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Résumé

Dans cette thèse, nous proposons d’étudier quelques paramètres fonctionnels. Premièrement
nous proposons d’étudier le problème de la modélisation non paramétrique lorsque les variables
statistiques sont des courbes. Plus précisément, nous nous intéressons à des problèmes de
prévisions à partir d’une variable explicative à valeurs dans un espace de dimension infinie
(espace fonctionnel) et nous cherchons à développer des alternatives à la méthode de régression.
En effet, nous supposons qu’on dispose d’une variable aléatoire réelle (réponse), souvent notée
Y et d’une variable fonctionnelle (explicative), souvent notée X. Le modèle non paramétrique
utilisé pour étudier le lien entre X et Y concerne la distribution conditionnelle dont la fonction
de répartition (respectivement la densité), notée F (respectivement f), est supposée appartenir
à un espace fonctionnel approprié.
Deuxièment lorsque les données sont générées à partir d’un modèle de régression à indice simple.
Nous étudions deux paramètres fonctionnels.
Dans un premier temps nous nous sommes intéressés à l’estimation de la fonction du hasard
conditionnelle ainsi que l’erreur quadratique, dont nous donnons nos premiers résultats lorsque
l’échantillon considéré est i.i.d. en premier lieu et fortement mélangeant en deuxième lieu.
Dans un second temps nous supposons que la variable explicative est à valeurs dans un espace de
Hilbert (dimension infinie) et nous considérons l’estimation de la fonction de hasard condition-
nelle par la méthode de noyau. Nous traitons les propriétés asymptotiques de cet estimateur
dans le cas indépendant. Pour le cas où les observations sont indépendantes identiquement
distribuées (i.i.d.), nous obtenons la convergence ponctuelle et uniforme presque complète avec
vitesse de l’estimateur construit. Comme application nous discutons l’impact de ce résultat
en prévision non paramétrique fonctionnelle à partir de l’estimation de mode conditionnelle.
Les données incomplètes sont modélisées via la présence de la censure à droite des variables.
Dans ce contexte nous établissons la convergence ponctuelle et uniforme presque complète avec
vitesse de l’estimateur construit de l’estimateur à noyau de la fonction de hasard conditionnelle.
Nos résultats asymptotiques exploitent bien la structure topologique de l’espace fonctionnel de
nos observations et le caractère fonctionnel de nos modèles. En effet, toutes nos vitesses de
convergence sont quantifiées en fonction de la concentration de la mesure de probabilité de la
variable fonctionnelle, de l’entropie de Kolmogorov et du degré de régularité des modèles.
Autant que l’on sache le problème de l’estimation non paramétrique de la fonction de hasard
conditionnelle de modèle d’indice fonctionnel sur des données complètes et/ou censurées n’a pas
été abordé. En général, l’estimation sur des données censurées à indice fonctionnel est récente
dans la littérature statistique.
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Abstract

In this thesis, we study the problem of nonparametric modelization when the data are curves.
Indeed, we consider real random variable (named response variable) X and a functional variable
(explanatory variable) Z. The nonparametric model used to study the relation between Z and
X is the conditional distribution function noted F which has a density f . Both F and f are
supposed to belong to some suitable functional spaces.
Secondly we propose to study some functional parameters when the data are generated from a
model of regression to a single index. We study two functional parameters.
Our asymptotic results exploit the topological structure of functional space for the observations.
Let us note that all the rates of convergence are based on an hypothesis of concentration of the
measure of probability of the functional variable on the small balls and also on the Kolmogorov’s
entropy which measures the number of the balls necessary to cover some set.
As far as we know, the problem of estimating the conditional hazard in the functional single
index parameter for censored data was not attacked. In general the nonparametric estimation
under censored data is new in the statistical literature. What doubtless makes, the originality
of this thesis.
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Chapter 1

Introduction.

This chapter is devoted to the presentation of asymptotic notations and results, then at the
end a short description of the thesis will be given.

1.0.1 Nonparametric conditional models and functional variables

The functional statistics is a field of current research where it now occupies an important place
in statistical research. It has experienced very important development in recent years in which
mingle and complement several statistical approaches to priori remote This branch of statistics
aims to study data that because of their structure and the fact that they are collected on very
fine grids can be equated with curves or surfaces, eg functions of time or space. The need to
consider what type of data, now frequently encountered under the name of functional data in
the literature, is above all a practical need. This is the statistical modeling of data that are
supposed of curves observed on all their trajectories. This is practically possible because of the
precision of modern measuring devices and large storage capacity offered by current computer
systems. It is easy to obtain a discretization very fine of mathematical objects such as curves,
surfaces, temperatures observed by satellite images.... This type of variables can be found in
many areas, such as meteorology, quantitative chemistry, biometrics, econometrics or medical
imaging. Among the reference books on the subject, there may be mentioned the monographs
(1997, 2002) for the applied aspects, Bosq [19] for the theoretical aspects, Ferraty and Vieu
[69] for non-parametric studyet Ferraty and Romain [64] for recent developments. In the same
context, we refer to Manteiga and Vieu [112] well as Ferraty [57]. The objective of this section
is to make a bibliographic study on conditional nonparametric models considered in this thesis.
The objective of this section is to make a bibliographic study on conditional nonparametric
models considered in this thesis, allowing to compare our results with those that already exist.
However, given the extent of the available literature in this area, we can not make a exhaustive
exposed. Thus, we will restrict our bibliographical study to nonparametric models. we refer to
Bosq and Lecoutre [21], Schimek [147], Sarda and Vieu [146] anf Ferraty and Vieu ([67], [69])
for a wide range of references.

Give an exhaustive list of situations where of such data are encountered is not envisaged
but specific examples of functional data will be addressed in this thesis. However, beyond this
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8 Introduction.

practical aspect, it is necessary to provide a theoretical framework for the study of these data.
Although functional statistics have the same objectives as the other branches of statistics (data
analysis, inference...), the data have this peculiarity to take their values in infinite dimensional
spaces, and the usual methods of multivariate statistics are here set default.

The all earliest works in which we find this idea of functional data are finally relatively
"ancient" Rao [137] and Tucker [155] are considering thus the principal components analysis
and factor analysis for functional data and even are considering explicitly the functional data
as a particular data type.Thereafter, Ramsay [132] gives off the concept of functional data and
raises the issue of adapting the methods of multivariate statistics in this functional frame.

From there, the work to explore the functional statistics begin to multiply, eventually leading
today to works making reference on the subject, such as for example monographs Ramsay and
Silverman ([135] and [136]), Ferraty and Vieu [69]...

The estimated hazard rate, because of the variety of its possible applications, is an important
issue in statistics. This subject can (and should) be approached from several angles according
to on the complexity of the problem: eventual presence of censorship in the observed sample
(for instance common phenomenon in medical applications), possible presence of dependency
between the observed variables (for instance a common phenomenon in applications seismic or
econometric) or else presence of explanatory variables.

Thus, the estimation of a hazard rate with the presence of an explanatory variable functional
to single functional index is a current issue to which this work proposes to provide an answer
elements.

1.1 Bibliographical context

The problem of the forecast is a very frequent question in statistics. In nonparametric statis-
tics the principal tool to answer to this question is the regression model. This tool took a
considerable rise from the number of publications which are devoted to him, that the explana-
tory variables are linked multi or infinity dimension. However, this tool of forecast is not very
adapted for some situation. As example let us quote the case of conditional density dissymmet-
rical or the case where it comprises several peaks with one of the peaks strictly more important
than the others. In these various cases one can hope that the conditional mode, median or
quantiles envisage better than the regression.

1.1.1 On the regression model

The first results in functional nonparametric statistics were developed by Ferraty and Vieu
[65] and they relate to the estimation of the regression function in an explanatory variable of
fractal dimension. They established the almost complete convergence of a kernel estimator of
the nonparametric model in the i.i.d case. By building on recent developments in the theory
of probabilities of small balls, Ferraty and Vieu [68] have generalized these results to the α-
mixing case and they exploited the importance of nonparametric modeling of functional data
by applying their studies problems such as time series prediction and curves discrimination. In
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the context of functional observations α-mixing, Masry [114] has proved asymptotic normality
of the estimator of Ferraty et Vieu [68] for the regression function. The reader can find in
the book of Ferraty and Vieu [69], a wide range of applications of the regression function in
functional statistics. Convergence in mean squared was investigated by Ferraty and al. [60].
Specifically, they have explained the exact asymptotic term of the quadratic error. This result
was used by Rachdi and Vieu [130] for determine a criterion for automatic to selection of the
smoothing parameter based on cross-validation. The local version of this criterion has been
studied by Benhenni and al. [13]. We find in this article a comparative study between the
local and global approach. As works recents bibliographic in regression, we refer the reader
to Ferraty and Vieu [64] well as Delsol [49]. Results on uniform integrability were established
by Delsol ([47],[48]) andt Delsol and al. [50]. Other works were interested to estimating the
regression function using different approaches : the method of k nearest neighbors by Burba
and al. [25], robust technical by Azzidine and al. [11] and Crambes and al. [37], the estimate
by the simplified method of local polynomial by Barrientos-Marin and al. [12].

1.1.2 On data and functional variable

The statistical problems involved in the modeling and the study of functional random variables
for a long time know large advantage in statistics. The first work is based on the discretization
of these functional observations in order to be able to adapt traditional multivariate statistical
techniques. But, thanks to the progress of the data-processing tool allowing the recovery of
increasingly bulky data, an alternative was recently elaborate consisting in treating this type
of data in its own dimension, i.e. by preserving the functional character. Indeed, since the
Sixties, the handling of the observations in the form of trajectories was the object of several
studies in various scientific disciplines such Obhukov [122], Holmstrom [95] in climatic, Deville
[51] in econometric, Molenaar and Boosma [115] and then Kirkpatrick and Heckman [103] in
genetic.
The functional models of regression (parametric or not parametric) are topics which were privi-
leged these last years. Within the linear framework, the contribution of Ramsay and Silverman,
([134], [135]) presents an important collection of statistical methods for the functional variables.
In the same way, note that Bosq [19] significantly contributed to the development of statistical
methods within the framework of process of auto-regression linear functional. By using func-
tional principal components analysis, Cardot and al. [27] built an estimator for the model of
the Hilbertien linear regression similar to Bosq estimator [23] in the case of Hilbertien process
auto-regressive. This estimator is defined using the spectral properties of the empirical version
of variance-covariance operator of the functional explanatory variable. They obtained conver-
gence of probability for some cases and almost complete convergence of the built estimator
for other cases. Norm convergence in L2 for a regularized version (spline) of the preceding
estimator was established by the same authors in [19].
Recently, Cardot and al. [29] introduced, by a method of regularization, an estimator for the
conditionals quantiles, saw as continues linear forms in Hilbert space. Under conditions on
the eigenvalues of the covariance operator of the explanatory variable and on the density of
conditional law, they gave the speed of norm convergence in L2 of the built estimator. We
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return to Cardot and al. [30] and to Cuevas and al. [38] for the problem of the test in the
functional linear model. Several authors are interested also the answer variable is qualitative,
for example, Hastie and al. [92], Hall and al. [84],....
The study of the nonparametric models of regression is much more than that of the linear
case. The results were provided by Ferraty and Vieu [65]. These result were prolonged by
Ferraty and al. [66]..., with the problems of the regression such forecast in the context of time
series. By taking again the estimator of Ferraty and Vieu [68] and by using the property of
concentration of the measurement of probability of the functional explanatory variable, Niang
and Rhomari [41] studied norm convergence in LP of regression estimator. They applied their
result to the discrimination and the classification of the curves. Other authors were interested
if the answer variable is functional using linear model (Bosq and Delecroix [22], Besse and
al. [18]). Recently, of the first work relating to model presenting at the same time linear and
nonparametric aspects were realized by Ferraty and al. [67], Aït-Saïd and al. ([3], [4]), Ferré
and Villa Ferr[74]...
The first work on the functional variables of distribution estimate was given by Geffroy [81].
More recently, Gasser et al. [78] then Hall and Heckman [84] were interested in the nonpara-
metric estimate of the distribution mode a functional variable. The estimate of the median
of a random variable distribution which takes its values in a Banach space was studied by
Cadre [26]. Niang [42] gives an estimator of the density in a space of infinite dimension and
established asymptotic results of this estimator, such convergence on average quadratic, almost
sure convergence and the asymptotic normality of an estimator of the histogram type. We will
also find in this article an application giving the expression of convergence speed in the case of
the estimate of the density of a diffusion process relatively to Wiener measure. Ferraty and al.
[68] studied the nonparametric estimator of the mode of the density of a random variable with
values in a semi-norm vector space of infinite dimension. They establish its almost sure conver-
gence and they also apply this result if the measurement of probability of the variable checks
a condition of concentration. Several authors were interested in the application of statistical
modeling by functional variables on real data. As example, Ferraty and Vieu ([66], [67]) were
interested in spectrometric data and with vocal recordings, Besse and al. [18] with weather
data, Gasser and al. [78] considered medical data, Ferraty, Rabhi and Vieu [71] considered
environmetrics and meteorology data where they have gave an example of application to the
prediction via the conditional median, together with the determination of prediction intervals...

1.1.3 Concrete problem in statistics for functional variables

In this part we mention a few areas wherein appear the functional data to give an idea of the
type of problems that functional statistics solves.
• In biology, we find the first precursor work of (1958) concerning a study of growth curves.

More recently, another example is the study of variations of the angle of the knee during
walking (Ramsay and Silverman, [135]) and knee movement during exercise under constraint
(Abramovich and Angelini [1], and Antoniadis and Sapatinas [8]. concerning animal biology,
studies of the oviposition of medley were made by several authors (Chiou, Müller, Wang and
Carey [34], Chiou, Müller and Wang [35], Cardot [28] and Chiou et Müller [33]). The data
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consist of curves giving the spawn for each quantity of eggs over time.
• Chemometrics is part of the fields of study that promote the use of methods for functional

statistical. Of many existing work on the subject, include Frank and Friedman [76] , Hastie
and Mallows [93] who have commented on the article by Frank and Friedman [76] providing
an example of the measuring curves log-intensity of a laser radius refracted depending on the
angle of refraction. In [66], Ferraty and Vieu were interested in the study of the percentage of
fat in the piece of meat (reponse variable) given the absorption curves of infrared wavelengths
of these pieces of meat (explanatory variable). Other articles like Ferraty and Vieu [66], Ferré
and Yao [75], Ferraty and al. [58], Ferraty and Vieu [69], Aneiros-Pérez and Vieu [7], Ferraty,
Mas and Vieu [60] and Mas and Pumo [113] they proposed and applied other methods to meet
this problematic.
• Of environment-related applications have been particularly studied by Aneiros-Perez,

Cardot, Estevez-Perez and Vieu [6] who have worked on a forecasting problem of pollution.
These data consist of measurements of peak ozone pollution every day (variable interest) given
curves pollutants and meteorological curves before (explanatory variables).
• Climatology is an area where functional data appear naturally. A study of the phenomenon

El Niño (hot current in Pacific Ocean) has been realized by Besse Cardot and Stephenson [18];
Ramsay and Silverman [131], Ferraty and al. [62] and Hall and Vial [86].
• In linguistics, the works have also been realized, particularly concerning voice recognition.

Mention may be made, for example Hastie Buja and Tibshirani [92], Berlinet Biau and Rouvière
[16] or again Ferraty and Vieu ([67], [69]). This works are strongly related to methods of
classification when the explanatory variable is a curve. Briefly, the data curves corresponding
to records of phonemes spoken by different individuals.A label is associated with each phoneme
(reponse variable) and the goal is to establish a classification of these curves using as explanatory
variable the recorded curve.
• In the field of graphology, the contribution of functional statistical techniques has again

found application. The works on this problem are for example those of Hastie Buja and Tib-
shirani [92] and Ramsay [133]. The latter for example Modeling the pen position (abscissa and
ordinate versus time) using differential equations.
• The applications to economics are also relatively many. Works have been realized espe-

cially by Kneip and Utikal [104], and rerecently by Benko, Härdle and Kneip [14], based in
particular on an analysis of functional principal components.
There are other areas where the functional statistics was employed such as for example process-
ing of sound signals (Lucero, [110]) or recorded by a radar (Hall and al [83]), the demographic
studies (Hyndman and Ullah [98]),... and the applications in fields as varied as criminology
(how to model and compare the evolution of the crime of an individual during time) Paleo
pathology (can you tell an individual if suffering arthritis from the shape of his femur) The
results study in school tests,...
Finally, one may be led to study the functional random variables even if it has available actual
initial data independent or multivariate. This is the case when one wants to compare or study
functions that can be estimated from the data. Among Typical examples of this type of situation
one can evoke comparison of different density functions (see Kneip and Utikal [104], Ramsay
and Silverman [135], Delicado [46] and Nerini Ghattas [117]), functions regressions (Härdle and
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Marron [89], Heckman and Zamar [94]), the study of the function representing the probability
that an individual has to respond to a test according on its "qualities" correctly Ramsay and
Silverman [135]),...
One can imagine that in the future the use of statistical methods functional will be extended
to other areas.

1.1.4 On the problematic of single index models

For several years, a increasing interest is worn to models which incorporating of both the parts
parametric and nonparametric. Such models type are called semi-parametric model. This
consideration is due primarily to problems due to poor specification of some models. Tackle a
problem of miss-specification semiparametric way consists in not specify the functional form of
some model components. This approach complete those non-parametric models, which can not
be useful in small samples, or with a large number of variables. As example, in the classical
regression case, the important parameter whose one assumed existence is the regression function
of Y knowing the covariate X, denoted r(x) = E(Y |X = x), X, Y ∈ Rd × R. For this model,
the non-parametric method considers only regularity assumptions on the function r. Obviously,
this method has some drawbacks. One can cite the problem of curse of dimensionality. This
problem appears when the number of regressors d increases, the rate of convergence of the
nonparametric estimator r which is supposed k times differentiable is O(n−k/2k+d) deteriorate.
The second drawback is the lack of means to quantify the effect of each explanatory variable.
To alleviate in these drawbacks, an alternative approach is naturally provided by the semi-
parametric model which supposes the introduction of a parameter on the regressors, by writing
than the regression function is of the form

Eθ(Y |X) = E(Y | < X, θ >= x),

The models defined are known in the literature as the single-index models.
These models allow to obtain a compromise between parametric models, generally too restrictive
and nonparametric model where the rate of convergence of the estimators deteriorate quickly in
the presence of a large number of explanatory variables. In this area, types different of models
have been studied in the literature : amongst the most famous, there may be mentioned additive
models, partially linear models or single index models. The idea of these models, in the case of
estimating the conditional density or regression consists in bring to the covariates a dimension
in smaller than dimension of the space variable, thus allowing overcome the problem of curse
of dimensionality. For example, for example, in the partially linear model, we decompose the
quantity to be estimated, into a linear part and a functional part. This latter quantity does
not pose estimation problem since it’s expressed as a function of explanatory variables of finite
dimension, thus avoiding the problems associated with curse of dimensionality. in order to treat
the problem of curse of dimensionality in the case chronologies series, several semi-parametric
approaches have been proposed. Without pretend to exhaustivity, we quote for example: Xia
and An [161] for the index model. A general presentation of this type of model is given in
Ichimura and al. [100] where the convergence and asymptotic normality are obtained. In the
case of M -estimators, Delecroix and al. [44] proves the consistency and asymptotic normality
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of the estimate the index and they study it’s effectiveness. The statistical literature on these
methods is rich, quote Huber [97] and Hall [85] present an estimation method which consists
projecting the density and the regression function on a space of dimension one, to bring a
non-parametric estimation for dimensional covariates. This amounts exactly to estimate these
functions in a single index model. Attaoui and al. [9] have established the pointwise and
the uniform almost complete convergence (with the rate) of the kernel estimate of this model.
The interest of their study is to show how the estimate of the conditional density can be
used to obtain an estimate of the simple functional index if the latter is unknown. More
precisely, this parameter can be estimated by pseudo-maximum likelihood method which is
based the preliminary estimate of the conditional density. recently Mahiddine and al. [111]
have established the pointwise almost complete convergence and the uniform almost complete
convergence (with the rate) of some characteristics of the conditional distribution and the
successive derivatives of the conditional density when the observations are linked with a single-
index structure and they are applied to the estimations of the conditional mode and conditional
quantiles.
The single-index approach is widely applied in econometrics as a reasonable compromise be-
tween nonparametric and parametric models. Such kind of modelization is intensively studied
in the multivariate case. Without pretend to exhaustivity, we quote for example Härdle et al.
[88], Hristache and al. [96]. Based on the regression function, Delecroix and al. [45] studied
the estimation of the single-index and established some asymptotic properties. The literature
is strictly limited in the case where the explanatory variable is functional (that is a curve).
The first asymptotic properties in the fixed functional single-model were obtained by Ferraty
and al. [67]. They established the almost complete convergence, in the i.i.d. case, of the link
regression function of this model. Their results were extended to dependent case by Aït Saidi
and al. [3]. Aït Saidi and al. [4] studied the case where the functional single-index is unknown.
They proposed an estimator of this parameter, based on the cross-validation procedure.

1.1.5 On the conditional distribution

Nonparametric estimation of the conditional density has been widely studied, when the data
is real The First related result in nonparametric functional statistic was obtained by Ferraty
and al and al. [69]. They established the almost complete consistency in the independent
and identically distributed (i.i.d.) random variables of the kernel estimator of the conditional
distribution and the successive derivatives of conditional probability density.

These results have been extend to dependent data by Ferraty and al. [71] and Ezzahrioui and
Ould Saïd [56]. we send back to Cardot et al. [29] for one approach for linear the conditional
quantile statistical functional. The contribution of the thesis on this model is the study of
the squared error and the uniform convergence on arguments to simple functional index of the
estimator of the conditional distribution function and the conditional density. The asymptotic
results (with rates) are precise. The results obtain The results are detailed in Chapter 3 of
this thesis. These are the first consistent results available in the literature of estimating the
conditional distribution function and conditional hazard function in the functional single index
parameter for complete (uncensored) data and/or censored.
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1.1.6 On the conditional hazard function

The literature on estimating the conditional hazard function is relatively restricted into func-
tional statistics. The article by Ferraty et al. [63] is precursor work on the subject, the authors
introduced a nonparametric estimate of the conditional hazard function, when the covariate is
functional. We prove consistency properties (with rates) in various situations, including cen-
sored and/or dependent variables. The α-mixing case was handled by Quintela-Del-Rio [128].
The latter established the asymptotic normality of the estimator proposed by Ferraty and al.
[72].

The author has illustrated these asymptotic results by an application on seismic data. We
can also look at the recent work of Laksaci et Mechab [107] on estimating of conditional hazard
function for functional data spatially dependent. In this thesis, we deal the nonparametric esti-
mate of the conditional hazard function, when the covariate is functional and the observations
are linked with a single-index structure. We establish the pointwise almost complete conver-
gence and the uniform almost complete convergence (with the rate) of the kernel estimate of
this model in various situations, including censored and non-censored data. These first uniform
results are detailed in the chapter 3.

1.1.7 On analysis of survival data

Survival analysis is the name of a collection of statistical techniques that is concerned with the
modeling of lifetime data. These methods are used to describe, quantify and understand the
stochastic behavior of time-to-events. In survival analysis we use the term "failure" for the
occurrence of the event of interest (even though the event may actually be a "success", such as
recovery from therapy). On the other hand the term "survival time" specifies the length of time
taken for failure to occur, usually denoted T , that is assumed to be a positive random variable.
Survival analysis methods have been used in a number of applied fields, such as medicine, public
health, biology, epidemiology, engineering, economics, finance, social sciences, psychology and
demography. The analysis of failure time data usually means addressing one of three problems:
the estimation of survival functions, the comparison of treatments or survival functions, and
the assessment of covariate effects or the dependence of failure time on explanatory variables.

The survival function at time t is defined as

S(t) = P(T > t) =

∫ ∞
t

f(u)du = 1− F (t) (1)

where f and F are the density and distribution function of T , respectively, and it can be
interpreted as the proportion of the population that survives up to time t. The empirical survival
function is a non-parametric estimator of the unconditional survival function for complete data
and is given by

Ŝ(t) =
1

n

n∑
i=1

1ti>t = 1− F̂ (t)

The conditional survival function is the probability that the individual will be alive at time t
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given a time-fixed covariate, z0:

S(t|z0) = P(T > t|Z = z0)

where Z is the covariate and z0 is a fixed value. Not only are the lifetime and its covariate
random variables unknown, but usually the conditional survival function is also unknown and
needs to be estimated. There are many reasons that make it difficult to get complete data in
studies involving survival times. A study is often finished before the death of all patients, and
we may keep only the information that some patients are still alive at the end of the study, not
observing when they really die. In the presence of censored data, the time to event is unknown,
and all we know is that the survival time has occurred before, between or after certain time
points. This obviates the need for inference methods for censored data.
When the failure time is observed completely, there are numerous methods to make non
parametric inference on its conditional distribution. For instance Nadaraya [116] and Wat-
son [160] proposed a nonparametric estimator (NW) to estimate the conditional expectation
µ(z0) = E(T |Z = z0) as as a locally weighted average using a kernel function. Beran (1981)
extended the Kaplan-Meier estimator and proposed a method for non-parametric estimation
(generalized Kaplan-Meier) of the conditional survival function for right-censored data. Turn-
bull [156] proposed a nonparametric estimator of the unconditional survival function under
interval-censoring.
Our objectives in this thesis are mainly to present simple non-parametric or semiparametric
approaches to estimate the conditional hazard function when the data are generated from a
model of regression to a single index under complete and/or censored data.

1.1.8 On The Hazard Function

An alternative characterization of the distribution of T is given by the hazard function, or
instantaneous rate of occurrence of the event, defined as

h(t) = lim
∆t→0

P (t < T ≤ t+ ∆t/T ≥ t)

∆t
[t > 0]

The numerator of this expression is the conditional probability that the event will occur in the
interval (t, t + ∆t) given that it has not occurred before, and the denominator is the width of
the interval. Dividing one by the other we obtain a rate of event occurrence per unit of time.
Taking the limit as the width of the interval goes down to zero, we obtain an instantaneous
rate of occurrence.
The conditional probability in the numerator may be written as the ratio of the joint probability
that T is in the interval (t, t+ ∆t) and T > t (which is, of course, the same as the probability
that t is in the interval), to the probability of the condition T > t. The former may be written
as f(t)∆t for small ∆t, while the latter is S(t) by definition. Dividing by ∆t and passing to
the limit gives the useful result

h(t) =
f(t)

S(t)
(2)
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which some authors give as a definition of the hazard function. In words, the rate of occurrence
of the event at duration t equals the density of events at t, divided by the probability of
surviving to that duration without experiencing the event.
Note from Equation (1) that −f(t) is the derivative of S(t). This suggests rewriting Equation
(2) as

h(t) = − d

dt
logS(t). (3)

If we now integrate from 0 to t and introduce the boundary condition S(0) = 1 (since the
event is sure not to have occurred by duration 0), we can solve the above expression to obtain a
formula for the probability of surviving to duration t as a function of the hazard at all durations
up to t:

S(t) = exp

{
−
∫ t

0

h(u)du

}
. (4)

This expression should be familiar to demographers. The integral in curly brackets in this
equation is called the cumulative hazard ( or cumulative risk) and is denoted

H(t) =

∫ t

0

h(u)du. (5)

You may think of H(t) as the sum of the risks you face going from duration 0 to t.
These results show that the survival and hazard functions provide alternative but equivalent
characterizations of the distribution of T . Given the survival function, we can always differ-
entiate to to obtain the density and then calculate the hazard using Equation (2). Given the
hazard, we can always integrate to obtain the cumulative hazard and then exponentiate to
obtain the survival function using Equation (4). An example will help fix ideas.

Example 1.1.1 The simplest possible survival distribution is obtained by assuming a constant
risk over time, so the hazard is

h(t) = λ

for all t. The corresponding survival function is

S(t) = exp(λt).

This distribution is called the exponential distribution with parameter λ. The density may be
obtained multiplying the survivor function by the hazard to obtain

f(t) = λ exp(−λt).

The mean turns out to be 1/λ. This distribution plays a central role in survival analysis,
although it is probably too simple to be useful in applications in its own right.
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1.1.9 Convergence notions

All through this party, (Xn)n∈N and (Yn)n∈N are sequences of real random variables, while
(un)n∈N is a deterministic sequence of positive real numbers. We will use the notation (Zn)n∈N
for a sequence of independent and centered r.r.v.

Definition 1.1.2 One says that (Xn)n∈N converges almost completely (a.co.) to some r.r.v.
X, if and only if

∀ε > 0,
∑
n∈N

P (|Xn −X| > ε) <∞,

and the almost complete convergence of (Xn)n∈N to X is denoted by

lim
n→∞

Xn = X, a.co.

Definition 1.1.3 One says that the rate of almost complete convergence of (Xn)n∈N to X is of
order un if and only if

∃ε0 > 0,
∑
n∈N

P (|Xn −X| > ε0un) <∞,

and we write
Xn −X = Oa.co.(un)

Proposition 1.1.4 Assume that lim
n→∞

un = 0, Xn = Oa.co.(un) and lim
n→∞

Yn = l0, a.co., where
l0 is a deterministic real number.

i) We have XnYn = Oa.co.(un);

ii) We have
Xn

Yn
= Oa.co.(un) as long as l0 6= 0.

Remark 1.1.5 The almost convergence of Yn to l0 implies that there exists some δ > 0 such
that ∑

n∈N

P (|Yn| > δ) <∞.

Now, one suppose Z1, . . . , Zn will be independent r.r.v. with zero mean. As can be seen
throughout this party, the statement of almost complete convergence properties needs to find
an upper bound for some probabilities involving sum of r.r.v. such as

P

(∣∣∣ n∑
i=1

Zi

∣∣∣ > ε

)
,

where, eventually, the positive real ε decreases with n. In this context, there exists powerful
probabilistic tools, generically called Exponential Inequalities. The literature contains various
versions of exponential inequalities. These inequalities differ according to the various hypotheses
checked by the variables Zi’s. We focus here on the so-called Bernstein’s inequality. This
choice was made because the from of Bernstein’s inequality is the easiest for the theoretical
developments on functional statistics that have been stated throughout our thesis. Other forms
of such exponential inequality can be found in Fuk-Nagaev [77] (see also Nagaev [117] and [118])
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Proposition 1.1.6 Assume that

∀m ≥ 2, |EZm
i | ≤ (m!/2)(ai)

2bm−2,

and let (An)2 = (a1)2 + . . .+ (an)2. Then, we have:

∀ε ≥ 0, P

(∣∣∣ ∞∑
i=1

Zi

∣∣∣ ≥ εAn

)
≤ 2 exp

− ε2

2
(

1 + εb
An

)
 .

