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Introduction

Stochastic calculus allows for a consistent theory of integration of a stochastic
process (integrand) with respect to an other (integrator), in order to solve stochas-
tic differential equations. It is used to modelize systems that behave randomly. The
best known and widely used process that carry out this calculus is Brownian motion.
It is used in financial mathematics and economics, for example in modelizing the
evolution in time of stock prices and bond interest rates.

The theory of stochastic integration and stochastic differential equations was de-
veloped by N.Wiener in 1923 [27], K. Itô 1942, 1944 [23, 24] and P. Lévy in 1948 [26].
The best known theory of stochastic calculus is that of Itô the father of stochastic
integration theory. In this theory the integrator has to be semimartigale. However
in recent years the well-studied theory of semimartingale turns out to be insufficient
to describe many phenomena. On the one hand telecommunication connections,
asset prices and other objects have long memory, this effect can not be modelized
processes such as the Brownian motion, which has independent increments and no
memory. On the other hand there are some concepts that can be described by
self-similar fields with stationary dependent increments likewise turbulence in hy-
drodynamics and also the long-range property.

A suitable generalization of the standard Brownian motion that exhibits these
previous properties, is the so-called fractional Brownian motion (fBm). This process
was introduced by Kolmogrov in 1941 [25] and its relevance was recognized later by
Mandelbrot and Van Ness in 1968 [28] who provided a stochastic integral repre-
sentation of fBm in terms of the standard Brownian motion. Fractional Brownian
motion is the only centered Gaussian process which is self-similar, and has station-
ary increments with dependence with Hurst parameter H ∈ (0, 1). The parameter
H is named after the hydrologist Hurst who made a statistical study in 1951 of
yearly water run-offs of the Nile river. He discovered that behavior of normalized
values of the amplitude was approximately cnH , H = 0.7. Because of this study
Mandelbrot introduced the name Hurst index. Fractional Brownian motion appears
in the modeling of many situation for example:

• The widths of consecutive annual rings of a tree.

• The temperature at specific area as a function of time.
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Introduction 7

• The characters of solar activity as a function of time.

• The price of electricity liberated electricity market.

Note that Fractional Brownian motion is neither a semimartingale nor a Markov
process except when H = 1

2
, where it is a Brownian motion. So, we cannot apply

the classical stochastic calculus developed by Itô. Different approaches have bein
proposed in order to build an integral with respect to it. The most important
contributions which are:

• Pathwise calculus: the stochastic integral is defined pathwise with Rieman-
Stieltjes methods i.e. path by path integration. Since the fractional Brownian
motion has Hölder paths for H > 1

2
, we can often use in this case Young

integral [2, 39]. Which is a generalization of Rieman-Stieltjes integral, where
the integrator must have finite p-variation. In the other case we have to use
symmetric integral introduced by Gradinaru, Nourdin, Russo and Vallois in
2005 [29].
An other approach was done by Lyons in 1998 [32], who built an absolutely
pathwise method based on Lévy stochastic area using what is called a rough
paths theory. The case where the integrator is fractional Brownian motion has
been studied by Coutin and Qian in 2002 [30] when the Hurst index satisfies
H > 1

4
.

• Malliavin calculus; also known as stochastic calculus of variation [20]. This
is the base of the modern approach to the Skorohod integral with respect to
fractional Brownian motion, since fbm is a Gaussian process. This calculus has
been investigated for fractional Brownian motion by Decreusfond and Üstünel
in 1998 [33], Carmona and Coutin in 2002 [31].

• Wick product: A new type of integral with zero mean defined using Wick
product (a particular way of defining an adjusted product of a set of random
variables) was introduced by Hu and Pasik-Dunkan in 2002 [34] for H > 1

2
.

The study of a class of stochastic differential equations driven by fractional Brow-
nian motions with arbitrary Hurst parameter H ∈ (0, 1) was generally treated when
the coefficients are constant, However, in most of the existing literature the diffu-
sion coefficient σ has to be very carefully specified, so that the subtle restrictions
on the stochastic integrals are satisfied. For example, it is usually assumed that σ
is a deterministic function, or, even more,a deterministic linear function. In fact,
to our best knowledge, there has not been any study on the case when the coeffi-
cients b and σ are allowed to be both random, anticipating, and at the same time
the Hurst parameter is allowed to be arbitrary. In the first case the SDE is of the
so-called additive noise type, and the SDE involves only the Wiener integrals, the
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path regularity does not affect the solvability directly, and the SDE can be treated
as an ODE with random input. We refer to, e.g., [37, 18, 12, 39] for such cases.
The other case, when the coefficients are not constant, is much more complicated,
since the path regularity of the fBM varies with the Hurst parameter H, and the
requirement for the path regularity of the solution varies accordingly. The SDE is de-
fined in Skorohod sense, it has been studied by Yu Juan Jien, Jin Ma in 2009 [21, 38].

Many other researchers have proposed to use more general self-similar processes
and random fields as stochastic models. As an extension of Brownian motion, re-
cently Bojdecki in 2004 [3] introduced and studied a rather special class of processes
which preserves many properties of fractional Brownian motion except for the sta-
tionarity of increments. This process is called sub fractional Brownian motion.
The main reason for this is the complexity of dependence structures for self-similar
Gaussian processes which do not have stationary increments. Therefore, it seems
interesting to study sub-fractional Brownian motion, for this we refer to [10, 11].
In 2009, C.Tudor characterized the domain of the Wiener integral with respect to a
sub-fractional Brownian motion SH with index H ∈ (0, 1) [14], Shen and Chen [19]
defined a stochastic integral with respect to sub-fractional Brownian motion with
index H ∈ (0, 1/2) that extends the divergence integral from Malliavin calculus, and
established versions of the formulas of Itô and Tanaka that hold for all H ∈ (0, 1/2),
see also [9, 8, 7]. Stochastic differential equations driven by sub-fractional Brown-
ian motion have been considered only by Mendy in 2010 (we could not obtain this
paper). Zhi Li, Guoli Zhou and Jiaowan Luo in 2015 have investigate the existence
and uniqueness of mild solutions to the stochastic delay differential equation [35]
and study its longtime behavior as well.
The purpose of this work is to study stochastic calculus with respect to those pro-
cesses. We consider different types of integration: Young integral, Skorohod and
Wiener integral and other approaches that help us to solve stochastic differential
equation driven by fractional Brownian motion and sub-fractional Brownian mo-
tion, and we give the Itô’s formula according to them.

This dissertation is organized as follows. In Chapter 1 we revisit some back-
ground and preliminaries about the fractional and sub-fractional Brownian motions
providing definitions and properties with some simulations of the fBm paths. In
Chapter 2 we present theories of stochastic integration w.r.t these processes, and we
give the corresponding Itô formula. The study of stochastic differential equations
appears in Chapter 3. We tried to collect the most useful results about the existence
and uniqueness of solution (weak or strong) in the sense of integrals in the previous
chapter, with simulation of the solution behavior of SDE driven fBm in the sense of
Young and Russo-Vallois integral.



Chapter 1

Preliminary Background

1.1 Basic definitions

1.1.1 Gaussian processes

Definition 1.1.1. A real-valued stochastic process (Xt)t≥0 is a Gaussian process if
every finite linear combinition of (Xt)t≥0 is a Gaussian r.v, i.e.

∀n,∀t, 1 ≤ i ≤ n,∀a,
n∑
i=1

aiXti is a Gaussian r.v.

Definition 1.1.2. Let X = (Xt)t≥0 et Y = (Yt)t≥0 be two stochastic processes
defined on the same probability space. If P(Xt = Yt) = 1 for all t ≥ 0, we say that
X and Y are modification of each other.

Definition 1.1.3. Let X and X ′ be defined on (Ω,F ,P). Then X and X ′ are
indistinguishable if and only if

P({w ∈ Ω : Xt(w) = X ′t(w) ∀t ≥ 0}) = 1.

There is a chain of implications:

indistinguishable ⇒ modification.

Definition 1.1.4. let X = (Xt)t∈T and Y = (Yt)t∈T be two stochastic processes,
possibly defined on two different probability space. We say that X and Y have the
same law, and we write X law

= Y , to indicate that (Xt1 , ...., Xtd) and (Yt1 , ...., Ytd)

have the same law for all d ≥ 0 and all t1, ..., td ∈ T.

Proposition 1.1.1. Two Gaussian processes have the same law if and only if they
have the same mean and covariance functions.

9



1.1.2 Continuity 10

Definition 1.1.5. A symmetric function Γ : T2 → R is of positive type if

d∑
k,l=1

akalΓ(tk, tl) ≥ 0

for all d ≥ 1, t1, ..., td ∈ T and a1, ..., ad ∈ R.

Theorem 1.1. (Kolmogrov)
Consider a symmetric function Γ : T2 → R. Then, there exists a centered Gaussian
process X = (Xt)t∈T having Γ for covariance function if and only if Γ is of positif
type.

1.1.2 Continuity

Definition 1.1.6. A stochastic process (Xt)t≥0 is said to be continuous if P({w ∈
Ω : t→ Xt(w) is continuous}) = 1, i.e. its sample paths are continuous a.s.

Definition 1.1.7. A stochastic process (Xt)t≥0 is said to be stochastically continuous
at t if Xt+h

P→ Xt as h→ 0.

Definition 1.1.8. A stochastic process is said to be càdlàg (resp. càglàd) if every
sample paths are right-continuous with left-hand limits (resp. left-continuous with
right-hand limits.

Lemma 1.1.1. (Kolmogrov-Čentsov)
Fix a compact interval T = [0, T ] ⊂ R+, and let X = (Xt)t∈T be a centered Gaussian
process. Suppose that there exists C, η > 0 such that, for all s, t ∈ T,

E[(Xt −Xs)
2] ≤ C | t− s |η . (1.1)

Then, for all α ∈ (0, η/2), there exists a modification Y of X with α-Hölder contin-
uous paths. In particular, X admits a continuous modification.

Proof. Fix t > s. Since X is Gaussian and centered, we have that

Xt −Xs
law
=
√
E[(Xt −Xs)2]G

where G ∼ N (0, 1). We deduce from 1.1 that, for all p ≥ 1,

E[| Xt −Xs |p] ≤ Cp/2E[| G |p] | t− s |ηp/2 .

Therefor, the general version of the classical Kolmogrov-Čentsov lemma applies and
gives the desired result.
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1.1.3 Filtration and measurability

Definition 1.1.9. A filtration on (Ω,F ,P) is an increasing family (Ft)t∈T of sub
σ-field of F .
A measurable space endowed with a filtration (Ft)t∈T is said to be a filtered space.

Definition 1.1.10. The filtration is said to be right continuous if Ft+ = Ft, ∀t ≥ 0,
where ∀t > 0 we set, Ft+ = ∩

s>t
Fs

Definition 1.1.11. A filtration is said to be complete if the P-negligible set of F∞
are in F0 and if the probability space is complete.

Definition 1.1.12. A filtration satisfies the usual condition if it is right continuous
and complete.

Remark 1.1.1. The interests to work with filtration which are satisfying the usual
condition are that every kind of limit of adapted processes is still adapted. More-
over, every modification of a progressively measurable processes stay progressively
measurable.

Definition 1.1.13. (Measurable Process)
A stochastic process (Xt)t≥0 is measurable if the application X : R+ × Ω → R is
measurable w.r.t B(R+)⊗F i.e. if

∀A ∈ B(R), {(t, w) : Xt(w) ∈ A} ∈ B(R+)⊗F

The process (Xt)t≥0 is said to be (Ft)t≥0 adapted, if Xt is Ft measurable for each t ≥ 0.
The process (Xt)t≥0 is obviously adapted with respect to the natural filtration.

Proposition 1.1.2. A continuous stochastic process is measurable.

Proof. Let (Xt)t≥0 a continuous stochastic process. First, we show that for
A ∈ B(R+), we have

{(t, w) ∈ [0, 1]× Ω, Xt(w) ∈ A} ∈ B(R+)⊗F . (1.2)

For n ∈ N, let
Xn
t = X [2nt]

2n
, t ∈ [0, 1],

since the paths of Xn are piecewise constant, we have that

{(t, w) ∈ [0, 1]× Ω, Xn
t (w) ∈ A} ∈ B(R+)⊗F .

Beside, ∀t ∈ [0, 1], w ∈ Ω, we have

lim
n→∞

Xn
t (w) = Xt(w).
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Then we have 1.2. By the same argument we can prove that ∀k ∈ N,

{(t, w) ∈ [k, k + 1]× Ω, Xt(w) ∈ A} ∈ B(R+)⊗F .

Since⋃
k∈N

{(t, w) ∈ [k, k + 1]× Ω, Xt(w) ∈ A} = {(t, w) ∈ R× Ω, Xt(w) ∈ A},

we have the result.

Definition 1.1.14. (Progressively Measurable Process)
A process is progressively measurable if for each t its restriction to the time interval
[0, t], is measurable with respect to B[0,t] ⊗ Ft, where B[0,t] is the Borel σ-algebra of
subsets of [0, t].

Remark 1.1.2. Note that every progressively measurable process is adapted (and
measurable). Besides, as well as in the Proposition 1.1.2, a continuous process
adapted to (Ft) is progressively measurable. More precisely, any càdlàg or càglàd
process are progressively measurable.

Definition 1.1.15. Let (Ω,F , (Ft),P) a filtered space. A process (Xt)t∈T is said to
be predictable (resp. optional) if it is an càglàd (resp. càdlàg ) Ft-adapted process.
We note the σ-field generated by càglàd (resp. càdlàg ) Ft-adapted process by P
(resp. O).

In fact, there is this inclusion chain

P︸︷︷︸
predictable processes

⊂ O︸︷︷︸
optional processes

⊂ Prog︸ ︷︷ ︸
progressively measurable

⊂ B(R+)⊗F∞︸ ︷︷ ︸
measurable

1.1.4 Martingales and Semimartingales

Definition 1.1.16. Let X = {Xt,Ft, t ≥ 0} be an integrable process then X is a:

i) Martingale if and only if E(Xt|Fs) = Xs a.s. for 0 ≤ s ≤ t <∞

ii) Supermartingale if and only if E(Xt|Fs) ≤ Xs a.s. for 0 ≤ s ≤ t <∞

iii) Submartingale if and only if E(Xt|Fs) ≥ Xs a.s. for 0 ≤ s ≤ t <∞

Definition 1.1.17. M = {Mt,Ft, t ≥ 0} is a local-martingale if and only if there
exists a sequence of stopping times Tn tending to infinity such that MTnare martin-
gales for all n. The space of local martingales is denotesMloc, and the subspace of
continuous local martingales is denotesMc

loc.
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Definition 1.1.18. A process X is a semimartingale if it is an adapted càdlàg
process which has a decomposition

X = X0 +M + A,

where M is a local martingale, null at zero and A is a process null at zero, with
paths of finite variation.

Note that the decomposition is not necessarily unique as there exist martingales
which have finite variation.

1.2 Brownian Motion

Definition 1.2.1. A stochastic process (Bt)t∈R+ is called a standard Brownian mo-
tion if it satisfies the following conditions:

1. P(w ∈ Ω : Bt(w) = 0) = 1

2. ∀n,∀ti, 0 ≤ t0 ≤ t1 ≤ ... ≤ tn, the r.v. (Btn − Btn−1 , ..., Bt1 − Bt0 , Bt0) are
independent.

3. For any s ≤ t, Bt−Bs is a centered real valued r.v. normally distributed with
variance t− s, i.e.

Bt −Bs ∼ N (0, t− s)

4. P(w ∈ Ω : t→ Bt(w)is continuous)= 1

Remark 1.2.1. 1. we can rewrite the second condition by : for s ≤ t, the r.v.
Bt −Bs is independent from the "past" σ−field σ(Br, r ≤ s).

2. The natural filtration of the Brownian motion is FBt = σ(Bs, s ≤ t).

3. We can define the Brownian motion without the last condition of continuous
paths, because with a stochastic process satisfying the second and the third
conditions, by applying the Kolmogorov’s continuity theorem, there exists a
modification of (Wt)t∈R+ which has continuous paths a.s.

