Gaussian if

and only if, for every finite sequence {t1, t2, ..., tk} ∈ I,

Xt1,...,tk = (Xt1 , · · · , Xtk),

has a multivariate normal distribution.

Definition 1.1.7. (Version) Let X = {Xt}t∈I be a stochastic process on the space

(Ω,F ,P). A process
∼
X, defined in the same probability space, is a version of the pro-

cess X if, for any t ∈ I,P(Xt =
∼
Xt) = 1.

1.1.2 Stationary processes

In many stochastic processes that appear in applications their statistics remain invariant

under time translations. Such stochastic processes are called stationary.

Definition 1.1.8. (Stationary process) A stochastic process {Xt}t≥0 is said a station-

ary process if any collection {Xt1 , Xt2 , . . . , Xtn} has the same distribution of {Xt1+τ , Xt2+τ , . . . ,

Xtn+τ} for each τ ≥ 0. That is,

{Xt1 , Xt2 , . . . , Xtn}
d
= {Xt1+τ , Xt2+τ , . . . , Xtn+τ}.
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Let X be a stationary process, then the following elementary properties hold:

• Varying t, all the random variables Xt have the same low;i.e. Xt1
d
= Xt2 for any t1,

t2 ≥ 0.

• All the moments, if they exist, are constant in time.

• The distribution of Xt1 and Xt2 depends only on the difference τ = t1 − t2 (time

lag).

Therefore, the autocovariance function γ(t1, t2) = γ(t1−t2) depends only on τ = t1−t2.We

write

γ(τ) = E(Xt − µ)(Xt−τ − µ) = Cov(Xt, Xt−τ ), (1.2)

where µ = E(X(t)) and γ(τ) indicates the autocovariance coefficient at the lag τ .

Definition 1.1.9. (Stationary increment process) A stochastic process {Xt}t≥0 is

said a stationary increment process, shortly si, if for any h ≥ 0 :

{Xt+h −Xh}t≥0
d
= {Xt −X0}t≥0. (1.3)

1.1.3 Self-similar processes

Self-similar(shortly ss) processes, introduced by Lamperti [12, 6], are the ones that are

invariant under suitable translations of time and scale. In the last few years there has

been an explosive growth in the study of self-similar processes.

Definition 1.1.10. (Self-similar processes) A real valued stochastic process X = {Xt}t≥0

is said self-similar with index H ≥ 0, shortly H-ss, if for any a ≥ 0 :

{Xat}t≥0
d
= {aHXt}t≥0.

We observe that the transformation scales differently "space" and "time", for this

reason one often prefers using the word self-affine process. The indexH is saidHurst’sexponent

or scaling exponent of the process.

Remark 1.1.1. Observe that, if X is an H-ss process, then all the finite-dimensional

distributions of X in [0,∞[ are completely determined by the distribution in any finite

real interval.
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Corollary 1.1.1. For H > 0, a H − ss process starts at 0 a.s.

Proof: We have ∀ a that X0 = Xa0
d∼ aHX0. Then letting a → 0, we obtain the

result. �

Proposition 1.1.1. Let X = {Xt}t≥0 be a non-degenerate1 stationary process, then X

can not be an H-ss process.

Proof: Indeed, for any a ≥ 0:

Xt
d
= Xat

d
= aHXt,

by stationarity and self-similarity of the process X. Let a −→∞. Then the family of ran-

dom variables on the right diverge with positive probability, whereas the family of random

variable on the left is finite with probability one, leading to a contradiction. �

Nevertheless, there is an important connection between self-similar and stationary

processes.

Proposition 1.1.2. Let {Xt}t≥0 be an H-ss process; then the process

Y (t) = e−tHX(et), t ∈ R (1.4)

is stationary. We have the converse, in the sense that if (Yt)t∈R is stationary, then

Xt = tHY (ln(t)), t ≥ 0 (1.5)

is H−ss.

Proof: Let θ1, ....θd be real numbers. If {X(t), 0 < t < ∞} is H-ss, then for any

t1, ...., td ∈ R1 and h > 0,

d∑
j=1

θjY (tj + h) =
d∑
j=1

θje
−tjHe−hHX(ehetj),

d
=

d∑
j=1

θje
−tjHX(etj),

=
d∑
j=1

θjY (tj).

1A process {Xt}t≥0 is said to be degenerate if for any t ≥ 0, Xt = 0 almost surely.
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proving that {Y (t),−∞ < t <∞} is stationary.

Conversely, if {Y (t),−∞ < t <∞} is stationary , then for t1, ...., td > 0 and a > 0

d∑
j=1

θjX(atj) =
d∑
j=1

θja
HtHj Y (ln(a) + ln(tj)),

d
=

d∑
j=1

θja
HtHj Y (ln(tj)),

=
d∑
j=1

θja
HX(tj).

proving that {X(t), 0 < t <∞} is H-ss. �

The transformation defined by (eq 1.4) is called the Lamperti transformation.

1.1.4 Brownian motion

The motivating example of a stochastic process is Brownian motion, the physical phe-

nomenon of Brownian motion was discovered by Robert Brown, a 19th century scientist

who observed through a microscope the random swarming motion of pollen grains in

water, now understood to be due to molecular bombardment. The theory of Brownian

motion was developed by Bachelier in his 1900 PhD Thesis, and independently by Ein-

stein in his 1905 paper. For further history of Brownian motion and related processes we

cite Meyer[17], Klebaner [10] and J. Pitman [24].

1.1.4.1 Definition of Brownian Motion

Definition 1.1.11. (Brownian motion) A stochastic process {B(t) : t ≥ 0} is said to

be a Brownian motion 2 with variance parameter σ2 > 0 if:

(i) B(0) = 0.

(ii) (Independent increments.) For each 0 ≤ t1 < t2 < . . . < tm,

B(t1), B(t2)−B(t1), . . . , B(tm)−B(tm−1),

2A Brownian motion is also called a Wiener process since, it is the canonical process defined on the

Wiener space.
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are independent r.v.’s.

(iii) (Stationary increments.) For each 0 ≤ s < t,B(t)−B(s) has a normal distribu-

tion with mean zero and variance σ2(t− s).

(iv) (Continuity of paths.) {B(t)}t≥0 are continuous functions of t.

If σ2 = 1, we said that {B(t) : t ≥ 0} is a standard Brownian motion.

Remark 1.1.2. • Notice that the natural filtration of the Brownian motion is FBt =

σ(Bs, s ≤ t).

• We can define the Brownian motion without the last condition of continuous paths,

because with a stochastic process satisfying the second and the third conditions, by

applying the Kolmogorov’s continuity theorem, there exists a modification of (Bt)t∈R+

which has continuous paths a.s.

1.1.4.2 Properties of Brownian motion

1- Martingale property for Brownian motion

A martingale is a very special type of stochastic process. Examples of martingales

constructed from Brownian motion are given in the next result.

Theorem 1.1.2. Let B(t) be a Brownian motion. Then

1. B(t) is a martingale.

2. B2(t)− t is a martingale.

3. For any u, euB(t)−u
2

2
t is a martingale.

Proof: We refer the reader to ([8, 10]).

2- Markov property

Markov processes form a fundamental class of stochastic processes, with many appli-

cations in real life problems outside mathematics. The reason why Markov processes

are so important comes from the so-called Markov property, which enables many explicit

calculations that would be intractable for more general random processes [8].

Definition 1.1.12. X is a Markov process if for any t and s > 0 the conditional distri-

bution of X(t + s) given Ft is the same as the conditional distribution of X(t + s) given
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X(t), that is,

P (X(t+ s) < y|Ft) = P (X(t+ s) < y|X(t)) . a.s

Theorem 1.1.3. ([10]) The Brownian motion B(t) possesses Markov property.

3- Self-similarity

Theorem 1.1.4. B is a H-ss process with H = 1/2.

Proof: It is enough to show that for every a > 0, {a1/2B(at)} is also Brownian mo-

tion. Conditions (i), (ii)and (iv) follow from the same conditions for {B(t)}. As to (iii),

Gaussianity and mean-zero property also follow from the properties of {B(t)}.

As to the variance , E
[(
a1/2B(t)2

)]
= t. and for all −∞ < t1, t2 <∞, the autocovariance

function E [(B(at1)B(at2))] = min(at1, at2) = amin(t1, t2) = E
[(
a1/2B(t1)a1/2B(t2)

)]
.

Thus {a1/2B(t)} is a Brownian motion. �

4- Non-differentiability

An occurrence of Brownian motion observed from time 0 to time t, is a random function

of t on the interval [0, t]. It is called a ’realization’, a ’path’ or ’trajectory ’.

Theorem 1.1.5. For any t almost all trajectories of Brownian motion are not differen-

tiable at t.

Proof: We refer the reader to ([10]).

5- Hölder continuity

Proposition 1.1.3. A Brownian motion has its paths a.s. locally γ-Hölder continuous

for γ ∈ [0, 1/2).

Proof: We refer the reader to ([10]).

6- Quadratic variation

Definition 1.1.13. The quadratic variation of Brownian motion B(t) is defined as

[B,B](t) = [B,B]([0, t]) = lim
n→∞

n∑
i=1

∣∣∣∣Btni
−Btni−1

∣∣∣∣2,
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where for each n, {tni , 0 ≤ i ≤ n} is a partition of [0, t], and the limit is taken over all

partitions with δn = maxi(t
n
i+1 − tni ) → 0 as n → ∞, and in the sense of convergence in

probability.

Theorem 1.1.6. ([10]) Quadratic variation of a Brownian motion over [0, t] is t.

Example 1.1.1. 1. For any T > 0, {T−1/2B(Tt)} is Brownian motion.

2. The process
t√
π

+
2

π

∞∑
j=1

sin(jt)

j
ξj,

where ξj; j = 0, 1, . . . , are independent standard normal random variables, is Brow-

nian motion on [0; π].

3. {−B(t); t ≥ 0} is also a Brownian motion.

4. {tB(1/t); t > 0} is also a Brownian motion.

5. If B(t) is a Brownian motion on [0, 1], then (t+ 1)B(1/t+ 1)−B(1) is a Brownian

motion on [0,∞).

1 The first statement is the self-similarity property of the Brownian motion.

2 The second is the random series representation of Brownian motion.

3 The third is the symmetry of Brownian motion.

4 The fourth allows to transfer results on the behavior of the paths of Brownian motion

for large t to that of small t.

5 The last (and the second) show the existence of Brownian motion.

1.1.5 H-sssi processes

The Proposition 1.1.2 shows that there is a set of different self-similar processes.

From the point of view of practical implementation those with stationary increments are

of special interest, as they lead to stationary sequences with a special behavior. An H-ss

process having stationary increments is specifically marked as H-sssi.

Definition 1.1.14. A stochastic process X = {Xt}t∈I , F-adapted, which is H-ss with

stationary increments, is said H-sssi process with exponent H.
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In the following we always suppose that E(X2
t ) < ∞, t ∈ I. let X = {Xt}t∈I ,F -

adapted ,be an H-sssi process with finite variance 3, the following properties hold:

1. X0 = 0 almost surely.

2. If H 6= 1, then for any t ≥ 0, E(Xt) = 0.

3. One has:

X(−t) d
= −X(t);

it follows from the first property and the stationarity of the increments:

X(−t) a.s.
= X(−t)−X(0)

d
= X(0)−X(t)

a.s.
= −X(t).

The above property allows us to extend the definition of an H-sssi process to the

whole real line: {Xt}t∈R.

4. Let σ2 = E(X2
1 ). Then,

E(X2
t ) = |t|2Hσ2. (1.6)

Indeed, from the third property and the self-similarity:

EX(t)2 = EX2(|t|sign(t)) = |t|2HEX2(sign(t)) = |t|2HE(X2
1 ) = |t|2Hσ2.

5. The autocovariance function of an H-sssi process 4 X, with E(X2
1 ) = σ2, turns out

to be:

γHs,t =
σ2

2
(|t|2H + |s|2H − |t− s|2H). (1.7)

It follows from the fourth property and the stationarity of the increments

E(XsXt) =
1

2
(EX2

s + EX2
t − E(Xt −Xs)

2).