Corollary 1.1.7 i) If ∀m ≥ 2,∃Cm > 0, E|Zm
1 | ≤ Cma

2(m−1), we have

∀ε ≥ 0, P

(∣∣∣ ∞∑
i=1

Zi

∣∣∣ ≥ nε

)
≤ 2 exp

{
− nε2

2a2(1 + ε)

}
.

ii) Assume that the variables depend on n (that is, Zi = Zi,n). If ∀m ≥ 2, ∃Cm > 0, E|Zm
1 | ≤

Cma
2(m−1), and if un = n−1a2

n log n verifies lim
n→∞

un = 0, we have:

1

n

n∑
i=1

Zi = Oa.co. (
√
un) .

Remark 1.1.8 By applying Proposition 1.1.6 with An = a
√
un, b = a2 and taking ε = ε0

√
un,

we obtain for some C ′ > 0:

P

(
1

n

∣∣∣ ∞∑
i=1

Zi

∣∣∣ > ε0

√
un

)
≤ 2 exp

{
− ε2

0 log n

2(1 + ε0
√
un)

}
≤ 2n−C

′ε20 .

Corollary 1.1.9 i) If ∃M <∞, |Z1| ≤M , and denoting σ2 = EZ2
1 , we have

∀ε ≥ 0, P

(∣∣∣ ∞∑
i=1

Zi

∣∣∣ ≥ nε

)
≤ 2 exp

{
− nε2

2σ2(1 + εM
σ2 )

}
.

ii) Assume that the variables depend on n (that is, Zi = Zi,n) and are such that ∃M = Mn <
∞, |Z1| ≤ M and define σ2

n = EZ2
1 . If un = n−1σ2

n log n verifies lim
n→∞

un = 0, and if

M/σ2
n < C <∞, then we have:

1

n

n∑
i=1

Zi = Oa.co. (
√
un) .

Remark 1.1.10 By applying Proposition 1.1.6 with a2
i = σ2, An = nσ2, and by choosing

ε = ε0
√
un, we obtain for some C ′ > 0:

P

(
1

n

∣∣∣ ∞∑
i=1

Zi

∣∣∣ > ε0

√
un

)
≤ 2 exp

{
− ε2

0 log n

2(1 + ε0
√
vn)

}
≤ 2n−C

′ε20 .

Where vn = Mun
σ2
n
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In the remainder of this work, we will consider only two kinds of kernel for weighting
functional variables.

Definition 1.1.11 i) A function K from R into R+ such that
∫
K = 1 is called a kernel

of type I if there exist two real constants 0 < C1 < C2 <∞ such that:

C11[0,1] ≤ K ≤ C21[0,1].

ii) A function K from R into R+ such that
∫
K = 1 is called a kernel of type II if its

support is [0, 1] and if its derivative K ′ exists on [0, 1] and satisfies for two real constants
−∞ < C2 < C1 < 0:

C2 ≤ K ′ ≤ C1.

The first kernel family contains the usual discontinuous kernels such as the asymmetrical box
one while the second family contains the standard asymmetrical continuous ones (as the triangle,
quadratic, ...). Finally, to be in harmony with this definition and simplify our purpose, for local
weighting of real random variables we just consider the following kernel-type.

Definition 1.1.12 A function K from R into R+ such that
∫
K = 1 with compact support

[−1, 1] and such that ∀u ∈ (0, 1), K(u) > 0 is called a kernel of type 0.

We can now build the bridge between local weighting and the notation of small ball probabilities.
To fix the ideas, consider the simplest kernel among those of type I namely the asymmetrical
box kernel. Let x be f.r.v. valued in F and x be again a fixed element of F . We can write:

E
(
1[0,1]

(
d(x,X)

h

))
= E(1B(x,h)(X)) = P(X ∈ B(x, h)).

Keeping in mind the functional kernel local weighted variables (??), the probability of the ball
B(x, h) appears clearly in the normalization. At this stage it is worth telling why we are saying
small ball probabilities. In fact, as we will see later on, the smoothing parameter h (also called
the bandwith) decreases with the size of the sample of the functional variables (more precisely,
h tends to zero when n tends to ∞). Thus, when we take n very large, h is close to zero and
then B(x, h) is considered as a small ball and P (X ∈ B(x, h)) as a small ball probability.
From now, for all x in F and for all positive real h, we will use the notation:

φx(h) = P(X ∈ B(x, h)).

This notion of small ball probabilities will play a major role both from theoretical and practical
points of view. Because the notion of ball is strongly linked with the semi-metric d, the choice
of this semi-metric will become an important stage.
Now, let X be a f.r.v. taking its values in the semi-metric space (F , d), let x be a fixed element
of F , let h be a real positive number and let K be a kernel function.
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Lemma 1.1.13 If K is a kernel of type I, then there exist nonnegative finite real constant C
and C ′ such that:

Cφx(h) ≤ EK
(
d(x,X

h

)
≤ C ′φx(h).

Lemma 1.1.14 If K is a kernel of type II and if φx(.) satisfies

∃C3 > 0, ∃ε0, ∀ε < ε0,

∫ ε

0

φx(u)du > C3εφx(ε),

then there exist nonnegative finite real constant C and C ′ such that, for h small enough:

Cφx(h) ≤ EK
(
d(x,X

h

)
≤ C ′φx(h).

1.2 Various Approaches to the Prediction Problem
Let us start by recalling some notation. Let (Xi, Yi)i = 1, . . . n be n independent pairs, identi-
cally distributed as (X, Y ) and valued in E × R, where (E , d) is a semi-metric space (i.e. X is
a f.r.v. and d a semi-metric). Let x (resp. y) be a fixed element of E (resp. R), let Nx ⊂ E
be a neighboorhood of x and S be a fixed compact subset of R. Given x, let us denote by ŷ a
predicted value for the scalar response.
We propose to predict the scalar response Y from the functional predictor X by using various
methods all based on the conditional distribution of Y given X. This leads naturally to focus
on some conditional features such as condition expectation, median, mode and quantiles. The
regression (nonlinear) operator r of Y on X is defined by

r(x) = E(Y |X = x),

and the condition cumulative distribution function (c.d.f) of Y given X is defined by:

∀y ∈ R, FX
Y (x, y) = P(Y ≤ y|X = x).

In addition, if the probability distribution of Y given X is absolutely continuous with respect
to the Lebesgue measure, we note fXY (x, y) the value of the corresponding density function at
(x, y). Note that under a differentiability assumption on FX

Y (x, .), this functional conditional
density can be written as

∀y ∈ R, fXY (x, y) =
∂

∂y
FX
Y (x, y). (6)

For these two last definitions, we are implicitly assuming that there exists a regular version of
this conditional probability. This assumption will be done implicitly as long as we will need to
introduce this conditional cdf FX

Y (x, y) or the conditional density fXY (x, y).
It is clear that each of these nonlinear operators gives information about the link between X,
Y and thus can be useful for predicting method. The first way to construct such a prediction
is obtained directly from the regression operator by putting:

ŷ = r̂(x),

r̂ being an estimator of r.
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1.3 Kernel Estimators
Once the nonparametric modeling has been introduced, we have to find ways to estimate the
various mathematical objects exhibited in the previous models, namely the (nonlinear) operator
r, FX

Y and fXY .

• Estimating the regression. We propose for the nonlinear operator r the following
functional kernel regression estimator:

r̂(x) =

n∑
i=1

YiK
(
h−1d(x,Xi)

)
n∑
i=1

K
(
h−1d(x,Xi)

) ,
where K is an asymmetrical kernel and h (depending on n) is a strictly positive real. It
is a functional extension of the familiar Nadaraya-Watson estimate (see Nadaraya [116]
and Watson [159] which was previously introduced for finite dimensional nonparametric
regression (see Härdle [87] for extensive discussion). The main change comes from the
semi-metric d which measures the proximity between functional objects. To see how such
an estimator works, let us consider the following quantities:

wi,h =
K (h−1d(x,Xi))
n∑
i=1

K
(
h−1d(x,Xi)

) .
Thus, it is easy to rewrite estimator r̂(x) as follows:

r̂(x) =
n∑
i=1

wi,h(x)Yi.

Which is really a weighted average because:

n∑
i=1

wi,h(x) = 1.

The behavior of the wi,h(x)’s can be deduced from the shape of the asymmetrical kernel
function K.

• Estimating the conditional c.d.f.. We focus now on the estimator F̂X
Y of the condi-

tional c.d.f. FX
Y , but let us first explain how we can extend the idea previously used for

the construction of the kernel regression estimator. Clearly, FX
Y = P (Y ≤ y|X = x) can

be expressed in terms of conditional expectation:

FX
Y = E

(
1(−∞,y](Y )|X = x

)



22 Introduction.

and by analogy with the functional regression context, a naive kernel conditional c.d.f.
estimator could be defined as follows:

F̃X
Y (x, y) =

n∑
i=1

K
(
h−1d(x,Xi)

)
1(−∞,y](Yi)

n∑
i=1

K
(
h−1d(x,Xi)

) .

By following the ideas previously developed by Roussas [142] and Samanta [145] in the
finite dimensional case, it is easy to construct a smooth version of this naive estimator.
To do so, it suffices to change the basic indicator function into a smooth c.f.d. Let K0 be
an usual symmetrical kernel, let H be defined as:

∀u ∈ R, H(u) =

∫ u

−∞
K0(v)dv,

and define the kernel conditional c.f.d. estimator as follows:

F̂X
Y (x, y) =

∑n
i=1 K (h−1d(x,Xi))H(g−1(y − Yi)∑n

i=1K (h−1d(x,Xi))
, (7)

where g is a strictly positive real number (depending on n). To fix the ideas, let us
consider K0 as a kernel of type 0 see Definition (1.1.12). In this case, H is a c.f.d. and
the quantity H(g−1(y−Yi)) acts as a local weighting: when Yi is less than y the quantity
H(g−1(y − Yi)) is large and the more Yi is above y.
It is clear that the parameter g acts as the bandwidth h. The smoothness of the function
F̂X
Y (x, .) is controlled both by the smoothing parameter g and by the regularity of the

c.d.f. H. The idea to build such a smooth c.d.f. estimate was introduced by Azzalini [10]
and Reiss [138]. The roles of the other parameters involved in this functional kernel c.d.f.
estimate (i.e. the roles of K and h) are the same as in the regression setting. From this
conditional c.d.f. estimate (??).

• Estimating the conditional density. It is know that, under some differentiability
assumption, the conditional density function can be obtained by derivation the conditional
c.d.f. (see (6)). Since we have now at hand some estimator F̂X

Y of FX
Y , it is natural to

propose the following estimate:

f̂XY (x, y) =
∂

∂y
F̂ x
Y .

Assuming the differentiability of H, we have

∂

∂y
F̂ x
Y =

n∑
i=1

K
(
h−1d(x,Xi)

) ∂
∂y
H(g−1(y − Yi))

n∑
i=1

K
(
h−1d(x,Xi)

) ,
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and this is motivating the following expression for the kernel functional conditional density
estimate:

f̂XY (x, y) =

∑n
i=1K (h−1d(x,Xi))

1
g
H ′(g−1(y − Yi))∑n

i=1K (h−1d(x,Xi))
.

More generally, we can state for any kernel K0 the following definition:

f̂XY (x, y) =

n∑
i=1

K
(
h−1d(x,Xi)

) 1

g
HK0(g−1(y − Yi))

n∑
i=1

K
(
h−1d(x,Xi)

) .

This kind of estimate has been widely studied in the un-functional setting, that is, in the setting
when X is changed into a finite dimensional variable. Concerning the parameters involved in
the functional part of the estimate (namely, the roles of K and h) are the same as in the
regression setting discussed just before while those involved in the un-functional part (namely,
K0 and g) are acting exactly as K and h, respectively as a weight function and as a smoothing
factor.
To end, note that we can easily get the following kernel functional conditional mode estimator
of θ(x):

θ̂(x) = arg sup
y∈S

f̂XY (x, y).

1.4 Topological considerations

1.4.1 Kolmogorov’s entropy

The purpose of this section is to emphasize the topological components of our study. Indeed,as
indicated in Ferraty and Vieu [69], all the asymptotic results in nonparametric statistics for
functional variables are closely related to the concentration properties of the probability measure
of the functional variableX. Here,we have more over to take into account the uniformity aspect.
To this end,let SF be a fixed subset of H of; we consider the following assumption:

∀x ∈ SF , 0 < Cφ(h) ≤ P (X ∈ B(x, h)) ≤ C ′φ(h) <∞.

We can say that the first contribution of the topological structure of the functional space an
be viewed through the function φ controlling the concentration of the measure of probability of
the functional variable on a small ball. Moreover, for the uniform consistency, where the main
tool is to cover a subset SF with a finite a number of balls, one introduces an other topological
concept defined as follows:

Definition 1.4.1 Let SF be a subset of a semi-metric space H, and let ε > 0 be given. A finite
set of points x1, x2, . . . , xN in F is called an ε-net for SF if SF ⊂

⋃N
k=1B(xk, ε).

The quantity ψSF (ε) = log (Nε(SF)), where Nε(SF) is the minimal number of open balls in
F of radius ε which is necessary to cover SF , is called the Kolmogorov’s ε-entropy of the set
SF .
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This concept was introduced by Kolmogorov in the mid-1950’s (see, Kolmogorov and Tikhomirov,
[105]) and it represents a measure of the complexity of a set, in sense that, high entropy means
that much information is needed to describe an element with an accuracy ε. Therefore, the
choice of the topological structure (with other words, the choice of the semi-metric) will play
a crucial role when one is looking at uniform (over some subset SF) of F) asymptotic results.
More precisely, we will see thereafter that a good semi-metric can increase the concentration of
the probability measure of the functional variable X as well as minimize the ε-entropy of the
subset SF . In an earlier contribution (see, Ferraty and al., [69]) we highlighted the phenomenon
of concentration of the probability measure of the functional variable by computing the small
ball probabilities in various standard situations. We will devote Section 1.4.2 to discuss the
behavior of the Kolmogorov’s ε-entropy in these standard situations. Finally, we invite the
readers interested in these two concepts (entropy and small ball probabilities) or/and the use
of the Kolmogorov’s ε-entropy in dimensionality reduction problems to refer to respectively,
Kuelbs and Li [106] or/and Theodoros and Yannis [151].

1.4.2 Some examples

We will start (Example 1) by recalling how this notion behaves in afunctional case (that is
when F = Rp). Then, Examples 2 and 3 are covering special cases of functional process. More
interestingly (from statistical point of view) is Example 4 since it allows to construct, in any
case, a semi-metric with reasonably "small" entropy.

Example 1.4.2 (Compact subset in finite dimensional space) : A standard theorem of topology
guaranties that for each compact subset SF of Rp and for each ε > 0 there is a finite ε-net and
we have for any ε > 0,

ψSF (ε) ≤ Cp log (1/ε) .

More precisely, Chate and Courbage [32] have shown that, for any ε > 0 the regular polyhedron
in Rp with length r can be covered by

(
[2r
√
p/ε] + 1

)p balls, where [m] is the largest integer
which is less than or equal to m. Thus, the Kolmogorov’s ε-entropy of a polyhedron Pr in Rp

with length r is
∀ε > 0, ψPr(ε) ∼ p log ([2r

√
p/ε] + 1) .

Example 1.4.3 (Closed ball in a Sobolev space) : Kolmogorov and Tikhomirov [105] obtained
many upper and lower bounds for the ε-entropy of several functional subsets. A typical result
is given for the class of functions f(t) on T = [0, 2p) with periodic boundary conditions and

1

2π

∫ 2π

0

f 2(t)dt+
1

2π

∫ 2π

0

f (m)2

(t)dt ≤ r.

The ε-entropy of this class, denoted Wm
2 (r), is

ψWm
2 (r)(ε) ≤ C

(r
ε

)1/m

.
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Example 1.4.4 (Unit ball of the Cameron-Martin space) : Recently, Van der Vaart and Van
Zanten [153] characterized the Cameron-Martin space associated to a Gaussian process viewed
as map in C[0, 1] with the spectral measure µ satisfying∫

exp (δ|λ|)µ(dλ) <∞,

by

H =

{
t :7→ Re

(∫
e−itλh(λ)dµ(λ)

)
: h ∈ L2(µ)

}
,

and they show that Kolmogorov’s ε-entropy of the unit ball BCMW of this space with respect to
the supremum norm ‖.‖∞ is

ψBCMW
‖.‖∞

∼
(

log

(
1

ε

))2

, as ε→ 0

Example 1.4.5 (Compact subset in a Hilbert space with a projection semi-metric) : The
projection-based semi-metrics are constructed in the following way. Assume that H is a sepa-
rable Hilbert space, with inner product < ., . > and with orthonormal basis {e1, . . . , ej, . . .}, and
let k be a fixed integer, k > 0. As shown in Lemma 13.6 of Ferraty and Vieu [69], a semi-metric
dk on H can be defined as follows

dk(x, x
′) =

√√√√ k∑
i=1

< x− x′, ej >2. (8)

Let χ be the operator defined from H into Rk by

χ(x) = (< x, e1 >, . . . , < x, ek >),

and let deucl be the euclidian distance on Rk, and let us denote by Beucl(., .) an open ball of Rk

for the associated topology. Similarly, let us note by Bk(., .) an open ball of H for the semi-
metric dk. Because χ is a continuous map from (H, dk) into (Rk, deucl), we have that for any
compact subset S of (H, dk), χ(S) is a compact subset of Rk. Therefore, for each ε > 0 we can
cover χ(S) with balls of centers zi ∈ Rk:

χ(S) ⊂ ∪di=1Beucl(zi, r), with drk = C for some C > 0. (9)

For i = 1, . . . , d, let xi be an element of H such that χ(xi) = zi. The solution of the equation
χ(x) = zi is not unique in general, but just take xi to be one of these solutions. Because of (8),
we have that

χ−1(Beucl(zi, r)) = Bk(xi, r). (10)

Finally, (9) and (10) are enough to show that the Kolmogorov’s ε-entropy of S is

ψS(ε) ≈ Ck log

(
1

ε

)
.
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1.5 Description of the thesis

The first thematic of this thesis focuses on the study of quadratic error in statistical non-
parametric functional. Recall that one of the main reasons for the craze of nonparametric
functional statistical is the solution it offers to the problem of the curse of dimensionality. This
well-known non-parametric statistical phenomenon relates to the significant deterioration of
the quality of the estimate when the dimension increase. Our study highlights the phenomenon
of concentration properties on small balls of the probability measure of the functional variable.

The second problematic addressed is devoted to the study of some functional parameters
in models to revelatory index.We treat the conditional hazard function considering two types
of data namely full data and censored right into a type of correlation which is none other
than the i.i.d and mixing case. The explanatory variable for functional parameter which is the
conditional hazard function is of infinite dimension.

The uniform convergence in functional nonparametric statistic engenders an another prob-
lem of dimensionality. Indeed, in a general way the processing of uniform convergence on a
given set is related to the number of balls which cover the whole. In finite dimension for a
compact set, this number is of the order of rd where r is the radius of the balls, d is est the
dimension of the space. From probabilistic point of view, this relationship is justified by the
fact that the probability of the set is bounded above by the number of balls multiplied by rd
which is the Lebesgue measure of a ball of radius r. So, we can say that there is a relationship
between the number of balls, the size of the space and the probability measure used. Thus, it is
natural to wonder about the uniform convergence rate of the estimators when the dimension is
infinite. Of course, this number depends on the topological structure of the space of functional
variable considered but the most important issues are :

1. Can we find a compromise between the radius of the ball and the number of balls to
ensure uniform convergence of estimators built ?

2. Can we optimize the speed of convergence based on considered the topological structure
?

The study conducted in the third part of this thesis is an answer to this question and the
concept of entropy plays a key role in our approach.

1.5.1 Plan of the thesis

After devoting the first part of the presentation of the asymptotic notations and results as well
as the short description of the thesis. Then, this thesis is divided into two parts. The first part
interested only on a real repones variable and the case of i.i.d observations. In this context, we
study the mean square convergence of kernel estimators of the conditional distribution function
and the conditional density. Then, we derive results on the estimator of the conditional hazard
function. In the second part, we examine the conditional hazard function and we focus on the
situation where the covariate is uncensored and/or right-censored and always in case of i.i.d
observations. We build in this case a kernel estimator for this functional parameter.We establish
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the pointwise almost complete convergence and the uniform almost complete convergence (with
the rate) of this estimator. The interest of our study is to show how the estimation of the
conditional density can be used to obtain an estimate of the simple functional index if it is
unknown. More specifically, this parameter can be estimated by the method pseudo-maximum
the likelihood which is based on the preliminary estimation of the conditional density.

We will finish this section with some prospects research.

1.6 Short presentation of the results
We give hereafter a short presentation of the results obtained in the thesis.

1.6.1 Notations

Let (X, Y ) a random pair where Y is valued in R and X is valued in some semi-normed vector
space (F , d(.; .)) which can be of infinite dimension. We will say that X is a functional random
variable and we will use the abbreviation frv.

For x ∈ F , we will denote the cond-cdf of Y given X = x (respect. the conditional survival
function) by

∀y ∈ R, F x(y) = P(Y | ≤ y|X = x).

(resp. Sx(y) = 1− F x(y))

If this distribution is absolutely continuous with respect to the Lebesgues measure on R, then
we will denote by fx the conditional density of Y given X = x.
Let (Xi, Yi)i=1,...,n be the be the statistical sample of pairs which are identically distributed like
(X, Y ), but not necessarily independent.
We introduce a kernel type estimators for the conditional cumulative distribution function F̂ x

of F x and the conditional density f̂x) of fx as follows:

F̂ x(y) =

n∑
i=1

K
(
h−1
K d(x,Xi)

)
H
(
h−1
H (y − Yi)

)
n∑
i=1

K
(
h−1
K d(x,Xi)

) ,

f̂x(y) =

h−1
H

n∑
i=1

K
(
h−1
K d(x,Xi)

)
H ′
(
h−1
H (y − Yi)

)
n∑
i=1

K
(
h−1
K d(x,Xi)

) .

where K is a kernel, H is a cdf and hK = hK,n (resp. hH = hH,n) is a sequence of positive real
numbers.

In the following (x, y) will be a fixed point in R × F and Nx × Ny will denote a fixed
neighborhood of (x, y), S will be a fixed compact subset of R, and we will use the notation
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B(x, h) = {x′ ∈ F/d(x′, x) < h}. Our nonparametric models will be quite general in the sense
that we will just need the following simple assumption for the marginal distribution of X:

C2
B(F × R) =


ϕ : F × R −→ R
(x, y) −→ ϕ(x, y) such as :

∀z ∈ Nx, ϕ(z, .) ∈ C2(Ny) and

(
ϕ(., y),

∂2ϕ(., y)

∂y2

)
∈ C1

B(x)× C1
B(x),


where C1

B(x) is the set of continuously differentiable functions in the meaning of Gateaux on
Nx (see Troutman [154] for this type of differentiability), which the derivative operator of order
1 at point x is bounded on the unit ball B(0, 1) the functional space F .

We then construct the conditional hazard function of Y knowing X = x as follows:

∀x ∈ F , ∀y ∈ R hXY (x, y) =
fXY (x, y)

1− FX
Y (x, y)

=
fXY (x, y)

SXY (x, y)

The main objective is to study the the nonparametric estimate ĥXY (x, y) =
f̂XY (x, y)

1− F̂X
Y (x, y)

of

hXY (x, y) =
fXY (x, y)

1− FX
Y (x, y)

when the explanatory variable X is valued in a space of eventu-

ally infinite dimension. We give precise asymptotic evaluations of the quadratic error of this
estimator.

1.6.2 Nonparametric models

In the following x will be a fixed point in F , Nx will denote a fixed neighborhood of x, S will
be a fixed compact subset of R.
Our nonparametric models will be quite general in the sense that we will just need.
together with some usual smoothness condition on the function to be estimated. According to
the type of estimation problem to be considered, we will assume either
∃τ <∞, fXY (x, y) ≤ τ, ∀(x, y) ∈ F × S,
∃β > 0, FX

Y (x, y) ≤ 1− β, ∀(x, y) ∈ F × S.

1.6.3 Results: i.i.d. Case

Theorem 1.6.1

MSE ĥXY (x, y) ≡ E
[
(ĥXY (x, y)− hXY (x, y))

]2

≡ Bn(x, y) +
σ2
h(x, y)

nhHφx(hK)
+ o(h2

H) + o(hK) + o

(
1

nhHφx(hK)

)
where

Bn(x, y) =
(Bf

H(x, y)− hXY (x, y)BF
H(x, y))h2

H + (Bf
K(x, y)− hXY (x, y)BF

K(x, y))hK
1− FX

Y (x, y)
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with
Bf
H(x, y) =

1

2

∂2fx(y)

∂y2

∫
t2H ′(t)dt,

Bf
K(x, y) =

∫
B(0,1)

K(‖v‖)Dxf
X
Y (x, y)[v]g(x, v)dµ(v)∫

B(0,1)
K(‖v‖)g(x, v)dµ(v)

BF
H(x, y) =

1

2

∂2FX
Y (x, y)

∂y2

∫
t2H(t)dt

BF
K(x, y) =

∫
B(0,1)

K(‖v‖)DxF
X
Y (x, y)[v]g(x, v)dµ(v)∫

B(0,1)
K(‖v‖)g(x, v)dµ(v)

.

and

σ2
h(x, y) =

β2h
X
Y (x, y)

(β2
1(1− FX

Y (x, y))
(with βj =

∫
B(0,1)

Kj(‖v‖)g(x, v)dµ(v), for, j = 1, 2).

Theorem 1.6.2 Assume some hypotheses, then we have for any x ∈ A,(
nhHφx(hK)

σ2
h(x, y)

)1/2 (
ĥXY (x, y)− hXY (x, y)−Bn(x, y)

)
D→ N (0, 1) as n→∞.

where
A = {x ∈ F , fXY (x, y)(1− FX

Y (x, y)) 6= 0}

and D→ means the convergence in distribution.

The demonstration of these results and the conditions will be given in detail in Chapter 2.

1.6.4 Results: dependent Case

Theorem 1.6.3 * Under assumptions, we have

E
[
ĥ′
x
(y)− h′x(y)

]2

= B2
n(x, y) +

σ2
h′(x, y)

nh3
Hφx(hK)

+ o(h4
H + hK) + o

(
1

nh3
Hφx(hK)

)
,

where

Bn(x, y) =
(Bf ′

H − h
′x(y)BF

H)h2
H + (Bf ′

K − h
′x(y)BF

K)hK
1− F x(y)

with
Bf ′

H (x, y) =
1

2

∂2fx(y)

∂y2

∫
t2H”(t)dt

Bf ′

K (x, y) = hKΦ′0(0)

(
K(1)−

∫ 1

0
(sK ′(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K”(s)βx(s)ds

)
BF
H(x, y) =

1

2

∂2F x(y)

∂y2

∫
t2H ′(t)dt

BF
K(x, y) = hKΨ′0(0)

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

) .
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and

σ2
h′(x, y) =

β2h
x(y)

(β2
1(1− F x(y)))

∫
(H ′′(t))2dt (βj = Kj(1)−

∫ 1

0

(Kj)”(s)βx(s)ds, for, j = 1, 2),

This part contains results on the asymptotic normality of ĥX(y) and ĥ′
X

(y). Let us assume
that hX is sufficiently smooth ( at least of class C2).

Theorem 1.6.4 Under some hypotheses, then we have for any x ∈ A,(
nh3

Hφx(hK)

σ2
h′(x, y)

)1/2 (
ĥ′
x
(y)− h′x(y)−Bn(x, y)

)
D→ N (0, 1) as n→∞.

where
A = {x ∈ F , fx(y)(1− F x(y)) 6= 0}

and D→ means the convergence in distribution.

1.6.5 Results: functional single index

Let Z be a functional random variable, frv its abbreviation. Let (Zi, Xi) be a sample of inde-
pendent pairs, each having the same distribution as (Z,X), our aim is to build nonparametric
estimates of several functions related with the conditional probability distribution (cond-cdf)
of Y given < Z, θ >=< z, θ >.

Let
∀x ∈ R, F (θ, x, Z) = P(X ≤ x| < Z, θ >=< z, θ >),

be the cond-cdf of X given < Z, θ >=< z, θ >, for z ∈ H, which also shows the relationship
between Z and X but is often unknown.
If this distribution is absolutely continuous with respect to the Lebesgues measure on R, then
we will denote by f(θ, ·, z) the conditional density of X given < Z, θ >=< z, θ >.

In the following, for any z ∈ H and y ∈ R, let Nz be a fixed neighborhood of z in H, SR
will be a fixed compact subset of R, and we will use the notation

φθ,z(h) = P (Z ∈ Bθ(z, h)) = P (Z ∈ {z′ ∈ H, 0 < | < z − z′, θ > |) < h}) .

In order to ensure the identifiability of model, We suppose that ;F is twice differentiable (w.r.t.)
x and θ, such as < θ, e1 >= 1 e1 Is the first vector Of the orthonormal basis of H. Clearly,
under this Condition, we have, for all x ∈ H,

F1 (.| < θ1, x >) = F2 (.| < θ2, x >) =⇒ F1 ≡ F2 and θ1 = θ2.

