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Summary

In this thesis, we propose to study single-index conditional functional models. The prob-
lem of non-parametric modeling when statistical variables are curves is studied.

More precisely, we are interested in forecasting problems using an explicative variable
with values in an infinite dimensional space (functional space), and we seek to develop
alternatives to the regression method. Indeed, we assume that we have a real random
variable (response), often denoted Y and a (explanatory) functional variable, often de-
noted X. The nonparametric model used to study the link between X and Y concerns the
conditional distribution whose distribution function (respectively the density), denoted F

(respectively f), when the data are generated from a simple index regression model.

We suppose that the explanatory variable has values in a semi-metric space (infinite di-

mension) and we consider the estimation of the conditional models by the kernel method.
We treat the asymptotic properties of these estimators in the independent case under
standard conditions.

The asymptotic results obtained are well suited to the topological structure of the
functional space of our observations and the functional character of the models considered.
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Résumé

Dans cette thèse, nous proposons d’étudier des modèles fonctionnels conditionnels à
direction révélatrice. Le problème de la modélisation non paramétrique lorsque les vari-
ables statistiques sont des courbes est étudié.

Plus précisément, nous nous intéressons à des problèmes de prévisions à partir d’une
variable explicative à valeurs dans un espace de dimension infinie (espace fonctionnel), et
nous cherchons à développer des alternatives à la méthode de régression. En effet, nous
supposons que nous disposons d’une variable aléatoire réelle (réponse), souvent notée Y et

d’une variable fonctionnelle (explicative), souvent notée X. Le modèle non paramétrique
utilisé pour étudier le lien entre X et Y concernent la distribution conditionnelle dont la
fonction de répartition (respectivement la densité), notée F (respectivement f), lorsque
les données sont générées à partir d’un modèle de régression à indice simple.

Nous supposons que la variable explicative est à valeurs dans un espace semi-métrique
(dimension infinie) et nous considérons l’estimation des modèles conditionnelles par la
méthode de noyau. Nous traitons les propriétés asymptotiques de ces estimateurs dans le
cas indépendant sous des conditions standard.

Les résultats asymptotiques obtenus exploitent bien la structure topologique de l’espace
fonctionnel de nos observations et le caractère fonctionnel des modèles considérés.
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Chapter 1

Introduction to Functional
Nonparametric Statistics

Over the last two decades, an immense innovation on measuring instruments has emerged
and realized that enabling several objects to be monitored continuously, such as stock
market indices, pollution, climatology, satellite images,... this technological development
required the modernization of statistical methods as tools for analysis and control.Thus, a
new branch of statistics, called functional statistics, has been developed to treat observa-
tions as functional random elements.The first contributions on the subject were devoted
to the study of parametric models (see the monographs of Ramsay and Silverman (1997,

2002, 2005) for the i.i.d case or Bosq (2000) for the dependent case).However, statisti-
cal analysis via linear models is based on a preliminary knowledge of the nature of co-
variability between observations, which is very difficult to verify in functional statistics,
contrary to the classical statistic where graphic tools are available such as the scatter-
plot which gives an overview on the relation between the observations.This justifies the
importance of modeling functional data by nonparametric methods.

Nonparametric processing of functional data is much more recent than parametric
analysis.Indeed, the first results were obtained by Gasser et al (1998).Authors were inter-
ested in the nonparametric estimation of the mode of distribution of a functional variable
verifying a fractal condition.Considering the same fractal condition Ferraty and Vieu
(2000) studied the almost complete convergence of a kernel estimator of the regression
function, when the observations are independent and identically distributed.Dabo-Niang
(2002) obtained, the almost sure convergence and the asymptotic normality of a histogram
type estimator of the density of a random variable in a space of infinite dimension.Using
the concentration property of the probability measure of the functional explanatory vari-
able, Dabo-Niang and Rhomari (2004) studied the convergence in Lp norm of the ker-

10



11

nel estimator of the nonparametric regression.The almost complete convergence for the
strongly mixing case was studied by Ferraty et al (2004).Masry (2005) showed asymp-
totic normality in the case of α-mixing functional observations.The first results on the
conditional models were obtained by Ferraty et al (2006).They have specified the almost
complete rate of convergence of the kernel estimators for the conditional distribution func-
tion, the conditional density and its derivatives, the conditional mode and conditional
quantiles.We refer to Ferraty and Vieu (2006) for a wide range of applications of these

models in functional statistics.Dabo-Niang and Laksaci (2007) added results on the con-
vergence in Lp norm of the kernel estimator of the conditional mode in the i.i.d case.The
determination of the dominant terms of the quadratic error of the kernel estimator of the
conditional density was obtained by Laksaci (2007).Ferraty et al (2008) discussed the es-
timation of conditional hazard function and established the almost complete convergence
of a kernel estimator of this nonparametric model.The asymptotic normality of the kernel
estimators of the conditional mode and the conditional quantiles has been studied by Ez-
zahrioui and Ould-saïd (2008a, 2008b, 2008c) by treating two cases (i.i.d case and mixing

case).Considering α-mixing observations, Quantela-del Rio (2008) established the almost
complete convergence and asymptotic normality of the estimator proposed by Ferraty et
al (2008) on the conditional random function.Author illustrated these asymptotic results
by applying them to seismic data.An alternative estimator of conditional quantiles has
been proposed by Lemdani et al (2009).They treated conditional quantiles as a robust
model belonging to the M-estimator class.The asymptotic results of the paper were al-
most complete convergence and asymptotic normality in the i.i.d case.
The contribution of Ferraty et al (2010) on uniform convergence is very important.Dabo-

Niang in collaboration with Laksaci (2010) have generalized their results of the conver-
gence in the Lp norm of the kernel estimator of the conditional mode in the i.i.d case
to the strongly mixing case.Considering the same structure of dependence, Lemdani et

al (2011) studied the almost complete convergence and asymptotic normality of the L1

estimator of the conditional quantiles.While the convergence in Lp norm for the double-
kernel estimator of conditional quantiles has recently been obtained by Dabo-Niang and
Laksaci (2012).The question of the choice of the smoothing parameter in the estima-
tion of the conditional variable with functional explanatory variable was considered by
Laksaci et al (2012).Other authors have been interested in estimating the regression func-
tion using other approaches, such as the k nearest neighbors method of Burba et al
(2008), robust techniques, Azzidine et al (2008), Crambes et al (2008), and Attouch et

al (2009, 2010).For estimation by the method of local polynomials, we can see Baìllo et
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Grané (2009), Barrientos-Marin et al (2010), Berlinet et al (2011) and Demongeot et al

(2012).The literature on the case of a functional response variable is very restricted in
functional statistics.We will cite, in this context, the article by Dabo-Niang and Rhomari
(2009) for the convergence in the Lp norm of the kernel estimator of the regression oper-
ator as a banach element.The almost complete convergence of this estimator is obtained
by Ferraty et al (2011).Van Keilegom in collaboration with Ferraty and Vieu (2012) es-
tablished the asymptotic normality of the estimator of the regression function, when the
two variables (response, explanatory) are functional in nature.All these results have been
obtained in the case where the observations are independent identically distributed.The
dependent case was recently considered by Ferraty et al (2012).In their paper, the authors
demonstrated the almost complete convergence of the kernel estimator of the regression
operator for β-mixing observations.
In this thesis we are interested in functional data and giving a general bibliografic context
on different functional models.

1.1 Functional Variable

There is actually an increasing number of situations coming from different fields of applied
sciences (environmetrics, chemometrics, biometrics, medicine, econometrics, ...) in which
the collected data are curves.Indeed, the progress of the computing tools, both in terms of
memory and computational capacities, allows us to deal with large sets of data.In particu-
lar, for a single phenomenon, we can observe a very large set of variables.For instance, look
at the following usual situation where some random variable can be observed at several
different times in the range (tmin, tmax).An observation can be expressed by the random

family {X(tj)}j=1,...,J .In modern statistics, the grid becomes finer and finer meaning that
consecutive instants are closer and closer.One way to take this into account is to consider
the data as an observation of the continuous family X = {X(t); t ∈ (tmin, tmax)}.

Definition 1.1.1. (Ferraty and Vieu 2006) A random variable X is called functional

variable (f.v.) if it takes values in an infinite dimensional space (or functional space).An
observation x of X is called a functional data.

Note that, when X (resp.x) denotes a random curve (resp.Its observation), we im-

plicitly make the following identification X = {X(t); t ∈ T}(resp x = {x(t); t ∈ T}).In
this situation, the functional feature comes directly from the observations.The situation
when the variable is a curve is associated with an unidimensional set T ⊂ R.Here, it
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is important to remark that the notion of functional variable covers a larger area than
curves analysis.(Ferraty and Vieu 2006)

1.2 Nonparametric Statistics for Functional Data

Traditional statistical methods fail as soon as we deal with functional data.Indeed, if for
instance we consider a sample of finely discretized curves, two crucial statistical problems
appear.The first comes from the ratio between the size of the sample and the number of
variables (each real variable corresponding to one discretized point).The second, is due to
the existence of strong correlations between the variables and becomes an ill-conditioned
problem in the context of multivariate linear model.So, there is a real necessity to develop
statistical methods/models in order to take into account the functional structure of this
kind of data.Most of existing statistical methods dealing with functional data use linear
modelling for the object to be estimated.Key references on methodological aspects are
those by Ramsay and Silverman (1997), (2005), while applied issues are discussed by

Ramsay and Silverman (2002) and implementations are provided by Clarkson, Fraley

and Ramsay (2005).Note also that, for some more specific problem, some theoretical

support can be found in Bosq (2000).On the other hand, nonparametric statistics have
been developped intensively.Indeed, since the beginning of the sixties, a lot of attention has
been paid to free-modelling (both in a free-distribution and in a free-parameter meaning)

statistical models and/or methods.The functional feature of these methods comes from the

nature of the object to be estimated (such as for instance a density function, a regression

function, ...) which is not assumed to be parametrizable by a finite number of real
quantities.In this setting, one is usually speaking of Nonparametric Statistics for which
there is an abundant literature.

Definition 1.2.1. (Ferraty and Vieu 2006) Let Z be a random variable valued in some
infinite dimensional space F and let φ be a mapping defined on F and depending on the
distribution of Z. A model for the estimation of φ consists in introducing some constraint
of the form

φ ∈ C

The model is called a functional parametric model for the estimation of φ if C is indexed
by a finite number of elements of F. Otherwise, the model is called a functional nonpara-
metric model.
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The appellation Functional Nonparametric Statistics covers all statistical back-
grounds involving a nonparametric functional model.In the terminology Functional Non-
parametric Statistics, the adjective nonparametric refers to the form of the set of
constraints whereas the word functional is linked with the nature of the data.In other
words, nonparametric aspects come from the infinite dimensional feature of the object to
be estimated and functional designation is due to the infinite dimensional feature of the
data.(Ferraty and Vieu 2006)

1.3 Functional data

One never observes an integral function over its entire trajectory.This would require a
measuring instrument with an in- ternal recording speed.Even the fastest quotes on the
fully computerized financial markets are spanned by a few milliseconds.When the func-
tional data arrive they are for these reasons always in vector form.Thus we shall not
observe, for example X(t) ∀ t but we shall have [X(t1), X(t2), ..., X(tp)] where the tj
constitute a discretization grid.According to the phenomenon studied p can vary between
several units and several million.This type of data is not new and has been studied for a
long time using multivariate techniques (seeing X as a random vector in Rp to continue

the previous example).But there are two problems.

• If the frequency of discretization of the curves is high (i.e. if p is large) we can find
ourselves in situations where the size of X is of the order or even greater than the
size of the sample itself.This situation can pose prohibitive problems both from the
theoretical point of view and from the numerical aspects.This problem is common
with that of many problems of statistics in large dimensions.

• By treating X as a vector, we completely lose its true nature, that of process in
continuous time or more generally of function.The derivation operation, for example,
does not make sense in this context.It is logical then to ask the question of alternative
methods in which, by failing to grasp X (t) ∀ t, one could be satisfied with an

approximation X̃ which would be a real function.

