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Abstract

In this thesis we study various queueing systems with impatience. At first, we study the
fluid approximation of a retrial queueing model with abandonment and feedback. The
diffusion limit for the model under consideration is carried out. Then, we deal with the
stability of a retrial queueing system with abandoned and feedback customers. The bal-
ance equations and generating functions of the model are derived, further the necessary
stability condition is established. Finally, an analysis of a Markovian feedback queueing
system with reneging and retention of reneged customers, multiple working vacations and
vacation interruption, where customers’ impatience is due to the servers’ vacation is pre-
sented. The stationary analysis of the system is established. The probability generating
functions of the stationary state probabilities is obtained, the explicit expressions of the
system sizes when the server is in a normal service period and in a Bernoulli schedule
vacation interruption, respectively are deduced, and various performance measures of the
system are derived.
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Résumé

Dans cette thèse nous étudions différents systèmes de files d’attente avec impatience, en
premier lieu nous étudions l’approximation fluide de système de files d’attente avec rap-
pel, abandon et feedback. La limite de diffusion pour le modèle considéré est effectuée.
En suite nous analysons la stabilité d’un système de files d’attente avec rappel, aban-
don et feedback. Pour ce système nous dérivons les équations d’équilibre et les fonctions
génératrices, en outre, nous établissons la condition de stabilité nécessaire. Finalement
nous considérons un système de files d’attente Markovian avec feedback, multiples va-
cances, interruption de vacances, clients impatients et rétention de clients abandonnés,
où l’impatience des clients est due aux vacances des serveurs. Nous établissons l’analyse
stationnaire du système. Nous obtenons les fonctions génératrices des probabilités d’état
stationnaire, nous déduisons les expressions explicites des tailles de système quand le
serveur est dans une période de service normale et dans une période de vacance inter-
rompue, respectivement. Diverses mesures de performance du système sont dérivées.
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Chapter 1

Introduction and Presentation

Queueing theory is prominent and successful branch of mathematics which provided ap-
plications, results, and methods in probability theory. Since the past few decades, it has
been found that in most cases, it is the probabilistic models that mark an edge over the
deterministic models in terms of practical applicability. Most of the probabilistic models
find their significant and great applications in wider domains of common branches such as
statistics, operations research and in many complex and nontrivial areas such as applied
industrial research.

Queueing theory is one of the most important and predominant areas where probabilis-
tic models have been used for the good, this field of applied probability theory deals with
an extensive and in great depth study of various service systems plagued by bottleneck.
The areas of applications are profuse and include telephonic systems, the reliability of
seemingly complex systems, computer, communication and telecommunication systems,
manufacturing, industry, etc.

This thesis is concerned with the analysis of impatient customers in different "retrial
and vacation" queueing systems. In recent decades much effort has been devoted to this
type of queueing systems, because of their wide applications in many real life situations;
in the performance modelling, in cellular mobile networks, in computer, communication
and telecommunication networks, in local area networks, flexible manufacturing systems
and divers other areas of applications.

The goal of the present chapter is to introduce a fairly broad set of results gathering
important results in retrial and vacation queueing systems and queueing models with
impatient customers as their applications in solving several realistic problems. In Section
1.1 we recall some fundamental vocabulary and results of retrial queueing systems. Then,
in Section 1.2 the concept of queueing systems with impatient customers "balking and
reneging" is presented. After that, in Section 1.3 we give succinctly the basic definitions
and results from vacation queueing models. The rest of this chapter, Section 1.4 and

1



1.1 Retrial queueing systems 2

Section 1.5 is dedicated to the contribution and the layout of the thesis, respectively.

1.1 Retrial queueing systems

Queueing systems in which incoming customers who repeatedly attempt to get services
from the server, on finding dejection, owing to the inactivity of the server to supply service
at any moment of selection from the queue are known as retrial queueing systems. The
customer is in "orbit" anytime it is in between the retrials. The customers, in retrial
queueing systems, can wait in the orbit and while being in the there, they can try and
attempt as many times as they desire, to benefit service from the selfsame server.

The standard queueing models do not take into consideration the case of retrials
and consequently cannot be applied in solving a numerous of practically and sensibly
significant problems. (Kosten (1973)) notes that "any theoretical result that does not take
into consideration this repetition effect should be considered suspect". Retrial queues have
been introduced to solve this insufficiency. Retrial queues have a powerful and potential
areas of application like mobile cellular networks, call centers, computer networks where
efficient retrial queueing systems can play a pivotal role in giving quality service in high-
speed time. The general structure of a retrial queue is shown in Figure 1.1.

Figure 1.1: General structure of a retrial queue

It is clear from this graph that retrial queues can also be viewed as a specific sort of
queueing networks.

1.1.1 Some motivating examples

In standard queueing theory it is mostly assumed that a customer who cannot get service
directly after arrival either joins the waiting line (and then is served according to some

queueing discipline) or leaves the system forever. Sometimes, impatient customers leave
the queue, and it is also assumed that they may leave the system forever. Nevertheless,
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the assumption on impatient customers which are selected to leave the system is just a
first order approximation to a real situation. Generally such a customer after some ran-
dom period of time he comes back to the system and essay to receive service again.
Next are a few examples explaining this general remark in more detail.

>Telephone systems.
Everyone knows that a telephone subscriber who get a busy signal retries and repeats
the call until the desired connection is occurred. Consequently, the flow of calls which
circulates in a telephone network is formed of two parts: the flow of elementary calls,
which reflects the real wills of the telephone subscribers, and the flow of retried calls,
which is the result of the lack of success of precedent attempts.
So, One of the customarily used methods to model the commonly and broadly used
telephone systems is to model them as retrial queues. Owing to the repeating lawsuits
of a telephonic caller, who is not permitted to get service because of network congestion,
comes back and makes a call another time, this lets telephone systems a case of retrial
queues. Recent progress and advancements in telecommunication sector led to an ever-
increasing necessity to expand, develop and extend the retrial phenomenon. In addition
the fact that under the overload conditions, most telephone systems work poorly, so, it is
necessary to see again the models that we develop while modeling the telephone systems
on retrial theme.

Let note that the principal purpose of any call center is to give quality service via an
appliance, in our case that appliance being a telephone. In addition, when the structure,
planning, management and execution of a typical call center are carefully studied, it is
immediately clear how the modeling of telephone systems as retrial queues best clarifies
the behavior of the customers in such a scenario.

Almost all the major players in the telecom industry use call centers as their prime
way of communication and interaction with their customers. To get a perspective, a call
center can be thought of as a basic queueing structure based on M/M/c queue (one of

the most widely used queueing model) Shekhar et al.(2016).
As performance parameters on which call centers are assessed, quality of service and

speed in time of network bottleneck are the two most prominent evaluation criteria’s, so
here the effective call mechanisms can enhance conventional telephone systems.

As a conclusion, we realize that while modeling a telephone network or a mobile
cellular network, we can not neglect the inherent existence of recurrent calls. All the
factors mentioned above are quite convincing in favor of new queueing systems which
properly are retrial queueing systems.
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> Retrial shopping queue.
In a shop, a customer who finds a queue too long may want to do something else and
come back later with the hope that the queue will dissolve. Alike behavior may show
some impatient clients who have entered the queue but then discovered that the residual
wait time is too long.

> Random access protocols in digital communication networks.
Consider a communication line with the slot time that is shared by diverse stations. The
duration of the slot is equal to the transmission time of a single data packet. If two or
more stations transmit packets at the same time, then a collision occurs, i.e all packets are
destroyed and must be retransmitted. If the stations involved in the conflict would attempt
to retransmit destroyed packets in the nearest slot, a collision occurs with certainty.
To avoid this, each station, independently of the other stations, transmits the packet
with a certain probability and delays actions until the next slot with a complementary
probability, or equivalently, each station initiates a random delay before the next trial to
transmit the packet.

The underlying rules governing the operations of random access protocols in computer
networks provide a sound enough background and motivation at the same, for design of
communication protocols with new feature and that is allowing the protocols have to have
retransmission control which is nothing but thinking of protocols to have retrial capabil-
ities in the queueing domain Shekhar et al.(2016). Thus, to understand it a little more
clearly, let’s take an example of a communication line that has a sharing time that is
shared among various stations. The duration of the slot is equal to the total time taken
during the transmission of a single data packet. A conflict occurs whenever two or more
stations transmit packets together. A clash will always cause damaged packets over the
entire transmission line and these damaged data packets must now be retransmitted. The
immediate quick fix may be to allow the clashing stations to retransmit the damaged
packets within the nearest available time, but then such a fix is bound to run again a
shock, thus leading to damaged packets and to new need for retransmission. To avert the
aforementioned intricate situations, we can permit each clashing station to introduce a
random delay before the next transmission challenge of the packet. This sufficiently lucid
and secular explanation justifies the need to incorporate the functionality of the retrial
feature into computer networks.

> Priority queues.
To accommodate the modeling of complex real-life scenarios, a prioritized queue is requi-
site, then we move towards an alternative employment of retrial queue. Priority queueing
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systems are characterized by the widespread presence of two categories of customers:
primary customers arriving by independent streams and secondly customers that were
previously in the habitual queue making them the low priority entities in the new queue
set up. In such a revalued retrial queueing system, primary customers are treated as a
first preference and hence given higher priority and these later are queued first and also
served according to a certain class service.

Due to the presence of priorities, any case of congestion between the two types of
customers will be treated to take account of the interests of priority customers. Therefore,
in the case of blocking, it is the low-priority customer who must leave the service area
and make the task of waiting until new retrials occur to extend the waiting and service
time for the low priority customers. As can be seen now, higher priority customers for
priority retrial queueing systems have uncontrolled authority and priority over low-priority
customers.

The most widespread and succinct example to visualize the importance of such prior-
itized retrial queueing system is the case of a large hospital where a higher priority queue
is always preserved for emergency cases or patients with special needs, even if an habitual
queue is the order of the day to put up the interests of the usual population arriving at
the hospital to take advantage of treatment services.

1.1.2 Literature Review

Retrial queues have attracted a considerable attention because of their wide application
in many real life situations, and because of their powerful applications in performance
analysis of various systems such as call centers, computer networks and communication
telecommunication systems.

It is important to note that analysis of retrial queues is harder and more complicated
than that of the corresponding queueing models without retrials, and this is due to the
fact that the arrival flow of customers from the orbit makes the underlying Markov chain
of retrial queues nonhomogeneous, specific results are obtained just in a few particular
cases (Artalejo and Gomez-Corral (2008), Falin and Templeton(1997))....

In majority literature on retrial queues, only the new arriving calls are served, and
after all calls are served, the server waits either for the next arrival of a primary call or
for a retrial call. Nevertheless, in real life situations there exists a case where the server
has a to make outgoing phone calls. In diverse service systems like a call center, an
operator not only serves ingoing calls but it also makes outgoing phone calls if he/she
is in free period, while this later is busy, ingoing arriving calls cannot receive a service.
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At this time the calls join an orbit and retry to get a service after some random time
independently of other calls.

Nowadays, call center activity is very significant because it furnishes a channel for
two-way communication between companies and their customers (Aksin et al. (2007),

Koole and Mandelbaum (2002)).
Characteristically, there are two types of call centers: inbound and outbound call centers.
The first is used for customer support where customers call from outside for certain re-
quests such as booking tickets or complaint regarding products. (Stolletz (2003)). The
second is used for telephone marketing where a telephone dialing system haphazardly
makes direct calls to potential customers for advertising or selling new products (Samuel-

son (1999)). Lately, modern call centers incorporate the two types of call centers "both

inbound and outbound functions" to increase the productivity (Bhulai and Koole (2003),

Deslauriers et al. (2007)). These centers are called blended call centers where an operator

not only receives ingoing calls but also makes phone calls to customers when he/she is un-

occupied. (Falin (1979)) derived the integral formulae for the partial generating functions

and explicit expressions for certain expected characteristics of an M/G/1/1 retrial queue
with two way communication in which ingoing calls and outgoing calls are are following
the same service distribution. (Choi et al. (1998)) extended Falin’s model to M/G/1/K

retrial queues where ingoing and outgoing calls are also supposed following the same ser-
vice time distribution. But, from an application point of view, this hypothesis is restrictive
as in general ingoing calls and outgoing calls can have different service time distributions.
(Bhulai and Koole (2003)) presented a multiserver queueing model with infinite buffer for
blended call centers for which optimal and nearly optimal policies are derived for the case
where ingoing calls and outgoing calls are the two exponentially distributed and other-
wise, respectively. (Deslauriers et al. (2007)) expanded five Markovian queueing models
for blended call centers where ingoing and outgoing calls are distinguished and undistin-
guished. In (Deslauriers et al. (2007)) it was pointed that the models where ingoing and
outgoing calls follow different distributions are more difficult than that with the same
service time distribution for both types of calls. In (Artalejo and Resing (2010)), authors

obtained the first partial moments for the M/G/1/1 retrial queue with different service
time distributions of ingoing and outgoing calls by using a mean value analysis approach.
(Avrachenkov et al. (2010)) used the matrix analytic approach to study a single server
retrial queue with two classes of customers where retrial behaviors and service time dis-
tributions are different.
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In the last few decade many efforts have addressed to the numerical investigation of
complex retrial queues. In this sense, we especially mention the use of

>Hypergeometric functions. These latter play a significant and pivotal role to ana-
lyze the stationary characteristics of a vast of retrial queues including theM/M/2/2 retrial

queue (Hanschke (1987)), study of the steady state solution of an M/M/1/1 queue with

linear repeated request presented in (Artalejo and Gomez-Corral (1997)). An M/M/1/1

retrial queues with Bernoulli abandonment and feedback studied in (Choi et al. (1998)),
single server retrial queues with orbital search and nonpersistent customers established
by (Krishnamoorthy et. al (2005)), state-dependent M/M/c/c + r retrial queue with

Bernoulli abandonment given in (Phung-Duc et al.(2010)), the analysis of a single server

retrial queue with collision and impatience in (Kim (2010)) and more reference therein.

> The Generating function methods. They were used extensively, let cite for
instance the most resent works, ( Amador and Moreno (2011)) gave the analysis of the

successful and blocked events in the Geo/Geo/c retrial queue. (Deepak et al. (2013))

introduced an M (X)/G/1 retrial system with two types of search of customers from the

orbit. (Choudhury and Deka (2013)) studied a batch arrival retrial queue with two phases

of service and Bernoulli vacation schedule. (Gao and Wang (2014)) established the per-

formance and reliability analysis of an M/G/1 G-retrial queue with orbital search and

non-persistent customers. (Dimitriou (2015)) presented a retrial queue for modeling fault-

tolerant systems with check pointing and rollback recovery. (Jain and Bhagat (2015))
introduced the embedded Markov chain approach to retrial queue with vacation, phase
repair and multi optional services.

> Matrix-analytical methods. (Choi et. al (1999), Diamond and Alfa (1999),

Dudin and Klimenok (2000)) investigated the versatile retrial models with interarrival

and interrepetition distributions of type PH, MAP, etc. And recently (Shin and Moon

(2010)) presented the approximations of retrial queue with limited number of retrials.

(Efrosinin and Winkler (2011)) analyzed a queueing system with a constant retrial rate,

non-reliable server and threshold-based recovery.( Do et al. (2013)) for the investiga-
tion of enhanced algorithm to solve multiserver retrial queueing systems with impatient
customers. (Kuo et al. (2014)) investigated the reliability-based measures for a retrial

system with mixed standby components. (Rabia (2014)) improved truncation technique
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to analyze a Geo/PH/1 retrial queue with impatient customers. (Dudin et al. (2015a))

studied the Single server retrial queue with group admission of customers. (Dudin et al.

(2015b)) presented a priority retrial queueing model operating in random environment

with varying number and reservation of servers. (Shin (2015)) studied an algorithmic

approach to Markovian multi-server retrial queues with vacations. (Laxmi and Soujanya

(2015)) studied a perishable inventory system with service interruptions, retrial demands

and negative customers. (Phung-Duc (2015)) investigated an asymptotic analysis for
Markovian queues with two types of nonpersistent retrial customers.

> The supplementary variable method. It was also employed in many research
works, (Ke et al. (2011)) presented a Multi-server retrial queue with second optional ser-

vice: algorithmic computation and optimization, (Rajadurai et al. (2014)) gave an anal-

ysis of a M [X]/(G1, G2)/1 retrial queueing system with balking, optional re-service under

modified vacation policy and service interruption. (Gao and Wang (2014)) established

the performance and reliability analysis of an M/G/1 G-retrial queue with orbital search

and non-persistent customers. Gao (2015) studied a preemptive priority retrial queue

with two classes of customers and general retrial times. (Haridass and Arumuganathan

(2015)) analyzed single server batch arrival retrial queueing system with modified vaca-
tions and N-policy.

>The recursive method. This method is the most popular, for instance, (Avrachenkov

and Yechiali (2010)) analyzed a tandem blocking queues with a common retrial queue.

(Dragieva (2013)) presented a finite source retrial queue. Zhang and Wang (2013) gave
the performance analysis of the retrial queues with finite number of sources and service
interruptions. (Shin and Moon (2014)) studied an approximation of throughput in tan-
dem queues with multiple servers and blocking.

1.2 Queueing models with impatient customers

Impatience generally takes three forms. The first is balking ; the reluctance of a customer
to join a queue upon arrival, the second reneging ; the reluctance to remain in line after
joining and waiting, and the third jockeying between lines when each of number of
parallel lines has its own queue. (Gupta and Garg (2012)).

Impatience ’balking and reneging’ is an interesting feature in a large variety of situ-
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ations that can be met in healthcare applications, call centers, telecommunication net-
works, manufacturing systems where accumulated orders may be canceled, manufacturing
systems of perishable goods.

1.2.1 Models incorporating customer impatience

Models including customer impatience are nearer to reality, and lead to more precise anal-
ysis. Let’s cite some applications.

> Healthcare applications.
For various medical processes, patients are facing high risk of complication or death when
treatment (for instance in the case of organ transplantation) is overdyed. In such situa-

tion, if there are many patients waiting for treatment (a queue is formed), it will be more
suitable to serve the patients depending on the urgency of their requirements. When
the condition of a patient deteriorates to a certain level, the treatment can become no
longer required. In such a case, the patient is removed from the queue without service
(an abandoned patient).

> Perishable goods.
There are many examples of perishable products let’s cite for instance food items, chem-
icals, pharmaceuticals, adhesive materials used for plywood, blood, etc. (Karaesmen and

Deniz (2011)) reported that, in 2004, 22% of the unsalable costs incurred by distributors

of consumer packaged goods were due to expired products, and 5.8% of all components
of blood processed for transfusion were outdated. Therefore, it is extremely important to
understand such systems and to study the impact of the finiteness of product lifetimes on
production and inventory control decisions. A literature related to the modeling of per-
ishable inventory systems via queueing systems with impatient customers is considerable,
knowing that customer abandonment and product perishing are similar phenomena. That
is, a customer whose time of patience expires leaves the queue and similarly a product
made to a stock whose lifetime expires is removed from the inventory.