Let (Zi, Xi)i=1,...,n be the be the statistical sample of pairs which are identically distributed like
(Z,X), but not necessarily independent.
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We introduce a kernel type estimators for the conditional cumulative distribution function
F̂ (θ, ., z) of F (θ, ., z) and the conditional density f̂(θ, ., z) of f(θ, ., z) as follows:

F̂ (θ, x, z) =

n∑
i=1

K
(
h−1
K (< z − Zi, θ >)

)
H
(
h−1
H (x−Xi)

)
n∑
i=1

K
(
h−1
K (< z − Zi, θ >)

) .

f̂(θ, x, z) =

n∑
i=1

K
(
h−1
K (< z − Zi, θ >)

)
H ′
(
h−1
H (x−Xi)

)
hH

n∑
i=1

K
(
h−1
K (< z − Zi, θ >)

) ,

with the convention 0/0 = 0. Note that a similar estimate was already introduced in the case
where X is a valued in some semi-metric space which can be of infinite dimension by Ferraty
et al. [69].
We then construct the conditional hazard function of X knowing < θ, Z >=< θ, z > as follows:

ĥ(θ, x, Z) =
f̂(θ, x, Z)

1− F̂ (θ, x, Z)
.

1.6.6 Case of non censored data

Let (Xi, Zi)1≤i≤n be random variables, each of them follows the same law of a couple (X,Z)
where X is valued in R and Z has values in the Hilbert space (H, < ·; · >) . In this section we
will suppose that Xi and Zi are observed. From now, z denotes a fixed element of the functional
space H, Nz denotes a fixed neighborhood of z and SR is a fixed compact of R+.
The non-parametric model on the estimated function hZ will be determined by the regularity
conditions on the conditional distribution of X knowing Z, we have: ∀(x1, x2) ∈ S2

R, ∀(z1, z2) ∈
N 2
z

|F (θ, x1, z1)− F (θ, x2, z2)| ≤ Aθ,z
(
‖z1, z2‖b1 + |x1 − x2|b2

)
,

|f(θ, x1, z1)− f(θ, x2, z2)| ≤ Aθ,z
(
‖z1, z2‖b1 + |x1 − x2|b2

)
; b1 > 0, b2 > 0.

Theorem 1.6.5 we have:

sup
x∈SR
|ĥ(θ, x, z)− h(θ, x, z)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nhH φθ,z(hK)

)
,

In the following result we extended the result of the convergence pointwise in uniform
case. The study of the uniform consistency is motivated by the fact that the latter is an
indispensable tool for studying the asymptotic properties of all estimates of the functional
index θ if is unknown. Thus, by strengthening conditions of preceding result by the following
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topological terms: Let SR is subset compact of R and SH (resp. ΘH, the space of parameters)
such as

SH ⊂
d
SH
n⋃
k=1

B(xk, rn) and ΘH ⊂
d

ΘH
n⋃
j=1

B(tj, rn)

with xk (resp. tj) ∈ H and rn, dSHn , dΘH
n are sequences of positive real numbers which tend to

infinity as n goes to infinity, one will have the result

Theorem 1.6.6 For any compact SR, SH and ΘH, we have:

sup
θ∈ΘH

sup
z∈SH

sup
x∈SR
|ĥ(θ, x, z)− h(θ, x, z)| = O(hb1K) +O(hb2H) +Oa.co.

√ log dSHn + log dΘH
n

nhHφ(hK)


The demonstration of these results and the conditions will be given in detail in Chapter 3.

1.6.7 Results for censored data

Estimation of the hazard function when the data are censored is an important problem in
medical research. So, in practice, in medical applications, it can be in the presence of variables
censored. This problem is usually modeled by considering a positive variable called C, and
the observed random variables are not the couples (Xi, Zi) but only the (Ti,∆i, Zi) where
Ti = min(Xi, Ci) and ∆i = IXi≤Ci

. In the following we use the notations F1(θ, ·, Z) and
f1(θ, ·, Z) to describe the distribution function and conditional density of C knowing Z and we
use the notation S1(θ, ·, Z) = 1− F1(θ, ·, Z).

The aim of this section, is to adapt these ideas as part of an explanatory variable Z func-
tional, and build a kernel estimator function type of conditional random h(θ, ·, Z) adapted
to the censored data. If we introduce the notation L(θ, ·, Z) = 1 − S1(θ, ·, Z)S(θ, ·, Z) and
ϕ(θ, ·, Z) = f(θ, ·, Z)S1(θ, ·, Z), we can reformulate the expression for the complete data as
follows:

h(θ, t, Z) =
ϕ(θ, t, Z)

1− L(θ, t, Z)
, ∀t, L(θ, t, Z) < 1. (11)

h(θ, t, Z) =
ϕ(θ, t, Z)

1− L(θ, t, Z)
, ∀t, L(θ, t, Z) < 1.

So, we can define function estimators ϕ(θ, ·, Z) and L(θ, ·, Z) by setting

L̂(θ, t, Z) =

n∑
i=1

K
(
h−1
K (< z − Zi, θ >)

)
H
(
h−1
H (t− Ti)

)
n∑
i=1

K
(
h−1
K (< z − Zi, θ >)

)
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and

ϕ̂(θ, t, Z) =

n∑
i=1

K
(
h−1
K (< z − Zi, θ >)

)
∆iH

′ (h−1
H (t− Ti)

)
hH

n∑
i=1

K
(
h−1
K (< z − Zi, θ >)

) .

Finally the hazard function estimator is given as:

h̃(θ, t, Z) =
ϕ̂(θ, t, Z)

1− L̂(θ, t, Z)
.

Theorem 1.6.7 We have:

sup
t∈SR
|h̃(θ, t, z)− h(θ, t, z)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nhH φθ,z(hK)

)
,

Thereafter we propose to study the uniform almost complete convergence of our estimator
defined above

Theorem 1.6.8 We have

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR
|h̃(θ, t, z)− h(θ, t, z)| = O(hb1K) +O(hb2H) +Oa.co.

√ log dSHn + log dΘH
n

nhHφ(hK)


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Conditional risk estimate for functional
data under strong mixing conditions

2.1 Introduction

We consider the problem of nonparametric estimation of the conditional hazard function
for functional mixing data. More precisely, given a strictly stationary random variables
Zi = (Xi, Yi)i∈N, we investigate a kernel estimate of the conditional hazard function of univariate
response variable Yi given the functional variable Xi . The principal aim of this chapter is to
give the mean squared convergence rate and to prove the asymptotic normality of the proposed
estimator.

2.2 The model

Consider Zi = (Xi, Yi), i ∈ N be a F × R-valued measurable strictly stationary process,
defined on a probability space (Ω,A,P), where (F , d) is a semi-metric space.
In the following x will be a fixed point in F and Nx will denote a fixed neighborhood of x. We
assume that the regular version of the conditional probability of Y given X exists. Moreover,
we suppose that, for all z ∈ Nx the conditional distribution function of Y given X = z, F z(.),
is 3-times continuously differentiable and we denote by f z its conditional density with respect
to Lebesgue’s measure over R. In this chapter, we consider the problem of the nonparametric
estimation of the conditional hazard function defined, for all y ∈ R such that F x(y) < 1, by

hx(y) =
fx(y)

1− F x(y)

In our spatial context, we estimate this function by

ĥx(y) =
f̂x(y)

1− F̂ x(y)
.

where

F̂ x(y) =

∑n
i=1K(h−1

K d(x,Xi))H(h−1
H (y − Yi))∑n

i=1 K(h−1
K d(x,Xi))

, ∀y ∈ R
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and

f̂x(y) =
h−1
H

∑n
i=1K(h−1

K d(x,Xi))H
′(h−1

H (y − Yi))∑n
i=1K(h−1

K d(x,Xi))
,∀y ∈ R

We can write an estimator of the first derivative of the hazard function through the first
derivative of the estimator.
It is therefore natural to try to construct an estimator of the derivative of the function hX on
the basis of these ideas. To estimate the conditional distribution function and the conditional
density function in the presence of functional conditional random variable X.
The kernel estimator of the derivative of the function conditional random functional h′X can
therefore be constructed as follows:

ĥ
′X(y) =

f̂
′X(y)

1− F̂ Y (y)
+ (ĥX(y))2, (1)

the estimator of the derivative of the conditional density is given in the following formula:

f̂
′X(y) =

∑n
i=1 h

−2
H K(h−1

K d(X,Xi))H
′′
(h−1

H (y − Yi))∑n
i=1K(h−1

K d(X,Xi))
(2)

Later, we need assumptions on the parameters of the estimator, ie on K,H,H
′
, hH and

hK are little restrictive. Indeed, on one hand, they are not specific to the problem estimate
of hX (but inherent problems of FX , fX and f ′X estimation), and secondly they consist with
the assumptions usually made under functional variables, with Kis the kernel, H is a given
continuously differentiable distribution function,hK = hK,n(resp. hH = hH,n ) is a sequence of
positive real numbers and H ′ is the derivative of H. Furthermore, the estimator ĥ′

x
(y) can we

written as

ĥ′
x
(y) =

f̂
′x
N (y)

F̂ x
D − F̂ x

N(y)
+

(
f̂xN(y)

F̂ x
D − F̂ x

N(y)

)2

(3)

where

F̂ x
D = 1

nE[K1]

n∑
i=1

K(h−1
K d(x,Xi)), K1 = K(h−1

K d(x,X1))

F̂ x
N(y) = 1

nE[K1]

n∑
i=1

K(h−1
K d(x,Xi))H(h−1

H (y − Yi))

f̂xN(y) = 1
nhHE[K1]

n∑
i=1

K(h−1
K d(x,Xi))H

′(h−1
H (y − Yi))

f̂
′x
N (y) = 1

nh2
HE[K1]

n∑
i=1

K(h−1
K d(x,Xi))H

′′
(h−1

H (y − Yi)).
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2.3 Notations and hypotheses

All along the chapter, when no confusion is possible, we will denote by C and C ′ some strictly
positive generic constants. In order to establish our asymptotic results we need the following
hypotheses, for all r > 0 and i ∈ N:

(H0)P(X ∈ B(x, r)) =: φx(r) > 0, whereB(x, r) = {x′ ∈ F/d(x, x′) < r}.

(H1)(Xi, Yi)i is α-mixing sequence whose the coefficients of mixture verify:

∃a > 0,∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.

(H2)0 < sup
i 6=j

P((Xi, Xj) ∈ B(x, h)×B(x, h)) = O
(

(φx(h))(a+1)/a

n1/a

)
.

Note that (H0) can be interpreted as a concentration hypothesis acting on the distribution of
the f.r.v. X, whereas (H2) concerns the behavior of the joint distribution of the pairs (Xi, Xj).
In fact, this hypothesis is equivalent to assume that, for n large enough

sup
i 6=j

P((Xi, Xj) ∈ B(x, h)×B(x, h))

P(X ∈ B(x, h))
≤ C

(
φx(h)

n

)1/a

.

(H3) for l ∈ {0, 2}, the functions Ψl(s) = E[∂
lFX(y)
∂yl

− ∂lFx(y)
∂yl
|d(x,X) = s] and

Φl(s) = E[∂
lfX(y)
∂yl

− ∂lfx(y)
∂yl
|d(x,X) = s] are derivable at s = 0 .

(H4) The bandwidth hK as n −→∞ satisfies:

hK ↓ 0, ∀t ∈ [0, 1] lim
hK→0

φx(thK)

φx(hK)
= βx(t) and nh3

Hφx(hK)→∞ .

(H5) The kernel K from R into R+ is a differentiable function supported on [0, 1]. Its deriva-
tive K ′ exists and is such that there exist two constants C and C ′ with −∞ < C < K ′(t) <
C ′ < 0 for 0 ≤ t ≤ 1.

(H6) H has even bounded derivative function supported on [0, 1] that verifies∫
R
t2H ′(t)dt <∞ and

∫
R
| t |b2 (H(2))2(t)dt <∞.

(H7) There exist sequences of integers (un) and (vn) increasing to infinity
such that (un + vn) ≤ n, satisfying
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(i)vn = o((nh3
Hφx(hK))1/2) and ( n

h3
Hφx(hK)

)1/2α(vn) −→ 0 as n −→ 0,

(ii)qnvn = o((nh3
Hφx(hK))1/2) and qn( n

h3
Hφx(hK)

)1/2α(vn) −→ 0 as n −→∞,
where qn is the largest integer such that qn(un + vn) ≤ n.

2.3.1 Remarks on the assumptions

Remark 3.1. Assumption (H0) plays an important role in our methodology. It is known as (for
small h) the ”concentration hypothesis acting on the distribution of X ” in infinite-dimensional
spaces. This assumption is not at all restrictive and overcomes the problem of the non-existence
of the probability density function. In many examples, around zero the small ball probability
φx(h) can be written approximately as the product of two independent functions Ψ(x) and ϕ(h)
as φx(h) = Ψ(x)ϕ(h) + o(ϕ(h)). This idea was adopted by Masry [114] who reformulated the
Gasser et al. [78] one. The increasing propriety of φx(.) implies that ξxh(.) is bounded and then
integrable (all the more so ξx0 (.) is integrable).
Without the differentiability of φx(.), this assumption has been used by many authors where
Ψ(.) is interpreted as a probability density, while ϕ(.) may be interpreted as a volume param-
eter. In the case of finite-dimensional spaces, that is L = Rd, it can be seen that φx(h) =
C(d)hdΨ(x) + ohd), where C(d) is the volume of the unit ball in Rd. Furthermore, in infinite
dimensions, there exist many examples fulfilling the decomposition mentioned above. We quote
the following (which can be found in Ferraty et al. [60]):

(1)φx(h) ≈ Ψ(h)hγ for some γ > 0.

(2)φx(h) ≈ Ψ(h)hγ exp{C/hp} for some γ > 0 and p > 0.

(3)φx(h) ≈ Ψ(h)/ | lnh | .

The function ζxh(.) which intervenes in Assumption (H4) is increasing for all fixed h. Its
pointwise limit ζx0 (.) also plays a determinant role. It intervenes in all asymptotic properties, in
particular in the asymptotic variance term. With simple algebra, it is possible to specify this
function with ζ0(u) := ζx0 (u) in the above examples by:

(1)ζ0(u) = uγ.

(2)ζ0(u)δ1(u) where δ1(.)is Dirac function,

(3)ζ0(u) = I]0,1](u).

Assumption (H2) is classical and permits to make the variance term negligible.
Remark 3.2. Assumptions (H3) is a regularity condition which characterize the functional

space of our model and is needed to evaluate the bias.

Remark 3.3. Assumptions (H5) and (H6) are classical in functional estimation for finite
or infinite dimension spaces.
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� First
We purpose to study the L2-consistency and the asymptotic normality of the nonparametric

estimate ĥ′
x
of h′x when the random filed (Zi, i ∈ N) satisfies the Previous mixing condition

mentioned.

2.3.2 Mean squared convergence

The first result concerns the L2-consistency of ĥ′x(y).

Theorem 3.1. Under assumptions (H0)-(H6), we have

E
[
ĥ
′x(y)− h′x(y)

]2

= B2
n(x, y) +

σ2
h′(x, y)

nh3
Hφx(hK)

+ o

(
h4
H + hK

)
+ o

(
1

nh3
Hφx(hK)

)
,

where

Bn(x, y) =
(Bf ′

H − h
′x(y)BF

H)h2
H + (Bf ′

H − h
′x(y)BF

K)hK
1− F x(y)

with

Bf ′

H (x, y) = 1
2
∂2fx(y)
∂y2

∫
t2H

′′
(t)dt

Bf ′

K (x, y) = hKΦ′0(0)
(K(1)−

∫ 1
0 (sK′(s))′βx(s)ds)

(K(1)−
∫ 1
0 sK

′′ (s)βx(s)ds)

BF
H(x, y) = 1

2
∂2Fx(y)
∂y2

∫
t2H

′
(t)dt

BF
K(x, y) = hKΨ′0(0)

(K(1)−
∫ 1
0 (sK(s))′βx(s)ds)

(K(1)−
∫ 1
0 sK

′ (s)βx(s)ds)
.

and

σ2
h′(x, y) =

β2h
x(y)

(β2
1(1− F x(y)))

∫
(H ′′(t))2dt(βj = Kj(1)−

∫ 1

0

(Kj),,(s)βx(s)ds, for, j = 1, 2),

Proof. By using the same decomposition used in ( Theorem 3.1 Rabhi et al. [129], P.408),
we show that the proof of Theorem 3.1 can be deduced from the following intermediates results:
Lemma 3.1. Under the hypotheses of Theorem 3.1, we have

E[f̂
′x
N (y)]− f ′x(y) = Bf ′

H (x, y)h2
H +Bf ′

K (x, y)hK + o(h4
H) + o(hK)

and
E[F̂ x

N(y)]− F x(y) = BF
H(x, y)h2

H +BF
K(x, y)hK + o(h2

H) + o(hK).

Remark 3.4. Observe that, the result of this lemma permits to write

[EF̂ x
N(y)− F x(y)] = O(h2

H + hK)
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and
[Ef̂ ′xN (y)− f ′x(y)] = O(h4

H + hK).

Lemma 3.2. Under the hypotheses of Theorem (3.1), we have

V ar[f̂
′x
N (y)] =

σ2
f ′(x, y)

nh3
Hφx(hK)

+ o

(
1

nh3
Hφx(hK)

)
,

V ar[F̂ x
N(y)] = o

(
1

nhHφx(hK)

)
and

V ar[F̂ x
D] = o

(
1

nhHφx(hK)

)
.

where σ2
f ′(x, y) := fx(y)

∫
(H

′′
(t))2dt.

Lemma 3.3. Under the hypotheses of Theorem (3.1), we have

Cov(f̂
′x
N (y), F̂ x

D) = o

(
1

nh3
Hφx(hK)

)
,

Cov(f̂
′x
N (y), F̂ x

N(y)) = o

(
1

nh3
Hφx(hK)

)
and

Cov(F̂ x
D, F̂

x
N(y)) = o

(
1

nhHφx(hK)

)
.

Remark 3.5. It is clear that, the results of Lemmas (3.2 and 3.3) allows to write

V ar(F̂ x
D − F̂ x

N) = o

(
1

nhHφx(hK)

)

2.3.3 Asymptotic normality

This section contains results on the asymptotic normality of ĥX(y) and ĥ′X(y). Let us assume
that hX is sufficiently smooth ( at least of class C2). We can write an estimator of the first
derivative of the hazard function through the first derivative of the estimator. Later, we need
assumptions on the parameters of the estimator, ie on K,H,H’ hH and hK are little restrictive.
Indeed, on one hand, they are not specific to the problem estimate of hX (but inherent problems
of FX , fX and f ′X estimation), and secondly they consist with the assumptions usually made
under functional variables.
To obtain the asymptotic normality of the conditional estimates, we have to add the following
assumptions:
(H8) H’ is twice differentiable.
(H9) The bandwidth hH and hK , small ball probability φz(h) and arithmetical α mixing coeffi-
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cient with order a > 3 satisfying
(H9a)∃C > 0, h2j+1

H φz(hk) ≥ c
n2/(a+1) , for j = 0, 1

(H9b)

(
φz(hk)
n

)1/a

+ φz(hk) = 0

(
1

n2/(a+1)

)
, for j = 0, 1

(H9c) lim
n−→∞

hK = 0, lim
n−→∞

hH = 0, and lim
n−→∞

log n

nh2j+1
H φx(hK)

= 0, j = 0, 1;


Theorem 3.2. Assume that (H0)-(H9) hold, then we have for any x ∈ A ,(

nh3
Hφx(hK)

σ2
h′(x, y)

)1/2(
ĥ
′x(y)− h′x(y)−Bn(x, y)

)
D−→ N (0, 1) as n −→∞.

where
A = {x ∈ F , fx(y)(1− F x(y)) 6= 0}

and D−→ means the convergence in distribution.
Obviously, if one imposes some additional assumptions on the function φx(.) and the bandwidth
parameters (hK and hH) we can improved our asymptotic normality by removing the bias term
Bn(x, y).

Corollary 3.1.
Under the hypotheses of Theorem 3.2 and if the bandwidth parameters (hK and hH) and if

the function φx(hK) satisfies:

lim
n→∞

(h4
H + hK)

√
nφx(hK) = 0

we have (
nh3

Hφx(hK)

σ2
h′(x, y)

)1/2(
ĥ
′x(y)− h′x(y)

)
D−→ N (0, 1) as n −→∞.

Proof of Theorem and Corollary. We consider the decomposition

ĥx(y)− hx(y) = 1

F̂x
D−F̂

x
N (y)

[f̂xN(y)− Ef̂xN(y)]

+ hx(y)

F̂x
D−F̂

x
N (y)

(EF̂ x
N(y)− F x(y))

+ 1

F̂x
D−F̂

x
N (y)

(Ef̂xN(y)− fx(y))

+ hx(y)

F̂x
D−F̂

x
N (y)

(1− EF̂ x
N(y)− (F̂ x

D − F̂ x
N(y)))

(4)

and let

ĥ
′X(y) =

f̂
′X(y)

1− F̂ Y (y)
+ (ĥX(y))2, (5)
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with

ĥ
′X(y)− h′X(y) = {(ĥX(y))2 − (hX(y))2}+

{
f̂
′X(y)

1− F̂X(y)
− f

′X(y)

1− FX(y)

}
(6)

for the first term of (6) we can write

| (ĥX(y))2 − (hX(y))2 |≤| ĥX(y)− hX(y) | . | ĥX(y) + hX(y) | (7)
because the estimator ĥX(.) converge a.co. to hX(.) we have

sup
y∈L
| (ĥX(y))2 − (hX(y))2 |≤ 2 | hX(y) | sup

y∈L
| ĥX(y)− hX(y) |

L will be a fixed compact subset of R+, for the second term of (6) we have
f̂
′X(y)

1−F̂X(y)
− f

′X(y)
1−FX(y)

= 1

(1−F̂X(y))(1−FX(y))
{f̂ ′X(y)− f ′X(y)}

+ 1

(1−F̂X(y))(1−FX(y))
{f ′X(y)(F̂X(y)− FX(y))}

+ 1

(1−F̂X(y))(1−FX(y))
{FX(y)(f̂

′X(y)− f ′X(y))}
Therefore, Theorem 3.2 and corollary 3.1 are consequence of Lemma3.1, remark (3.4) and the
following results.

Lemma3.4. Under the hypotheses of theorem 3.2(
nh3

Hφx(hK)

σ2
f ′(x, y)

)1/2(
f̂
′x
N (y)− E[f̂

′x
N (y)]

)
−→ N(0, 1).

Lemma3.5. Under Assumptions (H0)-(H6) and (H8), we have

(nφx(hK))1/2(F̂X(y)− FX(y))
D−→ N (0, σ2

FX (y)) (8)

where

σ2
FX (y) =

β2F
X(y)(1− FX(y))

β2
1

Lemma3.6. Under the hypotheses of Theorem 3.2

F̂ x
D − F̂ x

N(y)→ 1− F x(y) in probability

and (
nhHφx(hK)

σ2
h(x, y)

)1/2(
F̂ x
D − F̂ x

N(y)− 1 + E[F̂ x
N(y)]

)
= Op(1).

Lemma3.7. Under Assumptions (H0)-(H7), we have

(nhHφx(hK))1/2(ĥX(y)− hX(y))
D−→ N (0, σ2

hX (y)) (9)

where

σ2
hX (y) =

β2h
X(y)

β2
1(1− FX(y))

∫
R
(H

′
(t))2dt

The proofs of Lemma 3.5 can be seen in Ezzahrioui and Ould-Saïd [56].
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2.4 Applications

In this section we emphasize the potential impact of our work by studying its practical interest
in some important statistical problems. Moreover, in order to show the easily implementation
of our approach on a concrete cases, we discuss in the second part of this section the practical
utilization of our model in risk analysis.

• On the choices of the bandwidths parameters: As all smoothing by a kernel method,
the choice of bandwidths parameters has crucial role in determining the performance of the
estimators. The mean quadratic error given in Theorem (3.1) is a basic ingredient to solve this
problem. Usually, the ideal theoretical choices are obtained by minimizing this error. Here, we
have explicated its leading term which is

B2
n(x, y) +

σ2
h′

(x, y)

nh3
Hφx(hK)

.

Then, the smoothing parameters minimizing this leading term is asymptotically optimal
with respect the L2-error. However, the practical utilization of this criterium requires some
additional computational efforts. More precisely, it requires the estimation of the unknown
quantities Ψ

′
0,Φ

′
0, f

′x(y) and F x(y).Clearly, all these estimations can be obtained by using a
pilots estimators of the conditional distribution function F x(y) and of the conditional density
f
′x(y). Such estimations are possible by using the kernel methods, with a separate choice of

the bandwidths parameters between both models. More preciously, for the conditional density,
we propose to adopt, to the functional case, the bandwidths selectors studied by Bouraine et
al. [24] by considering the following criterion

CV PDF =
1

n

∑
i=1

W1(Xi)

∫
f̂ ′
X−i2

i (y)W2(y)dy − 2

n

∑
i=1

f̂ ′
X−i

i (Yi)W1(Xi)W2(Yi) (10)

while, for the the conditional distribution function we can use the cross-validation rule proposed
by De Gooijer and Gannoun [82] (in vectorial case)

CV CDF =
1

n

∑
k,l∈ln

[IYk≤Yl − F̂X−k
k (Yl)]

2W (Xk)

where W1,W2 and W are some suitable trimming functions and

F̂X−k
k (Yl) =

∑
i∈Ik,ln,ςn

K(h−1
K d(Xk, Xi))H(h−1

H (Yl − Yi))∑
i∈Ik,ln,ςn

K(h−1
K d(Xk, Xi))

and

f̂ ′
X−i

i
(y) =

h−2
H

∑
j∈Iin,ςn

K(h−1
K d(Xi, Xj))H

′′(h−1
H (y − Yj))∑n

j∈Iin,ςn
K(h−1

K d(Xi, Xj))
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with {
Ik,ln,ςn = {i such that |i− k| ≥ ςn and |i− l| ≥ ςn
andI in,ςn = {j such that |j − i| ≥ ςn}.

Of course, we can also adopt another selection methods, such that, the parametric bootstrap
method, proposed by Hall et al. [83] and Hyndman et al. [99] for, respectively, the conditional
cumulative distribution function and the conditional density in the finite dimensional case.
Nevertheless, a data-driven method allows to overcome this additional computation is very
important in practice and is one of the natural prospects of the present work.
• Confidence intervals: The main application of Theorem 3.2 is to build confidence band for
the true value of h′x(y). Similarly to the previous application, the practical utilization of our
result in this topic requires the estimation of the quantity σ2

h′(x, y). A plug-in estimate for
the asymptotic standard deviation σ2

h′(x, y) can be obtained by using the estimators f̂ ′x(y) and
F̂ x(y) of f ′x(y) andF ′x(y) . Then we get

σ̂2
h′(x, y) :=

β̂2f̂
′x(y)(

β̂2
1(1− F̂ x(y))2

)
where 

β̂1 = 1
nφx(hk)

n∑
i=1

K(h−1
k d(x,Xi))

and β̂2 = 1
nφx(hk)

n∑
i=1

K2(h−1
k d(x,Xi))

Clearly, the function φx(.) does not appear in the calculation of the confidence interval by
simplification. More precisely, we obtain the following approximate (1− ζ) confidence band for
h′x(y)

ĥ′x(y)± t1−ζ/2 ×
(
σ̂2
h′(x, y)

nh3
hφx(hk)

)1/2

where t1−ζ/2 denotes the 1− ζ/2 quantile of the standard normal distribution.

2.5 Appendix

In the following, we will denote ∀i

Ki = K(h−1
H d(x,Xi)), Hi = H(h−1

H (y − Yi)) and H ′′i = H ′′(h−1
H (y − Yi)).

Proof of Lemma 3.1. Firstly, for E[f̂ ′xN (y)], we start by writing

E[f̂ ′xN (y)] =
E
[
K1E[h−2

H H ′′1 |X]
]

E[K1]
with h−2

H E[H ′′1 |X] =

∫
R
H ′′(t)fX(y − hHt)dt.
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The latter can be re-written, by using a Taylor expansion under (H3), as follows

h−2
H E[H ′′1 |X] = fX(y) +

h2
H

2

(∫
t2H ′′(t)dt

)
∂2fX(y)

∂2y
+ o(h2

H).

Thus, we get

E[f̂ ′xN (y)] =
1

E[K1]

(
E
[
h2
H

2
K1

∂2fX(y)

∂2y

] ∫
t2H ′′(t)dt

)
+

1

E[K1]
(E[K1f

X(y)] + o(h2
H)).

Let Ψl(., y) := ∂lf(y)
∂ly

: for l ∈ {0.2}, since Φl(0) = 0, we have

E[K1Ψl(X, y)] = Ψl(x, y)E[K1] + E[K1(Ψl(X, y)−Ψl(x, y))]

= Ψl(x, y)E[K1] + E[K1(Φl(d(x,X))]

= Ψl(x, y)E[K1] + Φ′l(0)E[d(x,X)K1] + o(E[d(x,X)K1]).

So,

E[f̂ ′
x

N(y)] = fx(y) +
h2
H

2
∂2fx(y)
∂y2

∫
t2H

′′
(t)dt+ o

(
h2
H

E[d(x,X)K1]
E[K1]

)

+ Φ′0(0)E[d(x,X)K1]
E[K1]

+ o

(
E[d(x,X)K1]

E[K1]

)
.

Similarly to Ferraty et al. [60] we show that

1

φx(hK)
E[d(x,X)K1] = hK

(
K(1)−

∫ 1

0

(sK(s))′βx(s)ds+ o(1)

)
and

1

φx(hK)
E[K1] = K(1)−

∫ 1

0

K ′(s)βx(s)ds+ o(1).

Hence,

E[f̂ ′
x

N(y)] = fx(y) +
h2
H

2
∂2fx(y)
∂y2

∫
t2H

′′
(t)dt

+ hKΦ′0(0)
(K(1)−

∫ 1
0 (sK(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′(s)βx(s)ds)
+ o(h2

H) + o(hK).

Secondly, concerning E[F̂ x
N(y)], we write by an integration by part

E[F̂ x
N(y)] =

1

E[K1]
E[K1E[H1|X]] with E[H1|X] =

∫
R
H ′(t)FX(y − hHt)dt.

The same steps used to studying E[f̂xN(y)] can be followed to prove that
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E[F̂ x
N(y)] = F x(y) +

h2
H

2
∂2Fx(y)
∂y2

∫
t2H

′
(t)dt

+ hKΨ′0(0)
(K(1)−

∫ 1
0 (sK(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′(s)βx(s)ds)
+ o(h2

H) + o(hK).