Next, we present different types of functional data sets given in Delsol (2008).
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1.4 Some functional datasets

We present in this section two particular functional data sets coming from quite varied do-
mains (climatology and chemometrics).To illustrate the benefits and challenges associated
with their study through a functional approach.

Study of the El Niño phenomenon. – We are now interested in a set of data from
the study of a fairly important climatological phenomenon commonly called El Niño.
It is a great marine current that occurs exceptionally (on average once or twice

per decade) along the Peruvian coast at the end of winter.This current is caus-
ing climate-related disruptions on the planet.The dataset available to us consists of
monthly sea surface temperature records made since 1950 in an area off northern

Peru (At the coordinates 0 - 100 South, 80 - 900 West) where the El Niño marine
current can appear.These data and descriptions are available on the US Climate
Prediction Center : http ://www.cpc.ncep.noaa.gov/data/indices/.The evolution of
temperatures over time is really a continuous phenomenon.The number of measure-
ments we have is fairly well represented (see Figure 1.1) and allows us to consider
the functional nature of the data.

Figure 1.1: Monthly measurements of surface temperature around the El Niño marine
current since 1950 (Delsol 2008).

On the basis of these data one may be interested in trying to predict the evolution of
the phenomenon from the data collected in previous years. Several approaches have
been introduced to try to address this problem.The first work attempts to predict the
temperature of the following month from the previous monthly temperatures (see

Katz, 2002, for more references).However, this modeling does not allow to take into
account the functional nature of the phenomenon studied nor to benefit from it.More
recently, following the approach introduced by Bosq (1991) we chose to consider the



1.4 Some functional datasets 16

process no longer through its discretized version but rather as a continuous process
that is broken down into successive curves of 12 months (between June of one year

and May of the following year, (see Figure 1.2)).

Figure 1.2: 57 curves representing the surface temperature of the El Niño marine current
in 12 - month by slices since June 1950(Delsol 2008).

We can then try to predict the curve of the following twelve months (or certain par-

ticular values of it) from one or more preceding curves.This functional approach has
the advantage of being adapted even when the number of discretization points in-
creases and makes it possible to take into account, for each period of twelve months,
the temperature curve as a whole.The work of Besse et al (2000), Valderama et

al (2002), Antoniadis and Sapatinas (2003) or Ferraty et al (2005) illustrate differ-
ent ways of responding to this problem and modeling the dependence of successive
curves

Grease and Spectrometric Measurements. – We consider a set of data from quan-
titative chemistry (branch of chemistry using mathematical tools, also called chemom-

etry) the data were collected to address a quality control problem in the agri-food
industry.When packing minced meat, it is mandatory to put on the packaging the
fat content.A chemical analysis can accurately give the fat content in a piece of
meat.However this method takes time, partially deteriorates the piece studied and
costs quite expensive, this is why we are interested in other more profitable meth-
ods thus, it has been envisaged to predict the fat content from spectrometric curves
whose obtaining is less costly (time and money) and does not require partial deterio-
ration of the meat being studied.The spectrometric data are obtained by measuring
for each piece of meat the absorbance of lights of different wavelengths.These are
intrinsically functional data, as emphasized Leurgans et al (1993) : the spectra ob-
served are to all intents and purposes functional observations.They can therefore be
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summarized by curves (called spectrometric curves) representing the absorbance as
a function of the wavelength.We are interested in a set of data from the study by
chemical analysis and by spectrometry of 215 pieces of meat.Thus, we dispose 215
spectrometric measurements (see figure 1.3) and corresponding fat levels (obtained

by chemical analysis).These data and their precise description are available on the

StatLib website (http ://lib.stat.cmu.edu/datasets/tecator).

Figure 1.3: Spectrometric curves obtained from the 215 pieces of meat studied.

It can be seen that the spectrometric curves are very regular and of similar shapes
outside a vertical translation.One wonders if this shift contains important informa-
tion to predict the fat content.If so, it should be taken into account in choosing the
semi-metric.Otherwise, since the curves are very smooth and of similar shapes, it
may be useful to use the derived curves rather than the curves themselves.We are
interested in predicting the fat content of a new piece of meat from the spectrometric
curve associated with it.The earliest work on this problem is due to Borggaard and
Thodberg (1992) and uses neural network methods.Since other articles including

Ferraty and Vieu (2002), Ferré and Yao (2005).Ferraty and Vieu (2006), Ferraty,

Mas and Vieu (2007) proposed and applied other methods to answer this prob-
lem.On the other hand, the results given in the first part of this paper complement
the literature dedicated to the prediction of a real variable from a variable functional
and can therefore be used to predict the fat level from of the spectrometric curve.

1.5 Other fields of application.

The two examples of datasets that we have presented are from quite different areas and
reflect various issues.In order to illustrate the wide variety of fields where one can be
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confronted with data of a functional nature, we propose in this section a brief overview of
these fields of application.Given the rise of functional statistics and the very large number
of cases where it is used, we present only an incomplete panorama of its domains applica-
tion. We have chosen to limit our references to publications bearing on the study of data
corresponding to curves using functional statistics, giving preference to the most recent or
precursor works in the existing literature.However, as with all non-parametric functional
statistical results, the results of this thesis apply directly to samples of functional data of
a different nature such as images, surfaces,...

- In the field of medicine, we can observe the use of functional statistics through studies
of different phenomena such as the evolution of certain cancers (see for intance

Ramsay and Silverman, 2005, Cao and Ramsay, 2007), Cardiac activity (see for

instance Clot, 2002, Ratcliffe et al., 2002a, 2002b and Harezlak et al., 2007), Knee

movements during effort Under constraints (see Abramovich and Angelini, 2006,

and Antoniadis and Sapatinas, 2007), Or certain deformations of the cornea (see

Locantore et al., 1999).

- In recent years, the genetics sector is booming. Thanks to advances in measuring equip-
ment and methods the biologists manage to make several measurements of gene
expression during time.The aim of these measures is to allow a better understand-
ing of the function of the genes and the interactions between some of their effects
(for example the phenomena of regularization of a substance by another).We are
also interested in identifying responsible gene groups of the evolution of a complex
biological phenomenon observed over time.Recently, several methods of functional
statistics have been applied to the expression profiles of the genes over time through
the work of Araki et al (2004), Leng et Müller (2006), Song et al (2007).

- In the field of animal biology, functional statistics were used to study the evolution of
certain phenomena over time.We can, for example, mention the different studies on
the evolution of laying of flies by Müller et Stadtmüller (2005), Cardot (2006), Chiou

and Müller (2007).The study of phenomena related to the environment and their
evolution is very often related to the study of functional data which may correspond
to the evolution of a phenomenon over time or as a function of another parameter
(Altitude, temperature, ...).Outside of the study of the El Niño marine current

mentioned earlier, we find work on the prediction of ozone peaks (see for instance

Aneiros-Perez et al, 2004, Cardot et al. 2004, 2006), the study of the evolution of

ozone levels at different altitudes (Meiring, 2005), of pollution caused by certain
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greenhouse gases (Febrero et al., 2007), of water quality (Henderson, 2006, Nerini

and Ghattas, 2007) or tests concerning radioactivity readings at different altitudes

over time (Cardot et al., 2007).

- Measurements, and in particular images collected by satellites, are also data that can
be studied using functional statistical methods.For example, the work of Vidakovic
(2001) in the field of meteorology or those of Dabo-Niang et al (2004b, 2007) in the
field of geophysics.They are interested in classifying curves collected by the satellite
in different places of the Amazon to identify the nature of the soil.One can also
evoke Cardot et al (2003), Cardot and Sarda (2006) which study the evolution of
vegetation from satellite data

- In the field of econometrics we are confronted with numerous phenomena which can be
modeled by functional variables.We can cite for example studies on the dynamics
of the monthly index of perishable food production (Ramsay, 2002), The prediction

of electrical consumption (Ferraty et al., 2002), the volatility of financial markets

(Müller et al., 2007), the performance of a company (Kawasaki et Ando, 2004), the

price evolution of an item at auction (Reddy and Das, 2006, Wang et al., 2007),

electronic commerce (Jank et Shmueli, 2006) or the intensity of financial transactions

(Laukaitis and Rackauskas, 2002 and Laukatis, 2006).One can refer to Kneip and

Utikal (2001), Benko (2006) for additional references.

- Finally, we can study functional random variables even if we have independent real or
multivariate initial data.This is the case when one wants to compare or study func-
tions that can be estimated from the data.Among the typical examples of this type
of situation, it is possible to evoke the comparison of different density functions (see
Kneip and Utikal, 2001, Ramsay and Silverman, 2002, Delicado, 2007, regression
functions (Härdle and Marron, 1990, Heckman and Zamar, 2000).

1.6 Other examples of functional data

The statistic for functional data or functional data analysis studies observations which
are not real or vector variables but random curves.
Examples:

• The temperature curve recorded at a given point on the globe is a completely ran-
dom continuous process.If the temperature is observed during N days it may be
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interesting to cut out the starting curve on N curves which plot the temperature
for each of the observation days.Each of these daily curves can then be seen as an
element of a sample of size N constituted of functional data

• Currently, experiments are carried out on the INRA campus to study the growth of
maize plants from different varieties and subjected to explicit conditions, different
errors.For each maize plant the measuring instruments collect a function which is
indeed random (it depends on the varietal of maize, experimental conditions and

other fluctuations ...)

-In the two preceding examples the random curves depend on time but the situation may
be different.The spectrometric analysis of the materials (which aims to deduce physic-

ochemical properties by examining a light spectrum from the material).Also produces

random curves indexed by a wavelength (and more by time).
Next, here we presente breifly the semi metric spaces and the small ball probabilities; this
post have been already given in Delsol (2008).

1.7 Semi-metric spaces

To study data it is often necessary to have a notion of distance between them.It is well
known that in finite dimension all the metrics are equivalent.This is no longer the case in
infinite dimension, which is why the choice of the metric (and therefore of the associated

topology) is even more crucial for the study of functional random variables than it is in
multivariate statistics.Many authors define or study functional variables as random vari-

ables with values in L2([0; 1]) (See for example Crambes, Kneip and Sarda 2007), more

generally in Hilbert space (see for example Preda, 2007), Banach (see for example Cuevas

and Fraiman, 2004) or metric (see for example Dabo-Niang and Rhomari , 2003).On the

other hand, Boscq (2000) considers samples of dependent functional random variables

with value in Hilbert space (or Banach) obtained by cutting the same continuous-time
process.In addition to the available metrics, it is often interesting to consider semi-metrics
allowing a wider range of possible topologies that can be chosen depending on the nature
of the data and the problem under consideration.This is why we have chosen in this thesis
to consider and study functional variables defined as random variables with values in a
semi-metric space of infinite dimension.
Apart from allowing the modeling of more general phenomena, another interest of using a
semi-metric rather than a metric is that it can constitute an alternative to the problems
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posed by large data dimensions.Indeed, we can take a semi-metric defined from a pro-
jection of our functional data in a space of smaller size than by performing in functional
principal component analysis of our data (Besse and Ramsay, 1986, Yao and Lee, 2006),

or by projecting them on a finite basis (wavelets, splines, ...).This reduces the size of the
data and increases the speed of convergence of the methods used while preserving the
functional nature of the data.We can choose the basis on which we project based on the
knowledge we have of the nature of the functional variable.For example, we can choose
the fourier basis if we assume that the functional variable observed is periodic.We can
refer to Ramsay and Silverman (1997, 2005) for more complete discussion of the different
approximation methods by projection of functional data.Further discussion of the value
of using different types of semi-metric is made in Ferraty and Vieu (2006) (especially in

Section 3.4).

It can be remembered that the choice of the semi-metric makes it possible both to
take account of more varied situations and to be able to circumvent the scourge of the
dimension.This choice, however, should not be made lightly but taking into account the
nature of the data and the problem under study.