Proposition 1.2.1. The Brownian motion (Wt)t∈R+ is a Gaussian process with
mean 0 and covariance function Cov(Wt,Ws) = s ∧ t.

Proof. We have thatWt = Wt−W0. ThusWt ∼ N (0, t) by definition. Moreover,
without loss of generality, we assume s < t. Hence, we have

E(WsWt) = E(Ws(Wt−Ws)+W
2
s ) = 0+s = s. �
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Note that since the Brownian motion is a continuous Gaussian process, the propo-
sition 1.2.1 characterizes uniquely the Brownian motion.

We will give here some properties of the standard Brownian motion.

Properties 1.2.0.1. [1] Let (Wt)t∈R+ be a standard Brownian motion

1. Self-similarity. For any a > 0, {a−1/2Wat} is Brownian motion.

2. Symmetry. {−Wt, t ≥ 0} is also a Brownian motion.

3. {tW 1
t
, t > 0} is also a Brownian motion.

4. If Wt is a Brownian motion on [0, 1], then (t + 1)W 1
t+1
−W1 is a Brownian

motion on [0,∞).

1.2.1 Quadratic variation and Brownian motion

Proposition 1.2.2. Let (Wt)t∈R+ be a Brownian motion. For t ≥ 0, for any se-
quence of subdivisions ∆n[0, t], such that limn→∞ |∆n[0, t]| = 0 we have

lim
n→∞

2n∑
i=1

(
W it

2n
−W (i−1)t

2n

)2

= t, a.s.

Proof. The proof can be found in ([5], p.38).

1.2.2 Brownian paths

Proposition 1.2.3. A Brownian motion has its paths a.s., locally γ-Hölder contin-
uous for γ ∈ [0, 1/2).

Proof. Let T > 0, n ∈ N and 0 ≤ s ≤ t. Then we have,

E((Wt −Ws)
2n) =

(2n)!

2nn!
(t− s)n.

Hence, by using the Kolmogrov-Centsov lemma 1.1.1, there exists a continuous mod-
ification (W̃t)0≤t≤T of (Wt)0≤t≤T , whose the paths are locally γ-Hölder continuous
for ∀γ ∈ [0, n−1

2n
). Moreover, we have

P(∀t ∈ [0, T ],Wt = W̃t) = 1,

because the two processes are continuous, It implies that also almost all the paths
of (Wt)0≤t≤T are locally γ-Hölder continuous.
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Proposition 1.2.4. [1] The Brownian motion’s sample paths are a.s., nowhere dif-
ferentiable.

There is an intuitive way to understand this property of Brownian paths. Indeed,
consider the increment for h > 0, Wt+h − Wt ∼ N (0, h). Then we have that
Wt+h√

h
∼ N (0, 1). But the derivative is defined to be the limit, as h tends to 0,of the

quantity Wt+h−Wt

h
∼ N (0, 1

h
). it is clear ,now, that when we let h tends to 0, we

obtain an "infinite" variance, so that there would not be a limit.

1.2.3 Brownian motion and martingales

The standard Brownian motion and several functions of it, are martingales.

Proposition 1.2.5. [1] Let (Wt)t∈R+ be a Brownian motion. Then the following
processes are (FWt )-martingales:
1. (Wt)t∈R+ ,
2. (W 2

t − t)t∈R+,
3. For any u ∈ R, (euW (t)−u2

2
t)t∈R+.

1.3 Fractional Brownian Motion

1.3.1 Existence of the fractional Brownian Motion

The next proposition shows us the existence of the fractional Brownian motion.

Proposition 1.3.1. Let H > 0 be a real parameter. Then, there exists a continuous
centered Gaussian process BH = (BH

t )t≥0 with covariance function given by

ΓH(s, t) =
1

2
(s2H + t2H− | t− s |2H), s, t ≥ 0 (1.3)

if and only if H ≤ 1. In this case, the sample paths of BH are, for any α ∈ (0, H)

α-Hölder continuous on each compact set.

Proof. According to Kolmogrov’s theorem 1.1, to get our first claim, we must
show that ΓH is of positive type if and only if H ≤ 1.
Assume first that H > 1. When t1 = 1, t2 = 2, a1 = −2 and a2 = 1, we have

a2
1ΓH(t1, t1) + 2a1a2ΓH(t1, t2) + a2

2ΓH(t2, t2) = 4− 22H < 0

As a consequence, ΓH is not of positive type when H > 1.
The function Γ1 is of positive type, indeed Γ1(s, t) = st so that, for all d ≥
1,t1, ..., td ≥ 0 and a1, ..., ad ∈ R,

d∑
k,l=1

Γ1(tk, tl)akal = (
d∑

k=1

tkak)
2 ≥ 0.
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Consider now the case H ∈ (0, 1). For any x ∈ R, the change of variable v = u | x |
(whenever x 6= 0) leads to the representation

| x |2H=
1

CH

∫ ∞
0

1− e−u2x2

u1+2H
du,

Where CH =
∫∞

0
(1− e−u2)u−1−2Hdu <∞. Therefor, for any s, t ≥ 0, we have

s2H + t2H− | t− s |2H =
1

CH

∫ ∞
0

(1− e−u2t2)(1− e−u2s2)
u1+2H

du

+
1

CH

∫ ∞
0

e−u
2t2(e2u2ts − 1)e−u

2s2

u1+2H
du

=
1

CH

∫ ∞
0

(1− e−u2t2)(1− e−u2s2)
u1+2H

du

+
1

CH

∞∑
n=1

2n

n!

∫ ∞
0

tne−u
2t2sne−u

2s2

u1−2n+2H
du

so that, for all d ≥ 1, t1, ..., td ≥ 0 and a1, ..., ad ∈ R,

d∑
k,l=1

1

2
(t2Hk + t2Hl − | tk − tl |2H)akal =

1

2CH

∫ ∞
0

(
∑d

k=1(1− e−u2t2k)ak)
2

u1+2H
du

+
1

2CH

∞∑
n=1

2n

n!

∫ ∞
0

(
∑d

k=1 t
n
ke
−u2t2kak)

2

u1−2n+2H
du

that is ΓH is of positif type when H ∈ (0, 1).
To conclude the second part of the proposition we suppose that H ∈ (0, 1) and
consider a centered Gaussian process BH with covariance function given by 1.3.
Then we have

E[(BH
t −BH

t )2] =| t− s |2H , s, t ≥ 0,

so that Kolmogrov-Čentsov lemma 1.1.1 applies and shows that the sample paths
of BH are α-Hölder continuous.

1.3.2 Definition and properties

Definition 1.3.1. A fractional Brownian motion (fBm for short)of Hurst parameter
H is a centered continuous Gaussian process BH = (BH

t )t≥0 with covariance function

E(BH
t −BH

s ) =
1

2
(s2H + t2H− | t− s |2H).

According to proposition 1.3.1, the fBm exists and has Hölder continuous paths.

Remark 1.3.1. Trivially when H = 1
2
the fBm is the standard Brownian motion.
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Figure 1.1: sample path of fBm when H = 1
2

1.3.2.1 Basic properties

Proposition 1.3.2. Let BH be a fractional Brownian Motion of Hurst parameter
H ∈ (0, 1). Then:

1. [Selfsimilarity] For all a > 0, (BH
at)

d
= (aHBH

t ).

2. [Stationarity of increments] For all h > 0, (BH
t+h −BH

h )
d
= BH

t .

3. [ Hölder continuity] For each 0 < ε < H and each T > 0 there exists a random
variable Kε,T such that

| BH(t)−BH(s) |≤ Kε,T | t− s |H−ε

4. [Differentiability] The sample paths of fBm are nowhere differentiable.

Proof First, let us prove the selfsimilarity property. We have that

E(BH
atB

H
as) =

1

2
((at)2H + (as)2H − (a | t− s |)2H)

= a2HE(BH
t B

H
s )

= E((aHBH
t )(aHBH

s ))

Thus, since all processes are centered and Gaussian, it implies that

(BH
at)

d
= (aHBH

t ).
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Seconde, we show that it has stationary increments. Note that for all h > 0, we
have

E((BH
t+h −BH

h )(BH
s+h −BH

h )) = E(BH
t+hB

H
s+h)− E(BH

t+hB
H
h )− E(BH

s+hB
H
h ) + E((BH

h )2)

=
1

2

[
((t+ h)2H + (s+ h)2H− | t− s |2H)

−
(
(t+ h)2H + h2H − t2H

)
−
(
(s+ h)2H + h2H − s2H

)
+ 2h2H

]
=

1

2
(t2H + s2H− | t− s |2H) = E(BH

t B
H
s ).

Therefore the fBm is of stationary increments.

For the Hölder continuity it follows from Kolmogrov-Čentsov lemma 1.1.1 and the
fact that for any α > 0, we have

E(| BH
t −BH

s |α) = E(| BH
1 |α) | t− s |2H

Finally, lets prove the differentiability, indeed for every t0 ∈ [0,∞],

P

(
lim sup
t→t0

|
BH
t −BH

t0

t− t0
|=∞

)
= 1.

let us denote by Bt,t0 =
BH

t −BH
t0

t−t0 , using the selfsimilarity property, we have

Bt,t0
d
= (t− t0)H−1BH

1

We define u(t, ω) = {sup0≤s≤t |
BH

s

s
|> d}. Then, for any any sequence (tn)n∈N

decreasing to 0,

we have u(tn, ω) ⊇ u(tn+1, ω), Thus,

P( lim
n→∞

u(tn)) = lim
n→∞

P(u(tn))

and

P(u(tn)) ≥ P(|
B

(H)
tn )

tn
|> d) = P(| B(H)

1 |> t1−Hn d)
n→∞→ 1.

1.3.3 Lack of Semimartingale Property

In this subsection, we study the asymptotic behavior of the p-variations of the
fractional Brownian motion, we will show that the fBm is never a semimartingale,
except for H = 1

2
when it is the classical Brownian motion.

Definition 1.3.2. Let (Xt)t∈[0,T ] be a stochastic process and consider a partition
π = 0 = t0 < t1 < ... < tn = T . Put

Sp(X, π) =
n∑
i=1

|X(tk)−X(tk−1)|p .
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The p-variation of X over the interval [0, T ] is defined as

Vp(X, [0, T ]) = P− lim
π
Sp(X, π),

where p is a finite partition of [0, T ]. The index of p-variation of a process is defined
as

I(X, [0, T ]) := inf{p > 0;Vp(X, [0, T ]) <∞}.

We claim that
I(B(H), [0, T ]) =

1

H
.

In fact, consider for p > 0,

Yn,p = npH−1

n∑
i=1

∣∣∣B(H)
i
n

−B(H)
i−1
n

∣∣∣p .
Since B(H) has the self-similarity property, the sequence (Yn,p)n∈N has the same
distribution as

Ỹn,p = n−1

n∑
i=1

∣∣∣B(H)
i −B(H)

i−1

∣∣∣p .
By the Ergodic theorem the sequence Ỹn,p converges almost surely and in L1 to
E[|B(H)(1)|p] as n tends to infinity; hence, it converges also in probability to E[|
B(H)(1) |p]. It follows that

Vn,p =
n∑
i=1

∣∣∣B(H)
i
n

−B(H)
i−1
n

∣∣∣p n→∞−→
P

{
0 if pH >1
∞ if pH<1

Thus we can conclude that I(B(H), [0, T ]) = 1/H. Since for every semimartingale
X, the index I(X, [0, T ]) must belong to [0, 1] ∪ 2, the fBm B(H) cannot be a semi-
martingale unless H = 1/2.

1.3.4 Lack of Markov Property

Theorem 1.2. Let BH be a fractional Brownian motion of Hurst index H ∈ (0, 1)−
{1

2
}. Then BH is not a Markov process.

Since the fBm is a Gaussian centered process, to prove this result we need the
next lemma.

Lemma 1.3.1. IfX is a Gaussian centered Markovian process, then for all s < t < u

E(XtXs)E(XtXu) = E(XtXt)E(XuXs)

Proof. Note that Rst = cov(Xs, Xt). Since X is a Markov process then ∀ s <
t < u

E(Xu/Xt, Xs) = E(Xu/Xt) = E(Xu) +
cov(Xt, Xu)

var(Xt)
(Xt − E(Xt))
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Therefore,  E(Xu/Xt) =
Rut

Rtt

Xt,

E(Xu/Xt, Xs) = E(Xu) + θuvθ
−1
v (v − E(v))

where v =

(
Xt

Xs

)
and θuv = E[Xuv

t], θv = E(vtv)

We have that,

θuv = (RutRus) and θv =

(
Rtt Rts

Rst Rss

)

θ−1
v v =

1

RttRss −R2
ts

(
RssXt −RtsXs

RttXs −RstXt

)
We observe that,

E(Xu/Xt, Xs) = θuvθ
−1
v v

=
1

RttRss −R2
ts

(RutRssXt −RutRtsXs −RusRstXt +RusRttXs).

Hence, E(Xu/Xt, Xs) = E(Xu/Xt) we have

Rut

Rtt

Xt =
1

RttRss −R2
ts

(RutRssXt −RutRtsXs −RusRstXt +RusRttXs)

Moreover,

Xt(RttRutRss −RttRutRss −RutR
2
st +RttRusRst) +Xs(RttRutRst −R2

ttRus) = 0

RstXt(RttRus −RutRst)−RttXs(RttRus −RutRst) = 0

Or,
(RttRus −RutRst)(RstXt −RttXs) = 0,

then,
RttRus −RutRst = 0

which is the result.

Proof of theorem 1.2 We proceed by contradiction. Assume that BH is a
Markov process. Since it is a Gaussian process as well, by the previous lemma we
have, for s = 1 < t = 2 < u = 3

E(BH
1 B

H
2 )E(BH

2 B
H
3 ) = E(BH

2 B
H
2 )E(BH

1 B
H
3 )

So,
1

4
(1 + 22H − 1)(22H + 32H − 1) = 22H 1

2
(1 + 32H − 22H)

22H(22H + 32H − 1) = 22H [2(1 + 32H − 22H)]
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by differentiating
3 + 32H + 3(22H) = 0

1 + 32H−1 + 22H = 0

we deduce that, 1 + 32H−1 + 22H = 0 only if H = 1
2
which leads to a contradiction.

1.3.5 Long and Short-Range Dependence

Process with long-range dependence have many application, such as in telecommu-
nication specially in Internet traffic problems. Basically, the notion of long-range
dependence is that the variance of the sum of stationary sequence grows non-linearly
with respect to n.

Definition 1.3.3. A stationary sequence (Xn)n∈N exhibits long-range dependence
if ρ(n) = cov(Xk, Xk+n) satisfies

lim
n→∞

ρ(n)

cn−α
= 1

for α ∈ (0, 1) and some constant c.

Remark 1.3.2. If a stationary sequence (Xn)n∈N is long-range dependent, then
the dependence between Xk and Xk+1 decays slowly as n tends to infinity and∑∞

n=1 ρ(n) =∞.

Proposition 1.3.3. The fBm is one of the simplest processes which exhibit long-
range dependency.

Proof. let us consider its increments

Xk = BH
k −BH

k−1, Xk+1 = BH
k+n −BH

k+n−1.

Since the fBm is centered then

ρ(n) = E(Xk, Xk+n) = E
[
(BH

k −BH
k−1)(BH

k+n −BH
k+n−1)

]
= E

[
(BH

n+1 −BH
n )BH

1

]
= E(BH

n+1B
H
1 )− E(BH

n B
H
1 )

=
1

2

[
(n+ 1)2H − 2n2H + (n− 1)2H

]
=

1

2
n2H

[
(1 +

1

n
)2H − 2 + (1− 1

n
)2H

]
=

n2H

2

[
1 +

2H

n
+
H(2H − 1)

n2
− 2 + 1− 2H

n
+
H(2H − 1)

n2
+ o(

1

n2
)

]
= H(2H − 1)n2H−2 + o(n2H−2)

it follows that for H > 1
2
, we have

ρ(n) > 0 and
∑
n

ρ(n) =∞.
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and for H < 1
2
, we have

ρ(n) < 0 and
∑
n

ρ(n) <∞.

