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Introduction

The study of stochastic equation flows is an essential tool in geometry stochastic
differential. It was Neveu [37], the first who has demonstrated a theorem of continuity
of the solution of a stochastic differential equation as a function of the initial value
in 1973 for the classical type equations governed by a Brownian motion.

The fundamental result in the study of the differentiability of solutions of a stochas-
tic differential equation according to the initial conditions says that, if we consider
the solution of a very good differential equation stochastic, corresponding to the ini-
tial value, there is a differentiable version. This result is due to Malliavin for the
classical type equations on varieties, this is one of the important steps in his prob-
abilistic demonstration of hypo-ellipticity results. In 1979, Paul André Meyer [38]
demonstrated the same result in Rn for an equation governed by a semi-martingale
discontinuous.

In the deterministic case, the flow is a group with a parameter of diffeomorphisms.
For general stochastic differential equations, we can only hope for injectivity if semi-
martingale is continuous. In the case of the Wiener process, Malliavin has actually
demonstrated it by means of the natural time-reversal argument, and Bismut has
demonstrated surjectivity in the case of Rn. More recently (1980), the general case
of injectivity has been treated without reversal of time, firstly the so-called weak
injectivity by Emery [39]. Following the injectivity called strong by Kunita [40].
In 1982, Are Uppman [40] would have by its method of using exponential semi-
martingales, an improved demonstration of the results of strong injectivity. Finally,
recent developments in the stochastic flow are developed by Bismut.

The first goal of this work is to present the basics of stochastic calculus versus semi-
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martingales. The second one demonstrates that the stochastic flow generated by a
stochastic differential equation governed by semi-martingales is a diffeomorphism.
This memory is organized as follows:
An introduction where we place our work and its plan.
The first chapter is devoted to the theory of stochastic calculus for continuous semi-
martingales.
In the second chapter, we will discuss the properties of stochastic flows.



Chapter 1

Stochastic calculus for continuous

semi-martingales

1.1 Preliminaries

Let (Ω,F ,P) be a complete probability space equipped with a family of sub σ-fields
{Ft, t ∈ [0, a]} with following properties, where a is a finite positive constant:
(i) Each Ft contains all null sets of F .
(ii) {Ft} is increasing, i.e.Ft ⊃ Fs if t≥ s.

(iii) {Ft} is right continuous, i.e.
⋂
ε>0

Ft+ε =Ft for any t < a.

The probability space (Ω,F,Ft,P) will be fixed throughout this chapter.

• Let Xt , t ∈ [0, a] be a stochastic process with values in R = (−∞,∞).

• We will assume, unless otherwise mentioned, that it is (Ft) - adapted , i. e.Xt

is Ft-measurable for any t ∈[0,a]. The process Xt is called continuous if Xt(ω)
is a continuous function of t for almost all ω.

• Let Lc be the linear space consisting of all continuous stochastic processes. We



8
CHAPTER 1. STOCHASTIC CALCULUS FOR CONTINUOUS

SEMI-MARTINGALES

introduce the metric ρ by

ρ(X − Y ) = ρ(X, Y ) = E

 sup
t
| Xt − Yt |2

1 + sup
t
| Xt − Yt |2


1
2

• It is equivalent to the topology of the uniform convergence in probability:
A sequence {Xn} of Lc is a Cauchy sequence if and only if for any ε > 0,

P(sup
t
| Xn

t −Xm
t |> ε) →

n,m→∞
0

Obviously Lc is a complete metric space.

• We introduce the norm ‖.‖ by ‖X‖ = E
[
sup
t
|Xt|2

] 1
2

and denote by L2
c the set

of all elements in Lc with finite norms. We may say that the topology of L2
c

is the uniform convergence in L2. Since ρ(X) ≤ ‖X‖, the topology by ‖.‖ is
stronger than that by ρ. It is easy to see that L2

c is a dense subset of Lc.

Definition 1.1.1. Let Xt , t ∈ [0, a] be a continuous (Ft)-adapted process.
(i) It is called a martingale if E | Xt | < ∞ for any t and satisfies E[Xt/Fs] = Xs

for any t > s.
(ii) It is called a local martingale if there is an increasing sequence of stopping times

{Tn} such that Tn ↑ ∞ and each stopped process XTn
t = Xt∧Tn is a martingale.

(iii) It is called an increasing process if Xt(ω) is an increasing function of t a.s.
(iv) It is called a process of bounded variation if it is written as the difference of two
increasing processes.
(v) It is called a semi-martingale if it is written as the sum of a local martingale and
a process of bounded variation.

We will quote two famous results of Doob’s concerning martingales without giving
proofs.
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Theorem 1.1.1. [40] Let Xt, t ∈ [0, a] be a martingale.
(i) Optional sampling theorem:

Let S and T be stopping times with values in [0, a]. Then Xs is integrable and
satisfies E[XS/FT ] = XS∧T .
(ii) Inequality:

Suppose E[|Xa|p] < ∞ with p > 1. Then E
[
sup
S
|XS|p

]
< qpE [|Xa|p] where q is the

conjugate of p.

Remark 1.1.1. Let S be a stopping time. If Xt is a martingale, the stopped process
XS is also a martingale. In fact, by Doob’s optional sampling theorem, we have for
t ≥ S

E[XS
t |FS] = Xt∧S∧s = XS∧s = XS

s

Similarly if X is a local martingale, the stopped process XS is s a local martingale.

Amartingale is a local martingale, obviously, the following theorem gives us a criterion
that a local martingale is a martingale.

Theorem 1.1.2. [40] Let Xt be a continuous local martingale.
(i) If E[sup

t
|Xt|] <∞ then X is a martingale.

(ii) Let p > 1, then X is an LP -martingale if and only if E[sup
t
| Xt |P ] <∞.

Remark 1.1.2. Let X be a local martingale. Then there is an increasing sequence of
stopping times Sk ↑ ∞ such that each stopped process XSk is a bounded martingale.
In fact, define Sk by

Sk = inf{t > 0; |Xt| ≥ k}

Then Sk ↑ ∞ and it holds sup
t
|XSK

t | ≤ k, so that each XSK is a martingale.

Let Mc be the set of all square integrable martingales Xt with X0 = 0. Because of
Doob’s inequality, the norm ‖X‖ is finite for any X ofMc, HenceMc is a subset of L2

c .
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We denote by M loc
c the set of all continuous local martingales Xt such that X0 = 0.

It is a subset of Lc.

Theorem 1.1.3. [40] Mc is a closed subspace of L2
c. M loc

c is a closed subspace of Lc
Furthermore, Mc is dense in M loc

c .

1.2 Quadratic variations of continuous semi-

martingales

This section is devoted to the study of the quadratic variation of a continuous stochas-
tic process Xt, t ∈ [0, a]. Let 4 be a partition of the interval [0, a] : ∆ = {0 = t0 <

... < tn = a} and let |∆| = max(ti+1− ti). Associated with the partition ∆, we define

a continuous process < X >∆
t as

< X >∆
t =

k−1∑
i=0

(Xti+1
−Xti)

2 + (Xt −Xtk)
2.

where k is the number such that tk ≤ t < tk+1 . We call it the quadratic variation of
Xt associate with the partition ∆.
Now let {∆m} be a sequence of partitions such that |∆m| → 0. If the limit of

< X >∆m
t exists in probability and it is independent of the choice of sequences {∆m}

a.s., it is called the quadratic variation of Xt and is denoted by < X >t.
The quadratic variation is not well defined to any continuous stochastic process. We
will see in the sequel that a natural class of processes where quadratic variations are
well defined is that of continuous semi-martingales.
We begin the discussion with a process of bounded variation.

Lemma 1.2.1. [40] Let X be a continuous process of bounded variation. Then the
quadratic variation exists and equals 0 a.s.

Theorem 1.2.1. [40] Let M be a bounded continuous martingale. Let {∆n} be a

sequence of partitions such that |∆n| → 0. Then < M >∆n
t , t ∈ [0, a] converges

uniformly to a continuous increasing process < M >t in L2 -sense, i.e.,



1.2 Quadratic variations of continuous semi-martingales 11

lim
n→∞

E
[
sup
t
| < M >∆n

t − < M >t |2
]
= 0.

Lemma 1.2.2. [40]For any t > s, it holds

E
[
< M >∆

t /Fs
]
− < M >∆

s = E [(Mt −Ms)
2/Fs] = E[M2

t /Fs]−M2
s .

In particular, M2
t − < M >∆

t is a continuous martingale.

Lemma 1.2.3. [40] It holds lim
n,m−→∞

E
[
| < M >∆n

a − < M >∆m
a |2

]
= 0.

Theorem 1.2.2. [40] Let Mt be a continuous local martingale. Then there is a

continuous increasing process < M >t such that < M >∆
t converges uniformly to

< M >t in probability.

Remark 1.2.1. Let Mt be a continuous local martingale and let T be a stopping
time. Then it holds < MT >t = < M >T

t for all t a.s. In fact, it is easy to see that

< MT >∆
t = (< M >∆)Tt holds for any partition ∆. Letting |∆| tend to 0, we get the

desired relation.

Corollary 1.2.1. [40] M2
t − < M >t is a local martingale if Mt is a continuous local

martingale.

Corollary 1.2.2. [40] An element M of M loc
c of belongs to Mc if and only if < M >a

is integrable. In this case, M2
t − < M >t is a martingale.

Theorem 1.2.3. [40] Let Mt be a continuous local martingale. A continuous increas-
ing process At satisfying A0 = 0 coincides with the quadratic variation of Mt if and
only if M2

t - At is a local martingale.