6. If X = {Xt}t∈I is an H-sssi process, then one must have H ≤ 1.

The constraint of the scaling exponent follows directly from the stationarity of the

increments:

2HE|X1| = E|X2| = E|X2 −X1 +X1| ≤ E|X2 −X1|+ E|X1| = 2E|X1|,

therefore, 2H ≤ 2⇐⇒ H ≤ 1.

3We always consider finite variance H-sssi process because it have many interesting properties
4Sometimes, we refer to the H-sssi process {Xt}t∈I with the word standard if σ2 = 1
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Remark 1.1.3. The case H = 1 corresponds a.s. to Xt = tX1. Indeed, on the L2(Ω,P)

norm:

E(Xt − tX1)2 = E(X2
t + t2X2

1 − 2tXtX1) = σ2(2t2 − 2t2) = 0.

1.1.6 Long-range dependence

The notion of long memory (or long range dependence) has intrigued many at least since

B. Mandelbrot brought it to the attention of the scientific community in the 1960’s in a

series of papers (Mandelbrot (1965); Mandelbrot and Van Ness (1968) and Mandelbrot

and Wallis (1968, 1969)[13]) that, among other things, explained the so-called Hurst

phenomenon, today this notion has become especially important as potentially crucial

applications arise in new areas. In this subsection we attempt to describe the important

ways in which one can think about long memory and connections between long memory

and other notions of interest, most importantly scaling and self-similarity.

1.1.6.1 Long-range dependence definition

We introduce the concept of slowly varying function:

Definition 1.1.15. (Slowly varying function) A real valued function L : R −→ R

is called slowly varying function in zero (infinity) if it is bounded on any finite interval

I ⊆ R and if, for each a > 0, one has

L(ax)

L(x)
−→ 1,

as x tends to zero (infinity).

Such a functions vary slower than any power function. Logarithms and constants are

typical examples of slowly varying functions.

Definition 1.1.16. (Long-range dependence) Let γ(k) be the autocovariance function

of a stationary process X. The following three definitions of long-range dependence are

quite common in literature

1. The process X has long-range dependence if there exists 0 < a < 1 such that:
n∑
k=0

γ(k) ∼ nαL1(n), n −→∞, (1.8)

where L1 is a slowly varying function at infinity.



1.1.6 Long-range dependence 26

2. The process X has long-range dependence if there exists 0 < β < 1 such that:

γ(k) ∼ k−βL2(k), k −→∞, (1.9)

where L2 is a slowly varying function at infinity.

3. The process X has long-range dependence if there exists 0 < γ < 1 such that:

f(ν) ∼ |ν|−γL3(|ν|), ν −→ 0, (1.10)

where L3 is a slowly varying function at zero.

The parameters α, β, γ measure the LRD intensity, in the sense that greater the long-

range dependence greater the values of α and γ and smaller the values of β.

1.1.6.2 Selfsimilarity and Long-Range Dependency

This tow notions are closely related, but they are different and should not be confused.

The main difference between self-similar processes and processes with LRD is that self-

similar processes are non-stationary, while LRD processes are stationary. However, these

two kinds of processes are related by a parameter (the Hurst parameter), and one process

can be derived from the other.

Proposition 1.1.4. ([3]) Let {Xt}t≥0 be a H-self-similar process with stationary incre-

ments such that E(X2
1 ) <∞. Define, for any integer n ≥ 1

γ(n) = E(X1(Xn+1 −Xn)).

Then, if H 6= 1/2, as n→∞

γ(n) ∼ H(2H − 1)n2H−2E(X2
1 ).

Definition 1.1.17. We say that a process X exhibits long-range dependence (or it is a

long-memory process) if ∑
n≥0

γn =∞

where r(n) = E((X1 −X0)(Xn+1 −Xn)). Otherwise, if∑
n≥0

γn <∞

we say that X is a short-memory process.
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From this definition and Proposition 1.1.4 we conclude that if (Xt)t≥0 is H− self-

similar process with stationary increments and with E(X2
1 ) <∞ thenX is with long-range

dependence for H > 1/2 and with short-memory if H ≤ 1/2.

1.2 Introduction to stochastic integration

Let us consider the filtered probability space (Ω,F ,Ft,P), where {Ft}t≥0 is the natural

filtration of the Bm B(t), t ≥ 0. We introduce the following class of functions.

Definition 1.2.1. Let V(S, T ) be the class of real measurable functions f(t, ω), defined

on [0,∞)× Ω, such that:

1. f(t, ω) is Ft-adapted ;

2. E
(∫ T

S

f(t, ·)2dt

)
<∞.

1.2.1 Itô integral

1.2.1.1 Itô integral definition

Let f ∈ V(S, T ). We want to define the Itô integral of f in the interval [S, T ). Namely:

I(f)(ω) =

∫ T

S

f(t, ω)dBt(ω), (1.11)

where Bt is a standard (E(B(1)2) = 1) one dimensional Brownian motion. We begin

defining the integral for a special class of functions:

Definition 1.2.2. (Simple functions) A function φ ∈ V(S, T ) is called simple function

(or elementary), if it can be expressed as a superposition of characteristic functions.

φ(t, ω) =
∑
k≥0

ek(ω)1[tk,tk+1)(t), (1.12)

Definition 1.2.3. Let φ ∈ V(S, T ) be a simple function of the form of (1.12), then we

define the stochastic integral:∫ T

S

φ(t, ω)dBt =
∑
k≥0

ek(ω)(Btk+1
−Btk)(ω); (1.13)

Lemme 1.2.1. (Ito isometry, [20]) Let φ ∈ V(S, T ) be a simple function, then:

E

((∫ T

S

φ(t, ·)dBt

)2
)

= E
(∫ T

S

φ(t, ·)2dt

)
. (1.14)
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Remark 1.2.1. Observe that (1.14) is indeed an isometry. In fact, it can been written

as equality of norms in L2 spaces:∥∥∥∥∫ T

S

φ(t, ·)dBt

∥∥∥∥
L2(Ω,P)

= ‖φ‖L2([S,T ]×Ω) .

We have the following important proposition.

Proposition 1.2.1. Let f ∈ V , then there exists a sequence of simple functions

φn ∈ V , n ∈ N, which converges to f in the L2-norm. Namely,

lim
n−→∞

∫ T

S

E
(
(f(t, ·)− φn(t, ·))2

)
dt = lim

n−→∞
‖f − φn‖2

L2([S,T ]×Ω) = 0. (1.15)

Proof: See [20]

Definition 1.2.4. (Itô integral) Let f ∈ V(S, T ) the Itô integral from S to T of f is

defined as the L2(Ω,P) limit:

I(f) =

∫ T

S

f(t, ω)dBt(ω) = lim
n−→∞

∫ T

S

φn(t, ω)dBt(ω), (1.16)

where φn ∈ V, n ∈ N, is a sequence of simple functions which converges to

f ∈ L2([S, T ]× Ω).

Remark 1.2.2. Observe, in view of (eq ,1.15), that the definition above does not depend

on the actual choice of {φn, n ∈ N}.

By definition, we have that Itô isometry holds for Itô integrals:

Corollary 1.2.1. (Itô isometry for Ito integrals, [20]) Let f ∈ V(S, T ), then:

E

((∫ T

S

f(t, ·)dBt

)2
)

= E
(∫ T

S

f(t, ·)2dt

)
. (1.17)

Moreover,

Corollary 1.2.2. [20] If fn(t, ω) ∈ V(S, T ) converges to f(t, ω) ∈ V(S, T ) as n −→ ∞

in the L2([S, T ]× Ω)-norm, then:∫ T

S

fn(t, ·)dBt −→
∫ T

S

f(t, ·)dBt, (1.18)

in the L2(Ω,P)-norm.
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1.2.1.2 Properties of the Itô integral

Proposition 1.2.2. [20] Let f, g ∈ V(0, T ) and let 0 ≤ S < U < T . Then:

1.
∫ T

S

fdBt =

∫ U

S

fdBt +

∫ T

U

fdBt.

2. For some constant a ∈ R,
∫ T

S

(af + g)dBt = a

∫ T

S

fdBt +

∫ T

S

gdBt.

3. E
[∫ T

S

fdBt

]
= 0.

4.
∫ T

S

fdBt is FT -measurable.

5. The process Mt(ω) =

∫ T

0

f(t, ω)dBs(ω) where f ∈ V(0, T ) for any t > 0, is a

martingale with respect to Ft.

1.2.2 Extensiens of Itô integral

The construction of the Itô Integral can be extended to a class of function f(t, ω) which

satisfies a weak integration condition. This generalization is indeed necessary because it

is not difficult to find functions which do not belong to V . For instance, take a function of

Bm which increase rapidly f(t, ω) = exp(Bt(ω)2). Therefore, we introduce the following

class of functions:

Definition 1.2.5. Let W(S, T ) be the class of real measurable functions f(t, ω), defined

on [0,∞)× Ω, such that

1. f(t, ω) is Ft-adapted;

2. P
(∫ T

S

f(t, ·)2dt <∞
)

= 1.

Remark 1.2.3. Clearly, V ⊂ W .

In the construction of stochastic integrals for the class of functions belonging to Ω

we can no longer use the L2 notion of convergence, but rather we have to use convergence

in probability. In fact, for any f ∈ W , one can show that there exists a sequence of simple

functions φn ∈ W such that ∫ T

S

|φn(t, ·)− f(t, ·)|2dt −→ 0 (1.19)
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in probability. For such a sequence one has that the sequence
{∫ T

S

φn(t, ω)dBt(ω), n ∈ N
}

converges in probability to some random variable. Moreover, the limit does not depends

on the approximating sequence φn. Thus, we may define:

Definition 1.2.6. (Itô integral II) Let f ∈ W(S, T ). The Itô integral from S to T of f

is defined as the limit in probability:∫ T

S

f(t, ω)dBt(ω) = lim
n−→∞

∫ T

S

φn(t, ω)dBt(ω), (1.20)

where φn ∈ W , n ∈ N, is a sequence of simple functions which converges to f in probability.

Remark 1.2.4. Note that this integral is not in general a martingale. However, it is a

local martingale.



Chapter 2

Fractional Brownian motion

The aim of this chapter is to provide a comprehensive overview of fractional Brownian

motion. However, for the reader’s convenience, in this chapter we review the main prop-

erties that make fractional Brownian motion interesting for many applications in different

fields. The main references for this chapter are [1, 33].

2.1 Fractional Brownian motion definition

The fractional Brownian motion was first introduced within a Hilbert space frame-

work by Kolmogorov in 1940 [6], where it was calledWiener Helix . The name fractional

Brownian motion is due to Mandelbrot and Van Ness, who in 1968 provided in [13] a

stochastic integral representation of this process in terms of a standard Brownian motion.

Definition 2.1.1. (Fractional Brownian motion) A fractional Brownian motion (fBm

in short) with Hurst parameter H ∈ (0, 1) is a centered continuous Gaussian process

BH = (BH
t )t>0 with covariance function

E[BH
t B

H
s ] =

1

2
(t2H + s2H + |t− s|2H). (2.1)

Let us consider the increment process of BH , (also called fractional gaussian noise)

Xk := B
(H)
k −B(H)

k−1; Xk+n := B
(H)
k+n −B

(H)
k+n−1.

Proposition 2.1.1. [33] The covariance of the fractional gaussian noise is given by:

ρH(n) =
1

2

(
(n+ 1)2H + (n− 1)2H − 2n2H

)
; (2.2)

31
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Proposition 2.1.2. Let BH be a fractional Brownian motion, with Hurst index H ∈ (0, 1].

• If H = 1
2
, then fBm is nothing but a classical Brownian motion.

• If H = 1, then BH
1 (t) = tBH

1 (1), almost surely for all t > 0.

Proof:

1. We immediately see that the covariance of B
1
2 reduces to (s, t) 7−→ s ∧ t, so that

B
1
2 is a classical Brownian motion.

2. When H = 1, we have, for all t ≥ 0,

E[(BH
t −tBH

1 )2] = E[(BH
t )2]−2tE[BH

t B
H
1 ]+t2E[(BH

1 )2] = t2−t(t2+1−(1−t)2)+t2 = 0,

that is, BH
1 (t) = tBH

1 . almost surely, this case won’t be considered because it corresponds

to the trivial case of a line with random slope (Remark1.1.3):

2.2 Fractional Brownian motion characterization.

The following proposition characterizes the fBm and gives a useful criterium which

allows to recognize whether a given process is a fractional Brownian motion.