Therefore, we say that the fBm has long-range dependence property if and only if
H > 1

2
and for the other case has short-range dependence.

1.3.6 Representation of the FBm

Fractional Brownian motion can be expressed as a Wiener integral with respect to
the Wiener process in several ways. Let us recall two of them.

1.3.6.1 Lévy-Hida Representation

Let BH be a fractional Brownian motion with parameter H ∈ (0, 1). The fBm
admits a representation as a Wiener integral of the form

BH =

∫ t

0

KH(t, s)dWs,

where W = (Wt)t∈T is a Wiener process, and KH(t, s) is the kernel

KH(t, s) = dH(t− s)H−
1
2 + sH−

1
2F1

(
t

s

)
,

dH being a constant and

F1(z) = dH

(
1

2
−H

)∫ z−1

0

θH−
3
2

(
1− (θ + 1)H−

1
2

)
dθ.

If H > 1
2
,the kernel KH has the simpler expression

KH(t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2du

where t > s and cH =
(

H(H−1)

β(2−2H,H− 1
2

)

) 1
2 . The fact that the process BH is a fBm

follows is from the equality∫ t∧s

0

KH(t, u)KH(s, u)du = RH(t, s).

The kernel KH satisfies the condition
∂KH

∂t
(t, s) = dH

(
H − 1

2

)(s
t

) 1
2
−H

(t− s)H−
3
2 .

1.3.6.2 Moving Average Representation

FBm can be represented as an integral with respect to a standard Brownian motion
on the whole real line. Let (Bs)s∈R be a standard Brownian motion. Then

BH
t =

1

C(H)

∫
R

[
(t− s)H−

1
2

+ − (−s)H−
1
2

+

]
dBs, (1.4)

with C(H) > 0 an explicit normalizing constant, is a fractional Brownian motion.
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1.3.6.3 Harmonizable Representation

There is another representation which uses the complex-valued Brownian motion
(but the fBm is real-valued). In fact, for a fBm (BH

t )t∈R, we obtain

BH
t =

1

C2(H)

∫
R

eitx − 1

ix
|x|−(H− 1

2
)dB̃x, t ∈ R,

where (B̃t)t∈R is a complex Brownian measure and

C2(H) =

(
π

HΓ(2H)sin(Hπ)

)1/2

.

Let us note that the complex Brownian measure on R can be splitted as B̃ = B1+iB2

and is such that B1(A) = B1(−A), B2(A) = −B2(−A) and E(B1(A))2 = |A|
2
,

∀A ∈ B(R).
We also call this representation, the spectral representation.

1.4 Sub Fractional Brownian motion

As an extension of Brownian motion, recently, Bojdecki et al.[3] introduced and
studied a rather special class of self-similar Gaussian processes, which preserve many
properties of the fractional Brownian motion. This process arises from occupation
time fluctuations of branching particle systems with Poisson initial condition. This
process is called the sub-fractional Brownian motion.

1.4.1 Definition and properties

Definition 1.4.1. Sub-fractional Brownian motion (sub-fBm) is defined as a cen-
tered Gaussian process (SHt )t≥0with covariance

CH(t, s) = s2H + t2H − 1

2

(
(s+ t)2H + |t− s|2H

)
, s, t ≥ 0

with H ∈ (0, 1).

Sub-fractional Brownian motion has properties analogous to those of fBm (self-
similarity, long-range dependence, Hölder paths, and it is neither a Markov processes
nor a semimartingale).
Moreover, sub-fBm has non-stationary increments and the increments over non-
overlapping intervals are more weakly correlated and their covariance decays poly-
nomially at a higher rate in comparison with fBm (for this reason, it is called sub-
fBm). The above mentioned properties make sub-fBm a possible candidate for
models which involve long-dependence, self-similarity and nonstationarity.

Remark 1.4.1. Trivially, for H = 1
2
the sub-fBm reduces to the standard Brownian

motion.
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Lemma 1.4.1. The sfBm (SHt )t∈R+ satisfies the following properties:

i) SH is a centered Gaussian process.

ii) For all (s, t) ∈ R2
+, s ≤ t,

E(SHt − SHs )2 = −22H−1(t2H + s2H) + (t+ s)2H + (t− s)2H .

iii) The increments of the sfBm are not stationary: For all s ≤ t

E(| SHt |2) = (2− 22H)t2H+1

iv) for all t ∈ R+ SHt =
BH

t +BH
−t√

2

For the proofs of his properties see [6].

1.4.2 Representation of Sub-fBm

The sfbm has the moving average representation (see Bojdecki et al.,2004) [3].

Skt =
1

c1(k)

∫
R

[
(t− s)k+ + (t+ s)k− − 2(−s)k+

]
dWs,

where (Wt)t∈R is a Brownian motion,

c1(k) =

[
2

(∫ ∞
0

((1 + s)k − sk)2ds

)
+

1

2k + 1

] 1
2

For more Properties of the Sub fractional Brownian motion see [10].

1.4.3 Comparison between the FBm and the Sub-fBm

Before providing the comparison of the properties of sub-fBm considered to those
of fBm lets announce these definitions

Definition 1.4.2. A real continuous process D is is called a (Ft) Dirichlet process
if it admits a decomposition D = M + A where M is an (Ft)-local martingale and
A is a zero quadratic variation process. For convenience, we suppose A0 = 0.

Definition 1.4.3. A square integrable process (Xt)t≥0 is quasi-Dirichlet if for every
T > 0

k−1∑
j=0

E

(∣∣∣E[Xtj+1
−Xtj/FXtj ]

∣∣∣2) →
‖δ‖→0

0

where δ : 0 =≤ t0 < t1 < ... < tk = T is a partition of [0, T ] and (FXt )t≥0 is the
canonical filtration of X.

Here are the main properties of the fBm and Sub-fBm :
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1. fBm and sub-fBm become similar for large t in the sense that for each τ > 0,

lim
t→∞

CH(t, t+ τ)

RH(t, t+ τ)
= 2− 22H−1;

2. The fBm has long-memory if H > 1
2
and short-memory if H < 1

2
:

The sub-fBm has short-memory.

3. The mixed processes (sums of independent Bm and fBm and of independent
Bm and subfBm) are semi-martingales equivalent in law with the Bm ifH > 3

4
.

4. The fBm is Dirichlet if H > 1
2
and it is not Dirichlet if H < 1

2

The sub-fBm is Dirichlet if H > 1
2
and it is quasi-Dirichlet if H < 1

2

The question whether fBm is quasi-Dirichlet is open.
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Figure 1.2: sample paths of fBm with H = 0.3, H = 0.2, H = 0.6, H = 0.8, H =

1/4, H = 3/4 (resp).



Chapter 2

Stochastic Calculus on fBm and
sfBm

2.1 Stochastic Integration with respect to Fractional
Brownian motion

2.1.1 Wiener Integration for fBm

In this subsection we develop the stochastic calculus for deterministic integrands
with respect to fBm. We shall deal with a generalization of the Riemann-Stieltjes
Integral which we will develop later : we have a fractional Brownian motion as in-
tegrator.

In Section 1.3.3, we have seen that fBm is not a semimartingale. But the classical
stochastic integration namely the Itô calculus, is up to semimartingales as integra-
tors. Therefore, we cannot apply directly this theory. Moreover, the Lebesgue-
Stieltjes integration cannot be used since the paths of the fBm have unbounded
variation, see Section 1.3.3. Hence we need to construct another integral. This work
has been performed by several authors with different ideas. The different approaches
are, among others:

• Malliavin calculus, also known as Stochastic calculus of variation, which ex-
ploits the Gaussianity of the fBm in general Wiener spaces (see [15]);

• Wick Calculus approach (see [16]);

• Pathwise Calculus (see [17]);

• Rough path analysis (see [18]).

However, We shall study the basic one : The Wiener integration w.r.t fBm. The
aims of this section are twofold: to define the Wiener integral and the space of
integrands. Lets us firstly define Riemann-Stieltjes Integral.

27
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2.1.1.1 Riemann-Stieltjes Integral

Riemann-Stieltjes integral is an important notion to understand the stochastic in-
tegration. But first, let us recall the basic Riemann integral.

Definition 2.1.1. Let f : R→ R continuous. We define the Riemann integral over
[a, b] ⊂ R by ∫ b

a

f(t)dt = lim
‖∆n‖→0

n∑
i=1

f(τi)(ti − ti−1),

if the limit exists, where ∆n = {t0, t1, ..., tn} is a partition of [a, b] such that a =

t0 < t1 < ... < tn−1 < tn = b, ‖∆n‖ = max
1≤i≤n

(ti − ti−1) and τi is an evaluation point

in the interval [ti−1, ti].

Definition 2.1.2. The p-variation of a function f : [a, b]→ R is defined as
n∑
i=1

(f(tnk)− f(tnk−1))p,

if the limit exists, where ∆n = {t0, t1, ..., tn} is a partition of [a, b] and the mesh goes
to 0 as n→∞.

Definition 2.1.3. A function of bounded variation is a function g : [a, b]→ R such
that ∀t > 0,

sup
π∈P

nP∑
i=1

|g(ti)− g(ti−1)| <∞,

where the supremum is taken over the set P = {π = {t0, ..., tnP}, π is a partition of
[a, b]}.
We denote by BV the set of functions of bounded variation.

Definition 2.1.4. Let f : [a, b]→ R continuous and g : [a, b]→ R be a function of
bounded variation. We define the Riemann-Stieltjes integral as follows:∫ b

a

f(t)dg(t) = lim
‖∆n‖→0

n∑
i=1

f(τi)(g(ti)− g(ti−1)),

if the limit exists, where ∆n = {t0, t1, ..., tn} is a partition of [a, b] and the mesh goes
to 0 as n→∞.

Remark 2.1.1. Note that if g(t) = t then the Riemann-Stieltjes integral is the
Riemann integral.

Proposition 2.1.1. [5] If f is continuous and g ∈ C1, then∫ b

a

f(t)dg(t) =

∫ b

a

f(t)g′(t)dt

and if f, g ∈ BV then∫ b

a

f(t)dg(t) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(t)df(t). (2.1)
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2.1.1.2 Wiener Integral

The Wiener integral is an integral where we have deterministic integrands and a
Gaussian process as an integrator. It generalize the theory of Riemann-Stieltjes
integral. Let us define the integral:

I(f) =

∫ b

a

f(t)dBH
t (2.2)

In fact, we could think of applying the integration by parts formula of the Riemann-
Stieltjes integral (2.1), and obtain∫ b

a

f(t)dBH
t = f(b)BH

b − f(a)BH
a −

∫ b

a

BH
t df(t), (2.3)

where the integrals are Riemann-Stieltjes integrals. But the problem is, as we saw,
that BH

t /∈ BV . Hence equation (2.3) is not well defined as a Riemann-Stieltjes
integral in this case. Therefore, we need a new approach to define the integral (2.2):
the so-called Wiener Integral.

2.1.2 Construction of the Wiener Integral w.r.t FBm

The basic idea is to extend the isometry map from the set of step functions E into
the space L2(Ω) generated by the integrator, to an isometry defined on a larger
space of integrands, usually noted H̃ and such that Ē = H̃. Let us recall that the
Wiener integral (w.r.t. a Gaussian process) of a function f ∈ H is a random variable.
More explicitly, it is a centered Gaussian random variable. With variance

∫
T
f(t)2dt

in the case of standard Brownian motion. Therefore the Wiener integral generates
a Gaussian space. Let us denote this subspace of L2(Ω,F (Z), (F (Z)

t )t∈T ,P
Z) by

SP (Z) (Note that if f ∈ E ,
∫
T
f(t)dZt generates SP (Z).) In our case, we take

the Gaussian process Z = B(H), as a fBm, so we obtain SP (Z) = SPT (B(H)) ⊂
L2(Ω,F (H), (F (H)

t )t∈T ,P
H).

2.1.2.1 Integrands as step functions

Let us denote by E the set of step functions. For f ∈ E , i.e. f =
∑n

i=1 fi−11(ti−1,ti],
where t0 = a and tn = b, we define the Wiener Integral as follows:

Definition 2.1.5. For a fBm (B
(H)
t )t∈T we define the Wiener integral w.r.t. fBm

for f ∈ E by

IH(f)
not
=

∫
T

f(u)dB(H)
u =

n−1∑
k=0

fk(B
(H)
uk+1
−B(H)

uk
),

where

f(u) =
n−1∑
k=0

fk1(uk,uk+1](u), u ∈ T.
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Let us observe that the step Wiener integral induces a Gaussian space denoted by
Sp(B

(H)) ⊂ L2(Ω,F (H), (F (H)
t )t∈T ,PH). Now, we would like to do as in the classical

case and consider the square integrable function over T , because of denseness of
E in Lp(T ) and to have a finite variance (p = 2). But it is not sufficient to take
the integrands in L2(T ), as in the Brownian case, due the non independency of the
increments.

2.1.2.2 General integrands

We then extend the isometry IH to a space of integrands which is at least an inner
product space, denoted by H̃, where, Ē = H̃.

Definition 2.1.6. The Wiener integral with respect to the fractional Brownian
motion is the isometric map IH defined as:

IH : H̃ → SpT (B(H))

f → IH(f) = X

We can then define SPT (B(H)) := {X : IH(fn)
L2

→ X, (fn)n∈N ⊂ E}. Therefore,
we associate with X an equivalence class of sequences of step functions, (fn)n∈N,
such that IH(fn)

L2

→ X. Furthermore, we can write X =
∫
T
fX(t)dB

(H)
t , where fX

is element of the equivalence class.
Recall our main question: which classes of integrands in the definition of the

Wiener integral w.r.t. fBm are isometric to SPT (B(H)) or to some of its subspaces?
The following theorem, is the basis of this investigation for the space of integrands
H̃

Theorem 2.1. [5, Theorem 14] Let H̃ be some class of integrands and let E ⊂ H̃ be
the class of step functions and IH(f) be an integral of f ∈ E w.r.t. fBm (B

(H)
t )t∈T ,

H ∈ (0, 1). Under the assumptions

i) H̃ is an inner product space with an inner product < f, g >H̃, f, g ∈ H̃,

ii) for f, g ∈ E ,
< f, g >H̃= E(IH(f)IH(g)),

iii) the set E is dense in H̃,

we have the following:

1. there is an isometry between the space H̃ and a linear subspace of SPT (B(H))

which is an extension of the map f → IH(f) for f ∈ E ;

2. H̃ is isometric to SPT (B(H)) if and only if H̃ is complete.
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If H̃ is complete, we have H̃ = H The isometry constructed via this theorem is
exactly the definition of the Wiener integral w.r.t. the fBm.

IH(f) =

∫
T

f(s)dB(H)
s , f ∈ H̃

Proof.

1. Let f ∈ H̃. By (iii), there exists fn ∈ E such that fn → f in H̃ In particular
it is a Cauchy sequence in H̃. By (ii) IH(fn) is a Cauchy sequence in L2(Ω),
hence it converges to some random variable ς ∈ L2(Ω), since L2(Ω) is complete.
We set IH(f) = ς, which means

IH(f) = lim
n→∞

IH(fn)

in the L2(Ω)-sense. Since (IH(fn))n∈N ⊂ SpT (BH) and SpT (BH) is a closed
subspace of L2(Ω), we obtain that IH(f) ∈ SpT (BH). Therefore, we can define
the map IH : H̃ → SPT (BH). We can verify that this construction does not
depend on the choice of the sequence (fn)n∈N. So it is well-defined. Moreover,
for any f, g ∈ H̃ it holds that

< f, g >H̃= lim
n→∞

< fn, gn >H̃= lim
n→∞

E(IH(fn)IH(gn)) = E(IH(f)IH(g))

Since IH is linear, we get an isometry between H̃ and some subspace of
SPT (BH).

2. If H̃ is isometric to SPT (BH) itself, then Ĥ is complete because the space
SPT (BH) is complete since it is a closed subset of the complete space L2(Ω).
Conversely, if H̃ is complete, then for any θ ∈ SPT (BH), we have θ = lim

n→∞
θn,

θn = IH(fn) ∈ Sp(BH), fn ∈ E . So IH(fn)
L2

→ θ. Therefore, from (ii) it follows
that fn is a Cauchy sequence in H̃, and from completeness, fn → f in H̃,
θ = IH(f).