Proof of Lemma 3.2. For the first quantity V ar[f̂xN(y)], we have

s2
n = V ar[f̂ ′

x

N(y)] =
1

(nh2
HE[K1(x)])2

V ar

[∑
i=1

Γi(x)

]

where
Γi(x) = Ki(x)H ′′i (y)− E[Ki(x)H ,,

i (y)].

Thus

V ar[f̂xN(y)] = 1
(nh2

HE[K1])2

∑
i 6=j

cov(Γi(x),Γj(x))︸ ︷︷ ︸
scovn

+
n∑
i=1

V ar(Γi(x))︸ ︷︷ ︸
svarn

= V ar[Γ1]

n(h2
HE[K1])2 + 1

(nh2
HE[K1])2

∑
i 6=j

Cov(Γi,Γj).

Let us calculate the quantity V ar[Γ1(x)]. We have:

V ar[Γ1(x)] = E[K2
1(x)H

′′2
1 (y)]−

(
E[K1(x)H ′′1 (y)]

)2

= E[K2
1(x)]

E[K2
1 (x)H

′′2
1 (y)]

E[K2
1 (x)]

− (E[K1(x)])2

(
E[K1(x)H′′1 (y)]

E[K1(x)]

)2

.

So, by using the same arguments as those used in pervious lemma we get

1
φx(hK)

E[K2
1(x)] = K2(1)−

∫ 1

0
(K2(s))

′
βx(s)ds+ o(1)

E[K2
1 (x)H

′′2
1 (y)]

E[K2
1 (x)]

= h2
Hf

x(y)
∫
H
′′2(t)dt+ o(h2

H)

E[K1(x)H′′1 (y)]

E[K1(x)]
= h2

Hf
x(y) + o(h2

H)

which implies that

V ar[Γi(x)] = h2
Hφx(hK)fx(y)

∫
H ,,2(t)dt

(
K2(1)−

∫ 1

0

(K2(s))
′
βx(s)ds

)
+ o(h2

Hφx(hK)). (11)
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Now, let us focus on the covariance term. To do that, we need to calculate the asymptotic
behavior of quantity defined as∑

i 6=j

|cov(Γi(x),Γj(x))| =
∑

1≤|i−j|≤cn

|cov(Γi(x),Γj(x))| = J1,n + J2,n.

with cn →∞, as n→∞.
for all (i, j) we write

cov(Γi(x),Γj(x)) = E[Ki(x)Kj(x)H ′′i (y)H ′′j (y)]− (E[Ki(x)H ′′i (y)])2

and we use the fact that

E[H ′′i (y)H ′′j (y)|(Xi, Xj)] = O(h4
H);∀i 6= j,E[H ′′i (y)|Xi] = O(h2

H);∀i.

For J1,n: by means of the integral realized above and under (H2) and (H5), we get

E[KiKjH
′′
i H
′′
j ] ≤ Ch4

HP[(Xi, Xj) ∈ B(x, hK)×B(x, hK)]

and
E[Ki(x)H ′′i (y)] ≤ Ch2

HP(Xi ∈ B(x, hK)).

It follows that, the hypothesis (H0), (H2) and (H5), imply that

cov(Γi(x),Γj(x)) ≤ Ch2
Hφx(hK)

(
φx(hK) +

(
φx(hK)

n

)1/a)
So

J1,n ≤ C

(
ncnh

4
H

(
φx(hK)

n

)1/a

φx(hK)

)
.

Hence

J1,n = O
(
ncnh

4
H

(
φx(hK)

n

)1/a

φx(hK)

)
.

On the other hand, these covariances can be controlled by mean of the usual Davydov-Rios’s
covariance inequality for mixing processes (see Rio [140], formula 1.12a). Together with (H1),
this inequality leads to:

∀i 6= j, |Cov(Di(x), Dj(x))| ≤ C|i− j|−a.

By the fact,
∑

k≥cn+1

k−a ≤
∫ ∞
Cn

t−adt =
c−a+1
n

a− 1
, we get by applying (H1),

J2,n ≤
∑

|i−j|≥cn+1

|i− j|−a ≤ nc−a+1
n

a− 1
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Thus, by using the following classical technique (see Bosq [20]), we can write

scovn =
∑

0<|i−j|≤un

|Cov(Γi(x),Γj(x))|+
∑

|i−j|>un

|Cov(Γi(x),Γj(x))|.

Thus

scovn ≤ Cn

(
cnh

4
H

(
φx(hK)

n

)1/a

φx(hK) +
c−a+1
n

a− 1

)

Choosing cn = h−4
H

(
φx(hK)

n

)−1/a

, and owing to the right inequality in (H7(ii)), we can deduce

scovn = o(nh2
Hφx(hK)). (12)

Finally,

s2
n = o(nh2

Hφx(hK)) +O(nh2
Hφx(hK))

= O(nh2
Hφx(hK))

In conclusion, we have

V ar[f̂ ′
x

N(y)] =
fx(y)

∫
H
′′2(t)dt

nh4
Hφx(hK)

(
(K2(1)−

∫ 1
0 (K2(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′(s)βx(s)ds)2

)

+ o

(
1

nh2
Hφx(hK)

) (13)

Now, for F̂ x
N(y) , (resp. F̂ x

D) we replace H
′′
i (y) by Hi(y) (resp. by 1) and we follow the same

ideas, under the fact that H ≤ 1

V ar[F̂ x
N(y)] = Fx(y)

nφx(hK)

(∫
H
′2(t)dt

)(
(K2(1)−

∫ 1
0 (K2(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′(s)βx(s)ds)2

)

+ o

(
1

nφx(hK)

)
.

and

V ar[F̂ x
D] =

1

nφx(hK)

(
(K2(1)−

∫ 1

0
(K2(s))′βx(s)ds)

(K(1)−
∫ 1

0
K ′(s)βx(s)ds)2

)
+ o

(
1

nφx(hK)

)
.

This yields the proof.

Proof of Lemma 3.3. The proof of this lemma follows the same steps as the previous
Lemma. For this, we keep the same notation and we write



2.5 Appendix 49

Cov(f̂ ′
x

N(y), F̂ x
N(y)) = 1

nh2
H(E[K1(x)])2Cov(Γ1(x),∆1(x))

+ 1
n2h2

H(E[K1(x)])2

∑
i 6=j

Cov(Γi(x),∆j(x))

Where
∆i(x) = Ki(x)Hi(y)− E[Ki(x)Hi(y)].

For the first term, we have under (H4)
Cov(Γ1(x),∆1(x)) = E[K2

1(x)H1(y)H ′′1 (y)]− E[K1(x)H1(y)]E[K1(x)H ′′1 (y)]

= O(h2
Hφx((hk)) +O(h2

Hφ
2
x((hk))

= O(h2
Hφx((hk))

Therefore,

1

nh2
H(E[K1(x)])2

Cov(Γ1(x),∆1(x)) = O
(

1

nφx(hK)

)
= o

(
1

nh2
Hφx(hK)

)
(14)

So, by using similar arguments as those invoked in the proof of Lemma 3.2, and we use once
again the boundedness of K and H, and the fact that (H1) and (H6) imply that

E(H ′′i (y)|Xi) = O(h2
H).

Moreover, the right part of (H7(ii)) implies that

Cov(Γi(x),∆j(x)) = O
(
h2
Hφx(hK)

(
φx(hK)

n

)1/a

+ φx(hK)

)
,

Meanwhile, using the Davydov-Rio’s inequality in Rio [140] for mixing processes leads to

|Cov(Γi(x),∆j(x))| ≤ Cα(|i− j|) ≤ C|i− j|−a,

we deduce easily that for any cn > 0 :

∑
i 6=j

Cov(Γi(x),∆j(x)) = O
(
ncnh

2
Hφx(hK)

(
φx(hK)

n

)1/a

+ φx(hK)

)
+O(nh2

Hc
−a
n ).

It suffices now to take cn = h−2
H

(
φx(hK)

n

)1/a

to get the following expression for the sum of the

covariances: ∑
i 6=j

Cov(Γi(x),∆j(x)) = o(nφx(hK)). (15)
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From (14) and (15) we deduce that

Cov(f̂ ′
x

N(y), F̂ x
N(y)) = o

(
1

nh2
Hφx(hK)

)
The same arguments can be used to shows that

Cov(f̂ ′
x

N(y), F̂ x
D) = o

(
1

nh2
Hφx(hK)

)
and

Cov(F̂ x
N(y), F̂ x

D) = o

(
1

nφx(hK)

)
.

Proof of Lemma 3.4. Let

Sn =
n∑
i=1

Λi(x)

Where

Λi(x) :=

√
hHφx(hK)

hHE[K1(x)]
Γi(x). (16)

Obviously, we have√
nh3

Hφx(hK)[σf ′(x, y)]−1(f̂ ′
x

N(y)− Ef̂ ′
x

N(y)) = (n(σf ′(x, y))2)−1/2Sn.

Thus, the asymptotic normality of (n(σf ′(x, y))2)−1/2Sn, is sufficient to show the proof of this
Lemma. This last is shown by the blocking method, where the random variables Λi are grouped
into blocks of different sizes defined.
We consider the classical big- and small-block decomposition. We split the set {1,2,...,n} into
2kn + 1 subsets with large blocks of size un and small blocks of size vn and put

kn :=

[
n

un + vn

]
.

Assumption (H7)(ii) allows us to define the large block size by

un :=

[(
nh3

Hφx(hK)

qn

)1/2
]
.

Using Assumption (H7) and simple algebra allows us to prove that

vn
un
→ 0,

un
n
→ 0,

un√
nh3

Hφx(hK)
→ 0, and

n

un
α(vn)→ 0 (17)
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Now, let Υj,Υ
′
j and Υ

′′
j be defined as follows:

Υj =

j(u+v)+u∑
i=j(u+v)+1

Λi(x), 0 ≤ j ≤ k + 1

Υ
′
j =

(j+1)(u+v)+u∑
i=j(u+v)+u+1

Λi(x), 0 ≤ j ≤ k + 1

Υ
′′
j =

n∑
i=k(u+v)+1

Λi(x), 0 ≤ j ≤ k + 1

Clearly, we can write

Sn :=
k−1∑
j=0

Υj +
k−1∑
j=0

Υ′j + Υ
′′

kr =: S ′n + S ′′n + S ′′′n .

We prove that

(i)
1

n
E(S ′′n)2 → 0, (ii)

1

n
E(S ′′′n )2 → 0, (18)

|E{exp(itn−1/2S ′n)} −
k−1∏
j=0

E{exp(itn−1/2Υj)}| → 0, (19)

1

n

k−1∑
j=0

E(Υ2
j) −→ σ2

f ′(x,y), (20)

1

n

k−1∑
j=0

E
(

Υ2
jI{|Υj |>ε

√
nσ2

f ′ (x,y)}

)
−→ 0, (21)

for every ε > 0.
Expression (18) show that the terms S ′′n and S ′′′n are negligible, while Equations (19) and (20)
show that the Υj are asymptotically independent, verifying that the sum of their variances
tends to σ2

f ′(x, y). Expression (21) is the Lindeberg-Feller’s condition for a sum of independent
terms. Asymptotic normality of Sn is a consequence of Equations (18)-(21).

• Proof of (18) Because E(Λj) = 0,∀j, we have that

E(S ′′n)2 = V ar

( k−1∑
j=0

Υ′j

)
=

k−1∑
j=0

V ar(Υ′j) +
∑

0≤i<j≤k−1

Cov(Υ′i,Υ
′
j) := Π1 + Π2.

By the second-order stationarity we get
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V ar(Υ′j) = V ar

( (j+1)(un+vn)∑
i=j(un+vn)+un+1

Λi(x)

)

= vnV ar(Λ1(x)) +
vn∑
i 6=j

Cov(Λi(x),Λj(x)).

Then

Π1

n
= kvn

n
V ar(Λ1(x)) + 1

n

k−1∑
j=0

vn∑
i 6=j

Cov(Λi(x),Λj(x))

≤ kvn
n

{
φx(hk)

hHE2K1(x)
V ar(Γ1(x))

}
+ 1

n

n∑
i 6=j

|Cov(Λi(x),Λj(x))|

≤ kvn
n

{
1

hHφx(hk)
V ar(Λ1(x))

}
+ 1

n

n∑
i 6=j

|Cov(Λi(x),Λj(x))|

Simple algebra gives us

kvn
n
∼=
(

n

un + vn

)
vn
n
∼=

vn
un + vn

∼=
vn
un
−→ 0 as n −→∞.

Using Equation (12) we have

lim
n−→∞

Π1

n
= 0 (22)

Now, let us turn to Π2/n. We have

Π2

n
= 1

n

k−1∑
i=0i6=j

k−1∑
j=0

Cov(Υi(x),Υj(x))

= 1
n

k−1∑
i=0i6=j

k−1∑
j=0

vn∑
l1=1

vn∑
l2

Cov(Λmj+l1 ,Λmj+l2)

with mi = i(un + vn) + vn . As i 6= j, we have |mi −mj + l1 − l2| ≥ un. It follows that

Π2

n
≤ 1

n

n∑
i=1|i−j|≥un

n∑
j=1

Cov(Λi(x),Λj(x)),

Then

lim
n−→∞

Π2

n
= 0. (23)
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By Equations (22) and (23) we get Part(i) of the Equation(18).
We turn to (ii), we have

1
n
E(S ′′n)2 = 1

n
V ar(Υ′′K)

= Vn
n
V ar(Λ1(x)) + 1

n

Vn∑
i=1i 6=j

Vn∑
j=1

Cov(Λi(x),Λj(x))

where Vn = n− kn(un + vn); by the definition of kn, we have Vn ≤ un + vn.
Then

1

n
E(S ′′n)2 ≤ un + vn

n
V ar(Λ1(x)) +

1

n

Vn∑
i=1i 6=j

Vn∑
j=1

Cov(Λi(x),Λj(x))

and by the definition of un and vn we achieve the proof of (ii) of Equation (18).

• Proof of (19) We make use of Volkonskii and Rozanov’s lemma (see the appendix in
Masry, [114]) and the fact that the process (Xi, Xj) is strong mixing.
Note that ΥaisF jaia -mesurable with ia = a(un + vn) + 1 and ja = a(un + vn) + un; hence, with
Vj = exp(itn−1/2Υj) we have

|E
{

exp(itn−1/2S ′n)
}
−

k−1∏
j=0

E
{

exp(itn−1/2Υj)
}
| ≤ 16knα(vn + 1)

∼= n
vn
α(vn + 1)

which goes to zero by the last part of Equation (17). Now we establish Equation (20).

• Proof of (20) Note that V ar(S ′n) → σ2
f ′(x, y) by equation (18) and since V ar(S ′n) →

σ2
f ′(x, y) (by the definition of the Λi and Equation (13)). Then because

E(S ′n)2 = V ar(S ′n) =
k−1∑
j=0

V ar(Υj) +
k−1∑
i=0i6=j

k−1∑
j=0

Cov(Υi,Υj),

all we have to prove is that the double sum of covariances in the last equation tends to zero.
Using the same arguments as those previously used for Π2 in the proof of first term of Equation
(18)we obtain by replacing vn by un we get

1

n

k−1∑
j=0

E(Υ2
j5) =

kun
n
V ar(Λ1) + o(1).

As V ar(Λ1) −→ σ2
f ′(x, y) and kun/n −→ 1, we get the result.

Finally, we prove Equation (21).
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• Proof of (21) Recall that

Υj =

j(un+vn)+un∑
i=j(un+vn)+1

Λi.

Making use Assumptions (H5) and (H6), we have

|Λi| ≤ C(h2
Hφx(hk))

−1/2

thus
|Υj| ≤ Cun(h2

Hφx(hk))
−1/2,

which goes to zero as n goes to infinity by Equation (17). Then for n large enough, the set
{|Υj| > ε(nσ2

f ′(x, y))−1/2} becomes empty, this completes the proof and therefore that of the
asymptotic normality of (n(σf ′(x, y))2)−1/2Sn,

• Proof of Lemmas 3.6. It is clear that, the result of Lemma 3.1 and Lemma 3.2 permits
us

E(F̂ x
D − F̂ x

N − 1 + F x(y)) −→ 0

and
V ar(F̂ x

D − F̂ x
N − 1 + F x(y)) −→ 0

then
F̂ x
D − F̂ x

N − 1 + F x(y)
P−→ 0

Moreover, the asymptotic variance of F̂ x
D − F̂ x

N given in remark (3.5) allows to obtain

nhHφx(hK)

σh(x, y)2
V ar(F̂ x

D − F̂ x
N − 1 + E(F̂ x

N(y))) −→ 0.

By combining result with the fact that

E(F̂ x
D − F̂ x

N − 1 + E(F̂ x
N(y))) = 0

we obtain the claimed result.
• Proof of Lemmas 3.7. The proof is based on decomposition (4). Therefore, Lemma 3.7 is
consequence of a special case of the lemmas Lemma 3.1 with Lemma 3.4 (it suffices to replace
f̂ ′
x

N(y) and f̂xN(y) and fx(y)) Remark 3.4 and Lemma 3.6.
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� Second

Our main purpose is to study the L2-consistency and the asymptotic normality of the non-
parametric estimate ĥx of hx when the random filed (Zi, i ∈ N) satisfies the Previous mixing
condition mentioned with change:
We add at the (H3) Φ

′

l(s) = E[∂
lf
′X(y)
∂yl

− ∂lf
′x(y)
∂yl
|d(x,X) = s] are derivable at s = 0.

and the fourth and seventh conditions are becoming as follows:
(H4) The bandwidth hK satisfies for j = 0, 1:

hK ↓ 0, ∀t ∈ [0, 1] lim
hK→0

φx(thK)

φx(hK)
= βx(t) and nh2j+1

H φx(hK)→∞ as n −→∞.

(H7) There exist sequences of integers (un) and (vn) increasing to infinity
such that (un + vn) ≤ n, satisfying for j=0,1

(i)vn = o((nh2j+1
H φx(hK))1/2) and ( n

h2j+1
H φx(hK)

)1/2α(vn) −→ 0 as n −→ 0,

(ii)qnvn = o((nh2j+1
H φx(hK))1/2) and qn( n

h2j+1
H φx(hK)

)1/2α(vn) −→ 0 as n −→ 0,

where qn is the largest integer such that qn(un + vn) ≤ n.

Furthermore, the estimator ĥx(y) can written as:

ĥx(y) =
f̂xN(y)

F̂ x
D − F̂ x

N(y)
(24)

where

F̂ x
D = 1

nE[K1]

∑n
i=1 K(h−1

K d(x,Xi)), K1 = K(h−1
K d(x,X1))

F̂ x
N(y) = 1

nE[K1]

∑n
i=1 K(h−1

K d(x,Xi))H(h−1
H (y − Yi))

f̂xN(y) = 1
nhHE[K1]

∑n
i=1 K(h−1

K d(x,Xi))H
′(h−1

H (y − Yi))

2.5.1 Mean squared convergence

The first result concerns the L2-consistency of ĥx(y).

Theorem 1. Under assumptions (H0)-(H6), we have

E
[
ĥx(y)− hx(y)

]2

= B2
n(x, y) +

σ2
h(x, y)

nhHφx(hK)
+ o(h4

H) + o(hK) + o

(
1

nhHφx(hK)

)
,

and ∫
R
E
[
ĥx(y)− hx(y)

]2

dx =

∫
R
B2
n(x, y)dx+

∫
R

σ2
h(x, y)

nhHφx(hK)
dx+ o

(
1

nhHφx(hK)

)
,
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where

Bn(x, y) =
(Bf

H − hx(y)BF
H)h2

H + (Bf
K − hx(y)BF

K)hK
1− F x(y)

with

Bf
H(x, y) = 1

2
∂2fx(y)
∂y2

∫
t2H ′(t)dt

Bf
K(x, y) = hKΦ′0(0)

(K(1)−
∫ 1
0 (sK(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′(s)βx(s)ds)

BF
H(x, y) = 1

2
∂2Fx(y)
∂y2

∫
t2H

′
(t)dt

BF
K(x, y) = hKΨ′0(0)

(K(1)−
∫ 1
0 (sK(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′ (s)βx(s)ds)
.

and

σ2
h(x, y) =

β2h
x(y)

(β2
1(1− F x(y)))

(with βj = Kj(1)−
∫ 1

0

(Kj)′(s)βx(s)ds, for, j = 1, 2),

Proof.

By using the same decomposition used in ( Theorem 3.1 Rabhi et al. [129], P.408), we show
that the proof of Theorem 1 can be deduced from the following intermediates results:

Lemma 2. Under the hypotheses of Theorem (1), we have

E[f̂xN(y)]− fx(y) = Bf
H(x, y)h2

H +Bf
K(x, y)hK + o(h2

H) + o(hK)

and
E[F̂ x

N(y)]− F x(y) = BF
H(x, y)h2

H +BF
K(x, y)hK + o(h2

H) + o(hK).

Remark 1. Observe that, the result of this lemma permits to write

[EF̂ x
N(y)− F x(y)] = o(h2

H) + O(hK)

and
[Ef̂xN(y)− fx(y)] = o(h2

H + hK).

Lemma 3. Under the hypotheses of Theorem (1), we have

V ar[f̂xN(y)] =
σ2
f (x, y)

nhHφx(hK)
+ o

(
1

nhHφx(hK)

)
,

V ar[F̂ x
N(y)] = o

(
1

nhHφx(hK)

)
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and
V ar[F̂ x

D] = o

(
1

nhHφx(hK)

)
.

where σ2
f (x, y) := fx(y)

∫
H
′2(t)dt.

Lemma 4. Under the hypotheses of Theorem (1), we have

Cov(f̂xN(y), F̂ x
D) = o

(
1

nhHφx(hK)

)
,

Cov(f̂xN(y), F̂ x
N(y)) = o

(
1

nhHφx(hK)

)
and

Cov(f̂xD, F̂
x
N(y)) = o

(
1

nhHφx(hK)

)
.

Remark 2. It is clear that, the results of Lemmas (3 and 4) allows to write

V ar(F̂ x
D − F̂ x

N) = o

(
1

nhHφx(hK)

)

2.5.2 Asymptotic normality

This section contains results on the asymptotic normality of ĥx(y) and ĥ′x(y). Let us assume
that hZ is sufficiently smooth ( at least of class C2).
We can write an estimator of the first derivative of the hazard function through the first
derivative of the estimator.
It is therefore natural to try to construct an estimator of the derivative of the function hX on
the basis of these ideas. To estimate the conditional distribution function and the conditional
density function in the presence of functional conditional random variable X.
The kernel estimator of the derivative of the function conditional random functional hZ can
therefore be constructed as follows:

ĥ
′X(y) =

f̂
′X(y)

1− F̂ Y (y)
+ (ĥX(y))2, (25)

the estimator of the derivative of the conditional density is given in the following formula:

f̂
′X(y) =

∑n
i=1 h

−2
H K(h−1

K d(X,Xi))H
′′
(h−1

H (y − Yi))∑n
i=1K(h−1

K d(X,Xi))
(26)

Later, we need assumptions on the parameters of the estimator, ie on K,H,H ′ , hH and hK
are little restrictive. Indeed, on one hand, they are not specific to the problem estimate of
hX (but inherent problems of FX , fX and f ′X estimation), and secondly they consist with the
assumptions usually made under functional variables.
To obtain the asymptotic normality of the conditional estimates, we have to add the following
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assumptions:
(H8) H’ is twice differentiable.
(H9) The bandwidth hH and hK , small ball probability φz(h) and arithmetical α mixing coeffi-
cient with order a > 3 satisfying

(H9a)∃C > 0, h2j+1
H φz(hk) ≥ c

n2/(a+1) , for j = 0, 1

(H9b)

(
φz(hk)
n

)1/a

+ φz(hk) = 0

(
1

n2/(a+1)

)
, for j = 0, 1

(H9c) lim
n−→∞

hK = 0, lim
n−→∞

hH = 0, and lim
n−→∞

log n

nh2j+1
H φx(hK)

= 0, j = 0, 1;


Theorem 5. Assume that (H0)-(H7) hold,and if the following inequalities

∃η > 0, C, C ′ > 0 such that Cn
3−a
a+1

+η ≤ hHφx(hK) and φx(hK) ≤ C ′n
1

1−a (27)

are verified with a > (5 +
√

17)/2 , then we have for any x ∈ A(
nhHφx(hK)

σ2
h(x, y)

)1/2(
ĥx(y)− hx(y)−Bn(x, y)

)
D→ N (0, 1) as n −→∞.

where
A = {x ∈ F , fx(y)(1− F x(y)) 6= 0}

and D→ means the convergence in distribution.
Obviously, if one imposes some additional assumptions on the function φx(.) and the bandwidth
parameters (hK and hH) we can improved our asymptotic normality by removing the bias term
Bn(x, y).

Corollary 6.
Under the hypotheses of Theorem 5 and if the bandwidth parameters (hK and hH) and if

the function φx(hK) satisfies:

lim
n→∞

(h2
H + hK)

√
nφx(hK) = 0

we have (
nhHφx(hK)

σ2
h(x, y)

)1/2(
ĥx(y)− hx(y)

)
D→ N (0, 1) as n −→∞.

Proof of Theorem 5 and Corollary 6. We consider the decomposition

ĥx(y)− hx(y) = 1

F̂x
D−F̂

x
N (y)

[f̂xN(y)− Ef̂xN(y)]

+ 1

F̂x
D−F̂

x
N (y)
{hx(y)(EF̂ x

N(y)− F x(y)) + (Ef̂xN(y)− fx(y))

+ hx(y)

F̂x
D−F̂

x
N (y)

(1− EF̂ x
N(y)− (F̂ x

D − F̂ x
N(y)))

(28)
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Therefore, theorem (5) and corollary (6) are consequence of lemma (2), remark (1) and the
following results.

Lemma 7. Under the hypotheses of theorem 5(
nhHφx(hK)

σ2
f (x, y)

)1/2(
f̂xN(y)− E[f̂xN(y)]

)
−→ N(0, 1).

Lemma 8. Under the hypotheses of Theorem 5

F̂ x
D − F̂ x

N(y)→ 1− F x(y) in probability

and (
nhHφx(hK)

σ2
h(x, y)

)1/2(
F̂ x
D − F̂ x

N(y)− 1 + E[F̂ x
N(y)]

)
= Op(1).

Theorem 9 Under Assumptions (H0)-(H9), then we have for any x ∈ A,

(nh3
Hφx(hK))1/2(ĥ

′X(y)− h′X(y))
D→ N (0, σ2

h′(y))

azl = K l(1)−
∫ 1

0

(K l(u))′βz0(u)du for l = 1, 2

and

σ2
h′(y) =

az2h
X(y)

(az1)2(1− FX(y))

∫
(H

′′
(t))2dt.

Proof. Let

ĥ
′X(y) =

f̂
′X(y)

1− F̂X(y)
+ (ĥX(y))2, (29)

with

ĥ
′X(y)− ĥX(y) = {(ĥX(y))2 − (hX(y))2}+

{
f̂
′X(y)

1− F̂X(y)
− f

′X(y)

1− FX(y)

}
(30)

Using again (30), and fact that

(1− FX(y))

(1− F̂X(y))(1− FX(y))
−→ 1

1− FX(y)

and
f̂
′X(y)

(1− F̂X(y))(1− FX(y))
−→ f

′X(y)

(1− FX(y))2
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The asymptotic normality of (nh3
Hφx(hK))1/2(ĥ

′X(y) − h′X(y)) can be deduced from both
following lemmas and corollary 6.

Lemma 10.Under assumptions (H0)-(H6)and (H8), we have

(nφx(hK))1/2(F̂X(y)− FX(y))
D→ N(0, σ2

FX (y)) (31)

where

σ2
FX (y) =

az2F
X(y)(1− FX(y))

(az1)2

Lemma 11. Under assumptions of theorem 3.3, we have

(nh3
Hφx(hK))1/2(f̂

′X(y)− f ′X(y))
D→ N(0, σ2

f ′X (y)) (32)

where

σ2
f ′Z

(y) =
az2f

X(y)

(az1)2

∫
R
(H ′′(t))2dt

The proofs of lemma 10 can be seen in ezzahrioui and ould- said [56].

2.6 Discussions and Applications
In this section we emphasize the potential impact of our work by studying its practical interest
in some important statistical problems. Moreover, in order to show the easily implementation
of our approach on a concrete cases, we discuss in the second part of this section the practical
utilization of our model in risk analysis.

2.6.1 Some derivatives

• On the choices of the bandwidths parameters: As all smoothing by a kernel method, the choice
of bandwidths parameters has crucial role in determining the performance of the estimators.
The mean quadratic error given in Theorem (1) is a basic ingredient to solve this problem.
Usually, the ideal theoretical choices are obtained by minimizing this error. Here, we have
explicated its leading term which is

B2
n(x, y) +

σ2
h(x, y)

nhHφx(hK)
.

Then, the smoothing parameters minimizing this leading term is asymptotically optimal
with respect the L2-error. However, the practical utilization of this criterium requires some
additional computational efforts. More precisely, it requires the estimation of the unknown
quantities Ψ

′
0,Φ

′
0, f

x(y) and F x(y).Clearly, all these estimations can be obtained by using a
pilots estimators of the conditional distribution function F x(y) and of the conditional density
fx(y). Such estimations are possible by using the kernel methods, with a separate choice of the
bandwidths parameters between both models. More preciously, for the conditional density, we
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propose to adopt, to the functional case, the bandwidths selectors studied by Bouraine et al.
[24] by considering the following criterion

CV PDF =
1

n

∑
i=1

W1(Xi)

∫
f̂X

−i2

i (y)W2(y)dy − 2

n

∑
i=1

f̂X
−i
i (Yi)W1(Xi)W2(Yi) (33)

while, for the the conditional distribution function we can use the cross-validation rule proposed
by De Gooijer and Gannoun [82] (in vectorial case)

CV CDF =
1

n

∑
k,l∈In

[IYk≤Yl − F̂X−k
k (Yl)]

2W (Xk)

where W1,W2 and W are some suitable trimming functions and

F̂X−k
k (Yl) =

∑
i∈Ik,ln,ςn

K(h−1
K d(Xk, Xi))H(h−1

H (Yl − Yi))∑n

i∈Ik,ln,ςn
K(h−1

K d(Xk, Xi))

and

f̂X
−i
i (y) =

h−1
H

∑
j∈Iin,ςn

K(h−1
K d(Xi, Xj))H

′(h−1
H (y − Yj))∑

j∈Iin,ςn
K(h−1

K d(Xi, Xj))

with {
Ik,ln,ςn = {i such that |i− k| ≥ ςn and |i− l| ≥ ςn}
I in,ςn = {j such that |j − i| ≥ ςn}.