Remark 1.2.2. Corollary 1.2.2 indicates that the sub-martingale M2
t is decomposed

into the sum of martingale Nt = M2
t − < M >t and increasing process < M >t.

The decomposition is known as the Doob-Meyer decomposition of the sub-martingale.
Note that we did not use the decomposition theorem for the proof of Theorem 1.2.1.
If one knows the theorem and apply it, then one can prove the theorem more easily.
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We will finally consider the quadratic variation of a continuous semi-martingale. Let
Xt be a continuous semi-martingale and let Xt = Mt+At be the decomposition to the
local martingale Mt and a process of bounded variation At. The quadratic variation
< X >∆

t associated with the partition ∆ satisfies

∣∣< X >∆
t − < M >∆

t − < A >∆
t

∣∣ ≤ 2
{
< M >∆

t < A >∆
t

} 1
2 .

< M >∆
t converges uniformly to < M >t in probability and < A >t converges

uniformly to 0 a. s. Therefore < X >∆
t converges uniformly to < M >t in probability.

We then have the following theorem.

Theorem 1.2.4. [40] Let Xt be a continuous semi-martingale. Then < X >∆
t con-

verges uniformly to < M >t in probability as |∆| → 0, whereMt is the local martingale
part of Xt.

1.3 Continuity of quadratic variations in Mc and Mloc
c

Quadratic variations are continuous in the space Mc and M loc
c in their topologies.

Theorem 1.3.1. [40]

1. Let Mn be a sequence in Mc. It Converges to M of Mc if and only if {<
Mn −M >a} converges to 0 in L1 -norm.

2. Let {Mn} be a sequence in M loc
c . It converges to M of M loc

c if and only if
{< Mn −M >a} converges to 0 in probability.

Theorem 1.3.2. [40]

1. Let {Mn} be a sequence in Mc converging to M of Mc. Then it holds

sup
∆

E
[
sup
t
< Mn −M >∆

t

]
→

n,m→∞
0

2. Let {Mn} be a sequence in M loc
c converging to M of M loc

c . Then it holds for
any ε > 0
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sup
∆

P
[
sup
t
< Mn −M >∆

t > ε

]
→

n,m→∞
0

1.4 Joint quadratic variations

Let M and N be elements of M loc
c . The joint quadratic variation of M , N associated

with the partition ∆ = {0 = t0 < .... < tn = a} is defined by

< M,N >∆
t =

k−1∑
i=0

(Mti+1
−Mti)(Nti+1

−Nti) + (Mt −Mtk)(Nt −Ntk),

where k is the number such that tk ≤ t < tk+1.

Theorem 1.4.1. [40] < M,N >∆ converges uniformly to a continuous process of
bounded variation < M,N > in probability as |∆| → 0.

Remark 1.4.1. < M,M >=< M >.

The following is immediate from Theorem 1.2.3.

Corollary 1.4.1. [40] GivenM , N ofM loc
c , a continuous process of bounded variation

A coincides with the joint quadratic variation < M,N > if and only if MN −A is a
local martingale.

Theorem 1.4.2. [40] Joint quadratic variations have the following properties.

(i) Bilinear: < aM1 + bM2, N >= a < M1, N > +b < M2, N > holds for any M1

,M2, N of M loc
c and real numbers a, b.

(ii) Symmetric: < M,N >=< N,M > for any M , N of M loc
c .

(iii) Positive definite: < M >t − < M >s≥ 0 holds for any t ≥ s and the equality

holds a.s. if and only if Mr = Ms holds for all r ∈ [s, t] a.s.

(iv) Schwarz’s inequality:
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|< M,N >t − < M,N >s| ≤ (< M >t − < M >s)
1
2 (< N >t − < N >s)

1
2 .

(v) Extended Schwarz’s inequality: Let fu, gu, u ∈ [0, a] be processes measurable with

respect to the smallest σ-field on [0, a]×Ω for which all continuous stochastic processes
are measurable. Suppose∫ t

0

|fu|2d < M >u<∞,
∫ t

0

|gu|2d < N >u.

Then ∣∣∣∣∫ t

0

fugud < M,N >u

∣∣∣∣ ≤ (∫ t

0

|fu|2d < M >u

) 1
2
(∫ t

0

|gu|2d < N >u

) 1
2

.

Theorem 1.4.3. [40]

1. Let {Mn} be a sequence of Mc converging to M . Then it holds for any N of Mc

lim
n→∞

E
[
sup
t
|< Mn −M,N >t|

]
= 0

lim
n→∞

sup
∆

E
[
sup
t
| < Mn −M,N >∆

t |
]

= 0

2. Let {Mn} be a sequence of M loc
c converging to M . Then it holds for any ε > 0

and N of M loc
c

lim
n→∞

P[sup
t
|< Mn −M,N >t|> ε] = 0

lim
n→∞

sup
∆
P[sup

t
|< Mn −M,N >∆

t |> ε] = 0

Finally we will mention the joint quadratic variations of continuous semi-martingales.
LetX and Y be continuous semi-martingales. The joint quadratic variation associated
with the partition ∆ is defined as before and is written as < X, Y >∆. The following
theorem is immediate.

Theorem 1.4.4. [40] < X, Y >∆ converges uniformly in probability to a continuous
process of bounded variation < X, Y >t. If M and N are local martingale parts of X
and Y , respectively, then < X, Y > coincides with < M,N >.
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1.5 Stochastic integrals

Let Mt be a continuous local martingale and let ft be a continuous(Ft)-adapted
process. We will define the stochastic integral of ft by the differential dMt. Here, the
differential does not mean a signed measure, since the sample function of a continuous
local martingale is not of bounded variation, except a trivial martingaleMt ≡ constant
a. s. Nevertheless, the integral is well defined if the integrand ft is (Ft)-adapted: our
discussion will be based on the properties of martingales, specially those of quadratic
variations. Let ∆ = 0 = t0 < .... < tn = a be a partition of the interval [0, a]. For any
t ∈ [0, a], choose tk of ∆ such that tk ≤ t < tk+1 and define

L∆
t =

k−1∑
i=0

fti(Mti+1
−Mti) + ftk(Mt −Mtk) (1.1)

It is easy to see that L∆
t is a continuous local martingale. The quadratic variation is

computed directly as

< L∆ >t=
k−1∑
i=0

f 2
ti

(< M >ti+1
− < M >ti +f 2

tk
(< M >t − < M >tk)

< L∆ >t=

∫ t

0

| f∆
s |2 d < M >s (1.2)

where f∆
s is a step process defined from fs by f∆

s = ftk if tk ≤ s < tk+1. Let ∆′ be

another partition of [0, a]. We define L∆′
t similarly using the same fs and Ms Then it

holds

< L∆ − L∆′ >t =
∫ t

0

|f∆
s − f∆′

s |2d < M >s .

Now let {∆n} be a sequence of partitions of [0, a] such that |∆n| → 0. Then <

L∆n −L∆m >a converges to 0 in probability as n,m→∞. Hence {L∆n} is a Cauchy

sequence in M loc
c by Theorem 1.3.1. We denote the limit as Lt.

Definition 1.5.1. The above Lt is called the Itô integral of ft by dMt and is denoted

by
∫ t

0

fsdMs.
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The Itô integral can be defined to more general class of stochastic processes called
predictable ones. Here the predictable σ-field is, by definition, the least σ-field on
the product space [0, a] × Ω for which all continuous (Ft)-adapted processes ft(ω)

are measurable. A predictable process is, by definition, a process measurable to the
predictable σ-field. A continuous (Ft)-adapted process is predictable, obviously.
Now let Mt be a continuous local martingale and let < M >t be the quadratic
variation. We denote by L2(< M >) the set of all predictable processes ft such that∫ a

0

|fs|2d < M >s< ∞ a.s. Then the set of continuous (Ft)-adapted processes is

dense in L2(< M >), i.e., for any f of L2(< M >), there is a sequence of continuous

(Ft)-adapted processes fnt such that
∫ a

0

|fns −fs|2d < M >s converges to 0 a. s. Then

the sequence of stochastic integrals
∫ t

0

fns dMs, n = l, 2, ... forms a Cauchy sequence

in M loc
c . Denote the limit as

∫ t

0

fsdMs and call it the Itô integral of ft by dMt.

Theorem 1.5.1. [40]

1. Let M ∈ M loc
c and f ∈ L2(< M >). Then Itô integral satisfies the following

relation:

<

∫
fdM,N >t=

∫ t

0

fs d < M,N >s, ∀N ∈M loc
c (1.3)

2. Conversely suppose that L of M loc
c satisfies:

< L,N >t=

∫ t

0

fsd < M,N >s ∀N ∈M loc
c (1.4)

Then L is the Itô integral of ft by dMt , i.e., Itô integral is characterized as the
unique element L in M loc

c satisfying 1.4.

Corollary 1.5.1. [40] It holds

<

∫
fdM >t=

∫ t

0

f 2
s d < M >s .
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We will list a few properties of Itô integrals.

Theorem 1.5.2. [40] Let M be an element of M loc
c .

1. If f , g are in L2(< M >) and a, b are constants, then af + bg is in L2(< M >)

and satisfies

∫ t

0

(afs + bgs)dMs = a

∫ t

0

fsdMs + b

∫ t

0

gsdMs

2. Let f ∈ L2(< M >) and Lt =

∫ t

0

fsdMs. Let gs be a predictable process such

that
∫ t

0

f 2
s g

2
sd < M >s<∞ Then g is in L2(< L >) and

∫ t

0

gsdLs =

∫ t

0

gsfsdMs (1.5)

3. Let T be a stopping time. Then it holds

∫ t∧T

0

fsdMs =

∫ t

0

fsdM
T
s =

∫ t∧T

0

fsdM
T
s

Definition 1.5.2. Let X be a continuous semi-martingale decomposed to the sum of
a continuous local martingale M and a continuous process of bounded variation A.