Remark 2.1.2. Let us emphasize that a priori the Wiener integral is different for
each case we shall consider. Effectively, IH might depend on the inner product
space H̃ we chose. If H̃1 and H̃2 are two different classes of integrands, then their
corresponding integral are in general not equal even in H̃1∩H̃2. In fact, to obtain the
equality we must have that their corresponding inner product are equal for functions
in their intersection.

There are other approaches that give a construction of the integrands space of
the integrands using the integral representations ( we have defined previously in
section 1.3.6), using different point of views which are in fact essentially the same.
We took the basic one that we need in the following chapter. For more details we
refer to [5].
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2.1.3 Young Integral

Since, for H ∈ (0, 1), (Bt)t≥0 does not have absolutely continuous paths, we can
not directly use the theory of Riemann-Stieltjes integrals to give a sense to integrals
like

∫ t
0
f(s)dBs for every continuous functions f . However, as it was understood by

L.C. Young, if f is regular enough in the Hölder sense, then
∫ t

0
f(s)dBs can still be

constructed as a limit of Riemann sums. In the sequel, we shall denote by Cα(I)

the space of α- Hölder continuous functions that are defined on an interval I. The
basic result of L.C. Young is the following:

Theorem 2.2. [39] Letf ∈ Cβ([0, T ]) and g ∈ Cγ([0, T ]). If β + γ > 1, then for
every subdivision tni of [0, T ], whose mesh tends to 0, the Riemann sums

n−1∑
i=0

f(tni )(g(tni+1)− g(tni ))

converge, when n→∞ to a limit which is independent of the subdivision tni . This
limit is denoted

∫ T
0
fdg and called the Young’s integral of f with respect to g.

2.1.3.1 Fractional calculus

Another way to handle Young’s integrals is to use the so-called fractional calculus.
Let f ∈ L1(a, b) and α > 0. The left-sided and right-sided fractional integrals of f
of order α are defined respectively by:

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy

and

Iαb−f(x) =
(−1)−α

Γ(α)

∫ b

x

(y − x)α−1f(y)dy,

where (−1)α = eiπα and Γ(α) =
∫∞

0
uα−1e−udu is the Gamma function. Let us

denote by Iαa+(Lp) (respectively Iαb−(Lp)) the image of Lp(a, b) by the operator Iαa+

(respectively Iαb−). If f ∈ Iαa+(Lp) (respectively f ∈ Iαb−(Lp)) and 0 < α < 1, we
define for x ∈ (a, b) the left and right Weyl derivatives by:

Dα
a+f(x) =

1

Γ(1− α)

(
f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)
1(a,b)(x)

and respectively,

Dα
b−f(x) =

(−1)α

Γ(1− α)

(
f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)

(y − x)α+1
dy

)
1(a,b)(x)

We have the following property:

Dα
a+D

β
a+ = Dα+β

a+ , Dα
b−D

β
b− = Dα+β

b−



2.1.4 Russo-Vallois Integral 33

and for f ∈ Iαa+(Lp), g ∈ Iαb−(Lp)∫ b

a

Dα
a+f(t)g(t)dt = (−1)−α

∫ b

a

f(t)Dα
b−g(t)dt

The key point that allows to use fractional calculus to study Young’s integrals is the
following Proposition which is due to M. Zähle [?].

Proposition 2.1.2. [17]Let f ∈ Cλ([a, b]) and g ∈ Cβ([a; b]) with λ + β > 1: Let
1− β < α < λ. Then the Young’s integral exists and it can be expressed as∫ b

a

fdg = (−1)α
∫ b

a

Dα
a+f(t)D1−α

b− gb−(t)dt;

where gb−(t) = g(t)− g(b).

2.1.4 Russo-Vallois Integral

Definition 2.1.7. Let X, Y be two real continuous processes defined on [0, T ]. The
symmetric integral (in the sense of Russo-Vallois) is defined by∫ T

0

Yud
◦Xu = P- lim

ε→0

∫ T

0

Yu+ε + Yu
2

Xu+ε −Xu

ε
du, (2.4)

provided the limit exists and with the convention that Yt = YT and Xt = XT when
t > T .

Theorem 2.3. ([29], page793) The symmetric integral
∫ T

0
f(BH

u )d◦BH
u exists for

any f : R→ R of class C5 if and only if H ∈ (1
6
, 1). In this case, we have, for any

primitive F of f :

F (B
H

T ) = F (0) +

∫ T

0

f(BH
u )d◦BH

u .

When H ≤ 1/6, one can consider the so-called m-order Newton-Côtes integral:

Definition 2.1.8. Let f : R → R be a continuous function, let X, Y be two
continuous processes on [0, T ] and let m ≥ 1 be an integer. The m-order Newton-
Côtes integral (in the sense of Russo-Vallois) of f(Y ) with respect to X is defined
by∫ T

0

f(Yu)d
NC,mXu = P- lim

ε→0
−
∫ T

0

(∫ 1

0

f(Ys + β(Ys+ε − Ys))µm(dβ)

)
Xu+ε −Xu

ε
du,

provided the limit exists and with the same convention above with µ1 = 1
2
(δ0 + δ1)

and, for m ≥ 2,

µm =

2(m−1)∑
j=0

(∫ 1

0

∏
j 6=k

2(m− 1)u− k
j − k

du

)
δ j

(2m−2)
,

δ being the Dirac measure.
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Theorem 2.4. ([29], page793) Let m ≥ 1 be an integer. The m-order Newton-Côtes
integral

∫ T
0
f(BH

u )dNC,mBH
u exists for any f : R → R of class C4m+1 if and only if

H ∈ ( 1
4m+2

, 1). In this case, we have, for any primitive F of f :

F (BH
T ) = F (0) +

∫ T

0

f(BH
u )dNC,mBH

u .

2.1.5 Skorohod Integral

In this section we focus on the Skorohod integral. This stochastic integral, intro-
duced for the first time by A. Skorohod in 1975, may be regarded as an extension
of the Itô integral to integrands that are not necessarily F-adapted. The Skorohod
integral is also connected to the Malliavin derivative, which is introduced with full
detail in [20, Chap. 3].

Let u = u(t, ω), t ∈ [0, T ], ω ∈ Ω, be a measurable stochastic process such that, for
all t ∈ [0, T ], u(t) is a FT -measurable random variable and

E[u2(t)] <∞.

Then, for each t ∈ [0, T ], we can apply the Wiener-Itô chaos expansion to the
random variable u(t) = u(t, ω), ω ∈ Ω, and thus there exist symmetric functions
fn,t = fn,t(t1, ..., tn), (t1, ..., tn) ∈ [0, T ]n, in L̃2([0, T ]n), n = 1, 2, ..., such that

u(t) =
∞∑
n=0

In(fn,t),

where
In(f) =

∫
[0,T ]n

f(t1, ..., tn)dW (t1)...dW (t(n),

(Wt)t∈[0,T ] is a Wiener process and f ∈ L̃2([0, T ]n), and the convergence takes place
in L2(P). Moreover, we have the isometry

‖ u ‖2
L2(P)=

∞∑
n=0

n! ‖ fn ‖2
L2([0,T ]n) (2.5)

for more details see [20]. Note that the functions fn,t, n = 1, 2, ..., depend on the
parameter t ∈ [0, T ], and so we can write

fn(t1, ..., tn, tn+1) = fn(t1, ..., tn, t) := fn,t(t1, ..., tn)

and we may regard fn as a function of n+1 variables. Since this function is symmetric
with respect to its first n variables, its symmetrization f̃n is given by

f̃n(t1, ..., tn+1) =
1

n+ 1
[fn(t1, ..., tn+1) + fn(t2, ..., tn+1, t1) + ...+ fn(t1, ...., tn−1, tn+1, tn)]

(2.6)
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Definition 2.1.9. Let u(t), t ∈ [0, T ], be a measurable stochastic process such that
for all t ∈ [0, T ] the random variable u(t) is FT -measurable and E[u2(t)] <∞. Let
its Wiener-Itô chaos expansion be

u(t) =
∞∑
n=0

In(fn,t) =
∞∑
n=0

In(fn(., t)).

Then we define the Skorohod integral of u by

δ(u) =

∫ T

0

u(t)δW (t) =
∞∑
n=0

In+1(f̃n)

when the sum convergent in L2(P). Here f̃n, n = 1, 2, ..., are the symmetric func-
tions (2.6) derived from fn(., t), n = 1, 2, .... We say that u is Skorohod integrable,
and we write u ∈ Dom(δ) if the series δ(u) converges in L2(P).

Remark 2.1.3. By (2.5) a stochastic process u belongs to Dom(δ) if and only if

E[δ(u)2] =
∞∑
n=0

(n+ 1)! ‖ fn ‖2
L2([0,T ]n+1)<∞.

2.1.5.1 The Skorohod Integral for fBm

The stochastic Integrals w.r.t fBm were defined mostly for deterministic or linear
integrands, but in other cases it was much more complicated to establish such in-
tegral, since the path regularity of the fBM varies with the Hurst parameter H. In
particular, if H > 1

2
, then the paths of BH are essentially α-Hölder continuous for

all α < H, hence a pathwise stochastic integral approach is quite effective likewise
Young (see [12]). In the general case, especially when H < 1

2
, the path of fBm

becomes rather "rough" and the pathwise approach for stochastic integrals, there-
fore other definitions of stochastic integrals have been introduced. Most notable is
the divergence-type integration (or Skorohod integral), which is based on the idea
of Malliavin calculus (see for example [20, 21, 22]), for this case we briefly introduce
Malliavin derivative with respect to certain Gaussian processes; in particular, for
fractional Brownian motion.
Let W be a standard Brownian motion and assume G = (Gt)t∈[0,T ] is a continuous
centred Gaussian process of the form

Gt =

∫ t

0

K(t, s)dWs (2.7)

where the kernel K satisfies sup
t∈[0,T ]

∫ t
0
K(t, s)2ds < ∞. In particular, the fractional

Brownian motion is of this form by representation (1.4). First we recall some defi-
nitions.
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Definition 2.1.10. We denote by EG the set of simple random variables of the form

F =
n∑
k=1

akGtk

where n ∈ N, ak ∈ R and tk ∈ [0, T ] for k = 1, ..., n.

Definition 2.1.11. The Gaussian space H1 associated to G is the closure of EG in
L2(Ω).

Definition 2.1.12. The reproducing Hilbert space HG of G is the closure of EG with
respect to the inner product

< 1[0,t],1[0,s] >H= RG(t, s).

In what follows we will drop G in the notation.

The mapping 1[0,t] → Gt can be extended to an isometry between the Hilbert space
H and the Gaussian space H1. The image of ϕ ∈ H in this isometry is denoted by
G(ϕ). In particular, we have G(1[0,t]) = Gt.

Definition 2.1.13. Denote by S the space of all smooth random variables of the
form

F = f(G(ϕ1), ..., G(ϕn)), ϕ1, ..., ϕn ∈ H,

where f ∈ C∞b (Rn) i.e. f and all its derivatives are bounded. The Malliavin
derivative D = D(G) of F is an element of L2(Ω,H) defined by

DF =
n∑
i=1

∂if(G(ϕ1), ..., G(ϕn))ϕi.

In particular, DGt = 1[0,t].

Definition 2.1.14. We denote D1,2
G = D1,2 be the Hilbert space of all square inte-

grable Malliavin derivative random variables defined as the closure of S with respect
to norm

‖ F ‖2
1,2= E|F |2 + E(‖ DF ‖2

H).

Now we are ready to define the divergence operator δ as the adjoint operator of
the Malliavin derivative D.

Definition 2.1.15. The domain Domδ of the operator δ is the set of random vari-
ables u ∈ L2(Ω,H) satisfying

|E(< DF, u >H)| ≤ cu ‖ F ‖L2



2.1.6 Itô’s Formula for fBm 37

for any F ∈ D1,2 and some constant cu depending only on u. For u ∈ Dom δ

the divergence operator δ(u) is a square integrable random variable defined by the
duality relation

E(Fδ(u)) = E(< DF, u >H), ∀F ∈ D1,2

for any F ∈ D1,2.

We use the notation

δ(u) =

∫ T

0

usδGs.

Recall now the special form of G given by (2.7) which is clearly the fractional
Brownian motion, and define a linear operator K∗ from E to L2[0, T ] by

(K∗ϕ)(s) = ϕ(s)K(T, s) +

∫ T

s

[ϕ(t)− ϕ(s)]K(dt, s).

With the help of this operator according to [22], the Hilbert space H generated by G
can be represented asH = (K∗)−1(L2[0, T ]). Furthermore, D1,2

G (H) = (K∗)−1(D1,2
W (L2[0, T ])).

Moreover, we can represent δ(G) with δ(W ) by the relation∫ t

0

usδGs =

∫ t

0

(Ku)sδWs

provided that Ku ∈ Dom δ(W ).

2.1.6 Itô’s Formula for fBm

In this section we will show the Itô formula for indefinite Skorohod integral.

Theorem 2.5. [9] Let F be a function of class C2(R). For each t ∈ [0, T ] the
following formula holds

f(BH(t)) = f(0) +

∫ t

0

f ′(BH(s))δBH(s) +H

∫ t

0

f ′′(BH(s))s2H−1ds

2.2 Stochastic Integration with respect to the Sub
fractional Brownian motion

As we have seen in chapter 1, from the fact that SfBm is not a semimartingale nor
a Markov process, Itô’s classical calculus are not available for such process, this is
why another approach was introduced by several authors: Tudor [14] and Ruiz de
Chavez 2008, Tudor [7] 2010 in order to define a stochastic integration w.r.t the sub
fractional Brownian motion.
These results were recently proved, we will introduce only two results in this section
that are: construction of the Wiener integral w.r.t sfBm, and decomposition result
for sfBm.
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2.2.1 The Wiener integral w.r.t. SfBm

We need first to give a representation of the sub fractional Brownian motion. For
k ∈ (−1

2
, 1

2
), k 6= 0, we consider a sfBm (Skt )t∈[0,T ].

Let f : [0, T ] → R be a measurable application and α, σ, η ∈ R. We define the
Erdely-Kober-type fractional integral

(IαT−,σ,η f)(s) =
σsση

Γ(α)

∫ T

s

tσ(1−α−η)−1f(t)

(tσ − sσ)1−α dt, s ∈ [0, T ], α > 0.

We introduce the following kernel

n(t, s) =

√
π

2k
Ik
T−,2, 1−k

2

(uk10,t))(s).

We fix a Brownian motion (Wt)t≥0

Theorem 2.6. [14] We have the Wiener integral representation

Skt
d
= ck

∫ 1

0

n(t, s)dWs, t ∈ [0, T ], (2.8)

c2
k =

Γ(2k + 2) sinπ(k + 1
2
)

π

Let Sk is a sfBm given pathwise by the right-hand side of (2.8). Denote ET the
family of elementary functions f : [0, T ]→ R,

f =
N−1∑
j=1

aj1[tj ,tj+1), 0 = t0 < t1 < ... < tN = T, aj ∈ R.

For f as above we define the Wiener integral
∫ T

0
f(t)dSkt in the natural way by∫ T

0

f(t)dSkt =
N−1∑
j=1

aj(S
k
tj+1
− Sktj).

We endow ET with the inner product

< f, g >Λsf
k,T

= E
[∫ T

0

f(t)dSkt

∫ T

0

g(t)dSkt

]
(we identify the elements f and g when < f − g, f − g >Λsf

k,T
= 0). For f ∈ ET .

Definition 2.2.1. The completion of (ET , < ., . >Λsf
k,T

) is called the domain of the

Wiener integral and we denote it by (Λsf
k,T , < ., . >Λsf

k,T
).