Of course, we can also adopt another selection methods, such that, the parametric bootstrap
method, proposed by Hall et al. [83] and Hyndman et al. [99] for, respectively, the condi-
tional cumulative distribution function and the conditional density in the finite dimensional
case. Nevertheless, a data-driven method allows to overcome this additional computation is
very important in practice and is one of the natural prospects of the present work.

•Confidence intervals: The main application of Theorem 5 is to build confidence band
for the true value of hx(y). Similarly to the previous application, the practical utilization of
our result in this topic requires the estimation of the quantity σ2

h(x, y). A plug-in estimate for
the asymptotic standard deviation σ2

h(x, y) can be obtained by using the estimators f̂x(y) and
F̂ x(y) of fx(y) and F x(y) . Then we get

σ̂2
h(x, y) :=

ζ̂2f̂
x(y)(

ζ̂2
1 (1− F̂ x(y))2

)
where 

ζ̂1 = 1
nφx(hk)

n∑
i=1

K(h−1
k d(x,Xi))

and ζ̂2 = 1
nφx(hk)

n∑
i=1

K2(h−1
k d(x,Xi))
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Clearly, the function φx(.) does not appear in the calculation of the confidence interval by
simplification. More precisely, we obtain the following approximate (1− ζ) confidence band for
hx(y)

ĥx(y)± t1−ζ/2 ×
(

σ̂2
h(x, y)

nhhφx(hk)

)1/2

where t1−ζ/2 denotes the 1− ζ/2 quantile of the standard normal distribution.

2.7 Appendix

In the following, we will denote ∀i

Ki = K(h−1
H d(x,Xi)), Hi = H(h−1

H (y − Yi)) and H ′i = H ′(h−1
H (y − Yi)).

Proof of Lemma 2. Firstly, for E[f̂xN(y)], we start by writing

E[f̂xN(y)] =
E
[
K1E[h−1

H H ′1|X]
]

E[K1]
with h−1

H E[H ′1|X] =

∫
R
H ′(t)fX(y − hHt)dt.

The latter can be re-written, by using a Taylor expansion under (H3), as follows

h−1
H E[H ′1|X] = fX(y) +

h2
H

2

(∫
t2H ′(t)dt

)
∂2fX(y)

∂2y
+ o(h2

H).

Thus, we get

E[f̂xN(y)] =
1

E[K1]

(
E[K1f

X(y)] +

(∫
t2H ′(t)dt

)
E
[
K1

∂2fX(y)

∂2y

]
+ o(h2

H)

)
.

Let Ψl(., y) := ∂lf(y)
∂ly

: for l ∈ {0.2}, since Φl(0) = 0, we have

E[K1Ψl(X, y)] = Ψl(x, y)E[K1] + E[K1(Ψl(X, y)−Ψl(x, y))]

= Ψl(x, y)E[K1] + E[K1(Φl(d(x,X))]

= Ψl(x, y)E[K1] + Φ′l(0)E[d(x,X)K1] + o(E[d(x,X)K1]).

So,

E[f̂xN(y)] = fx(y) +
h2
H

2
∂2fx(y)
∂y2

∫
t2H

′
(t)dt+ o

(
h2
H

E[d(x,X)K1]
E[K1]

)

+ Φ′0(0)E[d(x,X)K1]
E[K1]

+ o

(
E[d(x,X)K1]

E[K1]

)
.
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Similarly to Ferraty et al. [60] we show that

1

φx(hK)
E[d(x,X)K1] = hK

(
K(1)−

∫ 1

0

(sK(s))′βx(s)ds+ o(1)

)
and

1

φx(hK)
E[K1] = K(1)−

∫ 1

0

K ′(s)βx(s)ds+ o(1).

Hence,

E[f̂xN(y)] = fx(y) +
h2
H

2
∂2fx(y)
∂y2

∫
t2H

′
(t)dt

+ hKΦ′0(0)
(K(1)−

∫ 1
0 (sK(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′(s)βx(s)ds)
+ o(h2

H) + o(hK).

Secondly, concerning E[F̂ x
N(y)], we write by an integration by part

E[F̂ x
N(y)] =

1

E[K1]
E[K1E[H1|X]] with E[H1|X] =

∫
R
H ′(t)FX(y − hHt)dt.

The same steps used to studying E[f̂xN(y)] can be followed to prove that

E[F̂ x
N(y)] = F x(y) +

h2
H

2
∂2Fx(y)
∂y2

∫
t2H

′
(t)dt

+ hKΨ′0(0)
(K(1)−

∫ 1
0 (sK(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′(s)βx(s)ds)
+ o(h2

H) + o(hK).

Proof of Lemma 3. For the first quantity V ar[f̂xN(y)], we have

s2
n = V ar[f̂xN(y)] =

1

(nhHE[K1(x)])2
V ar

[∑
i=1

Γi(x)

]

where
Γi(x) = Ki(x)H ′i(y)− E[Ki(x)H

′

i(y)].

Thus

V ar[f̂xN(y)] = 1
(nhHE[K1])2

∑
i 6=j

cov(Γi(x),Γj(x))︸ ︷︷ ︸
scovn

+
n∑
i=1

V ar(Γi(x))︸ ︷︷ ︸
svarn

= V ar[Γ1]
n(hHE[K1])2 + 1

(nhHE[K1])2

∑
i 6=j

Cov(Γi,Γj).

Let us calculate the quantity V ar[Γ1(x)]. We have:
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V ar[Γ1(x)] = E[K2
1(x)H

′2
1 (y)]−

(
E[K1(x)H ′1(y)]

)2

= E[K2
1(x)]

E[K2
1 (x)H

′2
1 (y)]

E[K2
1 (x)]

− (E[K1(x)])2

(
E[K1(x)H′1(y)]

E[K1(x)]

)2

.

So, by using the same arguments as those used in pervious lemma we get

1
φx(hK)

E[K2
1(x)] = K2(1)−

∫ 1

0
(K2(s))

′
βx(s)ds+ o(1)

E[K2
1 (x)H

′2
1 (y)]

E[K2
1 (x)]

= hHf
x(y)

∫
H
′2(t)dt+ o(hH)

E[K1(x)H′1(y)]

E[K1(x)]
= hHf

x(y) + o(hH)

which implies that

V ar[Γi(x)] = hHφx(hK)fx(y)

∫
H
′2(t)dt

(
K2(1)−

∫ 1

0

(K2(s))
′
βx(s)ds

)
+ o(hHφx(hK)). (34)

Now, let us focus on the covariance term. To do that, we need to calculate the asymptotic
behavior of quantity defined as∑

i 6=j

|cov(Γi(x),Γj(x))| =
∑

1≤|i−j|≤cn

|cov(Γi(x),Γj(x))| = J1,n + J2,n.

with cn →∞, as n→∞.
for all (i, j) we write

cov(Γi(x),Γj(x)) = E[Ki(x)Kj(x)H ′i(y)H ′j(y)]− (E[Ki(x)H ′i(y)])2

and we use the fact that

E[H ′i(y)H ′j(y)|(Xi, Xj)] = O(h2
H);∀i 6= j,E[H ′i(y)|Xi] = O(hH);∀i.

For J1,n: by means of the integral realized above and under (H2) and (H5), we get

E[KiKjH
′
iH
′
j] ≤ Ch2

HP[(Xi, Xj) ∈ B(x, hK)×B(x, hK)]

and
E[Ki(x)H ′i(y)] ≤ ChHP(Xi ∈ B(x, hK)).

It follows that, the hypothesis (H0), (H2) and (H5), imply that

cov(Γi(x),Γj(x)) ≤ Ch2
Hφx(hK)

(
φx(hK) +

(
φx(hK)

n

)1/a)
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So

J1,n ≤ C

(
ncnh

2
H

(
φx(hK)

n

)1/a

φx(hK)

)
.

Hence

J1,n = O
(
ncnh

2
H

(
φx(hK)

n

)1/a

φx(hK)

)
.

On the other hand, these covariances can be controled by mean of the usual Davydov-Rios’s
covariance inequality for mixing processes (see Rio [140], formula 1.12a). Together with (H1),
this inequality leads to:

∀i 6= j, |Cov(Di(x), Dj(x))| ≤ C|i− j|−a.

By the fact,
∑

k≥cn+1

k−a ≤
∫ ∞
Cn

t−adt =
c−a+1
n

a− 1
, we get by applying (H1),

J2,n ≤
∑

|i−j|≥cn+1

|i− j|−a ≤ nc−a+1
n

a− 1

Thus, by using the following classical technique (see Bosq [20]), we can write

scovn =
∑

0<|i−j|≤un

|Cov(Γi(x),Γj(x))|+
∑

|i−j|>un

|Cov(Γi(x),Γj(x))|.

Thus

scovn ≤ Cn

(
cnh

2
H

(
φx(hK)

n

)1/a

φx(hK) +
c−a+1
n

a− 1

)

Choosing cn = h−2
H

(
φx(hK)

n

)−1/a

, and owing to the right inequality in (H7(ii)), we can deduce

scovn = o(nhHφx(hK)). (35)

Finally,

s2
n = o(nhHφx(hK)) +O(nhHφx(hK))

= O(nhHφx(hK))

In conclusion, we have

V ar[f̂xN(y)] =
fx(y)

∫
H
′2(t)dt

nhHφx(hK)

(
(K2(1)−

∫ 1
0 (K2(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′(s)βx(s)ds)2

)

+ o

(
1

nhHφx(hK)

) (36)
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Now, for F̂ x
N(y) , (resp. F̂ x

D) we replace H ′i(y) by Hi(y) (resp. by 1) and we follow the same
ideas, under the fact that H ≤ 1

V ar[F̂ x
N(y)] = Fx(y)

nφx(hK)

(∫
H
′2(t)dt

)(
(K2(1)−

∫ 1
0 (K2(s))′βx(s)ds)

(K(1)−
∫ 1
0 K

′(s)βx(s)ds)2

)

+ o

(
1

nφx(hK)

)
.

and

V ar[F̂ x
D] =

1

nφx(hK)

(
(K2(1)−

∫ 1

0
(K2(s))′βx(s)ds)

(K(1)−
∫ 1

0
K ′(s)βx(s)ds)2

)
+ o

(
1

nφx(hK)

)
.

This yields the proof.

Proof of Lemma 4. The proof of this lemma follows the same steps as the previous
Lemma. For this, we keep the same notation and we write

Cov(f̂xN(y), F̂ x
N(y)) = 1

nhH(E[K1(x)])2Cov(Γ1(x),∆1(x))

+ 1
n2hH(E[K1(x)])2

∑
i 6=j

Cov(Γi(x),∆j(x))

Where
∆i(x) = Ki(x)Hi(y)− E[Ki(x)Hi(y)].

For the first term, we have under (H4)
Cov(Γ1(x),∆1(x)) = E[K2

1(x)H1(y)H ′1(y)]− E[K1(x)H1(y)]E[K1(x)H ′1(y)]

= O(hHφx((hk)) +O(hHφ
2
x((hk))

= O(hHφx((hk))

Therefore,

1

nhH(E[K1(x)])2
Cov(Γ1(x),∆1(x)) = O

(
1

nφx(hK)

)
= o

(
1

nhHφx(hK)

)
(37)

So, by using similar arguments as those invoked in the proof of Lemma 3, and we use once
again the boundedness of K and H, and the fact that (H1) and (H6) imply that

E(H ′i(y)|Xi) = O(hH).

Moreover, the right part of (H7(ii)) implies that

Cov(Γi(x),∆j(x)) = O
(
hHφx(hK)

(
φx(hK)

n

)1/a

+ φx(hK)

)
,
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Meanwhile, using the Davydov-Rio’s inequality in Rio [140] for mixing processes leads to

|Cov(Γi(x),∆j(x))| ≤ Cα(|i− j|) ≤ C|i− j|−a,

we deduce easily that for any cn > 0 :

∑
i 6=j

Cov(Γi(x),∆j(x)) = O
(
ncnhHφx(hK)

(
φx(hK)

n

)1/a

+ φx(hK)

)
+O(nhHc

−a
n ).

It suffices now to take cn = h−1
H

(
φx(hK)

n

)1/a

to get the following expression for the sum of the

covariances: ∑
i 6=j

Cov(Γi(x),∆j(x)) = o(nφx(hK)). (38)

From (37) and (38) we deduce that

Cov(f̂xN(y), F̂ x
N(y)) = o

(
1

nhHφx(hK)

)
The same arguments can be used to shows that

Cov(f̂xN(y), F̂ x
D) = o

(
1

nhHφx(hK)

)
and

Cov(F̂ x
N(y), F̂ x

D) = o

(
1

nhHφx(hK)

)
.

Proof of Lemma 7. Let

Sn =
n∑
i=1

Λi(x)

Where

Λi(x) :=

√
hHφx(hK)

hHE[K1(x)]
Γi(x). (39)

Obviously, we have√
nhHφx(hK)[σf (x, y)]−1(f̂xN(y)− Ef̂xN(y)) = (n(σf (x, y))2)−1/2Sn.

Thus, the asymptotic normality of (n(σf (x, y))2)−1/2Sn, is sufficient to show the proof of this
Lemma. This last is shown by the blocking method, where the random variables Λi are grouped
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into blocks of different sizes defined. We consider the classical big- and small-block decompo-
sition. We split the set {1,2,...,n} into 2kn + 1 subsets with large blocks of size un and small
blocks of size vn and put

kn :=

[
n

un + vn

]
.

Assumption (H7(ii)) allows us to define the large block size by

un :=

[(
nhHφx(hK)

qn

)1/2
]
.

Using Assumption (H7) and simple algebra allows us to prove that

vn
un
→ 0,

un
n
→ 0,

un√
nhHφx(hK)

→ 0, and
n

un
α(vn)→ 0 (40)

Now, let Υj,Υ
′
j and Υ

′′
j be defined as follows:

Υj =

j(u+v)+u∑
i=j(u+v)+1

Λi(x), 0 ≤ j ≤ k + 1

Υ
′
j =

(j+1)(u+v)+u∑
i=j(u+v)+u+1

Λi(x), 0 ≤ j ≤ k + 1

Υ
′′
j =

n∑
i=k(u+v)+1

Λi(x), 0 ≤ j ≤ k + 1

Cleary, we can write

Sn :=
k−1∑
j=0

Υj +
k−1∑
j=0

Υ′j + Υ
′′

kr =: S ′n + S ′′n + S ′′′n .

We prove that

(i)
1

n
E(S ′′n)2 → 0, (ii)

1

n
E(S ′′′n )2 → 0, (41)

|E{exp(itn−1/2S ′n)} −
k−1∏
j=0

E{exp(itn−1/2Υj)}| → 0, (42)

1

n

k−1∑
j=0

E(Υ2
j) −→ σ2

f(x,y), (43)
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1

n

k−1∑
j=0

E
(

Υ2
jI{|Υj |>ε

√
nσ2

f (x,y)}

)
−→ 0, (44)

for every ε > 0.
Expression (41) show that the terms S ′′n and S ′′′n are negligible, while Equations (42) and (43)
show that the Υj are asymptotically independent, verifying that the sum of their variances
tends to σ2

f (x, y). Expression (44) is the Lindeberg-Feller’s condition for a sum of independent
terms. Asymptotic normality of Sn is a consequence of Equations (41)-(44).

• Proof of (41) Because E(Λj) = 0,∀j, we have that

E(S ′′n)2 = V ar

( k−1∑
j=0

Υ′j

)
=

k−1∑
j=0

V ar(Υ′j) +
∑

0≤i<j≤k−1

Cov(Υ′i,Υ
′
j) := Π1 + Π2.

By the second-order stationarity we get

V ar(Υ′j) = V ar

( (j+1)(un+vn)∑
i=j(un+vn)+un+1

Λi(x)

)

= vnV ar(Λ1(x)) +
vn∑
i 6=j

Cov(Λi(x),Λj(x)).

Then

Π1

n
= kvn

n
V ar(Λ1(x)) + 1

n

k−1∑
j=0

vn∑
i 6=j

Cov(Λi(x),Λj(x))

≤ kvn
n

{
φx(hk)

hHE2K1(x)
V ar(Γ1(x))

}
+ 1

n

n∑
i 6=j

|Cov(Λi(x),Λj(x))|

≤ kvn
n

{
1

hHφx(hk)
V ar(Λ1(x))

}
+ 1

n

n∑
i 6=j

|Cov(Λi(x),Λj(x))|

Simple algebra gives us

kvn
n
∼=
(

n

un + vn

)
vn
n
∼=

vn
un + vn

∼=
vn
un
−→ 0 as n −→∞.

Using Equation (35) we have

lim
n−→∞

Π1

n
= 0 (45)
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Now, let us turn to Π2/n. We have

Π2

n
= 1

n

k−1∑
i=0i6=j

k−1∑
j=0

Cov(Υi(x),Υj(x))

= 1
n

k−1∑
i=0i6=j

k−1∑
j=0

vn∑
l1=1

vn∑
l2

Cov(Λmj+l1 ,Λmj+l2)

with mi = i(un + vn) + vn . As i 6= j, we have |mi −mj + l1 − l2| ≥ un. It follows that

Π2

n
≤ 1

n

n∑
i=l|i−j|≥un

n∑
j=1

Cov(Λi(x),Λj(x)),

Then

lim
n−→∞

Π2

n
= 0. (46)

By Equations (45) and (46) we get Part(i) of the Equation(41).
We turn to (ii), we have

1
n
E(S ′′′n )2 = 1

n
V ar(Υ′′K)

= Vn
n
V ar(Λ1(x)) + 1

n

Vn∑
i=1i 6=j

Vn∑
j=1

Cov(Λi(x),Λj(x))

where Vn = n− kn(un + vn); by the definition of kn, we have Vn ≤ un + vn.
Then

1

n
E(S ′′′n )2 ≤ un + vn

n
V ar(Λ1(x)) +

1

n

Vn∑
i=1i 6=j

Vn∑
j=1

Cov(Λi(x),Λj(x))

and by the definition of un and vn we achieve the proof of (ii) of Equation (41).

• Proof of (42) We make use of Volkonskii and Rozanov’s lemma (see the appendix in
Masry, [114]) and the fact that the process (Xi, Xj) is strong mixing.
Note that ΥaisF jaia -mesurable with ia = a(un + vn) + 1 and ja = a(un + vn) + un; hence, with
Vj = exp(itn−1/2Υj) we have

|E
{

exp(itn−1/2S ′n)
}
−

k−1∏
j=0

E
{

exp(itn−1/2Υj)
}
| ≤ 16knα(vn + 1)

∼= n
un
α(vn + 1)

which goes to zero by the last part of Equation (40). Now we establish Equation (43).
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• Proof of (43)Note that V ar(S ′n) → σ2
f (x, y) by equation (41) and since V ar(Sn) →

σ2
f (x, y) (by the definition of the Λi and Equation (36)). Then because

E(S ′n)2 = V ar(S ′n) =
k−1∑
j=0

V ar(Υj) +
k−1∑
i=0i6=j

k−1∑
j=0

Cov(Υi,Υj),

all we have to prove is that the double sum of covariances in the last equation tends to zero.
Using the same arguments as those previously used for Π2 in the proof of first term of Equation
(41)we obtain by replacing vn by un we get

1

n

k−1∑
j=0

E(Υ2
j) =

kun
n
V ar(Λ1) + o(1).

As V ar(Λ1) −→ σ2
f (x, y) and kun/n −→ 1, we get the result.

Finally, we prove Equation (43).

• Proof of (44) Recall that

Υj =

j(un+vn)+un∑
i=j(un+vn)+1

Λi.

Making use Assumptions (H5) and (H6), we have

|Λi| ≤ C(hHφx(hk))
−1/2

thus
|Υj| ≤ Cun(hHφx(hk))

−1/2,

which goes to zero as n goes to infinity by Equation (40). Then for n large enough, the set
{|Υj| > ε(nσ2

f (x, y))−1/2} becomes empty, this completes the proof and therefore that of the
asymptotic normality of (n(σf (x, y))2)−1/2Sn,

• Proof of Lemmas 8. It is clear that, the result of Lemma (3.1) and Lemma (3.2) permits
us

E(F̂ x
D − F̂ x

N − 1 + F x(y)) −→ 0

and
V ar(F̂ x

D − F̂ x
N − 1 + F x(y)) −→ 0

then

F̂ x
D − F̂ x

N − 1 + F x(y)
P−→ 0

Moreover, the asymptotic variance of F̂ x
D − F̂ x

N given in remark (2) allows to obtain

nhHφx(hK)

σh(x, y)2
V ar(F̂ x

D − F̂ x
N − 1 + E(F̂ x

N(y))) −→ 0.
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By combining result with the fact that

E(F̂ x
D − F̂ x

N − 1 + E(F̂ x
N(y))) = 0

we obtain the claimed result.

• Proof of Lemmas 11. For i = 1, ..., n, we consider the quantities Ki = K(h−1
K d(z, Zi)),

H ′′i = H ′′(h−1
H (x−Xi)), and let f̂ ′

Z

N(x) (resp. F̂Z
D ) be defined as:

f̂ ′
Z

N(x) =
h−2
H

nEK1

n∑
i=1

KiH
′′
i (x) (resp F̂Z

D =
1

nEK1

n∑
i=1

Ki).

This proof is based on the following decomposition

f̂ ′
X

(y)− f ′X(y) = 1

F̂X
D

{(f̂ ′
X

N(y)− Ef̂ ′
X

N(y))− (f ′X(y)− f̂ ′
X

N(y))}

+ f ′X(y)

F̂X
D

{EF̂X
D − F̂X

D }
(47)

and the following intermediate results.√
nh3

Hφx(hK)(f̂ ′
X

N(y)− Ef̂ ′
X

N(y))
D−→ N (0, σ2

f ′x(y)) (48)

where σ2
f ′x(y) is define as lemma 11.

lim
n−→∞

√
nh3

Hφx(hK)(Ef̂ ′
X

N(y)− f̂ ′
X

(y)) = 0 (49)

√
nh3

Hφx(hK)(F̂X
D (y)− 1)

P−→ 0, as n −→∞. (50)

• Concerning (48). by definition of f̂ ′
X

N(y) , it follows that√
nh3

Hφx(hK)(f̂ ′
X

N(y)− Ef̂ ′
X

N(y)) =
n∑
i=1

√
φx(hK)√
nhHEK1

(KiH
′′
i − EKiH

′′
i ) =

n∑
i=1

∆i,

which leads

n∑
i=1

E∆2
i =

φx(hK)

hHE2K1

EK2
1(H ′′1 )2 − φx(hK)

hHE2K1

(EK1H
′′
1 )2 = Π1n − Π2n. (51)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φx(hK)

E2K1

E{K2
1

∫
H ′′2(t)(f ′X(y − thH)− f ′X(y) + f ′X(y))dt}.
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Meanwhile, by (H0), (H3), (H4) and (H5), it follows that:

φx(hK)EK2
1

E2K1

−→n−→∞
az2

(az1)2
,

which leads

Π1n −→n−→∞
az2f

X(y)

(az1)2

∫
(H ′′(t))2dt, (52)

Regarding Π2n, by (H0), (H3), and (H6), we obtain

Π2n −→n−→∞ 0. (53)

This result, combined with (51) and (52), allows us to get

lim
n−→∞

n∑
i=1

E∆2
i = σ2

f ′X (y) (54)

Secondly, by the boundedness of H”, we have

E(| ∆i∆j |) ≤ Cφx(hK)
nE2K1

(KiKj + EKiKj)

≤ C
nhH

{(
φx(hK)

n

)1/a

+ φx(hK)

}
,∀i 6= j.

Then taking

δn = max
1≤i 6=j≤n

{E(| ∆i∆j |)} =
C

nhH

((
φx(hK)

n

)1/a

+ φx(hK)

)
.

leads

nmnδn =
Cmn

hH

((
φx(hK)

n

)1/a

+ φx(hK)

)
. (55)

Similarly, the boundedness of H” and K allows us to take Ci = O

(
1√

nh3
Hφx(hK)

)
, which

implies that

( ∞∑
j=mn+1

α(j)

) n∑
i=1

C2
i ≤

C

hHφx(hK)

∫
t≥mn

t−adt =
C

hHφx(hK)

m−a+1
n

a− 1
. (56)

Then, the sum of right side of of (55) and (56) is of type Amn +Bm−a+1
n , by talking

mn = (A/B)−1/a = {(a− 1)φx(hK)((
φx(hK)

n
)1/a + φx(hK))}−1/a −→∞,
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it is clear that, under condition (H9a) and (H9b), combining (55) and (56) allows us to get

nmnδn = o(1), (57)
and ( ∞∑

j=mn+1

α(j)

) n∑
i=1

C2
i = o(1), (58)

respectively. Finally, by choosing %n =
√

nh3
Hφx(hK)

logn
, under (H9a) again and a > 3, we have

%n√
n

= o(1), (59)

and
n
%n
α(ε%n) ≤ C (logn)(a+1)/2

n(a−1)/2(h3
Hφx(hK))(a+1)/2

≤ C (logn)(a+1)/2

n(a−3)/2 −→ 0 as n −→∞
.

Therefore, combing (53)-(59) with corollary 2.2 in liebscher [109] (48) is valid.

• Concerning (49). The proof is completed along the same stapes as that of Π1n. We omit
it here.
• Concerning (50). The idea is similar to that given by Ferraty et al. [63 ]
by definition of F̂X

D (y), we have√
nh3

Hφx(hK)(F̂X
D (y)− 1) = Ωn − EΩn,

where Ωn =

√
nh3

Hφx(hK)

n∑
i=1

Ki

nEK1
. In order to prove (50), similar to Ferraty et al.[63], we only

need to proov V arΩn −→ 0, as n −→∞. In fact, since

V arΩn =
nh3

Hφx(hK)

nE2K1

(
nV arK1 +

∑
1≤i

∑
j≤n

Cov(Ki, Kj)

)

≤ nh3
Hφx(hK)

E2K1
EK2

1 +
nh3

Hφx(hK)

nE2K1

∑ ∑
0≤|i−j|≤vn

Cov(Ki, Kj)

+
nh3

Hφx(hK)

nE2K1

∑ ∑
0≤|i−j|≥vn

Cov(Ki, Kj)

= Ψ1 + Ψ2 + Ψ3,
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then, using the boundendness of function K allows us to get that:

Ψ1 ≤ Ch3
Hφx(hK) −→ 0 as n −→∞.

Meanwhile, by (H0) and (H1), it follows that:

Ψ2 ≤ vnh
3
H

{
(
φx(hK)

n
)1/a + φx(hK)

}
. (60)

Finally, using the Davydov-Rio’s inequality in Rio [140] for mixing processes leads to

| Cov(Ki, Kj) |≤ Cα(| i− j |),

for all i 6= j. Then, we have

Ψ3 ≤
h3
Hφx(hK)

nE2K1
n2Cα(| i− j |) ≤ C

h3
Hφx(hK)

nE2K1
n2v−a+1

n

≤ Ch3
Hnv

−a+1
n .

(61)

Since the right side (60) and (61) is also of type Avn +Bv−a+1
n ,

by choosing vn = [n−1(

(
φx(hK)

n

)1/a

+ φx(hK))]1/a −→ ∞ and simple calculations, we get that

Ψ2 −→ 0 and Ψ3 −→ 0 as n −→∞, respectively.

Therefore, the proof of this result is completed.



Chapter 3

Real response and independent case

This chapter is the object of a work subjected for publication in Journal of Statistics
Applications & Probability Letters.
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Exact Asymptotic Errors of the Hazard
Conditional Rate Kernel

3.1 Introduction
This chapter deals with a scalar response conditioned by a functional random variable.

The main goal is to estimate nonparametrically Kernel type estimator for the conditional hazard
function. Finally, asymptotic properties of this estimator are stated bias the exact expression
involved in the leading terms of the quadratic error and we investigate the asymptotic normality
of the kernel conditional hazard function estimator.