Let f be a predictable process such that f ∈ L2(< M >) and
∫ a

0

|fs|d|As| <∞. Then

the Itô integral of f by dXt is defined as∫ t

0

fsdXs =

∫ t

0

fsdMs +

∫ t

0

fsdAs

We will define another stochastic integral by the differential ◦ dXt:

∫ t

0

fs ◦ dXs = lim
|∆|→0

{
k−1∑
i=0

1

2
(fti+1

+ fti)(Xti+1
−Xti) +

1

2
(ft + ftk)(Xt −Xtk)

}
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Definition 1.5.3. If the above limit exists, it is called the Stratonovich integral of f
by dXs.

Theorem 1.5.3. [40] If f is a continuous semi-martingale, the Stratonovich integral
is well defined and satisfies∫ t

0

fs ◦ dXs =

∫ t

0

fsdXs +
1

2
< f,X >t.

1.6 Stochastic integrals of vector valued processes

Let B a separable reflexive Banach space and let fs be a B-valued process. Let M
be a real valued continuous local martingale. In this and the next section, we will

discuss the stochastic integral of the form
∫ t

0

fsdMs, which is to be a B-valued local

martingale.
We begin with introducing conditional expectations for Banach space valued random
variables. Let B be a separable reflexive Banach space with norm ‖.‖, and let B be
the topological Borel field of B. We denote by B′ the dual space of B. Let f(ω) be a
mapping from Ω into B. It is called a B-valued random variable if it is a measurable
mapping from (Ω,F) into (B,B). This is equivalent to saying that (f, φ) is a real
valued random variable for any φ of B′, where (., .) is the canonical bilinear form on
B ×B′.

Definition 1.6.1. Let G be a sub σ-field of F. A measurable mapping g : (Ω,G) →
(B,B) is called a conditional expectation of f with respect to G if

(g, φ) = E[(f, φ)/G] (1.6)

is satisfied a.s. for any φ of B′.

Lemma 1.6.1. [40] Suppose that ‖f‖ is integrable. Then a conditional expectation
exists uniquely.

Definition 1.6.2. The conditional expectation of f with respect to G is denoted by
E[f/G] .
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The following lemma corresponds to Doob’s convergence theorem of a real LP mar-
tingale.

Lemma 1.6.2. [40] Let f be a B-valued random variable such that E[‖f‖p] < ∞
for some p ≥ 1. Let Gn, n = l, 2, ... be an increasing sequence of σ-fields such that
∨nGn = F. Set fn = E[f/Gn]. Then it holds E[‖f − fn‖p]→ 0 as n→∞ .

Definition 1.6.3. Let Mt be a real continuous local martingale and let fs be a B-
valued predictable process such that∫ a

0

‖ fs ‖2 d < M >s<∞ (1.7)

A B-valued local martingale Lt is called the stochastic integral of ft by dMt if it
satisfies

(Lt, φ) =

∫ t

0

(fs, φ)dMs (1.8)

for any φ of B′. If it exists, we denote it by
∫ t

0

fsdMs.

It is obvious that stochastic integral is at most one. The existence is easily seen if ft is a
step process, i. e., ft = fti . holds for all t ∈ (ti, ti+1], where 0 = t0 < t1 < ... < tn = a.
In fact,

Lt ≡
k−1∑
i=0

fti(Mti+1
−Mti) + ftk(Mt −Mtk), tk ≤ t < tk+1 (1.9)

is a B-valued local martingale satisfying 1.8. However, it is not an easy problem
to show in general the existence of stochastic integrals of any B-valued predictable
processes satisfying 1.7.

Lemma 1.6.3. [40] Suppose that the step process ft satisfies

E
[∫ a

0

‖fs‖2d < M >s

]
< ∞ Then Lt defined by 1.9 is a martingale and sat-

isfies

E
[
‖ Lt ‖2

]
= E

[∫ t

0

‖ fs ‖2 d < M >s

]
, ∀t ∈ [0, a] (1.10)
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Lemma 1.6.4. [40] Let ft be a predictable B-valued process such that

E
[∫ a

0

‖ fs ‖2 d < M >s

]
<∞ (1.11)

Then there is a sequence of B-valued step processes fnt such that

E
[∫ a

0

‖ fs − fns ‖2 d < M >s

]
→
n→∞

0 (1.12)

Theorem 1.6.1. [40] For any predictable Hilbert space valued process ft satisfying

1.7, the stochastic integral
∫ t

0

fsdMs is well defined. Furthermore, it is a strongly

continuous Hilbert space valued local martingale.

1.7 Regularity of integrals with respect to parame-

ters

Let fs(λ) be a real valued predictable process with parameter λ ∈ Λ and let Mt

be a continuous local martingale. If
∫ a

0

|fs(λ)|2d < M >s< ∞ a.s. for any λ,

Itô’s stochastic integral
∫ t

0

fs(λ)dMs is well defined except for a null set for each λ.

However, the exceptional set may depend on the parameter λ. Therefore, in order to
discuss the regularity of the integral with respect to the parameter, we have to choose
a good modification of the integrals so that the exceptional set does not depend on
λ. For this purpose, we shall consider that fs(λ) is a Sobolev space valued process
and we shall define the integral as a Sobolev space valued local martingale.

Let us introduce some notations concerning Sobolev space. The parameter space Λ is
assumed to be a bounded domain in Rd. Let λ = (λ1 · · ·λd) ∈ Λ and k = (k1 · · · kd)
be a multi-index of non-negative integers. We denote by Dk the differential operator(

∂

∂λ1

)k1
· · ·
(

∂

∂λd

)kd
. Let p be a real number greater than 1 andm be a nonnegative
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integer. A Sobolev space of type p, m, denoted byWm
p , is the set of all Lp functions φ

on Λ such that derivatives Dkφ, |k| = (k1 + · · ·+ kd) ≤ m in the distributional sense
are all Lp functions. For φ ∈ Wm

p , we define the norm ‖.‖p,m by

‖φ|p,m =

∣∣∣∣∣∣
∑
|k≤m|

∫
Λ

|Dkφ(λ)|pdλ

∣∣∣∣∣∣
1
p

Then Wm
p is a separable reflexive Banach space.

Now let Cm
b be the set of all m-times continuously differentiable functions whose

derivatives up to m are all bounded. For φ ∈ Cm
b , we define the norm

‖φ‖∞,m =
∑
|k≤m|

sup
λ
|Dkφ(λ)|

Then Cm
b is a separable Banach space. A fundamental result concerning Sobolev

space is the following.

Theorem 1.7.1. [40] Let ` be a nonnegative integer less than m− d

p
. Then it holds

Wm
p ⊂ C`

b and there is a positive constant k`p,m such that

‖φ‖∞,` ≤ k`p,m‖φ‖p,m, ∀φ ∈ Wm
p

In the following, we will fix p ,m and omit it from the notation of the norm.
We shall now define the stochastic integral ofWm

p -valued process. If ft is a predictable

Wm
p -valued step process, the stochastic integral was defined by 1.9 in the previous

section. In order to define the integral for more general class of ft , we need a lemma
analogous to lemma 1.6.3.

Lemma 1.7.1. [40] Let p ≥ 2. There exists a positive constant C such that

E[‖ Lt ‖p] ≤ CE[(

∫ t

0

‖ fs ‖p d < M >s) < M >
p
2
−1

t ], ∀t ∈ [0, a] (1.13)

holds for any step process ft.
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For the proof, we require Burkholder’s inequality.

Theorem 1.7.2. [40] Let p ≥ 2. Then there is a positive constant C(p) such that

E [|Mt|p] ≤ C(p)E
[
< M >

p
2
t

]
, ∀t ∈ [0, a] (1.14)

holds for any M ∈Mc such that E [|Ma|p] <∞.

Lemma 1.7.2. [40] Let p ≥ 2. Let ft be a predictable process such that

E
[
(

∫ a

0

‖ fs ‖p d < M >s) < M >
p
2
−1

a

]
<∞.

Then there is a sequence of step processes fnt such that

E
[
(

∫ a

0

‖ fs − fns ‖p d < M >s) < M >
p
2
−1

a

]
→ 0

Theorem 1.7.3. [40] Let p ≥ 2. Let ft be a predictable Wm
p -valued process satisfying∫ a

0

‖ fs ‖p d < M >s<∞ a.s. (1.15)

Then the stochastic integral
∫ t

0

fsdMs is well defined. It is a strongly continuous

Wm
p -valued local martingale.

We shall apply the above theorem to the regularity problem of the real valued stochas-

tic integral
∫ t

0

fs(λ)dMs with parameter λ .

Theorem 1.7.4. [40] Suppose p ≥ 2 and mp > d. Let fs(λ), λ ∈ Λ be a predictable
Cm
b -valued process satisfying∫ a

0

‖fs‖p∞,md < M >s<∞a.s. (1.16)

Then the real valued stochastic integral
∫ t

0

fs(λ)dMs with parameter λ has a modifi-

cation Lt(λ) which satisfies the following properties.
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1. Lt(λ) is continuous in (t, λ) and `-times continuously differentiable in λ where

` < m− d
p
.