For f ∈ Λsf
k,T we define the Wiener integral of f with respect to Sk by∫ ∞

0

f(t)dSkt = L2(Ω,F ,P)- lim
n→∞

∫ ∞
0

fn(t)dSkt ,

where (fn)n ∈ ET is such that < fn − f, fn − f >Λsf
k,T
→ 0.
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2.2.2 Decomposition of SfBm

Denote

| Λ |Xk=

{
f : [0, T ]→ R :

∫ T

0

∫ T

0

| f(s)f(t) | (s+ t)2k−1dsdt <∞
}

we define the process (Xk
t )t∈[0,T ] as the Wiener integral

Xk
t =

∫ ∞
0

(1− e−θt)θ−k−1dWθ.

Remark 2.2.1. The centered Gaussian process (Xk
t )t∈[0,T ]) has the covariance

CXk(s, t) = −Γ(1− 2k)

k(2k + 1)
K(s, t)

and the representation

Xk
t =

∫ t

0

Y k
s ds

with

Y k
t =

∫ 1

0

e−θtθ−kdWθ.

Lemma 2.2.1. [7] We have the inclusion | Λ |Xk⊂ ΛXk and the relation

‖ f ‖2
Λ
Xk

= Γ(1− 2k)

∫ T

0

∫ T

0

f(s)f(t)(s+ t)2k−1dsdt, f ∈| Λ |Xk .

Moreover, if f ∈ L1([0, T ], tk−
1
2dt) then f ∈| Λ |Xk and∫ T

0

f(t)dXk
t =

∫ T

0

f(t)Y k
t dt.

The main result is:

Theorem 2.7. [7] Let k ∈ (−1
2
, 0) and let (Bk

t )t∈[0,T ] be a fBm independent of the
Bm (Wt)t∈[0,T ]. Then the process

Skt =

√
−k(2k + 1)

Γ(1− 2k)
Xk
t +Bk

t , t ∈ [0, T ]

is a sfBm. In particular,
ΛXk ∩ ΛBk = ΛSk .

Moreover, if
f ∈ I−kT−

(
L2([0, T ])

)
∩ L1

(
[0, T ], tk−

1
2dt
)
,

then f ∈ ΛSk and∫ T

0

f(t)dSkt =

√
−k(2k + 1)

Γ(1− 2k)

∫ T

0

f(t)Y k
t dt+

∫ T

0

f(t)dBk
t .



2.3 Itô’s Formula for SfBm 40

2.3 Itô’s Formula for SfBm

Itô’s lemma is an identity used in Itô calculus to find the differential of a time-
dependent function of a stochastic process. The lemma is widely employed in
mathematical finance, and its best known application is in the derivation of the
Black-Scholes equation for option values.
In this section we introduce Itô’s formula for the SfBm in two cases: the first one
when the Hurst parameter H > 1/2 was proved by Litan, Guangjun, Kun in 2012
[8], and the seconde case when H < 1/2 was done by Guangjun Shena, Chao Chenb
in 2011 [19]

2.3.1 The case when H > 1
2

Theorem 2.8. [8] Let F ∈ C2(R) and H ∈ (1
2
, 1). Then

F (SHt ) = F (0) +

∫ t

0

F ′(SHs )dSHs +H(2− 22H−1)

∫ t

0

F ′′(SHs )s2H−1ds.

2.3.2 The case when H < 1
2

In this part, we establish versions of Itô’s formula for any value of the Hurst param-
eter H ∈ (0, 1

2
). The basic result is the next theorem.

Theorem 2.9. [19] Let F ∈ C∞(R). Then for all t ∈ [0, T ], F ′(SHs )1[0, t](s) ∈
Domδ, and

F (SHt ) = F (0) +

∫ t

0

F ′(SHs )δSHs + (2− 22H)(H +
1

2
)

∫ t

0

F ′′(SHs )s2Hds.



Chapter 3

Stochastic Differential Equations

3.1 Preliminaries

Differential equations are used to describe the evolution of a system. Stochastic Dif-
ferential Equations (SDEs) arise when a random noise is introduced into ordinary
differential equations (ODEs). For all the proofs of this section we refer to [1]

Let (Bt)t≥0, be a Brownian motion process. An equation of the form

dX(t) = µ(X(t), t)dt+ σ(X(t), t)dB(t), (3.1)

where functions µ(x, t) and σ(x, t) are given and X(t) is the unknown process, is
called a stochastic differential equation (SDE) driven by Brownian motion. The
functions µ(x, t) and σ(x, t) are called the coefficients.

Strong solutions to SDEs

Definition 3.1.1. A process X(t) is called a strong solution of the SDE 3.1 if for
all t > 0 the integrals

∫ t
0
µ(X(s), s)ds and

∫ t
0
σ(X(s), s)dB(s) exist, with the second

being an Itô integral, and

X(t) = X(0) +

∫ t

0

µ(X(s), s)ds+

∫ t

0

σ(X(s), s)dB(s) (3.2)

Remark 3.1.1. 1. A strong solution is some function F (t, (Bs)s≤t) of the given
Brownian motion B(t).

2. When σ = 0, the SDE becomes an ordinary differential equation (ODE).

3. Another interpretation of (3.1), called the weak solution, is a solution in dis-
tribution which will be given later.

41
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Weak Solutions to SDEs
The concept of weak solutions allows us to give a meaning to an SDE when strong
solutions do not exist. Weak solutions are solutions in distribution, they can be
realized (defined) on some other probability space and exist under less stringent
conditions on the coefficients of the SDE.

Definition 3.1.2. If there exist a probability space with a filtration, a Brownian
motion B̂(t) and a process X̂(t) adapted to that filtration, such that: X̂(0) has the
given distribution, for all t the integrals below are defined, and X̂(t) satisfies

X̂(t) = X̂(0) +

∫ t

0

µ(X̂(u), u)du+

∫ t

0

σ(X̂(u), u)dB̂(u),

then X̂(t) is called a weak solution to the SDE 3.1

Definition 3.1.3. A weak solution is called unique if whenever X(t) and X ′(t) are
two solutions (perhaps on different probability spaces) such that the distributions of
X(0) and X ′(0) are the same, then all finite-dimensional distributions of X(t) and
X ′(t) are the same.

3.1.1 Existence and Uniqueness of Weak Solutions

Theorem 3.1. If for each t > 0, functions µ(x, t) and σ(x, t) are bounded and
continuous then the SDE (3.1) has at least one weak solution starting at time s at
point x, for all s, and x.
In addition if their partial derivatives with respect to x up to order two are also
bounded and continuous, then the SDE (3.1) has a unique weak solution starting at
time s at point x. Moreover this solution has the strong Markov property.

Theorem 3.2. If σ(x, t) is positive and continuous and for any T > 0 there is KT

such that for all x ∈ R

| µ(x, t) | + | σ(x, t) |≤ KT (1+ | x |)

then there exists a unique weak solution to SDE (3.1) starting at any point x ∈ R
at any time s ≥ 0, moreover it has the strong Markov property.

3.1.2 Existence and Uniqueness of Strong Solutions

Let X(t) satisfies the SDE (3.1)

Theorem 3.3. (Existence and Uniqueness) If the following conditions are sat-
isfied
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motion 43

1. Coefficients are locally Lipschitz in x uniformly in t, that is, for every T and N ,
there is a constantK depending only on T andN such that for all | x |, | y |≤ N

and all 0 ≤ t ≤ T

| µ(x, t)− µ(y, t) | + | σ(x, t)− σ(y, t) |< K | x− y |

2. Coefficients satisfy the linear growth condition

| µ(x, t) | + | σ(x, t) |≤ K(1+ | x |)

3. X(0) is independent of (Bt)0≤t≤T , and E(X2(0)) <∞

Then there exists a unique strong solution X(t) of the SDE (3.1) and it has
continuous paths, moreover

E( sup
0≤t≤T

X2(t)) < C(1 + E(X2(0)))

where constant C depends only on K and T .

Theorem 3.4. (Yamada-Watanabe) Suppose that µ(x) satisfies the Lipschitz
condition and σ(x) satisfies a Hölder condition of order α > 1/2, that is, there is a
constant K such that

| σ(x)− σ(y) |< K | x− y |α

Then the strong solution exists and is unique.

3.2 Stochastic Differential Equations driven by Frac-
tional Brownian motion

In this section, we study the well-posedness of a class of stochastic differential
equations driven by fractional Brownian motions with arbitrary Hurst parameter
H ∈ (0, 1) we consider the following SDE:

dXt = σ(Xt)dB
H
t + b(Xt)dt, t ∈ [0, T ] (3.3)

allowing to study this SDE under which conditions on the coefficients, using the
previous integrals to give the existence and uniqueness of solution for each case.

3.2.1 SDEs in the sense of Russo-Vallois integral

The mathematician I Nourdin describes a theory to study the SDE (3.3) in 2007 [13],
he gaves conditions that insure the existence and uniqueness, using the integral of
Russo-Vallois in order to make sense to

∫ t
0
(σ(Xs)dB

H
s but just considering integrands

of the form f(BH) with f regular enough for this reason he choose several definitions
of solution for each case, we will mention them in this subsection.
In the sequel, we put nH = inf{n ≥ 1 : H > 1

4n+2
}.
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Definition 3.2.1. Assume that σ ∈ C4nH+1.

• Let C1 be the class of processes X : [0, T ] × Ω → R verifying that there exist
f : R→ R ∈ C4nH+1 such that, a.s.,∀t ∈ [0, T ], Xt = f(BH

t ).

• A process X : [0, T ] ∈ R is a solution to (3.3) if:

i) X ∈ C1,

ii) ∀t ∈ [0, T ], Xt = x0 +
∫ t

0
σ(Xs)d

NCBH
s +

∫ t
0
b(Xs)ds.

Theorem 3.5. Let σ ∈ C4nH+1 be a Lipschitz function, b be a continuous function
and x0 be a real. Then the equation (3.3) admits a solution X in the sense of
Definition 3.2.1 if and only if b vanishes on S(R), where S is the unique solution to
S ′ = σ ◦ S with initial value S(0) = x0. In this case, X is unique and is given by
Xt = S(BH

t ).

Proof. Assume that Xt = f(BH
t ) is a solution to (3.3) in the sense of Definition

3.2.1 Then, we have

f(BH
t ) = x0 +

∫ t

0

σ ◦ f(BH
s )dNCBH

s +

∫ t

0

b ◦ f(BH
s )ds = G(BH

t ) +

∫ t

0

b ◦ f(BH
s )ds,

(3.4)
where G is the primitive of σ ◦ f verifying G(0) = x0. Put h = f − G and denote
by Ω∗ the set of ω ∈ Ω such that t → BH

t is derivable in at least one point t0 ≥ 0

(it is well-known that. If h′(BH
t0

(ω)) 6= 0 for one t0 ∈ [0, T ] and one ω ∈ Ω then h is
strictly monotonous in a neighborhood of BH

t0
(ω) and, for |t− t0| sufficiently small,

we have

BH
t (ω) = h−1

(∫ t

0

b(Xs(ω))ds

)
and, consequently, ω ∈ Ω∗. Then, a.s., h′(BH

t ) = 0 for all t ∈ [0, T ] and h ≡ 0. By
uniqueness, we deduce f = S. Thus, if (3.3) admits a solution X in the sense of
Definition 3.2.1, we have necessarily Xt = S(BH

t ). Thanks to (3.4), we then have

b ◦ S(BH
t ) = 0 for all t ∈ [0, T ] a.s.

and then b vanishes on S(R).

Now another definition where the integrand is of the forme f(BH+A) with A ∈ A
and A the set of processes A : [0, T ]→ R having C1-trajectories and verifying that

E
(
eλ

∫ T
0 A2

sds
)
<∞ for some λ > 1.

Definition 3.2.2. Assume that σ ∈ C4nH+1.

• Let C2 be the class of processes X : [0, T ] × Ω → R verifying that there exist
a function f : R → R ∈ C4nH+1 and a process A ∈ A such that A0 = 0 and,
a.s., ∀t ∈ [0, T ], Xt = f(BH

t + At).
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• A process X : [0, T ]× Ω→ R is a solution to (3.3) if:

i) X ∈ C2,

ii) ∀t ∈ [0, T ], Xt = x0 +
∫ t

0
σ(Xs)d

NCBH
s +

∫ t
0
b(Xs)ds.

Theorem 3.6. Let σ ∈ C4nH+1 be a Lipschitz function, b be a continuous function
and x0 be a real.

• If σ(x0) = 0 then (3.3) admits a solution X in the sense of Definition 3.2.2 if
and only if b(x0) = 0. In this case, X is unique and is given by Xt ≡ x0.

• If σ(x0) 6= 0, then (3.3) admits a solution X. If moreover infR |σ| > 0 and
b ∈ Lip then X is unique.

Proof Assume thatX = f(BH+A) is a solution to (3.3) in the sense of Definition
3.2.2. Then, we have

f(BH
t + At) = G(BH

t + At)−
∫ t

0

σ(Xs)Asds+

∫ t

0

b(Xs)ds (3.5)

where G is the primitive of σ◦f verifying G(0) = x0. As in the proof of the previous
theorem, we obtain that f = S where S is defined by S ′ = σ ◦ S with initial value
S(0) = x0. Thanks to (3.5), we deduce that, a.s., b◦S(BH

t +At) = A′tσ◦S(BH
t +At)

for all t ∈ [0, T ]. Consequently:

• If σ(x0) = 0 then S ≡ x0 and b(x0) = 0.

• If σ(x0) 6= 0 then S is strictly monotonous and the ordinary integral equation
At =

∫ t
0
b◦S
S′ (BH

s + As)ds admits a maximal (in fact, global since we know
already that A is defined on [0, T ]) solution thanks to Peano theorem. If
moreover infR |σ| > 0 and b ∈ Lip then b◦S

S′ = b◦S
σ◦S ∈ Lip and A is uniquely

determined.

Finally, we can introduce a last definition for solution to (3.3):

Definition 3.2.3. Assume that σ ∈ C2mH , we define mH = inf{m ≥ 1 : H >

1/(2m+ 1)}.

• Let C3 be the class of processes X : [0, T ]× Ω→ R verifying that there exist a
function f : R2 → R of class C2mH and a process A : [0, T ] × Ω → R having
C1-trajectories such that A0 = 0 and, a.s., ∀t ∈ [0, T ], Xt = f(BH

t , At).

• A process X : [0, T ]× Ω→ R is a solution to (3.3) if:

i) X ∈ C3,

ii) ∀t ∈ [0, T ], Xt = x0 +
∫ t

0
σ(Xs)d

NCBH
s +

∫ t
0
b(Xs)ds.
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Theorem 3.7. Let σ ∈ C2
b , b be a Lipschitz function and x0 be a real. Then the

equation (3.3) admits a solution X in the sense of Definition 3.2.3. Moreover, if
σ is analytic, then X is the unique solution of the form f(BH , A) with f analytic
(resp. of class C1) in the first (resp. second) variable and A a process having C1-
trajectories and verifying A0 = 0.

Proof. We will concentrate on the uniqueness. Assume that X = f(BH , A) is
a solution to (3.3) in the sense of Definition 3.2.3. On the one hand, we have

Xt = x0 +

∫ t

0

σ(Xs)d
NCBH

s +

∫ t

0

b(Xs)ds (3.6)

= x0 +

∫ t

0

σ ◦ f(BH
s , As)d

NCBH
s +

∫ t

0

b ◦ f(BH
s , As)ds. (3.7)

On the other hand, using the change of variables formula, we can write

Xt = x0 +

∫ t

0

f ′(BH
s , As)d

NCBH
s +

∫ t

0

f ′(BH
s , As)A

′
sds. (3.8)

Using (3.7) and (3.8), we deduce that t→
∫ t

0
ϕ′(BH

s , As)d
NCBH

s has C1-trajectories
where ϕ′ = f ′ − σ ◦ f. As in the proof of Theorem 3.6, we show that, a.s.,

∀t ∈]0, T [, ϕ′(BH
t , At) = 0.

Similarly, we can obtain that, a.s.,

∀k ∈ N, ∀t ∈]0, T [,
∂kϕ

∂bk
(BH

t , A
t) = 0.

If σ and f(., y) are analytic, then ϕ(., y) is analytic and

∀t ∈]0, T [, ∀x ∈ R, ϕ(x,At) = f ′(x,At)− σ ◦ f(x,At) = 0.