Proposition 2.2.1. (fBm characterization) Let X = {Xt}t≥0 be a stochastic process,

defined on the probability space (Ω,F ,P) ,such that:

• P(X0 = 0) = 1.

• X is a zero-mean Gaussian process such that, for any t > 0,E(X2
t ) = σ2tα for some

σ > 0 and 0 < α < 2.

• X is a si-process.

Then, {Xt}t>0 is a (one-sided) fractional Brownian motion of order H = α/2.

Proof: Since X is a zero-mean Gaussian process, its finite-dimensional distributions

are completely characterized by its autocovariance function. Given that, for any t > 0 :

E(X2
t ) = σ2|t|α

and X has stationary increments, it follows that the autocovariance function is given by

(eq. 2.1), which is the autocovariance of a fBm withH = α/2. �
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Corollary 2.2.1. [33] Let X = {Xt}t≥0 be a stochastic process defined on the probability

space (Ω,F ,P). Let 0 < H < 1 and σ2 = E(X2
1 ). The following statements are equivalent:

1. X is an H-sssi Gaussian process.

2. X is a (one-sided) fractional Brownian motion with scaling exponent H.

3. X is Gaussian with zero mean and covariance function given by (eq. 2.1).

2.3 Fractional Brownian motion proprieties

The fractional Brownian motion has the following properties:

2.3.1 Selfsimilarity

There is an other classic definition of the fBm using selfsimilar properties, which we

give as a theorem.

Theorem 2.3.1. For H ∈ (0, 1), the fBm (BH
t )t∈R+ is a gaussian H−sssi process.

Proof: First, let us prove the selfsimilarity property. We have that

E
(
B

(H)
at B

(H)
as

)
=

1

2

(
(at)2H + (as)2H − (a|t− s|)2H

)
,

= a2HE
(
B

(H)
t B(H)

s

)
,

= E
(

(aHB
(H)
t )(aHB(H)

s )
)
.

Thus, since all processes are centered and gaussian, it implies that(
B

(H)
at

)
d
=
(
aHB

(H)
t

)
.

Second, we show that it has stationary increments. Note that if, for h > 0, we have

E
(

(B
(H)
t+h −B

(H)
h )(B

(H)
s+h −B

(H)
h )

)
= E

(
B

(H)
t B(H)

s

)
, (2.3)
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we conclude that (B
(H)
t+h −B

(H)
h )

d
= B

(H)
t . We have,

E
(

(B
(H)
t+h −B

(H)
h )(B

(H)
s+h −B

(H)
h )

)
= E

(
(B

(H)
t+hB

(H)
s+h)

)
− E

(
(B

(H)
t+hB

(H)
h )

)
− E

(
(B

(H)
s+hB

(H)
h )

)
,

+ E
(

(B
(H)
h )2

)
,

=
1

2

(
((t+ h)2H + (s+ h)2H − |t− s|2H),

− ((t+ h)2H + h2H − t2H),

− ((s+ h)2H + h2H − s2H) + 2h2H

)
,

=
1

2
(t2H + s2H − |t− s|2H),

= E
(
B

(H)
t B(H)

s

)
.

Therefore the fBm is a H-sssi process. �

2.3.2 Markovian property

Remark 2.3.1. Fractional Brownian motion is non-Markovian provided that H 6= 1/2.

Proof: See ([9]) �

2.3.3 Hölder continuity

Theorem 2.3.2. (Kolmogorov continuity theorem, [1]) A stochastic process {Xt}t∈I
has a version with continuous trajectories if there exist: p ≥ 1 and η > 1 and a constant

c, such that, for any t1, t2 ∈ I :

E|Xt2 −Xt1|p ≤ c|t2 − t1|η. (2.4)

Theorem 2.3.3. Let H ∈ (0, 1). The fbm B(H) admits a version whose sample paths are

almost surely Hölder continuous of order strictly less than H.

Proof: We recall that a function f : R −→ R is Hölder continuous of order α,

0 < α ≤ 1 and write f ∈ Cα(R), if there exists M > 0 such that

|f(t)− f(s)| ≤M |t− s|α,

for every s, t ∈ R. For any α > 0 we have

E
[
|BH(t)−BH(s)|α

]
= E

[
|BH(1)|α

]
|t− s|αH ;
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hence, by the Kolmogorov criterion we get that the sample paths of BH are almost

everywhere Hölder continuous of order strictly less than H. Moreover, by ([1]) we have

lim sup
t−→0+

|B(H)(t)|
tH
√
log(log(t−1))

= cH

with probability one, where cH is a suitable constant. HenceBH can not have sample paths

with Hölder continuity’s order greater thanH. �

2.3.4 Differentiability

By ([15]) we also obtain that the process BH is not mean square differentiable and it

does not have differentiable sample paths.

Proposition 2.3.1. Let H ∈ (0, 1). The fBm sample path BH(.) is not differentiable. In

fact, for every t0 ∈ [0,∞)

lim
t→t0

sup

∣∣∣∣BH(t)−BH(t0)

t− t0

∣∣∣∣ =∞

with probability one.

Proof: Here we recall the proof of ([15]). Note that we assume BH(0) = 0. The result

is proved by exploiting the self-similarity of BH . Consider the random variable

Rt,t0 :=
BH(t)−BH(t0)

t− t0

that represents the incremental ratio of BH . Since BH is self-similar (see[1]), we have

that the law of Rt,t0 is the same of (t− t0)H−1BH(1). If one considers the event

A(t, w) :=

{
sup

0≤s≤t

∣∣∣∣BH(s)

s

∣∣∣∣ > d

}
,

then for any sequence (tn)n∈N decreasing to 0, we have

A(tn, w) ⊇ A(tn+1, w),

and

A (tn, w) ⊇
(
|B

H(tn)

tn
| > d

)
=
(
|BH(1)| > t1−Hn d

)
.

The proof follows since the probability of the last term tends to 1 as n −→∞. �
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2.3.5 The FBm is not a semimartingale

Proposition 2.3.2. The fBm is not a semimartingale except when H = 1/2.

Proof: The fact that the fBm is not a semimartingale for H 6= 1
2
has been proved

by several authors. In order to verify that BH is not a semimartingale for H 6= 1
2
, it is

sufficient to compute the p-variation of BH .

Definition 2.3.1. Let (X(t))t∈[0;T ] be a stochastic process and consider a partition π =

{0 = t0 < t1 < · · ·· < tn = T}. Put

Sp(x, π) :=
∑n

i=1 |X(ti)−X(ti−1)|p

The p-variation of X over the interval [0, T ] is defined as

Vp(X, [0, T ]) := supπSp(X, π),

where π is a finite partition of [0, T ].

Definition 2.3.2. The index of p-variation of a process is defined as

I(X, [0, T ]) := inf{p > 0;Vp(X, [0, T ]) <∞}

We claim that

I(BH , [0, T ]) = 1
H

In fact, consider for p > 0,

Yn,p = npH−1|BH(i)−BH(i− 1)|p

Since BH has the self-similarity property, the sequence Yn,p, n ∈ N has the same distribu-

tion as

Ỹn,p = n−1|BH( i
n
)−BH( i−1

n
)|p

and By the Ergodic theorem (see, [1]) the sequence Ỹn,p converges almost surely and in

L1 to E[|BH(1)|p] as n tends to infinity. It follows that

Vn,p =
∑n

i=1 |BH( i
n
)−BH( i−1

n
)|p

converges in probability respectively to 0 if pH > 1 and to infinity if pH < 1 as n tends to

infinity. Thus we can conclude that I(BH , [0, T ]) = 1
2
, Since for every semimartingale X,

the index I(X, [0, T ]) must belong to [0, 1]
⋃
{2}, the fBm BH cannot be a semimartingale

unless H = 1
2
. �
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2.3.6 Long-Range Dependence

Note also that the fBm is one of the simplest process which exhibits long-range depen-

dency.

Lemme 2.3.1. For fBm B(H) of Hurst index H ∈ (1/2, 1), the three definitions of long-

range dependence of Definition 1.1.16 are equivalent. They hold with the following choice

of parameters and slowly varying functions:

1. α = 2H − 1, L1(x) = 2H.

2. β = 2− 2H,L2(x) = H(2H − 1).

3. γ = 2H − 1, L3(x) = π−1HΓ(2H) sinπH.

Proof: For the proof, we refer [33].

Depending on the qualitative behavior of the fBm trajectories, it is common the

following fBm partitioning, which can be actually used to characterize anyH−sssi process:

1. If 0 < H < 1/2, the fBm is termed anti-persistent.

2. If H = 1/2, the fBm is termed purely random, or chaotic.

3. If 1/2 < H < 1, the fBm is termed persistent.

This division is due to the behavior of the autocovariance function of the increment pro-

cess. In the first case the covariance of two consecutive increments is negative. Therefore,

the fBm increments tend to have opposite sign. On the other hand, in the third case

the covariance is always positive and one has a less "zigzaging" behavior of the paths

The case H = 1/2 corresponds to the Bm, which has independent identically distributed

increments, i.e. a purely random increment process.

2.4 Representation of fBm

In this section, we show that fractional Brownian motion can be represented as Wiener

integral in two different ways:
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2.4.1 Moving averge representation of fBm

The proposition below provides a first representation of fractional Brownian motion in

terms of stochastic integrals of Brownian motion.

Proposition 2.4.1. (Moving average representation,[14]) Let {BH(t), t ≥ 0} be a

standard one-sided fractional Brownian motion with 0 < H < 1. Then, for any t ≥ 0

BH(t) =

∫
R
ft(x)dB(x) =

1

C1(H)

∫
R

(
(t− x)

H− 1
2

+ − (−x)
H− 1

2
+

)
dB(x), (2.5)

where:

C1(H) =

(∫ ∞
0

((1 + x)H−
1
2 − xH−

1
2 )2dx+

1

2H

)1/2

(2.6)

=
Γ(H + 1/2)

(Γ(2H + 1)sinπH)1/2
. (2.7)

such that the function ft(x) is called representation kernel.

This representation is called moving average representation.

Remark 2.4.1. We observe that for H = 1/2 one obtains,

B(t) =

∫ t

0

dBx, t ≥ 0,

that is a standard Bm.

Proof: Let X(t) denoted the integral in (eq 2.5) and let ft(x) denoted the integrand.

In order to verify that X(t) is well defined ,

1. We show firstly that
∫ ∞
−∞

f 2
t (x)dx < ∞. This relation is obvious when H = 1/2,

because
∫ ∞
−∞

f 2
t (x)dx =

∫ |t|
t

dx <∞.

2. Suppose now 0 < H < 1, H 6= 1/2. Then

• as x −→ −∞, ft(x) ∼ (H − 1/2)(−x)H−3/2 whose square is integrable around

−∞,

• ft(x) ∼ (t− x)
H−1/2
+ as x −→ t whose square is integrable around x = t,

• and similarly for x = 0 and x =∞.

Hence
∫ ∞
−∞

f 2
t (x)dx <∞ and ( eq 2.5) is well defined.
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3. We now verify that {X(t), t ∈ R} has the following autocovariance function (eq

2.1) with V ar(X(1)) = 1. Notice that X(0) = 0 a.s, and, for every t > 0, EX2(t)

equals

1
C1(H)2

∫ ∞
−∞

(
(t− s)H−1/2

+ − (tx)
H−1/2
+

)2

dx

=
1

C1(H)2
t2H
∫ ∞
−∞

(
(1− u)

H−1/2
+ − (−u)

H−1/2
+

)2

du,

=
1

C1(H)2
t2H
[∫ 0

−∞
((1− u)H−1/2 − (−u)H−1/2)2du+

∫ t

0

(1− u)2H−1

]
,

=
1

C1(H)2
t2H
[∫ ∞

0

((1 + x)
H−1/2
+ − xH−1/2

+ )2dx+
1

2H

]
= t2H ,

and similarly EX2(t) = |t|2H for t < 0. Further, for any t, s ∈ R,

E(X(t)−X(s))2 =
1

C1(H)2

∫ ∞
−∞

(
(t− x)

H−1/2
+ − (s− x)

H−1/2
+

)2

dx;

=
1

C1(H)2

∫ ∞
−∞

(
(t− s− x)

H−1/2
+ − (−x)

H−1/2
+

)2

dx;

= |t− s|2H ,

by the previous calculation and hence (eq 2.1) follows. �

Remark 2.4.2. Heuristically, we observe that the process {X(t), t ≥ 0} defined by (eq

2.5 ), is indeed self-similar with scaling exponent H. In fact,

X(at) =
1

C1(H)

∫
R

(
(at− x)

H−1/2
+ − (−x)

H−1/2
+

)
dB(x)

(with the change of variables x = ax′)

=
1

C1(H)

∫
R

(
(at− ax′)H−1/2

+ − (−ax′)H−1/2
+

)
dB(x)

d
=
aH−1/2a1/2

C1(H)

∫
R

(
(t− x)

H−1/2
+ − (−x)

H−1/2
+

)
dB(x) = aHXt.
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2.4.2 Spectral representation of fBm.