1.7.1 Semimetrics and Small Ball Probabilities

The curse of dimensionality is a well-known phenomenon in nonparametric regression on
multivariate variable (see Stone, 1982).In multivariate nonparametric regression, conver-

gence rates (for the dispersion part) are expressed in terms of hdn.In the functional case we
adopt more general concentration notions called small ball probabilities and express our
asymptotic results in function of these quantitities.Small ball probabilities are defined by :

φx(h) = P
(
X ∈ B(x, h)

)

The way they decrease to zero have a great influence on the convergence rate of the
kernel estimator.One can find in many probability papers asymptotic equivalents for these
small ball probabilities when d is a norm (see for instance Lifshits et al., 2006, Shmil-

eva,2006, Gao et Li, 2007) or a specific seminorm (Aurzada et Simon, 2007).In the case of

unsmooth processes (Brownian motion, Ornstein-Ullenbeck process,...), these small ball

probabilities have an exponential form (with regard to hn) and hence the convergence

rate is a power of log (n) (see Ferraty et al., 2006, Section 5, Ferraty et Vieu, 2006a,

Paragraph 13.3.2.).The choice of the semimetric d has a direct influence on the topology
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and consequently on small ball probabilities.The diversity of semimetrics allows, in vari-
ous situations, to find a topology that gives a relevant notion of proximity between curves
(see Ferraty and Vieu, 2006a, Chapter 3).
One may wonder how to choose the semimetric in practice.A first method has been pro-
posed by Ferraty et al.(2002b).One firstly has to choose a family of semimetrcs from the
information one gets on the data.Then, one determines, for instance by cross-validation,
the semimetric (among this family) that is the most adapted to the data.Theoretical
justification of the usefulness of a particular semimetric is still an open problem.

1.7.2 The choice of the semi-metric, the banwidth and the kernel
in practice.

The nonparametric functional approach presented in this paper depends on three param-
eters : the semimetric d, the bandwidth hn and the kernel function K.In this paragraph
we discuss the way to choose them in practice.See the monograph by Ferraty and Vieu
(2006) for a deeper discussion on this topic.

The metric choice is important in the multivariate case where all metrics are equiv-
alent.In the functional case that is no longer true hence the metric choice is more cru-
cial.Moreover in addition to the usual functional metrics it is worth considering semimet-
rics because it may be an alternative to the curse of dimensionality, it enables to take into
account more general situations and it may be more relevant when observed curves are
very smooth.See the monograph by Ferraty and Vieu (2006) for a deeper discussion on
some arguments to choose the semimetric from the curves nature.For instance, when the
observed curves are smooth, it may be interesting to use semimetrics based on derivatives
(see for instance the spectrometric dataset studied in Ferraty and Vieu, 2006, p.106).
In other cases, when the curves are not smooth, it may be useful to consider projection
semimetrics (based for instance on functional principal components, first coefficients in

Fourrier’s decomposition, ...) to avoid the curse of dimensionality.Despite these consider-
ations, it is allways possible to consider a family of semimetrics and choose the one that
is the best adapted to the considered dataset by cross-validation.

The most popular way to choose the smoothing parameter from the dataset is to take
the one given by cross-validation criterion : hCV .The choice of the optimal smoothing
parameter in functional regression by cross-validation criterion has been addressed in a
theoretical way in the recent paper by Rachdi and Vieu (2007).To avoid the estimation
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of the bias term we have assumed the smoothing parameter to be small enough to make
the bias term negligible with regard to the variance one.That is why we obtain in simula-
tions that the best smoothing parameter seems to be smaller than hCV .Moreover, there is
no automatic method to choose the optimal bandwidth in practice that is why we use hCV .

As in the real case there exists various kinds of kernel functions.The main difference is
that in the functional case we consider kernel functions with compact support [0; 1] such

that K(1) > 0.Most standard kernel functions are the restriction of classical indicator,

triangular, quadratic or gaussian kernels to the set [0; 1].The choice of the kernel function

is linked we the smoothness of the operator we want to estimate.(Delsol 2008)

1.8 Conditional models in non-parametric statistics

The study of nonparametric models related to the conditional distribution has been widely
considered in nonparametric statistics.Historically, the first results on these models were
obtained by Roussas (1969).He treated the estimation of the conditional distribution func-
tion by the kernel method using Markov observations.He established the convergence in
probability of the constructed estimator.An alternative estimator for the same model was
developed by Stone (1977).The latter studied the empirical estimator of the conditional
distribution function and applied the results obtained to the estimation of conditional
quantiles as the generalized inverse of the conditional distribution function.Stute (1986)
added results on the almost complete convergence of the kernel estimator of the distri-
bution function of a vector random variable conditionally to a vector explanatory vari-
able.The estimation of the conditional mode was treated for the first time by Collomb
et al (1987).These authors showed the uniform convergence of the kernel estimator of
this conditional model when the observations are φ −mixing.In 1989, Samanta studied
the asymptotic normality of the kernel estimator of conditional quantiles when the ob-
servations are independent and identically distributed.The latter, in collaboration with
Thavaneswaran in 1990, obtained the same asymptotic property for a kernel estimator of
the conditional mode by considering the i.i.d case. Roussas (1991) established the almost
sure convergence of a kernel estimator.Of the conditional quantiles when the observations
come from a Markov process.The contribution of Youndjé (1993) on the estimation of the
conditional density is decisive.He addressed the question of the choice of the smoothing
parameter by considering the two independent and dependent cases.Quintela and Vieu
(1997) have treated the conditional mode as being the point that cancels the first order
derivative of the conditional density and constructed an estimator for this model using
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the kernel estimator of the derivative of the conditional density.Ould-saïd (1997) stud-
ied the kernel estimator of the conditional mode from ergodic observations.We refer to
Berlin et al.(1998a), Louani and Ould-Saïd (1999) for the convergence in law of the kernel

estimator of the conditional mode in the α-mixing case.The Berlinet et al.(1998b) gives
a general theorem of the asymptotic normality of the conditional quantile estimators,

independently of the correlation of the observations.Zhou and Liang (2000) used the L1

approach to construct a conditional median estimator using α-mixing observations.They
showed the asymptotic normality of this estimator.The convergence in Lp norm of the
kernel estimator of the conditional density of a stationary Markov process was obtained
by Laksaci and Yousfate (2002).Ioannides and Matzner (2002) constructed an estimator
for the conditional mode, when, the observations are tainted by errors.In this article the
authors focus on the almost sure convergence of the proposed estimator.While its asymp-
totic normality has been demonstrated by the same authors in Ioannides and Matzner
(2004).Gannoun et al (2003) have approached the estimation of conditional quantiles by

the L1 method, they have established almost complete convergence and asymptotic nor-
mality.Considering the same model and the same estimation method, Lin and Li (2007)
studied asymptotic normality from the associated variables.Other authors have been in-
terested in estimating conditional models from censored or truncated observations (see,

for example, Lemdani et al (2009) Liang and Uña-Àlvarez (2010, 2011), Khardani et

al (2010, 2011 and 2012), Ould Saïd and Tatachak (2011) or Ould Saïd and Djabrane

(2011)).

1.8.1 On the conditional distribution function

The estimation of the conditional distribution function in a functional framework was
introduced by Ferraty et al (2006).They constructed a double kernel estimator for the
conditional distribution function and specified the almost complete convergence rate of
this estimator when the observations are independent and identically distributed.The case
of α-mixing observations was studied by Ferraty et al (2005).An example of application
on prediction via the conditional median, as well as the determination of prediction in-
tervals have been considered in this paper.Several authors have treated the estimation
of the conditional distribution function as a preliminary study of the estimation of con-
ditional quantiles.For example, Ezzahrioui and Ould-Saïd (2005,2006) which studied the

asymptotic normality of this estimator in both cases (i.i.d. and α-mixing).An alternative

estimation method for conditional quantiles has been proposed by Laksaci et al (2009).The
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asymptotic results of this paper are almost complete convergence and asymptotic normal-
ity in the i.i.d case.We refer to Cardot et al (2004) for a linear approach to conditional
quantiles in functional statistics.

1.8.2 On the conditional density

The estimation of the conditional density function and its derivatives, in functional statis-
tics, was introduced by Ferraty et al (2006).These authors obtained almost complete con-
vergence in the i.i.d case.Since this article, an abundant literature has developed on the
estimation of the conditional density and its derivatives, in particular in order to use it
to estimate the conditional mode.Indeed, considering α-mixing observations, Ferraty et al
(2005) established the almost complete convergence of a kernel estimator of the conditional
mode defined by the random variable maximizing the conditional density.Alternatively,
Ezzahrioui and Ould-Saïd (2005, 2006) estimated the conditional mode by the point which
cancels the derivative of the kernel estimator of the conditional density.The latter focused
on the asymptotic normality of the proposed estimator in both cases (i.i.d. and α mixing).
The precision of the dominant terms of the quadratic error of the kernel estimator of the
conditional density was obtained by Laksaci (2007).We refer to Laksaci et al (2010) for
the choice of the smoothing parameter in the estimation of the conditional variable with
a functional explanatory variable.

1.9 Some kernal types

For the sake of simplicity, we will consider only three kinds of kernels.

Definition 1.9.1. (Ferraty and Vieu 2006)

i) A function K from R into R+ such that
∫
K = 1 is called a kernel of type I if there

exist two real constants 0 < C1 < C2 <∞ such that:

C11[0,1] ≤ K ≤ C21[0,1].

ii)A function K from R into R+ such that
∫
K = 1 is called a kernel of type II if its

support is [0, 1] and if its derivative K ′exists on [0, 1] and satisfies for two real constants
−∞ < C2 < C1 < 0:
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C2 ≤ K ′ ≤ C1.

The first kernel family contains the usual discontinuous kernels such as the asymmet-
rical box one while the second family contains the standard asymmetrical continuous ones
(as the triangle, quadratic,...).

Definition 1.9.2. (Ferraty and Vieu 2006) A function K from R into R+ such that∫
K = 1 with compact support [−1, 1] and such that ∀u ∈ (0, 1), K(u) > 0 is called a

kernel of type 0.

1.10 Different Approaches to the Prediction Problem

Let us start by recalling some notation.Let (Xi, Yi)i=1,...,n, be n independent pairs, identi-

cally distributed as (X, Y ) and valued in E×R, where (E, d) is a semi-metric space (i.e.X

is a f.r.v. and d a semi-metric).Let x (resp.y) be a fixed element of E (resp.R), let N ⊂ E

be a neighboorhood of x and S be a fixed compact subset of R.Given x, let us denote
by ŷ a predicted value for the scalar response.We propose to predict the scalar response
Y from the functional predictor X by using various methods all based on the conditional
distribution of Y given X.This leads naturally to focus on some conditional features such
as conditional expectation, median and mode.The regression (nonlinear) operator r of Y
on X is defined by:

r(x) = E(Y |X = x). (1.1)

and the conditional cumulative distribution function (c.d.f.) of Y given X is defined by:

∀y ∈ R, FX
Y (x, y) = P(Y ≤ y|X = x). (1.2)

In addition, if the probability distribution of Y given X is absolutely continuous with

respect to the Lebesgue measure, we note fXY (x, y) the value of the corresponding den-

sity function at (x, y).Note that under a differentiability assumption on FX
Y (X, .), this

functional conditional density can be written as
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∀y ∈ R, fXY (x, y) =
∂

∂y
FX
Y (x, y). (1.3)

For these two last definitions, we are implicitly assuming that there exists a regular
version of this conditional probability.In the remainder of this thesis, this assumption will

be done implicitly as long as we will need to introduce this conditional cdf FX
Y (x, y) or

the conditional density fXY (x, y). It is clear that each of these nonlinear operators gives
information about the link between X and Y and thus can be useful for predicting y given
x.Indeed, each of them will lead to some specific prediction method.

• The first way to construct such a prediction is obtained directly from the regression
operator by putting:

ŷ = r̂(x). (1.4)

r̂ being an estimator of r.

• The second one consists of considering the median m(x) of the conditional c.d.f.FX
Y :

m(x) = inf{y ∈ R, FX
Y (x, y) ≥ 1

2
}. (1.5)

and to use as predictor:

ŷ = m̂(x). (1.6)

where m̂(x) is an estimator of this functional conditional median m(x).Note that
such a conditional median estimate will obviously depend on some previous estima-

tion of the nonlinear operator FX
Y .