By uniqueness, we deduce

∀t ∈ [0, T ], ∀x ∈ R, f(x,At) = u(x,At),

where u is the unique solution to u′ = σ(u) with initial value u(0, y) = y for any
y ∈ R. In particular, we obtain a.s.

∀t ∈ [0, T ], Xt = f(BH
t , At) = u(BH

t , At).

Identity (3.7) can then be rewritten as:

Xt = x0 +

∫ t

0

σ ◦ u(BH
s , As)d

NCBH
s +

∫ t

0

b ◦ u(BH
s , As)ds,

while change of variables formula yields:

Xt = x0 +

∫ t

0

u′b(BH
s , As)d

NCBH
s +

∫ t

0

u′(BH
s , As)A

′
sds.
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Since u′ = σ ◦ u, we obtain a.s.:

∀t ∈ [0, T ], b ◦ u(BH
t , At) = u′(BH

t , At)A
′
t.

But we have existence and uniqueness in the last equation. Then the proof of
Theorem is done.

3.2.2 SDEs in the sense of Skorohod integral

The well-posedness of a class of stochastic differential equations driven by frac-
tional Brownian motions with arbitrary Hurst parameter H ∈ (0, 1) in the general
case where the coefficients are allowed to be random were studied by the Chinese
mathematicians YU-JUAN JIEN and JIN MA in 2009, proving the result using the
anticipating Girsanov transformation for the fBm which they establish (for more
details see [21]).
we assume that all processes are defined on a finite duration I = [0, T ]. Let
W

not
= C0(I,R) be the Banach space of continuous functions defined on I , null

at t = 0 and equipped with the sup-norm. Let F not
= B(W ) be the topological σ-

field on W and µH the unique probability measure on W under which the canonical
process BH

t (ω)
not
= ωt, t ∈ I, is an fBm. (W,F , µH) then form a canonical space.

We define we define D1,∞(X ) where X is a separable Hilbert space, to be the space
of all G ∈ D1,2(X ) (see definition 2.1.14) such that

‖G‖1,∞ = ‖|G|X‖∞ ∨ ‖|DG|X‖∞ <∞.

with DG is the Malliavin derivative (2.1.13). For later use we denote the space
L1,∞ = L2(I,D1,∞), and define the operators T and A for all ω ∈ W and v ≤ t ∈ I
by

(Ttω)s = ωs +

∫ t∧s

0

KH(s, r)σr(Trω)dr,

(Av,tω)s = ωs −
∫ t∧s

v∧s
KH(s, r)σr(Ar,tω)dr

such that T (Aω) = A(Tω) = ω.

In the sequel, lets consider the stochastic differential equation in the Skorohod
sense (see section 2.1.5.1):

Xt = X0 +

∫ t

0

σsXsdB
H
s +

∫ t

0

b(s,Xs)ds, t ∈ [0, T ] (3.9)

where X0 ∈ Lp(W ) for some p ≥ 2, σ ∈ L1,∞ and b : I×R×X → R is a measurable
function satisfying the following conditions for µ-a.e. ω ∈ W :

(H1).There exist an integrable function γt ≥ 0 on I and a constant M > 0 such
that
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i)
∫ 1

0
γtdt ≤M and |b(t, 0, ω)| ≤M for any t ∈ I ;

ii) |b(t, x, ω)− b(t, y, ω)| ≤ γt|x− y| for all x, y ∈ R, t ∈ I.

now consider the following ordinary differential equation for any fixed ω ∈ W :

Zt(ω, x) = x+

∫ t

0

L−1
s (Tsω)b(s, Ls(Tsω)Zs(ω, x), Tsω)ds, x ∈ R, t ∈ I. (3.10)

Where Lt denotes the density of Tt. It is known from ODE theory that under
Assumption (H1), the unique solution Zt(ω, x), t ≥ 0, depends continuously on
the initial state x. Thus, the mapping (t, ω) → Zt(ω,X0(ω)) defines a measurable
process. Let us now set

Xt = LtZt(At, X0(At)), t ∈ I. (3.11)

We need the following lemma to proof the next theorem.

Lemma 3.2.1. [21] Suppose that F = {Ft, t ∈ I} ∈ LS and the mapping t→ Ft(.)

is differentiable. Then {Ft(Tt), t ∈ I} is differentiable with respect to t and it holds
that

d

dt
[Ft(Tt)] =

(
d

dt
Ft

)
(Tt) + σt(Tt)(DtFt)(Tt), µ− a.e. (3.12)

For any G ∈ S, the mapping t ∈ G(At) is differentiable and it holds that

d

dt
G(At) = −σtDt[G(At)], µ− a.e. (3.13)

The main result is the following theorem.

Theorem 3.8. [21] The process {Xt, t ∈ I} in (3.11) satisfies 1[0,t]σX ∈ Dom(δ)
for all t ∈ I and X ∈ L2(W,L2(I)) is the unique solution of the SDE (3.9).

Proof. Existence. We will show that 1[0,τ ]σX ∈ Dom(δ) for τ ∈ I and that
SDE (3.9) holds. To this end, let G ∈ S and denote Zt(., X0(.)) by Zt(X0). Using
(3.11), we have

E

{
G

∫ 1

0

1[0,τ ](t)σtXtdBt

}
= E

{∫ τ

0

σtXtDtGdt

}
= E

{∫ τ

0

σtLtZt(At, X0(At))DtGdt

}
(3.14)

= E

{∫ τ

0

σt(Tt)Zt(X0)DtG(Tt)dt

}
.

Applying Lemma 3.37, (3.12) and integration by parts, (3.14) becomes
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E

{∫ τ

0

σt(Tt)Zt(X0)DtG(Tt)dt

}
= E

{∫ τ

0

Zt(X0)
d

dt
G(Tt)dt

}
= E {Zτ (X0)G(Tt)− Z0(X0)G (3.15)

−
∫ τ

0

Zt(X0)

(
d

dt
Zt(X0)

)
G(Tt)dt

}
Next, using ODE (3.10) as well as the fact that L−1

t (Tt) = Lt is the density of
At, (3.15) yields that

E

{
Zτ (X0)G(Tτ )− Z0(X0)G−

∫ τ

0

L−1
t (Tt)b(t, Lt(Tt)Zt(X0), Tt)G(Tt)dt

}

= E{LτZτ (Aτ , X0(Aτ ))G} − E{Z0(X0)G} − E
{∫ τ

0

b(t, LtZt(At, X0(At)))Gdt

}

E{XτG} − E{X0G} − E
{∫ τ

0

b(t,Xt)Gdt

}
= E

{
G

(
Xτ −X0 −

∫ τ

0

b(t,Xt)dt

)}
This, together with (3.14), leads to the fact that for any G ∈ S,

E

{
G

∫ 1

0

1[0,τ ](t)σtXtdBt

}
= E

{
G

(
Xτ −X0 −

∫ τ

0

b(t,Xt)dt

)}
Since Xτ −X0−

∫ τ
0
b(t,Xt)dt is square-integrable, we deduce that {1[0,τ ]σX, τ ∈

I} belong
to Dom(δ) and X satisfies (3.9).

Uniqueness. Let Y ∈ L2(W ;L2(I)), where 1[0,t]σY ∈ Dom(δ) for all t ∈ I, be
any solution of equation (3.9), that is,

Yt = X0 +

∫ t

0

σsYsdB
H
s +

∫ t

0

b(s, Ys)ds, t ∈ I. (3.16)

We consider a fixed t ∈ I and a random variable G ∈ S. Multiplying both sides
of (3.16) by G(At) and taking expectations, it becomes

E{YtG(At)} = E{Y0G(At)}+E

{∫ t

0

Ds[G(At)]σsYsds

}
+E

{∫ t

0

b(s, Ys)G(At)ds

}
.

Since G(At) = G(As) −
∫ t
s
σrDr[G(Ar)]dr for any s ∈ [0, t] by Lemma 3.37, (3.13),

we obtain
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E{YtG(At)} = E{Y0G} − E
{
Y0

∫ t

0

σrDr[G(Ar)]dr

}
+E

{∫ t

0

Ds[G(At)]σsYsds

}
− E

{∫ t

0

Ds

[∫ t

s

σrDr[G(Ar)]dr

]
σsYsds

}
+E

{∫ t

0

b(s, Ys)G(As)ds

}
− E

{∫ t

0

b(s, Ys)

∫ t

s

σrDr[G(Ar)]drds

}
(3.17)

= E{Y0G}+ E

{∫ t

0

Ds[G(As)]σsYsds

}
+ E

{∫ t

0

b(s, Ys)G(As)ds

}
−E

{∫ t

0

σrDr[G(Ar)]Y0dr

}
− E

{∫ t

0

∫ r

0

Ds [σrDr[G(Ar)]]σsYsdsdr

}
−E

{∫ t

0

σrDr[G(Ar)]

∫ r

0

b(s, Ys)dsdr

}
.

Here, the last equality is due to Fubini’s theorem. Now, by definition of the Skorohod
integral,

E

{∫ t

0

∫ r

0

Ds [σrDr[G(Ar)]]σsYsdsdr

}
= E

{∫ t

0

σrDr[G(Ar)]

∫ r

0

σsYsdB
H
s dr

}
.

Note that because the density of At is Lt = L−1
t (Tt) and Y satisfies (3.16), (3.17)

can be rewritten as

E{L−1
t (Tt)Yt(Tt)G} = E{Y0G}+ E

{∫ t

0

Ds[G(As)]σsYsds

}
+E

{∫ t

0

b(s, Ys)G(As)ds

}
− E

{∫ t

0

σrDr[G(Ar)]Yrdr

}
= E{Y0G}+ E

{∫ t

0

b(s, Ys)G(As)ds

}
= E{Y0G}+ E{

∫ t

0

L−1
s (Ts)b(s, Ys(Ts))Gds}

Since the smooth random variable G is arbitrary, we have

L−1
t (Tt)Yt(Tt) = Y0 +

∫ t

0

L−1
s (Ts)b(s, Ys(Ts))ds

= Y0 +

∫ t

0

L−1
s (Ts)b(s, Ls(Ts)L

−1
s (Ts)Ys(Ts))ds, µ− a.e.

That is, L−1
t (Tt)Yt(Tt) is a solution of equation (3.10). By the uniqueness of the

ODE, we must have L−1
t (Tt)Yt(Tt) = Zt(., Yt). Consequently,

Yt = LtZt(At, Y0(At)) = Xt, µ− a.e.,

which is the unique solution of SDE (3.9). This completes the proof.
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3.2.3 Stochastic differential equations driven by Hölder paths

Theorem 3.9. [39] Let g ∈ Cγ([0, T ]) where 1
2
< γ ≤ 1. Let b : R → R and

σ : R→ R be two functions such that:

i) b and σ are globally Lipschitz continuous;

ii) σ is continuously differentiable with a globally Lipschitz derivative.

For every x0 ∈ R, the ordinary differential equation

dx(t) = b(x(t))dt+ σ(x(t))dg(t), (3.18)

has a unique solution in Cγ([0, T ]).

The basic idea is to generalize this result from the ordinary case to the stochastic
one, i.e solving a stochastic differential equations using integration path by path,
since the fBm is a continuous process whose path are γ-Hölderian for every γ < H.
Therefore if H > 1/2 the SDE (3.3) admits a unique solution moreover it has the
same Hölder property, under the assumption i) and ii).

3.2.4 Numerical Solution

Stochastic differential equations which admit an explicit solution are the exception
from the rule. Therefore numerical techniques for the approximation of the solution
to a stochastic differential equation are called for. In what follows, such an approx-
imation is called a numerical solution.
Numerical solutions are needed for different aims. One purpose is to visualize a
variety of sample paths of the solution. A collection of such paths is sometimes
called a scenario. It gives an impression of the possible sample path behavior. In
this sense, we can get some kind of "prediction" of the stochastic process at future
instants of time. But a scenario has to be interpreted with care. In real life we
never know the fractional Brownian sample path driving the stochastic differential
equation, and the simulation of a couple of such paths is not representative for the
general picture.
A second objective (perhaps the most important one) is to achieve reasonable ap-
proximations to the distributional characteristics of the solution to a stochastic
differential equation. They include expectations, variances, covariance and higher-
order moments. This is indeed an important matter since only in a few cases one
is able to give explicit formulae for these quantities, and even then they frequently
involve special functions which have to be approximated numerically. Numerical
solutions allow us to simulate as many sample paths as we want; they constitute the
basis for Monte-Carlo techniques to obtain the distributional characteristics. For the
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purpose of illustration we restrict ourselves to the numerical solution of the stochas-
tic differential equation driven by fractional Brownian motion. We also assume that
the coefficients functions verify the assumption that guarantee the existence and
uniqueness of solution.

In this section we are interested in some approximation schemes of Euler and
Milstien associated to stochastic differential equation driven fractional Brownian mo-
tion, in the sense of specified integral: the Russo-vallois integral 2.4, and of Young
integral 2.1.2 when the integrator has Hölder paths the case of fBm. We will define
these schemes in order to do some simulation.

We consider the Euler scheme associated to SDE (3.3) with step 1
n
, when the

integral with respect to fBm is in the sense of Russo-Vallois symmetric integral 2.4
and with H > 1/6 and k = 0, 1.., n− 1.

{
X̂

(n)
0 = x0,

X̂
(n)
(k+1)/n = X̂

(n)
k/n + 1

2

(
σ(X̂

(n)
k/n) + σ(X̂

(n)
(k+1)/n)

)(
BH

(k+1)/n −BH
k/n

)
+ 1

n
b(X̂

(n)
k/n).

(3.19)

Figure 3.1: The equidistant Euler scheme (3.19): numerical solution and exact
solution to the SDE dXt = 0.02Xtdt+ cos(Xt)dB

H
t
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Next we consider the approximation schemes associated to stochastic differential
equations driven by α-Hölderian functions the case when these functions are the
paths of fBm.

{
X̂

(n)
0 = x0,

X̂
(n)
t = X̂

(n)
k/n + σ(X̂

(n)
k/n)

(
gt − gk/n

)
+ (t− k

n
)b(X̂

(n)
k/n) t ∈ [k/n, (k + 1)/n].

(3.20)


X̂

(n)
0 = x0,

X̂
(n)
t = X̂

(n)
k/n +

∑2m
j=1

1
j!
Pj(σ, σ

′, ..., σ(j−1))(X̂
(n)
k/n)

(
gt − gk/n

)j
+ (t− k

n
)b(X̂

(n)
k/n)

t ∈ [k/n, (k + 1)/n].

(3.21)
Where Pj are polynomial functions defined by:

g′ = f ◦ g ⇒ ∀j ∈ N∗, g(j) = Pj(f, f
′, ..., f (j−1)) ◦ g with Pj ∈ R[X0, ..., Xj−1].

For example, we have:

g′ = f◦g ⇒ P1 = X0 ∈ R[X0] and g′′ = g′×(f ′◦g) = (ff ′)◦g ⇒ P2 = X0X
1 ∈ R[X0, X1]...ect.

The first scheme (3.20) is the associated Euler scheme to SDE (3.18) when α > 1
2
,

and the second (3.21) is the Milstein scheme when α ≤ 1
2
. With H > 1

2m+1
,m ∈ N∗.

Figure 3.2: The equidistant Euler scheme (3.20): numerical solution and exact
solution to the SDE dXt = 0.02Xtdt+ cos(Xt)dB

H
t , H = 0.6
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Figure 3.3: The equidistant Euler scheme (3.20): numerical solution and exact
solution to the SDE dXt = 0.02Xtdt+ cos(Xt)dB

H
t , H = 0.8

Figure 3.4: The equidistant Milstien scheme (3.21): numerical solution and exact
solution to the SDE dXt = 0.02Xtdt+ cos(Xt)dB

H
t , H = 0.5
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Comparison between the previous schemes

Figure 3.5: The equidistant Euler scheme (3.19) and the Euler scheme (3.20) with
H = 0.6

Figure 3.6: The equidistant Milshtein scheme (3.21) and the Euler scheme (3.19)
with H = 0.5

As we can see in 3.5 that the difference between the schemes (3.19) and (3.20)
is null the same as in 3.6 between the schemes (3.21) and (3.19).