3.2 General Notations and Conditions
We consider a random pair (X, Y ) where Y is valued in R and X is valued in some semi

normed vector space (F, ‖ . ‖) which can be of infinite dimension . We will say that X is a
functional random variable and we will use the abbreviation frv. From a sample of independent
pairs (Xi, Yi), each having the same distribution as (X, Y ), our aim is to study convergence mean
square of the estimator of the conditional hazard function of a real random variable conditional
on one variable functional. The nonparametric estimate of function related with the conditional
probability distribution (cond-cdf) of Y given X = x. For x ∈ F, we assume that the regular
version of the conditional probability of Y givenX = x exists denoted by FX

Y and has a bounded
density with respect to Lebesgue measure over R, denoted by fXY . In the following (x, y) will
be a fixed point in R× F and Nx × SR will denote a fixed neighborhood of (x, y), SR will be a
fixed compact subset of R, and we will use the notation B(x, h) = {x′ ∈ F/ ‖ x′−x ‖< h}. Our
nonparametric models will be quite general in the sense that we will just need the following
simple assumption for the marginal distribution of X:

C2
B(F ×R) =


ϕ : F × R→ R
(x, y)→ ϕ(x, y)such as :

∀z ∈ Nx, ϕ(z, .) ∈ C2(Ny)and
(
ϕ(., y), ∂

2ϕ(.,y)
∂y2

)
∈ C1

B(x)× C1
B(x),

 (1)

where C1
B(x) is the set of continuously differentiable functions to sens of Gteaux on Nx (see

Troutman [154] for this type of differentiability), which the derivative operator of order 1 at
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point x is bounded on the unit ball B(0, 1) the functional space F. Given i.i.d. observations
(X1, Y1), ..., (Xn, Yn) of (X, Y ), the kernel estimate of the conditional distribution FX

Y (x, y)
denoted F̂X

Y (x, y),is defined by:

F̂X
Y (x, y) =

∑n
i=1K(h−1

K ‖ x−Xi ‖)H(h−1
H (y − Yi))∑n

i=1K(h−1
K ‖ x−Xi ‖)

,

withe the convention 0
0

= 0, The function K is kernel, H is cdf and hK = hK,n (resp
hH = hH,n)is sequence of positive real number. Note that from this estimator, we derive an
estimator for the density conditional, denoted f̂XY (x, y) defined by:

f̂XY (x, y) =
h−1
H

∑n
i=1 K(h−1

K ‖ x−Xi ‖)H ′(h−1
H (y − Yi))∑n

i=1 K(h−1
K ‖ x−Xi ‖)

,

where H ′ is kernel ( is derivative of H). We then construct the conditional hazard function of
y knowing X = x as follows:

∀x ∈ F, ∀y ∈ R hXY (x, y) =
fXY (x, y)

1− FX
Y (x, y)

=
fXY (x, y)

SXY (x, y)
(2)

The main objective is to study the nonparametric estimate ĥXY (x, y) of hXY (x, y). Furthermore,hXY (x, y)
the estimator can we written as

ĥXY (x, y) =
f̂XY (x, y)

1− F̂X
Y (x, y)

=
f̂N(x, y)

f̂D(x)− ĝN(x, y)
, (3)

Where

f̂D(x) =
1

nE[K1(x)]

n∑
i=1

K(h−1
K ‖ x−Xi ‖), K1(x) = K(h−1

K ‖ x−Xi ‖),

ĝN(x, y) =
1

nE[K1(x)]

n∑
i=1

K(h−1
K ‖ x−Xi ‖)H(h−1

H (y − Yi)),

f̂N(x, y) = ĝ
(1)
N (x, y) =

1

nhHE[K1(x)]

n∑
i=1

K(h−1
K ‖ x−Xi ‖)H ′(h−1

H (y − Yi)),

where H ′ is the derivative of H, when the explanatory variableX is valued in a space of
eventually infinite dimension.We give precise asymptotic evaluations of the quadratic error of
this estimator.

3.3 Asymptotic Properties
As with any problem of nonparametric estimation, the dimension of the space F plays an
important role in the properties of concentration of the variable X. Thus, when this dimension
is not necessarily finite, the probability functions defined by small balls

φx(h) = P(X ∈ B(x, h)) = P(X ∈ {x′ ∈ F, ‖ x− x′ ‖< h}), (?)
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Then to establish the convergence in mean square of the estimator ĥXY (x, y) to hXY (x, y) and
the asymptotic normality of the kernel conditional hazard function estimator, we introduce the
following assumptions, let b1 and b2 be two positive numbers; such that:

(H1) for all r > 0, the random variable Z = r−1(x−X) is absolutely continuous relative in
the measure µ. His density w(r, x, v) is strictly positive on B(0, 1) and can be written as:

w(r, x, v) = φ(r)g(x, v) + o(φ(r)) for all v ∈ B(0, 1), (4)

where

−φ is an increasing function with values in R+.

−g is defined on F× F, with values in R+ where 0 <
∫
B(0,1)

g(x, v)dµ(v) <∞.

(H2) The kernel K from R into R+ is a differentiable function supported on [0, 1] its deriva-
tive K ′ exist and such that there exist tow constants C and C ′ with −∞ < C < K ′(t) < C ′ <
0 for 0 ≤ t ≤ 1.

(H3) H’ is a kernel bounded, integrable, positive, symmetric such that:∫
H ′(t)dt = 1,

∫
t2H ′(t)dt <∞,

∫
R
| t |b2 H ′(t)dt <∞,

where
H(x) =

∫ x

−∞
H ′(t)dt (see Feraty and V ieu [8])

(H4)The bandwidth hK satisfies:

hK ↓ 0,∀t ∈ [0, 1] lim
hK−→0

φx(thK)

φx(hK)
= βxhK (t) and nhHφx(hK) −→∞ n −→∞.

(H5)

{
∃τ <∞, fXY (x, y) ≤ τ, ∀(x, y) ∈ F × LR, and;
∀(x1, x2) ∈ N2

x ,∀(y1, y2) ∈ L2
R, | fXY (x1, y1)− fXY (x2, y2) |≤ Cx(‖ x1 − x2 ‖b1 + | y1 − y2 |b2).

(H6)

{
∃β > 0, FX

Y (x, y) ≤ 1− β, ∀(x, y) ∈ F × LR, and;
∀(x1, x2) ∈ N2

x ,∀(y1, y2) ∈ L2
R, | FX

Y (x1, Y1)− FX
Y (x2, y2) |≤ Cx(‖ x1 − x2 ‖b1 + | y1 − y2 |b2).

3.3.1 Mean Squared Convergence

The result concerns the L2-consistency ĥXY (x, y) .

Theorem 3.3.1 Under hypotheses (H1)-(H6) and if FX
Y (x, y) (resp. fXY (x, y) ∈ C2

B(F × R)

then

MSEĥXY (x, y) ≡ E
[
(ĥXY (x, y)− hxY (X, y)

]2

≡ Bn(x, y) +
σ2
h(x,y)

nhnφx(hn)
+ o(h2

h) + o(hK) + o

(
1

nhnφx(hk)

)
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where

Bn(x, y) =
(Bf

H(x, y)− hXY (x, y)BF
H(x, y))h2

H + (Bf
K(x, y)− hXY (x, y)BF

K(x, y))hK
1− FX

Y (x, y)
,

with
Bf
H(x, y) = 1

2
∂2fX(y)
∂y2

∫
t2H ′(t)dt,

Bf
K(x, y) =

∫
B(0,1)K(‖v‖)DxfXY (x,y)[v]g(x,v)dµ(v)∫

B(0;1) K(‖v‖)g(x,v)dµ(v)

BF
H(x, y) = 1

2

∂2FX
Y (x,y)

∂y2

∫
t2H(t)dt,

BF
K(x, y) =

∫
B(0,1)K(‖v‖)DxFx

Y (x,y)[v]g(x,v)dµ(v)∫
B(0,1)K(‖v‖)g(x,v)dµ(v)

.

and σ2
h(x, y) =

β2hXY (x,y)

(β2
1(1−FX

Y (x,y))
(with βj =

∫
B(0,1)

Kj(‖ v ‖)g(x, v)dµ(v), for, j = 1, 2).

Proof. This proof is based on the decomposition

ĥXY (x, y)− hXY (x, y) =
f̂XY (x,y)

1−F̂X
Y (x,y)

− fXY (x,y)

1−FX
Y (X,y)

= 1

1−F̂X
Y (x,y)

[
(f̂XY (x, y)− fXY (x, y)) +

fXY (x,y)

1−FX
Y (x,y)

(F̂X
Y (x, y)− FX

Y (x, y))
]

= 1

f̂XD (x)−ĝN (x,y)

(
f̂N(x, y)− Ef̂N(x, y)

)

+
hXY (x,y)

f̂XD (x)−ĝN (x,y)

(
EĝN(x, y)− FX

Y (x, y)

)

+ 1

f̂XD (x)−ĝN (x,y)

(
Ef̂N(x, y)− fXY (x, y)

)

+
hXY (x,y)

f̂XD (x)−ĝN (x,y)

(
1− EĝN(x, y)− (f̂D(x)− ĝN(x, y))

)
(5)

where Dx means the derivative with respect to x. Hence:

| ĥXY (x, y)−hXY (x, y) |≤ 1

| 1− F̂X
Y (x, y) |

{
| f̂XY (x, y)− fXY (X, y) | + | hXY (x, y)

(
F̂X
Y (x, y)− FX

Y (X, y) |
)}

,

which leads to a constant C <∞:

| ĥXY (x, y)− hXY (x, y) |≤ C
| f̂XY (x, y)− fXY (X, y) | + | F̂X

Y (x, y)− FX
Y (X, y) |

| 1− F̂X
Y (x, y) |

,
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Then, Theorem (3.3.1) can be deduced from both lemmas above Lemma (3.3.2) and Lemma
(3.3.1).

Lemma 3.3.2 Under hypotheses (H1)− (H6) and if fXY (X, y) ∈ C2
B(F× R) then:

E[f̂XY (x, y)−fXY (X, y)]2 = Bf
H(x, y)h2

H+Bf
K(x, y)hK+

σ2
f (x, y)

nhHφ(hK)
+o(h2

H)+

(
1

nhHφ(hK)

)
, (6)

where

σ2
f (x, y) =

(fXY (x, y))

(∫
B(0,1)

K2(‖ v ‖)g(x, v)dµ(v)

)∫
H ′2(t)dt(∫

B(0,1)
K(‖ v ‖)g(x, v)dµ(v)

)2 ,

Lemma 3.3.3 Under hypotheses (H1)− (H6) and if FX
Y (x, y) ∈ C2

B(F× R) then:

E[(F̂X
Y (x, y)−FX

Y (x, y))]2 = BF
H(x, y)h2

H +BF
K(x, y)hK +

σ2
F (x, y)

nφ(hK)
+o(h2

H)+o(hK)+o(
1

nφ(hK)
),

(7)
with

σ2
F (x, y) =

FX
Y (x, y)(1− (FX

Y (x, y))

(∫
B(0,1)

K2(‖ v ‖)g(x, v)dµ(v)

)
(∫

B(0,1)
K(‖ v ‖)g(x, v)dµ(v)

)2 ,

Remark 3.3.4 Observe that, the result of this lemmas Lemma 3.3.2 and Lemma 3.3.3 permits
to write [

EĝN(x, y)− FX
Y (x, y)

]
= O(h2

H) +O(hK)

and [
Ef̂N(x, y)− fXY (x, y)

]
= O(h2

H) +O(hK).

Proof of Lemma (3.3.2) According to the previous decomposition is demonstrated by
a separate calculation of both parties, party bias and variance for part two quantities, as the
squared error can be expressed as
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E[(f̂XY (x, y)− fXY (x, y))2] = [E(f̂XY (x, y))− fXY (X, y)]2 + V ar[f̂XY (x, y)].

We define the quantities Ki(x) = K(h−1
K ‖ x − Xi ‖), H ′i(y) = H ′(h−1

H (y − Yi)) for all
i = 1, ..., n.
We will calculate both sides of this equation (party bias and variance part) to arrive at the
calculation of E[f̂XY (x, y)− fXY (x, y)]2.

We come at the following to writing:

f̂XY (x, y) =
f̂N(x, y)

Ef̂D(x)

[
1− f̂D(x)− Ef̂D(x)

Ef̂D(x)

]
+

(
f̂D(x)− Ef̂D(x)

)2

(Ef̂D(x))2
f̂XY (x, y),

from which we draw:

Ef̂XY (x, y) =
Ef̂N(x, y)

Ef̂D(x)
− A1

(Ef̂D(x))2
+

A2

(Ef̂D(x))2
,

as

A1 = Ef̂N(x, y)(f̂D(x)− Ef̂D(x)) = cov(f̂N(x, y), f̂D(x))

and

A2 = E(f̂D(x)− Ef̂D(x))2f̂XY (x, y).

Can be written as

f̂XY (x, y)− fXY (x, y) =

(
f̂N (x,y)

Ef̂D(x)
− fXY (x, y)

)

− (f̂N (x,y)−Ef̂N (x,y))(f̂D(x)−Ef̂D(x))

(Ef̂D(x))2

− (Ef̂N (x,y))(f̂D(x)−Ef̂D(x))

(Ef̂D(x))2

+ (f̂D(x)−Ef̂D(x))2

(Ef̂D(x))2
f̂XY (x, y),

(8)

which implies
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E[f̂XY (x, y)]− fXY (x, y) =

(
(Ef̂D(x))−1E(f̂N(x, y))− fXY (x, y)

)
−
(

(Ef̂D(x))−2cov(f̂N(x, y), f̂D(y))

)

+ (Ef̂D(x))−2E
(
f̂D(x)− Ef̂D(x)

)2

f̂XY (x, y)

=

(
(Ef̂D(x))−1E(f̂N(x, y))− fXY (x, y)

)
−
(
Ef̂D(x)

)−2

A1 +

(
Ef̂D(x)

)−2

A2.

Now you need to write each of these terms and calculate three integrals corresponding to them
by a change of variable of type z = (x−u)/h. Regarding the term A2 as the kernel H’ is bounded
and since K is positive, we can bounded f̂XY (x, y) by a constant C > 0, as f̂XY (x, y) ≤ C/hn,
hence

E[f̂XY (x, y)]− fXY (x, y) =

(
(Ef̂D(x))−1E(f̂N(x, y))− fXY (x, y)

)
−
(

(Ef̂D(x))−2cov(f̂N(x, y), f̂D(x))

)
+ (Ef̂D(x))−2V ar(f̂D(x))O(h−1

H ).

For the par dispersion we inspire techniques Sarda and Vieu [146]and Bosq Lecoutre [21]
and by under expression 8, we find that

V ar[f̂XY (x, y)] = V ar[f̂N (x,y)]

(Ef̂D(x))2
− 2 [Ef̂N (x,y))]cov[f̂N (x,y),f̂D(y))]

(Ef̂D(x))3

+ V ar(f̂D(x)) (Ef̂N (x,y))2

(Ef̂D(x))4
+O

(
1

nhnφ(hn)

)
.

(9)

Finally, Lemma (3.3.2) is a consequence of Corollaries below

Corollary 3.3.5 Under conditions of Lemma 3.3.2 we have

Ef̂N(x, y)

Ef̂D(x)
− fXY (x, y) = Bf

H(x, y)h2
H +Bf

K(x, y)hK +O(h2
H) +O(hK).

Corollary 3.3.6 Under conditions of Lemma 3.3.2 we have

var[f̂N(x, y)] =
1

nhHφ(hK)

∫
B(0,1)

K2(‖ v ‖)g(x, v)dµ(v)

(
∫
B(0,1)

K(‖ v ‖)g(x, v)dµ(v))2

(
fXY (x, y)

∫
H ′2(t)dt

)
+O

(
1

nhHφ(hK)

)
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Corollary 3.3.7 Under conditions of Lemma 3.3.2 we have

cov[f̂N(x, y), f̂D(x)] =
1

nφ(hK)
(fXY (x, y))

∫
B(0,1)

K2(‖ v ‖)g(x, v)dµ(v) +O

(
1

nφ(hK)

)
Corollary 3.3.8 Under conditions of Lemma 3.3.2 we have

V ar[f̂D(x)] =

∫
B(0,1)

K2(‖ v ‖)g(x, v)dµ(v)

nφ(hK)
+O

(
1

nφ(hK)

)
Proof of Corollary 3.3.5 By definition of f̂N(x, y) we have

Ef̂N(x, y) = 1
nhHφ(hK)

∑n
i=1 E(Ki(x)H ′i(y))

= 1
hnφ(hn)

E
[
K1(x)H1(y−Yi

hH
)
]

= 1
hHφ(hK)

E(K1(x)[E(H ′1(h−1
n (y − Yi)|X))])

(10)

for the calculation of E(H ′1(h−1
H (y−Yi)|X)) considering the change of variable t = h−1

H (y−z),
we have

E(H ′1(h−1
H (y − Yi)|X)) = 1

hH

∫
H ′
(
y−z
hH

)
fx(z)dz

=
∫
H ′(t)fx(y − hHt)dt

Just develop the function fXY (y − hHt) in the neighborhood of y, which is possible since
fXY (x, .) being a function of class C2 in y, then, we can use the Taylor expansion of the function
fXY :

fXY (y − hHt) = fXY (x, y)− hHt
∂fXY (x, y)

∂y
+
h2
Ht

2

2

∂2fXY (x, y)

∂y2
+ o(h2

H)

which gives, under the assumption (H3)

E(H ′1\X) = fXY (x, y) +
h2
Ht

2

2

∂2fXY (x, y)

∂y2

∫
t2H ′(t)dt+ o(h2

H).

We replace in equation (10) found

Ef̂N(x, y) =
1

hHφ(hK)

[
E(K1(x))fXY (x, y) +

h2
Ht

2

2

∫
t2H ′(t)dtE

(
K1(x)

∂2fXY (x, y)

∂y2

)]
+ o(h2

H)

(11)
To simplify the writing of this equation we set ψl(., y) =

∂lfXY (x,y)

∂yl
, l ∈ {0, 2}.

The function ψl(., y) defined on the functional space F denotes the one or other of the two
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functions ψ0(., y) = fXY (x, y) et ψ2(., y) =
∂2fXY (x,y)

∂y2 .
The kernel K is assumed compact support, then, for all l ∈ {0, 2} we have

E(K1ψl(X, y)) = EK(h−1
K ‖ x−X ‖)ψl(x− hK(h−1

K (x−X)), y)

=
∫
B(0,1)

K(‖ v ‖)ψl(x− hKv, y)w(hK , x, v)dµ(v).

The function ψl(., y) is of class C1 in the neighborhood of x, then

ψl(x− hKv, y) = ψl(x, y)− hK
∂ψl(x, y)[v]

∂x
+ o(hK)

and we find that
E(K1ψl(X, y)) = ψl(x, y)

∫
B(0,1)

K(‖ v ‖)w(hK , x, v)dµ(v)

− hK
∫
B(0,1)

K(‖ v ‖)∂ψl(x,y)[v]
∂x

w(hK , x, v)dµ(v)

+ o(hK)
∫
B(0,1)

K(‖ v ‖)w(hn, x, v)dµ(v)

Therefore we have

Ef̂N(x, y) = 1
hHφ(hK)

[ψ0(x, y)
∫
B(0,1)

K(‖ v ‖)w(hK , x, v)dµ(v)

− hK
∫
B(0,1)

K(‖ v ‖)∂ψ0(x,y)[v]
∂x

w(hK , x, v)dµ(v)

+
h2
H

2

∫
t2H ′(t)dt(ψ2(x, y)

∫
B(0,1)

K(‖ v ‖)w(hK , x, v)dµ(v)

− hK
∫
B(0,1)

K(‖ v ‖)∂ψ2(x,y)[v]
∂x

w(hK , x, v)dµ(v))] + o(h2
H) + o(hK).

multiplying by g(x, v), adding and subtracting the two terms

Ef̂N(x, y) = 1
hnφ(hK)

ψ0(x, y)
∫
B(0,1)

K(‖ v ‖)w(hK , x, v)dµ(v)

− hK
∫
B(0,1)

K(‖ v ‖)∂ψ0(x,y)[v]
∂x

g(x, v)dµ(v)

− hK
∫
B(0,1)

K(‖ v ‖)∂ψ0(x,y)[v]
∂x

(
w(hK ,x,v)
hHφ(hK)

− g(x, v)

)
dµ(v)

+
h2
H

2

∫
t2H ′(t)dt[ 1

φ(hK)
ψ2(x, y)

∫
B(0,1)

K(‖ v ‖)w(hK , x, v)dµ(v)

− hK
∫
B(0,1)

K(‖ v ‖)∂ψ2(x,y)[v]
∂x

g(x, v)dµ(v)

− hK
∫
B(0,1)

K(‖ v ‖)∂ψ2(x,y)[v]
∂x

(
w(hK ,x,v)
hHφ(hK)

− g(x, v)

)
dµ(v)] + o(h2

H + hk).
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Thus

Ef̂N(x, y) = 1
hHφ(hK)

ψ0(x, y)
∫
B(0,1)

K(‖ v ‖)w(hK , x, v)dµ(v)

− hk
∫
B(0,1)

K(‖ v ‖)∂ψ0(x,y)[v]
∂x

g(x, v)dµ(v)

+
h2
H

2

∫
t2H ′(t)dt[ 1

hHφ(hK)
ψ2(x, y)

∫
B(0,1)

K(‖ v ‖)w(hK , x, v)dµ(v)] + o(h2
H + hk).

On the other hand we have

Ef̂D(x) =
EK1

φ(hK)
=

1

φ(hK)

∫
B(0,1)

K(‖ v ‖)w(hK , x, v)dµ(v). (12)

by substituting in the formula for EfN(x, y) it follows that

EfN(x, y) = ψ0(x, y)(Ef̂D(x))− hK
∫
B(0,1)

K(‖ v ‖)∂ψ0(x,y)[v]
∂x

g(x, v)dµ(v)

+
h2
H

2

∫
t2H ′(t)dt[(Ef̂D(x))ψ2(x, y)] + o(h2

H) + o(hK).

Using the hypothesis (H1), equation (12) can be expressed as

Ef̂D(x) =

∫
B(0,1)

K(‖ v ‖)g(x, v)dµ(v) + o(1) (13)

Finally we arrive at

(Ef̂D(x))−1E[f̂N(x, y)]− fXY (x, y) = −hK
∫
B(0,1)K(‖v‖) ∂fx(y)[v]

∂x
g(x,v)dµ(v)∫

B(0,1) K(‖v‖)h(x,v)dµ(v)

+ hH
2
∂2fx(y)[v]

∂y2

∫
t2H ′(t)dt+ o(h2

H) + o(h2
K).

(14)

Proof of Corollary 3.3.6 By definition of f̂N(x, y) we have

V ar

(
f̂N(x, y)

)
= 1

(n(hHφ(hK))2

∑n
i=1 V ar(Ki(x)H ′i(y))

= 1
n(hHφ(hK))2V ar(K1(x)H ′1(x))

= 1
n(hHφ(hK))2 (E(K1(x)H ′1(y))2 − (E(K1(x)H ′1(y))2)

= 1
n(hHφ(hK))2E(K1(x)H ′1(y))2 − n−1

(
(E(K1(x)H′1(y)))

hHφ(hK)

)2

.
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By Corollary 3.3.5 and equation (13) we have (EK1(X)H′1(y))

hHφ(hK)
= Ef̂N(x, y) = O(1) , and the

fact that

V ar

(
f̂N(x, y)

)
=

1

n(hHφ(hK)2
E(K1(x)H ′1(y))2 + o

(
1

nhHφ(hK)

)
.

Just now evaluate the quantity E(K1(x)H ′1(y))2. Indeed, the proof is similar to the one
used for previous lemma, by conditioning x and considering the usual change of variables
(y − z)/hH = t we obtain

E(K1(x)H ′1(y))2 = E(K1(x)2E(H
′2
1 (y)|X))

= 1
h2
H
E
(
K1(x)2

∫
H ′2(y−z

hH
)fx(z)dz

)
= 1

hH
E
(
K2

1(x)
∫
H ′2(t)fx(y − hHt)dt

)
,

by a Taylor expansion of the order 1 from y we show that for n large enough

fXY (x, y − hHt) = fXY (x, y) + o(hH) = fXY (x, y) +O(1)

Hence
E(K1(x)H ′1(y))2 =

1

hH

∫
H ′2(t)dtE(K2

1(x)fXY (x, y)) + o

(
1

hH

)
The same way and with the same techniques used in the above proof of Corollary 3.3.5, we

show that it suffices now to estimate the amount E(K1(x)H ′1(y))2. Indeed, for a demonstration
similar to the proof lemma, in conditioning by X and considering the usual change of variable
(y − z)/hH = t we find that:

E(K2
1(x)fXY (x, y)) = EK2(h−1

K ‖ x−X ‖)f(x− hn(h−1
K (x−X)), y)

=
∫
B(0,1)

K2(‖ v ‖)fXY (x− hKv, y)w(hK , x, v)dµ(v)

= φ(hn)fXY (x, y)
∫
B(0,1)

K2(‖ v ‖)g(x, y)dµ(v) +O(φ(hK)).

such that ‖ v ‖= h−1
K ‖ x−X ‖, this allows us to conclude

E(K1(x)H ′1(y))2 =
1

hH

∫
H ′2(t)dt

(
φ(hK)fXY (x, y)

∫
B(0,1)

K2(‖ v ‖)g(x, y)dµ(v)

)
+O

(
φ(hK)

hH

)
.

The hypothesis (H3) implies that the kernel H is square summable, therefore

V ar

(
f̂N(x, y)

)
=

1

(n(hHφ(hK))

[
fXY (x, y)

∫
H ′2(t)dt

∫
B(0,1)

K2(‖ v ‖)g(x, y)dµ(v)

]
+O

(
1

n(hHφ(hK)

)
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Proof of Corollary 3.3.7: By definition of f̂N(x, y) and f̂D(x) we obtain

Cov(f̂N(x, y), f̂D(x)) = 1
n(hHφ(hK))2Cov(K1(x)H ′1(y), K1(x))

= 1
n(hHφ(hK))2 (EK2

1(x)H ′1(y)− EK1(x)H ′1(y)EK1(x))

=
EK2

1 (x)H′1(y)

n(hHφ(hK))2 −
(

EK1(x)H′1(y)

n(hHφ(hK))2

)(
EK1(x))

n(hHφ(hK))2

)
The proof of this Corollary is very similar to the one used for Corollary 3.3.5. To do this, replace
K2

1 with K1 then using the fact that (EK1(X)H1(y))
φ(hK)

= O(1) and (EK1(X))
φ(hK)

= O(1) we deduce that

Cov(f̂N(x, y), f̂D(x)) =
1

nφ(hK)
(fXY (x, y))

∫
B(0,1)

K2(‖ v ‖)g(x, y)dµ(v) +O

(
1

nφ(hK)

)
. (15)

Proof of Corollary 3.3.8: By definition of f̂D(x) we have

V ar(f̂D(x)) = 1
n(φ(hK))2 (V ar(K1))

=
EK2

1 (x)

n(φ(hK))2 − n−1

(
EK1(x)
φ(hK)

)

=
∫
B(0,1)K

2(‖v‖)g(x,v)dµ(v)

n(φ(hK))
+O

(
1

nφ(hK)

)
.

(16)

This allows us to complete the proof of Lemma 3.3.2.
Proof of Lemma 3.3.3: The calculation of the squared error of the conditional distribution
is with the same techniques used in the previous lemma 3.3.2 by a separate calculation of two
parts: part bias and some variance for the two quantities, as the squared error the conditional
distribution can be expressed as

E[(F̂X
Y (x, y)− FX

Y (x, y))2] = [E(F̂X
Y (x, y))− FX

Y (x, y)]2 + V ar[F̂X
Y (x, y)].

Finally, Lemma 3.3.3 can be deduced from following corollaries

Corollary 3.3.9 Under hypotheses (H1)-(H6), we have

EĝN(x, y)

Ef̂D(x)
− FX

Y (x, y) = BF
H(x, y)h2

H +BF
K(x, y)hK + o(h2

H) + o(hK),

Corollary 3.3.10 Under hypotheses (H1)-(H6), we have

V ar[ĝN(x, y)] =

∫
B(0,1)

K2(‖ v ‖)g(x, v)dµ(v)

nφ(hK)

(
FX
Y (x, y)

∫
H2(t)dt

)
+O

(
1

nφ(hK)

)
,
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Corollary 3.3.11 Under hypotheses (H1)-(H6), we have

Cov[ĝN(x, y), f̂D(x)] =
1

nφ(hK)
(FX

Y (x, y))

∫
B(0,1)

K2(‖ v ‖)g(x, v)dµ(v) +O

(
1

nφ(hK)

)
Remark 3.3.12 It is clear that, the results of Corollaries Corollary 3.3.6-3.3.8 and Corollary
3.3.10-3.3.11 allows to write

V ar[f̂D(x)− ĝN(x, y)] = o

(
1

nhHφx(hK)

)
.

3.3.2 Asymptotic Normality

This section contains results on the asymptotic normality of ĥXY (x, y).

Theorem 3.3.13 Assume that (H1)-(H6) hold, and if the following equation (?) is verified,
then we have for any x ∈ A,

(
nhHφx(hK)

σ2
h(x, y)

)1/2(ĥXY (x, y)− hXY (x, y)−Bn(x, y))
D→ N (0, 1) as n→∞,

where
A = {x ∈ F , fXY (x, y)(1− FX

Y (x, y)) 6= 0},

and D→ means the convergence in distribution.

Evidently, if one imposes some additional assumptions on the function φx(·) and the bandwidth
parameters (hK and hH ) our asymptotic normality can be improved by removing the bias term
Bn(x, y).

Corollary 3.3.14 Under the hypotheses of Theorem 3.3.13 and if the bandwidth parameters
(hK and hH) and if the function φx(hK) satisfies:

limn→∞(h2
H + hK)

√
nφx(hK) = 0,

we have
(
nhHφx(hK)

σ2
h(x, y)

)1/2(ĥXY (x, y)− hXY (x, y))
D→ N (0, 1) as n→∞,

Proof Consider the decomposition

ĥXY (x, y)− hXY (x, y) =
1

f̂D(x)− ĝN(x, y)
(f̂N(x, y)− Ef̂N(x, y))

+
1

f̂D(x)− ĝN(x, y)
{hXY (x, y)(EĝN(x, y)− FX

Y (x, y)) + (Ef̂N(x, y)− fXY (x, y))}

+
hXY (x, y)

f̂D(x)− ĝN(x, y)
{1− EĝN(x, y)(f̂D(x)− ĝN(x, y))}

Therefore, Theorem 3.3.13 and Corollary 3.3.14 are a consequence of Lemma 3.3.15, Lemma
3.3.16 and the following results.
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Lemma 3.3.15 Under the hypotheses of Theorem 3.3.13

(
nhHφx(hK)

σ2
f (x, y)

)1/2(f̂N(x, y)− Ef̂N(x, y))→ N (0, 1)

Lemma 3.3.16 Under the hypotheses of Theorem 3.3.13

F̂D(x)− ĝN(x, y) −→ 1− FX
Y (x, y) in probability,

and
(
nhHφx(hK)

σ2
h(x, y)

)1/2(f̂D(x)− ĝN(x, y)− 1 + ĝN(x, y)) = OP (1).

Proof of Lemma 3.3.15 Define

Γi(x, y) =

√
φx(hK)√

nhHE[K1(x)]
(∆i(x, y)− E[∆i(x, y)]),

and

Ωn =
n∑
i=1

Γi(x, y).

Thus
Ωn =

√
nhHφx(hK)(f̂N(x, y)− Ef̂N(x, y))

So, our claimed result is now
Ωn → N (0, σ2

f (x, y)).