> Aircrafts in queue for landing, military applications and call centers.

� Aircrafts in queue for landing is another example of impatient customers. Aircrafts
are willing to wait, but only up to a point. An airplane may run out of fuel and must
therefore have priority for landing.

� In military applications, abandonment is a significant feature. For instance, enemy
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aircraft or missiles (customers) take a finite time to transit to an area where interception

is possible and they escape (abandon) if they are not intercepted (served) within that time.

� In most call center cases, customers waiting online are impatient. A customer will
wait a certain amount of time for the service to begin. If the service did not begin with
this time, it will give up and be lost.

1.2.2 Literature Review

The literature on queueing models with impatient customers is abundant because of the
powerful importance of this feature, In this chapter we are limited to some which have
been the basis of several research results including those presented in this thesis.

Queueing systems with balking, reneging or both have been studied by many re-
searchers. (Haight (1957)) first considered an M/M/1 queue with balking. An M/M/1

queue with customers reneging was also proposed by (Haight (1959)). The combined ef-

fects of balking and reneging in an M/M/1/N queue have been investigated by (Ancker

and Gafarian (1963a), (1963b)). (Abou-EI-Ata and Hariri (1992)) considered the multiple

servers queueing system M/M/c/N with balking and reneging.
Recently queueing systems with impatience have attracted much attention in queueing

literature because of explosive demands to efficiently design and manage call or contact
centers, (Altman and Yechiali (2006, 2008)) studied the customer impatience in a classical
vacation model and system with additional task, respectively.

(Yechiali (2007)) considered anM/M/c system which as a whole suffers occasionally a

disastrous breakdown, upon which all present customers (waiting and served) are cleared

from the system and lost. (Chen et al. (2008)) studied M/M/m/k queue with preemp-
tive resume and impatience of the prioritized customers and derived the queue length
distraction in stationary state and performance measures using the method of matrix
analysis.

(Perel and Yechiali (2010)) considered a two-phase service impatient model where the
customers become impatient if the server is in slow service phase. There are situations
where customer’s impatience is due to the absence of the server, more precisely due to
the server being on vacation, and is independent of the customers in system.

(El-Paoumy and Nabwey (2011)) obtained the analytical solution of the M/M/2/N

queue with general balk function, reneging and two heterogeneous servers. (Kumar (2013))

presented an economic analysis of an M/M/c/N queueing model with balking, reneging

and retention of reneged customers. (Kumar and Sharma (2014)) gave a study of a finite
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capacity multi-server Markovian feedback queuing model with balking, reneging and re-
tention of reneged customers. (Kumar and Sharma (2014)) gave an optimization of an

M/M/1/N feedback queue with retention of reneged customers. (Misra and Goswami

(2015)) analyzed a power saving class II traffic in IEEE 802.16E with multiple sleep state

and balking. Panda and (Goswami (2016)) analyzed the equilibrium balking strategies

for a GI/M/1 queue with Bernoulli-schedule vacation (working vacation) and vacation

interruption in the case where a customer can only observe the state of the server (ob-

servable queues) and when there is no information available to a customer before taking

decision to join the system or balk (fully unobservable queues).

1.3 Vacation queueing models

Queueing systems with server vacation have been investigated extensively due to their
wide applications in several areas including computer communication systems, manufac-
turing and production systems and inventory systems. In a vacation queueing system,
the server may not be available for a period of time (utilize the idle time for different pur-

poses) due to many reasons like, being checked for maintenance,working at other queues,

scanning for new work (a typical aspect of many communication systems) or simply tak-
ing break. This period of time, when the server is unavailable for primary customers is
referred as a vacation (Chandrasekaran et al. (2016)). For more detail on this subject
wonderful surveys on server vacation models in the queueing literature may be found in
(Doshi (1986), Takagi (1991), Tian and Zhang(2006)) and the references therein. A recent

survey given by (Ke et al. (2010c)) and (Tian et al. (2009)) reported the more important
research results on vacation and working vacation queueing systems.

A vacation in a queuing context is a period during which the server is unavailable
to provide the service. Arrivals that come during the vacation can only enter service
after the return of the server from its vacation. There are many situations that result in
server vacation, that is, machine failures(breakdowns), systems maintenance and cyclic

servers(where the server serves more than one queue in the system or more than one

system).

The queueing model with server vacations (server absences) has been well studied in the

past three decades and successfully applied in many areas such as manufacturing/service

and computer/communication network systems and many other real life situations.
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1.3.1 Different types of vacation models

Vacation queueing models can be classified according to the arrival processes, service pro-
cesses, and the vacation policies. So, as it was mentioned above, excellent surveys on the
earlier works of vacation models have been given by (Doshi (1986), Takagi (1991), and

Tian and Zhang (2006)).

Accordingly to the previous survey chapters and books in particular that of (Doshi

(1986), different types of vacation models are as follow

I The single vacation model; there is only one vacation after the end of each busy
period. If the server returns from this vacation, it does not go for another vacation even
if the system is still empty at that time. This type of vacation may come from cases such
as maintenance in production systems (maintenance can be considered a vacation).

I The multiple vacation model, this type of vacation may come from cases such as
maintenance in computer and communication systems where processors in computer and
communication systems perform extensive testing and maintenance in addition to their
main functions (processing telephone calls, reception and transmission of data, etc.). The
required maintenance work is divided into short segments. Whenever customers are ab-
sent, the processor makes a segment of maintenance work. When the system is idle, the
server takes a vacation (runs on a maintenance segment). On return from vacation, the
server starts the service only if it finds K or more customers waiting in the queue, if the
waiting number of customers is less than K then another vacation takes place (Mainte-

nance segment).

I The limited service vacation model in which the server takes a vacation on becoming
inactive or after serving m consecutive customers, or after a certain time T.

The way that the server serves a customer is connected with the vacation type. In
(Doshi (1986)) some of the service models are discussed as the following:

♦ Gated service; as soon as the server comes back from the vacation it puts a gate
behind the last waiting customer. It then begins to serve only customers who are within
the gate, based on some rules of how many or for how long it might serve.

♦ Exhaustive service; the server is working (serves customers) until the system is emp-
tied, after it goes on vacation.
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♦ Limited service; a fixed limit of K is put on the maximum number of customers that
can be served before the server leaves for vacation. The server goes on vacation either:
(a) when the system is empty, or (b) when the K customers have been served.

1.3.2 Literature review

I Vacation models with variants of arrival processes.
Considerable studies were carried out on the vacation models with Markov Arrival Process
(MAP), (Gupta and Sikdar (2006)) studied an MAP/G/1/N queue with single or mul-
tiple vacation policies, where the stationary distributions of number of customers at ser-
vice completions, vacation terminations, pre-arrival, and arbitrary epochs were obtained,
(Banik et al. (2006)) studied a finite bufferMAP/G/1/N queue under single/multiple va-

cation policies and found the queue length distributions. Furthermore, (Wu et al. (2009))

investigated a BMAP/G/1 G-queues with second optional service and multiple vacations
where arrivals of positive customers and negative customers follow a batch Markovian
arrival process (BMAP) and Markovian arrival process (MAP), respectively. The queue
length distributions and the mean of the busy period based were obtained. Very recently,
(Banik and Chaudhry (2017)) investigated an efficient computational analysis of station-

ary probabilities for the queueing system BMAP/G/1/N with or without vacation(s).

Vacation models with batch arrivals were executively studied, (Arumuganathan and Ra-

maswami (2005)) studied a M [x]/G(a, b)/1 queue with two service rates and multiple

vacations. (Ke (2007a)) analyzed a M [x]/G/1 queue under vacation policies (single or

multiple vacation policy) with server breakdown and startup/closedown times. Later, Ke

and Lin (2008) used the maximum entropy approach to examine an M [x]/G/1 queue with

N policy, server breakdowns, and single vacation policy. Recently, (Haridass and Arumu-

ganathan (2015)) investigated a analysis of a single server batch arrival retrial queueing
system with modified vacations and N-policy.

I Vacation models with variants of vacation policies.

> Modified vacation policy.

(Ke and Chu (2006)) studied the operating characteristics of an M [x]/G/1 queueing sys-
tem under a modified vacation policy, where the server leaves for a vacation as soon as
the system is empty. The server takes at most J vacations repeatedly until at least one
customer is found waiting in the queue when the server returns from a vacation. The sys-
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tem size distribution at different points in time, as well as the waiting time distribution
in the queue, the expected length of the busy period and idle period were derived. After
that, (Ke (2007b)) extended the model in (Ke and Chu (2006)) to the case with customer

balking behavior. (Ke et al. (2010a)) generalized the model to the case with N-policy.

Moreover, (Ke et al. (2010b)) investigated the threshold model of (Ke et al. (2010a))
with a randomized control policy. Later, more works on the models with the modified
vacation policies were given. For instance, (Ke and Chang (2009a)) considered anM/G/1

retrial queue with modified vacation policy, customer balking, and feedbacks. (Chang and

Ke (2009)) investigated an M [x]/G/1 retrial queue with modified vacation policy using

the supplementary variable approach. (Ke and Chang (2009a)) extended Chang and Ke’s
model to more general cases with impatience customers and feedback behaviors. Recently,
(Padmavathi et al. (2016)) investigated a finite-source inventory system with postponed
demands and modified M vacation policy.

> Bernoulli vacation policy.

(Madan et al. (2003)) examined an M/M/2 queue with a single Bernoulli schedule va-

cation policy. (Choudhury and Madan (2004)) analyzed a batch arrival queueing system

with two phase service and Bernoulli vacation. Further, (Choudhury and Madan (2005))

considered a system with a modified Bernoulli vacation and N-policy. Later, (Choudhury

(2007)) examined a two phase batch arrival retrial queueing system with Bernoulli va-

cation schedule. At the same time (Choudhury et al. (2007)) considered an M [x]/G/1

queue with two-phase service and Bernoulli vacation and multiple vacation policy. Choud-
hury (2008) investigated an M/G/1 retrial queue with two-phase service and Bernoulli

vacation schedule. After that, (Kumar et al. (2009)) considered an M/M/c retrial queue-
ing system with Bernoulli vacations and obtained various system performance measures.

(Ke and Chang (2009b)) studied a M [x]/(G1, G2)/1 retrial queue under Bernoulli vaca-

tion schedules with general repeated attempts and starting failures. Recently, (Ye et al.

(2016)) investigated an analysis of a single-sever queue with disasters and repairs under
Bernoulli vacation schedule.

> Working vacation policy.

Working vacation (WV) is one kind of vacation policy under which the server provides
service at a lower speed during the vacation period rather than stopping service com-
pletely. This queueing model can be used to some practical systems like network service,
web service, file transfer service and mail service etc Chandrasekaran et al. (2016).
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Servi and Finn (2002) first introduced the concept of working vacation in a single server

system. In such a system denoted by M/M/1/WV, the server would work at a different
rate rather than completely stop during the vacation period. After that, the research
interests on working vacation models grew fast. (Liu et al. (2007)) studied stochastic

decomposition structures of the queue length and waiting time in anM/M/1/WV queue.

(Xu et al. (2009)) extended the M/M/1/WV queue to a bulk input M [x]/M/1/WV

queue and obtained the upper and lower bounds of the mean waiting time by using the
properties of the conditional Erlang distribution. After that, the finite capacity GI/M/1

queue with multiple working vacations was studied by (Banik et al. (2007)). The GI/M/1

queue with working vacation and vacation interruption was discussed by (Li et al. (2008)).

Afterward, the comparison analysis between the GI/M/1 and the GI/Geo/1 queues with

single working vacation was provided by (Chae et al. (2009)). For the general service

time, (Li et al. (2009)) used the matrix analytic method to analyze an M/G/1 queue
with exponentially working vacations under a specific assumption. They obtained the
conditional stochastic decomposition result and the joint distribution for queue length
and service status. Recently, (Lin and Ke (2009)) considered the multi-server system
with single working vacation. The matrix-geometric approach was utilized to develop the
computable explicit formula for the probability distributions of queue length and other
performance measures. (Yang et al. (2010)) treated the F-policy M/M/1/K queue with
single working vacation and exponential startup times and derived the stationary distri-
butions and related system characteristics, including an optimization numerical analysis.
(Jain and Jain (2010)) investigated a single-server working-vacation model with server
breakdowns of multiple types.

Baba (2012) studied the MX/M/1 queue with multiple working vacations, (Arivu-

dainambi et al. (2014)) presented the performance analysis of a single server retrial queue

with working vacation, (Gao and Yao (2014)) presented the MX/G/1 queue with ran-

domized working vacations and at most J vacations, (Lee and Kim (2015)) gave a note

on the sojourn time distribution of an M/G/1 queue with a single working vacation and

vacation interruption, (Liu et al. (2015)) presented a cold standby repairable system
with working vacations and vacation interruption following Markovian arrival process,
(Laxmi and Jyothsna (2014)) obtained Performance analysis of variant working vacation

queue with balking and reneging, (Laxmi and Rajesh (2015)) gave an analysis of vari-
ant working vacations on batch arrival queues. Cost-minimization analysis of a working
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vacation queue with N-policy and server breakdowns was given by (Yang and Wu (2015)).

Recently, there has been considerable attention paid to the retrial queueing models
with working vacation, (Li et al.(2012)) studied a Geo/Geo/1 retrial queue with working

vacations and vacation interruption, Gao et al. (2014) established the analysis of the

M/G/1 retrial queue with general retrial times, working vacations and vacation inter-

ruption. (Upadhyaya (2015)) presented the working vacation policy for a discrete-time

GeoX/Geo/1 retrial queue, (Rajadurai et al. (2016)) gave the performance analysis of
preemptive priority retrial queue with immediate Bernoulli feedback under working vaca-
tions and vacation interruption.

I Multi-server vacation models.
Multi-server vacation models were studied by a number of researchers, the servers in these
models can either take the same vacation together (synchronous vacation) or take indi-

vidual vacations (asynchronous vacations) independently. (Zhang and Tian (2004)) first
studied the multi-server model with asynchronous vacations which represents a service
system with multi-task employees. More multi-server vacation models are based on syn-
chronous vacations. (Zhang and Tian (2003a, 2003b)) first analyzed the Markovian multi-

server queueing system with single/multiple synchronous vacations. Moreover, (Tian and

Zhang (2003)) investigated a more general GI/M/c queueing system with phase-type va-
cations where all servers take multiple vacations together until waiting customers exist at
a vacation completion instant. (Tian and Zhang (2006)) considered a multi-server queue-

ing system with a threshold type (d,N) vacation policy under which d idle servers keep
taking multiple synchronous vacations until the number of customers reaches or exceeds
a threshold N. A computational study is presented for determining the optimal values of
d and N. Another multi-server vacation model with single vacation and threshold policy
was treated by (Xu and Zhang (2006)). (Zhang (2005)) presented an analysis on the

multi-server vacation model with three threshold policy. Yue et al. (2006) studied a
finite buffer multi-server queue with balking, reneging, and single synchronous vacation
policy. They obtained the stationary distributions of the queue length and some other
performance measures in matrix forms. Several special cases with MAPs and numerical
examples were presented, including the table of optimal values of system parameters and
the corresponding system performances measures. Recently, (Ke et al. (2009)) studied the

optimal (d, c) vacation policy for finite capacity M/M/c/N queue with unreliable servers

and repairs. (Gharbi and Ioualalen (2010)) studied the finite-source multi-server queue-
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ing systems with single/multiple vacation policies and developed some the algorithms for

computing the system performance measures. (Ke et al. (2013)) presented a note on a
multi-server queue with vacations of multiple groups of servers.

I Vacation models with impatient customers.
Both single server and multi-server vacation models with impatient customers were dis-
cussed by (Altman and Yechiali (2006)). (Katayama (2011)) examined an M/G/1 queue
with multiple and single vacation, sojourn time limits and balking behavior. Via the level
crossing approach, author derived the explicit solutions for the stationary virtual waiting
time distribution under various assumptions on the service time distribution. (Sakuma

and Inoie (2012)) considered an M/M/c+D queue with multiple vacation exponentially
distributed, where customers are impatient only when all servers are unavailable. Using
the matrix-analytic method, the stationary distribution of the system is derived. Liu
and Song (2013) established the analysis of Geo/Geo/1 retrial queue with non-persistent

customers and working vacations. (Rajadurai et al. (2015)) Analyzed the M/G/1 retrial
queue with balking, negative customers, working vacations and server breakdown.

1.4 Contribution of the thesis

The contribution of this thesis consists mainly in studying the impact of impatience in
different queueing models, namely, retrial and vacation queueing systems. In this way we
develop different and more advanced queueing systems. A number of queueing models
presented by many researchers are special cases of our systems.

> First Result: A note on fluid approximation of retrial queueing system
with two orbits, abandonment and feedback.
This work deals with multi-server retrial queueing network with two orbits, time dependent
parameters, state dependent routing, abandonment and feedback. TheMt/Mt/ct queue has

a (time inhomogeneous) Poisson arrival process with rate λit , a service rate (per server)
of µit , i = 1, 2 and ct servers, for all t > 0. Two independent Poisson streams of cus-
tomers flow into c servers. The incoming customer of type i, i = 1, 2 is handled by an
available server, if there is any; otherwise, he waits in an infinite buffer queue. Note that
the customers are served in the order of arrival. A waiting customer of type i who did not
get connected to a server will lose his patience and abandon after an exponentially dis-
tributed amount of time, the abandoned one may leave the entire network (loss customer)
or move into one of the orbits with some probability, from which he retries to reach the
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primary queue to get a service. A served customer may comeback to the system, to the
orbit depending on its type for another service. A customer in orbit i, i = 1, 2 may lose
his patience and abandon the entire network after an exponentially distributed amount of
time (loss customer).

� For this type of systems the sample paths for the Mt/Mt/ct queue length process is
uniquely determined by this relation

Q1(t) = Q1(0) + Π1

(∫ t

0

λ1sds

)
+ Π2

(∫ t

0

λ2sds

)
+ Π3

(∫ t

0

α1sQ2(s)ds

)
+ Π4

(∫ t

0

α2sQ3(s)ds

)
− Π5

(∫ t

0

(Q1(s)− cs)+δ1sφsds

)
− Π6

(∫ t

0

(Q1(s)− cs)+

δ2sφsds)− Π7

(∫ t

0

(Q1(s)− cs)+δ1s(1− φs)ds
)
− Π8

(∫ t

0

(Q1(s)− cs)+δ2s

(1− φs)ds)− Π9

(∫ t

0

µ1s(Q1(s) ∧ cs)ds
)
− Π10

(∫ t

0

µ2s(Q1(s) ∧ cs)ds
)

(1.1)

Q2(t) = Q2(0) + Π1
1

(∫ t

0

(Q1(s)− cs)+δ1s(1− φs)ds
)

+ Π1
2

(∫ t

0

ω1sds

)

−Π1
3

(∫ t

0

α1sQ2(s)ds

)
− Π1

4

(∫ t

0

ρsθ1s(Q2(s)− k1s)
+ds

)
.