2. If |k| < m− d
p
, then Dk Lt(λ) is continuous in (t, λ) and satisfies:

Dk Lt(λ) =

∫ t

0

Dkfs(λ)dMs ∀t a.s. (1.17)

for any λ.

Theorem 1.7.5. [40] Suppose that mp > d and p ≥ 2. Let {fns } be a sequence of

predictable Wm
p -valued processes such that

∫ a

0

‖ fs − fns ‖p d < M >s converges to 0

in probability. Let Lnt =

∫ t

0

fns dMs. Then sup
t
‖ Lnt −Lt ‖ converges to 0 in probability

as n →∞.

Corollary 1.7.1. [40] Suppose that fs is a predictable strongly continuousWm
p -valued

process. Then there is a sequence of partitions ∆n of [0, a] with |∆n| → 0 such that

sup
t
‖
∫ t

0

fsdMs −
∫ t

0

f∆n
s dMs‖ → 0 a.s.

If ` < m− d
p
, then

∫ t

0

f∆n
s (λ)dMs converges to

∫ t

0

fs(λ)dMs by the norm ‖.‖∞,` a.s.

Corollary 1.7.2. [40] Let Y be a Λ-valued F0-measurable random variable. If fs(λ)

is continuous in (s, λ) and continuously differentiable in λ, then it holds∫ t

0

fs(λ)dMs|λ=Y =

∫ t

0

fs(Y )dMs

Theorem 1.7.6. [40] Let ft(λ) be a continuous random field satisfying the following
properties.

1. It is m+ 1-times continuously differentiable in λ a.s.

2. For each λ, ft(λ) is a continuous semi-martingale represented as
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ft(λ) = f0(λ) +
n∑
j=1

∫
gjs(λ)dN j

s ,

where N1
t , · · · , Nn

t are continuous semi-martingales, gjs(λ) are continuous random
fields satisfying

• gjs(λ) is m+ 1-times continuously differentiable a.s.

• For each λ, it is F-adapted.

Then the Stratonovich integral
∫ t

0

fs(λ) ◦ dMs has a modification which is continuous

in (t, λ) and m-times continuously differentiable in λ. Furthermore, it holds for any
k such that |k| ≤ m,

Dk

∫ t

0

fs(λ) ◦ dMs =

∫ t

0

Dkfs(λ) ◦ dMs

1.8 Itô’s formula

One of the fundamental tool for studying stochastic differential equations is so called
Itô’s formula, which describes the differential rule for change of variables or compo-
sition of functions. We present here a differential rule for the composition of two
stochastic processes, which is a generalization of the well known Itô’s formula.

Theorem 1.8.1. [40] Let Ft(x), t ∈ [O, a], x ∈ Rd be a random field continuous in
(t, x) a.s., satisfying

• Ft(x) is twice continuously differentiable in x.

• For each x, Ft(x) is a continuous semi-martingale and it satisfies

Ft(x) = F0(x) +
n∑
j=1

∫ t

0

f js (x)dY j
s , ∀x ∈ Rd (1.18)

a.s., where Y 1
s , · · · , Y m

s are continuous semi-martingales, f js (x), s ∈ [0, a], x ∈
Rd are random fields which are continuous in (s, x) and satisfy
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1. f js (x) are twice continuously differentiable in x.

2. For each x, f js (x)) are adapted processes.

Let now Xt = (X1
t , · · · , Xd

t ) be continuous semi-martingales. Then we have

Ft(Xt) = F0(X0) +
m∑
j=1

∫ t

0

f js (Xs)dY
j
s +

d∑
i=1

∫ t

0

∂Fs
∂xi

(Xs)dX
i
s

+
d∑
i=1

m∑
j=1

∫ t

0

∂f js
∂xi

(Xs)d < Y j, X i >s

+
1

2

d∑
i,j=1

∫ t

0

∂2Fs
∂xi∂xj

(Xs)d < X i, Xj >s

Observe that the above formula is not like the classical formula for the differential of
composite functions, where the last two terms do not appear. We will see later that
if we replace Itô integrals by Stratonovich integrals, then we have a rule similar to
the classical rule. See theorem 1.8.2.
If we take Ft(x) as a C2 function F (x) in the theorem, we obtain a well known Itô’s
formula.

Corollary 1.8.1. [40] Let F : Rd → R1 be a C2 function and let Xt = (X1
t , · · · , Xd

t )

be continuous semi-martingales. Then we have

Ft(Xt)=F0(X0) +
d∑
i=1

∫ t

0

∂Fs
∂xi

(Xs)dX
i
s +

1

2

d∑
i,j=1

∫ t

0

∂2Fs
∂xi∂xj

(Xs)d < X i, Xj >s

In applications it is sometimes useful to rewrite the above formula using Stratonovich
integral. The new formula is close to the classical formula for the differential rule of
composite function. We need, however, additional assumption for processes.

Theorem 1.8.2. [40] Let Ft(x), t ∈ [0, a], x ∈ Rd be a random field continuous in
(t, x) a. s., satisfying

• For each t, Ft(.) is a C3-map from Rd into R1 a.s. ω.
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• For each x, Ft(x) is a continuous semi-martingale and it satisfies

Ft(x) = F0(x) +
m∑
j=1

∫ t

0

f js (x) ◦ dY j
s , ∀x ∈ Rd (1.19)

where Y 1
s , ....., Y

m
s are continuous semi-martingales, f jt (x) are random fields

satisfying conditions of Theorem 1.8.1.

Let now Xt = (X1
t ..., X

d
t ) be continuous semi-martingales. Then we have

Ft(Xt) = F0(X0) +
m∑
j=1

∫ t

0

f js (X) ◦ dY j
s +

d∑
j=1

∫ t

0

∂Fs
∂xi

(Xs) ◦ dX i
s (1.20)

Corollary 1.8.2. [40] Let F : Rd → R1 be a C3-class function and let Xt =

(X1
t , · · · , Xd

t ) be continuous semi-martingales. Then we have

F (Xt) = F (X0) +
d∑
i=1

∫ t

0

∂F

∂xi
(Xs)o dX

i
s

1.9 Brownian motion and stochastic intagrals

Let Bt = (B1
t , · · · , Bm

t ) be an m-dimensional standard Brownian motion defined on
(Ω,F,Ft,P), we will call it an (Ft)-Brownian motion if it is (Ft)-adapted and the
future of Brownian motion Bu−Bt ; u ≥ t and the past σ-field (Ft) are independent
for any t. The following theorem characterizes (Ft)-Brownian motion by martingales
and their joint quadratic variations.

Theorem 1.9.1. [40] Let Bt = (B1
t , · · · , Bm

t ) be an m- dimensional (Ft)-adapted
continuous stochastic process. It is an (Ft)-Brownian motion if and only if each

B1
t , · · · , Bm

t are square integrable martingales such that < Bi, Bj >t= δijt.

Theorem 1.9.2. [40] Let Mt = (M1
t , · · · ,Mm

t ) be a continuous local martingale.
Suppose that there is a strictly increasing process At with lim

t↑a
At = ∞ a.s. such that

< M i,M j >t= δij At. Let τS be the inverse function of At. Then the time-changed

process M̂s = (M1
τS
, ......,Mm

τS
) is a standard Brownian motion.
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1.10 Kolmogorov’s theorem

We shall introduce a criterion for the Holder continuity of random fields, which is a
generalization of the well known Kolmogorov’s criterion for the continuity of stochastic
processes. It will provide us another method of deriving the regularity of stochastic
integrals with respect to the parameter.

Theorem 1.10.1. [40] Let Xλ(ω) be a real valued random field with parameter λ =

(λ1, ..., λd) ∈ Λ = [0, 1]. Suppose that there are constants γ > 0, αi > d, i = 1, ...., d

and C > 0 such that

E [|Xλ −Xµ|γ] ≤ C
d∑
i=1

|λi − µi|αi , ∀λ, µ ∈ Λ

Then Xλ has a continuous modification X̃λ.
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Chapter 2

Stochastic differential equations and

stochastic flows of homeomorphisms

2.1 Stochastic differential equation with Lipschitz

continuous coefficients

A primitive and intuitive way of expressing a stochastic differential equation could be

dξt
dt

= X0(t, ξt) +
m∑
k=1

Xk(t, ξt)Ḃ
k
t

where Ḃk
t , k = 1, ...,m are independent white noises. It is intended to describe the

motion of a particle driven by random forces or the motion perturbed by random

noises. However, the equation fails to have a rigorous meaning, since Xk(t, ξt)Ḃ
k
t

are not well defined. For the rigorous argument, we will introduce Itô’s stochastic
differential equation.

Let Bt = (B1
t , ..., B

m
t ), t ∈ [0, a] be an m-dimensional Brownian motion defined on a

probability space (Ω,F ,P). For a pair s, t of [0, a] such that s < t, we denote by Fs,t
the least complete σ-field for which all Bu−Bv ; s ≤ v ≤ u ≤ t are measurable. Then
the family of σ-fields {Fs,t} is increasing in t, decreasing in s; Fs,t ⊂ Fs′,t′ if s′ < s

and t′ < t. Then Bt −Bs, t ≥ s is an Fs,t-martingale for any s.
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Given continuous mappingsXk(t, x), k = 0, · · · ,m; [0, a]×Rd → Rd, we shall consider
an Itô’s stochastic differential equation (SDE):

dξt =
m∑
k=1

Xk(t, ξt) dB
k
t +X0(t, ξt) dt (2.1)

Definition 2.1.1. Given a time s ∈ [0, a] and a state x ∈ Rd, a continuous stochastic

process ξt, t ∈ [s, a] with values in Rd is called a solution of 2.1 with the initial
condition ξs = x, if it is (Fs,t)-adapted for each t ≥ s and satisfies

ξt = x+
m∑
k=1

∫ t

s

Xk(r, ξr)dB
k
r +

∫ t

s

X0(r, ξr)dr (2.2)

For the convenience of notations, we will often write dt as dB0
t and write SDE 2.2 as

ξt = x+
m∑
k=0

∫ t

s

Xk(r, ξr)dB
k
r (2.3)

In this section we will show following Itô that equation 2.3 has a unique solution for
any initial condition if coefficients X0, · · · , Xm are globally Lipschitz continuous, i.e.,
there is a positive constant L such that

|Xk(t, x)−Xk(t, y)| ≤ L |x− y| (2.4)

holds for all t ∈ [0, a] and x, y ∈ Rd.