Therefore, we have

V ar(Ωn) = nhHφx(hK)V ar(f̂N(x, y)− E[f̂N(x, y)])

Now, we need to evaluate the variance of f̂N(x, y). For this we have for all 1 ≤ i ≤
n,∆i(x, y) = H

′
i(y)Ki(x), so we have

V ar(f̂N(x, y)) =
1

(nhHE[K1(x)])2

n∑
i=1

n∑
j=1

Cov(∆i(x, y),∆j(x, y)) =
1

n(hHE[K1(x)])2
V ar(∆1(x, y)).

Therefore
V ar(∆1(x, y)) ≤ E(H

′2
1 (y)K2

1(x)) ≤ E(K2
1(x)E[H

′2
1 |X1])

Now, by a change of variable in the following integral and by applying (H3) and (H5), one
gets

E[H
′2
1 |X1] =

∫
RH

′2

(
‖y−u‖
hH

)
fXY (x, u)du

≤ hH
∫
RH

′2(t)(fXY (y − hHt, x)− fXY (x, y))dt+ hHf
X
Y (x, y)

∫
RH

′2(t)dt

≤ h1+b2
H

∫
R |t|

b2H
′2(t)dt+ hHf

X
Y (x, y)

∫
RH

′2(t)dt

= hH
(
o(1) + fXY (x, y)

∫
RH

′2(t)dt
)

(17)
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By means of (17) and the fact that, as n→∞,E(K2
1(x))→ β2φx(hK) one gets

V ar(∆1(x, y)) = β2φx(hH)hH

(
o(1) + fYX (x, y)

∫
R
H
′2(t)dt

)
So, using (H4), we get

1

n(hHE[K1(x)])2
V ar(∆1(x, y)) =

β2φx(hK)

n(β1hHφx(hK))2
hH

(
o(1) + fXY (x, y)

∫
R
H
′2(t)dt

)

= O

(
1

nhHφx(hK)

)
+

β2f
X
Y (x, y)

β2
1nhHφx(hK)

∫
R
H
′2(t)dt

Thus as n→∞ we obtain

1

(nhHE[K1(x)])2
V ar(∆1(x, y))→ β2f

X
Y (x, y)

β2
1nhHφx(hK)

∫
R
H
′2(t)dt. (18)

Finally, the proof of Lemma is completed by using result (18), to get

V ar(Ωn)→ β2

β2
1

fXY (x, y)

∫
R
H
′2(t)dt = σ2

f (x, y)

Proof of Lemma 3.3.16
It is clear that, the result of Corollary 3.3.6, Corollary 3.3.8 and Corollary 3.3.10 permits

us

E(F̂D(x)− ĝN(x, y)− 1 + FX
Y (x, y))→ 0,

and
V ar(F̂D(x)− ĝN(x, y)− 1 + FX

Y (x, y))→ 0,

then
F̂D(x)− ĝN(x, y)− 1 + FX

Y (x, y)
P→ 0.

Moreover, the asymptotic variance of f̂D(x) − ĝN(x, y) given in Remark 3.3.12 allows to
obtain

nhHφx(hK)

σh(x, y)2
V ar(f̂D(x, y)− ĝN(x, y)− 1 + E(ĝN(x, y)))→ 0.

By combining result with the fact that

E(f̂D(x)− ĝN(x, y)− 1 + E(ĝN(x, y))) = 0.

Finally, wee obtain the claimed result.
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3.4 Remarques and Commentary

1. The hypothesis (H1) on the functional variable X can be divided into two parts:

• (i)The first part is rarely used in non-parametric statistical functional, because it
requires the introduction of a reference measurement of the functional space. How-
ever, in this chapter the objective that we impose this condition. In other words, it
allows us to achieve a natural generalization of the squared error obtained by Vieu
[158] in the vector case. The hypothesis (H1) is not very restrictive. Indeed, the
first part of this hypothesis is verified, when, for example X is a diffusion process
satisfying standard conditions (see Niang [40]).

• (ii) The second part (5) is less restrictive than the following condition, given for
all(r, v) ∈ R+

∗ ×B(0, 1)(xfixed) :

∃C1, C2 > 0, 0 < C1φ(r)g(x, v) ≤ w(r, x, v) ≤ C2φ(r)g(x, v),

which is a classic property in functional analysis. Note that, this assumption is
used to describe the phenomenon of concentration of the probability measure of the
explanatory variable X, since we have:

P(X ∈ B(x, r)) =

∫
B(0;1)

w(r, x, v)dµ(v) = φ(r)

∫
B(0,1)

g(x, v)dµ(v) + o(φ(r)) > 0.

This is a simple asymptotic separation of variables. This condition is designed to be
able to adapt traditional techniques of the case if different multi functional, even if
the reference measure µ does not have the same properties of the Lebesgue measure,
such as translation invariance and homogeneity. In the case of finite dimension,
the hypothesis (H1) is satisfied when the density of the explanatory variable X
is of class C1 and strictly positive. Indeed, the density of Z = r−1(x − X) and
w(r, x, v) = rpf(x − rv), where f is the density of X and p dimension, therefore
w(r, x, v) = rpf(x) + o(rp).

2. In this chapter, we chose a condition of derivability as our goal is to find an expression
for the rate of convergence explicitly, asymptotically exact and keeps the usual form of
the squared error (see Vieu [158]). However, if one proceeds by a Lipschitz condition for
example the conditional density of type:

∀(y1, y2) ∈ SR×SR, ∀(x1, x2) ∈ Nx×Nx, |fx1(y1)−fx2(y2)| ≤ Ax((d(x1, x2)2)+ |y1−y2|2),

which is less restrictive than the condition (2), we obtain a result for the conditional
distribution and conditional density respectively for example of type:
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E[(F̂X
Y (x, y)− FX

Y (x, y))2] = O(h4
H + h4

K) +O
(

1

nφ(hk)

)
,

E[(f̂XY (x, y)− fXY (x, y))2] = O(h4
H + h4

K) +O
(

1

nhHφ(hk)

)
,

But such an expression (implicitly) the rate of convergence will not allow us to properly
determine the smoothing parameter. In other words, this condition of differentiability is
a good compromise to obtain an explicit expression for the rate of convergence. Note that
this condition is often taken in the case of finite dimension.

3. The dimensionality of the observations (resp. model) is used in the expression of the
rate of convergence of the two lemmas Lemma 3.3.2 and Lemma 3.3.3. We find the
"dimensionality" of the model in the way, while the "dimensionality" of the variable in
the functional dispersion bias the property of concentration of the probability measure of
the functional variable which is closely related to the topological structure of the functional
space of the explanatory variable. Ours asymptotique results highlights the importance
of the concentration properties on small balls of the probability measure of the underlying
functional variable. This highlights the role of semi-metric the quality of our estimate.
A suitable choice of this parameter allows us to an interesting solution to the problem
of curse of dimensionality. (see [63]). Another argument has a dramatic effect in our
estimation. This is the smoothing parameter hK (resp. hH ). The term of our rate of
convergence, decomposed into two main parts: part bias proportional to hK (resp. hH ),
and part dispersion inversely proportional to hK (resp. hH )(f is an increasing function
depending on the hK), makes this relatively easy choice minimizing the main part of this
expression to determine this parameter.



Chapter 4

Functional explanatory variable in single
functional index

The work given in this chapter has been published in Journal of Applied Mathematics and
Statistics
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In this chapter we deal with nonparametric estimate of the conditional hazard function,
when the covariate is functional. Kernel type estimators for the conditional hazard function
of a scalar response variable Y given a Hilbertian random variable X are introduced, where
the observations are linked with a single-index structure. We establish the pointwise almost
complete convergence and the uniform almost complete convergence (with the rate) of the
kernel estimate of this model in various situations, including censored and non-censored data.
The rates of convergence emphasize the crucial role played by the small ball probabilities with
respect to the distribution of the explanatory functional variable.

4.1 Setting the Problem

4.1.1 Bibliographic context

If X is a random variable associated to a lifetime (ie, a random variable with values in R+),
the hazard rate of X (sometimes called hazard function, failure or survival rate ) is defined at
point x as the instantaneous probability that life ends at time x. Specifically, we have:

h(x) = lim
4x→0

P (X ≤ x+4x|X ≥ x)

4x
(x > 0) (1)

When X has a density f with respect to the measure of Lebesgue, it is easy to see that the
hazard rate can be written, as follows:

h(x) =
f(x)

S(x)
for all x such that F (x) < 1, (2)

where F denotes the distribution function of X and S = 1− F the survival function of X.

In many practical situations, we may have an explanatory variable Z and the main issue is
to estimate the conditional random rate defined as

hZ(x) = lim
4x→0

P (X ≤ x+4x|X ≥ x, Z)

4x
for(x > 0)

which can be written naturally as follows:

hZ(x) =
fZ(x)

SZ(x)
, onceFZ(x) < 1. (3)

Study of functions h and hZ is of obvious interest in many fields of science (biology, medicine,
reliability , seismology, econometrics, ...) and many authors are interested in construction of
nonparametric estimators of h . One of the most common techniques for building estimators of
h (respectively hZ) is based on (2) (resp. (3)) and consist in studying a quotient between the
estimator of f ( respectively fZ) and that of S (respectively, SZ). Patil et al. [125] presented
an overview of these estimation techniques. Nonparametric methods based on the ideas of the
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convolution kernel, which are known for their good behavior in density estimation (conditional
or not) problems are widely used in nonparametric estimation of hazard function. A wide
range of literature in this area is provided by bibliographic reviews Singpurwalla and Wong
[148] Hassani et al. [91], Izenman [101], Gefeller and Michels [79], Pascu and Vaduva [124], and
Ferraty et al.

4.1.2 Conditional hazard in the case of explanatory functional

The progress of data collection methods offers opportunities for statisticians to provide increas-
ingly observations of functional variables. Works of Ramsay and Silverman [131] and Ferraty
and Vieu [69] offer a wide range of statistics methods, parametric or nonparametric, recently
developed to treat various estimation problems which occur in functional random variables (ie
with values in a space of in..inite dimension). Until now such statistical developments for func-
tional variables in single functional index does not exist in the context of estimating a hazard
function.

Let (Xi, Zi)1≤i≤n be n random variables, identically distributed as the random pair (X,Z)
with values in R ×H, where H is a separable real Hilbert space with the norm ‖.‖ generated
by an inner product < ., . >. We consider the semi metric dθ, associated to the single index
θ ∈ H,defined by ∀z1, z2 ∈ H : dθ(z1, z2) := | < z1 − z2, θ > |. Under such topological structure
and for a fixed functional θ, we suppose that the conditional hazard function of X given Z = z
denoted by hz(.) exists and is given by

∀x ∈ R, hzθ(x) =: h(x| < z, θ >).

Clearly, the identifiability of the model is assured, and we have for all z ∈ H

h1(.| < z, θ1 >) = h2(.| < z, θ2 >) =⇒ h1 ≡ h2 and θ1 = θ2.

For more details see Ait Saidi et al. [3]. In the following, we denote by h(θ, ., Z), the con-
ditional hazard function of X given < z, θ >.

The objective of this chapter is to study a model in which the conditional random explana-
tory variable Z is not necessarily real or multi-dimensional but only assumed to be values in an
abstract space H provided a scalar product < ., . > . As with any problem of non-parametric
estimation, the dimension of the space H plays an important role in the properties of con-
centration of the variable X. Thus, when the dimension is not necessarily finite, probability
functions defined by small balls of:

φθ,z(h) = P(Z ∈ Bθ(z, h)) = P(Z ∈ {z′ ∈ H, 0 < | < z − z′, θ > | < h}),

intervene directly in the asymptotic behavior of any functional non-parametric estimator
(see Ferraty and Vieu [69]). The asymptotic results presented later in this chapter on the esti-
mation of the function h(θ, x, Z) does not escape this rule.
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From now, z denotes a fixed element of the functional space H,Nz denotes a fixed neigh-
borhood of z and SR is a fixed compact of R+. Now, we should make some assumptions on the
concentration function φθ,z(h)

• (H1) ∀h > 0, φθ,z(h) > 0

The non-parametric model on the estimated function hZ will be determined by the regularity
conditions on the conditional distribution of X knowing Z. These conditions are the following:

• (H2) ∃Aθ,z <∞,∃b1, b2 > 0,∀(x1, x2) ∈ S2
R,∀(z1, z2) ∈ N2

z :

|F (θ, x1, z1)− F (θ, x2, z2)| ≤ Aθ,z(‖z1, z2‖b1 + |x1 − x2|b2)

|f(θ, x1, z1)− f(θ, x2, z2)| ≤ Aθ,z(‖z1, z2‖b1 + |x1 − x2|b2)

• (H3) ∃ν <∞,∀(x, z′) ∈ SR ×Nz, f(θ, x, z′) ≤ ν

• (H4) ∃β > 0,∀(x, z′) ∈ SR ×Nz, F (θ, x, z′) ≤ 1− β

4.1.3 Construction of the estimator in the case of non-censured data

Let (Xi, Zi)1≤i≤n be random variables, each of them follows the same law of a couple (X,Z)
whereX is valued in R and Z has values in the Hilbert space (H, < .; . >) . In this section we
will suppose that Xi and Zi are observed.

Recent advances in non-parametric statistics for functional variables, as presented in Ferraty
and Vieu [69] show that the techniques based on convolution kernels are easily transposed to
the context of functional variables. Moreover, these kernel’s techniques have good properties
in the problems of estimation of hazard function when the variables are of finite-dimensional.
The reader may consult the work Ferraty et al. [69] which is a pioneering paper on the subject
and that of Quintela-del-Rio [127] for the most recent results in this area.

Therefore, drawing on these ideas, it is natural to try to construct an estimator of the
function h(θ, ., Z). To estimate the conditional distribution function and the conditional density
in the presence of functional the variable Z, Mahiddine et al. [111] proposed the following
functional kernel estimators:

F̂ (θ, x, z) =

∑n
i=1K(h−1

K (< z − Zi, θ >))H(h−1
H (x−Xi))∑n

i=1K(h−1
K (< z − Zi, θ >))

and

f̂(θ, x, z) =

∑n
i=1K(h−1

K (< z − Zi, θ >))H ′(h−1
H (x−Xi))

hH
∑n

i=1K(h−1
K (< z − Zi, θ >))
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where K is a kernel,H is a distribution function and hK = hK,n(resp.hH = hH,n) is a se-
quence of positive real numbers a kernel estimator of the functional conditional hazard function
h(θ, ., Z) may therefore be constructed in the following way:

ĥ(θ, x, Z) =
f̂(θ, x, Z)

1− F̂ (θ, x, Z)
(4)

The assumptions we need later for the parameters of the estimator, ie on K,H, hH and hK
are not restrictive.

Indeed, on one hand, they are not specific to the problem of estimating h(θ, x, Z) (but
rather inherent to the estimation problems of F (θ, x, Z) and f(θ, x, Z), and in other hand
they correspond to the assumptions usually made in the context of non-functional variables.
More precisely, we introduce the following conditions which guarantee the good behavior of the
estimators F̂ (θ, x, Z) and f̂(θ, x, Z) (see Ferraty and Vieu [69]):

• (H5) H is a bounded Lipschitz continuous function, such that∫
H ′(t)dt = 1,

∫
|t|b2H(t)dt <∞ and

∫
H2(t)dt <∞

• (H6) K is positive bounded function with support [−1, 1].

• (H7) The bandwidth hK has to satisfy

lim
n→∞

hK = 0 and lim
n→∞

logn

nhHφθ,x(hK)
= 0,

• (H8) The bandwidth hH has to satisfy

lim
n→∞

hH = 0 and ∃a > 0, lim
n→∞

nahH =∞,

Under these general conditions, we will establish in 4.3.1 the pointwise convergence of the kernel
estimator ĥ(θ, x, z) of the functional conditional hazard function h(θ, x, z) when the observed
sample is not censored. In section 4.3.2, these results will be generalized to censored variables.

4.1.4 Estimation in censored case

Estimation of the hazard function when the data are censored is an important problem in
medical research. So, in practice, in medical applications, it can be in the presence of vari-
ables censored. This problem is usually modeled by considering a positive variable called C,
and the observed random variables are not the couples (Xi, Zi) but only the (Ti,∆i, Zi) where
Ti = minimize(Xi, Ci) and ∆i = IXi≤Ci

. In the following we use the notations F1(θ, ., Z) and
f1(θ, ., Z) to describe the distribution function and conditional density of C knowing Z and we
use the notation S1(θ, ., Z) = 1−F1(θ, ., Z). Models such censorship where abundantly studied
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in the literature for real or multi-dimensional random variables, and in the nonparametric case
kernel’s techniques are particularly used (see Tanner and Wong [150] Padgett [123] Lecoutre
and Ould-Said [108] and van Keilegom Veraverbeke [102]), for functional variables see Ferraty
et al., and Laksaci and Mechab [107] in the case of spatial variables.

The aim of this section, is to adapt these ideas as part of an explanatory variable Z func-
tional, and build a kernel estimator function type of conditional random h(θ, ., Z) adapted
to the censored data. If we introduce the notation L(θ, ., Z) = 1 − S1(θ, ., Z)S(θ, ., Z) and
ϕ(θ, ., Z) = f(θ, ., Z)S1(θ, ., Z), we can reformulate the expression (3) as follows:

h(θ, t, Z) =
ϕ(θ, t, Z)

1− L(θ, t, Z)
,∀t, L(θ, t, Z) < 1. (5)

So, we can define function estimators ϕ(θ, ., Z) and L(θ, ., Z) by setting

L̂(θ, t, Z) =

∑n
i=1 K(h−1

K (< z − Zi, θ >))H(h−1
H (t− Ti))∑n

i=1K(h−1
K (< z − Zi, θ >))

and

ϕ̂(θ, t, Z) =

∑n
i=1K(h−1

K (< z − Zi, θ >))∆iH
′(h−1

H (t− Ti))
hH
∑n

i=1 K(h−1
K (< z − Zi, θ >))

Finally the hazard function estimator is given as:

h̃(θ, t, Z) =
ϕ̂(θ, t, Z)

1− L̂(θ, t, Z)
. (6)

In addition to the assumptions introduced in section 4.2.3, we need additional conditions.
These assumptions are identical to those found in the classical literature for non-functional
variables (see previous references ), these additional hypotheses are as follows:

• (H9) Conditionally to Z, the variables X and C are independent;

• (H10) ∃Aθ,z <∞,∃b1, b2 > 0,∀(t1, t2) ∈ S2
R, ∀(z1, z2) ∈ N 2

z :

|L(θ, t1, z1)− L(θ, t2, z2)| ≤ Aθ,z(‖z1 − z2‖b1 + |t1 − t2|b2)

|ϕ(θ, t1, z1)− ϕ(θ, t2, z2)| ≤ Aθ,z(‖z1 − z2‖b1 + |t1 − t2|b2)

• (H11) ∃µ <∞, ϕ(θ, t, z′) < µ,∀(t, z′) ∈ R+ ×Nz,

• (H12) ∃η > 0, L(θ, t, z′) ≤ 1− η,∀(t, z′) ∈ R+ ×Nz.

Under these very general conditions, we establish in Section 4.3.1 the rates of convergence
of the kernel estimator h̃(θ, ., z) of the functional conditional Hazard function h(θ, ., z) when
couples of variables (Xi, Zi)i=1,...n are independents. In section 4.3.2 these results will be gen-
eralized by dispensing with the condition of censored data.
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4.2 Pointwise Almost Complete Convergence

4.2.1 Case of non censored data

We begin by studying statistical samples satisfying a classical assumption of independence,
couples (Xi, Zi) are iid

Theorem 4.2.1 Under hypotheses (H1)-(H8), we have:

sup
x∈SR
|ĥ(θ, x, z)− h(θ, x, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logn

nhHφθ,z(hK)

)
Proof. The proof is based on the following decomposition, valid for any x ∈ SR :

ĥ(θ, x, z)− h(θ, x, z) =
1

(1− F̂ (θ, x, z))(1− F (θ, x, z))

(
f̂(θ, x, z)− f(θ, x, z)

)
+

f(θ, x, z)

(1− F̂ (θ, x, z))(1− F (θ, x, z))

(
F̂ (θ, x, z)− F (θ, x, z)

)
− F (θ, x, z)

(1− F̂ (θ, x, z))(1− F (θ, x, z))

(
f̂(θ, x, z)− f(θ, x, z)

)
=

1

1− F̂ (θ, x, z)

(
f̂(θ, x, z)− f(θ, x, z)

)
+

h(θ, x, z)

1− F̂ (θ, x, z)

(
F̂ (θ, x, z)− F (θ, x, z)

)
hence
sup
x∈SR
|ĥ(θ, x, z)− h(θ, x, z)| ≤ 1

infx∈SR |1− F̂ (θ, x, z)|

(
sup
x∈SR

∣∣f̂(θ, x, z)− f(θ, x, z)
∣∣)

+
supx∈SR |h(θ, x, z)|

infx∈SR |1− F̂ (θ, x, z)|

(
sup
x∈SR

∣∣F̂ (θ, x, z)− F (θ, x, z)
∣∣).

which leads to a constant C <∞ :

sup
x∈SR
|ĥ(θ, x, z)−h(θ, x, z)| ≤ C

{
supx∈SR

(
|f̂(θ, x, z)− f(θ, x, z)|+ | F̂ (θ, x, z)− F (θ, x, z) |

)}
infx∈SR |1− F̂ (θ, x, z)|

And conventionally (see for instance the Proposition A6ii of Ferraty and Vieu [69]) the
announced result follows directly from the following properties:

sup
x∈SR
|F (θ, x, z)− F̂ (θ, x, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logn

nφθ,z(hK)

)
(7)
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and

sup
x∈SR
|f(θ, x, z)− f̂(θ, x, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logn

nhHφθ,z(hK)

)
(8)

and from the next result which is a consequence of property (7).

Corollary 4.2.2 Under the conditions of Theorem 4.3.1, we have

∃δ > 0 such that
∞∑
n=1

P{ inf
x∈SR
|1− F̂ (θ, x, z)| < δ} <∞.

The results (7) and (8) are known results (see for instance Ferraty and Vieu [69], Propositions
6.19 and 6.20).

4.2.2 Estimation with censored data

The goal now is to take these asymptotic properties in the broader context of a censored
sample as described in Section 4.2.4. We will begin in this section by discussing the case
censored. Obviously, obtaining these results require more sophisticated than those presented
under uncensored technical developments. To ensure a good readability in this Section 4.3.2,
the presentation of these technical details will later in Paragraph 5. We begin by studying
statistical samples satisfying a standard assumption of independence, ie. triples (Xi, Ci, Zi) are
i.i.d.

Theorem 4.2.3 Under assumptions (H1)− (H2), and(H5)− (H12), we have:

sup
t∈SR
|h̃(θ, t, z)− h(θ, t, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logn

nhHφθ,z(hK)

)
Proof. The result is based on the bellow decomposition , wherein C is a real constant strictly
positive:

sup
t∈SR
|h̃(θ, t, z)− h(θ, t, z)| ≤ 1

inft∈SR |1− L̂(θ, t, z)|

{
sup
t∈SR
|ϕ̃(θ, t, z)− ϕ(θ, t, z)|

}

+
supt∈SR |h(θ, t, z)|

inft∈SR |1− L̂(θ, t, z)|

{
sup
t∈SR
|L̃(θ, t, z)− L(θ, t, z)|

}

≤ C sup
t∈SR

{
|ϕ̃(θ, t, z)− ϕ(θ, t, z)|+ |L(θ, t, z)− L̃(θ, t, z)|

}
inft∈SR |1− L̂(θ, t, z)|

(9)

which is obtained from (3) and (5) proceeding as to establish (17). Since L̂(θ, t, Z) is none
other than the kernel estimator of the conditional distribution function of T knowing Z is
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obtained directly (see Ferraty and Vieu [69], Proposition 6.19) that:

sup
t∈SR
|L̃(θ, t, z)− L(θ, t, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logn

nφθ,z(hK)

)
(10)

The proprieties of the estimator ϕ̂(θ, ., Z) are given in Lemma 4.3.4, the desired result is ob-
tained directly from (9)-(12).

Lemma 4.2.4 Under hypotheses of theorem 4.3.3, we have:

sup
t∈SR
|ϕ̃(θ, t, z)− ϕ(θ, t, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logn

nhHφθ,z(hK)

)
(11)

The next result which is a consequence of property (10).

Corollary 4.2.5 Under the conditions of Theorem 4.3.3, we have

∃δ > 0 such that
∞∑
n=1

P{ inf
x∈SR
|1− L̂(θ, x, z)| < δ} <∞. (12)

4.3 Uniform Almost Complete Convergence

In this party we derive the uniform version of Theorem 4.3.1. The study of the uniform
consistency is motivated by the fact that the latter is an indispensable tool for studying the
asymptotic properties of all estimates of the functional index if is unknown. Noting that,
in the multivariate case, the uniform consistency is a standard extension of the pointwise one,
however, in our functional case, it requires some additional tools and topological conditions (see
Ferraty et al. [63], for more discussion on the uniform convergence in nonparametric functional
statistics). Thus, in addition to the conditions introduced previously, we need the following
ones. Firstly, consider

SH ⊂
d
SH
n⋃
k=1

B(xk, rn) and ΘH ⊂
d

ΘH
n⋃
j=1

B(tj, rn)

with xk(resp.tj) ∈ H and rn, dSHn , dΘH
n are sequences of positive real numbers which tend to

infinity as n goes to infinity.

4.3.1 Non censored data

Thereafter we propose to study the uniform almost complete convergence of our estimator de-
fined above (4) for this, we need the following assumptions:
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• (A1) There exists a differentiable function φ(.) such that ∀z ∈ SH and for all θ ∈ ΘH,

0 < Cφ(h) ≤ φθ,z(h) ≤ C ′φ(h) <∞ and ∃η0 > 0,∀η < η0, φ
′(η) < C

• (A2) ∀(x1, x2) ∈ SR × SR, ∀(z1, z2) ∈ SH × SH and ∀θ ∈ ΘH

|F (θ, x1, z1)− F (θ, x2, z2)| ≤ A(‖z1, z2‖b1 + |x1 − x2|b2)

|f(θ, x1, z1)− f(θ, x2, z2)| ≤ A(‖z1, z2‖b1 + |x1 − x2|b2)

• (A3) ∃ν <∞,∀(x, z′) ∈ SR ×Nz,∀θ ∈ ΘH, f(θ, x, z′) ≤ ν

• (A4) ∃β > 0,∀(x, z′) ∈ SR ×Nz,∀θ ∈ ΘH, F (θ, x, z′) ≤ 1− β

• (A5) The kernel K satisfy (H3) and Lipschitz’s condition holds

|K(u)−K(v)| ≤ C‖u− v‖,

• (A6) For rn = O( logn
n

) the sequences dSHn and dΘH
n satisfy:

(logn)2

nφ(hK)
< logdSHn + logdΘH

n <
nφ(hK)

logn

and
∞∑
n=1

n1/2b2(dSHn dΘH
n )1−β <∞ for someβ > 1

• (A7) For some γ ∈ (0, 1), lim
n→∞

nγhH = ∞, and for rn = O( logn
n

) the sequences dSFn and

dΘF
n satisfy:

(logn)2

nhHφ(hK)
< logdSFn + logdΘF

n <
nhHφ(hK)

logn

and
∞∑
n=1

n(3γ+1)/2(dSFn dΘF
n )1−β <∞, for someβ > 1

Remark 4.3.1 Note that Assumptions (A1)-(A4) are, respectively, the uniform version of
(H1)-(H4). Assumptions (A1) and (A6) are linked with the the topological structure of the
functional variable, see Ferraty et al. [58].

Theorem 4.3.2 Under hypotheses (A1)-(A7) and (H5), we have:

sup
θ∈ΘH

sup
z∈SH

sup
x∈SR
|ĥ(θ, x, z)− h(θ, x, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logdSHn + logdΘH

n

nhHφ(hK)

)
In the particular case, where the functional single-index is fixed we get the following result.
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Corollary 4.3.3 Under Assumptions (A1)-(A7) and (H4), as n goes to infinity, we have

sup
z∈SH

sup
x∈SR
|ĥ(θ, x, z)− h(θ, x, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logdSHn

nhHφ(hK)

)
Proof of theorem 4.4.2. Clearly The proofs of these two results namely the Theorem 4.4.2
and Corollary 4.4.3 can be deduced from the following intermediate results which are only
uniform version of properties (7) and (8).

sup
θ∈ΘH

sup
z∈SH

sup
x∈SR
|F̂ (θ, x, z)− F (θ, x, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logdSHn + logdΘH

n

nφ(hK)

)
(13)

and

sup
θ∈ΘH

sup
z∈SH

sup
x∈SR
|f̂(θ, x, z)− f(θ, x, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logdSHn + logdΘH

n

nhHφ(hK)

)
(14)

from the next result which is a consequence of property (13).

Corollary 4.3.4 Under the conditions of Theorem 4.4.2, we have

∃δ > 0 such that
∞∑
n=1

P{ inf
z∈SH

inf
x∈SR
|1− F̂ (θ, x, z)| < δ} <∞.

The results (13) and (14) are known results (see for example Mahiddine et al. [111]).

4.3.2 Censored data

Thereafter we propose to study the uniform almost complete convergence of our estimator de-
fined above (6) for this, we need the following assumptions:

• (A2a) ∀(t1, t2) ∈ SR × SR and ∀(z1, z2) ∈ SH × SH and ∀θ ∈ ΘH,

|L(θ, t1, z1)− L(θ, t2, z2)| ≤ A(‖z1, z2‖b1 + |t1 − t2|b2),

|ϕ(θ, t1, z1)− ϕ(θ, t2, z2)| ≤ A(‖z1, z2‖b1 + |t1 − t2|b2);

• (A3a) ∃ν <∞,∀(t, z′) ∈ SR ×Nz,∀θ ∈ ΘH, ϕ(θ, t, z′) ≤ ν,

• (A4a) ∃β > 0,∀(t, z′) ∈ SR ×Nz,∀θ ∈ ΘH, L(θ, t, z′) ≤ 1− β.

Theorem 4.3.5 Under hypotheses (A1), (A5)-(A7) and (A2a)-(A4a), we get:

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR
|h̃(θ, t, z)− h(θ, t, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logdSHn + logdΘH

n

nhHφ(hK)

)
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In the particular case, where the functional single-index is fixed we get the following result.