(1.2)

Q3(t) = Q3(0) + Π2
1

(∫ t

0

(Q1(s)− cs)+δ2s(1− φs)ds
)

+ Π2
2

(∫ t

0

ω2sds

)

−Π2
3

(∫ t

0

α2sQ3(s)ds

)
− Π2

4

(∫ t

0

ρsθ2s(Q3(s)− k2s)
+ds

)
,

(1.3)

where Πi(·), Π1
i (·), and Π2

i (·), are given independent, standard (rate 1) Poisson processes,

and for all real x and y, x ∧ y ≡ min(x, y).

And the Markovian service network {Q(t)|t ≥ 0} is the V-valued stochastic process

whose sample paths are uniquely determined by Q(0) and the functional equations

Q(t) = Q(0) +
∑
i∈I

Πi

(∫ t

0

νs(Q(s), i)ds

)
vi, for all t ≥ 0
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with
{νt(·, i)|t ≥ 0, i ∈ I} (1.4)

a collection of real-valued, non-negative Lipschitz rate functions on a separable Banach
space V.
� Further, a scaled version Qη(t) = (Qη

1(t), Qη
2(t), Qη

3(t)) of the process Q(t) is given as

Qη
1(t) = Qη

1(0) + Π1

(∫ t

0

ηλ1sds

)
+ Π2

(∫ t

0

ηλ2sds

)
+ Π3

(∫ t

0

α1sQ
η
2(s)ds

)
+ Π4(∫ t

0

α2sQ
η
3(s)ds

)
− Π5

(∫ t

0

(Qη
1(s)− ηcs)+δ1sφsds

)
− Π6

(∫ t

0

(Qη
1(s)− ηcs)+

δ2sφsds)− Π7

(∫ t

0

(Qη
1(s)− ηcs)+δ1s(1− φs)ds

)
− Π8

(∫ t

0

(Qη
1(s)− ηcs)+

δ2s(1− φs)ds)− Π9

(∫ t

0

µ1s(Q
η
1(s) ∧ ηcs)ds

)
− Π10

(∫ t

0

µ2s(Q
η
1(s) ∧ ηcs)ds

)
(1.5)

Qη
2(t) = Qη

2(0) + Π1
1

(∫ t

0

(Qη
1(s)− ηcs)+δ1s(1− φs)ds

)
+ Π1

2

(∫ t

0

ηω1sds

)

−Π1
3

(∫ t

0

α1sQ
η
2(s)ds

)
− Π1

4

(∫ t

0

ρsθ1s((Q
η
2(s)− ηk1s)

+ds

)
.

(1.6)

Qη
3(t) = Qη

3(0) + Π2
1

(∫ t

0

(Qη
1(s)− ηcs)+δ2s(1− φs)ds

)
+ Π2

2

(∫ t

0

ηω2sds

)

−Π2
3

(∫ t

0

α2sQ
η
3(s)ds

)
− Π2

4

(∫ t

0

ρsθ2s(Q
η
3(s)− ηk2s)

+ds

) (1.7)

as η →∞.
With {Qη|η > 0} the rescaled process such that

Qη(t) = Qη(0) +
∑
i∈I

Πi

(
η

∫ t

0

νs

(
Qη(s)

η
, i

)
ds

)
vi, (1.8)

And Q(1) be the diffusion approximation associated with the family {Qη(t)|t ≥ 0}.
� The first-order asymptotic result takes the form of a functional strong law of large

numbers, and yields a fluid approximation for the original process.
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Theorem 1.4.1. Let Qη be the uniform acceleration as in (1.8), the fluid limit for the
multiserver queue with abandonment feedback and retrials is the unique solution to the
differential equations

d
dt
Q

(0)
1 (t) = λ1t + λ2t + α1tQ

(0)
2 (t) + α2tQ

(0)
3 (t)− (µ1t + µ2t)(Q

(0)
1 (t) ∧ ct)

−(δ1t + δ2t)(Q
(0)
1 (t)− ct)+

(1.9)

d
dt
Q

(0)
2 (t) = ω1t − α1tQ

(0)
2 (t) + δ1t(1− φt)(Q

(0)
1 (t)− ct)+ − θ1tρt(Q

(0)
2 (t)− k1t)

+. (1.10)

d
dt
Q

(0)
3 (t) = ω2t − α2tQ

(0)
3 (t) + δ2t(1− φt)(Q

(0)
1 (t)− ct)+ − θ2tρt(Q

(0)
3 (t)− k2t)

+. (1.11)

Furthermore, the diffusion limit for the multiserver queue with abandonment, feedback and
retrials is the unique solution to the integral equations

Q
(1)
1 (t) = Q

(1)
1 (0) + Ω1

(∫ t

0

λ1sds

)
+ Ω2

(∫ t

0

λ2sds

)
+ Ω3

(∫ t

0

α1sQ
(0)
2 (s)ds

)
+ Ω4

(∫ t

0

α2sQ
(0)
3 (s)ds

)
+

∫ t

0

[(
µ1s1{Q(0)

1 (s)≤cs}
+ (δ1s + δ2s)1{Q(0)

1 (s)>cs}

)
Q

(1)
1 (s)−

−
(

(µ1s + µ2s)1{Q(0)
1 (s)<cs}

+ (δ1s + δ2s)1{Q(0)
1 (s)≥cs}

)
Q

(1)
1 (s)+ + α1sQ

(1)
2 (s)

+α2sQ
(1)
3 (s)

]
ds− Ω5

(∫ t

0

(Q
(0)
1 (s)− cs)+δ1s(1− φs)ds

)
− Ω6

(∫ t

0

(Q
(0)
1 (s)− cs)+

δ2s(1− φs)ds)− Ω7
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0

µ1s(Q
(0)
1 (s) ∧ cs)ds

)
− Ω8
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0

µ2s(Q
(0)
1 (s) ∧ cs)ds

)

−Ω9
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0

(Q
(0)
1 (s)− cs)+δ1sφsds

)
− Ω10
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0

(Q
(0)
1 (s)− cs)+δ2sφsds

)
(1.12)
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Q
(1)
2 (t) = Q

(1)
2 (0) + Ω1

1

(∫ t

0

(Q
(0)
1 (s)− cs)+δ1s(1− φs)ds

)
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2
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0
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)

+
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0
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(1)
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2 (s)ds
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4
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−
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(1.13)

Q
(1)
3 (t) = Q

(1)
3 (0) + Ω2

1
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0

(Q
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1 (s)− cs)+δ2s(1− φs)ds

)
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2
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+
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(1.14)

−Ω2
3

(∫ t

0

α2sQ
(0)
3 (s)ds

)
− Ω2

4

(∫ t

0

ρsθ2s(Q
(1)
3 (s)− k2s)

+ds

)

−
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0

θ2sρs

[
Q

(1)
3 (s)+1{(Q(0)

3 (s)≥k2s}
−Q(1)

3 (s)−1{(Q(0)
3 (s)>k2s}
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−
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α2sQ
(1)
3 (s)ds.

(1.15)

� Next, the ordinary differential equations for the mean vector and covariance matrix

of Q(1)
i are obtained in the following Theorem.

Theorem 1.4.2. The mean vector for the diffusion limit solves the set of differential
equations

d
dt
E(Q

(1)
1 (t)) =

(
(µ1t + µ2t)1{Q(0)

1 (t)≤ct}
+ (δ1t + δ2t)1{Q(0)

1 (t)>ct}

)
E(Q

(1)
1 (t)−)

−
(

(µ1t + µ2t)1{Q(0)
1 (t)<ct}

+ (δ1t + δ2t)1{Q(0)
1 (t)≥ct}

)
E(Q

(1)
1 (t)+)

+α1tE(Q
(2)
1 (t)) + α2tE(Q

(3)
1 (t)).

(1.16)
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d
dt
E(Q

(1)
2 (t)) = δ1t(1− φt)

(
E(Q

(1)
1 (t)+)1{Q(0)

1 (t)≥ct}
− E(Q

(1)
1 (t)−)1{Q(0)

1 (t)>ct}

)
−
(
ρtθ1t1{Q(0)

2 (t)≥k1t}

)
× E

(
Q

(1)
2 (t)

)
− α1tE(Q

(1)
2 (t)).

(1.17)

d
dt
E(Q

(1)
3 (t)) = δ2t(1− φt)

(
E(Q

(1)
1 (t)+)1{Q(0)

1 (t)≥ct}
− E(Q

(1)
1 (t)−)1{Q(0)

1 (t)>ct}

)
−
(
ρtθ2t1{Q(0)

3 (t)≥k2s}

)
× E

(
Q

(1)
3 (t)

)
− α2tE(Q

(1)
3 (t)).

(1.18)

The covariance matrix for the diffusion limit solves the differential equations

d
dt
V ar(Q

(1)
1 (t)) = 2

(
(δ1t + δ2t)1{Q(0)

1 (t)>ct}
+ (µ1t + µ2t)1{Q(0)

1 (t)≤ct}

)
×Cov(Q

(1)
1 (t), Q

(1)
1 (t)−) + λ1t + λ2t + (δ1t + δ2t)(Q

(0)
1 (t)− ct)+

−2
(

(δ1t + δ2t)1{Q(0)
1 (t)≥ct}

+ (µ1t + µ2t)1{Q(0)
1 (t)<ct}

)
×Cov(Q

(1)
1 (t), Q

(1)
1 (t)+) + (µ1t + µ2t)(Q

(0)
1 (t) ∧ ct) + α1tQ

(0)
2 (t)

+α2tQ
(0)
3 (t) + 2

[
α1tcov(Q

(1)
1 (t), Q

(1)
2 (t)) + α2tcov(Q

(1)
1 (t), Q

(1)
3 (t))

]
.

(1.19)

d
dt
V ar(Q

(1)
2 (t)) = 2δ1t(1− φt)Cov(Q

(1)
2 (t), Q

(1)
1 (t)+)1{Q(0)

1 (t)≥ct}
− 2δ1t(1− φt)

×Cov(Q
(1)
2 (t), Q

(1)
1 (t)−)1{Q(0)

1 (t)>ct}
− 2α1tV ar(Q

(1)
2 (t))

+δ1t(1− φt)(Q
(0)
1 (t)− ct)+ + α1tQ

(0)
2 (t) + ρtθ1t(Q

(0)
2 (t)− k1t)

+

+ω1t − 2ρtθ1t1{Q(0)
2 (t)≥k1t}

V ar(Q2(t)).

(1.20)

d
dt
V ar(Q

(1)
3 (t)) = 2δ2t(1− φt)Cov(Q

(1)
1 (t)+, Q

(1)
3 (t))1{Q(0)

1 (t)≥ct}
− 2δ2t(1− φt)

×Cov(Q
(1)
1 (t)−, Q

(1)
3 (t))1{Q(0)

1 (t)>ct}
− 2α2tV ar(Q

(1)
3 (t))

+δ2t(1− φt)(Q
(0)
1 (t)− ct)+ + α2tQ

(0)
3 (t) + ρtθ2t(Q

(0)
3 (t)− k2t)

+

+ω2t − 2ρtθ2t1{Q(0)
3 (t)≥k2t}

V ar(Q3(t)).

(1.21)
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d
dt
Cov(Q

(1)
1 (t), Q

(1)
2 (t)) =

(
(µ1t + µ2t)1{Q(0)

1 (t)≤ct}
+ (δ1t + δ2t)1{Q(0)

1 (t)>ct}

)
×Cov((Q

(1)
1 (t))−, Q

(1)
2 (t))− α1tCov(Q

(1)
1 (t), Q

(1)
2 (t))

−
(

(µ1t + µ2t)1{Q(0)
1 (t)<ct}

+ (δ1t + δ2t)1{Q(0)
1 (t)≥ct}

)
×Cov((Q

(1)
1 (t))+, Q

(1)
2 (t)) + δ1t(1− φt)(Q

(0)
1 (t)− ct)+

−
(
θ1tρt1{Q(0)

2 (t)≥k1t}

)
Cov(Q

(1)
1 (t), Q

(1)
2 (t))

+δ1t(1− φt)1{Q(0)
1 (t)≥ct}

V ar(Q
(1)
1 (t)) + α1tV ar(Q

(1)
2 (t))

+α2tCov(Q
(1)
3 (t), Q

(1)
2 (t)) + α1tQ

(0)
2 (t).

(1.22)

d
dt
Cov(Q

(1)
2 (t), Q

(1)
3 (t)) = δ2t(1− φt)1{Q(0)

1 (t)≥ct}
Cov(Q

(1)
2 (t), Q

(1)
1 (t)) + δ1t(1− φt)

×1{Q(0)
1 (t)≥ct}

Cov(Q
(1)
3 (t), Q

(1)
1 (t))−

(
α1t + α2t + θ1tρt

×1{Q(0)
2 (t)≥k1t}

+ θ2tρt1{Q(0)
3 (t)≥k2t}

)
Cov(Q

(1)
2 (t), Q

(1)
3 (t)).

(1.23)

> Second Result: Stability Condition of a Retrial Queueing System with
Abandoned and Feedback Customers.
In this work we investigate the analysis of the necessary stability condition of a Marko-
vian retrial queueing system with two classes of jobs and constant retrial, abandonment
and feedback customers. Two independent Poisson streams of jobs, S1 and S2, flow into
a single-server service system. The service system can hold at most one job. The arrival
rate of stream Si is αi, i = 1, 2, with α1 +α2 = α. The required service time of each job is
independent of its type and is exponentially distributed with mean 1/µ. If an arriving type-

i job finds the server busy, it is routed to a dedicated retrial (orbit) queue from which jobs
are re-transmitted at an exponential rate. The rates of retransmissions may be different
from the rates of the original input streams. So, the blocked jobs of type i form a type-i
single-server orbit queue that attempts to retransmit jobs (if any) to the main service sys-
tem at a Poisson rate of γi, i = 1, 2. This creates a system with three dependent queues.



1.4 Contribution of the thesis 24

The customer in the orbit either attempts service again after a random time or gives up
receiving service and leaves the system after a random time at rate δi i = 1, 2. After
the customer is served completely, it will decide either to join the retrial group again for

another service with probability β or to leave the system forever with probability β̄ = 1−β.

� The Markov process {(N1(t), N2(t), C(t)) : t ∈ [0,+∞)} is irreducible on the state-

space {0, 1, ...}×{0, 1, ...}×{0, 1} such that C(t) denotes the number of jobs in the main

queue which takes the values of 0 or 1, and Ni(t) is the number of jobs in orbit queue i,
i = 1, 2.

� Such a network can serve as a model for two competing job streams in a carrier
sensing multiple access system "CSMA". Local Area Computer Network (LAN) can be
an example of CSMA.

� In the case of our system, the set of stationary probabilities Pn1n2(c) is defined as
follows:

Pn1n2(c) = lim
t→∞

P (N1(t) = n1, N2(t) = n2, L(t) = c)

= P (N1 = n1, N2 = n2, C = c),

for n1, n2 = 0, 1, ..., and c = 0, 1, when these limits exist. Define the marginal probabilities

Pn1·(c) =
∞∑

n2=0

Pn1n2(c) = P (N1 = n1, C = c), n1 = 0, 1, 2, ..., c = 0, 1

and

P·n2(c) =
∞∑

n1=0

Pn1n2(c) = P (N2 = n2, C = c), n2 = 0, 1, 2, ..., c = 0, 1.

The balance equations are presented as
1. N2 = n2 = 0

1.1. N1 = n1 = 0, c = 0

αP00(0) = βµP00(1) + δ1P10(0) + δ2P01(0). (1.24)

1.2. N1 = n1 ≥ 1, c = 0

(α + γ1 + δ1)Pn10(0) = βµPn10(1) + βµPn1−10(1) + δ1Pn1+10(0) + δ2Pn11(0). (1.25)
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1.3. N1 = 0, c = 1

(α + µ)P00(1) = αP00(0) + γ1P10(0) + γ2P01(0) + δ1P10(1)

+δ2P01(1).
(1.26)

1.4. N1 = n1 ≥ 1, c = 1

(α + µ+ δ1)Pn10(1) = αPn10(0) + γ1Pn1+10(0) + γ2Pn11(0)

+δ1Pn1+10(1) + δ2Pn11(1) + α1Pn1−10(1).
(1.27)

2. N2 = n2 ≥ 1

2.1. N1 = 0 c = 0

(α + γ2 + δ2)P0n2(0) = βµP0n2(1) + βµP0n1−1(1) + δ1P1n2(1)

+δ2P0n2+1(0).
(1.28)

2.2. N1 = n1 ≥ 1 c = 0

(α + γ1 + γ2 + δ1 + δ2)Pn1n2(0) = βµPn1−1n2(1) + βµPn1n2−1(1)

+βµPn1n2(1) + δ1Pn1+1n2(0) + δ2Pn1n2+1(0).
(1.29)

2.3. N1 = 0 c = 1

(α + µ+ δ2)P0n2(1) = αP0n2(0) + γ1P1n2(0) + γ2P0n2+1(0) + δ1P1n2(1)

+δ2P0n2+1(1) + α2P0n2−1(1).
(1.30)

2.4. N1 = n1 ≥ 1 c = 1

(α + µ+ δ1 + δ2)Pn1n2(1) = αPn1n2(0) + γ1Pn1+1n2(0) + γ2Pn1n2+1(0)

+δ1Pn1+1n2(1) + δ2Pn1n2+1(1) + α1Pn1−1n2(1) + α2Pn1n2−1(1).
(1.31)

The probability generating function of the stationary version of the Markov process
{(N1(t), N2(t), C(t)) : t ∈ [0,+∞)} is given by

F (z1, z2, z) =
∞∑

n1=0

∞∑
n2=0

1∑
c=0

Pn1n2(c)z
n1
1 zn2

2 zc. (1.32)
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The probability generating functions are defined as

R(c)
n2

(z1) =
∞∑

n1=0

Pn1n2(c)z
n1
1 , c = 0, 1, n2 = 0, 1, ...,

and

F (c)(z1, z2) =
∞∑

n2=0

∞∑
n1=0

Pn1n2(c)z
n1
1 zn2

2 =
∞∑

n2=0

R(c)
n2

(z1)zn2
2 , c = 0, 1. (1.33)

F (z1, z2, z) = F (0)(z1, z2) + zF (1)(z1, z2), |z1| ≤ 1, |z2| ≤ 1.

The main result is given in the following.

Proposition 1.4.1. The following condition

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
< 1, (1.34)

for i = 1, 2 and

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1 6= 0 (1.35)

is necessary for the stability of the system.