• the third predictor is based directly on the mode θ(x) of the conditional density of
Y given X:
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θ(x) = arg sup
y∈S

fXY (x, y). (1.7)

This definition assumes implicitly that θ(x) exists on S.The predictor is defined by:

ŷ = θ̂(x), (1.8)

where θ̂(x) is an estimator of this functional conditional mode θ(x).Once again note that
this conditional mode estimate will directly depend on some previous estimation of the

nonlinear operator fXY .(Ferraty and Vieu 2006)

1.11 Kernel Estimators

Once the nonparametric modelling has been introduced, we have to find ways to estimate
the various mathematical objects exhibited in the previous models, namely the [nonlinear]

operators r, FX
Y and fXY .So kernel estimators are good candidates.They combine both of

the following advantages: simple expression and ease of implementation.

1.11.1 Estimating the conditional c.d.f

We focus now on the estimator F̂X
Y of the conditional c.d.f. FX

Y , but let us first explain
how we can extend the idea previously used for the construction of the kernel regression

estimator.Clearly, FX
Y (x, y) = P(Y ≤ y|X = x) can be expressed in terms of conditional

expectation:

FX
Y (x, y) = E(1(−∞,y](Y )|X = x),

and by analogy with the functional regression context, a naive kernel conditional c.d.f.
estimator could be defined as follows:

F̃X
Y (x, y) =

∑n
i=1K(h−1

K d(x,Xi))1(−∞,y](Yi)∑n
i=1K(h−1

K d(x,Xi))
(1.9)
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By following the ideas previously developed by Roussas (1969) and Samanta (1989)
in the finite dimensional case, it is easy to construct a smooth version of this naive
estimator.To do so, it suffices to change the basic indicator function into a smooth c.d.f.Let
K0 be an usual symmetrical kernel (see examples in Section 1.9), let H be defined as:

∀u ∈ R H(u) =

∫ u

−∞
K0(v)dv, (1.10)

and define the kernel conditional c.d.f. estimator as follows:

F̂X
Y (x, y) =

∑n
i=1K(h−1

K d(x,Xi))H(h−1
H (y − Yi))∑n

i=1K(h−1
K d(x,Xi))

(1.11)

where hH is a strictly positive real number (depending on n)(Ferraty and Vieu 2006).

1.11.2 Estimating the conditional density

It is known that, under some differentiability assumption, the conditional density function
can be obtained by derivating the conditional c.d.f. (see(1.3)).Since we have now at hand

some estimator F̂X
Y of FX

Y it is natural to propose the following estimate:

f̂XY (x, y) =
∂

∂y
F̂X
Y (1.12)

Assuming the differentiability of H, we have

∂

∂y
F̂X
Y =

∑n
i=1 K(h−1

K d(x,Xi))
∂
∂y
H(h−1

H (y − Yi))∑n
i=1K(h−1

K d(x,Xi))
(1.13)

and this is motivating the following expression for the kernel functional conditional density
estimate:

f̂XY (x, y) =

∑n
i=1K(h−1

K d(x,Xi))
1
hH
H ′(h−1

H (y − Yi))∑n
i=1 K(h−1

K d(x,Xi))
(1.14)
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Next we can easily get the following kernel functional conditional mode estimator of θ(χ):

θ̂(x) = arg sup
y∈S

f̂XY (x, y) (1.15)

(Ferraty and Vieu 2006)

1.12 Topological considerations

1.12.1 Kolmogorov’s entropy

The purpose of this section is to emphasize the topological components of our study.Indeed,
as indicated in Ferraty and Vieu (2006), all the asymptotic results in nonparametric statis-
tics for functional variables are closely related to the concentration properties of the prob-
ability measure of the functional variable X.Here, we have moreover to take into account
the uniformity aspect.To this end, let SF be a fixed subset of H; we consider the following
assumption:

∀x ∈ SF , 0 < Cφx(h) ≤ P(X ∈ B(x, h)) ≤ C
′
φx(h) <∞

We can say that the first contribution of the topological structure of the functional
space can be viewed through the function φx controlling the concentration of the measure
of probability of the functional variable on asmall ball.Moreover, for the uniform consis-
tency, where the main tool is to cover a subset SF with a finite number of balls, one
introduces an other topological concept defined as follows:

Definition 1.12.1. Let SF be a subset of a semi-metric space H, and let ε > 0 be given.A

finite set of points x1, x2, ..., xN in F is called an ε-net for SF if SF ⊂
⋃N
k=1 B(xk, ε)

The quantity ψSF = log(Nε(SF)), where Nε(SF) is the minimal number of open balls in
F of radius ε wich is necessary to cover SF , is called the Kolmogorov’s ε-entropy of the
set SF

This concept was introduced by Kolmogorov in the mid-1950’s (see, Kolmogorov and

Tikhomirov, 1959) and it represents a measure of the complexity of a set, in sense that,
high entropy means that much information is needed to describe an element with an
accuracy ε.Therefore, the choice of the topological structure (with other words, the choice



1.12 Topological considerations 31

of the semi-metric) will play a crucial role when one is looking at uniform (over some subset

SF) of F asymptotic results.More precisely, we will see thereafter that a good semi-metric
can increase the concentration of the probability measure of the functional variable X as
well as minimize the ε-entropy of the subset SF . In an earlier contribution (see, Ferraty

et al., 2006) we highlighted the phenomenon of concentration of the probability measure
of the functional variable by computing the small ball probabilities in various standard
situations.We will devote Section 1.12.2 to discuss the behaviour of the Kolmogorov’s
ε-entropy in these standard situations.Finally, we invite the readers interested in these
two concepts (entropy and small ball probabilities) or/and the use of the Kolmogorov’s
ε-entropy in dimensionality reduction problems to refer to respectively, Kuelbs and Li
(1993) or/and Theodoros and Yannis (1997).

1.12.2 Some examples

We will start example (1.12.1) by recalling how this notion behaves in unfunctional case

(that is when F = RP ).More interestingly (from statistical point of view) is example

(1.12.2) since it allows to construct, in any case, a semi-metric with reasonably "small"
entropy.

Example 1.12.1. (Compact subset in finite dimensional space) :

A standard theorem of topology guaranties that for each compact subset SF of RP and for
each ε > 0 there is a finite ε-net and we have for any ε > 0,

ψSF (ε) ≤ Cp log(1/ε).

More precisely, Chate and Courbage (1997) have shown that, for any ε > 0 the regular

polyhedron in RP with length r can be covered by ([2r
√
p/ε] + 1) balls, where [m] is the

largest integer which is less than or equal to m.Thus, the Kolmogorov’s ε-entropy of a

polyhedron Pr in RP with length r is

∀ε > 0, ψPr(ε) ∼ p log([2r
√
p/ε] + 1).

Example 1.12.2. (Compact subset in a Hilbert space with a projection semimetric):
The projection-based semi-metrics are constructed in the following way.Assume that H
is a separable Hilbert space, with inner product < ., . > and with orthonormal basis
{e1, ..., ej, ...}, and let k be a fixed integer, k > 0.As shown in Lemma (13.6) of Ferraty



1.13 On the problematic of single index models 32

and Vieu (2006), a semi-metric dk on H can be defined as follows

dk(x, x
′) =

√√√√ k∑
i=1

< x− x′, ej >2. (1.16)

Let χ be the operator defined from H into Rk by

χ(x) = (< x, e1 >, ..., < x, ek >)

and let deucl be the euclidian distance on Rk, and let us denote by Beucl(., .) an open ball

of Rk for the associated topology.Similarly, let us note by Bk(., .) an open ball of H for the

semi-metric dk.Because is a continuous map from (H, dk) into (Rk, deucl), we have that

for any compact subset S of (H, dk), χ(S) is a compact subset of Rk.Therefore, for each

ε > 0 we can cover χ(S) with balls of centers zi ∈ Rk:

χ(S) ⊂
d⋃
i=1

Beucl(zi, r), with drk = C for some C > 0 (1.17)

For i = 1, ..., d, let xi be an element of H such that χ(xi) = zi.The solution of the equation

χ(x) = zi is not unique in general, but just take xi to be one of these solutions.Because of

(1.16), we have that

χ−1(Beucl(zi, r)) = Bk(xi, r) (1.18)

Finally, (1.17) and (1.18) are enough to show that the Kolmogorov’s ε-entropy of S is

ψS(ε) ≈ Ck log

(
1

ε

)
.

1.13 On the problematic of single index models

For several years, an increasing interest has been worn to models which incorporating by
both parts parametric and nonparametric.Such models types are called semi-parametric
model.This is mainly due to the problems associated with the poor specification of certain
models.Tackle a problem of misspecification semiparametric way consists in not specify-
ing the functional form of some model components.This approach completes those non-
parametric models, which can not be useful in small samples, or with a large number of
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variables.For example, in the classical regression case, the important parameter whose one
assumed its existence is the regression function of Y knowing the covariate X, denoted

r(x) = E(Y | X = x).X, Y ∈ Rd×R for this model, the non-parametric method considers
only regularity assumptions on the function r.Obviously, this method has some draw-
backs.One can cite the problem of curse of dimensionality.This problem appears when the
number of regressors d increases, the rate of convergence of the nonparametric estimator r

which is supposed k times differentiable is O(n−k/2k+d) deteriorate.The second drawback
is the lack of means to quantify the effect of each explanatory variable.To alleviate in
these drawbacks, an alternative approach is naturally provided by the semi-parametric
model which supposes the introduction of a parameter on the regressors, by writing that
the regression function is of the form

Eθ(Y | X) = E(Y |< X, θ >= x),

The models defined are known in the literature as the single-index models.These models
allow to obtain a compromise between parametric models, generally too restrictive and
nonparametric model where the rate of convergence of the estimators deteriorate quickly
in the presence of a large number of explanatory variables.In this area, differents types
of models have been studied in the literature : amongst the most famous, there may be
mentioned additive models, partially linear models or single index models.The idea of
these models, in the case of estimating the conditional density or regression consists in
bringing to the covariates a dimension smaller than dimension of the variable space, thus
allowing overcome the problem of curse of dimensionality.For example, in the partially
linear model,we decompose the quantity to be estimated, into a linear part and a func-
tional part.This latter quantity does not pose estimation problem since it’s expressed as
a function of explanatory variables of finite dimension, thus avoiding the problems associ-
ated with curse of dimensionality.In order to treat the problem of curse of dimensionality
in the case of chronological series, several semi-parametric approaches have been pro-
posed.Without preting to exhaustivity, we quote for example: Xia and An (2002) for the

index model.A general presentation of this type of model is given in Ichimura et al.(1993)
where the convergence and asymptotic normality are obtained.In the case of M-estimators,
Delecroix et al (1999) proves the consistency and asymptotic normality of the estimate
the index and they study its effectiveness.The statistical literature on these methods is
rich, quote Huber (1985) and Hall (1989) present an estimation method which consists
projecting the density and the regression function on a space of dimension one, to bring
a non-parametric estimation for dimensional covariates.These amounts exactly estimate
these functions in a single index model.Attaoui et al (2011) have established the pointwise
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and the uniform almost complete convergence (with the rate) of the kernel estimate of this
model.The interest of their study is to show how the estimate of the conditional density
can be used to obtain an estimate of the simple functional index if the latter is unknown.
More precisely, this parameter can be estimated by pseudo-maximum likelihood method
which is based on the preliminary estimate of the conditional density.Recently Mahiddine
et al (2014) have established the pointwise almost complete convergence and the uniform

almost complete convergence (with the rate) of some characteristics of the conditional
distribution and the successive derivatives of the conditional density when the observa-
tions are linked with a single-index structure and they are applied to the estimations of
the conditional mode and conditional quantiles.
The single-index approach is widely applied in econometrics as a reasonable compromise
between nonparametric and parametric models.Such kind of modelization is intensively
studied in the multivariate case.Without pretsenting to exhaustivity, we quote for exam-
ple Härdle et al (1993), Hristache et al (2001).Based on the regression function, Delecroix

et al (2003) studied the estimation of the single-index and established some asymptotic
properties.The literature is strictly limited in the case where the explanatory variable is
functional (that is a curve).The first asymptotic properties in the fixed functional single-

model were obtained by Ferraty et al (2003).They established the almost complete con-
vergence, in the i.i.d.case, of the link regression function of this model.Their results were
extended to dependent case by Aït-Saidi et al (2005). Aït-Saidi et al (2008) studied the
case where the functional single-index is unknown.They proposed an estimator of this
parameter, based on the cross-validation procedure.
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1.14 Structure of the thesis

In this thesis we are interested in the estimation of some functional parameters in the
conditional models.We deal with the estimation of conditional density and conditional
distribution.The explanatory variable for the two functional parameters is of infinite di-
mension.