Our second representation of fBm is the Spectral representation of fBm type (also called

harmonizable representation). In fact, following ([30])

Let ft be the kernel of the moving average representation . Since ft ∈ L2(R), one can

evaluate its Fourier transform :

∼
f t (v) =

1√
2π

∫
R
eixvft(x)dx; ft(x) =

1√
2π

∫
R
eixv

∼
f t (v)dv. (2.8)

Because
∼
f t∈ L2(R), it is possible to define an integral representation of fBm based on

∼
f t (v) :

X̃t =

∫
R

∼
f t (v)M̃(dv), (2.9)

where M̃ is a suitable complex Gaussian random measure, which satisfies :

M̃(dv) = M̃(−dv), (2.10)

E|M̃(dv)|2 = dv (2.11)

Remark 2.4.3. The previous conditions, together with the hermitian property of the

Fourier transform, i.e. f̃t(v) = f̃t(−v), ensure that the process X̃t is a real valued process.

Remark 2.4.4. We observe that, if M̃ is a complex Gaussian measure as above, then for

any h > 0,

M̃∗(dn) = eivhM̃(dn),

is another Gaussian measure which still verifies (eq. 2.10) and (eq.2.11 ).

In order to define the measure M̃ , we introduce two independent Brownian motions

B
(1)
t et B(2)

t , and we define

M (i)(A) =
1√
2

∫
A

dB(i)(n), A ⊂ R+;

while, for any A ⊂ R− :

M (1)(A) = M (1)(−A),M (2)(A) = −M (2)(−A).

Then, we define:

M̃ = M (1) + iM (2). (2.12)
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Proposition 2.4.2. (Spectral representation of fBm). Let
∼
M be defined as above

and let
∼
f t be the Fourier transform of a fBm representation kernel ft, for instance (2.5).

Then, the process
∼
X t=

∫
R

∼
f t (n)

∼
M (dv), (2.13)

is a fractional Brownian motion.

This proposition introduces the so called spectral representation of fBm.

Proof : X̃t is a real valued (Remark 2.4.3) zero mean Gaussian process. Furthermore,

let Xt =
∫
ft(x)dB(x), t ≥ 0, be a fBm of order H, then by using Parseval theorem [20]:

E(Xt1Xt2) =

∫
R
ft1(x)ft2(x)dx =

∫
R
f̃t1(x)f̃t2(v)dv = E(X̃t1X̃t2)

Therefore, X̃t is a zero mean Gaussian process with the covariance of a fBm of order H.

Then, by (Corollary 2.2.1), X̃t is a fBm. �

Cosider the representation 2.5 of fractional Brownian motion

Proposition 2.4.3. let 0 < H < 1. Then the standard fractional Brownian motion has

the integral representation:

1

C2(H)

∫
R

eitx − 1

ix
|x|−(H−1/2)M̃d(x), t ∈ R, (2.14)

where

C(H) =

(
π

HΓ(2H) sinHπ

)1/2

. (2.15)

Proof : See [30]



Chapter 3

Introduction to Fractional calculus

The fractional calculus is the theory of integrals and derivatives of arbitrary real or

even complex order (called integrals and derivatives), which is unifies and a generalizes

the integer -order integration and differentiation. In this chapter we will introduce the

basic notions of fractional calculus and its properties, providing useful examples and

applications. Interested readers are referred to [19, 29].

3.1 Fractional integrals

We first define the fractional integral operator according to Riemann-Liouville, which

is the most widely used definition in fractional calculus.

Let a < b be two real numbers and f a function defined on I = [a, b]. Then, we have

the following result

Proposition 3.1.1. [20] By induction it is easy to show that, for any integer n ≥ 1, a

multiple integral of φ can be expressed as:∫ tn

a

· · ·
{∫ t2

a

{∫ t1

a

φ(s)ds

}
dt1

}
· · · dtn−1 =

1

(n− 1)!

∫ tn

a

(tn − s)n−1φ(s)ds. (3.1)

3.1.1 Fractional integrals definitions

By replacing the integer n by a positive real number α, we obtain the following defini-

tion:

42
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Definition 3.1.1. (Riemann-Liouville fractional integral) Let φ ∈ L1([a, b]) and

α > 0. Then, for any t ∈ (a, b), the integrals

Iαa+φ(t) =
1

Γ(α)

∫ t

a

(t− s)α−1φ(s)ds =
1

Γ(α)

∫ b

a

(t− s)α−1
+ φ(s)ds, (3.2)

Iαb−φ(t) =
1

Γ(α)

∫ b

t

(s− t)α−1φ(s)ds =
1

Γ(α)

∫ b

a

(s− t)α−1
+ φ(s)ds, (3.3)

are called left-side and right-side Riemann-Liouville fractional integrals of order α > 0.

Remark 3.1.1. The fractional integrals Iαa+φ(t) and Iαb−φ(t) are well defined for any

φ(t) ∈ Lp([a, b]), p ≥ 1 In fact, suppose φ(t) ∈ Lp([a, b]) then, for any t ∈ (a, b),

Γ(α)

∫ b

a

|Iαa+φ(t)|dt ≤ Γ(α)

∫ b

a

Iαa+|φ(t)|dt =

∫ b

a

∫ b

a

|φ(s)|(t− s)α−1dsdt

(by changing the integration order)

= α−1

∫ b

a

|φ(s)|(b− s)αds ≤ α−1(b− a)α
∫ b

a

|φ(s)ds <∞,

and the same for the right-side integral.

Example 3.1.1. Evaluate the α-th fractional integral of φ(t) = (t−a)−α, 0 < α < 1. One

has,
1

Γ(α)

∫ t

s

(t− s)α−1(s− a)−αds

(after the change of variables s = a+ (t− a)z)

=
1

Γ(α)

∫ 1

0

(1− z)α−1z−αdz =
1

Γ(α)
B(α, 1− α) = Γ(1− α),

where:

B(x, y) =

∫ 1

0

sx−11(1− s)y−1ds =
Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0,

is the Beta function. Thus

Iαa+(t− a)α = Γ(1− α). (3.4)

Example 3.1.2. In the same way, one can easily show that, for any γ > −1 and α > 0 :

Iαa+(t− a)γ =
Γ(γ + 1)

Γ(α + γ + 1)
(t− a)γ+α, t ∈ (a, b).

Remark 3.1.2. By convention is set: I0φ(t) = φ(t).
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3.1.2 Properties of fractional integrals

Let α > 0, then the fractional integrals, both the left-side and right-side, Ia have the

following properties:

1. Reflection property : let Q be the reflection operator: Qφ(t) = φ(a− b− t),

t ∈ [a, b]. Then,

QIαa+ = Iαb−Q. (3.5)

2. Semigroup property : for any φ ∈ L1([a, b])

IαIβφ(t) = Iα+βφ(t), α, β > 0. (3.6)

3. Iαφ = 0 implies that φ = 0 almost everywhere.

4. Fractional integration by parts formula : let φ ∈ Lp([a, b]) and ψ ∈ Lq([a, b])

either with α ≥ 1, p = q = 1, or with 0 < α < 1, 1
p

+ 1
q
≤ 1 + α, p, q > 1. Then,∫ b

a

φ(s)Iαa+ψ(s)ds =

∫ b

a

Iαb−φ(s)ψ(s)ds. (3.7)

Remark 3.1.3. Observe that the second property implies that if f = Iαa+φ1 and f =

Iαa+φ2, then φ1 = φ2 a.e., that is, the inverse of the fractional integral is a.e. unique. This

property is used in the definition of fractional derivatives.

3.2 Fractional derivatives

3.2.1 Fractional derivatives definitions

Definition 3.2.1. (Rimeann-Liouville fractional derivatives) Let 0 < α < 1. Then,

for any t ∈ (a, b), the integrals

Dαa+f(t) =
1

Γ(1− α)

d

dt

∫ t

a

(t− s)−αf(s)ds, (3.8)

Dαb−f(t) =
1

Γ(1− α)

d

dt

∫ b

t

(t− s)−αf(s)ds, (3.9)

are called left-side and right-side Riemann-Liouville fractional derivatives of order α.

Fractional derivatives of order 0 < α < 1 are also well defined if, for example, f is

differentiable.
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Example 3.2.1. Let f(t) = (t− a)α−1, t ∈ (a, b) and 0 < α < 1. Then,

Dαa+f(t) =
1

Γ(1− α)

d

ds

∫ t

a

(t− s)−α(s− a)α−1ds = Γ(α)
d

du
1 = 0 (3.10)

Example 3.2.2. Let C ∈ R, then:

Dαa+C =
1

Γ(1− α)

d

ds

∫ t

a

(t− s)−αCds =
C

Γ(1− α)
(t− a)−α. (3.11)

The Riemann-Liouville fractional derivative of a constant in not zero.

3.2.2 Properties of fractional derivatives

Let 0 < α < 1. The fractional derivative Dαa+ has the following properties :

1. For any φ ∈ L1([a, b]), we have that:

Dαa+Iαa+φ = φ. (3.12)

2. For any f = Iαa+φ, we have that:

Iαa+Dαa+f = f. (3.13)

3. The latter can be generalized. In fact, if the function I1−α
a+ f is absolutely continuous

on [a, b], then:

Iαa+Dαa+f(t) = f(t)− I
1−α
a+ f(a)

Γ(α)
(t− a)α−1, t ∈ (a, b), (3.14)

where I1−α
a+ f(a) = lim

s−→a+
(I1−α
a+ f(s)), which is in general non-zero.

3.2.3 Two forms of fractional derivatives

It is possible to define fractional derivative operators for α ≥ 1 as well. The idea is to use

usual integer order derivative operators. Consider an integer m such that m−1 < α ≤ m.

The first step is to integrate f by order m − α and then differentiate by m to obtain a

resultant differentiation of order α . That is,

Dαa+f(t) =


1

Γ(m− α)

dm

dtm

∫ t

a

(t− s)m−α−1f(s)ds, m− 1 < α < m

dm

dtm
f(t). α = m

There is another way to define fractional derivatives, which is one just has to invert

the integration and derivation operations. Then, one can define:
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Definition 3.2.2. (Caputo derivative) Let α > 0, then for any t ∈ (a, b)

∗Dαa+f(t) =


1

Γ(m− α)

∫ t

a

(t− s)m−α−1 d
m

dsm
f(s)ds, m− 1 < α < m,

dm

dtm
f(t). α = m

is called (left-side) Caputo derivative of order α > 0.

Remark 3.2.1. Let 0 < α < 1 and a = 0. In this case we shall write Iα0+ = Iαt . Consider

a well defined function f , for instance take f ∈ C1(R+). Then, one has:

Iαt ∗ Dαa+f(t) = Iαt I1−α
t

d

dt
f(t) = It

d

dt
f(t) = f(t)− f(0+) (3.15)

Therefore,(by using eq.3.11) we have the following relationships between the R-L and

Caputo derivatives of order 0 < α < 1 :

∗ Dαa+f(t) = Dαa+(f(t)− f(0+)) = Dαa+f(t)− f(0+)

Γ(1− α)
t−α. (3.16)

A generalization of (eq. 3.15)

∗ Dαt f(t) = Dαt

(
f(t)−

m−1∑
k=0

f (k)(0+)
tk

k!

)
= Dαt f(t)−

m−1∑
k=0

f (k)(0+)tk−α

Γ(k − α + 1)
, (3.17)

where α > 0 and m− 1 < α < m.