3.3 Stochastic Differential equations Driven by Sub-fractional Brownian
motion 56

3.3 Stochastic Differential equations Driven by Sub-
fractional Brownian motion

Stochastic differential equations driven by sub-fractional Brownian motion has been
considered only by Mendy in 2010 (we could not obtain this paper). Zhi Li, Guoli
Zhou and Jiaowan Luo in 2015 have investigate the existence and uniqueness of
mild solutions to the stochastic delay differential equation [35] and study its long-
time behavior as well which we based on in this section to investigate the existence
and uniqueness of solution to stochastic delay evolution equations perturbed by a
Sub-fractional Brownian motion with indexH > 1

2
, but only mild and weak solution.

Let HSH be the canonical Hilbert space associated to the sub-fBm SH . That is
the closure of the linear space E of R-valued step function on [0, T ] with respect to
the scalar product

< 1[0,t],1[0,s] >H
SH

= CH(t, s).

We have that the covariance of sub-fractional Brownian motion can be written as

E[SH(t)SH(s)] =

∫ t

0

∫ s

0

φH(u, v)dudv = CH(s, t), (3.22)

where φH(u, v) = H(2H − 1)
[
| u− v |2H−2 −(u+ v)2H−2

]
. Equation (3.22) implies

that

< ϕ,ψ >H
SH

=

∫ t

0

∫ t

0

ϕuψvφH(u, v)dudv (3.23)

for any pair step functions ϕ and ψ on [0, T ]. Consider the kernel

nH(t, s) =
21−H

√
π

Γ(H − 1
2
)
s

3
2
−H
(∫ t

s

(x2 − s2)H−
3
2dx

)
1[0,t](s). (3.24)

By Dzhaparidze and Van Zanten [36], we have

CH(t, s) = c2
H

∫ s∧t

0

nH(t, u)nH(s, u)du, (3.25)

where
c2
H =

Γ(1 + 2H) sin(πH)

π

Property (3.25) implies that CH(s, t) is non-negative definite. Consider the linear
operator n∗H from E to L2([0, T ]) defined by

n∗H(ϕ)(s) = cH

∫ r

s

ϕr
∂nH
∂r

(r, s)dr.

Using (3.23) and (3.25) we have
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< n∗Hϕ, n
∗
Hψ >L2([0,T ]) = c2

H

∫ T

0

(∫ T

s

ϕr
∂nH
∂r

(r, s)dr

)(∫ T

s

ψu
∂nH
∂u

(u, s)du

)
ds

= c2
H

∫ T

0

∫ T

0

(∫ r∧u

0

∂nH
∂r

(r, s)
∂nH
∂u

(u, s)ds

)
ϕrψudrdu

= c2
H

∫ T

0

∫ T

0

∂2nH
∂r∂u

(r, u)dsϕrψudrdu

= H(2H − 1)

∫ T

0

∫ T

0

[
| u− r |2H−2 −(u+ r)2H−2

]
ϕrψudrdu

= < ϕ,ψ >H
SH

(3.26)

As a consequence, the operator n∗H provides an isometry between the Hilbert
space HSH and L2([0, T ]). Hence, the process W defined by

W (t) := SH
(
(n∗H)−1(1[0,t])

)
is a Wiener process, and SH has the following Wiener integral representation:

SH(t) = cH

∫ t

0

nH(t, s)dW (s)

because (n∗H)(1[0,t])(s) = cHnH(t, s). By Dzhaparidze and Van Zanten [36], we have

W (t) =

∫ t

0

ψH(t, s)dSH(s),

where

ψH(t, s) =
sH−1/2

Γ(3/2−H)

[
tH−3/2(t2 − s2)1/2−H −

(
H − 3

2

)∫ t

s

(x2 − s2)1/2−HxH−3/2dx

]
1[0,t](s).

In addition, for any ϕ ∈ HSH ,∫ T

0

ϕ(s)dSH(s) =

∫ T

0

(n∗Hϕ)(t)dW (t)

if and only if n∗Hϕ ∈ L2([0, T ]). Also denoting L2
H

SH
([0, T ]) = {ϕ ∈ HSH , n∗H ∈ L2([0, T ])}.

Since H > 1
2
, we have by (3.26),

L2([0, T ]) ⊂ L
1
H ([0, T ]) ⊂ L2

H
SH

([0, T ]). (3.27)

We are interested in considering a sub-fBm with values in Hilbert space and
giving the definition of the corresponding stochastic integral.
Let (U, ‖.‖U , < . >U) and (K, ‖.‖K , < . >K) be two separable Hilbert spaces. Let
L(K,U) denote the space of all bounded linear operators from K to U . Let Q ∈
L(K,K) be a non-negative self-adjoint operator. Denote by L0

Q(K,U) the space of
all ξ ∈ L(K,U) such that ξQ

1
2 is a Hilbert-Schmidt operator. The norm is given by
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‖ξ‖2
L0
Q(K,U) = ‖ξQ

1
2‖H

SH
= tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from K to U .
Let {SHn (t)}n∈N be a sequence of one-dimensional standard sub-fractional Brownian
motions mutually independent on (Ω,F ,P). When one considers the following series:

∞∑
n=1

SHn (t)en, t ≥ 0,

where {en}n∈N is a complete orthonormal basis in K, this series does not necessarily
converge in the space K. Thus we consider a K-valued stochastic process SHQ (t)

given formally by the following series:

SHQ (t) =
∞∑
n=1

SHn (t)Q
1
2 en, t ≥ 0.

If Q is a non-negative self-adjoint trace class operator, then this series converges
in the space K, that is, we have SHQ (t) ∈ L2(Ω, K). Then we say that the above
SHQ (t) is a K-valued Q-cylindrical sub-fractional Brownian motion with covariance
operator Q. For example, if {σn}n∈N is a bounded sequence of non-negative real
numbers such that Qen = σnen, assuming that Q is a nuclear operator in K (that
is,
∑∞

n=1 σn <∞), then the stochastic process

SHQ (t) =
∞∑
n=1

SHn (t)Q
1
2 en =

∞∑
n=1

√
σnS

H
n (t)en, t ≥ 0,

is well defined as a K-valued Q-cylindrical sub-fractional Brownian motion.
Let ϕ : [0, T ]→ L0

Q(K,U) such that

∞∑
n=1

∥∥∥n∗H(ϕQ
1
2 en)

∥∥∥
L2([0,T ];U)

<∞ (3.28)

Definition 3.3.1. Let ϕ : [0, T ] → L0
Q(K,U) satisfy (3.28). Then its stochastic

integral with respect to the sub-fBm SHQ is defined, for t ≥ 0, as follows:

∫ t

0

ϕ(s)dSHQ (s) =
∞∑
n=1

∫ t

0

ϕ(s)Q
1
2 endS

H
n (s) (3.29)

=
∞∑
n=1

∫ t

0

(n∗H(ϕQ
1
2 en))(s)dW (s). (3.30)

Notice that if
∞∑
n=1

∥∥∥ϕQ 1
2 en

∥∥∥
L

1
H ([0,T ];U)

<∞, (3.31)

then in particular (3.28) holds, which follows immediately from (3.27).
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Lemma 3.3.1. [35] For any ϕ : [0, T ]→ L0
Q(K,U) such that (3.31) holds, and for

any α, β ∈ [0, T ] with α > β,

E

∥∥∥∥∫ β

α

ϕ(s)dSHQ (s)

∥∥∥∥2

U

≤ CH(α− β)2H−1

∞∑
n=1

∫ β

α

∥∥ϕ(s)Q1/2en
∥∥2

U
ds.

If, in addition,
∞∑
n=1

∥∥ϕ(s)Q1/2en
∥∥2

U
is uniformly convergent for t ∈ [0, T ],

then

E

∥∥∥∥∫ β

α

ϕ(s)dSHQ (s)

∥∥∥∥2

U

≤ CH(α− β)2H−1

∫ β

α

‖ϕ(s)‖2
L0
Q(K,U) ds. (3.32)

3.3.1 Existence and uniqueness of mild solution

We denote by C(a, b;L2(Ω;U)) = C(a, b;L2(Ω,F ,P;U)) the Banach space of all
continuous functions from [a, b] into L2(Ω;U) equipped with sup norm. Let us
consider two fixed real numbers r ≥ 0 and T > 0. If x ∈ C(−r, T ;L2(Ω;U)) for each
t ∈ [0, T ] we denote xt ∈ C(−r, 0;L2(Ω;U)) the function defined by xt(θ) = x(t+θ),
for θ ∈ [−r, 0].
In this section we consider the existence and uniqueness of mild solutions to the
following stochastic evolution equation with delays:{

dX(t) = (AX(t) + f(t,Xt))dt+ g(t)dSHQ (t), t ∈ [0, T ],
X(t) = ϕ(t), t ∈ [−r, 0]

(3.33)

where SHQ (t) is the sub-fractional Brownian motion which was introduced pre-
viously, the initial data ϕ ∈ C(−r, 0;L2(Ω;U)), and A : Dom(A) ⊂ U → U is the
infinitesimal generator of a strongly continuous semigroup S(.) on U , that is, for
t ≥ 0, we have

‖S(t)‖U ≤Meρt, M ≥ 1, ρ ∈ R.

f : [0, T ] × C(−r, 0;U) → U is a family of nonlinear operators defined for almost
every t

which satisfy:

(f.1) The mapping t ∈ [0, T ] → f(t, ξ) ∈ U is Lebesgue measurable for all ξ ∈
C(−r, 0;L2(Ω;U)).

(f.2) There exists a constant C > 0 such that for any x, y ∈ C(−r, T ;U) and
t ∈ [0, T ], ∫ t

0

‖f(s, xs)− f(s, ys)‖2
U ds ≤ C

∫ t

−r
‖x(s)− y(s)‖2

U ds.
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(f.3)
∫ T

0
‖f(s, 0)‖2

U ds <∞.

Moreover, for g : [0, T ] → L0
Q(K,U) we assume the following conditions: for the

complete orthonormal basis {en}n∈N in K, we have:

(g.1)
∑∞

n=1

∥∥gQ1/2en
∥∥
L2([0,T ];U)

<∞.

(g.2)
∑∞

n=1

∥∥g(t)Q1/2en
∥∥
U
is uniformly convergent for t ∈ [0, T ].

Definition 3.3.2. A U -valued process X(t) is called a mild solution of (3.33) if
X ∈ C(−r, T ;L2(Ω;U)), X(t) = ϕ(t), for t ∈ [−r, 0] and for r ∈ [0, T ], satisfies

X(t) = S(t)ϕ(0)+

∫ t

0

S(t−s)f(s,Xs)ds+

∫ t

0

S(t−s)g(s)dSHQ (t) P−a.s. (3.34)

Notice that, thanks to (g.1) and the fact that H > 1/2, (3.31) holds, which
implies that the stochastic integral in (3.34) is well defined since S(.) is a strongly
continuous semigroup. Moreover, (g.1) together with (g.2) immediately imply that,
for every t ∈ [0, T ], ∫ t

0

‖g(s)‖2
L0
Q(K,U) ds <∞.

Theorem 3.10. Under the assumptions on A and conditions (f.1)-(f.3) and (g.1)-
(g.2), for every ϕ ∈ C(−r, 0;L2(Ω, U)) there exists a unique mild solution X to
(3.33).

Proof. We can assume that ρ > 0, otherwise we can take ρ0 > 0 such that, for
t ≥ 0, ‖S(t)‖U ≤Meρ0t.
We start the proof by checking the uniqueness of solutions. Assume that X, Y are
two mild solutions of (3.33). Then

E ‖X(t)− Y (t)‖2
U ≤ tE

∫ t

0

‖S(t− s)(f(s,Xs)− f(s, Ys)‖2
U ds

≤ tM2e2ρtE

∫ t

0

‖f(s,Xs)− f(s, Ys)‖2
U ds

≤ tM2e2ρtC

∫ t

0

E ‖X(t)− Y (t)‖2
U ds

≤ tM2e2ρtC

∫ t

0

sup
0≤τ≤s

E ‖X(τ)− Y (τ)‖2
U ds

and therefore, since X = Y over the interval [−r, 0], by taking the supremum in the
above inequality,

sup
0≤θ≤t

E ‖X(θ)− Y (θ)‖2
U ≤ TM2e2ρtC

∫ t

0

sup
0≤τ≤s

E ‖X(τ)− Y (τ)‖2
U ds
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The Gronwall’s lemma implies now the uniqueness result.
Now we prove the existence of solutions to problem (3.33). First of all, we check
that the well-defined stochastic integral possesses the repaired regularity. To this
end, let us consider σ > 0 small enough. We have

E

∥∥∥∥∫ t+σ

0

S(t+ σ − s)g(s)dSHQ (s)−
∫ t

0

S(t− s)g(s)dSHQ (s)

∥∥∥∥2

U

≤ 2 E

∥∥∥∥∫ t+σ

0

(S(t+ σ − s)− S(t− s))g(s)dSHQ (s)

∥∥∥∥2

U

+2 E
∥∥∥∫ t+σ0

S(t− s)g(s)dSHQ (s)
∥∥∥2

U

= J1 + J2

Applying inequality (3.32) to J1, we obtain

J1 ≤ 2CHt
2H−1

∫ t

0

‖S(t− s)(S(σ)− Id)g(s)‖2
L0
Q(K,U) ds

≤ CHt
2H−1M2e2ρt

∫ t

0

‖(S(σ)− Id)g(s)‖2
L0
Q(K,U) ds→ 0

when σ → 0 thanks to the Lebesgue majoring theorem, since, for every s fixed,

S(σ)g(s)→ g(s), ‖S(σ)g(s)‖L0
Q(K,U) ≤Meρσ ‖g(s)‖2

L0
Q(K,U) .

Applying now (3.32) to J2, we have

J2 ≤ CHσ
2H−1M2e2ρσ

∫ t−σ

t

‖g(s)‖2
L0
Q(K,U) ds→ 0

when σ → 0. Therefore the stochastic integral belongs to the space C(−r, T ;L2(Ω;U)).

We denote X0 = 0 and define by recurrence a sequence {Xn}n∈N of processes as

Xn(t) = S(t)ϕ(0) +

∫ t

0

S(t− s)f(s,Xn−1
s )ds+

∫ t

0

S(t− s)g(s)dSHQ (s), t ∈ [0, T ];

Xn(t) = ϕ(t), t ∈ [−r, 0].

(3.35)
The sequence (3.35) is well defined, since X0 = 0 ∈ C(−r, T ;L2(Ω;U)) and given

Xn−1 ∈ C(−r, T ;L2(Ω;U)), let us check that Xn ∈ C(−r, T ;L2(Ω;U)) as well. To
this end, let us consider σ > 0 sufficiently small. Then
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‖Xn(t+ σ)−Xn(t)‖2
U ≤ 2

∥∥∥∥∫ t

0

(S(t+ σ − s)− S(t− s)) f(s,Xn−1
s )ds

∥∥∥∥2

U

+ 2

∥∥∥∥∫ t+σ

t

S(t+ σ − s)f(s,Xn−1
s )ds

∥∥∥∥2

U

= I1 + I2

On the one hand,

E(I1) ≤ 2tM2e2ρtE

(∫ t

0

∥∥(S(σ)− Id)f(s,Xn−1
s )

∥∥2

U
ds

)
→ 0

when σ → 0 thanks to the Lebesgue majoring theorem, since, for each s fixed,

S(σ)f(s,Xn−1
s )→ f(s,Xn−1

s ),
∥∥S(σ)f(s,Xn−1

s )
∥∥
U
≤Meρσ

∥∥f(s,Xn−1
s )

∥∥2

U

and

E

(∫ t

0

∥∥f(s,Xn−1
s )

∥∥2

U
ds

)
≤ CE

(∫ t

−r

∥∥Xn−1(s))
∥∥2

U
ds

)
+ E

(∫ t

0

‖f(s, 0)‖2
U ds

)
due to conditions (f.1) and (f.3) and the fact that Xn−1 ∈ C(−r, T ;L2(Ω;U)).