The first chapter is an introductory chapter where our objective is to recall some
notions of functional estimation (functional data) and a bibliographic context on the den-
sity function and the conditional distribution function as well as notations and asymptotic
results obtained

After briefly describing the thesis, we will present in the second chapter the condi-
tional distribution function in the case where the variables are identically distributed.In
this case, we construct a kernel estimator for this functional parameter.We establish the
asymptotic normality of this estimator.Our study takes into account the concentration
of the probability measure of the explanatory variable via the structure of the functional
index in small balls.

We study the estimation of conditional density function based on the single-index
model for independent functional data.Under general conditions, the asymptotic normal-
ity of the conditional density estimator is established, a numerical study is presented in
order to illuminate our theoretical result.

Finally, we conclude the thesis with a conclusion and some extensions of our work
related to the content of this research area.
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2.1 Introduction

The single functional index models have received a considerable attention because of
their wide applications in many areas such as economics, medicine, financial econometric
and so on. The study of these models has been developed rapidly, see Ait-Saidi et al.
(2005, 2008a, 2008b). Recently, Attaoui et al. (2011) investigated the kernel estimator
of the conditional density of a scalar response variable Y , given a Hilbertian random
variable X when the observations are from a single functional index model. The pointwise
and the uniform almost complete convergence of the estimator with rates in this model
were obtained for independent observations. Furthermore, Ling et al. (2012) obtained
the asymptotic normality of the conditional density estimator and the conditional mode
estimator for the α-mixing dependence functional time series data. Ling et al. (2014)
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investigated the pointwise almost complete consistency and the uniform almost complete
convergence of the kernel estimation with rate for the conditional density in the setting
of the α-mixing functional data, which extend the i.i.d case in Attaoui et al. (2011) to
the dependence setting, the convergence rate of the kernel estimation for the conditional
mode was also obtained.

The main contribution of this paper is to establish the asymptotic normality for the
estimator of conditional distribution function in the i.i.d. case when the single functional
index θ is fixed. As an application, the asymptotic (1 − γ) confidence interval for the

conditional density function F (θ, y, x) is presented. The outline of the present paper is
as follows. In section 2, we introduce the model as well as basic assumptions that are
necessary in deriving the main result of this paper. In section 3, we state the main result
of the paper; the asymptotic normality of the estimator for the conditional distribution
function. As an application, the asymptotic (1− γ) confidence interval of the conditional
distribution function is given for 0 < γ < 1. Finally, the technical proofs are related to
section 4.

2.2 Model and some basic assumptions

Let {(Xi, Yi), 1 ≤ i ≤ n} be n random variables, identically distributed as the random

pair (X, Y ) with values in H×R, where H is a separable real Hilbert space with the norm

‖.‖ generated by an inner product < ., . >. Under such topological structure and for a
fixed functional θ, we suppose that the conditional probability distribution of Y given
< X, θ >=< x, θ > exists and is given by

∀y ∈ R, F (θ, y, x) = P(Y ≤ y| < X, θ >=< x, θ > . (2.1)

The nonparametric kernel estimator F̂ (θ, y, x) of F (θ, y, x) is defined as follows,

F̂ (θ, y, x) =

n∑
i=1

K(h−1
K (< x−Xi, θ >))H(h−1

H (y − Yi))

n∑
i=1

K(h−1
K (< x−Xi, θ >))

, (2.2)

whereK is a kernel,H is a cumulative distribution function (cdf) and hK = hK,n(resp,hH =

hH,n) is a sequence of positive real numbers which goes to zero as n tends to infinity, and

with the convention 0/0 = 0.
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Let, for any x ∈ H, i = 1, . . . , n and y ∈ R

Ki(θ, x) := K(h−1
K | < x−Xi, θ > |), and Hi(y) := H(h−1

H (y − Yi)).

We denote by Bθ(x, h) = {X ∈ H/0 < | < x − X, θ > | < h} the ball centered at
x with radius h, let Nx be a fixed neighborhood of x in H, SR will be a fixed compact
subset of R.

Now, we introduce the following basic assumptions that are necessary in deriving the
main result of this paper.

(H1) P(X ∈ Bθ(x, hK)) =: φθ,x(h) > 0, φθ,x(h)→ 0 as h→ 0.

(H2) The conditional cumulative distribution F (θ, y, x) satisfies the Hölder condition,
that is:

∀(y1, y2) ∈ SR × SR , ∀(x1, x2) ∈ Nx ×Nx.

|F (θ, y1, x1)− F (θ, y2, x2)| ≤ Cθ,x(‖x1 − x2‖b1 + |y1 − y2|b2), b1 > 0, b2 > 0.

(H3) For j = 0, 1, H(j) satisfies the lipschitz conditions and

m := inf
t∈[0,1]

K(t)H ′(t) > 0,

with∫
H ′(t)dt = 1,

∫
H2(t)dt <∞ and

∫
|t|b2H(1)(t)dt <∞

(H4) The kernel K is nonnegative, with compact support [0, 1] of class C1 on [0, 1) such

that K(1) > 0 and its derivative K ′ exists on [0, 1) and K ′(t) < 0.

(H5) For all u ∈ [0, 1], lim
h→0

φθ,x(uh)

φθ,x(h)
= lim

h→0
ξθ,xh (u) = ξθ,x0 (u).

(H6) The bandwidth hH satisfies,

(i)
log n

nφθ,x(hK)
→ 0, as n→∞.

(ii) nh2
Hφ

2
θ,x(hK) −→∞, and nh3Hφθ,x(hK)

log2 n
−→∞ as n→∞.
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(iii) nh2
Hφ

3
θ,x(hK) −→ 0, as n→∞.

(H7) (i) φθ,x(h)

n
+ φx(h) = O( 1

n
).

(ii)
√
nφθ,x(h)→ 0 as n→∞.

Comments on the assumptions. Assumption (H1) is the same as one given in Ferraty

et al. (2005). Assumption (H2) is a regularity conditions which characterize the functional
space of our model and is needed to evaluate the bias term of our asymptotic results.
Assumptions (H3) and (H5) and (H6) are technical conditions for the proofs. Assumptions

(H4) is classical in functional estimation for finite or infinite dimension spaces.

remark 2.2.1. Assumption (H5) is known as (for small h) the "concentration assumption
acting on the distribution of X" in infinite dimensional spaces.

The function ξxh(·) intervening in assumption (H5) is increasing for all fixed h. Its

pointwise limit ξx0 (·) plays a determinant role. It is possible to specify this function (with

ξ0(u) := ξx0 (u) in the above examples by:

1. ξ0(u) = uγ,

2. ξ0(u) = δ1(u), where δ1(·) is Dirac function,

3. ξ0(u) = 1]0,1](u).

2.3 Main results: Asymptotic normality of the estima-

tor F̂ (θ, y, x)

In this part of paper, we give the asymptotic normality of the conditional cumulative
distribution function in the single functional index model. The main result is given in the
following theorem.

Theorem 2.3.1. Under Assumptions (H1)-(H7) we have√
nφθ,x(hK)

σ2(θ, y, x)
(F̂ (θ, y, x)− F (θ, y, x))

D−→ N (0, 1).

Where

σ2(θ, y, x) =
C2(θ, x)F (θ, y, x)(1− F (θ, y, x))

C2
1(θ, x)

,
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with Cj(θ, x) = Kj(1)−
∫ 1

0
sK ′(s)βθ,x(s)ds for j = 1, 2,

”
D−→ ” means the convergence in distribution.

Proof. Consider, for i = 1, . . . , n,

Ki(θ, x) = K(h−1
K (< x−Xi, θ >)), Hi(y) = H

(
h−1
H (y − Yi)

)
,

F̂N(θ, y, x) =
1

nE(K1(θ, x))

n∑
i=1

Ki(θ, x)Hi(y),

F̂D(θ, x) =
1

nE(K1(θ, x))

n∑
i=1

Ki(θ, x),

∆i(x, θ) =
K(h−1

K (< x−Xi, θ >))

EK1(θ, x)
.

In order to establish the asymptotic normality of F̂ (θ, y, x) we have to consider the
following decomposition

F̂ (θ, y, x)− F (θ, y, x) =
F̂N(θ, y, x)

F̂D(θ, x)
− C1(θ, x)F (θ, y, x)

C1(θ, x)

=
1

F̂D(θ, x)

(
F̂N(θ, y, x)− EF̂N(θ, y, x)

)
− 1

F̂D(θ, x)

(
C1(θ, x)F (θ, y, x)− EF̂N(θ, y, x)

)
+
F (θ, y, x)

F̂D(θ, x)

(
C1(θ, x)− E

[
F̂D(θ, x)

])
−F (θ, y, x)

F̂D(θ, x)

(
F̂D(θ, x)− EF̂D(θ, x)

)
=

1

F̂D(θ, x)
An(θ, y, x) +Bn(θ, y, x) (2.3)
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where

An(θ, y, x) =
1

nEK1(x, θ)

n∑
i=1

{
(Hi(y)− F (θ, y, x))Ki(θ, x)

−E [(Hi(y)− F (θ, y, x))Ki(θ, x)]
}

=
1

nEK1(x, θ)

n∑
i=1

Ni(θ, y, x),

and

Ni(θ, y, x) = (Hi(y)− F (θ, y, x))Ki(θ, x)− E [(Hi(y)− F (θ, y, x))Ki(θ, x)] .

It follows that,

nφθ,x(hK)V ar (An(θ, y, x)) =
φθ,x(hK)

E2K1(x, θ)
V ar(N1) +

φθ,x(hK)

nE2K1(x, θ)

n∑∑
|i−j|>0

Cov(Ni, Nj)

= Vn(θ, y, x) (2.4)

Then, the rest of the proof is based on the following Lemmas

lemma 2.3.1. Under hypotheses (H1)-(H3), (H5) and (H7), as n→∞ we have

nφθ,x(hK)V ar (An(θ, y, x)) −→ V (θ, y, x),

where

V (θ, y, x) =
C2(θ, x)

(C1(θ, x))2
F (θ, y, x) (1− F (θ, y, x)) .

lemma 2.3.2. Under hypotheses (H1)-(H3) and (H5)-(H7), as n→∞ we have

(
nφθ,x(hK)

V (θ, y, x)

)1/2

An(θ, y, x)
D−→N (0, 1),

where D−→ denotes the convergence in distribution.

lemma 2.3.3. Under assumptions (H1)-(H3) and (H5)-(H7); as n→∞ we have

√
nφθ,x(hK)Bn(θ, y, x) −→ 0 in Probabilty.
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Now, because the unknown functions Cj(θ, x) and F (θ, y, x) intervening in the expres-

sion of the variance, we need to estimate the quantities C1(θ, x), C2(θ, x) and F (θ, y, x),
respectively.

By assumptions (H1)-(H4) we know that aj(θ, x) can be estimated by Ĉj(θ, x) which
is defined as

Ĉj(θ, x) =
1

nφ̂θ,x(hK)

n∑
i=1

Kj
i (θ, x) , j = 1, 2

where

φ̂θ,x(hK) =
1

n

n∑
i=1

I{|<x−Xi,θ>|<hk}.

By applying the kernel estimator of F (θ, y, x) given above, the quantity σ2(θ, x) can
be estimated finally by:

σ̂2(θ, x) =
Ĉ2(θ, x)F̂ (θ, y, x)

Ĉ2
1(θ, x)

∫
H2(t)dt.

Next, we can derive the following corollary:

corollary 2.3.1. Under assumptions of Theorem 1, we have

√
nφ̂θ,x(hK)

σ̂2(θ, y, x)
(F̂ (θ, y, x)− F (θ, y, x))

D−→ N (0, 1).