Remark 3.2.2. The Caputo fractional derivative represents a sort of regularization (in

the origin) of the RL fractional derivative. Moreover, in order for the Caputo derivative

to exist, all the limiting values f (k)(0+) are required to be finite for any k ≤ m− 1. Then,

because the derivative of order m is required to exist and is subjected to some regularity

conditions, the Caputo fractional derivative is in this sense more restrictive than the

Riemann-Liouville derivative. The Caputo fractional derivative turns out to be very useful

in treating initial-value problems for physical and engineering applications. In fact, in this

case the initial conditions can be expressed in terms of integer-order derivatives.

3.3 Fractionls integrals and derivatives on the real line

Fractional integral and derivatives can be defined also in the real line:

Definition 3.3.1. (Fractional integrals on the real line) Let α > 0. The integrals,

Iα+φ(t) =
1

Γ(α)

∫ t

−∞
(t− s)α−1φ(s)ds =

1

Γ(α)

∫
R
(t− s)α−1φ(s)ds, t ∈ R (3.18)



3.4 Applications 47

Iα−φ(t) =
1

Γ(α)

∫ t

−∞
(s− t)α−1φ(s)ds =

1

Γ(α)

∫
R
(s− t)α−1φ(s)ds, t ∈ R (3.19)

are called fractional integrals of order α > 0 on the real line.

Definition 3.3.2. (Fractional derivatives on the real line) Let 0 < α < 1. For any

t ∈ R, the integrals,

Dα+f(t) =
1

Γ(1− α)

d

dt

∫ t

−∞
(t− s)−αf(s)ds, (3.20)

Dα−f(t) =
1

Γ(1− α)

d

dt

∫ ∞
t

(s− t)−αf(s)ds, (3.21)

are called fractional derivatives of order 0 < α < 1 on the real line.

Example 3.3.1. Let a < b, it is easy to show that, for any a > 0 and t ∈ R,

Iα±1[a,b)(t) =
1

Γ(1 + α)
[(b− t)−α∓ − (a− t)−α∓ ]. (3.22)

where we remember that x− = −min(x, 0) = max(−x, 0) = (−x)+. Moreover, for any

0 < α < 1, we have that:

Dα±1[a,b)(t) =
1

Γ(1− α)
[(b− t)−α∓ − (a− t)−α∓ ]. (3.23)

Remark 3.3.1. The definitions of fractional derivatives on the real line can be extended

to the case α ≥ 1, see ([29]) for details.

3.4 Applications

The fractional calculus fined applications in different field of sciences. This theory is

deeply used to develop mathematical models in which differential equations of fractional

order appear and fundamental solutions are available in terms of the M-L function and

its generalizations. We will study the basic M-L function, its generalization and some of

their properties.

3.4.1 The Mettag-Leffler function

The Mittag-Leffler function was introduced by Magnus Gustaf (Gösta) Mittag-Leffler

in 1903 ([16]). Its importance is not recognized before the last 20 years, it is discovered

due to the various types of applications in engineering, physics, biological sciences and

in many different areas. Gorenflo and Mainardi call Mittag-Leffler function as the queen

function in fractional calculus.
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Definition 3.4.1. The basic Mittag-Leffler function is denoted by Eα(z) and it is defined

as:

Eα(z) =
∞∑
n=0

zn

Γ(αn+ 1)
, α > 0, z ∈ C. (3.24)

Later The two-parameter generalization Mittag-Leffler function is given by :

Eα,β(z) =
∞∑
n=0

zn

Γ(αn+ β)
, α, β > 0, α, β ∈ R, z ∈ C. (3.25)

it is called the two-parameter function of Mittag-Leffler type.

Remark 3.4.1. The Mittag-Leffler function provides a simple generalization of the expo-

nential function, which is indeed obtained when α = 1.

Some of its interesting examples are ([20])

E1,1(z) = ez, E2,1(z2) = cosh(z), E2,2(z2) = sinh(z)
z

, Eα,1(z) = Eα(z).

Proposition 3.4.1. [20] Let Eα,β(z) be the generalized Mittag-Leffler function (eq. 3.25).

Then, one has the following useful relations:

• Let z ∈ C then,

Eα,β(z) =
1

Γ(β)
+ zEα,α+β(z). (3.26)

• Moreover,

Eα,β(z) = βEα,β+1(z) + αz
d

dz
Eα,β+1(z), (3.27)

• For any x, q > 0 and 0 < a < 1,

qxα−1Eα,α(−qxα) = − d

dx
Eα(−qxα). (3.28)

• Finally, for any x > 0 and p ∈ N

dp

dxp
[
xβ−1Eα,β(xα)

]
= xβ−p−1Eα,β−p(x

α). (3.29)

3.4.2 Fractional representation of fractional Brawnian motion

The name fractional Brownian motion suggests that it can be in some way regarded as

a fractional integral of Brownian motion. Here, we want to show that it is best viewed as

a fractional integral of a Gaussian white noise.
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Let BH(t), t ∈ R, be a (two-sided) fractional Brownian motion of index 0 < H < 1.

In the context of fractional integration, it is convenient to use another parameterization

of fBm: we set k = H − 1/2, and we indicate with Bk(t) a fBm of order k. Clearly, the

range 0 < H < 1 corresponds to the range −1/2 < k < 1/2.

We start with the moving average representation of standard fractional Brownian

motion (eq 2.5), namely:

Bk(t)
d
=

1

C1(k)

∫
R

(
(t− s)k+ − (−s)k+

)
dB0(s), t ∈ R, (3.30)

where

C1(k)2 =

∫ ∞
0

((1 + s)k − sk)2ds+
1

2k + 1
. (3.31)

Proposition 3.4.2. [20] Let −1/2 < k < 1/2 and suppose that Bk is a standard fBm.

Then,

Bk(t)
d
=

Γ(k + 1)

C1(k)

∫
R
Ik−1[0,t)(s)dB

0(s), t ∈ R. (3.32)

Heuristically, the representation (3.32) says that the fractional Gaussian noise is the

k-fractional integral of the white noise Ḃ0. That is, formally speaking:

Ḃk(t) = Ik+Ḃ0(t). (3.33)

In fact, we have naively that

Bk(t) =

∫
R
1[0,t)(s)Ḃ

k(s)ds =

∫
R
Ik−1[0,t)(u)Ḃ0(u)du =

∫
R
1[0,t)(u)Ik+Ḃ0(u)du,

where we have used the integration by parts formula (eq. 3.7).

Remark 3.4.2. It is also possible to relate fractional Brownian motion to fractional

integrals defined on an interval. (see [27]).



Chapter 4

Grey Brawnian motion

Grey Brownian motion was introduced by W. Schneider in [32, 31], as a stochastic model

for slow-anomalous diffusion described by the time-fractional diffusion equation. Later

F. Minardi, A. Mura and G. Pagnini [20, 21], extended this class, so called "generalized"

grey Brownian motion which includes stochastic models for slow and fast-anomalous dif-

fusion,i.e., the time evolution of the marginal density function is described by differential

equations of fractional type.

In this chapter, we introduce an extended class of stochastic processes which is called

’generalized’ grey Brownian motion (ggBm). This class includes non-Markovian stochas-

tic models either for slow and fast-anomalous diffusion. For a good introduction to the

theory of grey noise, we refer the reader to the book of [32].

4.1 Preliminaries

We begin by introducing some basic concepts and facts. Let X be a vector space over

a K−field and let {‖ · ‖p, p ∈ I} be a countable family of Hilbert norms defined on it. The

space X along with the Hilbert norms {‖·‖p, p ∈ I} is called a topological vector space

if it carries as natural topology the initial topology1 of the norms and the vector space

operations. We indicate with Xp the completion of X with respect to the norm ‖ · ‖p.

Let 〈·, ·〉, denotes the natural bilinear pairing between X and its dual space X ′. We

equip X ′ with the so-called weak topology, which is the coarsest topology such that the

functional 〈·, x〉 is continuous for any x ∈ X.
1The coarsest topology on X which makes those functions continuous.

50
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Definition 4.1.1. (Schwartz space) The space S(Rn) is the space of all the functions

f ∈ C∞(Rn), such that for any multi-indices j = (j1, j2, ..., jn) and k = (k1, k2, ..., kn) :

sup
x∈Rn
|xjDkf(x)| <∞. (4.1)

Definition 4.1.2. (Nuclear space) A topological vector space X, with the topology de-

fined by a family of Hilbert norms, is said a nuclear space if for any Hilbert norm ‖·‖p there

exists a larger norm ‖ · ‖q such that the inclusion map Xq ↪→ Xp is an Hilbert−Schmidt

operator.

Remark 4.1.1. Nuclear spaces have many of the good properties of the finite-dimensional

Euclidean spaces Rd. For example, a subset of a nuclear space is compact if and only if is

bounded and closed. Moreover, spaces whose elements are ’smooth’ in some sense tend

to be nuclear spaces.

In the following example, we see how nuclear spaces could be constructed naturally

starting from an Hilbert space and an operator (see [11]).

Example 4.1.1. Let H be an Hilbert space and A an operator defined on it. Suppose that

there exists an orthonormal bases {hn, n = 1, 2, ...} satisfying the following properties:

1. They are eigenvectors of A; i.e. for any n > 0 : Ahn = λnhn, λn ∈ R.

2. {λn}n>0 is a non−decreasing sequence such that:1 ≤ λ1 ≤ λ2 ≤ . . . ≤ λn.

3. There exists a positive integer a such that
∑∞

n=1 λ
−a
n <∞.

For any non−negative rational number p ∈ Q+, we define a sequence of norms

{‖ · ‖p, p ∈ Q+} such that: ‖ξ‖p = ‖Apξ‖, ξ ∈ H. That is,

‖ξ‖p =

(
∞∑
n=1

λ2p
n (ξ, hn)2

)1/2

, (4.2)

where (·, ·) indicates the H-inner product.

Remark 4.1.2. For any p ∈ Q+, the norm ‖ · ‖p is an Hilbert norm. Indeed, it comes

from the scalar product:

(ξ, η) =
∞∑
n=1

λ2p
n (ξ, hn)(η, hn). (4.3)

For any p ∈ Q+ we define: Xp = {ξ ∈ H, ‖ξ‖p <∞}. In view of the above remark, Xp is

an Hilbert space. Moreover, it is easy to see that for any p ≥ q ≥ 0 :

Xp ⊂ Xq. (4.4)



4.1 Preliminaries 52

We have the following proposition

Proposition 4.1.1. For any p ∈ Q+, the inclusion map Xp+a/2 ↪→ Xp is an Hilbert−Schmidt

operator.

Proof: We set hpn = 1
λpn
hn. The collection hpn, n = 1, 2, ... is an orthonormal bases of

Xp . In fact, for any positive integers n and m:

(hpn, h
p
m)p =

∞∑
k=1

λpk(h
p
n, hk)(h

p
m, hk) =

∞∑
k=1

λ2p
k

λpnλ
p
m
δnkδmk = δnm.

For each ξ ∈ Xp+a/2, we indicate with i(ξ) = ξ ∈ Xp the inclusion map. Therefore, for

any n > 0:

i(hp+a/2n ) = hp+a/2n =
1

λ
p+a/2
n

λpnh
p
n = λ−a/2hpn,

and thus by hypothesis
∞∑
n=1

‖i(hp+a/2n )‖2
p =

∞∑
n=1

λ−an <∞.

�

Consider the vector space X =
⋂
p∈Q+

Xp. In view of the above proposition, X along with

the family of Hilbert norms {‖ · ‖p, p ∈ Q+} is a nuclear space.

Definition 4.1.3. A continuous map Φ : X −→ C is called a characteristic functional

on X if it is:

1. Normalized: Φ(0) = 1,

2. Positive defined:
∑m

i,j=1 ciΦ(ξi−ξj)cj ≥ 0, m ∈ Z, {ci}i=1,....,m ∈ C, {ξi}i=1,...,m ∈ X

Example 4.1.2. For instance, consider the so called generating functional of a probability

measure µ defined on Rn, that is the Fourier transform:

χµ(ξ) =

∫
Rn
ei〈x,ξ〉dµ(x), ξ ∈ Rn (4.5)

where (ξ, x) indicates the Euclidean scalar product. Then, χµ is a characteristic functional.