Corollary 4.3.6 Under Assumptions (A1), (A5)-(A7), (A2a)-(A4a) and (H4), as n goes to
infinity, we have

sup
z∈SH

sup
t∈SR
|h̃(θ, t, z)− h(θ, t, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logdSHn

nhHφ(hK)

)
Proof of theorem 4.4.5. The result is based on the decomposition (9). Clearly The proofs
of these two results namely the Theorem 4.4.5 and Corollary 4.4.6 can be deduced from the
following intermediate results which are only uniform version of properties (10) and (11). The
properties of the estimators L̂(θ, ., z) and ϕ̂(θ, ., z) are given in the following Lemma 4.7. Finally,
the desired result is obtained directly from (9), (15), (16).

Lemma 4.3.7 Under hypotheses of Theorem 4.4.5, we have:

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR
|L̂(θ, t, z)− L(θ, t, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logdSHn + logdΘH

n

nφ(hK)

)
(15)

and

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR
|ϕ̂(θ, t, z)− ϕ(θ, t, z)| = O(hb1K + hb2H) +Oa.c.o

(√
logdSHn + logdΘH

n

nhHφ(hK)

)
(16)

The next result which is a consequence of property (15).

Corollary 4.3.8 Under the conditions of Theorem 4.4.5, we have

∃δ > 0 such that
∞∑
n=1

P{ inf
z∈SH

inf
t∈SR
|1− L̂(θ, t, z)| < δ} <∞.

Sketch of Proof of Lemma 4.4.7

The proof of (15) is based on some results depending on the following decomposition;

L̂(θ, t, z)− L(θ, t, z) =
1

ϕ̂D(θ, z)

{(
L̂N(θ, t, z)− EL̂N(θ, t, z)

)
−
(
L(θ, t, z)− EL̂N(θ, t, z)

)}

+
L(θ, t, z)

ϕ̂D(θ, z)
{1− ϕ̂D(θ, z)}

(17)
Then the rest of the proof is similar the one given in Mahiddine and al.[111], where, it is

sufficient to replace F̂D(θ, z), F (θ, t, z) and E(F̂N(θ, t, z)) (Lemma 6, corollary 3 and Lemma 7)
by ϕ̂D(θ, z), L(θ, t, z) and E(L̂N(θ, t, z)) respectively.

Then the rest is deduced directly from Lemma 4.4.10, Lemma 4.4.11 and Corollary 4.4.9.
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Corollary 4.3.9 Under Assumptions (A1), (A5) and (A6), we have as n→∞

sup
θ∈ΘH

sup
z∈SH
|ϕ̂D(θ, z)− 1| = Oa.c.o

(√
logdSHn + logdΘH

n

nφ(hK)

)
(18)

and
∞∑
n=1

P
(

inf
θ∈ΘH

inf
z∈SH

ϕ̂D(θ, z) <
1

2

)
<∞. (19)

Lemma 4.3.10 Under Assumptions (A1), (A2) and (H5), we have, as n goes to infinity

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR
|L(θ, t, z)− E(L̂N(θ, t, z))| = O(hb1K + hb2H) (20)

Lemma 4.3.11 Under assumptions (A1), (A5)-(A7) and (A2a)-(A4a) we have, as n goes to
infinity

sup
θ∈ΘH

sup
z∈SH

sup
t∈SR
|L̂N(θ, t, z)− E[L̂N(θ, t, z)]| = Oa.c.o

(√
logdSHn + logdΘH

n

nφ(hK)

)
(21)

• Concerning (16) the proof is based at first on the following decomposition;

ϕ̂(θ, t, z)− ϕ(θ, t, z) =
1

ϕ̂D(θ, z)
(ϕ̂N(θ, t, z)− Eϕ̂N(θ, t, z))

− 1

ϕ̂D(θ, z)
(ϕ(θ, t, z)− Eϕ̂N(θ, t, z))

+
ϕ(θ, t, z)

ϕ̂D(θ, z)
(1− ϕ̂D(θ, z))

The rest is deduced directly from Lemma 4.4.12, Lemma 4.4.13 and Corollary 4.4.9.

Lemma 4.3.12 Under Assumptions (A1), (A2a) and (H5), we have, as n goes to infinity

sup
θ∈ΘF

sup
z∈SF

sup
t∈SR
|ϕ(θ, t, z)− E(ϕ̂N(θ, t, z))| = O(hb1K + hb2H) (22)

Lemma 4.3.13 Under the assumptions (A1), (A5) ,(A2a), (A7) and (H5), we have, as n goes
to infinity

sup
θ∈ΘF

sup
z∈SF

sup
t∈SR
|ϕ̂N(θ, t, z)− E[ϕ̂N(θ, t, z)]| = Oa.c.o

(√
logdSFn + logdΘF

n

nhHφθ,z(hK)

)
(23)
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4.4 Proof of technical lemmas

In what follows C and c denote generic strictly positive real constants. Furthermore, the
following notation are introduced:

Ki(θ, z) = K(h−1
K (< z − Zi, θ >)), H

′

i(t) = H
′
(h−1

H (t− Ti)),

ϕ̂N(θ, t, z) =
1

nhHEK1(θ, z)

n∑
i=1

Ki(θ, z)H
′

i(t)∆i,

ϕ̂D(θ, z) =
1

nEK1(z)

n∑
i=1

Ki(θ, z),

Vi =
1

EK1(θ, z)
Ki(θ, z),

Wi =
1

hHEK1(θ, z)
Ki(θ, z)H

′

i(t)∆i,

Proof of corollary 4.3.2. It is clear that

inf
x∈SR
|1− F̂ (θ, x, z)| ≤

(
1− sup

x∈SR

F (θ, x, z)

)
/2

⇒ supx∈SR
|F̂ (θ, x, z)− F (θ, x, z)| ≥

(
1− sup

x∈SR

F (θ, x, z)

)
/2.

Which implies that∑
n=1

P
{

inf
x∈SR
|1− F̂ (θ, x, z)| ≤

(
1− sup

x∈SR

F (θ, x, z)

)
/2

}
≤
∑
n=1

P
{

sup
x∈SR

|F̂ (θ, x, z)− F (θ, x, z)| ≥
(

1− sup
x∈SR

F (θ, x, z)

)
/2

}
<∞.

We deduce from property (7) that

∑
n=1

P
{

inf
x∈SR
|1− F̂ (θ, x, z)| ≤

(
1− sup

x∈SR

F (θ, x, z)

)
/2

}
<∞.

This proof is achieved by taking δ = (1− supx∈SR
F (θ, x, z))/2 which is strictly positive.

Proof of lemma 4.3.4. By using the following decomposition:

ϕ̂(θ, t, z)− ϕ(θ, t, z) =
(ϕ̂N(θ, t, z)− ϕN(θ, t, z))ϕD(θ, z)− (ϕ̂D(θ, z)− ϕD(θ, z))ϕN(θ, t, z)

ϕ̂D(θ, z)ϕD(θ, z)
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and under the proposition A6ii de Ferraty and Vieu [69], the result of lemma 4.3.4 will result
directly following three properties:

| ϕ̂D(θ, z)− 1 |= Oa.co.
(√

log n

nhHφθ,z(hK)

)
, (24)

sup
t∈SR
| Eϕ̂N(θ, t, z)− ϕ(θ, t, z) |= O(hb1K + hb2H), (25)

and
1

ϕ̂D(z)
sup
t∈SR

| ϕ̂N(θ, t, z)− Eϕ̂N(θ, t, z) |= Oa.co.
(√

log n

nhHφθ,z(hK)

)
. (26)

• Proof of (24). It suffices to note that we can write

ϕ̂D(θ, z) =
1

n

n∑
i=1

Vi,

with
| Vi |= O

(
1

φθ,z(h)

)
, (27)

and
EV 2

i = O
(

1

φθ,z(h)

)
. (28)

By applying an exponential inequality bonded variables (for example corollary A9i of Ferraty
and Vieu [69])and taking into account the results (27) and (28), we arrive at

P

[
| ϕ̂D(θ, z)− Eϕ̂D(θ, z) |> ε

√
log n

nφθ,z(hK)

]
= O

(
n−Cε

2
)
.

Now simply choose ε large enough to get the results (24).

• Proof of (25). We have, for any tεSR:

Eϕ̂N(θ, t, z) =
1

hHEK1(θ, z)
E(K1(θ, z)H

′

1(t)∆1)

=
1

hHEK1(θ, z)
E(K1(θ, z)E(H

′

1(t)IX1≤C1 |< Z1, θ >))

=
1

hHEK1(θ, z)
E(K1(z)E(H1(t)S1(θ,X1, Z1) |< Z1, θ >)),

(29)

the last equality arising of conditional independence between C1andX1 introduced into [H9],
furthermore we have
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E(H1(t)S1(θ,X1, z) |< Z1, θ >) =

∫
H
′(t− u
hH

)
S1(θ, u, Z1)f(θ, u, Z1)du

= hH

∫
H
′
(v)ϕ(θ, t− vhH , Z1)dv

= hH(ϕ(θ, t, z) + o(hb2H + hb1K)),

(30)

the last equality resulting from the property of Lipschitz function ϕz introduced in [H10]
and the fact that H ′ is probability density. It should be noted, again because of the condition
[H10], that them o() involved in result (30) are uniform for tεSR. Thus, the result (25) is an
immediate consequence of (29) and (30).

• Proof of [26]. The compactness of the set SR can be covered the un disjoint intervals
as follows:

SR ⊂
un⋃
m=1

[τm − ln, τm + ln[,

where τ1, . . . , τun are points of SR and where ln and un are chosen such that

∃C > 0,∃α > 0, ln = Cu−1
n = n−α. (31)

For each t ∈ SR noting τt the single τm such as t ∈ [τm − ln, τm + ln[. Finally, (26) can be
easily deduced from the following results:

1

ϕ̂D(θ, z)
sup
t∈SR

| ϕ̂N(θ, t, z)− ϕ̂N(θ, τt, z) |= Oa.co.

(√
log n

nhHφθ,z(hK)

)
, (32)

1

ϕ̂D(θ, z)
sup
t∈SR

| Eϕ̂N(θ, t, z)− Eϕ̂N(θ, τt, z) |= Oa.co.

(√
log n

nhHφθ,z(hK)

)
, (33)

and
1

ϕ̂D(θ, z)
sup
t∈SR

| ϕ̂N(θ, τt, z)− Eϕ̂N(θ, τt, z) |= Oa.co.

(√
log n

nhHφθ,z(hK)

)
, (34)

• Proof of (32). Because of the condition [H5], there is exist a finite constant C such that
for all t ∈ SR

| ϕ̂N(θ, t, z)− ϕ̂N(θ, τt, z) | = 1
nhHEK1(θ,z)

∑n
i=1 ∆iKi(z)(H

′
i(t)−H

′
i(τt))

≤ C
nhHEK1(θ,z)

∑n
i=1Ki(θ, z) |t−τt|

hH

≤ Cϕ̂D(θ, z)lnh
−2
H .

(35)

By using (31) and choosing α large enough, we obtain directly (32).
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Proof of (33). This result is obtained directly from (24) and (35) using proposition A6ii
of Ferraty and Vieu [69].

• Proof of (34). Obtaining (34) is based on the use of an exponential inequality. Specifi-
cally, it suffices to note that we can write

ϕ̂N(θ, t, z) =
1

n

n∑
i=1

Wi,

with
| Wi |= O

(
1

hHφθ,z(h)

)
, (36)

and

EW 2
i =

1

h2
H(EK1(θ, z))2

EK2
i (θ, z)H

′2
i (t)∆2

i

≤ C
1

h2
H(EK1(θ, z))2

E(K2
i (θ, z)E(H

′2
i (t))| < Zi, θ >)

≤ C
1

hHφθ,z(h)2
E(K2

i (θ, z)

∫
1

hH
H
′
(
t− u
hH

)2

f(θ, u, Zi)du)

= O
(

1

hHφθ,z(h)

)
.

(37)

By using the condition (31) we arrive at

P
[

sup
x∈SR

| ϕ̂N(θ, τt, z)− Eϕ̂N(θ, τt, z) |> ε

√
log n

nhHφθ,z(hK)

]

≤ nα max
m=1,...un

P
[
| ϕ̂N(θ, τm, z)− Eϕ̂N(θ, τm, z) |> ε

√
log n

nhHφθ,z(hK)

]
.

(38)

Moreover, by applying an exponential inequality to bounded variables (for example the corollary
A9i by Ferraty and Vieu [69] ) and taking into account the result (36)and (37), we arrive at

P

[
|ϕ̂N(θ, τm, z)− Eϕ̂N(θ, τm, z)| > ε

√
log n

nhHφθ,z(hK)

]
= O(n−Cε

2

). (39)

It suffices now to choose ε large enough to directly obtain the desired result from (38) and
from (39).
The results (32), (33) and (34) are sufficient to conclude the proof of the result (26).
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Finally, lemma 4.3.4 is a consequence of (24), (25) and (26) and decomposition (5).

Proof of corollary 4.4.9.
• Concerning (18) for all z ∈ SH and θ ∈ ΘH , we set

K(z) = argminimizek∈{1...rn}‖z − zk‖ and j(θ) = argminimizej∈{1...ln}‖θ − tj‖.
Let us consider the following decomposition
supθ∈SH

supΘ∈SH
| ϕ̂D(θ, z)− E(ϕ̂D(θ, z)) | ≤ sup

θ∈SH

sup
Θ∈SH

| ϕ̂D(θ, z)− (ϕ̂D(θ, zk(z))) |︸ ︷︷ ︸
Π1

+ sup
θ∈SH

sup
Θ∈SH

| ϕ̂D(θ, zk(z))− ϕ̂D(tj(θ), zk(z)) |︸ ︷︷ ︸
Π2

+ sup
θ∈SH

sup
Θ∈SH

| ϕ̂D(tj(θ), zk(z))− E(ϕ̂D(tj(θ), zk(z))) |︸ ︷︷ ︸
Π3

+ sup
θ∈SH

sup
Θ∈SH

| E(ϕ̂D(tj(θ), zk(z)))− E(ϕ̂D(θ, zk(z))) |︸ ︷︷ ︸
Π4

+ sup
θ∈SH

sup
Θ∈SH

| E(ϕ̂D(θ, zk(z)))− E(ϕ̂D(θ, z)) |︸ ︷︷ ︸
Π5

For Π1 and Π2, we employe the Hölder continuity condition on K, Cauchy Schwartz’s and
Bernstein’s inequalities, we get

Π1 = O

√ log dSH
n + log dΘH

n

nφ(hk)

 , Π2 = O

√ log dSH
n + log dΘH

n

nφ(hk)

 (40)

Then, by using the fact that Π4 < Π1 and Π5 < Π2, we get for n tending to infinity

Π4 = O

√ log dSH
n + log dΘH

n

nφ(hk)

 , Π5 = O

√ log dSH
n + log dΘH

n

nφ(hk)

 (41)

Now, we deal with Π3, for all n > 0, we have

P

Π3 > n

(√
log dSH

n + log dΘH
n

nφ(hk)

)
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≤ dSH
n dΘH

n max
k∈{1...dSH

n }
max

j∈{1...dΘH
n }

P

| ϕ̂D(tj(θ), zk(z))− E(ϕ̂D(tj(θ), zk(z))) |> n

√ log dSH
n + log dΘH

n

nφ(hk)

 .

Applying Bernstein’s exponential inequality to

1

φ(hK)
(Ki(tj(θ), zk(z))− E(Ki(tj(θ), zk(z)))),

Then under [A7], we get

Π3 = O

√ log dSH
n + log dΘH

n

nφ(hk)

 .

Lastly the result will be easily deduced from the later together with (40) and (41).
• Concerning (19) it easy to see that,

infθ∈ΘH infz∈SH | ϕ̂D(θ, z) | ≤ 1/2 =⇒ ∃z ∈ SH ,∃θ ∈ ΘH , such that

1− ϕ̂D(θ, z) ≥ 1/2 =⇒ supθ∈ΘH
supz∈SH

| 1− ϕ̂D(θ, z) |≤ 1/2.

We deduce from (18) the following inequality

P
(

inf
θ∈ΘH

inf
z∈SH
| ϕ̂D(θ, z) |≤ 1/2

)
≤ P

(
sup
θ∈ΘH

sup
z∈SH

| 1− ϕ̂D(θ, z) |≥ 1/2.

)
Consequently,

∞∑
n=1

P
(

inf
θ∈ΘH

inf
z∈SH

ϕ̂D(θ, z) < 1/2

)
<∞

Proof of lemma 4.4.7.
• Concerning [20], one has

EL̂N(θ, t, z)− L(θ, t, z) = 1
EK1(z,θ)

E [
∑n

i=1Ki(z, θ)Hi(t)]− L(θ, t, z)

= 1
EK1(z,θ)

E(K1(z, θ)[E(H1(t)| < Z1, θ >)− L(θ, t, z)]).
(42)

Moreover, we have

E(H1(t)| < Z1, θ >) =

∫
R
H(h−1

H (t− z))f(θ, z, Z1)dz,

now, integrating by parts and using the fact that H is a cdf, we obtain
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E(H1(t)| < Z1, θ >) =

∫
R
H
′
(t)L(θ, t− hHt, Z1)dt.

Thus, we have

| E(H1(t)| < Z1, θ >)− L(θ, t, z) |≤
∫
R
H(1)(t) | L(θ, t− hHt, Z1)− L(θ, t, z) | dt.

Finally, the use of [A2] implies that

| E(H1(t)| < Z1, θ >)− L(θ, t, z) |≤ C

∫
R
H
′
(t)(hb1K+ | t |b2 hb2H)dt. (43)

Because this inequality is uniform on (θ, t, z) ∈ ΘH × SH × SR and because of [H5], [20] is a
direct consequence of [42], [43] and [19].

Concerning [21], we keep the notation of the corollary 4.4.9 and we use the compact of SR,
we can write that, for some, t1, ....., tun ∈ SR, SR ⊂

⋃un
m=1(tm − ln, tm + ln) with Ln = n

− 1
2b2

and un ≤ Cn
1

2b2 . Taking m(t) = argminimize{1,2,...,un} | t− tm | . Thus, we have the following
decomposition:

| L̂N(θ, t, z)− E(L̂N(θ, t, z)) | ≤ | L̂N(θ, t, z)− L̂N(θ, t, zk(z)) |︸ ︷︷ ︸
Γ1

+ | L̂N(θ, t, zk(z))− E(L̂N(θ, t, zk(z))) |︸ ︷︷ ︸
Γ2

+ 2| L̂N(tj(θ), t, zk(z))− L̂N(tj(θ), tm(t), zk(z)) |︸ ︷︷ ︸
Γ3

+ 2| E(L̂N(tj(θ), t, zk(z))− E(L̂N(tj(θ), tm(t), zk(z))) |︸ ︷︷ ︸
Γ4

+ | E(L̂N(θ, t, zk(z))− E(L̂N(θ, t, z) |︸ ︷︷ ︸
Γ5

)

↪→ Concerning Γ1 we have

| L̂N(θ, t, z)−L̂N(θ, t, zk(z)) |≤
1

n

n∑
i=1

| 1

EK1(θ, z)
Ki(θ, z)Hi(t)−

1

EK1(θ, zK(z))
Ki(θ, zK(z))Hi(t) | .

We use the Hölder continuity condition on K, the Cauchy-Schwartz inequality, the Bernst-
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tein’s inequality and the boundedness of H [assumption[H5]]. This allows us to get:

| L̂N(θ, t, z)− L̂N(θ, t, zk(z)) | ≤ C
φ(hk)

1
n

∑n
i=1 | Ki(θ, z)Hi(t)−Ki(θ, zK(z))Hi(t) |

≤ C
φ(hk)

1
n

∑n
i=1 | Hi(t) || Ki(θ, z)−Ki(θ, zK(z)) |

≤ C
′
rn

φ(hk)

↪→ Concerning Γ2, the monotony of the functions EL̂N(θ, ., z) and L̂N(θ, ., z) permits to
write ∀m ≤ un,∀z ∈ SH,∀θ ∈ ΘH

EL̂N(θ, tm(t) − ln, zk(z)) ≤ sup
t∈(tm(t)−ln,tm(t)+ln)

EL̂N(θ, t, z) ≤ EL̂N(θ, tm(t) + ln, zk(z))

L̂N(θ, tm(t) − ln, zk(z)) ≤ sup
t∈(tm(t)−ln,tm(t)+ln)

L̂N(θ, t, z) ≤ L̂N(θ, tm(t) + ln, zk(z)).

Next we use the Hölder’s condition on L(θ, t, z) and we show that, for any t1, t2 ∈ SR and
for all z ∈ SH, θ ∈ ΘH

| EL̂N(θ, t1, z)− EL̂N(θ, t2, z) | = 1
EK1(z,θ)

| E(K1(z, θ)L(θ, t1, Z1))− E(K1(z, θ)L(θ, t2, Z1)) |

≤ C | t1 − t2 |b2 .

Now, we have, for all n > 0

P
(

sup
j∈{1...dΘH

n }
sup

k∈{1...dSH
n }

sup
1≤m≤un

| L̂N(θ, t, zk(z))− EL̂N(θ, t, zk(z))) |> n

√
log dSH

n dΘH
n

nφ(hK)

)
=

P
(

max
j∈{1...dΘH

n }
max

k∈{1...dSH
n }

max
1≤m≤un

| L̂N(θ, t, zk(z))− EL̂N(θ, t, zk(z))) |> n

√
log dSH

n dΘH
n

nφ(hK)

)
≤

und
SH
n dΘH

n max
j∈{1...dΘH

n }
max

k∈{1...dSH
n }

max
1≤m≤un

P
(
| L̂N(θ, t, zk(z))− EL̂N(θ, t, zk(z))) |> n

√
log dSH

n dΘH
n

nφ(hK)

)
≤

2und
SH
n dΘH

n exp(−cη2 log dSH
n dΘH

n )

choosing un = O(l−1
n ) = O(n

1
2b2 ) , we get
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E
(
| L̂N(θ, t, zk(z))− EL̂N(θ, t, zk(z)) |> n

√
log dSH

n dΘH
n

nφ(hK)

)
≤ C

′
un(dSH

n dΘH
n )1−Cn2

putting Cη2 = β and using [A4], we get

Γ2 = O
(√

log dSς
n d

Θς
n

nφ(hK)

)
.

↪→ Concerning the terms Γ3 and Γ4, using Lipschitz’s condition on the kernel H, one can write

| L̂N(tj(θ), t, zk(z))− L̂N(tj(θ), tm(t), zk(z)) | ≤ C 1
nφ(hK)

∑n
i=1Ki(tj(θ), zk(z)) | Hi(t)−Hi(tm(t)) |

≤ Cln
nhHφ(hK)

∑n
i=1Ki(tj(θ), zk(z)).

Once again a standard exponential inequality for sum of bounded variables allows us to
write

L̂N(tj(θ), t, zk(z))− L̂N(tj(θ), tm(t), zk(z)) = O
(
ln
hH

)
+ Oa.co

(
ln
hH

√
log n

nφz(hK)

)
.

Now, the fact that lim
n→∞

nγhH =∞ and ln = n−1/2b2 imply that:

ln
hHφ(hK)

= o

(√
log dSH

n dΘH
n

nφ(hK)

)
,

then

Γ3 = Oa.co

(√
log dSH

n dΘH
n

nφ(hK)

)
.

Hence, for n large enough, we have

Γ3 ≤ Γ4 = Oa.co

(√
log dSH

n dΘH
n

nφ(hK)

)
.

↪→ Concerning Γ5, we have

E(L̂N(θ, t, zk(z)))− E(L̂N(θ, t, z)) ≤ sup
z∈SH

| L̂N(θ, t, z)− L̂N(θ, t, zk(z)) |,

then following similar proof used in the study of τ1 and using the same idea as for E(ϕ̂(θ, zk(z)))−
E(ϕ̂(θ, z)) we get, for n tending to infinity,
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Γ5 = Oa.co

(√
log dSH

n dΘH
n

nφ(hK)

)
.

The proof of these for points to ones given in Mahiddine et al [111], so it is sufficient to replace
F̂D(θ, z), F (θ, t, z) and E(F̂N(θ, t, z)) [ lemma 6,corollary 3 and lemma 7] by ϕ̂D(θ, z), L(θ, t, z)
and E(L̂N(θ, t, z)) respectively.
• Concerning [22], let H ′i(t) = H

′
(h−1

H (t− Ti)), note that

Eϕ̂N(θ, t, z)− ϕ(θ, t, z) =
1

hHEK1(z, θ)
E(K1(z, θ)[E(H

′

1(t)IX1≤C1| < Z1, θ >)− hHϕ(θ, t, z)]).

Moreover,

E(H
′
1(t)S1(θ,X1, z)| < Z1, θ >) =

∫
RH

′
(h−1

H (t− w))S1(θ, w, Z1)f(θ, w, Z1)dw,

= hH
∫
RH

′
(h−1

H (t− w))ϕ(θ, w, Z1)dw,

= hH
∫
RH

′
(v)ϕ(θ, t− vhH , Z1)dv.

Under condition [H10] we can write:

| E(H
′

1(t)S1(θ,X1, z)| < Z1, θ > −hHϕ(θ, t, Z)) |≤ hH

∫
R
H
′
(t) | ϕ(θ, t−hHt, Z1)−ϕ(θ, t, Z) | dt.

Finally, [A2a] allows to write

| E(H
′

1(t)S1(θ,X1, z)| < Z1, θ > −hHϕ(θ, t, Z)) |≤ ChH

∫
R
H
′
(t)(hb1K+ | t |b2 hb2H)dt.

This inequality is uniform on (θ, t, Z) ∈ ΘH × SH × SR, now to finish the proof it is sufficient
to use [H5].
• Concerning [23], let us keep the definition of K(z) [resp. j(θ)] as in corollary 4.4.9. The

compactness of SR permits to write that SR ⊂
⋃un
m=1(tm − ln, tm + ln) with Ln = n−

3
2
γ− 1

2

and un ≤ Cn
3
2
γ+ 1

2 . Taking m(t) = argminimize{1,...,un} | t − tm | . consider the following
decomposition:
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| ϕ̂N(θ, t, z)− E(ϕ̂N(θ, t, z)) | ≤ | ϕ̂N(θ, t, z)− ϕ̂N(θ, t, zk(z)) |︸ ︷︷ ︸
∆1

+ | ϕ̂N(θ, t, zk(z))− E(ϕ̂N(θ, t, zk(z))) |︸ ︷︷ ︸
∆2

+ 2| ϕ̂N(tj(θ), t, zk(z))− ϕ̂N(tj(θ), tj(t), zk(z)) |︸ ︷︷ ︸
∆3

+ 2| E(ϕ̂N(tj(θ), t, zk(z))− E(ϕ̂N(tj(θ), tj(t), zk(z))) |︸ ︷︷ ︸
∆4

+ | E(ϕ̂N(θ, t, zk(z))− E(ϕ̂N(θ, t, z) |︸ ︷︷ ︸
∆5

 Concerning ∆1, we use the Hölder continuity condition on K, the Cauchy- Shchwartz’s
inequality and the Bernstein inequality. With theses arguments we get

∆1 = O
(√

log dSH
n + log dΘH

n

nhHφ(hK)

)
.

Then using the fact that ∆5 ≤ ∆1, we obtain

∆5 ≤ ∆1 = O
(√

log dSH
n + log dΘH

n

nhHφ(hK)

)
. (44)

 For ∆2, we follow the same idea given for Γ2, we get

∆2 = O
(√

log dSH
n + log dΘH

n

nhHφ(hK)

)
.

 Concerning ∆3 and ∆4, using Lipschitz’s condition on the kernel H,

| ϕ̂N(tj(θ), t, zk(z))− ϕ̂N(tj(θ), tm(t), zk(z)) |≤
ln

h2
Hφ(hK)

,

using the fact that lim
n→∞

nγhH =∞ and choosing ln = n−
3
2
γ− 1

2 implies:

ln
h2
Hφ(hK)

= o

(√
log dSH

n + log dΘH
n

nhHφ(hK)

)
,

So, for n large enough, we have

∆3 = Oa.co

(√
log dSH

n + log dΘH
n

nhHφ(hK)

)
.
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and as ∆4 ≤ ∆3 , we obtain

∆4 ≤ ∆3 = Oa.co

(√
log dSH

n + log dΘH
n

nhHφ(hK)

)
. (45)

Finally, the lemma can be easily deduced from (44) and (45).



Chapter 5

Comments and prospect

In this thesis we are interested in the estimation of a functional parameter in the conditional
models. We treat the estimation of the conditional hazard function and we give the explicit
expression of the terms asymptotically dominant of biais and variance with the rate of con-
vergence, asymptotically exact in the two types of correlations namely the i.i.d case and the
case of the dependent variables with asymptotic normality one keeping the form usual of the
quadratic error.

The work developed in this thesis offers many prospects in short and long terms. Concerning
the short-term prospects:

1. The asymptotic normality of our estimators can enable us to make tests and to build
confidence intervals. For example we can plan to use the same ideas of E. Masry [114]
concerning the conditional quantile as well as the conditional hazard function, he got
results on this problem in regression and should be possible.

2. We can also consider while making an adaptation of the tools developed by Niang and
Rhomari [41] to study a norm convergence Lp of our estimators in depending case and the
ergodic case , another possible prospect is to obtain the rates of convergence concerning
the quadratic error and the quadratic error integrated.

3. The choice of the smoothing parameter: We can generalize the result of E. Youndjé
(1993) on the choice of the smoothing parameter for the estimation of the Conditional
hazard function (rachdi and Vieu [130] have already addressed this problem in the case
of regression functional). Obtaining the results of mean square convergence would have
very useful in that sense.

Other topics can be approached in the long term as conditioning by p functional variables
or combination linear of these p functional variables, among other work the estimation of
conditional quantile and the conditional hazard function for functional explanatory variable
open several prospects. For example, we can consider another estimator by using another
method like the kernel estimation (Fourier, ondelettes...), or the research of optimal rates,
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On another plan, concerning the hypothesis of mixture, we can also plan to obtain speeds of
convergence for ergodic data by making assumption of ergodicity, or still for truncated data and
censured at the same time. Another possible prospect is to suppose not only the explanatory
functional variable but also the variable of interest.
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