Theorem 2.1.1. Suppose that coefficients X0, · · · , Xm of equation 2.3 are globally
Lipschitz continuous. Then the equation has a unique solution for any given initial
condition. Further it is in LP for any p ≥ 1.

Proof. We shall construct a solution starting from x at time s, by the method of
successive approximation. Define a sequence of (Fs,t)-adapted continuous stochastic
processes by induction:

ξ0
t = x

ξnt = x+
m∑
k=0

∫ t

s

Xk(r, ξ
n−1
r )dBk

r , n ≥ 1
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Then it holds

ξn+1
t − ξnt =

m∑
k=0

∫ t

s

{
Xk(r, ξ

n−1
r )−Xk(r, ξ

n
r )
}
dBk

r .

Therefore we have for p≥2,

E[ sup
s≤u≤t

| ξn+1
u − ξnu |p] ≤ (m+ 1)p

m∑
k=0

E[ sup
s≤u≤t

|
∫ t

u

{Xk(r, ξ
n−1
r )−Xk(r, ξ

n
r )}dBk

r |p].

By Doob’s inequality and Burkholder’s inequality, each term corresponding to k ≥ 1

is dominated by

qpE
[
|
∫ t

s

{· · · }dBk
r |p
]
≤ qpC(p) | t− s |

p
2
−1 E

[∫ t

s

| {· · · } |p dr
]

≤ qpC(p) | t− s |
p
2
−1 Lp E

[∫ t

s

| ξnr − ξn−1
r |p dr

]
.

The term corresponding to k = 0 is dominated by

| t− s |
p
q Lp E

[∫ t

s

| ξnr − ξn−1
r |p dr

]

Therefore we get

E
[

sup
s≤u≤t

| ξn+1
u − ξnu |p

]
≤ c1E

[∫ t

s

| ξnr − ξn−1
r |p dr

]
(2.5)

Denote the left hand side by ρ(n)
t . Then the above implies ρ(n)

t ≤ c1

∫ t

s

ρ(n−1)
r dr. By

iteration, we get ρ(n)
t ≤

cn1
n!
anρ

(0)
t . Then

∞∑
n=0

E[ sup
s≤u≤t

| ξn+1
u − ξnu |p]

1
p ≤

∞∑
n=0

{c
n
1

n!
anρ

(0)
t }

1
p < +∞,
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since ρ(0)
t < ∞. Therefore, {ξnt } converges uniformly in [s, t] a.s. and in LP -norm.

Denote the limit as ξt. It is a continuous (Fs,t)-adapted process. Furthermore,∫ t

s

Xk(r, ξ
n
r )dBk

r converges to
∫ t

s

Xk(r, ξr)dB
k
r in LP -norm, since the quadratic vari-

ation of
∫ t

s

{Xk(r, ξ
n
r )−Xk(r, ξr)dB

k
r converges to 0 in LP -norm. The convergence is

valid for k = 0, obviously. Consequently ξt is a solution of equation 2.3.

We will next prove the uniqueness of the solution. Let ξt and ξ̃t be solutions of

equation 2.3. Define Tn = inf{t > 0; | ξt |≥ n or | ξ̃t |≥ n} and (= ∞ if {...} = ∅).
Then it holds

ξTnt − ξ̃Tnt =
n∑
k=0

∫ t∧Tn

s

{Xk(r, ξ
Tn
r )−Xk(r, ξ̃

Tn
r )}dBk

r .

Then by a similar calculation as the above, we obtain

E[ sup
s≤u≤t

| ξTnu − ξ̃Tnu |p] ≤ c1E[

∫ t∧Tn

s

| ξTnr − ξ̃Tnr |p dr].

Set ρt = E[ sup
s≤u≤t

| ξTnu − ξ̃Tnu |p], where n is fixed. Then we get ρt ≤
∫ t

s

ρrdr. By

Gronwall’s lemma, we get ρt = 0. This proves ξTnt = ξ̃Tnt . Since Tn ↑ ∞, we have

ξt = ξ̃t. The proof is complete.

Definition 2.1.2. The unique solution is denoted by ξs,t(x). The solution ξs,t(x) has
many properties analogous to those of ordinary differential equation. Instead of 2.3,
consider a control system of ordinary differential equation on Rd;

dφt
dt

= X0(t, φt) +
m∑
k=0

Xk(t, φt)u
k
t (2.6)

where ut = (u1
t , · · · , umt ) is a piecewise smooth function. We denote the solution

starting from (s, x) as φs,t(x). It is a well known fact that if coefficients X0, · · · , Xm

are globally Lipschitz continuous, φs,t(x) defines a flow of homeomorphisms:
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• φs,t(x) is Lipschitz continuous in (s, t, x),

• For r < s < t, φr,t(x) = φs,t ◦ φr,t(x),

• For each s < t, φs,t : Rd → Rd is a homeomorphism.

In the subsequent sections we will prove the similar property for the solution ξs,t(x)

of equation 2.3. In Section 2, we will prove the Hölder continuity of ξs,t(x) in (s, t, x).
In Section 3, more smoothness of the solution with respect to x will be shown under
additional smoothness assumptions for coefficients X0, ...., Xm . The homeomorphic
property of the map ξs,t(x) : Rd → Rd will be shown at Section 4.
We will introduce some notations for a class of smooth functions.

Definition 2.1.3. Let k be a nonnegative integer and let α be a number such that
0 < α ≤ 1. A real function f on Rd is called a Ck,α function if it is k-th continuously
differentiable and the k-th derivatives are locally Hölder continuous of order α. If the
k-th derivatives are globally Hölder continuous we will call it a Ck,α

g function . In

particular if k = 0, C0,α (or C0,α
g function is a locally (or globally) Hölder continuous

function.

2.2 Continuity of the solution with respect to the

initial data

Let ξs,t(x) be the solution of Itô’s stochastic differential equation with globally Lips-
chitz continuous coefficients starting from (s, x);

ξs,t(x) = x+
m∑
k=0

∫ t

s

Xk(r, ξs,r(x)) dBk
r (2.7)

The purpose of this section is to prove that there is a continuous modification of the

solution ξs,t(x) and Itô integrals
∫ t

s

Xk(r, ξs,r(x))dBk
r with respect to three variables

(s, t, x) so that the equation 2.7 is satisfied for all (s, t, x) a.s. Our argument is based

on the following LP -estimate of the solution.
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Theorem 2.2.1. For any p greater than 2, there is a positive constant C(p)
1 such that

E | ξs,t(x)− ξs′,t′(x′) |p≤ C
(p)
1 {| x−x′ |p +(1 | x |p + | x′ |p) + (| t− t′ |

p
2 + | s− s′ |

p
2 )}

(2.8)
holds for all (s, t, x) and (s′, t′, x′) such that s < t and s′ < t′.

Remark 2.2.1. If coefficients X0, · · · , Xm of equation 2.7 are bounded functions, we
have an estimate

E | ξs,t(x)− ξs′,t′(x′) |p≤ C
(p)
2 {| x− x′ |p + | t− t′ |

p
2 + | s− s′ |

p
2}.

The following will be immediate from the above, applying Kolmogorov’s theorem.

Theorem 2.2.2. [40] There are modifications of the solution and the stochastic in-

tegrals in 2.7 with following properties. ξs,t(x) and
∫ t

s

Xk(r, ξs,r(x))dBk
r , k = O, ...,m

are continuous in (s, t, x) and the equality 2.7 holds for any (s, t, x) a.s.

Furthermore, the solution ξs,t(x) is (β, β, α)-Hölder continuous in (s, t, x), where β is

an arbitrary number less than 1
2
and α is an arbitrary less than 1.

The rest of this section is devoted to the proof of theorem 2.2.1. We will consider the
case s < s′ < t < t′ only. Other cases will be treated quite similarly. Since

ξs′,t′(x
′) = x′ +

m∑
k=0

∫ t

s′
Xk(r, ξs′,r(x

′))dBk
r +

m∑
k=0

∫ t′

t

Xk(r, ξs′,r(x
′))dBk

r ,

ξs,t(x) = ξs,s′(x) +
m∑
k=0

∫ t

s′
Xk(r, ξs,r(x))dBk

r ,

we have

| ξs,t(x)− ξs′,t′(x′) |p ≤ (2m+ 3)p{
m∑
k=0

∫ t′

t

Xk(r, ξs′,r(x
′))dBk

r |p + | ξs′,s(x)− x′ |p

+
m∑
k=0

∫ t

s′
{Xk(r, ξs,r(x))−Xk(r, ξs′,r(x

′))}dBk
r |p}.
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Consequently it is sufficient to prove the following three estimates:

E

[
|
∫ t′

t

Xk(r, ξs′,r(x
′))dBk

r |p
]
≤ C3 | t′ − t |

p
2 (1+ | x′ |p), (2.9)

E | ξs,s′(x)− x′ |p≤ C4{| x− x′ |p + | s− s′ |
p
2 (1+ | x |p)}, (2.10)

E
[∫ t

s′
{Xk(r, ξs,r(x))−Xk(r, ξs′,r(x

′))}dBk
r |p}

]
≤ C5{| x−x′ |p + | s−s′ |

p
2 (1+ | x |p)}.