In fact, it is continuous and normalized. Moreover, if we define

f(x) =
m∑
i=1

cie
i〈ξ,x〉,

then we have:
m∑

i,j=1

c̄iχ(ξi − ξj)cj =

∫
Rn
|f(x)|2dµ(x) = ‖f‖2

µ ≥ 0,

where ‖ · ‖µ is the L2(Rn, µ) norm.
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The finite dimensional Bochner theorem states that the converse is also true

Theorem 4.1.1. (Bochner’s theorem[20]) For any characteristic functional Φ on Rn

there exists a unique probability measure µ on Rn such that Φ is its generating functional.

Namely,

Φ(ξ) =

∫
Rn
ei〈x,ξ〉dµ(x), ξ ∈ Rn.

In the characterization of typical configurations of measures on infinite-dimensional

spaces, the so-called Minlos theorem plays a very important role. This theorem is an

infinite-dimensional generalization of the Bochner theorem:

Theorem 4.1.2. (Minlos theorem [20]) Let X be a nuclear space. For any character-

istic functional Φ defined on X there exists a unique probability measure µ defined on the

measurable space (X ′,B), where B is regarded as the Borel σ-algebra generated by the weak

topology on X ′, such that: ∫
X′
ei〈w,ξ〉dµ(w) = Φ(ξ), ξ ∈ X. (4.6)

Characteristic functional on Hilbert spaces can be defined starting from completely

monotonic functions. In fact, we have the following proposition:

Proposition 4.1.2. [20] Let F be a completely monotonic function defined on the posi-

tive real line.Therefore, there exists a unique characteristic functional , defined on a real

separable Hilbert space H, such that:

Φ(ξ) = F (‖ξ‖2), ξ ∈ H.

Remark 4.1.3. This is obvious because completely monotonic functions are associated to

non-negative measure defined on the positive real line (see [7]). The converse is also true

(see [31],[32]).

4.2 White noise

Consider the Schwartz space S(R). Equip S(R) with the usual scalar product

(ξ, η) =

∫
R
ξ(t)η(t)dt, ξ, η ∈ S(R). (4.7)
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We indicate the completion of S(R) with respect to Equation (4.7) with S0(R) = L2(R).

We consider the orthonormal system {hn}n≥0 of the Hermite functions

hn(x) =
1√

(2nn!
√
π)
Hn(x)e−x

2/2, (4.8)

where Hn(x) = (−1)nex
2
(d/dx)ne−x

2 are the Hermite polynomials of degree n. Let A be

the ’harmonic oscillator’ operator:

A = − d2

dx2
+ x2 + 1; (4.9)

A is densely defined on S0(R) and the Hermite functions are eigenfunctions of A :

Ahn = λnhn = (2n+ 2)hn, n = 0, 1, ....

We observe that 1 ≤ λ0 ≤ λ1 ≤ . . . ≤ λn and
∑

n λ
−2
n < ∞. We are in the condition of

Example 4.1.1. Therefore, for any non-negative integer p, we can define:

‖ξ‖p = ‖Apξ‖ =

(
∞∑
n=0

(2n+ 2)2p(ξ, hn)2

)1/2

,

where ‖·‖ indicates the L2(R) norm. The Schwartz space S(R) could be then reconstructed

as the projective limit of the Hilbert spaces Sp(R) = {ξ ∈ L2(R); ‖ξ‖p <∞}. That is,

S(R) =
⋂
p≥0

Sp(R). (4.10)

Therefore, the topological Schwartz space, with the topology defined by the ‖·‖p norms,

is a nuclear space. Since S(R) is a nuclear space, we can apply the Minlos theorem in

order to define probability measures on its dual space S ′(R) .

Consider the positive function F (t) = e−t, t ≥ 0. It is obvious that F is a completely

monotonic function. Therefore, the functional Φ(ξ) = F (‖ξ‖2), ξ ∈ L2(R), defines a

characteristic functional on S(R). By Minlos theorem, there exists a unique probability

measure µ, defined on (S ′(R),B), such that:∫
S′(R)

ei〈w,ξ〉dµ(w) = e−‖ξ‖
2

, ξ ∈ S(R). (4.11)

The probability space (S ′(R),B, µ) is called white noise space and the measure µ is

called white noise measure, or standard Gaussian measure, on S ′(R).

Consider the generalized stochastic process X, defined on the white noise space,

such that for each test function ϕ ∈ S(R):

X(ϕ)(·) = 〈·, ϕ〉. (4.12)
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Clearly, for any ϕ ∈ S(R), X(ϕ) is a Gaussian random variable with zero mean and

variance E(X(ϕ)2) = 2‖ϕ‖2. Moreover, for any ϕ, φ ∈ S(R):

E(X(ϕ)X(φ)) = 2(ϕ, φ), (4.13)

where E(w) indicates the expectation value of the random variable w. We refer to the

generalized process X as the canonical noise of (S ′(R),B, µ).

Remark 4.2.1. In view of the above properties the process X is a white noise [11], and

this also motivates the name ’white noise space’ for the probability space (S ′(R),B, µ)

We have the following:

Proposition 4.2.1. For any h ∈ L2(R), X(h) is defined almost everywhere on S ′(R) .

Moreover, it is Gaussian with zero mean and variance 2‖h‖2.

Proof: We indicate with L2 = L2(S ′(R), µ). Clearly, for any ξ ∈ S(R), we have that

X(ξ) ∈ L2 and

‖X(ξ)‖2
L2 = E(X(ξ)2) = 2‖ξ‖2

L2 . (4.14)

For each h ∈ L2(R), there exists a sequence {ξn}n∈N of S(R)-elements which converges

to h in the L2(R)-norm. Therefore, from Equation 4.14, the sequence {X(ξn)}n∈N is

Cauchy in L2 and converges to a limit function X(h), defined on S ′(R) . �

The latter proposition states that for every sequence {ft}t∈R of L2(R)−functions,

depending continuously on a real parameter t ∈ R, there exists a Gaussian stochastic

process

{Y (t)}t∈R = {X(ft)}t∈R, (4.15)

defined on the probability space (S ′(R),B, µ), which has zero mean, variance

E(Yt)
2 = 2‖ft‖2 and covariance E(Y (t1)Y (t2)) = 2(ft1 , ft2).

Remark 4.2.2. Observe that if W (x), x ∈ R, is a Wiener process defined on the proba-

bility space (Ω,F ,P), then the functional

X(ϕ) =

∫
ϕ(x)dW (x), ϕ ∈ L2(R) (4.16)

is a white noise on the space (Ω,F ,P). Therefore, if we indicate with 1[0,t)(x), t ≥ 0, the

indicator function of the interval [0, t), the process

X(1[0,t)) =

∫ t

0

dW (x) = W (t), t ≥ 0, (4.17)

is a one-sided Brownian motion.
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Example 4.2.1. (Brownian motion) Let X be a white noise defined canonically on the

white noise space (S ′(R),B, µ). Looking at Equation 4.17, it is natural to state that the

stochastic process

{B(t)}t≥0 = {X(1[0,t))}t≥0 (4.18)

is a standard Brownian motion. Indeed, the process {X(1[0,t))}t≥0 is Gaussian with co-

variance:

E[X(1[0,t))X(1[0,s))] = 2(1[0,t)1[0,s)) = 2 min(t, s), t, s ≥ 0.

Example 4.2.2. (Fractional Brownian motion) The stochastic process:

{Bα/2(t)}t≥0 = {X(fα,t)}t≥0, 0 < α < 2, (4.19)

where

fα,t(x) =
1

C1(α)
((t− x)

α−1/2
+ − (−x)

α−1/2
+ ), x+ = max(x, 0), (4.20)

and

C1(α) =
Γ(α + 1/2)

(Γ(α + 1) sin(πα/2))1/2
, (4.21)

is a ’standard’ fractional Brownian motion of order H = α/2 (see[33]).

4.3 Grey noises

We have seen that the white noise is a generalized stochastic process X defined

canonically on the white noise space (S ′(R),B, µ) , with space of test functions L2(R).

We have remarked that the white noise could also be defined starting from stochastic

integrals with respect to the Brownian motion. In this case the space of test function

turns out to be the space of integrands of the stochastic integral. Then, the Brownian

motion B(t) could be obtained from the white noise by setting B(t) = X(1[0,t)) [8]. We

generalize the previous construction in order to define a general class of H-sssi processes

that includes Brownian motion, fractional Brownian motion and more general processes.

Consider a one-sided fractional Brownian motion {Bα/2(t)}t≥0 with self-similarity

parameter H = α/2 and 0 < α < 2, defined on a certain probability space (Ω,F ,P). The

fractional Brownian motion has a spectral representation :

Bα/2 =
√
C(α)

∫
R

1√
2π

eitx − 1

ix
|x|

1−α
2 dB̃(x), t ≥ 0, (4.22)
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where dB̃(x) is a complex Gaussian measure such that dB̃(x) = dB1(x) + idB2(x) with

dB1(x) = dB1(−x), dB2(x) = −dB2(−x) and where B1 and B2 are independent Brownian

motion. Moreover,

C(α) = Γ(α + 1) sin
πα

2
. (4.23)

We observe that
1√
2π

eitx − 1

ix
= 1̃[0,t)(x), (4.24)

where we have indicated with f̃(x) the Fourier transform of the function f evaluated on

x ∈ R :

f̃(x) = F(f)(x) =
1√
2π

∫
R
eixyf(y)dy. (4.25)

In view of Equation 4.24 we have

Bα/2 =
√
C(α)

∫
R

1̃[0,t)(x)|x|
1−α
2 dB̃(x). (4.26)

Therefore, if one defines a generalized stochastic process X such that for a suitable choice

of a test function ϕ

Xα(ϕ) =
√
C(α)

∫
R
ϕ̃(x)|x|

1−α
2 dB̃(x), (4.27)

one can write

Bα/2 = Xα(1[0,t)), t ≥ 0. (4.28)

Remark 4.3.1. The space of test function can be the space

Λ̃α = {f ∈ L2(R); ‖f‖2
α = C(α)

∫
R
|f̃(x)|2|x|1−αdx <∞}, (4.29)

which coincides with a space of deterministic integrands for fractional Brownian motion

(see [25],[27] ).

Consider now the Schwartz space S(R) equipped with the scalar product:

(ξ, η)α = C(α)

∫
R
ξ̃(x)η̃(x)|x|1−αdx, ξ, η ∈ S(R), 0 < α < 2, (4.30)

where C(α) is given by Equation (4.23). This scalar product generate the α-norm in Equa-

tion (4.29). We indicate with S(α)
0 (R) the completion of S(R) with respect to Equation

(4.30).

Remark 4.3.2. If we set α = 1 in Equation (4.30), we have C(1) = 1 and

(ξ, η)1 =

∫
R
ξ̃(x)η̃(x)dx =

∫
R
ξ(y)η(y)dy, (4.31)

so that, we recover the L2(R)-inner product. Moreover, S(1)
0 (R) = S0(R) = L2(R).
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Starting from the Hilbert space (S(α)
0 (R), ‖ · ‖α), it is possible to reproduce the

construction of Example (4.1.1). Then, the space S(R) turns out to be a nuclear space

with respect to the topology generated by the α-norm ‖ · ‖α and an operator A(α).

We need to find an orthonormal bases for the space S(α)
0 (R) For this purpose, we

introduce the following definition:

Definition 4.3.1. (Generalized Laguerre polynomials) The generalized Laguerre poly-

nomials are defined, for any non-negative integer n, by:

Lγn(x) =
x−γex

Γ(n+ 1)

dn

dxn
(e−xxn+γ), γ > −1, x ≥ 0, (4.32)

They are orthogonal with respect to the weighting function xγe−x :

∫ ∞
0

xγe−xLγn(x)Lγm(x) =
Γ(n+ γ + 1)

Γ(n+ 1)
δnm. (4.33)

Proposition 4.3.1. [20] The generalized Laguerre polynomials satisfies the Laguerre

equation: (
x
d2

dx2
+ (γ + 1− x)

d

dx

)
Lγn(x) = −nLγn(x). (4.34)

Define now a set of S(α)
0 (R) functions {hαn}n∈Z+ in terms of their Fourier transform by:
h̃α2n(x) = an,αe

−x2/2L
−α/2
n (x2), n ∈ Z+;

h̃α2n+1(x) = bn,αe
−x2/2xL

1−α/2
n (x2), n ∈ Z+.