To prove the stability of our Markovian retrial queueing system with two classes of
jobs and constant retrial rates, abandonment and feedback customers we showed that

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

≤ 1. (1.36)

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
≤ 1, i = 1, 2

(1.37)
are necessary conditions for the existence of a steady-state.

And if

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
= 1, i = 1, 2,

(1.38)
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then both queues N1 and N2 are unbounded with probability one.
> Third Result: On feedback queueing system with reneging and retention

of reneged customers, multiple working vacations and Bernoulli schedule va-
cation interruption.
In this work we established the analysis of an M/M/1 queueing system multiple working
vacations, Bernoulli schedule vacation interruptions, reneging, retention of reneged cus-
tomers and feedback, where the customers become impatient due to the servers’ vacation.
Customers arrive according to a Poisson process with arrival rate λ. The service times
during a normal service period, the service times during a working vacation period, and
the vacation times are exponentially distributed with rates µ, α, and θ, respectively. The
customers are supposed to be impatient during the multiple working vacations. Whenever
a customer arrives at the system and finds the system is on working vacation, he acti-
vates an impatient timer T, which is exponentially distributed with rate ϑ. If the server
finishes the working vacation before the impatience timer expires, the customer remains
in the system till his service completion. However, if the impatience timer expires when
the server is still on working vacation, the customer abandons the system, this time is
reneging time of an individual customer. The reneged customer can be retained in the
system with some probability σ or he may abandon the system with complementary proba-
bility δ(1−σ). During the working vacation period, a customer is serviced at a lower rate,
and, at the instants of the service completion, the vacation is interrupted and the server
resumes a regular busy period with probability 1− β (if there are customers in the queue)
or remains in the vacation with probability β. The inter-arrival times, service times, va-
cation duration times, and the impatient times all are taken to be mutually independent.
The customers are served on a first come first-served queue discipline. After completion
of each service, the customer can either join the end of the queue with probability ν or he
can leave the system with probability γ where ν+γ = 1. The customers both newly arrived
and those that are fed back are served in FIFO discipline. We do not distinguish between
the regular arrival and feedback arrival.
� {(N(t), St)); t ≥ 0} is a continuous-time Markov process with state space Ω =

[{(0, 0) ∪ (i, j)}, i = 1, 2, ..., j = 0, 1]. N(t) denotes the number of customers in the

system at time t, and S(t) is the state of the server at time t which takes two values 0 if
the server is in working vacation period, and 1 if the server is in normal busy period.

� Let πij = lim
t→∞

P{N(t) = i, S(t) = j}, (i, j) ∈ Ω, and πi0, i ≥ 0 be the probability

that there are i customers in the system when the server is in working vacation period
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and, πi1, i ≥ 1 be the probability that there are i customers in the system when the server
is in normal busy period.

� Via the Markov process theory, the set of steady-state equations is given as follow:

λπ00 = (δϑ+ γα)π10 + γµπ11 (1.39)

(λ+ γα + θ + nδϑ)πn0 = λπn−10 + (βγα + (n+ 1)δϑ)πn+10, n ≥ 1 (1.40)

(λ+ γµ)π11 = θπ10 + βγαπ20 + γµπ21 (1.41)

(λ+ γµ)πn1 = θπn0 + λπn−11 + γµπn+11 + βγαπn+10, n ≥ 2 (1.42)

� The probability generating functions of the number of customers in the system when
the server is in a working vacation period and in a normal service period, respectively are

Π0(z) =
−
(
γµπ11 + (θ + βγα)π0,0 + βγαπ10

)
Φ1(z) + βγαΦ2(z)

δϑe−(λ/δϑ)zzβγα/δϑ(1− z)(θ+βγα)/δϑ
, (1.43)

Π1(z) =
(θz + βγα)Π0(z)− z(θ + βγα)Π0(1)

(λz − γµ)(1− z)
− βγαπ0,0

(λz − γµ)
. (1.44)

With

Φ1(z) =

∫ z

0

e−(λ/δϑ)xxβγα/δϑ(1− x)(θ+βγα)/δϑ−1dx (1.45)

Φ2(z) =

∫ z

0

e−(λ/δϑ)xxβγα/δϑ−1(1− x)(θ+βγα)/δϑdx, (1.46)

where δ 6= 0, ϑ 6= 0, x 6= 0, δϑ 6= 1. And

Π0(1) =
(
(δϑ+ θ + γβ̄α)(γµ− λ)βΦ2(1)

)
×
(
(δβ̄ϑ+ θ + γβ̄α)(θ + γβ̄α)Φ1(1)

+(δϑ(γµ− λ) + γ(µ− α)(θ + γβ̄α)− δϑβ̄γα)× βΦ2(1)
)−1 (1.47)

� Then, the stationary state probabilities are obtained as follow

π0,0 =
(θ + γβ̄α)Φ1(1)

γβαΦ2(1)
Π0(1), (1.48)

π1,0 =
(θ + γβ̄α)

(
(λ+ θ + γβ̄α)Φ1(1)− γβαΦ2(1)

)
(δϑ+ γβα)γβαΦ2(1)

Π0(1), (1.49)

and
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π1,1 =
((

(θ + γβ̄α)
{

(δϑ+ γα)βγαΦ2(1)− Φ1(1)(λγβ̄α + (δϑ+ γα)(θ + γβ̄α))
})

×(γβµαΦ2(1)(δϑ+ γβα))−1) Π0(1).

(1.50)
Here, the explicit expressions for various performance measures are derived.
♦ The expected number of customers in the system when the server is on a working

vacation period E(L0).

E(L0) =

(
γµ− λ
θ + β̄γα

)
(1− Π0(1))−

(
β̄γα

θ + β̄γα

)
(π00 − Π0(1)).

♦ The expected number of customers in the system when the server is in a normal
busy period E(L1).

E(L1) = Π′1(1) = θ+γβ̄α
γµ−λ

Π′′
0 (1)

2
+ 1

(θ+γβ̄α)(γµ−λ)

×
(
(γθµ+ λγβ̄α)(1− Π0(1)) + θγβ̄α(Π0(1)− π0,0)

)
.

♦ The expected number of customers in the system can be computed as

E(L) = E(L0) + E(L1).

♦ The sojourn times, with W the total sojourn time of a customer in the system,
evaluated from the instant of arrival till departure, with the departure either due to
completion of service or as a consequence of abandonment.

E(W ) =
1

λ
(E(L0) + E(L1)).

♦ The proportion of customers served ∆.

∆ =
1

λ
(γµΠ1(1) + γα(Π0(1)− π0,0)) .

♦ The rate of abandonment Θ of a customer due to impatience is given by

Θ = δϑE(L0) = λ− (γµΠ1(1) + γα(Π0(1)− π0,0)) ,

♦ The probability that the system is in normal busy period Γ and the probability that
the system is in working vacation Ω are, respectively, given by

Γ =
∞∑
n=1

πn,1 = Π1(1), Ω =
∞∑
n=0

πn,0 = Π0(1).
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1.5 The layout of the thesis

Our study focuses on the analysis of queuing systems with impatience, the following chap-
ters represent the way the research progressed. Our thesis is composed of four chapters:

The first one is an introductory chapter, it presents a work of synthesis, with which
the thesis is begun; a detailed description of retrial queues, queueing systems with im-
patient customers and vacation queueing models is given. In this part of the thesis an
important literature review is presented. These queueing models play an important role
in modeling and analyzing the performance of many complex systems, such as computer
networks, telecommunications systems, call centers, flexible manufacturing systems and
service systems.

In the second chapter we investigate a simple intuitive approximation for retrial queue-
ing model queueing system model with two orbits, ct servers, t ≥ 0, abandoned and feed-
back customers. Two independent Poisson streams of customers arrive to the system, an
arriving one of type i; i = 1; 2 is handled by an available server, if there is any; otherwise,
he waits in an infinite buffer queue. A waiting customer of type i may lose his patience
and abandon after an exponentially distributed amount of time, this latter may leave the
system or move to one of the orbits depending of its type, from which he retries to to
reach the primary queue, the customer in the orbit may lose his patience and leave the
system definitively after an exponentially distributed amount of time. After completion
of a service, the customer may comeback to the system, to one of the orbits for another
service.

This result has been the subject of an international publication in Mathematical
Sciences And Applications E-Notes Volume, 2(2),51-66, 2014.

The third chapter is consecrated to the study of the stability of a retrial queueing
system with two orbits, abandoned and feedback customers. Two independent Poisson
streams of customers arrive to the system, and flow into a single-server service system. An
arriving one of type i, i = 1, 2 is handled by the server if it is free; otherwise, it is blocked
and routed to a separate type-i retrial (orbit) queue that attempts to re-dispatch its jobs
at its specific Poisson rate. The customer in the orbit either attempts service again after
a random time or gives up receiving service and leaves the system after a random time.
After the customer is served completely, it will decide either to join the retrial group again
for another service or leave the system forever with some probability.
This study was published in Appl. Appl. Math, 10(2),667-677, 2015.

In the fourth chapter, we establish an analysis of a Markovian feedback queueing
system with reneging and retention of reneged customers, multiple working vacations
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and Bernoulli schedule vacation interruption, where customers’ impatience is due to the
servers’ vacation. The reneging times are assumed to be exponentially distributed. After
the completion of service, each customer may reenter the system as a feedback customer
for receiving another regular service with some probability or leave the system. A reneged
customer can be retained in many cases by employing certain convincing mechanisms to
stay in queue for completion of service. Thus, a reneged customer can be retained in
the queueing system with some probability or he may leave the queue without receiving
service. The stationary analysis of the system is established. The probability generating
functions of the stationary state probabilities are obtained, the explicit expressions of the
system sizes when the server is in a normal service period and in a Bernoulli schedule
vacation interruption are deduced, respectively. Various performance measures of the
system are derived.

This work was punctuated by a publication published in Arab. J. Math, 6(1),1-11,
2017.
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Abstract
This chapter deals with a queueing system model with two orbits, abandoned and feed-
back customers and ct, t ≥ 0 servers. Two independent Poisson streams of customers
arrive to the system, an arriving one of type i, i = 1, 2 is handled by an available server,
if there is any; otherwise, he waits in an infinite buffer queue. A waiting customer of
type i who did not get connected to a server will lose his patience and abandon after
an exponentially distributed amount of time, the abandoned one may leave the system
(loss customer) or move to the orbit depending of its type, from which he makes a new
attempts to reach the primary queue, then this later when he finishes his conversation
with a server, he may comeback to the system, to one of the orbits for another service.

subclass [2000]:Primary 60K25; Secondary 68M20; Thirdly 90B22.
Keywords:Queueing system, call center, retrial queue, fluid approximation, abandon-
ment, feedback.

2.1 Introduction

During the past few decades, there has been increasing interest in studying retrial queueing
systems because they are widely used in performance analysis of many practical systems,
retrial queues have been investigated extensively because of their applications in telephone
switching systems, telecommunication networks and computer systems for competing to
gain service from a central processing unit and so on. Moreover, retrial queues are also
used as mathematical models for several computer systems: packet switching networks,
shared bus local area networks operating under the carrier-sense multiple access proto-
col and collision avoidance star local area networks, etc. Retrial queueing systems are
characterized by the feature that a blocked customer (a customer who finds the server

unavailable) may leave the service area temporarily and join a retrial group in order to
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retry his request after some random time. For excellent bibliography on retrial queues,
the readers are referred to [15, 19, 16, 12, 29, 42, 8] and references therein.

Behavioral psychology concerning the use of service offered by mobile cellular networks
includes repeated attempts and abandonments. Both phenomena reflect the impatience
of subscribers when all channels are occupied. Following the arrival of a call, if all the
available channels are occupied, a call is not be admitted into a network. Later, a sub-
scriber initiates a repeated attempt for the admission of a call. An abandonment happens
when a subscriber’s call becomes rejected and the subscriber gets impatient and gives up
after a certain time without getting service.

In feedback queueing model, if the service of the job is unsuccessful, it may try again
and again until a successful service is completed. Takacs [40] was the first to study feed-
back queueing model. Studies on queue length, the total sojourn time and the waiting
time for an M/G/1 queue with Bernoulli feedback were provided by Vanden Berg and

Boxma [41]. Choudhury and Paul [9] derived the queue size distribution at random epoch

and at a service completion epoch for M/G/1 queue with two phases of heterogeneous

services and Bernoulli feedback system, Krishna Kumar et al.[25] considered a generalized

M/G/1 feedback queue in which customers are either "positive" or "negative". In [17]

Fayolle treated a simple telephone exchange with delayed feedback, Choi [8] considered

an M/M/c retrial queues with geometric loss and feedback when c = 1, 2.

A queueing system with two orbits and two exogenous streams of different type serves
as a model for two competing job streams in a carrier sensing multiple access system,
where the jobs, after a failed attempt to network access, wait in an orbit queue [34, 39].
An example of carrier sensing multiple access system is a local area computer network
with bus architecture. The two types of customers can be interpreted as customers with
different priority requirements.

A two-class retrial system with a single- server, no waiting room, batch arrivals and
classical retrial scheme was introduced and analyzed in [26]. Then, in [14] author ex-

tended the analysis of the model in [26] to the multi-class setting with arbitrary number

of classes. In [20] author has established equivalence between the multi-class batch arrival
retrial queues with classical retrial policy and branching processes with immigration. In
[33] a non-preemptive priority mechanism was added to the model of [14, 26]. In [28]
authors have considered a multi-class retrial system where retrial classes are associated
with different phases of service. Retrial queueing model MMAP/M2/1 with two orbits
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was studied in [5], authors considered a retrial single-server queueing model with two
types of customers. In case of the server occupancy at the arrival epoch, the customer
moves to the orbit depending on the type of the customer, one orbit is infinite while the
second one is a finite. Joint distribution of the number of customers in the orbits and
some performance measures are computed. In [7] authors considered two retrial queueing
system with balking and feedback, the joint generating function of the number of busy
server and the queue length was found by solving Kummer differential equation, and by
the method of series solution.

Call centers have become the central focus of many companies, as these centers stay
in direct contact with the form’s customers and form an integral part of their customer
relationship management. So, at the present time, call centers are becoming an important
means of communication with the customer. Therefore, the response-time performance
of call centers is essential for the customer satisfaction. For call center managers, making
the right staffing decisions is essential to the costs and the performances of call centers.
Various models have been developed in order to decide on the right number of agents, see
[18, 21], and the references therein. Thus, considering customer retrial behaviors in call

centers is quite significant [18, 2, 38, 11] and reference therein.

Fluid models for call centers have been extensively studied, for instance see [43, 32].

In [31] the fluid and the diffusion approximation for time varying multiserver queue with
abandonment and retrials as studied, it was shown that the fluid and the diffusion approx-
imation can both be obtained by solving sets of non-linear differential equations. In [30]
more general theoretical results for the fluid and diffusion approximation for Markovian
service networks was given. In [1] authors extended the model by allowing customer balk-
ing behavior. Fluid models have also been applied in delay announcement of customers
in call centers [22, 23].

And recently, in [10] authors study call centers with one redial and one orbit, using fluid
limit they calculate the expected total arrival rate, which is then given as an input to
the Erlang A model for the purpose of calculating service levels and abandonment rates.
The performance of such a procedure is validated in the case of single intervals as well as
multiple intervals with changing parameters.

In the present chapter, an analysis of Mt/Mt/ct retrial queueing model with aban-
donment and feedback; a system with two orbits and two exogenous streams of different
types is carried out.
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The layout of the chapter is given as follows. After the introduction, in section 2, we
describe the mathematical model in more details and give the notations, assumptions and
some results that will be used and useful throughput this chapter. In section 3, our main
result is given; an asymptotic analysis of the considered model is presented.

2.2 The mathematical model

Consider retrial queueing network with time dependent parameters, state dependent rout-
ing, abandonment and feedback (figure 2.1). The Mt/Mt/ct queue has a (time in homo-

geneous) Poisson arrival process with rate λit , a service rate (per server) with mean 1
µit
,

i = 1, 2 and ct servers, for all t > 0.

Two independent Poisson streams of customers flow into c servers. An arriving cus-
tomer of type i, i = 1, 2 is handled by an available server in FIFO manner, if there is any;
otherwise, he waits in an infinite buffer queue. The customers are handled in the order of
arrival. A waiting customer of type i who did not get connected to a server will lose his
patience and abandon after an exponentially distributed amount of time at rate δit , the

abandoned one may leave the entire network (loss customer) with probability φt or move
into one of the orbits with probability 1 − φt, from which he makes a new attempts to
reach the primary queue at rate αit . Each customer waiting in the retrial pool may leave
his patience and thus abandon the whole system at rate θit if at some moment he beholds

that the queue length i is greater than kit with 0 < kit < Q1(t), so after an exponentially
distributed amount of time he have to decide either he still waiting for a new attempts or
give up. An abandoning customer leave the system from the orbit with some probability
ρit . When a customer finishes his conversation with a server or if the service of the job is
unsuccessful, the customer may comeback to the system to the retrial pools depending on
its type for another service or try again and again for a successful service at rate ωit . Let’s
note that all the arrival and service processes are constructed from mutually independent
Poisson processes.

After the description of the considered model let us introduce some notations and
results helpful in our study.

Let {Πi(·)}i∈I a sequence of mutually independent, standard (rate 1) Poisson processes,
indexed by a set I which is at most countably infinite; a separable Banach space V, with
norm | · |; a sequence of jump vectors {vi ∈ V|i ∈ I} with
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Figure 2.1: A retrial queueing model with two orbits, abandonment and feedback.

∑
i∈I

vi <∞ (2.1)

a random initial state vector Q(0) in V that is assumed to be independent of the sequence

of Poisson processes {Π(·)}i∈I ; and a collection of real-valued, non-negative Lipschitz rate
functions on V,

{νt(·, i)|t ≥ 0, i ∈ I}, (2.2)

that together satisfy

‖νt(·, i)‖ ≤ ξtϑ
(i), (2.3)

with ξt, a locally integrable function, and {ϑ(i)|i ∈ I}, a sequence of real numbers; with

‖ · ‖ a Lipschitz norm for real-valued functions on V. In all what follows the number of

elements in I is finite, V = RN , 1 ≤ N < ∞ and | · | the standard Euclidean norm on

RN .

Let the Markovian service network {Q(t)|t ≥ 0}, be the V-valued stochastic process
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whose sample paths are uniquely determined by Q(0) and the functional equations

Q(t) = Q(0) +
∑
i∈I

Πi

(∫ t

0

νs(Q(s), i)ds

)
vi, for all t ≥ 0.

Let {Qη|η > 0} be the rescaled procees such that

Qη(t) = Qη(0) +
∑
i∈I

Πi

(
η

∫ t

0

νs

(
Qη(s)

η
, i

)
ds

)
vi, (2.4)

The asymptotic analysis described above was carried out in [27] for the special case of rate
functions having no explicit time dependence and state dependence that is continuously
differentiable. The analysis was extend to the following general class of processes [30].