On the other hand,

I2 ≤ 2σM2e2ρσ

∫ t+σ

t

∥∥f(s,Xn−1
s )− f(s, 0)

∥∥2

U
ds+ 2σM2e2ρσ

∫ t+σ

t

‖f(s, 0)‖2
U ds

≤ 2σM2e2ρσC

∫ t+σ

−r

∥∥Xn−1(s))
∥∥2

U
ds2σM2e2ρσ

∫ t+σ

t

‖f(s, 0)‖2
U ds

so that, when σ → 0

E(I2) ≤ 2σM2e2ρσC

∫ t+σ

−r
E
(∥∥Xn−1(s)

∥∥2

U

)
ds+ 2σM2e2ρσ

∫ t+σ

t

‖f(s, 0)‖2
U ds→ 0

Next, we want to show that {Xn}n∈N is a Cauchy sequence in C(−r, T ;L2(Ω;U)).
Firstly, for t ∈ [0, T ] and n ∈ N, since Xn = Xn−1 on [−r, 0], we have

∥∥Xn+1(t)−Xn(t)
∥∥2

U
≤ tM2e2ρtC

∫ t

0

∥∥Xn+1(s)−Xn(s)
∥∥2

U
ds

and this implies that

E
(∥∥Xn+1(t)−Xn(t)

∥∥2

U

)
≤ tM2e2ρtC

∫ t

0

sup
0≤τ≤s

∥∥Xn+1(τ)−Xn(τ)
∥∥2

U
ds
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Defining
Gn(t) = sup

0≤θ≤s

∥∥Xn+1(θ)−Xn(θ)
∥∥2

U

we obtain

Gn(t) ≤ k

∫ t

0

Gn−1(s)ds, n ≥ 2

for k = TM2e2ρTC. Consequently, by iteration we can obtain for all t ∈ [0, T ],

Gn(t) ≤ kn−1T n−1

(n− 1)!
G1(T ), n ≥ 2

Since Xn+1(t) = Xn(t), ∀t ∈ [−r, 0], the last estimate implies that {Xn}n∈N is a
Cauchy sequence in C(−r, T ;L2(Ω;U)).

Finally, we check that the limitX of the sequence {Xn}n∈N is a solution of (3.33).
But this is straightforward, taking into account that Xn is defined by (3.35) and
that f satisfies (f.2), so that, in particular, when n→∞,

E

∥∥∥∥∫ t

0

S(t− s)(f(s,Xn−1
s )− f(s,Xs))ds

∥∥∥∥2

U

≤ tM2e2ρtC

∫ t

0

E
∥∥Xn+1(s)−Xn(s)

∥∥2

U
ds→ 0

and therefore X is the unique (mild) solution of (3.33).

3.3.2 Existence of weak solution

Definition 3.3.3. An U -valued process X(t), t ∈ [−r, T ] is called a weak solution
of (3.33) if X(t) = ϕ(t), for t ∈ [−r, 0], and for all ξ ∈ D(A∗) and all r ∈ [0, T ],

〈X(t), ξ〉U = 〈ϕ(0), ξ〉U +

∫ t

0

(〈X(s), A∗ξ〉U + 〈f(s,Xs), ξ〉U) ds

+

∫ t

0

〈g(s), ξ〉UdSHQ (s) P− a.s.

Theorem 3.11. Under the assumptions of Theorem 3.10, the mild solution of (3.33)
is also a weak solution.

Proof. For each ξ ∈ D(A∗) it follows that

E[|
∫ t

0
〈X(s), A∗ξ〉Uds−

∫ t
0
〈S(s)ϕ(0), A∗ξ〉Uds−

∫ t
0

∫ s
0
〈S(s−τ)f(τ,Xτ ), A

∗ξ〉Udτds

−
∫ t

0

∫ s
0
〈S(s− τ)g(τ), A∗ξ〉UdSHQ (τ)ds|]

≤
∫ t

0
E[|〈X(s), A∗ξ〉U − 〈S(s)ϕ(0), A∗ξ〉U −

∫ s
0
〈S(s− τ)f(τ,Xτ ), A

∗ξ〉Udτ

−
∫ s

0
〈S(s− τ)g(τ), A∗ξ〉UdSHQ (τ)|]ds



3.3.2 Existence of weak solution 64

=
∫ t

0
E[|〈X(s)− S(s)ϕ(0)−

∫ s
0
S(s− τ)f(τ,Xτ )dτ

−
∫ s

0
S(s− τ)g(τ)dSHQ (τ)〉U |]ds

= 0

Thus, for a.e. ω ∈ Ω, we have

∫ t

0

〈X(s), A∗ξ〉Uds =

∫ t

0

〈S(s)ϕ(0), A∗ξ〉Uds+

∫ t

0

∫ s

0

〈S(s− τ)f(τ,Xτ ), A
∗ξ〉Udτds

+

∫ t

0

∫ s

0

〈S(s− τ)g(τ), A∗ξ〉UdSHQ (τ)ds (3.36)

Now we use the fact that, for ξ ∈ D(A∗), d
dt
S∗(t)ξ = S∗(t)A∗ξ. We can obtain∫ t

0

〈S(s)ϕ(0), A∗ξ〉Uds =

∫ t

0

〈ϕ(0), S∗(s)A∗ξ〉Uds = 〈S(t)ϕ(0)− ϕ(0), ξ〉Uds

On the other hand, using Fubini’s theorem we have

∫ t

0

∫ s

τ

〈S(s− τ)f(τ,Xτ ), A
∗ξ〉Udτds =

∫ t

0

∫ s

0

〈1(0,s](τ)f(τ,Xτ ), S
∗(s− τ)A∗ξ〉Udsdτ

=

∫ t

0

〈S(t− τ)f(τ,Xτ )− f(τ,Xτ ), ξ〉Udτ

Finally,

∫ t

0

∫ s

0

〈S(s− τ)g(τ), A∗ξ〉UdSHQ (τ)ds =

∫ t

0

∫ t

τ

〈1(0,s](τ)g(τ), S∗(s− τ)A∗ξ〉UdsdSHQ (τ)

=

∫ t

0

〈g(τ), S∗(s− τ)ξ − ξ〉UdSHQ (τ)

=

∫ t

0

〈S(t− τ)g(τ), ξ〉UdSHQ (τ)−
∫ t

0

〈g(τ), ξ〉UdSHQ (τ)

Therefore by (3.36) for a.e. ω ∈ Ω, it follows that

∫ t

0

〈AX(s), ξ〉Uds =

∫ t

0

〈X(s), A∗ξ〉Uds

= 〈S(t)ϕ(0)− ϕ(0), ξ〉U +

∫ t

0

〈S(t− τ)f(τ,Xτ )− f(τ,Xτ ), ξ〉Udτ

+

∫ t

0

〈S(t− τ)g(τ), ξ〉UdSHQ (τ)−
∫ t

0

〈g(τ), ξ〉UdSHQ (τ)

= 〈X(t)ϕ(0)− ϕ(0), ξ〉U +

∫ t

0

(〈X(τ), A∗ξ〉U + 〈f(τ,Xτ ), ξ〉U) dτ

+

∫ t

0

〈g(τ), ξ〉UdSHQ (τ)
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Consequently, it follows that almost surely

〈X(t)ϕ(0), ξ〉U = 〈ϕ(0), ξ〉+
∫ t

0

(〈X(s), A∗ξ〉U + 〈f(s,Xs), ξ〉U) ds+

∫ t

0

〈g(s), ξ〉UdSHQ (s)

which means that X(t) is the weak solution to (3.33).
The following theorem shows the exponential decay to zero in mean square, with

an explicit exponential decay rate γ, we impose the following conditions :

Condition 1: The operator A is a closed linear operator generating a strongly
continuous semigroup S(t), t ≥ 0, on the separable Hilbert space U and satisfies

‖S(t)‖U ≤Me−λt, ∀t ≥ 0,whereM ≥ 1, λ > 0

.
Condition 2: There exists a constant C ≥ 0 such that for any x, y ∈ C(−r, T ;U)

and for all t ≥ 0,∫ t

0

ems‖f(s, xs)− f(s, ys)‖2
U ≤ C

∫ t

−r
ems‖x(s)− y(s)‖2

Uds for all 0 ≤ m ≤ λ

and ∫ ∞
0

eλs‖f(s, 0)‖2
Uds <∞.

Condition 3: In addition to assumptions (g.1) and (g.2), assume∫ ∞
0

eλs‖g(s)‖2
L0
Q(K,U)ds <∞.

Theorem 3.12. [35] In addition to Conditions 1-3, assume that the mild solution
X(t) of system (3.33) corresponding to initial function ϕ ∈ C(−r, 0;L2(Ω;U)), exists
for all t ≥ −r, and that

λ2 > 6CM2.

Then there exists a constant γ > 0 such that

lim sup
t→∞

(
1

t

)
logE ‖X(t)‖2

U ≤ −γ.

In other words, every mild solution exponentially decays to zero in mean square.

Next, we are interested to give an example that illustrate this result.
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Example

Let K = L2(0, π) and en =
√

( 2
π
) sin(nx), n ∈ N. Then {en}n∈N is a complete

orthonormal basis in K. Let U = L2(0, π) and A = ∂2

x2
with domain D(A) =

L1
0(0, π) ∩ L2(0, π). Then it is well known that Au =

∑∞
n=1 n

2〈u, en〉Uen for any
u ∈ U , and A is the infinitesimal generator of a strongly continuous semigroup of
bounded linear operators S(t) : U → U , where S(t)u =

∑∞
n=1 e

−n2t〈u, en〉Uen and
for all t ≥ 0, ‖S(t)‖U ≤ e−t. In order to define the operator Q : K → K, we choose a
sequence {σn}n≥1 ⊂ R+ and set Qen = σnen, and assume that tr(Q) =

∑∞
n=1

√
σn <

∞. Define the process SHQ by

SHQ (t) =
∞∑
n=1

√
σnS

H
n (t)en

where H ≥ 1
2
and {SHn }n∈N is a sequence of two-sided one-dimensional sub-

fractional Brownian motions mutually independent.
Then we consider the following stochastic evolution equation:


du(t, x) =

[
∂2

∂x2
u(t, x) + b(t)u(t, x(t− r))

]
dt+ g(t)dSHQ (t), t ∈ [0, T ], x ∈ [0, π],

u(t, 0) = u(t, π) = 0, t ∈ [0, T ],

u(t, x) = ϕ(t, x), t ∈ [−τ, 0], x ∈ [0, π],

(3.37)
where r > 0 and b, g : R+ → R are continuous functions such that g satisfies

Condition 3 above and b satisfies∫ ∞
0

eλs|b(s)|2ds <∞.

Observe that the fact
∫∞

0
eλs|b(s)|2ds <∞ implies that b(t) is bounded for all t ≥ 0.

Denote by b0 the smallest upper bound of the function b. Taking

f(t, ϕt)(η) = sin(t)ϕ(ηt).

Thus, for any x, y ∈ C(−r, T ;U), and for all t ≥ 0, one has∫ t

0

‖f(s, xs)− f(s, ys)‖2
U ≤ b2

0

∫ t

−r
‖x(s)− y(s)‖2

Uds for all 0 ≤ m ≤ λ

and∫ t

0

ems‖f(s, xs)− f(s, ys)‖2
U ≤ b2

0

∫ t

−r
ems‖x(s)− y(s)‖2

Uds for all 0 ≤ m ≤ λ

Then we can check that there exists a unique mild solution to (3.37) according
to Theorem 3.12. If we assume, in addition, that

b2
0 <

1

6
,

then any mild solution to (3.37) decays exponentially to zero in mean square.



Conclusion

The main goal of this dissertation was to introduce two processes which are
much more irregular than the standard Brownian motion moreover they are not
semimartingale, and to give stochastic calculus on this class of processes. These
processes are the fractional and sub-fractional Brownian motion. We mentioned
different types of stochastic integration the most useful in our knowledge, and an-
nounce the relevant Itô’s formula. Then we study the dynamical system driven by
these processes by giving conditions that insure the existence and uniqueness of so-
lution. In addition to that we have involved numerical simulation to exhibit their
behavior.

Of course as in many researches, we found some difficulties because of the fact
that these processes are not semimartingale even nor Markovian so the classical Itô
calculus is not useful, and also due to the property of long and short range de-
pendence of the increments and the non stationary of those of the sub-fractional
Brownian motion, it was difficult to use some of stochastic calculus results in order
de study this kind of processes. For this last reason it was tough to simulate the
sub-fractional Brownian motion.

The most useful models in practice are much more complicated than the frac-
tional and sub-fractional Brownian motion. For example in finance a general class of
process were introduced likewise Rosenblatt, Hermite and Volterra processes...ect.
Where the most of related issues are still open, so we wish that this work has for
perspective a general study on the fractional and sub-fractional Brownian motions
in order to investigate new approaches that allow us to answer at least one of these
questions.
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Simulation program of fractional Brownian motion

clf();clear;
//donner les coefficients et la pas du temps
c1=0.01
c2=0.02
N=1000
T=1
t=0:(T/N):T
t=linspace(T/N,T,N-1)
//définir un vecteur de variable aléatoire iid
function [r]=randn()

r=rand(1,"normal");
endfunction
//donner les fonction

function [y]=sigm(x)
//y=c1*(x^2)+c2*x+1

// y=sin(x)
y(1)=cos(x)
y(2)=y(1)*-sin(x)
y(3)=y(2)*-cos(x)
y(4)=y(3)*sin(x)

endfunction

function [h]=sigme(x)
h=c1*x^2+c1
//h=c1*x+c2

//h=cos(x)
//h=1/2*(1/sqrt(x))
endfunction

function [z]= b(x)
z=c2*x

endfunction
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//calculer la fonction de covariance
U=zeros(length(t),1)
for i=1:length(t)

U(i,1)=randn()
end
function y=g(x,H)

y=zeros(length(x),length(x))
for i=1:length(x)
for j=1:i
y(i,j)=1/2*((x(i))^(2*H)+(x(j))^(2*H)-(abs(x(i)-x(j)))^(2*H))
y(j,i)=y(i,j)

end
end

endfunction

//H=0.2:0.2:0.6
//for i=1:3

H=0.5
cov=g(t,H)

//les accroissements du mBf avec methode de cholosky
A=chol(cov)

B=A’*U
B=[0 B’]
//tracer le graphe des trajectoires
plot2d([0 t],B,15)
//end

//simulation du solution numérique
//dx Russo-Vallois
//dk young alpha>1/2
//dy young alpha<1/2

x=zeros(1,N)
y=zeros(1,N)
k=zeros(1,N)

for i=1:(N-1)
dz=sigm(x(i))+sigm(x(i+1))
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dh=sigm(y(i))
ds=sigm(k(i))
dB=B(i+1)-B(i)
//dx=1/2*dz*dB+(1/N)*b(x(i))
dx=1/2*dz(1)*dB+(1/N)*b(x(i))
dy=dh(1)*dB+(1/2)*dh(2)*dB^2 +(1/N)*b(y(i))+dh(3)*(1/6)*dB^3+dh(4)*(1/24)*dB^4
dk=ds(1)*dB+(1/N)*b(k(i))
k(i+1)=k(i)+dk
x(i+1)=x(i)+dx
y(i+1)=y(i)+dy
end
plot2d([0 t],x,5)
z=x-k
l=x-y

plot2d([0 t],z,12)
plot2d([0 t],y,9)
plot2d([0 t],k,19)
plot2d([0 t],l,6)
//legends([’Euler’ ’fBm’],[5,15])
//legends([’Milshtein hld’ ’fBm path’],[9,15])
legends([’Exact sol’ ’Euler.Young’ ’Euler.Russo-Vallois’ ’diff Y R’],
[15,19,5,12])
legends([’Exact sol’ ’Milshtein.Young’ ’Euler.Russo-Vallois’ ’diff Y R’],
[15,9,5,6])
// sauvegarde du dessin sous le nom de fig.pdf
xs2pdf(gcf(),’fig’);
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