One has:

Proposition 4.3.2. The set of functions {hαn}n∈Z+ is an orthonormal basis for S(α)
0 (R)

with the choice:

aα,n =

(
Γ(n+ 1)

C(α)Γ(n+ 1− α/2)

)1/2

, (4.35)

bα,n =

(
Γ(n+ 1)

C(α)Γ(n+ 2− α/2)

)1/2

. (4.36)

Proof: See [20]

Then, using Equation (4.34), one can show that the orthonormal bases {hαn}n∈Z+ is a

set of eigenfunction of an operator A(α), defined on S(α)
0 (R) , with eigenvalues λ(α)

n =

2n+ 2− α + 1.
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Remark 4.3.3. We recall the well-known relationships between Laguerre and Hermite

polynomials: 
H2n(x) = (−1)n22nn!L

−1/2
n (x2)

H2n+1(x) = (−1)n22n+1n!xL
1/2
n (x2).

In view of the above relations, when α = 1 the orthonormal bases {hαn}n∈Z+ reduces

to the Hermite bases of L2(R) (Equation 4.8), which is preserved under Fourier transfor-

mation.

4.3.1 Generalised grey noise space

By Proposition (4.1.2) starting from a completely monotonic function F, we can de-

fine characteristic functionals on S(R) by setting Φ(ξ) = F (‖ξ‖2
α). Then, we can use

Minlos theorem in order to define probability measures on S ′(R). We consider the

Mittag-Leffler function of β > 0 :

Eβ(x) =
∞∑
n=0

xn

Γ(βn+ 1)
, x ∈ R. (4.37)

It is known that the function Fβ(t) = Eβ(−t), t ≥ 0, is a completely monotonic function

if 0 ≤ β ≤ 1 [18]. For example, if β = 1 we recover F1(t) = e−t . Therefore, the functional

Φα,β(ξ) = Fβ(‖ξ‖2
α), ξ ∈ S(α)

0 (R) defines a characteristic functional on S(R). By Minlos

theorem, there exists a unique probability measure µα,β , defined on (S ′(R),B), such that:∫
S′(R)

ei〈w,ξ〉dµα,β(w) = Fβ(‖ξ‖2
α), ξ ∈ S(R). (4.38)

When α = β and 0 < β ≤ 1, the probability space (S ′(R),B, µβ,β) is called grey noise space

and the measure µβ,β is called grey noise measure(see[31], [32]).

In this master theses, we focus on the more general case 0 < α < 2 and we call the space

(S ′(R),B, µα,β) generalized grey noise space and µα,β generalized grey noise measure.

Definition 4.3.2. The generalized stochastic process Xα,β, defined canonically on

the ’generalized’ grey noise space(S ′(R),B, µα,β), is called generalized grey noise. There-

fore, for each test function ϕ ∈ S(R) :

Xα,β(ϕ)(·) = 〈·, ϕ〉. (4.39)
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Remark 4.3.4. By the definition of ’generalized’ grey noise measure Equation (4.38), for

any ϕ ∈ S(R), we have:

E(eiyXα,β(ϕ)) = Eβ(−y2‖ϕ‖2
α), y ∈ R. (4.40)

Using Equations (4.40) and (4.37), it easy to show that the generalized grey noise

has moments of any order:


E(Xα,β(ξ)2n+1) = 0,

E(Xα,β(ξ)2n) = 2n!
Γ(βn+1)

‖ξ‖2n
α ,

for any integer n ≥ 0 and ξ ∈ S(R). It is possible to extend the space of test functions

to the whole. In fact, for any ξ ∈ S(R) we have Xα,β(ξ) ∈ L2 = L2(S ′(R), µα,β). Thus, for

any h ∈ S(α)
0 (R), the function Xα,β(h) is defined as a limit of a sequence Xα,β(ξn), where

{ξn} belong to S(R). Therefore, we have the following:

Proposition 4.3.3. [20] For any h ∈ S(α)
0 (R), Xα,β(h) is defined almost everywhere on

S ′(R) and belongs to L2.

Summarizing, the "generalized" grey noise is defined canonically on the grey noise

space (S ′(R),B, µα,β) with the following properties:

1. For any S(α)
0 (R), Xα,β(h) is well defined and belong to L2.

2. E(eiyXα,β(h)) = Eβ(−y2‖h‖2
α) for any y ∈ R.

3. E(Xα,β(h)) = 0 and E(Xα,β(h)2) = (2/Γ(β + 1))‖h‖2
α.

4. For any h and g that belong to S(α)
0 (R), one has:

E(Xα,β(h)Xα,β(g)) =
1

Γ(β + 1)
[(h, g)α + (h, g)α]. (4.41)

4.4 Generalesed grey brownian motion

If we put β = 1, the measure µα,1 := µα is a Gaussian measure and Xα,1 := Xα is

a Gaussian noise. In fact, for any h ∈ S(α)
0 (R), the random variable Xα(h) is Gaussian

with zero mean and variance E(Xα(h)2) = 2‖h‖2
α (see Equation 4.40). Moreover, for any
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sequence {ft}t∈R of S(α)
0 (R)-functions,depending continuously on a real parameter t ∈ R

the stochastic process Y (t) = Xα(ft) is Gaussian with autocovariance given by Equation

(4.41)

E(Y (t)Y (s)) = E(Xα(ft)Xα(fs)) = (ft, fs)α + (ft, fs)α. (4.42)

When α = 1, Xα reduces to a "standard" white noise (see Remark 4.3.2 and Remark

4.2).

Example 4.4.1. (Fractional Brownian motion) For any t ≥ 0 the function 1[0,t)

belongs to S(α)
0 (R). In fact, it is easy to show that ‖1[0,t)‖2

α
<∞ when 0 < α < 2 and

‖1[0,t)‖2
α

=
C(α)

2π

∫
R

2

|x|1+α
(1− cos tx)dx = tα. (4.43)

Therefore, we can define the process

Bα/2(t) = Xα(1[0,t)), t ≥ 0. (4.44)

The process Bα/2(t) is a ’standard’ fractional Brownian motion with parameter H = α/2.

Indeed, it is Gaussian with variance E(Bα/2(t)2) = 2‖1[0,t)‖2
α

= 2tα and autocovariance:

E(Bα/2(t)Bα/2(s)) = (1[0,t),1[0,s))α + (1[0,t),1[0,s))α

=
C(α)

2π

∫
R

2

|x|1+α
(1− cos tx+ 1− cos sx− 1 + cos(t− s)x)dx

= tα + sα − |t− s|α = γα(t, s), t, s ≥ 0.

In view of the above example, Xα could be regarded as a fractional Gaussian noise

defined on the space (S ′(R),B, µα).

Example 4.4.2. (Deconvolution of Brownian motion) The stochastic process

{B(t)}t≥0 = {Xα(gα,t)}t≥0, (4.45)

where, for each t ≥ 0, the function gα,t is defined by

g̃α,t(x) =
1√
C(α)

1̃[0,t)(x)(ix)α−1/2, (4.46)
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is a ’standard’ Brownian motion. Indeed, it is Gaussian, with zero mean, variance

E(B(t)2) = 2

∫
R
|X|1−α|1̃[0,t)(x)|2|X|α−1dx = 2

∫
R
|1̃[0,t)(x)|2dx = 2t, (4.47)

and autocovariance

E(B(t)B(s)) =

∫
R

(
1̃[0,t)(x)1̃[0,s)(x) + 1̃[0,s)(x)1̃[0,s)(x)

)
dx = 2 min(t, s). (4.48)

Remark 4.4.1. The representation of Brownian motion in terms of the fractional Gaus-

sian noise Equation (4.45) corresponds to a particular case of the so-called deconvolution

formula, which expresses the Brownian motion as a stochastic integral with respect to a

fractional Brownian motion of order H = α/2 (see[26]). More generally, we can represent

a fractional Brownian motion Bγ/2(t) of order H = γ/2, 0 < γ < 2 in terms of a fractional

Gaussian noise of order α, which corresponds to a representation of Bγ/2 in terms of a

stochastic integral of a fractional Brownian motion Bα/2 of order H = α/2, 0 < α < 2

(see Example 4.4.3).below

Example 4.4.3. (Deconvolution of fractional Brownian motion) The stochastic

process,

{Bγ/2(t)}t≥0 = {Xα(gα,γ,t)}t≥0, (4.49)

where

g̃α,γ,t(x) =

√
C(γ)

C(α)
1̃[0,t)(x)(ix)(α−γ/2), 0 < γ < 2, (4.50)

is a ’standard’ fractional Brownian motion of order H = γ/2.

4.4.1 Generalized grey Brownian motion definition

We now consider the general case 0 < α < 2, 0 < β ≤ 1.

Definition 4.4.1. The stochastic process

{Bα,β(t)}t≥0 = {Xα,β(1[0,t))}t≥0. (4.51)

is called ’generalized’ (standard) grey Brownian motion.

The generalized grey Brownian motion Bα,β has many properties that come directly

from the grey noise properties and Equation (4.43):
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1. Bα,β(0) = 0 a.s. Moreover, for each t ≥ 0, E(Bα,β(t)) = 0 and

E(Bα,β(t)2) =
2

Γ(β + 1)
tα. (4.52)

2. The autocovariance function is:

E(Bα,β(t)Bα,β(s)) = γα,β(t, s) =
1

Γ(β + 1)
(tα + sα − |t− s|α). (4.53)

3. For any t, s ≥ 0, the characteristic function of the increments is:

E(eiy(Bα,β(t)−Bα,β(s))) = Eβ(−y2|t− s|α), y ∈ R. (4.54)

The third property follows from the linearity of the grey noise definition. In fact, suppose

0 ≤ s < t, we have y(Bα,β(t) − Bα,β(s)) = yXα,β(1[0,t) − 1[0,s)) = Xα,β(y1[s,t)), and

‖y1[s,t)‖2
α = y2(t− s)α. All these properties are enclosed in the following:

Proposition 4.4.1. For any 0 < α < 2 and 0 < β ≤ 1, the process Bα,β(t), t ≥ 0, is a

self-similar with stationary increments process (H-sssi), with H = α/2.

Proof: This result is actually a consequence of the linearity of the noise definition.

Given a sequence of real numbers {θj}j=1,...,n we have to show that for any 0 < t1 < t2 <

· · · < tn and a > 0 :

E

(
exp

(
i
∑
j

θjBα,β(atj)

))
= E

(
exp

(
i
∑

θja
α/2Bα,β(tj

)
)
)
.

The linearity of the grey noise definition allows to write the above equality as

E

[
exp

(
iXα,β

(∑
j

θj1[0,atj)

))]
= E

[
exp

(
iXα,β

(
aα/2

∑
j

θj1[0,tj)

))]
.

Using Equation 4.40 we have

Fβ

(
‖
∑
j

θj1[0,atj)‖2
α

)
= Fβ

(
‖aα/2

∑
j

θj1[0,tj)‖2
α

)
which, because of the complete monotonicity, reduces to

‖
∑
j

θj1[0,atj)‖2
α = aα‖

∑
j

θj1[0,tj)‖2
α.

In view of the definition Equations 4.30 and 4.24, the above equality is checked after a

simple change of variable in the integration. In the same way we can prove the stationarity

of the increments.We have to show that for any h ∈ R :
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E

[
exp

(
i
∑
j

θj(Bα,β(tj + h)−Bα,β(h))

)]
= E

[
exp

(
i
∑
j

θj(Bα,β(tj))

)]
.

We use the linearity property to write

E

[
exp

(
iXα,β

(∑
j

θj1[h,tj+h)

))]
= E

[
exp

(
iXα,β

(∑
j

θj1[0,tj)

))]

By using the definition and the complete monotonicity, we have

‖
∑
j

θj1[h,tj+h)‖2
α = ‖

∑
j

θj1[0,tj)‖2
α

which is true because

1̃[h,tj+h)(x) =
1√
2π

eixh

ix
(eixtj − 1).

�

Remark 4.4.2. In view of Proposition 4.4.1, {Bα,β(t)} forms a class of H-sssi stochastic

processes indexed by two parameters 0 < α < 2 and 0 < β ≤ 1. This class includes frac-

tional Brownian motion (β = 1), grey Brownian motion (α = β) and Brownian motion

(α = β = 1).