Qη(t) = Qη(0) +
∑
i∈I

Πi

(∫ t

0

νηs

(
Qη(s)

η
, i

)
ds

)
vi, (2.5)

with
‖νηt (·, i)‖ ≤ ηξtϑ

(i). (2.6)

In this extension, we permit the following hypotheses:

(H1) The rate functions νηt (·, i) are functions of time as well as state.

(H2) The rate functions, indexed by the parameter η, are such that for each i ∈ I,

νηt (·, i) has the following asymptotic expansion as η →∞;

νηt (·, i) = ην
(0)
t (·, i) +

√
ην

(1)
t (·, i) + 0(

√
η). (2.7)

(H3) The rate functions, as a function of the state space V, have a more general type of
differentiability that include functions on the real line that are everywhere left and right
differentiable.

These conditions allow to apply the limit theorems to a wider class of Markov processes
that arise in the study of queueing networks with large numbers of servers. Now, let’s
introduce the first result where the sample path representation (2.5) of {Qη|η > 0} is
strongly presented;

Theorem 2.2.1. [30] Assume that (2.1) and (2.6) hold. Moreover, assume that

lim
n→∞

∑
i∈I

(∫ t

0

∥∥∥∥νηt (·, i)
η
− ν(0)

t (·, i)
∥∥∥∥) ds = 0, (2.8)
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for all t ≥ 0. If {Qη(0)|η > 0} is any family of random initial state vectors in V, then

Qη(0)

η
= Q(0)(0), a.s implies

Qη(t)

η
= Q(0)(t) a.s (2.9)

where the convergence is uniform on compact sets in t, and Q(0) is the unique deterministic

process {Q(0)(t)|t ≥ 0} that solves the integral equation

Q(0)(t) = Q(0)(0) +

∫ t

0

ν(0)
s (Q(0)(s))ds, t ≥ 0. (2.10)

Here ν(0)
t , given by

ν
(0)
t (x) =

∑
i∈I

ν
(0)
t (x, i)vi, x ∈ V, (2.11)

is a Lipschitz mapping of V into itself and its Lipschitz norm ‖ν(0)
t ‖, is a locally integrable

function of t.

We call Q(0) the fluid approximation associated with the family {Qη(t)|t ≥ 0}. It gives rise
to first-order macroscopic fluid approximations of the form

Qη(t, ω) = ηQ(0)(t) + o(η) a.s., t ≥ 0. (2.12)

We can now state the functional central limit theorem

Theorem 2.2.2. [30] Assume that (2.1) and (2.6) hold. Moreover, assume that

∑
i∈I

limη→∞

∫ t

0

∥∥∥∥√η(νηt (·, i)
η
− ν(0)

t (·, i)
)∥∥∥∥ ds <∞, (2.13)

and

lim
η→∞

∑
i∈I

∫ t

0

∥∥∥∥√η(νηt (·, i)
η
− ν(0)

t (·, i)
)
− ν(1)

t (·, i)
∥∥∥∥ ds = 0. (2.14)

It follows that ν(0)
t , given by (2.11), and ν(1)

t , given by

ν
(1)
t (x) =

∑
i∈I

ν
(1)
t (x, i)vi, x ∈ V, (2.15)

are both Lipschitz mappings of V into itself, and their Lipschitz norms are locally integrable
functions of t.
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Moreover, if we assume that ν(0)
t (·) has a scalable Lipschitz derivative ∧ν(0)

t (Q(0)(t); ·) and
we have a family of random initial state vectors {Qη(0)|η > 0} in V, then for all random

vectors Q(0)(0) and Q(1)(0) in V, it follows that

lim
η→∞

√
η

(
Qη(0)

η
−Q(0)(0)

)
=d Q(1)(0), (2.16)

implies

lim
η→∞

√
η

(
Qη(t)

η
−Q(0)(t)

)
=d Q(1)(t), (2.17)

the convergence being weak-convergence in DV[0,∞), the space of V-valued functions that
are right-continuous with left-limits, equipped with the Skorohod J1 topology. Finally, the

limit Q(1) ≡ {Q(1)(t)|t ≥ 0} is the unique stochastic process that solves the stochastic
integral equation

Q(1)(t) = Q(1)(0) +

∫ t

0

((
∧ν(0)

s (Q(0)(s), Q(1)(s))
)

+ ν(1)
s (Q(0)(s))

)
ds

+
∑
i∈I

Ωi

(∫ t

0

ν(0)
s (Q(0)(s), i)ds

)
vi, t ≥ 0,

(2.18)

where the {Ωi|i ∈ I} are a family of mutually independent, standard Brownian motions.

We call Q(1) the diffusion approximation associated with the family {Qη(t)|t ≥ 0}. It quan-
tifies deviations from the fluid approximations, and it gives rise to second-order mesoscopic
diffusion approximations of the form

Qη(t) =d ηQ(0)(t) +
√
ηQ(1)(t) + o(

√
η), (2.19)

as η →∞ for all t ≥ 0, with the approximation being in distribution

Now consider the case of V being either a finite dimensional vector space or a Banach
space that can be embedded into its own dual space (like a Hilbert space), so that the

notion of a transpose can be defined, denoted by a superscript ”>” ( for V = RN , this

corresponds to the standard transpose of a matrix). One consequence of the diffusion
limit is an associated set of differential equations that become useful in the computation
of its mean and covariance matrix.

Theorem 2.2.3. [30] If conditions (2.1), (2.6), (2.13), and (2.14) all hold, then the mean

vector and covariance matrix for Q(1)(t) solve the following set of differential equations:

d

dt
E(Q(1)(t)) = E(∧ν(0)

t (Q(0)(t), Q(1)(t))) + ν
(1)
t (Q(0)(t)). (2.20)
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d
dt
Cov(Q(1)(t), Q(1)(t)) =

(
Cov(Q(1)(t),∧ν(0)

t (Q(0)(t), Q(1)(t)))
)

+
∑
i∈I

ν
(0)
t (Q(0)(t), i)v>i · vi.

(2.21)

for almost all t, where

Cov(Q(1)(t), Q(1)(t)) ≡ E
(
(Q(1)(t))T ·Q(1)(t)

)
− E(Q(1)(t))> · E(Q(1)(t)), (2.22)

and for all operators A on V,

{A} ≡ A+ A>. (2.23)

Moreover, if ∧ν(0)
t (Q(0)(t), ·) is a linear operator for almost all t, then E[Q(1)(t)] is

the unique solution for (2.20) and Cov[Q(1)(t), Q(1)(t)] is the unique solution for (2.21).

Finally, for all s < t, Cov[Q(1)(s), Q(1)(t)] solves the same set of differential equations in

t as does E[Q(1)(t)], but with a different set of initial conditions. Now, and after having
stated all these results, we are able to give our main result.

2.3 Main result

Consider our queueing model presented in figure 2.1. The Mt/Mt/ct queue has a (time

inhomogeneous) Poisson arrival process with external arrival rates λit , a service rates

(per server) of µit , feedback rates ωit , abandonment rates from the primary queue δit ,
abandonment rates from retrial pool i ωit , i = 1, 2 and ct servers, for all t > 0, ct =

1, 2, 3, .... With φt, 0 ≤ φt ≤ 1, the probability of no retrial at time t, ρt 0 ≤ ρt ≤ 1 the
probability of leaving the network from the orbit at time t.

Let V = R3 and Q(t) = {Q1(t), Q2(t), Q3(t)}. We can construct the sample paths for the

Mt/Mt/ct queue length process as the unique set of solutions to the functional equation

Q1(t) = Q1(0) + Π1

(∫ t

0

λ1sds

)
+ Π2

(∫ t

0

λ2sds

)
+ Π3

(∫ t

0

α1sQ2(s)ds

)

+Π4

(∫ t

0

α2sQ3(s)ds

)
− Π5

(∫ t

0

(Q1(s)− cs)+δ1sφsds

)
−Π6

(∫ t

0

(Q1(s)− cs)+δ2sφsds

)
− Π7

(∫ t

0

(Q1(s)− cs)+δ1s(1− φs)ds
)

−Π8

(∫ t

0

(Q1(s)− cs)+δ2s(1− φs)ds
)
− Π9

(∫ t

0

µ1s(Q1(s) ∧ cs)ds
)

−Π10

(∫ t

0

µ2s(Q1(s) ∧ cs)ds
)
.

(2.24)
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Q2(t) = Q2(0) + Π1
1

(∫ t

0

(Q1(s)− cs)+δ1s(1− φs)ds
)

+ Π1
2

(∫ t

0

ω1sds

)

−Π1
3

(∫ t

0

α1sQ2(s)ds

)
− Π1

4

(∫ t

0

ρsθ1s(Q2(s)− k1s)
+ds

)
.

(2.25)

Q3(t) = Q3(0) + Π2
1

(∫ t

0

(Q1(s)− cs)+δ2s(1− φs)ds
)

+ Π2
2

(∫ t

0

ω2sds

)

−Π2
3

(∫ t

0

α2sQ3(s)ds

)
− Π2

4

(∫ t

0

ρsθ2s(Q3(s)− k2s)
+ds

)
,

(2.26)

where Πi(·), Π1
i (·), and Π2

i (·), are given independent, standard (rate 1) Poisson processes,

and for all real x and y, x ∧ y ≡ min(x, y).

For the Mt/Mt/ct queue, we create a family of associated processes. The Mt/Mt/ct

queue is indexed by η, we want to have both the arrival rate and number of servers grow
large, i.e., scaled up by η, but leave the service rate unscaled. We are then interested in
the asymptotic behavior of the process Qη(t) = (Qη

1(t), Qη
2(t), Qη

3(t))

Qη
1(t) = Qη

1(0) + Π1

(∫ t

0

ηλ1sds

)
+ Π2

(∫ t

0

ηλ2sds

)
+ Π3

(∫ t

0

α1sQ
η
2(s)ds

)
+Π4

(∫ t

0

α2sQ
η
3(s)ds

)
− Π5

(∫ t

0

(Qη
1(s)− ηcs)+δ1sφsds

)

−Π6

(∫ t

0

(Qη
1(s)− ηcs)+δ2sφsds

)
− Π7

(∫ t

0

(Qη
1(s)− ηcs)+δ1s(1− φs)ds

)

−Π8

(∫ t

0

(Qη
1(s)− ηcs)+δ2s(1− φs)ds

)
− Π9

(∫ t

0

µ1s(Q
η
1(s) ∧ ηcs)ds

)
−Π10

(∫ t

0

µ2s(Q
η
1(s) ∧ ηcs)ds

)
.

(2.27)

Qη
2(t) = Qη

2(0) + Π1
1

(∫ t

0

(Qη
1(s)− ηcs)+δ1s(1− φs)ds

)
+ Π1

2

(∫ t

0

ηω1sds

)

−Π1
3

(∫ t

0

α1sQ
η
2(s)ds

)
− Π1

4

(∫ t

0

ρsθ1s((Q
η
2(s)− ηk1s)

+ds

)
.

(2.28)



2.3 Main result 52

Qη
3(t) = Qη

3(0) + Π2
1

(∫ t

0

(Qη
1(s)− ηcs)+δ2s(1− φs)ds

)
+ Π2

2

(∫ t

0

ηω2sds

)

−Π2
3

(∫ t

0

α2sQ
η
3(s)ds

)
− Π2

4

(∫ t

0

ρsθ2s(Q
η
3(s)− ηk2s)

+ds

) (2.29)

as η →∞.
Let us note that servers and time-dependent parameters do not need to be scaled; The

primary motivating models are call centers, where service involves an interaction between
the customer and the server, because a customer is involved, it does not seem reasonable
to scale the service rates with η. Thus, in order to accommodate the arrivals, whose rate
is proportional to η, the number of servers must be scaled with η. Time dependent arrival
rates should need no justification, since phenomena such as rush hours are quite common.
Time dependent service rates can be used to model phenomena such as server fatigue
or changes in the nature of services over the day. Finally, a time dependent number of
servers arises with shift changes and in systems where the number of servers is varied to
accommodate changes in the arrival rate.
The first-order asymptotic result takes the form of a functional strong law of large numbers
and yields a fluid approximation for the original process.

Theorem 2.3.1. Let Qη be the uniform acceleration as in (2.4), the fluid limit for the
multiserver queue with retrials abandonment and feedback is the unique solution to the
differential equations

d
dt
Q

(0)
1 (t) = λ1t + λ2t + α1tQ

(0)
2 (t) + α2tQ

(0)
3 (t)− (µ1t + µ2t)(Q

(0)
1 (t) ∧ ct)

−(δ1t + δ2t)(Q
(0)
1 (t)− ct)+.

(2.30)

d
dt
Q

(0)
2 (t) = ω1t − α1tQ

(0)
2 (t) + δ1t(1− φt)(Q

(0)
1 (t)− ct)+ − θ1tρt(Q

(0)
2 (t)− k1t)

+. (2.31)

d
dt
Q

(0)
3 (t) = ω2t − α2tQ

(0)
3 (t) + δ2t(1− φt)(Q

(0)
1 (t)− ct)+ − θ2tρt(Q

(0)
3 (t)− k2t)

+. (2.32)

Furthermore, the diffusion limit for the multiserver queue with abandonment, feedback and
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retrials is the unique solution to the integral equations

Q
(1)
1 (t) = Q

(1)
1 (0) + Ω1

(∫ t

0

λ1sds

)
+ Ω2

(∫ t

0

λ2sds

)
+ Ω3

(∫ t

0

α1sQ
(0)
2 (s)ds

)

+Ω4

(∫ t

0

α2sQ
(0)
3 (s)ds

)
− Ω5

(∫ t

0

(Q
(0)
1 (s)− cs)+δ1s(1− φs)ds

)

+

∫ t

0

[(
(µ1s + µ2s)1{Q(0)

1 (s)≤cs}
+ (δ1s + δ2s)1{Q(0)

1 (s)>cs}

)
Q

(1)
1 (s)−

−
(

(µ1s + µ2s)1{Q(0)
1 (s)<cs}

+ (δ1s + δ2s)1{Q(0)
1 (s)≥cs}

)
Q

(1)
1 (s)+

+α2sQ
(1)
3 (s) + α1sQ

(1)
2 (s)

]
ds− Ω6

(∫ t

0

(Q
(0)
1 (s)− cs)+δ2s(1− φs)ds

)

−Ω7

(∫ t

0

µ1s(Q
(0)
1 (s) ∧ cs)ds

)
− Ω8

(∫ t

0

µ2s(Q
(0)
1 (s) ∧ cs)ds

)

−Ω9

(∫ t

0

(Q
(0)
1 (s)− cs)+δ1sφsds

)
− Ω10

(∫ t

0

(Q
(0)
1 (s)− cs)+δ2sφsds

)
.

(2.33)

Q
(1)
2 (t) = Q

(1)
2 (0) + Ω1

1

(∫ t

0

(Q
(0)
1 (s)− cs)+δ1s(1− φs)ds

)
+ Ω1

2

(∫ t

0

ω1sds

)

+

∫ t

0

[
Q

(1)
1 (s)+1{Q(0)

1 (s)≥cs}
−Q(1)

1 (s)−1{Q(0)
1 (s)>cs}

]
δ1s(1− φs)ds

−Ω1
3

(∫ t

0

α1sQ
(0)
2 (s)ds

)
− Ω1

4

(∫ t

0

ρsθ1s(Q
(1)
2 (s)− k1s)

+ds

)

−
∫ t

0

θ1sρs

[
(Q

(1)
2 (s))+1{(Q(0)

2 (s)≥k1s}
− (Q

(1)
2 (s))−1{(Q(0)

2 (s)>k1s}

]
ds

−
∫ t

0

α1sQ
(1)
2 (s)ds.

(2.34)

Q
(1)
3 (t) = Q

(1)
3 (0) + Ω2

1

(∫ t

0

(Q
(0)
1 (s)− cs)+δ2s(1− φs)ds

)
+ Ω2

2

(∫ t

0

ω2sds

)

+

∫ t

0

[
Q

(1)
1 (s)+1{Q(0)

1 (s)≥cs}
−Q(1)

1 (s)−1{Q(0)
1 (s)>cs}

]
δ2s(1− φs)ds

(2.35)
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−Ω2
3

(∫ t

0

α2sQ
(0)
3 (s)ds

)
− Ω2

4

(∫ t

0

ρsθ2s(Q
(1)
3 (s)− k2s)

+ds

)

−
∫ t

0

θ2sρs

[
Q

(1)
3 (s)+1{(Q(0)

3 (s)≥k2s}
−Q(1)

3 (s)−1{(Q(0)
3 (s)>k2s}

]
ds

−
∫ t

0

α2sQ
(1)
3 (s)ds.

(2.36)

Getting these equations is based essentially on the theorem 2.2.1 and 2.2.2.
The following result provides ordinary differential equations for the mean vector, variance

and covariance matrices of Q(1)
i .

Theorem 2.3.2. The mean vector for the diffusion limit solves the set of differential
equations

d
dt
E(Q

(1)
1 (t)) =

(
(µ1t + µ2t)1{Q(0)

1 (t)≤ct}
+ (δ1t + δ2t)1{Q(0)

1 (t)>ct}

)
E(Q

(1)
1 (t)−)

−
(

(µ1t + µ2t)1{Q(0)
1 (t)<ct}

+ (δ1t + δ2t)1{Q(0)
1 (t)≥ct}

)
E(Q

(1)
1 (t)+)

+α1tE(Q
(2)
1 (t)) + α2tE(Q

(3)
1 (t)).

(2.37)

d
dt
E(Q

(1)
2 (t)) = δ1t(1− φt)

(
E(Q

(1)
1 (t)+)1{Q(0)

1 (t)≥ct}
− E(Q

(1)
1 (t)−)1{Q(0)

1 (t)>ct}

)
−
(
ρtθ1t1{Q(0)

2 (t)≥k1t}

)
× E

(
Q

(1)
2 (t)

)
− α1tE(Q

(1)
2 (t)).

(2.38)

d
dt
E(Q

(1)
3 (t)) = δ2t(1− φt)

(
E(Q

(1)
1 (t)+)1{Q(0)

1 (t)≥ct}
− E(Q

(1)
1 (t)−)1{Q(0)

1 (t)>ct}

)
−
(
ρtθ2t1{Q(0)

3 (t)≥k2s}

)
× E

(
Q

(1)
3 (t)

)
− α2tE(Q

(1)
3 (t)).