(2.11)
For the proofs of 2.9 and 2.10, we claim a lemma.

Lemma 2.2.1. [40] Let p be any real number and ε> 0. Then there is a positive

constant C(p,ε)
6 such that

E
[
(ε+ | ξs,t(x) |2)p

]
≤ Cp,ε

6 (ε+ | x |2)p

holds for all s, t ∈ [0, a] and x ∈ Rd .

Proof. Set f(x) = (ε+ |x|2) and apply Itô’s formula to F (x) = f(x)p and Mt = ξt =

ξs,t(x), where (s, x) is fixed. Set x = (x1, · · · , xd) and observe

∂F

∂xi
(x) = 2 p f(x)p−1xi,

∂2F

∂xi∂xj
(x) = 2 p f(x)p−2{f(x)δij + 2(p− 1)xixj}.

By setting Xk(r, x) = (Xk(r, x)1, · · · , Xk(r, x)d) and ξt = (ξ1
t , · · · , ξdt ) ,

F (ξt)− F (x) = 2 p
∑
i,k≥1

∫ t

s

f(ξr)
p−1ξirX

i
k(r, ξr)dB

k
r + 2p

∑
i≥1

∫ t

s

f(ξr)
p−1ξirX

i
0(r, ξr)dr

+ p
∑
i,j≥1

∫ t

s

f(ξr)
p−2{f(ξr)δij + 2(p− 1)ξirξ

j
r}(
∑
k≥1

X i
k(r, ξr)X

j
k(r, ξr))dr (2.12)
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Here we have used the relation

d < ξi, ξj >t =
∑
k,`≥1

X i
k(t, ξt)X

j
` (t, ξt) d < Bk, B` >t

=
∑
k≥1

X i
k(t, ξt)X

j
k(t, ξt)dt

The first member of the right hand side of 2.12 is of mean 0. Observe the inequalities

|X i
k(r, x)| ≤ Cf(x)

1
2 , |xi| ≤ f(x)

1
2 . Then we see that the second and the third mem-

bers are dominated by a constant times
∫ t

0

F (ξr)dr. Therefore, taking expectations

in 2.12, we have

E[F (ξt)]− F (x) ≤ C
(p,ε)
7

∫ t

s

E[F (ξr)]dr,

where C
(P,ε)
7 is a positive constant. By Gronwall’s lemma, we get E[F (ξt)] ≤

F (x) expC
(P,ε)
7 (t− s). The proof is complete.

Proof of the estimate 2.9:

Let k ≥1, By Burkholder’s inequality, we have

E

[
|
∫ t′

t

Xk(r, ξs′,r(x
′))dBk

r |p
]
≤ C

(p)
0 |t′ − t|

p
2
−1

∫ t′

t

E [|Xk(r, ξs′,r(x
′))|p] dr.

Since it holds |Xk(r, x)| ≤ C(1 + |x|) with some positive constant C, lemma 2.2.1
implies inequality 2.9 immediately. The case k = 0 can be proved similarly.

Proof of the estimate 2.10:

ξs,s′(x)− x′ = x− x′ +
m∑
k=0

∫ s′

s

Xk(r, ξs,r(x)) dBk
r ,
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we have, using 2.9,

E[| ξs,s′(x)− x′ |p] ≤ (m+ 2)p{| x− x′ |p +
m∑
k=0

E[|
∫ s′

s

Xk(r, ξs,r(x))dBk
r |p]}

≤ (m+ 2)p{| x− x′ |p +(m+ 1)C3 | s′ − s |
p
2 (1+ | x |p)}.

This proves 2.10.
For the proof of estimate 2.11, we require a lemma.

Lemma 2.2.2. [40] For any real number p, there is a positive constant C(p)
8 not

depending on ε> 0 such that

E[(ε+ | ξs,t(x)− ξs,t(y) |2)p] ≤ C
(p)
8 (ε+ | x− y |2)p (2.13)

holds for all s < t and x, y.

Proof. Apply Itô’s formula to F (x) = f(x)p, f(x) = ε+ |x|2 and Mt = ηt = ξs,t(x)−
ξs,t(y), where s, x, y are fixed. Since

ηt = x− y +
m∑
k=0

∫ t

s

{Xk(r, ξs,r(x))−Xk(r, ξs,r(y))}dBk
r

we have

F (ηt)− F (ηs) = 2p
∑
i,k

∫ t

s

f(ηr)
p−1ηir{X i

k(r, ξs,r(x))−X i
k(r, ξs,r(y))}dBk

r

+p
∑
i,j

∫ t

s

f(ηr)
p−2(f(ηr)δij + 2(p− 1)ηirη

j
r)

× {
∑
k≥1

(X i
k(r, ξs,r(x))−X i

k(r, ξs,r(y))(Xj
k(r, ξs,r(x))−Xj

k(r, ξs,r(y))}dr (2.14)

The expectation of the first of the right hand side is 0 except for the term correspond-

ing to k = 0. Observe |ηir| ≤ (fηr)
1
2 and

|X i
k(r, ξs,r(x))−Xj

k(r, ξs,r(y)| ≤ L|ηr| ≤ Lf(ηr)
1
2
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by the Lipschitz condition. Then the expectation of the term
∫
· · · dB0

r plus that of

the last member in 2.14 is dominated by C9

∫ t

s

E[F (ηr)]dr. Then we get

E[F (ηt)]− F (x− y) ≤ C9

∫ t

s

E[F (ηr)]dr.

The assertion follows from Gronwall’s lemma.

Proof of the estimate 2.11:

By Burkholder’s inequality, we have

E[|
∫ t

s′
{Xk(r, ξs,r(x))−Xk(r, ξs′,r(y))}dBk

r |p]

≤ C
(p)
0 | t− s′ |

p
2
−1

∫ t

s′
E[| Xk(r, ξs,r(x))−Xk(r, ξs′,r(y)) |p]dr

≤ C
(p)
0 Lp | t− s′ |

p
2
−1

∫ t

s′
E[| ξs,r(x)− ξs′,r(x′) |p]dr (2.15)

Note that ξs,r(x) = ξs′,r(x) ◦ ξs,s′(x) and that ξs′,r(y) and ξs,s′(x) are independent.
Apply lemma 2.2.2 and estimate 2.10. Then we have

E[| ξs,r(x)− ξs′,r(x′) |p] =

∫
E[| ξs′,r(y)− ξs′,r(x′) |p]P(ξs,s′(x) ∈ dy)

≤ C
(p)
8

∫
| y − x′ |p P(ξs,s′(x) ∈ dy)

≤ C
(p)
8 E[| ξs,s′(x)− x′ |p]

≤ C
(p)
8 C4{| x− x′ |p + | s′ − s |

p
2 (1+ | x |p)}.

Substitute the above inequality to 2.15, we get the estimate 2.11.
Proof of theorem 2.2.2:

If 2.8 is satisfied, then by Kolmogorov’s theorem, ξs,t(x) has a modification which is
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locally (β, β, α)-Hölder continuous with respect to (s, t, x), where β < p−1(p
2
− d) and

α < 2p−1(p
2
− d). Since p is arbitrary, β can take any value less than half and α can

take any value less than 1.

We will next prove the continuity of the integral
∫ t

s

Xk(r, ξs,r(x))dBk
r . Since the case

k = 0 is obvious, we will consider the case k ≥ 1. Suppose s < s′ < t < t′ as before.
Then

∫ t

s

Xk(r, ξs,r(x))dBk
r −

∫ t′

s′
Xk(r, ξs′,r(x

′))dBk
r =

∫ s′

s

Xk(r, ξs,r(x))dBk
r

+

∫ t

s′
{Xk(r, ξs,r(x))−Xk(r, ξs′,r(x

′))}dBk
r −

∫ t′

t

Xk(r, ξs′,r(x
′))dBk

r

Lp -estimates of the first and the third terms of the right hand side have been given in

2.9. Lp-estimate of the second term is given by 2.11. Therefore, LP -norm of the left
hand side is again dominated by a quantity like the right hand side of 2.8. Therefore

the stochastic integrals
∫ t

s

Xk(r, ξs,r(x))dBk
r , k = 1, · · · ,m have the same kind of

continuity as that of ξs,t(x). Other properties of the theorem will be obvious from the
above.

2.3 Smoothness of the solution with respect to the

initial data

We have seen in the previous section that the solution ξs,t(x) of a SDE is locally
Hölder continuous of order α < 1, provided that coefficients of the SDE are Lips-
chitz continuous. In this section we will see more smoothness of the solution under
additional smoothness assumption for coefficients.