In Figure 4.1, we present a diagram that allows us to identify the elements of this

class of processes. The long range dependence domain corresponds to the region 1 <

α < 2. The horizontal line represents the processes with purely random increments,

that is, processes that possess uncorrelated increments. The fractional Brownian motion

is identified by the vertical line (β = 1). The lower diagonal line represents the grey

Brownian motion.
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Figure 4.1: Parametric class of generalized grey Brownian motion. The upper diagonal

line indicates the ’conjugated’ process of grey Brownian motion.

4.4.2 The p-variation of generalized grey Brownian motion

This subsection is devoted to the study of the p-variation of ggBm. The approach taken

is inspired from the one used for the fBm.

Proposition 4.4.2. We have the following limit in probability

lim
n−→+∞

np
α
2
−1

n∑
j=1

∣∣∣∣Bα,β

(
j

n

)
−Bα,β

(
j − 1

n

)∣∣∣∣p = E(|Bα,β(1)|p).

Proof: See [4]

Proposition 4.4.3. [4]We have the following limit in probability

Vp,n :=
n∑
j=1

∣∣∣∣Bα,β(
j

n
)−Bα,β(

j − 1

n
)

∣∣∣∣p −−−−−−−→
n −→ +∞


0 a.s. if pα/2 > 1

∞ a.s. if pα/2 < 1

E(|Bα,β(1)|p) a.s. if p = 2/α.

Remark 4.4.3. The ggBm is not a semimartingale. In addition, Bα,β cannot be of finite

variation on [0, 1] and by scaling and stationarity of the increment on any interval.

Proof: Indeed there is a subsequence such that Vp,n converge almost surely to ∞ for

p = 1 and α ∈ (0, 2). If α ∈ (1, 2) we can choose p ∈ (2/α, 2) such that Vp,n converge to
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0 for some subsequence. This implies that the quadratic variation of Bα,β is zero. if α ∈

(0, 1) we can choose p > 2 such that 2p/α < 1 and the p-variation of Bα,β must be infinite.

So, in any case Bα,β can not be a semimartingale. �

4.5 The ggBm master equation

The following proposition characterizes the marginal density function of the process

{Bα,β(t), t ≥ 0} :

Proposition 4.5.1. The marginal probability density function fα,β(x, t) of the process

{Bα,β(t), t ≥ 0} : is the fundamental solution of the ’stretched’ time-fractional diffusion

equation:

u(x, t) = u0(x) +
1

Γ(β)

∫ t

0

α

β
sα/β−1(tα/β − sα/β)β−1 ∂

2

∂x2
u(x, s)ds, t ≥ 0. (4.55)

Proof: Equation 4.54 with (s = 0) states that f̃α,β(y, t) = Eβ(−y2tα). Using Equation

(4.37), we can show that the Mittag-Leffler function satisfies

Eβ(−y2(tα/β)β) = 1− y2

Γ(β)

∫ tα/β

0

(tα/β − s′)β−1Eβ(−y2s′β)ds′

= 1− y2

Γ(β)

∫ t

0

α

β
sα/β−1(tα/β − sα/β)β−1Eβ(−y2sα)ds,

where we have used the change of variables s′ = sα/β. Thus, fα,β(x, t) solves Equation 4.55

with initial condition u0(x) = fα,β(x, 0) = δ(x). �

We refer to Equation 4.55 as the master equation of the marginal density function

of the ’generalized’ grey Brownian motion, the fundamental solution of (eq. 4.55) is just:

u(x, t) = Mβ(x, tα/β) =
t−α/2

2
Mβ/2(|x|t−α/2). (4.56)

The M-Wright function Mβ(see Appendix) emerges as a natural generalization of the

Gaussian distribution.

4.6 Characterization of th ggBm

We have seen that the generalized grey Brownian motion (ggBm), is made up off self-

similar with stationary increments processes (Prop. 4.4.1) and depends on two real pa-

rameters α ∈ (0, 2) and β ∈ (0, 1].
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The ggBm is defined through the explicit construction of the underline probability

space. However, we are now going to show that it is possible to define it in an unspecified

probability space. For this purpose, we write down explicitly all the finite dimensional

probability density functions. Moreover, we shall provide different ggBm characteriza-

tions.

Proposition 4.6.1. Let Bα,β be a ggBm, then for any collection {Bα,β(t1), ..., Bα,β(tn)},

the joint probability density function is given by:

fα,β(x1, x2, ..., xn; γα,β) =
(2π)−

n−1
2√

2Γ(1 + b)n det γα,β

∫ ∞
0

1

τn/2
M1/2

(
ζ

τ 1/2

)
Mβ(τ)dτ. (4.57)

with:

ζ =

(
2Γ(1 + β)−1

n∑
i,j=1

xiγ
−1
α,β(ti, tj)xj

)1/2

, γα,β(ti, tj) = 1
Γ(1+β)

(tαi + tαj − |ti − tj|α), i, j =

1, ..., n.

Proof: See ([20]).

Using the Kolmogorov extension theorem (see Theorem 1.1.1), the above proposi-

tion allows us to define the ggBm in an unspecified probability space. In fact, given a

probability space (Ω,F ,P), the following proposition characterizes the ggBm:

Proposition 4.6.2. [20] Let X(t), t ≥ 0, be a stochastic process, defined in a certain

probability space (Ω,F ,P), such that

1. X(t) has covariance matrix indicated by γα,β and finite-dimensional distributions

defined by (eq. 4.57 ).

2. EX2(t) = 2
Γ(1+β)

tα for 0 < β ≤ 1 and 0 < α < 2.

3. X(t) has stationary increments,

then X(t), t ≥ 0, is a generalized grey Brownian motion.

In fact condition 2) together with condition 3) imply that γα,β must be the ggBm

autocovariance matrix (eq. 4.53).

Corollary 4.6.1. [20] Let X(t), t ≥ 0, be a stochastic process defined in a certain proba-

bility space (Ω,F ,P). Let H = α/2 with 0 < α < 2 and suppose that EX(1)2 = 2/Γ(1+β).
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The following statements are equivalent:

i) X is H-sssi with finite-dimensional distribution defined by (eq. 4.57);

ii) X is a generalized grey Brownian motion with scaling exponent α/2 and "fractional

order" parameter β;

iii) X has zero mean, covariance function γα,β(t, s), t, s ≥ 0, defined by (eq. 4.53) and

finite dimensional distribution defined by (eq. 4.57).

4.7 Representation of ggBm

Up to now, we have seen that the ggBm Bα,β(t), t ≥ 0, is an H-sssi process, which

generalizes Gaussian processes (it is indeed Gaussian when β = 1) and is defined only

by its autocovariance structure. These properties make us think that Bα,β(t) may be

equivalent to a process ΛβXα(t), t ≥ 0, where Xα(t) is a Gaussian process and Λβ is a

suitable chosen independent random variable. Indeed, the following proposition holds:

Proposition 4.7.1. It was shown in [20] that the gBm Bα,β admits the following repre-

sentation

{Bα,β(t), t ≥ 0} d
= {
√
LβXα(t), t ≥ 0}, (4.58)

where Xα(t) is a standard fBm , Lβ is an independent nonnegative random variable with

probability density function Mβ(τ), τ ≥ 0.

The representation (4.58) is particularly interesting. In fact, a number of question,

in particularly those related to the distribution properties of Bα,β(t), can be reduced to

question concerning the fBm Xα(t), which are easier since Xα(t) is a Gaussian process.

Remark 4.7.1. . It follows from the representation (4.58) that the Hölder continuity of

the trajectories of ggBm reduces to the Hölder continuity of the fBm.

4.8 ggBm trajectories

In order to obtain examples of the Bα,β(t) =
√
LβXα(t) trajectories, we just have

to simulate the fractional Brownian motion Xα(t). For this purpose (See [20]). Some

typical path simulations of Bβ,β(t) (shortly Bβ(t) and B2−β,β(t)), with β = 1/2 are shown
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in Figures 4.2, 4.3. The first process provides an example of stochastic model for slow-

diffusion (short-memory), the second provides a stochastic model for fast-diffusion (long-

memory), see [20].

Figure 4.2: Bβ(t) trajectories in the case β = 0.5 for 0 ≤ t ≤ 2

Figure 4.3: B2−β,β(t) trajectories in the case β = 0.5 for 0 ≤ t ≤ 2.



Conclusion

O ur interest through this work has been focused on structural properties of the gen-

eralized grey Brownian motion {Bα,β(t), 0 < α < 2, 0 < β ≤ 1} (ggBm) which is

class of self-similar stochastic processes with stationary increments.

we brought the reader through the fundamental notions of stochastic processes, stochas-

tic integration. In particular, within the study of H-sssi processes, we focused on Brownian

motion, fractional Brownian motion (fBm), then we introduced the theory of fractional in-

tegrals and derivatives, which turns out to be very appropriate for studying and modeling

systems which exhibit long-memory properties.

We showed that this process (ggBm) is made up of self-similar with stationary incre-

ments H-sssi of order H = α
2
.Which for α = β actually reduces to the usual time-factional

diffusion equation of order β.We have shown that: when, 0 < α < 1, the diffusion is slow.

The increments of the ggBm turn out to be negatively correlated and this implies that the

trajectories are very "zigzaging" (antipersistent). When α = 1, the diffusion is normal.

The increments of the process are uncorrelated, but not independent unless β = 1. And

for 1 < α < 2, the diffusion is fast. The increments of this process are positively corre-

lated, so that the trajectories are more regular (persistent). In this case the increments

exhibits long-range dependence see Figures 4.2, 4.3.

The ggBm is of course Non-Markovian. We also pointed out that the generalized grey

Brownian motion is a direct generalization of a Gaussian process. Question related to gBm

may be reduced to questions concerning the fBm which is easier since it is Gaussian. From

this point and as future work we tray to focuss on the problem of stochastic differential

equation driven by gBm, and before that the problem of stochastic integration with respect

to this process.

70



Appendix
The Hurst parameter

Is one of the most important parameters that can characterize a self-similar or LRD sig-

nal. It takes a value between 0 and 1, and mostly we deal with processes with a Hurst

parameter larger than 0.5, which are known to possess long memory (called the selfsimi-

larity parameter).

Hilbert-Schmidt Operators

An Hilbert-Schmidt operator is a bounded operator A, defined on an Hilbert spaceH, such

that there exists an orthonormal basis {ei}i∈I of H with the property
∑
i∈I

||Aei||2 <∞.

Gamma function

Euler made the first step in the right direction in 1729 with the Gamma function , is the

generalization of the factorial function n! :

Γ(s) =

∫ ∞
0

ts−1e−tdt; (4.59)

which is defined for all s ∈ C {0, 1, 2, 3, ...}. It is easy to see that Γ(1) = 1, and integration

by parts reveals the identity:

Γ(s+ 1) = sΓ(s), ∀s. (4.60)

From these two facts we deduce that the Gamma function extends the factorial function:

Γ(n) = (n− 1)!,∀n ∈ N. (4.61)

Some of the most important examples are :

Γ(1) = Γ(2) = 1, Γ(z+1) = zΓ(z), Γ(1/2) =
√
π, Γ(n+1/2) =

√
π

2n
(2n−1)!!, n ∈ N.

Anomalous diffusion

Anomalous diffusion is characterized by the asymptotic time power-law behaviour of the

variance for large times: σ2(t) ∼ tγ . Namely, the diffusion is slow if the exponent γ is

lesser than one, normal if it is equal to one and fast if it is greater than one.

Completely monotone function

A function F (t) is completely monotone if it is non-negative and possesses derivatives of

71
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any order such that:

(−1)k
dk

dtk
F (t) ≥ 0, t > 0, k ∈ Z+

The Wright function Wλ,µ(z)

The Wright function, that we denote by Wλ,µ(z), is so named in honour of E. Maitland

Wright, the eminent British mathematician, who introduced and investigated this function

in a series of notes starting from 1933 in the framework of the theory of partitions. The

function is defined by the series representation, convergent in the whole complex plane,

Wλ,µ(z) :=
∞∑
n=0

zn

n!Γ(λn+ µ)
, λ > −1, µ ∈ C,

so Wλ,µ(z) is an entire function. Originally, Wright assumed λ > 0, and, only in 1940, he

considered −1 < λ < 0.
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