(2.39)
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The covariance matrix for the diffusion limit solves the differential equations

d
dt
V ar(Q

(1)
1 (t)) = 2

(
(δ1t + δ2t)1{Q(0)

1 (t)>ct}
+ (µ1t + µ2t)1{Q(0)

1 (t)≤ct}

)
×Cov(Q

(1)
1 (t), Q

(1)
1 (t)−) + λ1t + λ2t + (δ1t + δ2t)(Q

(0)
1 (t)− ct)+

−2
(

(δ1t + δ2t)1{Q(0)
1 (t)≥ct}

+ (µ1t + µ2t)1{Q(0)
1 (t)<ct}

)
×Cov(Q

(1)
1 (t), Q

(1)
1 (t)+) + (µ1t + µ2t)(Q

(0)
1 (t) ∧ ct) + α1tQ

(0)
2 (t)

+α2tQ
(0)
3 (t) + 2

[
α1tcov(Q

(1)
1 (t), Q

(1)
2 (t)) + α2tcov(Q

(1)
1 (t), Q

(1)
3 (t))

]
.

(2.40)

d
dt
V ar(Q

(1)
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(2.42)
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d
dt
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(1)
1 (t), Q

(1)
2 (t)) =

(
(µ1t + µ2t)1{Q(0)

1 (t)≤ct}
+ (δ1t + δ2t)1{Q(0)

1 (t)>ct}

)
×Cov((Q

(1)
1 (t))−, Q

(1)
2 (t))− α1tCov(Q

(1)
1 (t), Q

(1)
2 (t))

−
(

(µ1t + µ2t)1{Q(0)
1 (t)<ct}

+ (δ1t + δ2t)1{Q(0)
1 (t)≥ct}

)
×Cov((Q

(1)
1 (t))+, Q

(1)
2 (t)) + δ1t(1− φt)(Q

(0)
1 (t)− ct)+

−
(
θ1tρt1{Q(0)

2 (t)≥k1t}

)
Cov(Q

(1)
1 (t), Q

(1)
2 (t))

+δ1t(1− φt)1{Q(0)
1 (t)≥ct}

V ar(Q
(1)
1 (t)) + α1tV ar(Q

(1)
2 (t))

+α2tCov(Q
(1)
3 (t), Q

(1)
2 (t)) + α1tQ

(0)
2 (t).

(2.43)

d
dt
Cov(Q
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1 (t), Q

(1)
3 (t)) will be given easily, in the same manner.

d
dt
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The proof of this theorem is based on Theorems 2.2.2 and 2.2.3; Given the integral

equations (2.33)-(2.36) that Q(1)
i (t) solves, we immediately have for i=1,2,3

E(Q
(1)
i (t)) = E(Q

(1)
i (0)) +

∫ t

0

E(∧ν(0)
s (Q

(0)
i (s), Q

(1)
i (s))ds+

∫ t

0

ν(1)
s (Q(0)(s)). (2.45)

Differentiating this equation we get (2.37), (2.38) and (2.39).

Then The solution to the integral equations (2.33)-(2.36) also solves the stochastic
differential equation

d(Q
(1)
i )(t) = (∧ν(0)

t (Q
(0)
i (t), Q

(1)
i (t))) + ν(1)

s (Q(0)(t))dt+
∑
i∈I

√
ν

(0)
t (Q

(0)
i (t), i)vi dΩ∗i (t).

(2.46)
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Using Ito’s formula [24] (page 149) we get
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Taking the expectations, we get
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(2.47)

for almost all t. Using the derivative of (2.45), we obtain
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Subtracting (2.49) from (2.47) gives us (2.40)-(2.44).

Now, observe that (2.45) can be written as
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With At is the matrix that represents its action on V;
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for almost all t, and so the integral equation for the covariance matrix is
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Abstract

This paper deals with the stability of a retrial queueing system with two orbits, aban-
doned and feedback customers. Two independent Poisson streams of customers arrive to
the system, and flow into a single-server service system. An arriving one of type i, i = 1, 2

is handled by the server if it is free; otherwise, it is blocked and routed to a separate type-
i retrial (orbit) queue that attempts to re-dispatch its jobs at its specific Poisson rate.
The customer in the orbit either attempts service again after a random time or gives up
receiving service and leaves the system after a random time. After the customer is served
completely, it will decide either to join the retrial group again for another service or leave
the system forever with some probability.

Keywords: Queueing system, call center, retrial queue, abandonment, feedback

2010 MSC No: 60K25; 68M20; 90B22

3.1 Introduction

In classical Queueing theory, it is assumed that any customer who cannot get service
immediately upon arrival, either joins a waiting line or leaves the system forever. But
there are real situations where the blocked customers leave the service area temporarily
but returns to repeat their demand after some random time. This Queueing behavior is
referred as retrial queues (Parveen and Begum, 2014).
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Retrial queues are characterized by the feature that a customer who finds the server busy
or down or on vacation, he/she may decide to join a group of blocked customers (called

orbit) for repeating their demand, or request after some random amount of time, or leave
the system immediately.

Retrial queues have wide applications, in case of many real life systems, these later can
be applied in the performance modelling, for instance, in modelling magnetic disk mem-
ory system, cellular mobile networks, computer networks, and local area networks with
non-persistent CSMA/CD protocols, with star topology, with random access protocols,
and with multiple access protocols.

The study of retrial queue in queueing theory has been focused by many authors because
of its wide applicability in web access, telephone switching systems, telecommunication
networks and computer networks, and many daily life situations. Extensive survey ar-
ticles in retrial queues are due to (Yang and Templeton, 1987) and (Falin, 1990). For

an excellent scenario of retrial queues, monograph on this topic is given by (Falin and

Templeton, 1997).

Feedback in queueing literature represents customer dissatisfaction because of inappro-
priate quality of service. In case of feedback, after getting partial or incomplete service,
customer retries for service. In computer communication, the transmission of protocol
data unit is sometimes repeated due to occurrence of an error. This usually happens
because of non-satisfactory quality of service. Rework in industrial operations is also an
example of a queue with feedback (Sharma and Kumar, 2014). (Takacs, 1963) was the
first to study feedback queueing model, author studied queue with feedback to determine
the stationary process for the queue size, and the the first two moments of the distribution
function of the total time spent in the system by a customer. Studies on queue length,
the total sojourn time and the waiting time for an M/G/1 queue with Bernoulli feed-

back were provided by (Vanden Berg and Boxma, 1991). ( Choi et al., 1998) studied an

M/M/c retrial queueing model with geometric loss and feedback. (Santhakumaran and

Thangaraj, 2000) considered a single server feedback queue with impatient and feedback

customers. (Choudhury and Paul 2005) derived the queue size distribution at random

epoch, and at a service completion epoch for M/G/1 queue with two phases of heteroge-

neous services, and Bernoulli feedback system. (Krishna Kumar et al., 2006) considered a

generalizedM/G/1 feedback queue in which customers are either "positive" or "negative".
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(Thangaraj and Vanitha 2009) obtained transient solution ofM/M/1 feedback queue with
catastrophes using continued fractions, the steady-state solution, moments under steady
state and busy period analysis are calculated. (Ayyapan et al., 2010) studied M/M/1

retrial queueing system with loss and feedback, under non preemptive priority service, by
matrix geometric method. (Kumar and Sharma, 2012) analyzed a single server queueing

system with retention of reneged customers. (Arivudainambi and Godhandaraman, 2012)
considered a batch arrival queueing system with two phases of service, feedback and K

optional vacations under a classical retrial policy. (Bouchentouf et al., 2014) analyzed a
queueing model with two heterogeneous servers balking, reneging and feedback.

A queueing system with two orbits, and two exogenous streams of different types serves
as a model for two competing job streams in a carrier sensing multiple access system,
where the jobs, after a failed attempt to network access, wait in an orbit queue (Nain,

1985; Szpankowski, 1994). The retrial queueing systems with a constant retrial rate and a

single type of jobs were considered in (Fayolle, 1986; Choi et al., 1993a; Choi et al., 1993b;

Artalejo et al., 2001; Avrachenkov & Yechiali, 2010). A two-class retrial system with a
single server, no waiting room, batch arrivals and classical retrial scheme was introduced
and analyzed in (Kulkarni, 1986). Then, in (Falin, 1988) author extended the analysis of

the model in (Kulkarni, 1986) to the multi-class setting with arbitrary number of classes.

In (Grishechkin, 1992) author has established equivalence between the multi-class batch
arrival retrial queues with classical retrial policy and branching processes with immigra-
tion. In ( Moutzoukis & Langaris, 1996) a non-preemptive priority mechanism was added

to the model of (Falin, 1988 & Kulkarni, 1986). In (Langaris & Dimitriou, 2010) authors
considered a multi-class retrial system where retrial classes are associated with different
phases of service. Retrial queueing model MMAP/M2/1 with two orbits was studied

in ( Avrachenkov et al., 2010), authors considered a retrial single-server queueing model
with two types of customers. In case of the server occupancy at the arrival epoch, the
customer moves to the orbit depending on the type of the customer, one orbit is infinite
while the second one is a finite. Joint distribution of the number of customers in the
orbits, and some performance measures are computed. In (Bouchentouf & Belarbi, 2013)
authors considered two retrial queueing system with balking and feedback, the joint gen-
erating function of the number of busy server, and the queue length was found by solving
Kummer differential equation, and by the method of series solution. In (Avrachenkov et

al., 2014) authors analyzed a retrial model with two input streams and two orbit queues.

(Bouchentouf et al., 2014) gave a note on fluid approximation of retrial queueing system
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with two orbits, abandonment and feedback. And in ( Bouchentouf & Sakhi, 2015) authors

presented a note on anM/M/s queueing system with two reconnect and two redial orbits.

So, motivated by the need to analyze retrial queueing networks, and by the need to de-
velop analytical tools that support performance analysis of many large telecommunication
systems (call centers), where abandonments, retrial and feedback arise naturally and are
prevalent, we study in the present paper, a retrial queueing model with abandonment and
feedback customers; system with two orbits, constant retrials, abandoned and feedback
customers is carried out.

The layout of the paper is given as follows. After the introduction (section 1), the re-

trial queueing model is described (section 2). In section 3, we give the main result; we
formulate our retrial system as a three-dimensional Markovian queueing network, then
we derive balance equations and generating functions, and finally we give its necessary
stability condition.

3.2 The model

The Markovian retrial queueing system with two classes of jobs and constant retrial, aban-
donment and feedback customers is considered (Figure 3.1).

Two independent Poisson streams of jobs, S1 and S2, flow into a single-server service
system. The service system can hold at most one job. The arrival rate of stream Si is
αi, i = 1, 2, with α1 + α2 = α. The required service time of each job is independent of
its type and is exponentially distributed with mean 1/µ. If an arriving type-i job finds

the (main) server busy, it is routed to a dedicated retrial (orbit) queue from which jobs
are re-transmitted at an exponential rate. The rates of retransmissions may be different
from the rates of the original input streams. So, the blocked jobs of type i form a type-i
single-server orbit queue that attempts to retransmit jobs (if any) to the main service sys-
tem at a Poisson rate of γi, i = 1, 2. This creates a system with three dependent queues.
The customer in the orbit either attempts service again after a random time or gives up
receiving service and leaves the system after a random time at rate δi i = 1, 2. After
the customer is served completely, it will decide either to join the retrial group again for

another service with probability β or to leave the system forever with probability β̄ = 1−β.

Let C(t) denotes the number of jobs in the main queue. C(t) takes the values of 0 or 1.
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Let Ni(t) be the number of jobs in orbit queue i, i = 1, 2.

The Markov process {(N1(t), N2(t), C(t)) : t ∈ [0,+∞)} is irreducible on the state-space

{0, 1, ...} × {0, 1, ...} × {0, 1}.

Such a network can serve as a model for two competing job streams in a carrier sensing
multiple access system "CSMA". Local Area Computer Network (LAN) can be an exam-
ple of CSMA.

Figure 3.1: A queueing model with two orbits, abandonment and feedback

3.3 Main Result: Necessary stability condition

The main objective of this work is to give the necessary stability condition of a retrial
queueing system with two orbits, constant retrials, abandoned and feedback customers,
the main result is given in the following proposition.

Proposition 3.3.1. The following condition

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
< 1, (3.1)

for i = 1, 2 and

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1 6= 0 (3.2)
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is necessary for the stability of the system.

Proof.

To prove that our Markovian retrial queueing system with two classes of jobs and constant
retrial rates, abandonment and feedback customers is stable.

At first, we have to show that

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

≤ 1 (3.3)

and for i = 1, 2

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
≤ 1 (3.4)

are necessary conditions for the existence of a steady-state.

� Let us present the balance equations, and generating functions. So, consider the system
in steady-state, where we define by (N1, N2, C) the stationary version of the Markov chain

{(N1(t), N2(t), C(t)) : t ∈ [0,∞)}. Define the set of stationary probabilities Pn1n2(c) as
follows:

Pn1n2(c) = lim
t→∞

P (N1(t) = n1, N2(t) = n2, L(t) = c)

= P (N1 = n1, N2 = n2, C = c),

for n1, n2 = 0, 1, ..., and c = 0, 1, when these limits exist. Define the marginal probabilities

Pn1·(c) =
∞∑

n2=0

Pn1n2(c) = P (N1 = n1, C = c), n1 = 0, 1, 2, ..., c = 0, 1

and

P·n2(c) =
∞∑

n1=0

Pn1n2(c) = P (N2 = n2, C = c), n2 = 0, 1, 2, ..., c = 0, 1.

Now, let us write the balance equations
1. N2 = n2 = 0

1.1. N1 = n1 = 0, c = 0

αP00(0) = βµP00(1) + δ1P10(0) + δ2P01(0). (3.5)
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1.2. N1 = n1 ≥ 1, c = 0

(α + γ1 + δ1)Pn10(0) = βµPn10(1) + βµPn1−10(1) + δ1Pn1+10(0) + δ2Pn11(0). (3.6)

1.3. N1 = 0, c = 1

(α + µ)P00(1) = αP00(0) + γ1P10(0) + γ2P01(0) + δ1P10(1)

+δ2P01(1).
(3.7)

1.4. N1 = n1 ≥ 1, c = 1

(α + µ+ δ1)Pn10(1) = αPn10(0) + γ1Pn1+10(0) + γ2Pn11(0)

+δ1Pn1+10(1) + δ2Pn11(1) + α1Pn1−10(1).
(3.8)

2. N2 = n2 ≥ 1

2.1. N1 = 0 c = 0

(α + γ2 + δ2)P0n2(0) = βµP0n2(1) + βµP0n1−1(1) + δ1P1n2(1)

+δ2P0n2+1(0).
(3.9)

2.2. N1 = n1 ≥ 1 c = 0

(α + γ1 + γ2 + δ1 + δ2)Pn1n2(0) = βµPn1−1n2(1) + βµPn1n2−1(1)

+βµPn1n2(1) + δ1Pn1+1n2(0) + δ2Pn1n2+1(0).
(3.10)

2.3. N1 = 0 c = 1

(α + µ+ δ2)P0n2(1) = αP0n2(0) + γ1P1n2(0) + γ2P0n2+1(0) + δ1P1n2(1)

+δ2P0n2+1(1) + α2P0n2−1(1).
(3.11)

2.4. N1 = n1 ≥ 1 c = 1

(α + µ+ δ1 + δ2)Pn1n2(1) = αPn1n2(0) + γ1Pn1+1n2(0) + γ2Pn1n2+1(0)

+δ1Pn1+1n2(1) + δ2Pn1n2+1(1) + α1Pn1−1n2(1) + α2Pn1n2−1(1).
(3.12)
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The probability generating function of the stationary version of the Markov process
{(N1(t), N2(t), C(t)) : t ∈ [0,+∞)} is given by

F (z1, z2, z) =
∞∑

n1=0

∞∑
n2=0

1∑
c=0

Pn1n2(c)z
n1
1 zn2

2 zc. (3.13)

Let us also define the following (partial) probability generating function

R(c)
n2

(z1) =
∞∑

n1=0

Pn1n2(c)z
n1
1 , c = 0, 1, n2 = 0, 1, ...,

and

F (c)(z1, z2) =
∞∑

n2=0

∞∑
n1=0

Pn1n2(c)z
n1
1 zn2

2 =
∞∑

n2=0

R(c)
n2

(z1)zn2
2 , c = 0, 1. (3.14)

F (z1, z2, z) = F (0)(z1, z2) + zF (1)(z1, z2), |z1| ≤ 1, |z2| ≤ 1.

For n2 = 0 and c = 0 we multiply (3.5) and (3.6) by zn1
1 , we get

((α + γ1 + δ1)z1 − δ1)R
(0)
0 (z1)− ((γ1 + δ1)z1 − δ1)P00(0)

=
(
βµz1 + βµz2

1

)
R

(1)
0 (z1) + δ2z1R

(0)
1 (z1).

(3.15)

For n2 = 0 and c = 1 we multiply (3.7) and (3.8) by zn1
1 , we get

((α + µ+ δ1)z1 − δ1 − α1z
2
1)R

(1)
0 (z1)− (δ1z1 − δ1)P00(1)

= (αz1 + γ1)R
(0)
0 (z1)− γ1P00(0) + δ2z1R

(1)
1 + γ2z1R

(0)
1 .

(3.16)

For n2 ≥ 1 and c = 0 we multiply (3.9) and (3.10) by zn1
1 , we get

((α + γ1 + γ2 + δ1 + δ2)z1 − δ1)R
(0)
n2 (z1)− ((γ1 + δ1)z1 − δ1)P0n2(0)

=
(
βµz1 + βµz2

1

)
R

(1)
n2 (z1) + βµz2

1R
(1)
n2−1(z1) + δ2z1R

(1)
n2+1(z1).

(3.17)

For n2 ≥ 1 and c = 1 we multiply (3.11) and (3.15) by zn1
1 , we get

((α + µ+ δ1 + δ2)z1 − δ1 − α1z
2
1)R

(1)
n2 (z1)− (δ1z1 − δ1)P0n2(1)

= (αz1 + γ1)R
(0)
n2 z1 + γ2z1R

(0)
n2+1(z1) + α2z1R

(1)
n2−1(z1)

+δ2z1R
(1)
n2+1(z1)− γ1P0n2(0).

(3.18)
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Using equations (3.15) and (3.17) then multiplying by zn2
2 , we get

(z1(α + γ1 + γ2 + δ1 + δ2)z2 − δ1z2 − δ2z1)F (0)(z1, z2)

− (z1(γ2 + δ2)z2 − δ2z1)F (0)(z1, 0)− (z1(γ1 + δ1)z2 − δ1) z2F
(0)(0, z2)

=
(
βµz1z2 + βµz2

1z2 + βµz2
1z

2
2

)
F (1)(z1, z2).

(3.19)

We do the same with equations (3.16) and (3.18)

(z1(α + µ+ δ1 + δ2)z2 − α1z
2
1z2 − δ1z2 − δ2z1 − α2z1z

2
2)F (1)(z1, z2)

−(z1z2δ2 − δ2z1)F (1)(z1, 0) + γ2z1F
(0)(z1, 0)

−z2(δ1z1 − δ1)F (1)(0, z2) + γ1F
(0)(0, z2)

= ((αz1 + γ1)z2 + γ2z1)F (0)(z1, z2).