Thus, following this Corollary we can approximate (1 − γ) confidence interval of

F (θ, y, x) by

F̂ (θ, y, x)±tγ/2×
σ̂(θ, x)√
nφ̂θ,x(hK)

, where tγ/2 is the upper γ/2 quantile of standard Normal

N (0, 1).

2.4 Proofs of technical lemmas

Proof of Lemma 2.3.1. Let
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Vn(θ, y, x) =
φθ,x(hK)

E2K1(θ, x)
E
[
K2

1(θ, x) (H1(y)− F (θ, y, x))2]
=

φθ,x(hK)

E2K1(θ, x)
E
[
K2

1(θ, x)E
(
(H1(y)− F (θ, y, x))2 | < θ,X1 >

)]
(2.5)

Using the definition of conditional variance, we have

E
[(
H(h−1

H (y − Y1))− F (θ, y, x)
)2 | < θ,X1 >

]
= J1n + J2n,

where

J1n = V ar
(
H(h−1

H (y − Y1))| < θ,X1 >
)
,

and

J2n =
[
E
(
H(h−1

H (y − Y1))| < θ,X1 >
)
− F (θ, y, x)

]2
 Concerning J1n. Let

J1n = E
[
H2

(
y − Y1

hH

)
| < θ, x >

]
−
(
E
[
H

(
y − Y1

hH

)
| < θ,X1 >

])2

= J1 + J2

• By the property of double conditional expectation, we get that

J1 = E
[
H2

(
y − Y1

hH

)
| < θ,X1 >

]
=

∫
R
H2

(
y − v
hH

)
dF (θ, v,X1)

=

∫
R
H2(t)dF (θ, y − hHt,X1). (2.6)

On the other hand, by integrating by part and under assumption (H3), we have

J1 =

∫
R

2H(t)H ′(t)F (θ, y − hHt,X1)dt

=

∫
R

2H(t)H ′(t) (F (θ, y − hHt,X1)− F (θ, y, x)) dt

+

∫
R

2H(t)H ′(t)F (θ, y, x)dt.



2.4 Proofs of technical lemmas 56

Clearly, we have∫
R

2H(t)H ′(t)F (θ, y, x)du =
[
H2(t)F (θ, y, x)

]+∞

−∞
= F (θ, y, x), (2.7)

thus ∫
R
H2(t)dF (θ, y − hHt,X1) = F (θ, y, x) +O(hb1K + hb2H). (2.8)

 Concerning J2. Let

I = E (Hi(y)| < X1, θ >)

E
(
H

(
y − Y1

hH

)
| < X1, θ >

)
=

∫
R
H

(
y − u
hH

)
f(θ, y,X1)du,

=

∫
R
H

(
y − u
hH

)
dF (θ, y,X1),

=

∫
R
H ′
(
y − u
hH

)
F (θ, u,X1)du,

=

∫
R
H ′(t) (F (θ, y − hHt,X1)− F (θ, y, x)) dt

+F (θ, y, x)

∫
R
H ′(t)dt.

Because H ′ is a probability density and by hypotheses (H2) and (H3), we can write:

I ≤ Cx,θ

∫
R
H ′(t)

(
hb1K + |t|b2hb2H

)
dt+ F (θ, y, x)

= O
(
hb1K + hb2H

)
+ F (θ, y, x).

Finally, by hypothesis (H3) we get

J2 −→ F 2(θ, y, x), as n→∞. (2.9)

The last equality is due to the fact that H ′ is a probability density, thus we have by
hypothesis (H3)∫

R
H ′(t) (F (θ, y − hHt,X1)− F (θ, y, x)) dt ≤

∫
R
H ′(t)

(
|t|b2hb2H + hb1K

)
dt −→

n→∞
0.
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 Concerning J2n.

We have by integration by parts and changing variables

J2n = E (H1(y)| < θ,X1 >)

= E
(
H

(
y − Y1

hH

)
| < θ,X1 >

)
=

∫
H

(
y − v
hH

)
f(θ, v,X1)dv

=

∫
H

(
y − v
hH

)
dF (θ, v,X1)

=

∫
H ′(t)F (θ, y − hHt,X1)dt

= F (θ, y, x)

∫
H ′(t)dt+

∫
H ′(t) (F (θ, y − hHt, x)− F (θ, y, x)) dt,

the last equality is due to the fact that H ′ is a probability density.
Thus, we have:

J2n = F (θ, y, x) +O
(
hb1K + hb2H

)
(2.10)

Finally, we obtain that J2n −→
n→∞

0.

Meanwhile, by (H1), (H2), (H4) and (H5), it follows that:

φθ,x(hK)EK2
1(θ, x)

E2K1(θ, x)
−→
n→∞

C2(θ, x)

(C1(θ, x))2
,

Then, by combining equations (2.5)-(2.10), it leads to

Vn(θ, y, x) −→
n→∞

C2(θ, x)

(C1(θ, x))2
F (θ, y, x) (1− F (θ, y, x)) . (2.11)

Proof of Lemma 2.3.2. We will establish the asymptotic normality of An(θ, y, x) suitably
normalized.
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We have

√
nφθ,x(hK)An(θ, y, x) =

√
nφθ,x(hK)

nEK1(θ, x)

n∑
i=1

Ni(θ, y, x)

=

√
φθ,x(hK)√

nEK1(θ, x)

n∑
i=1

Ni(θ, y, x)

=
1√
n

n∑
i=1

Ξi(θ, y, x) =
1√
n
Sn (2.12)

Now, we can write,

Ξi =

√
φθ,x(hK)

EK1(θ, x)
Ni,

Thus

V ar(Ξi) =
φθ,x(hK)

E2K1(θ, x)
V ar(Ni) = Vn(θ, y, x).

Note that by (2.11), we have V ar(Ξi) −→ V (θ, y, x) as n goes to infinity.
Obviously, we have

√
nφθ,x(hK)

V (θ, y, x)
(An(θ, y, x)) = (nV (θ, y, x))−1/2 Sn.

Thus, the asymptotic normality of (nV (θ, y, x))−1/2 Sn, is deduced from the following
results

∣∣∣E{exp
(
izn−1/2Sn

)}
−

n∏
j=0

E
{

exp
(
izn−1/2Ξj

)} ∣∣∣ −→ 0, (2.13)

1

n

n∑
j=0

E
(
Ξ2
j

)
−→ V (θ, y, x), (2.14)

1

n

n∑
j=0

E
(

Ξ2
j1{|Ξj |>ε

√
nV (θ,y,x)}

)
−→ 0, for every ε > 0. (2.15)

While equations (2.13) and (2.14) show that the Υj are asymptotically independent,

verifying that the sum of their variances tends to V (θ, y, x). Expression (2.15) is the
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Lindeberg-Feller’s condition for a sum of independent terms. Asymptotic normality of Sn
is a consequence of equations (2.13)-(2.15).

• Proof of (2.13)Wemake use of Volkonskii and Rozanov’s lemma (see the appendix

in Masry (2005) and the fact that the process (Xi) is i.i.d.

Note that using that Vj = exp
(
izn−1/2Sn

)
, we have

∣∣∣E{exp
(
izn−1/2Sn

)}
−

n∏
j=0

E
{

exp
(
izn−1/2Ξj

)} ∣∣∣ −→ 0

as n goes to infinity.

• Proof of (2.14) Note that V ar(Sn) −→ V (θ, y, x) by equation (2.11) and (2.12)

(by the definition of the Ξi). Then because

E (Sn)2 = V ar (Sn) =
n∑
j=0

V ar (Ξj) ,

and, using the same arguments as those previously used in the proof of first term
of equation (2.5), we obtain

1

n

n∑
j=1

E
(
Ξ2
j

)
= V ar (Ξ1) ,

as V ar (Ξ1) −→ V (θ, y, x).

• Proof of (2.15) Recall that

Ξj =
n∑
i=0

Υi.

Finally, to establish (2.15) it suffices to show that the set

{|Ξj| > ε
√
nV (θ, y, x)}

is negligible for n large enough.
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By using assumptions (H4) and (H5), we have∣∣∣Υi

∣∣∣ ≤ C (φθ,x(hK))−1/2 ,

therefore ∣∣∣Ξj

∣∣∣ ≤ Cn (φθ,x(hK))−1/2 ,

which goes to zero as n goes to infinity.

Since
|Hi(y)− F (θ, y, x)| ≤ 1.

Then for n large enough, the set
{
|Ξj| > ε (nV (θ, y, x))−1/2

}
becomes empty, this

completes the proof and therefore that of the asymptotic normality of (nV (θ, y, x))−1/2 Sn

and the Lemma 2.3.2.

Proof of Lemma 2.3.3. We have

√
nφθ,x(hK)Bn(θ, y, x) =

√
nφθ,x(hK)

F̂D(θ, x)

{
EF̂N(θ, y, x)− C1(θ, x)F (θ, y, x)

+F (θ, y, x)
(
C1(θ, x)− EF̂D(θ, x)

)}
.

Firstly, observe that as n→∞

1

φθ,x(hK)
E
[
K l

(
< x−Xi, θ >

hK

)]
−→ Cl(θ, x), for l = 1, 2 (2.16)

E
[
F̂D(θ, x)

]
−→ C1(θ, x), (2.17)

and

E
[
F̂N(θ, y, x)

]
−→ C1(θ, x)F (θ, y, x), (2.18)

can be proved in the same way as in Ezzahrioui and Ould Said (2008) corresponding to

their Lemmas 5.1 and 5.2. Then the proofs of (2.16)-(2.18) are omitted.



2.4 Proofs of technical lemmas 61

Secondly, making use of (2.16), (2.17) and (2.18), we have as n→∞

{
EF̂N(θ, y, x)− C1(θ, x)F (θ, y, x) + F (θ, y, x)

(
C1(θ, x)− EF̂D(θ, x)

)}
−→ 0.

On other hand√
nφθ,x(hK)

F̂D(θ, x)
=

√
nφθ,x(hK)F̂ (θ, y, x)

F̂D(θ, x)F̂ (θ, y, x)
=

√
nφθ,x(hK)F̂ (θ, y, x)

F̂N(θ, y, x)
. (2.19)

Because K(·)H ′(·) is continuous with support on [0, 1], then by hypotheses (H3) and

(H4) ∃ m = inf
t∈[0,1]

K(t)H ′(t) such that

F̂N(θ, y, x) ≥ m

hHφθ,x(hK)

which gives

nφθ,x(hK)

F̂N(θ, y, x)
≤
√
nh2

Hφθ,x(hK)3

m

Finally, using (H6), the proof of Lemma 2.3.3 is completed.
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3.1 Introduction

Conditional density function estimation is one of the crucial problems in non-parametric
statistics, one can refer to De Gooijer and Zerom (2003). As far as the problem is con-

cerned, it is usual that the explanatory variable X takes value in Rd and the response
variable Y takes value in R. Moreover, the sample of (X, Y ) is always supposed to be in-

dependent identically distributed (i.i.d) or to be some dependence (see for instance Masry

(1989), Cai (1991), Quintela-Del-Rio and Vieu (1997), De Gooijer and Zerom (2003),

Gannoun and colleagues (2003)). The conditional density plays an important role in
nonparametric prediction, because the several prediction tools in nonparametric statistic,
such as the conditional mode, the conditional median are based on the preliminary esti-
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mate of this functional parameter. Nonparametric estimation of the conditional density
has been widely studied, when the data is real. The first related result in non-parametric
functional statistic was obtained by Ferraty et al. (2006). Authors established the al-

most complete consistency in the independent and identically distributed (i.i.d.) random
variables of the kernel estimator of the conditional probability density. These result have
been extend to dependent data by Ezzahrioui and Ould Saïd (2010).

