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Summary

In this work, we are interested in the functional nonparametric estimation using
the k nearest neighbors method (k-NN) for a scalar response variable given a random
variable taking values in a semi metric space.

In the first part, we will explain how this method work ( with their algorithm) by
giving some concepts that help us to better understand the basic idea of the k-NN.

Then, and using these concepts, we will give the asymptotic properties for real and
vector data.

In the second part of this study, and with the result of Ferraty and Vieu (2006) [15],
we will demonstrate the functional case; also for real response.

In the last chapter, and to include classification and regression problems, we will
give more fields for the application of this method taking simulation examples to
compare between kNN and another parametric and nonparametric methods like the
kernel and linear regression.
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Introduction

The functional statistic branch is a topical research fields, and diversified by its
fundamental aspects and by the different areas that overlap. Parametric statistics
in which it is assumed that the distribution follows a model described by a finite
number of parameters, and nonparametric statistics; which is based on the idea of
not making assumptions about the distribution.

In fact, the nonparametric statistical know a great expand with many authors and
in different fields. The proof of this success is the number of scientific publications
data in this subject. The first travaux in this domain date back to the 50s , by Roe
and Tucker (1958) who studied the maximum Likelihood estimate for the multino-
mial distribution.

Note that the most frequently encountered by nonparametric statistical model is
the regression model that describes the relationship between two or more random
variables. This model was already considered by many authors. The properties and
results of the estimator of the regression function in the case of independent and iden-
tically distributed variables (i.i.d) by Nadaraya (1964). Watson (1964) established
the uniform convergence of this estimator, the almost sure uniform convergence is
achieved by Devroye (1978) [14] and the asymptotic normality of the same estimator
was established by Roussas (1989) [37].

In the same year Gyorfie obtained the asymptotic results for the estimator of the
regression function on α−mixing process, Vieu (1991) gave the exact asymptotic
terms of the square error of the kernel estimator of the regression function. More-
over, Ferraty and Vieu (2000) gave the first results in the functional case. These
results have been developed in 2002 by Ferraty and Laksaci et al. treating the
fore-casting problem about the continuous time processes. Several authors have
generalized these results; Masri (2005) studied the asymptotic normality of the esti-
mator of regression function independence condition, the convergence in quadratic

9



10 Introduction

mean estimator of the same estimator was shown by Laksaci (2007).

Note also that many authors have dealt with other cases variables in the estimating
of the regression function. Include Ould-Said (2012) who studied the uniform and
asymptotic normality with censored variables. Under the ergodic conditions and
Louani Laid (2010-2011) studied the estimator of functional regression function.

0.1 What are nonparametric statistics for func-
tional data?

There are different ways for defining what is a nonparametric statistical model
in finite dimensional context, and the border between nonparametric and parametric
models may sometimes appear to be unclear. Here, we decided to start from the
following definition of nonparametric model in finite dimensional context. First, we
must give a definition for: functional variable and functional datasets.

Functional data:
A random variable X is called functional variable (f.v) if it takes values in an

infinite dimensional space (or functional space). An observation χ of X is called a
functional data.

Note that, when X (resp.χ) denote a random curve (resp.its observation), we
have the following identification: X = {X (t); t ∈ T} (resp.χ = {χ(t); t ∈ T}).
Now, let us define the Functional datasets.

Functional datasets:
A functional datasets χ1,...,χn is the observation of n functional variables X1,...,Xn

identically distributed as X .
Here; we decided to start from the following definition of nonparametric model in
finite dimensional context.
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Nonparametric model:
Let X be a random vector valued in Rp and let φ be a function defined on Rp

and depending on the distribution of X. A model for the estimation of φ consists
in introducing some constraint of the form: φ ∈ C The model is called a parametric
model for the estimation of φ if C is indexed by a finite number of elements of R.
Otherwise, the model is called a nonparametric model.

Our decision for choosing this definition was motivated by the fact that it makes
definitively clear the border between parametric and nonparametric models,and also
because this definition can be easily extended to the functional framework.
Now we can give the definition of functional nonparametric model.

Functional nonparametric model:
Let Z be a random variable valued in some infinite dimensional space F and let

φ be a mapping defined on F and depending on the distribution of Z. A model for
the estimation of φ consists in introducing some constraint of the form

φ ∈ C.
The model is called a functional parametric model for the estimation of φ if C is in-
dexed by a finite number of elements of F.Otherwise,the model is called a functional
nonparametric model.