(3.20)

Let
α1Pn1·(1) = γ1Pn1+1·(0) + δ1Pn0+1·(1). (3.21)

Summing over n1, we get

1− F (0)(0, 1) =

(
1 +

α1

γ1 + δ1

)
F (1)(1, 1). (3.22)

Then by symmetry

1− F (0)(1, 0) =

(
1 +

α2

γ2 + δ2

)
F (1)(1, 1). (3.23)

Then

F (1)(1, 1) =
α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

, (3.24)

with [α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1 6= 0.

Secondly, we have to prove that for i=1,2, if

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
= 1, (3.25)
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then both queues N1 and N2 are unbounded with probability one.

z Assume, for instance, that

α(γ1 + δ1)(γ2 + δ2)

[α + (β + 1)µ](γ1 + δ1)(γ2 + δ2)− αγ1γ2 − α1δ1γ2 − α2δ2γ1

(
1 +

αi
γi + δi

)
= 1,

so that F (0)(1, 0) = 0 from (3.23). Since F (0)(1, 0) =
∑
n1=0

Pn1,0(0) (see (3.14)), the condi-

tion F (0)(1, 0) = 0 implies that

Pn1,0(0) = 0 for n1 = 0, 1, ..., (3.26)

so that from (3.5) to (3.6)

Pn1,0(1) = 0 for n1 = 0, 1, .... (3.27)

We now use an induction argument to prove that

Pn1,n2(0) = 0 for n1, n2 = 0, 1, .... (3.28)

We have already shown in (3.26) that (3.28) is true for n2 = 0. Assume that (3.28) is true
for n2 = 0, 1, ..., k and let us show that it is still true for n2 = k + 1.

From (3.10) and the induction hypothesis we get that Pn1,k(0) = Pn1,k(1) = 0 for

n1 = 1, 2, .... The latter equality implies, using (3.15), that Pn1,k+1(0) = 0. This shows that

(3.28) holds for n1 = 0, 1, ..., and n2 = k+1, and completes the induction argument, prov-

ing that (3.28) is true. We have therefore proved that Pn1,n2(0) = 0 for all n1, n2 = 0, 1, ....

Let us prove that Pn1,n2(1) = 0 for all n1, n2 = 0, 1, .... The latter is true for n1, n2 = 1, 2, ...,

(3.10). It is also true for n2 = 0, n1 = 0, 1, ..., from (3.27).

It remains to investigate the case where n1 = 0 and n2 = 0, 1, ....

By (3.9) and (3.28) we get that P0,n2(1) = 0 for n2 = 1, 2, ..., whereas we have already

noticed that P0,0(1) = 0. In summary, Pn1,n2(0) = Pn1,n2(1) = 0 for all n1, n2 = 0, 1, ..., so

that P (N1 = n1, N2 = n2) = Pn1,n2(0) + Pn1,n2(1) for all n1, n2 = 0, 1, ..., which completes
the proof.
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4. Conclusion

In this article, a Markovian retrial queueing system with two classes of jobs and con-
stant retrial, abandonment and feedback customers is studied. A necessary condition for
the stability of this system is derived. For further work, it will be interesting to analyze
the sufficient condition for the stability of the system, to this end we have to obtain the
generating functions for this system via the solution of a Riemannian Hilbert boundary
value technique.
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Abstract
This paper presents an analysis of a Markovian feedback queueing system with reneging
and retention of reneged customers, multiple working vacations and Bernoulli schedule
vacation interruption, where customers’ impatience is due to the servers’ vacation. The
reneging times are assumed to be exponentially distributed. After the completion of
service, each customer may reenter the system as a feedback customer for receiving another
regular service with some probability or leave the system. A reneged customer can be
retained in many cases by employing certain convincing mechanisms to stay in queue for
completion of service. Thus, a reneged customer can be retained in the queueing system
with some probability or he may leave the queue without receiving service.

We establish the stationary analysis of the system. The probability generating func-
tions of the stationary state probabilities is obtained, we deduce the explicit expressions
of the system sizes when the server is in a normal service period and in a Bernoulli sched-
ule vacation interruption, respectively. Various performance measures of the system are
derived. Finally, we present some numerical examples to demonstrate how the various
parameters of the model influence the behavior of the system.
Keywords:Queueing systems, Markovian model, reneging, feedback, multiple working
vacations, Bernoulli schedule vacation interruption
subclass:60K25; 68M20; 90B22

4.1 Introduction

Queueing is a prevalent phenomenon in our daily lives. At this time, queueing theory is
very important in studying scheduling and system performance, it is also an all power-
ful tool to solve various problems in many complex systems, such as computer systems,
telecommunication systems, call centers, flexible manufacturing systems and service sys-
tems. During the past few decades, there has been increasing interest in studying queueing
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systems.
Queueing systems with customers’ impatience and server vacations have been widely

studied because of their wide applications in real-life congestion problems such as commu-
nication systems, telecommunication systems, traffic systems, and manufacturing/production
systems. The customer’s impatient behavior should be needed in the study of queueing
system to model real conditions precisely. Occasional operation of a service may be eco-
nomically invoking when entire time service would result in substantial server idle time or
would prevent the utilization of the server in different productive capacities. On the other
hand, the server remaining not working for periods of time might gain the probability of
customer losses due to balking and reneging Goswami [10].

Vacation queues have been greatly analyzed, Ke et al. [13] provided a succinct sum-
mary of the most recent research works on vacation queueing systems in the last decade,
Tian and Zhang [25] discussed many variations of vacation policy, and a variety of typical
vacation model applications that include call centers with multi-task employees, cus-
tomized manufacturing, telecommunication systems, maintenance activities, etc are also
studied. Yue et al. [27] presented an analysis for an M/M/1/N queueing system with
balking, reneging and server vacations. By using the Markov process method, authors
developed the equations of the steady state probabilities, then, they derived the matrix
form solution of the steady-state probabilities, and gave some performance measures of
the system, after that they formulated a cost model to determine the optimal service rate.

There are several situations where the server stays active during the vacation period.
The server can provide service at a lower speed during the working vacation period instead
of stopping service completely. If the queue is empty at the end of a vacation, the
server takes another vacation; otherwise a service period begins with normal service rate
Goswami [10].

Queueing systems with vacation interruption have been investigated by many authors,
Baba [6] studied an M/PH/1 queue with phase type working vacation and vacation in-

terruption where the vacation time follows a phase type distribution, Chen et al. [7]

Considered a GI/M/1 queue with phase-type working vacations and vacation interrup-

tion where the vacation time follows a phase-type distribution. Li and Tian [18] studied

theM/M/1 queue with working vacations and vacation interruptions, Zhang and Hou [29]

analyzed anM/G/1 queue with a working vacations and vacation interruption. Using the
method of a supplementary variable and the matrix-analytic method, authors obtained
the queue length distribution and service status at an arbitrary epoch under steady state
conditions. Zhang and Shi [30] presented an M/M/1 queue with Bernoulli schedule va-
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cation and vacation interruption. Altman and Yechiali [2] considered the impatience of
customers only when the servers are on vacation and unavailable for service. Selvaraju
and Goswami [21] analyzed impatient customers in a single server Markovian queue with
single and multiple working vacations.

Many practical queueing systems especially those with balking and reneging have
been widely applied to many real-life problems, such as the situations involving impatient
telephone switchboard customers, the hospital emergency rooms handling critical patients,
and the inventory systems with storage of perishable goods Robert [19]. Haight [11]

considered an M/M/1 queue with balking. An M/M/1 queue with customers reneging

was also proposed by Haight [12]. The combined effects of balking and reneging in an

M/M/1/N queue have been investigated by Ancker and Gafarian [3, 4]. Abou-EI-Ata and

Hariri [1] considered the multiple servers queueing system M/M/c/N with balking and

reneging. Wang and Chang [26] extended this work to study an M/M/c/N queue with

balking, reneging and server breakdowns. Laxmi et al. [17] studied M/M/1/N working

vacations queue with balking and reneging. Yue et al. [28] analyzed an M/M/1 queueing
system with working vacations and impatient customers, authors derived the probability
generating functions of the number of customers in the system when the server is in a
service period and a working vacation, respectively, then they obtained the closed-form
expressions for various performance measures.

Feedback in queueing literature represents customer dissatisfaction because of inappro-
priate quality of service. In case of feedback, after getting partial or incomplete service,
customer retries for service. In computer communication, the transmission of protocol
data unit is sometimes repeated due to occurrence of an error. This usually happens
because of non-satisfactory quality of service. Rework in industrial operations is also an
example of a queue with feedback Kumar and Sharma [16]. Takacs [23] studied queue with
feedback to determine the stationary process for the queue size and the first two moments
of the distribution function of the total time spent in the system by a customer. In [8]
D’Avignon and Disney studied single server queues with state dependent feedback. San-
thakumaran and Thangaraj [20] considered a single server feedback queue with impatient

and feedback customers, they studied M/M/1 queueing model for queue length at arrival
epochs and obtained result for stationary distribution, mean and variance of queue length.
Thangaraj and Vanitha [24] obtained transient solution of M/M/1 feedback queue with
catastrophes using continued fractions, the steady-state solution, moments under steady
state and busy period analysis were calculated. Ayyapan et. al [5] studied M/M/1 re-
trial queueing system with loss and feedback under non preemptive priority service by
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matrix geometric method. Kumar and Sharma [14] studied a single server queueing sys-

tem with retention of reneged customers. Kumar and Sharma [15] studied a single server
queueing system with retention of reneged customers and balking. Sharma and Kumar
[22] considered a single server, finite capacity Markovian feedback queue with reneging,
balking and retention of reneged customers in which the inter-arrival and service times
follow exponential distribution. Mahdy El-Paoumy and Hossam Nabwey [9] studied the

M/M/2/N queue with general balk function, reneging and two heterogeneous servers. In

[10], Goswami analyzed customers’ impatience in Markovian queueing system with mul-
tiple working vacations and Bernoulli schedule vacation interruption, where customers’
impatience is due to the servers’ vacation.

In this paper, we consider a single-server Markovian feedback queueing system with
reneging and retention of reneged customers, multiple working vacations and Bernoulli
schedule vacation interruption, where customers’ impatience is due to the servers’ vaca-
tion. During the working vacation period, if there are customers in the queue, the vacation
can be interrupted at a service completion instant and the server begins a regular busy
period with probability 1− β or continues the vacation with probability β. The reneging
times are assumed to be exponentially distributed. After the completion of service (which

can be partial or incomplete), each customer may rejoin the system as a feedback cus-
tomer for receiving another regular service with probability ν or he can leave the system
with probability γ where ν + γ = 1. A reneged customer can be retained in many cases
by employing certain convincing mechanisms to stay in queue for completion of service.
Thus, a reneged customer can be retained in the queuing system with some probability σ
or he may leave the queue without receiving service with probability δ (= 1− σ).

We obtain the probability generating functions of the stationary state probabilities
and deduce the explicit expressions of the system sizes when the server is in a normal
service period and in a Bernoulli schedule vacation interruption, respectively. Various
performance measures such as the mean system size, the proportion of customers served,
the rate of abandonment due to impatience, and the mean sojourn time of a customer
served are derived. Finally, we present some numerical examples to demonstrate how the
various parameters of the model influence the behavior of the system.

The rest of the paper is arranged as follows: In section 4.2, we describe the model, then
we give in section 3 the main result; the probability generating functions of the stationary
state probabilities are obtained, then the explicit expressions of the system sizes when
the server is in a normal service period and in a Bernoulli schedule vacation interruption



4.2 Description of the model 82

are given, respectively. After that in section 4.3, various performance measures such as
the expected number of customers in the system when the server is on a working vacation
period and in a normal busy period, the expected number of customers in the system,
the proportion of customers served, the rate of abandonment due to impatience, and the
mean sojourn time of a customer served are derived. Finally, we finish the paper by a
small conclusion.

4.2 Description of the model

We consider the multiple working vacations M/M/1 queueing system with Bernoulli
schedule vacation interruptions, reneging, retention of reneged customers and feedback,
where the customers become impatient due to the servers’ vacation. Customers arrive ac-
cording to a Poisson process with arrival rate λ. The service times during a normal service
period, the service times during a working vacation period, and the vacation times are
exponentially distributed with rates µ, α, and θ, respectively. The customers are assumed
to be impatient during the multiple working vacations. Whenever a customer arrives at
the system and finds the system is on working vacation, the customer activates an im-
patient timer T, which is exponentially distributed with rate ϑ. If the server finishes the
working vacation before the impatience timer expires, the customer remains in the system
till his service completion. However, if the impatience timer expires when the server is
still on working vacation, the customer abandons the system, this time is reneging time of
an individual customer. The reneged customer can be retained in the system with some
probability σ or he may abandon the system with complementary probability δ(1 − σ).

During the working vacation period, a customer is serviced at a lower rate, and, at the
instants of the service completion, the vacation is interrupted and the server resumes a
regular busy period with probability 1 − β (if there are customers in the queue) or re-
mains in the vacation with probability β. The inter-arrival times, service times, vacation
duration times, and the impatient times all are taken to be mutually independent. The
customers are served on a first come first-served queue discipline. After completion of
each service, the customer can either join the end of the queue with probability ν or he
can leave the system with probability γ where ν + γ = 1. The customers both newly ar-
rived and those that are fed back are served in order in which they join the tail of original
queue. We do not distinguish between the regular arrival and feedback arrival.

Let N(t) denote the number of customers in the system at time t, and let S(t) denote
the state of the server at time t with
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S(t) =

{
0, if the server is in working vacation period,
1, if the server is in normal busy period.

Then, the pair {(N(t), St)); t ≥ 0} is a continuous-time Markov process with state space

Ω = [{(0, 0)∪ (i, j)}, i = 1, 2, ..., j = 0, 1]. Let πij = lim
t→∞

P{N(t) = i, S(t) = j}, (i, j) ∈

Ω.

Let πi0, i ≥ 0 be the probability that there are i customers in the system when the server is
in working vacation period and let πi1, i ≥ 1 be the probability that there are i customers
in the system when the server is in normal busy period.

4.3 Main Result

In this part of paper, we study a stationary analysis for our model. At first, we develop
the probability generating functions of the number of customers in the system when the
server is in a working vacation period and in a normal service period, respectively. Then,
we derive the explicit expressions for various performance measures.
Via the Markov process theory, we get the following set of steady-state equations:

λπ00 = (δϑ+ γα)π10 + γµπ11 (4.1)

(λ+ γα + θ + nδϑ)πn0 = λπn−10 + (βγα + (n+ 1)δϑ)πn+10, n ≥ 1 (4.2)

(λ+ γµ)π11 = θπ10 + βγαπ20 + γµπ21 (4.3)

(λ+ γµ)πn1 = θπn0 + λπn−11 + γµπn+11 + βγαπn+10, n ≥ 2 (4.4)

where β = 1− β. Let us define the probability generating functions as

Π0(z) =
∑
n=0

πn0z
n, Π1(z) =

∑
n=1

πn1z
n, (4.5)

where Π0(1) + Π1(1) = 1 and Π′0(z) =
∑
n=1

nzn−1πn0.

Multiplying the appropriate power of zn in (4.1) and (4.2), in (4.3) and (4.4), respec-
tively, then summing over all possible values of n yield

δϑz(1− z)Π′0(z) + (λz2 − (λ+ γα + θ)z + βγα) Π0(z)+(
γµπ11 + (θ + βγα)π0,0 + βγαπ10

)
z + βγαπ0,0(1− z) = 0,

(4.6)
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and

(λz−γµ)(1−z)Π1(z) = (θz+βγα)Π0(z)−
(
γµπ11 + (θ + βγα)π0,0

)
+βγαπ10z−βγα(1−z)π0,0.

(4.7)

Then, solving Equation (4.6), we get

Π0(z) =
−
(
γµπ11 + (θ + βγα)π0,0 + βγαπ10

)
Φ1(z) + βγαΦ2(z)

δϑe−(λ/δϑ)zzβγα/δϑ(1− z)(θ+βγα)/δϑ
, (4.8)

where

Φ1(z) =

∫ z

0

e−(λ/δϑ)xxβγα/δϑ(1− x)(θ+βγα)/δϑ−1dx (4.9)

Φ2(z) =

∫ z

0

e−(λ/δϑ)xxβγα/δϑ−1(1− x)(θ+βγα)/δϑdx, (4.10)

where δ 6= 0, ϑ 6= 0, x 6= 0 and δϑ 6= 1.

Now, we should find the probabilities π0,0, π1,0, and π1,1, then some important perfor-
mance measures are obtained.

Assume that E(L0) and E(L1) are the expected number of customers in the system
when the server is on a working vacation period and in a normal busy period, respectively.

So, adding (4.3) and (4.4) over all possible values of n, we obtain

(θ + βγα)Π0(1) =
(
γµπ11 + (θ + βγα)π0,0

)
+ βγαπ10. (4.11)

And using (4.7), we have

Π1(z) =
(θz + βγα)Π0(z)− z(θ + βγα)Π0(1)

(λz − γµ)(1− z)
− βγαπ0,0

(λz − γµ)
. (4.12)

Using L’Hopital’s rule, we get

Π1(1) =

(
θ + β̄γα

γµ− λ

)
Π′0(1) +

(
β̄γα

γµ− λ

)
(π00 − Π0(1)), (4.13)

where Π′0(1) = E(L0); the expected number of customers in the system when the server
is on a working vacation period.

Since Π1(1) = 1− Π0(1), and by using (4.13), we obtain

E(L0) =

(
γµ− λ
θ + β̄γα

)
(1− Π0(1))−

(
β̄γα

θ + β̄γα

)
(π00 − Π0(1)). (4.14)
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Now, We have to deduce the proportion of time the server is on a working vacation period
(Π0(1)), so that E(L0) can be derived. Adding (4.2)-(4.4) and rearranging the terms, we
get

λπn0 + λπn1 − ((γα + (n+ 1)δϑ)πn+1,0 + γµπn+1,1)

= λπn−1,0 + λπn−1,1

+ ((γα + nδϑ)πn,0 + γµπn,1) , n ≥ 1

(4.15)

Using recursively (4.15), and applying (4.1)

λπn,0 + λπn,1 = (γα + (n+ 1)δϑ)πn+1,0 + γµπn+1,1, n ≥ 0 (4.16)

Adding over all possible values of n in (4.16), we obtain

λΠ0(1) + λΠ1(1) = γµΠ1(1) + γα(Π0(1)− π00) + δϑ
∞∑
n=0

(n+ 1)πn+1,0, n ≥ 0. (4.17)

Note that E(L0) =
∞∑
n=0

(n+ 1)πn+1,0 and Π1(1) = 1− Π0(1).