Theorem 2.3.1. Suppose that coefficients X0, · · · , Xm of an Itô SDE are C1,α
g func-

tions for some α > 0 and their first derivatives are bounded. Then the solution ξs,t(x)
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is a C1,β function of x for any β less than α for each s < t a.s. Furthermore, the

derivative ∂`ξs,t(x)=
(
ξs,t(x)

∂x`

)
satisfies the following SDE:

∂`ξs,t(x) = e` +
m∑
k=0

∫ t

s

X ′k(r, ξs,r(x))∂`ξs,r(x)dBk
r (2.16)

for all (s, t, x) a.s., where X ′k(r, x) is a matrix valued function
(
∂X i

k(r, x)

∂xj

)
i,j=1,··· ,d

and e` is the unit vector (0, · · · , 0, 1, 0, · · · , 0). For y ∈ R− {0}, define

ηs,t(x, y) =
1

y
{ξs,t(x+ ye`)− ξs,t(x)} (2.17)

Then the existence of the partial derivative
ξs,t(x)

∂x`
, for any s, t, x, a.s. can be assured

if ηs,t(x, y) has a continuous extension at y = 0 for any s, t, x a.s. This follows from
the following lemma and Kolmogorov’s theorem.

Lemma 2.3.1. [40] For any p ≥ 2, there is a positive constant C(p)
10 such that

E | ηs,t(x, y)− ηs′,t′(x′, y′) |p

≤ C
(p)
10 {| x−x′ |αp + | y−y′ |αp +(1+ | x | + | x′ |)αp(| s−s′ |

αp
2 + | t−t′ |

αp
2 )} (2.18)

Proof. We first show the boundedness of E|ηs,t(x)|P . By the mean value theorem, it
holds

ηs,t(x, y) = e`+
m∑
k=0

∫ t

s

{∫ 1

0

X ′k(r, ξs,r(x) + v(ξs,r(x+ ye`)− ξs,r(x)))dv

}
×ηs,r(x, y)dBk

r

(2.19)
Therefore we have

E | ηs,t(x, y) |p≤ (m+ 2)p

{
1 +

m∑
k=0

E
[
|
∫ t

s

(

∫ 1

0

X ′k(...)dv)ηs,r(x, y)dBk
r |p
]}

(2.20)
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Using Burkholder’s inequality, we have for k≥1,

E[|
∫ t

s

(

∫ 1

0

X ′k(...)dv)ηs,r(x, y)dBk
r |p]

≤ C
(p)
11 | t− s |

p
2
−1 E[

∫ t

s

|
∫ 1

0

X ′k(...)dvηs,r(x, y) |p dr]

≤ C
(p)
11 | t− s |

p
2
−1‖ X ′k ‖

∫ t

s

E | ηs,r(x, y) |p dr.

Here ‖ X ′k ‖= sup
(r,x)

|X ′k(r, x)| and |A| denotes the norm of the matrix A = (aij) defined

by |A| =
√∑

i,j

a2
ij. Similar estimate is valid for k = 0. Then from 2.20, we obtain

E | ηs,t(x, y) |p≤ C
(p)
12 + C

(p)
13

∫ t

s

E | ηs,r(x, y) |p dr,

where constants C(p)
12 and C(p)

13 do not depend on s, t, x, y. Therefore, by Gronwall’s
inequality, we see that E | ηs,t(x, y) |p is bounded.
We next show 2.18 in case t = t′. We assume s < s′ < t. Other cases will be treated
similarly. Note that ηs,t(x, y)− ηs,t(x′, y′) is a sum of the following terms:

∫ s′

s

(∫ 1

0

X ′k(r, ξs,r(x) + v(ξs,r(x+ ye`)− ξs,r(x)))dv

)
ηs,r(x, y)dBk

r (2.21)

∫ t

s′

[(∫ 1

0

X ′k(r, ξs,r(x) + v(ξs,r(x+ ye`)− ξs,r(x)))dv

)
ηs,r(x, y)

−
(∫ 1

0

X ′k(r, ξs′,r(x
′) + v(ξs′,r(x

′ + y′e`)− ξs′,r(x′)))dv
)
ηs′,r(x

′, y′)

]
dBk

r (2.22)

Using Burkholder’s inequality, the expectation of the p-th power of ?? is estimated
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in case k ≥ 1 as

E[|
∫ s′

s

(

∫ 1

0

X ′k(...)dv)ηs,r(x, y)dBk
r |p]

≤ C
(p)
14 | s′ − s |

p
2
−1 E[

∫ s′

s

| (
∫ 1

0

X ′k(...)dv)ηs,r(x, y) |p dr]

≤ C
(p)
14 ‖ X ′k ‖| s′ − s |

p
2
−1

∫ s′

s

E | ηs,r(x, y) |p dr,

which is dominated by C(p)
15 | s − s′ |p/2 by the argument of the previous paragraph.

We will calculate the expectation of the p-th power of 2.22. Note that the integrant
[· · · ] in 2.22 estimated as

|integrant[...]|

≤
∫ 1

0

| X ′k(r, ξs,r(x) + vyηs,r(x, y)) | dv× | ηs,r(x, y)− ηs′,r(x′, y′) |

+

∫ 1

0

| X ′k(r, ξs,r(x) + vyηs,r(x, y))−X ′k(r, ξs′,r(x′) + vy′ηs′,r(x
′, y′)) | dv× | ηs′,r(x′, y′) |

≤ ‖ X ′k ‖| ηs,r(x, y)− ηs′,r(x′, y′) |

+ L

∫ 1

0

{(1− v)α | ξs,r(x)− ξs′,r(x′) |α +vα | ξs,r(x+ ye`)− ξs′,r(x′ + y′e`) |α}dv× | ηs′,r(x′, y′) |

≤ ‖ X ′k ‖| ηs,r(x, y)− ηs′,r(x′, y′) | +L | ξs,r(x)− ξs′,r(x′) |α × | ηs′,r(x′, y′) |

+ L | ξs,r(x+ ye`)− ξs′,r(x′ + y′e`) |α × | ηs′,r(x′, y′) | .

Here L is a Hölder constant; |X ′k(r, x) − X ′k(r, x
′)| ≤ L|x − x′|α. Therefore, by
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Burkholder’s inequality,

C(p)−1E[|
∫ t

s′
[...]dBk

r |p]

≤ | t− s′ |
p
2
−1

∫ t

s′
E[| [...] |p]dr

≤ | t− s′ |
p
2
−1 3p{‖ X ′k ‖p

∫ t

s′
E[| ηs,r(x, y)− ηs′,r(x′, y′) |p]dr

+ Lp(

∫ t

s′
E[| ξs,r(x)− ξs′,r(x′) |2αp]

1
2E[| ηs′,r(x′, y′) |2p]

1
2dr

+

∫ t

s′
E[| ξs,r(x+ ye`)− ξs′,r(x′ + y′e`) |2αp]

1
2E[| ηs′,r(x′, y′) |2p]

1
2dr}.

Apply theorem 2.2.1 to E|ξs,r(x)− ξs′,r(x′)|αp. Then the above is dominated by

C15{(1+ | x | + | x′ |)αp | s− s′ |
αp
2 + | x− x′ |αp + | y − y′ |αp}

+C16

∫ t

s′
E[| ηs,r(x, y)− ηs′,r(x′, y′) |p]dr.

Summing up these calculations for 2.21 and 2.22, we arrive at

E[| ηs,t(x, y)− ηs′,t(x′, y′) |p]

≤ C17{| s− s′ |
p
2 +(1+ | x | + | x′ |)αp | s− s′ |

αp
2 + | x− x′ |αp + | y − y′ |αp}

+ C18

∫ t

s′
E[| ηs,r(x, y)− ηs′,r(x′, y′) |p]dr.

By Gronwall’s inequality, we have

E[| ηs,t(x, y)− ηs′,t(x′, y′) |p]

≤ C17{(1+ | x | + | x′ |)αp | s− s′ |
αp
2 + | x− x′ |αp + | y − y′ |αp} expC18(t− t′).
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This proves 2.18 in case t = t′.It remains to prove 2.18 in case t 6= t′. Assuming t < t′,
we have

ηs,t(x, y)− ηs′,t(x′, y′)

= ηs,t(x, y)− ηs′,t(x′, y′)−
m∑
k=0

∫ t′

t

(

∫ 1

0

X ′k(...)dv)ηs′,r(x
′, y′)dBk

r .

It holds

C(p)−1E[|
∫ t′

t

(

∫ 1

0

X ′k(...)dv)ηs′,r(x
′, y′)dBk

r |p]

≤ | t′ − t |
p
2
−1 E[

∫ t′

t

| (
∫ 1

0

X ′k(...)dv)ηs′,r(x
′, y′) |p dr]

≤ | t′ − t |
p
2
−1‖ X ′k ‖p

∫ t′

t

E | ηs′,r(x′, y′) |p dr

≤ C19 | t′ − t |
p
2

Therefore we get the desired estimation 2.18. The proof is complete.
Proof of theorem 2.3.1:

By Kolmogorov’s theorem, ηs,t(x, y) has a continuous extension at y = 0 for all s < t

and x ∈ Rd a.s. This means that ξs,t(x) is continuously differentiable in the domain

{(s.t, x)/s < t, x ∈ Rd} and the derivative ∂`ξs,t(x) is β-Hölder continuous for any
β < α. Let y tend to 0 in 2.19. Then we obtain 2.16. The proof is complete.

Theorem 2.3.2. Let k be a positive integer and α be 0 < α ≤ 1. Suppose that
coefficients X0, · · · , Xm are Ck,α

g functions of x for some α and their derivatives up

to k-th order are bounded. Then the solution ξs,t(x) is a Ck,β function of x for any β
less than α.

Proof. We will consider the case k = 2. Let y ∈ R− {0} and set

ζs,t(x, y) =
1

y
{∂iξs,t(x+ ye`)− ∂iξs,t(x)}.
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Then similarly as the proof of lemma 2.3.1, we obtain an estimate

E[| ζs,t(x, y)− ζs′,t′(x′, y′) |p]

≤ C20{| x− x′ |αp + | y − y′ |αp (1+ | x | + | x′ |)αp(| s− s′ |
αp
2 + | t− t′ |

αp
2 )}

for all s < t, s′ < t′, x, x′ ∈ Rd, y, y′ ∈ R − {0}. This implies the existence of the
partial derivative ∂`ξs,t(x) for all s < t and x a.s. and the partial derivative is β-
Hölder continuous for any β < α.