The single-index models are becoming incrementally important and popular, and
have been attracting considerable attention last few years because of their importance
in several areas of science such as econometrics, biostatistics, medicine, financial. The
single-index approach is extensively and largely used in econometrics. Such kind of mod-
elization is extensively studied in the multivariate case, we quote for example Härdle et al.
(1993), Hristache et al. (2001). Based on the regression function, Delecroix et al. (2003)
studied the estimation of the single-index and established some asymptotic properties.
The literature is strictly limited in the case where the explanatory variable is functional
(that is a curve). The first asymptotic properties in the fixed functional single-model were

obtained by Ferraty et al. (2003), authors established the almost complete convergence, in
the i.i.d. case, of the link regression function of this model. Their results were extended to
dependent case by Aït Saidi et al. (2005). Aït Saidi et al. (2008) studied the case where
the functional single-index is unknown. They proposed an estimator of this parameter,
based on the cross-validation procedure. Ling and Xu (2012) investigated the estimation
of conditional density function based on the single-index model for functional time series
data. The asymptotic normality of the conditional density estimator and the conditional
mode estimator for the α- mixing dependence functional time series data are obtained,
respectively. Attaoui (2014) investigated a nonparametric estimation of the conditional
density of a scalar response variable given a random variable taking values in separable
Hilbert space. Author established under general conditions the uniform almost complete
convergence rates and the asymptotic normality of the conditional density kernel estima-
tor, when the variables satisfy the strong mixing dependency, based on the single-index
structure.

The goal of this paper is to present the asymptotic normality for the estimators of condi-
tional density function in the single functional index model when the data are independent.
The paper is organized as follows. We present our model and some basic assumptions in
section 2. In section 3 we state the main results. Section 4 is devoted to the proofs of
some lemmas and the main result. In section 5 an application: the conditional mode in
functional single-index model is presented. Section 6 is consecrated to a simulation study.
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3.2 Model description and some basic assumptions

All along the paper, we will denote by C, C ′ or/and Cθ,x some generic constant in R∗+,
and in the following, any real function with an integer in brackets as exponent denotes
its derivative with the corresponding order. Let X be a functional random variable frv
. Let (Xi, Yi) be a sample of independent pairs, each one have the same distribution as

(X, Y ), our aim is to build nonparametric estimates of several functions related with the
conditional density of Y given < X, θ >=< x, θ >.
Let

∀y ∈ R, f(y|x) =: f(y| < x, θ >) (3.1)

be the conditional density of Y given < X, θ >=< x, θ >, for x ∈ H, which also shows
the relationship between X and Y but is often unknown.

In the following, we denote by f(θ, ., x) the conditional density of Y given < x, θ >

and we define the kernel estimator f̂(θ, ., x) of f(θ, ., x) by:

f̂(θ, ., x) =

h−1
H

n∑
i=1

K(h−1
K (< x−Xi, θ >))H ′(h−1

H (y − Yi))

n∑
i=1

K(h−1
K (< x−Xi, θ >))

(3.2)

with the convention0/0 = 0, where K and H are kernels function and hK := hn,K (resp.

hH := hn,H) is a sequence of bandwidths that decrease to zero as n goes to infinity.
Let, for any x ∈ H and i = 1, ..., n and y ∈ R:

Ki(θ, x) := K(h−1
K | < x−Xi, θ > |), Hi(y) := H(h−1

H (y − Yi)).

We denote by Bθ(x, h) = {X ∈ H/0 < | < x − X, θ > | < h} the ball centered at x
with radius h.

Let Nx be a fixed neighborhood of x in H, SR will be a fixed compact subset of R.
Now ,we will make use of the following basic assumptions that are necessary in deriving

the main result of this paper.
(H1) P(X ∈ Bθ(x, hK)) =: φθ,x(hk) > 0 ; φθ,x(hk)→ 0 as hK → 0.

(H2) The conditional density f(θ, y, x) satisfies the Hölder condition, that is:

∀(y1, y2) ∈ SR × SR , ∀(x1, x2) ∈ Nx ×Nx
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|f(θ, y1, x1)− f(θ, y2, x2)| ≤ Cθ,x(‖x1 − x2‖b1 + |y1 − y2|b2), b1 > 0, b2 > 0.

(H3) The kernel H is a positive bounded function with:∫
H(t)dt = 1 ;

∫
|t|b2H(t)dt <∞ and

∫
H2(t)dt <∞.

∀y1, y2 ∈ R, |H(y1)−H(y2)| ≤ C|y1 − y2|.

(H4) The kernel K is a positive bounded function with support [0, 1] or such that{
(H4a) 0 < CI[0,1](t) < K(t) < C ′I[0,1](t) <∞.

(H4b) ∀t1, t2 ∈ R, |K(t1)−K(t2)| ≤ C|t1 − t2|.

(H5) ∀s ∈ [0, 1], lim
n−→+∞

φθ,x(shK)

φθ,x(hK)
= βθ,x(s).

(H6) lim
n−→+∞

hK = 0 lim
n−→+∞

hH = 0 lim
n−→+∞

logn

nhHφθ,x(hK)
= 0.

(H7) The kernel K is a differentiable function satisfying (H4) and its derivative K ′ ex-

ists and is such that there exist two constants C and C ′ with−∞ < C < K ′(t) < C ′ < 0,for

t∈ [0, 1].

(H8)
√
nhHφθ,x(hK)hb2H → 0, as n→∞.

3.3 Main result

Theorem 3.3.1. Under Assumptions we have (H1)-(H8) for all x ∈ H

√
nhHφθ,x(hK)

σ2(θ, y, x)

(
f̂(θ, y, x)− f(θ, y, x)

)
D−→ N (0, 1) as n→∞ (3.3)

Where :

σ2(θ, y, x) =
C2f(θ, y, x)

C2
1

∫
H2(t)dt
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with

Cj = Kj(1)−
∫ 1

0

sK ′(s)βθ,x(s)ds

for j = 1, 2; ”
D−→ ”means the convergence in density.

Because the unknown functions Cj := Cj(θ, x) and f(θ, y, x) intervening in the

expression of the variance. So we need to estimate the quantities C1(θ, x) , C2(θ, x) and

f(θ, y, x) ,respectively .

By the assumptions (H1)-(H4) we know that Cj(θ, x)can be estimated by Ĉj(θ, x) which
is defined as :

Ĉj(θ, x) =
1

nφ̂θ,x(h)

n∑
i=1

Kj
i (θ, x) (3.4)

where :

φ̂θ,x(h) =
1

n

n∑
i=1

I{|<x−Xi,θ>|<hk}

.
By applying the kernel estimator of f(θ, y, x) given above, the quantity σ2(θ, y, x) can
be estimated finally by:

σ̂2(θ, y, x) =
Ĉ2(θ, x)f̂(θ, y, x)

Ĉ2
1(θ, x)

∫
H2(t)dt (3.5)

so we can derive the following corollary:

corollary 3.3.1. Under the assumptions of Theorem 3.3.1 ,we have

√
nhH φ̂θ,x(hK)

σ̂2(θ, y, x)

(
f̂(θ, y, x)− f(θ, y, x)

)
D−→ N (0, 1) as n→∞ (3.6)

Thus, following this Corollary we can approximate (1 − ξ) confidence interval of

f(θ, y, x) by

f̂(θ, y, x)± tξ/2 ×
σ̂(θ, x)√

nhH φ̂θ,x(hK)
(3.7)

where tξ/2 is the upper ξ/2 quantile of standard Normal N (0, 1).
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3.4 Proofs the main result

In this section, we demonstrate the main result given above. To this end, let us introduce
the following decomposition:

f̂(θ, y, x)− f(θ, y, x) =
1

f̂D(θ, x)
{(f̂N(θ, y, x)− Ef̂N(θ, y, x))− (f(θ, y, x)− Ef̂N(θ, y, x))}

+
f(θ, y, x)

f̂D(θ, x)
{1− f̂D(θ, x)}

where

f̂N(θ, y, x) = 1
nhHE(K1(θ,x))

n∑
i=1

Ki(θ, x)Hi(y)

(
resp.f̂D(θ, x) = 1

nE(K1(θ,x))

n∑
i=1

Ki(θ, x)

)
.

The proof is based on the following Lemmas.

lemma 3.4.1. Under conditions of Theorem 3.3.1, we have

√
nhHφθ,x(hK)

(
f̂N(θ, y, x)− E

(
f̂N(θ, y, x)

)) D−→ N (0, σ2(θ, y, x)) asn→∞ (3.8)

where σ2(θ, y, x) is defined as Theorem 3.3.1.

Proof of Lemma 3.4.1
We have:

f̂N(θ, y, x)− E
(
f̂N(θ, y, x)

)
=

1

nhHE[K1(θ, x)]

n∑
i=1

(
Ki(θ, x)Hi(y)− E

[
Ki(θ, x)Hi(y)

])

=
1

nhHE[K1(θ, x)]

n∑
i=1

∆i (3.9)

with

∆i = Ki(θ, x)Hi(y)− E
[
Ki(θ, x)Hi(y)

]
For the variance of ∆1: since E[∆i] = 0,∀i = 1, ..., n, by the definition of conditional
expectation we can write:
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V ar(∆1) = E[∆2
1]

= E
(
K2

1(θ, x)E
[
H2

1 (y)| < y,X1 >
])

Now, by a change of variable in the following integral and by applying (H2) and (H3),
one gets

∣∣∣∣E[H2
1 (y)| < θ,X1 >

∣∣∣∣ =

∣∣∣∣ ∫
R
H2
(
h−1
H (y − z)

)
f(θ, z, x)dz

∣∣∣∣
≤ hH

∫
R
H2(t)

∣∣∣∣f(θ, y − hHt, x)− f(θ, y, x)

∣∣∣∣dt+ hHf(θ, y, x)

∫
R
H2(t)dt

≤ h1+b2
H

∫
R
|t|b2H2(t)dt+ hHf(θ, y, x)

∫
R
H2(t)dt

= hH

(
o(1) + f(θ, y, x)

(∫
R
H2(t)dt

))
(3.10)

as n→∞, we have for,j = 1, 2, E
[
Kj

1(θ, x)
]
→ Cjφθ,x(hK)(see Ferraty et al. 2007). So,

V ar(∆1) = o
(
hHφθ,x(hK)

)
Define:

Zi(θ, y, x) =

√
φθ,x(hK)√

nhHE(K1(θ, x))

(
Ψi(θ, y, x)− E(Ψi(θ, y, x))

)
and

Sn =
n∑
1

Zi(θ, y, x).

Thus,

Sn =
√
nhHφθ,x(hK)

(
f̂N(θ, y, x)− E

(
f̂N(θ, y, x)

))
So,our claimed result is now

Sn → N (0, σ2(θ, y, x)) (3.11)

Therefore,we have
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V ar(Sn) = nhHφθ,x(hK)V ar

(
f̂N(θ, y, x)− E

(
f̂N(θ, y, x)

)
= nhHφθ,x(hK)V ar

(
f̂N(θ, y, x)

)
Now, we need to evaluate the variance of f(θ, y, x). For this we have for all 1 ≤ i ≤
n,Ψi(θ, y, x) = Hi(y)Ki(θ, x), so we have

V ar

(
f̂N(θ, y, x)

)
=

1(
nhHE[K1(θ, x)]

)2

n∑
i=1

n∑
j=1

Cov

(
Ψi(θ, y, x),Ψj(θ, y, x)

)

=
1(

nhHE[K1(θ, x)]

)2V ar

(
Ψ1(θ, y, x)

)

= J ′1.n (3.12)

Where

V ar

(
Ψ1(θ, y, x)

)
≤ E

[
H2

1 (y)K2
1(θ, x)

]
≤ E

[
K2

1(θ, x)E
[
H2

1 (y)| < θ,X1 >
]]

(3.13)

By means of (3.10) and the fact that, as n→∞ ,E
[
K2

1(θ, x)

]
→ C2φθ,x(hK),one gets

V ar

(
Ψ1(θ, y, x)

)
= C2φθ,x(hK)hH

(
o(1) + f(θ, y, x)

(∫
R
H2(t)dt

))

J ′1.n =
C2φθ,x(hK)

n
(
C1hHφθ,x(hK

)2hH

(
o(1) + f(θ, y, x)

(∫
R
H2(t)dt

))

= o

(
1

nhHφθ,x(hK)

)
+

C2f(θ, y, x)

C2
1nhHφθ,x(hK)

(∫
R
H2(t)dt

)

→ C2f(θ, y, x)