By substituting the value of E(L0) from (4.14) in (4.17), we get

(δϑ+ θ + β̄γα)(γµ− λ) =
(
δϑ(γµ− λ) + (γµ− γα)(θ + β̄γα)− δϑβ̄γα

)
Π0(1)

+
(
δϑβ̄γα + γα(θ + β̄γα)

)
π0,0.

(4.18)

When z →∞ in (4.8) and using (4.6), (4.7) and (4.12), we get

Π0(1) =
eλ/δϑ

δϑ

(
−(θ + β̄γα)Π0(1)Φ1(1) + β̄γαπ00Φ2(1)

)
lim
z→+∞

(1− z)−(θ+β̄γα)/δϑ (4.19)

As, 0 ≤ Π0(1) =
∞∑
n=0

πn,0 ≤ 1 and lim
z→1

(1− z)−(θ+γβ̄α)/δϑ →∞, so we should have

− (θ + β̄γα)Π0(1)Φ1(1) + βγαπ00Φ2(1) = 0. (4.20)

Then, using (4.19) and (4.20), we get

π0,0 =
(θ + γβ̄α)Φ1(1)

γβαΦ2(1)
Π0(1), (4.21)
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and

Π0(1) =
(
(δϑ+ θ + γβ̄α)(γµ− λ)βΦ2(1)

)
×
(
(δβ̄ϑ+ θ + γβ̄α)(θ + γβ̄α)Φ1(1)

+(δϑ(γµ− λ) + γ(µ− α)(θ + γβ̄α)− δϑβ̄γα)× βΦ2(1)
)−1 (4.22)

Thus, E[L0] is found from (4.14). Using (4.1) and (4.11) the unknowns π1,0 and π1,1

are obtained as follows:

π1,0 =
(θ + γβ̄α)

(
(λ+ θ + γβ̄α)Φ1(1)− γβαΦ2(1)

)
(δϑ+ γβα)γβαΦ2(1)

Π0(1), (4.23)

π1,1 =
((

(θ + γβ̄α)
{

(δϑ+ γα)βγαΦ2(1)− Φ1(1)(λγβ̄α + (δϑ+ γα)(θ + γβ̄α))
})

×(γβµαΦ2(1)(δϑ+ γβα))−1) Π0(1).

(4.24)

Now, the stationary probabilities πn,0 and πn,1 can be derived by using (4.2)-(4.4) in terms
of π0,0, π1,0, and π1,1.

The expected number of customers in the system when the server is in a normal busy
period E(L1) can be obtained from (4.12).
By using L’Hopital’s rule we get

E(L1) = Π′1(1) = θ+γβ̄α
γµ−λ

Π′′
0 (1)

2
+ 1

(θ+γβ̄α)(γµ−λ)

×
(
(γθµ+ λγβ̄α)(1− Π0(1)) + θγβ̄α(Π0(1)− π0,0)

)
.

(4.25)

Differentiating (4.6) twice at z = 1, we obtain

f ′′(1)Π0(1) + 2(f ′(1)− δϑ)Π′0(1) + (f(1)− 2δϑ)Π′′0(1) = 0, (4.26)

where f(1) = −(θ + γβ̄α), f ′(1) = λ− (γα + θ) and f ′′(1) = 2λ.

Then, from (4.26), we get

1

2
Π′′0(1) =

(
λ

θ + γβ̄α + 2δϑ

)
Π0(1)−

(
δϑ+ γα + θ − λ
θ + γβ̄α + 2δϑ

)
× E(L0) (4.27)

Using (4.27) and (4.14) in (4.25), we get E(L1). The expected number of customers in

the system can be computed as E(L) = E(L0) +E(L1). Now, we define the sojourn times,
let W be the total sojourn time of a customer in the system, evaluated from the instant
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of arrival till departure, with the departure either due to completion of service or as a
consequence of abandonment. We have by Little’s rule

E(W ) =
1

λ
(E(L0) + E(L1)). (4.28)

Let ∆ be the proportion of customers served, Θ be the rate of abandonment due to
impatience. The expected number of customers served per unit of time is γµΠ1(1) −
γα(Π0(1)− π0,0) signifying that the proportion of customers served is

∆ =
1

λ
(γµΠ1(1) + γα(Π0(1)− π0,0)) . (4.29)

The rate of abandonment Θ of a customer due to impatience is given by

Θ = δϑE(L0) = λ− (γµΠ1(1) + γα(Π0(1)− π0,0)) , (4.30)

which follows from (4.17). The probability that the system is in normal busy period Γ

and the probability that the system is in working vacation Ω are, respectively, given by

Γ =
∞∑
n=1

πn,1 = Π1(1), Ω =
∞∑
n=0

πn,0 = Π0(1). (4.31)

4.4 Numerical Results

In this part of this paper, we present some numerical examples to demonstrate how the
various parameters of the model influence the behavior of the system, and to show the
impact of different parameters and its relationship with the expected number of customers
when the system is on working vacation E(L0), the expected number of customers when

the system is on busy period E(L1), the expected number of customers in the system

E(L), the expected waiting time in the system E(W ), the proportion of customers served
∆, the rate of abandonment Θ, the probability that the system is in normal busy period
Γ and the probability that the system is on working vacation Ω.

X Firstly, Let us present the evolution of the system by varying β, ϑ, and α.

• The parameters for table 1 are taken as λ = 2, µ = 6, θ = 0.8, α = 3, γ = 0.5, and
δ = 0.65.

Table 1. Impact of ϑ and β on some performance measures.
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β ϑ E(L0) E(L1) E(L) E(W ) ∆ Θ Γ Ω
0.4 0,38322 0,67317 1,05638 0,52819113 0,95018 0,09964 0,52912 0,47088

0.15 1.2 0,36227 0,42851 0,79078 0,395392473 0,85871 0,28257 0,45684 0,54316
2 0,33808 0,29520 0,63328 0,316639316 0,78025 0,43950 0,40317 0,59683
0.4 0,44204 0,75376 1,19581 0,597903865 0,94253 0,11493 0,51473 0,48527

0.5 1.2 0,40317 0,43885 0,84203 0,421012957 0,84276 0,31447 0,43569 0,56431
2 0,36790 0,28641 0,65430 0,327150257 0,76087 0,47826 0,38126 0,61874
0.4 0,55594 0,91678 1,47272 0,73636023 0,92773 0,14455 0,48943 0,51057

0.9 1.2 0,46844 0,45451 0,92294 0,461472108 0,81731 0,36538 0,40222 0,59778
2 0,41155 0,27219 0,68374 0,341872387 0,73249 0,53502 0,34925 0,65075
0.4 0,60040 0,98064 1,58104 0,790519493 0,92195 0,15610 0,48032 0,51968

1 1.2 0,48940 0,45930 0,94870 0,47434832 0,80913 0,38173 0,39152 0,60848
2 0,42461 0,26764 0,69225 0,346124654 0,72400 0,55200 0,33969 0,66031

Table 1 shows at first that for fixed ϑ, E(L0), E(L1), E(L), E(W ), Ω and Θ increase

as β increases, otherwise ∆ and Γ decease as β increases. Now, for fixed β, E(L0), E(L1),

E(L), E(W ), Γ and ∆ decrease as ϑ increases. But the rate of abandonment Θ of a
customer due to impatience and the probability that the system is in working vacation Ω

increase as ϑ increases.

• The parameters for table 2 are taken as λ = 3, µ = 7, θ = 0.4, ϑ = 0.6, γ = 0.6, and
δ = 0.7.

Table 2. Impact of β and α on some performance measures.

β α E(L0) E(L1) E(L) E(W ) ∆ Θ Γ Ω
2 0,73780 2,14719 2,88498 0,961660758 0,89671 0,30987 0,55645 0,44355

0.3 4 0,50582 1,85779 2,36360 0,787867677 0,92919 0,21244 0,51678 0,48322
5 0,44269 1,74599 2,18868 0,72955893 0,93802 0,18593 0,49605 0,50395
2 0,90276 2,11320 3,01595 1,00531821 0,87361 0,37916 0,52898 0,47102

0.6 4 0,63494 1,77538 2,41032 0,803440036 0,91111 0,26667 0,47878 0,52122
5 0,55563 1,64233 2,19796 0,732652234 0,92221 0,23336 0,45344 0,54656
2 1,07762 2,07083 3,14845 1,049484825 0,84913 0,45260 0,50055 0,49945

0.8 4 0,78531 1,67606 2,46137 0,820456865 0,89006 0,32983 0,43623 0,56377
5 0,68812 1,51894 2,20706 0,735688075 0,90366 0,28901 0,40535 0,59465
2 1,36460 1,99159 3,35620 1,118731794 0,80896 0,57313 0,45487 0,54513

1 4 1,07313 1,47924 2,55237 0,85079094 0,84976 0,45072 0,35771 0,64229
5 0,94565 1,27516 2,22081 0,740269278 0,86761 0,39717 0,31522 0,68478

Table 2 shows for fixed α, E(L0), E(L) E(W ) Ω and Θ increase as β increases, otherwise
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E(L1), ∆ and Γ decrease.

However, for fixed β, E(L0), E(L1), E(L), E(W ), Γ and Θ decrease as α increases,

otherwise, ∆ and Ω increase as α increases. All these results (tables 1 and 2) agree abso-
lutely with our intuition.

X Now, let us present the impact of service rate during vacation α on the expected
number of customers in the system for different values of vacation rates θ, while λ = 2

µ = 5, ϑ = 1, β = 1, γ = 0.6 and δ = 0.7. The numerical results are given in Figure 4.1.

Figure 4.1: Effect of α on E(L), Effect of α on E(W )

From Figure 4.1, we observe that the expected number of customers in the system
decreases with the increase of α, furthermore when α > 1.5, E(L) increases as θ increases,

however, when α < 1.5, E(L) decreases when the vacation rate increases.

X Next, we present the effect of arrival rate λ on the rate of abandonment of a customer
due to impatience, Θ, and the effect of arrival rate λ on E(L) and on E(W ) for various
parameters ϑ and β. We take µ = 6, θ = 0.5, α = 4, γ = 0.5, and δ = 0.5.

Figure 4.2 shows that Θ first increases then diminishes with increasing of the arrival
rate when β = 0.5 and β = 1, which agree absolutely with our expectation; the rate
of abandonment of a customers increases when ϑ increases because more numbers of
customers renege and leave the system.
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Figure 4.2: Arrival rate λ versus θ

Figure 4.3: Arrival rate λ versus E(L) , Arrival rate λ versus E(W )

Figure 4.3 shows the increases of E(L) and E(W ) with the increases of λ. This result is
absolutely reasonable.

X Next, we present the dependence of the proportion of customers served and aban-
donment rate ∆ and Θ with θ and ϑ. Let λ = 3, µ = 5, α = 0.65, β = 0.5, δ = 0.4, and
γ = 0.65.

Figure 4.4 shows that for fixed θ, ∆ decreases and Θ increases when ϑ increases. More-
over, for fixed ϑ, ∆ increases and Θ decreases when θ increases.

X Now, we present the dependence of the proportion of customers served and aban-
donment rate ∆ and Θ to θ and δ. Let λ = 3, µ = 5, α = 3, β = 0.5, ϑ = 0.4, and
γ = 0.65.
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Figure 4.4: Effect of θ and ϑ on ∆ Effect of θ and ϑ on Θ

Figure 4.5: Effect of θ and δ on ∆, Effect of θ and δ on Θ

Figure 4.5 shows that for fixed θ, ∆ decreases and Θ increases when δ increases. More-
over, for fixed δ, ∆ increases and Θ decreases when θ increases.

X Finally, let’s present dependence of the proportion of customers served ∆ and
abandonment rate Θ on θ and γ. We take λ = 3, µ = 7, α = 3, β = 0.5, ϑ = 0.4, and
δ = 0.65.

Figure 4.6 shows that for fixed γ, Θ decreases and ∆ increases when θ increases. More-
over, for fixed θ, Θ increases and ∆ decreases when γ increases.
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Figure 4.6: Effect of θ and γ on Θ, Effect of θ and γ on ∆

4.5 Conclusion

In this paper, an analysis of a feedback queueing system with reneging and retention of
reneged customers, multiple working vacations and Bernoulli schedule vacation interrup-
tion is carried out, the explicit expressions for various performance measures are derived.
Some numerical examples are presented to demonstrate how the various parameters of the
model influence the behavior of the system. For further work, this model can be studied
under the provision of time dependent arrival and service rate. The cost-profit analysis
of the model can also be carried to study its economic analysis.
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General Conclusion and Future Work

1. General Conclusion
In this thesis we studied different queueing systems with impatient customers.

I Chapter One is an introduction to various queueing systems; retrial queues, im-
patience queues and queueing system with vacation were presented on the basis of the
literature.

I In the last three chapters, we investigated

> The study of fluid approximation of retrial queueing system with two orbits, abandon-
ment and feedback is considered, An Mt/Mt/ct retrial queueing model with abandonment
and feedback is considered, where two independent Poisson streams of customers arrive to
the system, an arriving one of type i, i = 1, 2 is handled by an available server, if there
is any; otherwise, he waits in an infinite buffer queue. A waiting customer of type i who
did not get connected to a server may abandon the system amount of time, the abandoned
one may leave the system (loss customer) or move to the orbit depending of its type, from
which he makes a new attempts to reach the primary queue, then this later when he fin-
ishes his conversation with a server, he may comeback to the system, to one of the orbits
for another service. The diffusion limit for the model under consideration is carried out.

> Stability analysis of the of a queueing system with feedback, two orbits, abandonment
and feedback, a retrial queueing system with two orbits, abandoned and feedback customers
is considered, at which two independent Poisson streams of customers arrive to the sys-
tem, and flow into a single-server service system. An arriving one of type i, i = 1, 2 is
handled by the server if it is free; otherwise, it is blocked and routed to a separate type-i
retrial (orbit) queue that attempts to re-dispatch its jobs at its specific Poisson rate. The
customer in the orbit either attempts service again after a random time or gives up re-
ceiving service and leaves the system after a random time. After the customer is served
completely, it will decide either to join the retrial group again for another service or leave
the system forever with some probability. The balance equations and generating functions
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of the model are derived, further, the necessary stability condition is established.

> The analysis of a Markovian queueing system with feedback, multiple vacations,
vacation interruption, impatient customers and retention of abandoned customers, where
the impatience of the customers is due to the vacations of the servers. The stationary
analysis of the system is established, the generating functions of the steady state probabil-
ities is given, the explicit expressions of the system sizes when the server is in a normal
period and in an interrupted vacation period are deduced, respectively. Various system
performance measures are derived.

The obtained results have many practical queueing systems especially those with balking
and reneging have been widely applied to many real-life problems, such as the situations
involving impatient telephone switchboard customers, the hospital emergency rooms han-
dling critical patients, and the inventory systems with storage of perishable goods.

2. Future Works
The following queueing systems are suggested to be developed according to the results

found in this research:

� Batch arrival retrial queueing system, random breakdowns, general repair times and
general stand-by server works during every main server interruption, single/multiple va-
cations and impatient customers.

� Batch arrival retrial queueing system, random breakdowns, general repair times, sin-
gle/multiple vacations, working vacation and impatient customers.

� Batch arrival retrial queueing systems with random breakdowns, general delay times
and two types of general repairs, multiple vacation, working vacation, interruption of
working vacation and impatient customers.
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ولا نقوم بدراسة  أ، مع نفاذ صبر الزبائنة  مختلف  أنظمة قوائم الانتظار .  في هذه الاطروحة  نقوم  بدراسملخص 

نتحصل على حد النشر لهذا  .و تنصل الزبائن  ذات النداء المتكرر  مع التغذية الراجعة نتظارالالقوائم   المحلولي التقريب

نظام قوائم الانتظار ذات النداء المتكرر مع التغذية الراجعة و تنصل  ستقرارلاتحليلا  بإعطاء . بعد ذلك نقوم النظام

، الصيغ الصريحة لحالة النظامتنتج حالة  المراوحة  و نس حتمالاتلا حتماليةالاتم الحصول على دوال توليد  الزبائن.

ماركوفي للتغذية الراجعة عن اصطفاف لنظام  نقدم تحليلا  لازم لاستقرار النظام . و اخيرا شرط ذلك نعطي  إلىاضافة 

، حيث يعزى عدم ، و اعاقة جدول اجازاتل متعددة، واجازات عمبالزبائن المتنصلين  في طابور مع تنصل و الاحتفاظ

تنتاج الصيغ اس ، تمحتمالية لاحتمالات حالة المراوحةتم الحصول على دوال توليد الااجازات الخوادم.  إلىصبر الزبائن 

،  اعاقة  لجدول اجازات على التوالي، عندما يكون الخادم في فترة عمل ناظمية  و في حالة وجود الصريحة لحجم النظام

 مثلة عددية للنظام.أعدة  إلى. اضافة اشتقاق عدة مقاييس لأداء النظام وتم

 

Abstract. In this thesis we study various queueing systems with impatience. At first, we 

study the fluid approximation of a retrial queueing model with abandonment and feedback.  

The diffusion limit for the model under consideration is carried out. Then, we deal with the 

stability of a retrial queueing system with abandoned and feedback customers.  The balance 

equations and generating functions of the model are derived, further the necessary stability 

condition is established. Finally, an analysis of a Markovian feedback queueing system with 

reneging and retention of reneged customers, multiple working vacations and vacation 

interruption, where customers' impatience is due to the servers' vacation is presented. The 

stationary analysis of the system is established. The probability generating functions of the 

stationary state probabilities is obtained. The explicit expressions of the system sizes when 

the server is in a normal service period and in a Bernoulli schedule vacation interruption 

respectively are deduced and various performance measures of the system are derived. 

 

Résumé. Dans cette thèse nous étudions  différents systèmes de files d'attente  avec 

impatience, en premier lieu nous étudions  l'approximation fluide de système de files 

d'attente avec rappel, abandon et feedback.  La limite de diffusion pour le modèle considéré 

est effectuée. En suite nous analysons la stabilité d'un système de files d'attente avec rappel,  

abandon et feedback. Pour ce système nous dérivons les équations d'équilibre et les 

fonctions  génératrices, en outre, nous établissons la condition de stabilité nécessaire. 

Finalement nous considérons un  système de  files d'attente Markovian avec feedback, 

multiples vacances, interruption de vacances, clients impatients et rétention de clients 

abandonnés, où l'impatience des clients est due aux vacances des serveurs. Nous établissons 

l'analyse stationnaire du système. Nous obtenons  les fonctions  génératrices  des 

probabilités d'état stationnaire, nous déduisons les expressions explicites des tailles de 

système quand le serveur est dans une période de service normale et dans une période de 

vacance interrompue, respectivement. Diverses mesures de performance du système sont 

dérivées. 
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