2.4 Stochastic flow of homeomorphisms

In section 2, we saw that if coefficients of an Itô SDE are globally Lipschitz continuous,
then there is a modification of the solution ξs,t(x) which is continuous in three variables

(s, t, x) a.s. Then for any s < t, ξs,t(., ω) defines a continuous map Rd → Rd for almost

all ω. We will prove in this section that the map is actually a homeomorphism of Rd

onto itself a.s.
We will first consider the "one to one" property of the map ξs,t(., ω) lemma 2.2.2
implies the inequality

E[| ξs,t(x)− ξs,t(y) |2p] ≤ C
(p)
8 | x− y |2p (2.23)

for negative p. This shows that if x 6= y, then ξs,t(x)− ξs,t(y) a.s. for any s < t. But
this does not imply immediately that the map ξs,t(., ω) is one to one a.s. To prove
the latter assertion, we require a lemma.

Lemma 2.4.1. [40] Set

ηs,t(x, y) =
1

| ξs,t(x)− ξs,t(y) |
.

Then for any p > 2, there is a constant C(p)
21 such that for any δ > 0

E[| ηs,t(x, y)− ηs′,t′(x′, y′) |p]

≤ C
(p)
21 δ

−2p{| x− x′ | + | y − y′ | +(1+ | x |p + | x′ |p + | y |p + | y′ |p)(| t− t′ |
p
2 + | s− s′ |

p
2 )}
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holds for all s < t and x, y, x′, y′ such that | x− y |≥ δ and | x′ − y′ |≥ δ.

Proof. A simple computation yields

| ηs,t(x, y)− ηs′,t′(x′, y′) |p

≤ 2pηs,t(x, y)p − ηs′,t′(x′, y′)p{| ξs,t(x)− ξs′,t′(x′) |p + | ξs,t(y)− ξs′,t′(y′) |p}.

Take expectations for both sides and use Hölder’s inequality. Then,

E[| ηs,t(x, y)− ηs′,t′(x′, y′) |p]

≤ 2pE[| ηs,t(x, y) |4p]
1
4E[| ηs′,t′(x′, y′) |4p]

1
4

× {E[| ξs,t(x)− ξs′,t′(x′) |2p]
1
2 + E[| ξs,t(y)− ξs′,t′(y′) |2p]

1
2}.

It holds by 2.23

E[| ηs,t(x, y) |4p]
1
4 ≤ C22 | x− y |−p≤ C22δ

−p,

where | x− y |≥ δ. Also by theorem 2.2.1,

E[| ξs,t(x)−ξs′,t′(x′) |2p]
1
2 ≤ C23{| x−x′ |p +(1+ | x |p + | x′ |p)(| t−t′ |

p
2 + | s−s′ |

p
2 )}.

Therefore we get the lemma.

We can prove the "one to one" property of the map ξs,t. Take p as large as
p

2
> 2(d+1)

in lemma 2.4.1. Kolmogorov’s theorem states that ηs,t(x, y) is continuous in (s, t, x, y)

in the domain {(s, t, x, y) | s < t, | x−y |≥ δ}. Since δ is arbitrary, it is also continuous
in the domain {(s, t, x, y) | s < t, x 6= y}. This proves that the map ξs,t; Rd → Rd is
one to one for any 0 < s < t < a a. s.
We will next consider the onto property of the map ξs,t . We claim a lemma.

Lemma 2.4.2. [40] Let R̄d = R̄d ∪ {∞} be the one point campactification of Rd.
Set x̂=| x |−2 x and define

ηs,t(x̂) =
1

1 + ξs,t(x)
if x̂ ∈ Rd, x̂ = 0.
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Then for any positive p, there is a constant C(p)
24 such that

E[| ηs,t(x̂)− ηs′,t′(x̂′) |p] ≤ C
(p)
24 {| x̂− x̂′ |p + | t− t′ |

p
2 + | s− s′ |

p
2}.

Proof. Since

| ηs,t(x̂)− ηs′,t′(x̂′) |p≤ ηs,t(x̂)p − ηs′,t′(x̂′)p | ξs,t(x)− ξs′,t′(x′) |p,

we have by Hölder’s inequality

E[| ηs,t(x̂)− ηs′,t′(x̂′) |p] ≤ E[| ηs,t(x̂) |4p]
1
4E[| ηs′,t′(x̂′) |4p]

1
4

×E[ξs,t(x)− ξs′,t′(x′) |2p]
1
2

Apply lemma 2.2.1 and theorem 2.2.1. Then the right hand side is dominated by

C25(1+ | x |)−p(1+ | x′ |)−p{| x− x′ |p +(1+ | x | + | x′ |)p(| t− t′ |
p
2 + | s− s′ |

p
2 )}

≤ C25{| x̂− x̂′ |p| t− t′ |
p
2 + | s− s′ |

p
2}

if x and x′ are finite. Here we have used the inequality (1+ | x |)−1 × (1+ | x′ |)−1 |
x− x′ |≤| x̂− x̂′ |. In case x =∞, we have

E[| ηs′,t′(x̂′) |p] ≤ C26(1+ | x′ |)−p ≤ C26 | x′ |−p .

Therefore the inequality of the lemma follows.
The "onto" property of the map ξs,t follows from lemma 2.4.2. Take p greater than
2(d + 3). Then by Kolmogorov’s theorem, ηs,t(x̂) is continuous at x̂ = 0. Therefore,

ξs,t(., ω) can be extended to a continuous map from R̄d into itself for any s < t a.s.

The extension ξ̃s,t(x, ω) is continuous in (s, t, x) a.s. We will fix such ω. The map

ξ̃s,t(., ω); Rd → Rd is then homotopic to the identity map ξ̃s,s(., ω), so that it is an

onto map by a well known theorem of homotopic theory. The restriction of ξ̃s,t(., ω)

to Rd is again an "onto" map since ξ̃s,t(∞, ω) = ∞.
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The map ξs,t(., ω) : Rd → Rd is one to one and onto. Hence the inverse map ξ−1
s,t (., ω)

is also one to one and onto. It is continuous. Indeed, the inverse map ξ−1
s,t (., ω)

; R̄d → R̄d is continuous since ξs,t(., ω) is a one to one, continuous map from the

compact space R̄d into itself.

We will summarize the result.

Theorem 2.4.1. [40] Suppose that coefficients of an Itô SDE are globally Lipschitz
continuous. Then there is a modification of the solution, denoted by ξs,t(x, ω) which
satisfies the following properties.

• For each s < t and x, ξs,t(x, .) is (Fs,t) -measurable.

• For almost all ω, ξs,t(x, ω) is continuous in (s, t, x) and satisfies lim
t↓s

ξs,t(x, ω) =

x.

• For almost all ω, ξs,t+u(x, ω) = ξt,t+u(ξs,t(x, ω), ω) is satisfied for all s < t and
u > 0.

• For almost all ω, the map ξs,t(., ω) : Rd → Rd is an onto homeomorphism for
all s < t.

Theorem 2.4.2. Let k be a positive integer. Suppose that coefficients of an Itô
equation are Ck,α

g functions for some α> 0 and their derivatives up to k-th order are

bounded. Then the map ξs,t(., ω) : Rd → Rd is a Ck - diffeomorphism for all s < t

a.s.

Proof. Smoothness of the map ξs,t : Rd → Rd was shown in theorem 2.3.2. It is

enough to show that the Jacobian matrix ∂ξs,t(x)=(∂ξs,t(x)

∂x
) is nonsingular for any x

a.s. If it were shown then the implicit function theorem states that the inverse map
is again of Ck-class. Now by theorem 2.3.1, the Jacobian matrix satisfies following
linear SDE:

∂ξs,t = I +
m∑
k=0

∫ t

s

X ′k(r, ξs,r(x))∂ξs,rdB
k
r .
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Consider an adjoint equation of the above:

Ks,t(x) = I −
m∑
k=0

∫ t

s

Ks,r(x)X ′k(r, ξs,r)dB
k
r

−
m∑
k=1

∫ t

s

Ks,r(x)X ′k(r, ξs,r)
2dr.

Obviously it has unique matrix solution Ks,t(x). We can prove similarly as before

E[| Ks,t(x)−Ks′,t′(x
′) |p] ≤ C

(p)
27 {| x−x′ |αp +(1+ | x | + | x′ |)αp(| s′−s |

αp
2 + | t′−t |

αp
2 )}.

Hence Ks,t(x) is continuous in (s, t, x) a.s. By Itô’s formula, it holds

Ks,t(x)∂ξs,t(x) = I +

∫ t

s

(dKs,r(x))∂ξs,r(x) +

∫ t

s

Ks,r(x)d∂ξs,r(x)+ < K(x), ξ(x) >t

= I

Therefore ∂ξs,t(x) has the inverse matrix Ks,t(x) for any (s, t, x), proving ∂ξs,t(x, ω)

is nonsingular for any (s, t, x) a.s.
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Conclusion

The subject we are discussing in this work is a topical issue and one that is very
important. Many authors have made publications in this research path. What is now
fashionable is the study of the properties of the stochastic flow in the case where the
coefficients are non-Lipschitzian, and also in the case where the initial condition itself
is a stochastic process.
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