C2
1nhHφθ,x(hK)

(∫
R
H2(t)dt

)
as n→∞



3.4 Proofs the main result 72

Finally we get

V ar(Sn)→ C2f(θ, y, x)

C2
1

(∫
R
H2(t)dt

)
:= σ2(θ, y, x)

lemma 3.4.2. If the assumptions (H2), (H3) and (H8) are satisfied, then, we have

lim
n−→+∞

√
nhHφθ,x(hK)(Ef̂N(θ, y, x)− (f(θ, y, x)) = 0 (3.14)

Proof of Lemma 3.4.2 One has

E
[
f̂N(θ, y, x)

]
−(f(θ, y, x)) = E

[
1

nhHK1(θ, x)

n∑
i=1

(
Ki(θ, x)Hi(y)

)]
−
(
f(θ, y, x)

)
=

1

hHE
(
K1(θ, x)

)E[(K1(θ, x)H1(y)

]
−f(θ, y, x)

=
1

hHE
(
K1(θ, x)

)E[E(K1(θ, x)H1(y)| < θ,X1 >

)
−f(θ, y, x)

]

=
1

hHE
(
K1(θ, x)

)E[K1(θ, x)

(
E
(
H1(y)| < θ,X1 >

)
−f(θ, y, x)

)]

Let Hi(y) = H(h−1
H (y − Yi) we have

E
(
H1(y)| < θ,X1 >

)
=

∫
R
H
(
h−1
H (y − z)

)
f(θ, z,X1)dz

Condition (H3)allows to write

∣∣∣∣E(H1(y)| < θ,X1 >
)
−f(θ, y, x)

∣∣∣∣≤ ∫
R
H(t)

∣∣∣∣f(θ, y − hHt,X1)− f(θ, y, x)

∣∣∣∣dt
(H2)allows to write



3.5 Application: The conditional mode in functional single-index model 73

∣∣∣∣E(H1(y)| < θ,X1 >
)
−f(θ, y, x)

∣∣∣∣≤ Cθ,x

∫
R
H(t)

(
hb1k + |t|b2hb2H

)
dt

Finaly we get

lim
n−→+∞

√
nhHφθ,x(hK)(Ef̂N(θ, y, x)− (f(θ, y, x)) = 0

lemma 3.4.3. Under the assumptions (H1)-(H7), then

√
nhHφθ,x(hK)(1− f̂D(θ, x))

P−→ 0, as n→∞ (3.15)

Proof of Lemma 3.4.3

by the definition of f̂D(θ, x),we have
√
nhHφθ,x(hK)(f̂D(θ, x)− 1) =: An − EAn

where

An =

√
nhHφθ,x(hK)

∑n
i=1Ki

nEK1

In order to prove (3.15) , similar to Attouch et al. (2010), we only need to prove
V arAn → 0 as n→∞ . in fact ,since

V arAn =
hHφθ,x(hK)

E2K1

(V arK1)

≤ hHφθ,x(hK)

E2K1

EK2
1

=: B1 (3.16)

then, using the boundedness of function K allows us to get that:

B1 ≤ ChHφθ,x(hK)→ 0 as n →∞

3.5 Application: The conditional mode in functional
single-index model

The main objective of this section is to establish the asymptotic normality a of the kernel
estimator of the conditional mode of Y given < X, θ >=< x, θ > denoted by Mθ(x)

We estimate the conditional mode M̂θ(x) with a random variable Mθ such that

M̂θ(x) = arg sup
y∈SR

f̂(θ, y, x). (3.17)
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Let’s note that in all the remaining of our paper we will consider any value M̂θ satisfying
(3.17).

In order to present the estimation of the conditional mode in the functional single-
index model, we introduce the following additional smoothness condition.

(U1) f(θ, ., x) is twice continuously differentiable around the point Mθ(x)

with f (1)(θ,Mθ(x), x) = 0

and f (2)(θ, ., x) is uniformly continuous on SR such that f (2)(θ,Mθ(x), x) 6= 0

where f (q)(θ, ., x) (q = 1, 2) is the qth order derivative of the conditional density f(θ, y, x).

(U2) ∀ε > 0 , ∃η > 0 ,∀y ∈ SR

|Mθ(x)− y| ≥ ε⇒ |f(θ,Mθ(x), x)− f(θ, y, x)| ≥ η

(U3) The conditional density function f(θ, y, x) satisfies: ∃β0 > 0, ∀(y1, y2) ∈ SR ×SR,

|f q(θ, y1, x)− f q(θ, y2, x)| ≤ C
(
|y1 − y2|β0

)
∀q = 1, 2.

(U4) G
′and G′′ are bounded respectively with

∫ (
G

′
(t)
)2
dt <∞ ,

∫
|t|β0G(t)dt <∞

(U5) nh3φθ,x(h)→∞ ,as n →∞

Theorem 3.5.1. Suppose that hypotheses (H1)-(H7) and (U1)-(U5) are satisfied, we have

√
nh3φθ,x(h)

σ2
1(θ, x)

(M̂θ(x)−Mθ(x))
D−→ N (0, 1), as n→∞

Where

σ2
1(θ, x) =

C2(θ, x)f(θ,Mθ(x), x)

C2
1(θ, x)

[
f 2(θ,Mθ(x), x)

]2 ∫ (G
′
(t))2dt
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In order to show the asymptotic (1 − γ) confidence interval of Mθ(x), we need to

consider the estimator of σ2
1(θ, x) as follows:

σ̂2
1(θ, x) =

Ĉ2(θ, x)f̂(θ,Mθ(x), x)

Ĉ2
1(θ, x)

[
f̂ 2(θ,Mθ(x), x)

]2 ∫ (G
′
(t))2dt

Thus, the following corollary is obtained.

corollary 3.5.1. Under conditions of Theorem 3.5.1, we have

√
nh3φ̂θ,x(h)

σ̂2
1(θ, x)

(M̂θ(x)−Mθ(x))
D−→ N (0, 1), as n→∞

remark 3.5.1. By Corollary 3.5.1, the asymptotic (1−γ) confidence interval of(Mθ(x), x)

is given by

(Mθ(x), x)± µγ/2 ×
σ̂1(θ, x)√
nh3φ̂θ,x(h)

3.6 Simulation study

The best way to know the behavior of the estimator of conditional density is to compute its
mean square error. So, in this part of paper we compare between the conditional density
estimation in the SIM (single index model) which is our model and the conditional density

estimation in the NPM (non-parametric model) defined in (3.18) .

f̂x(y) =

∑n
i=1 K

(
h−1
K d (x, Xi)

)
H ′
(
h−1
H (y − Yi)

)
hH
∑n

i=1K
(
h−1
K d (x, Xi)

) . (3.18)

So, we have to compare their respective conditional density estimators by computing
and comparing their respective mean square errors for some values of the scalar response
Y . Let MSE1 be the mean square error in SIM case and MSE2 the mean square error
in NPM case.

Next, let us consider the following regression model where the covariate is a curve and
the response is a scalar:

Ti = R (Xi) + εi, i = 1, ......., n (3.19)

where εi is the error supposed to be generated by an autoregressive model defined by
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εi =
1√
2

(εi−1 + ηi) , i = 1, ......., n

with (ηi)i a sequence of i.i.d. random variables normally distributed with a variance
equal to 0.1.

Suppose that the functional covariate X is a diffusion process defined on [0, 1] and
generated by the following equation:

X (t) = A (2− sin (πtW )) + (1− A) sin(πtW ), t ∈ [0, 1]

where W → N (0, 1)and A is a Bernoulli random variable with parameter 1/2.

Figure 3.6 shows a sample of 215 curves representing the realization of the functional
random variable X. Here a nonlinear regression function is considered such that

R (X) =
1

4

∫ 1

0

(X ′ (t))
2
dt.

On the other hand, n i.i.d. random variables (Ci)i are simulated through the expo-

nential distribution E (1.5) .

Given X = x, we can easily see that T → N (R (x) , 0.2), and therefore, the condi-
tional median, the conditional mode and the conditional mean functions will coincide and
will be equal to R (x), for any fixed x.

The computation of our estimator is based on the observed data (Xi, Yi, δi)i=1,....,n

where Yi = min (Ti, Ci); δi = I{Ti≤Ci} and the single index θ which is unknown and has

to be estimated.

In practice this parameter can be selected by cross-validation approach (see Aït Saidi

et al. (2008)). In this passage, it may be that one can select the real-valued function θ (t)

among the eigenfunctions of the covariance operator

E [(X ′ − EX ′) < X ′, . >H] ,

where X (t) is a diffusion processes defined on a real interval [a, b] and X ′ (t) its first

derivative (see Attaoui & Ling (2016)).
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Next, The sample L will be chosen by applying the principal component analysis
(PCA) method. The computation of the eigenvectors of the covariance operator estimated
by its empirical covariance operator:

1

|L|
∑
i∈L

(X ′i − EX ′) t(X ′i − EX ′)

will be the best approximation of our functional parameter θ.

Now, θ? denotes the first eigenfunction corresponding to the first higher eigenvalue,
which will replace θ during the simulation step.
In practice, some tuning parameters have to be fixed, the kernel K (.) is chosen to be the
quadratic function defined as

K (u) =
3

2

(
1− u2

)
I[0,1];

and the kernel H (.) is given as

H (z) =
3

4

(
1− z2

)
I[−1,1] (z) .

Taking into account the smoothness of the curves Xi (t) (Figure 3.6), we choose the
distance in H as

d (χ1, χ2) =

(∫ 1

0

(χ′1 (t)− χ′2 (t))
2
dt

)1/2

as semi-metric.
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Figure 3.1: A sample of curves {Xi (t) , t ∈ [0, 1]}i=1,....,215

In the following graphs, the covariance operator for L = {1, ......., 215} gives the dis-

cretization of 3 (the first eigenfunction θ is presented by a continuous curve), 20 and 215

eigenfunctions θi(t) respectively (Fig. 3.2, 3.3, 3.4).

Figure 3.2: The curves θi=1,2,3 (tj) , tj ∈ [0, 1]
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Figure 3.3: The curves θi=1,....,215 (tj) , tj ∈ [0, 1]

Figure 3.4: The curves θi=1,....,20 (tj) , tj ∈ [0, 1]

Next, for simplifying the implementation of our methodology, we take the bandwidths
hH ∼ hK = h, where h will be chosen by the cross-validation method on the k-nearest

neighbors (see Ferraty and Vieu, 2006, p. 102) and we denote by θ? the first
eigenfunction corresponding to the first higher eigenvalue of the empirical covariance

operator: 1
|L|
∑

i∈L(X ′i − EX ′) t(X ′i − EX ′)

Now, we compute the mean square errors of the two estimators of conditional density for
some values of the simulated responses Yi. The results are presented as follow:
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Table 3.1: Comparison between SIM and NPM
Yi y = −14.68 y = −5.47 y = −3.34 y = 0.57 y = 1.75

MSE1 1.13 10−7 7.19 10−7 1.20 10−6 1.48 10−5 1.60 10−5

MSE2 1.08 10−7 7.19 10−7 1.18 10−6 1.45 10−5 1.57 10−5

Finally, according to the results given in Table 3.1, it is clearly seen that there is not a
big difference between MSE1 and MSE2. Thus, our conditional density estimator in

the single index model is the same in the non-parametric model.
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Chapter 4

General Conclusion and prospects

We were interested specifically in this thesis to single-index conditional models that
treat the case of functional variables in which "response" variable is true while the

explanatory variable is functional. The objective was the estimation of the distribution
function as well as the density function by the kernel method. The case in question

deals with complete data. The richness of this functional statistical research area offers
many perspectives both theoretically and practically.

The work developed in this thesis offers many perspectives, let us cite

• The asymptotic normality of our estimators can allow us to test and build confidence
intervals.

• We can also consider an asymptotic study for our esitmators in the ergodic case

• Other themes can be addressed in the long term, such as conditioning by p functional
variables or a linear combination of these p functional variables. Another estimator
can also be envisaged using another method than the kernel estimate (Fourier,

wavelets,...)

• Another possible perspective is to assume that not only the explanatory variable is
functional but also the variable of interest.

84
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