The appellation Functional Nonparametric Statistics covers all statistical
backgrounds involving a nonparametric functional model. In the terminology Func-
tional Nonparametric Statistics,the adjective nonparametric refers to the form of
the set of constraints whereas the word functional is linked with the nature of the
data.
In other words, nonparametric aspects come from the infinite dimensional feature of
the object to be estimated and functional designation is due to the infinite dimen-
sional feature of the data. That is the reason why we may identify this framework
to a double infinite dimensional context. Indeed, φ can be viewed as a non-linear
operator and one could use the terminology model for functional estimation.
To illustrate our purpose concerning these modelling aspects, we focus on the re-
gression models

Y = r(X) + error
Where Y is a real random variable by considering various situations: linear (para-
metric) or nonparametric regression models with curves.
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0.2 What is a semi-metric space?
One of the most popular in Rp is the usual euclidean norm ‖ . ‖ which is based

on the sum of squares of the components of any vector. More precisely , let
x =t (x1, ..., xp) be a vector of Rp; then, the classical euclidean norm is defined by

‖ x ‖2=
p∑
j=1

(xj)2 =t xx.

Of course, we can deduce a family of norms based on the euclidean norm by using
different definite positive matrix M , in the following way

‖ x ‖2
M=t xMx.

The choice of the norm comes to the same as the choice of M .

Semi-norm.
‖ . ‖ is a semi-norm on some space F as soon as:

1) ∀(λ, x) ∈ R× F ,‖ λx ‖= |λ| ‖ x ‖;
2) ∀(x, y) ∈ F × F, ‖ x+ y ‖≤‖ x ‖ + ‖ y ‖ .
Note that in fact, a semi-norm ‖ . ‖ is a norm except that ‖ x ‖= 0⇒ x = 0
Similarly, a semi-metric d can be defined to be a metric but such that

d(x, y) = 0 6⇒ x = y.

Semi-metric.
d is a semi-metric on some space F as soon as:

1) ∀x ∈ F, d(x, x) = 0,
2) ∀(x, y, z) ∈ F × F × F , d(x, y) ≤ d(x, z) + d(z, y).

Semi-metric space.
Let (Xi, Yi)i=1,...,n be n independent pairs identically distributed as (X , Y ) and

valued in E×R, (E, d) is a semi-metric space; it mean that X is a functional random
variable and d is a semi metric.
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Hölder’s inequality.

E[|XY |] ≤ E1/p[|X|p]E1/q[|Y |q], 1
p

+ 1
q

= 1

Schwarz’s inequality.

E[|XY |] ≤ E1/2[|X|2]E1/2[|Y |2], p = q = 1

If X and Y have second moments, then XY must have a first moment.

Markov’s inequality (Theorem).
Let X:S → R be a non-negative random variable. Then, for any a > 0,

P(X ≥ a) ≤ E(X)
a

Chernoff bound.
Let X1, X2, ..., Xn be independent poisson trials with P[Xi = 1] = pi. Then if X

is the sum of the Xi and if µ is E[X] for any δ ∈ (0, 1] :

P[X < (1− δ)µ] <
(

e−δ

(1−δ)(1−δ)

)µ
this bound is quite good, but can be clumsy to compute. We can simplify it to a
weaker bound which is:

P[X < (1− δ)µ] < exp(−µδ2/2)

the simplifier bound makes it clear that the probability decrease exponentially with
distance δ from the mean.

Berry-Esseen inequality(Theorem).
There is a constant C,such that if: X1, X2, ..., Xn are i.i.d r.v, admitting moments

of order 1 to 3, and E[Xi] = 0, V ar(Xi) = E[X2
i ] = σ2 > 0 and E[|Xi|3] = ρ <

+∞, and if there is Yn = X1+X2+...+Xn
n

the sample mean of these variables; Fn the
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distribution function of Yn
√
n

σ
and φ function distribution of the normal distribution,

then for all X and n:

|Fn(x)− φ(x)| ≤ Cρ

σ3√n

Donsker’s Theorem (Donsker,1952)
Zn ⇒ Z ≡ U(F ) in D(R, ‖ . ‖∞) where U is a standard Brownian bridge process

on [0,1]. Thus U is a zero-mean gaussian process with covariance function:

E(U(s)U(t)) = s ∧ t− st, s, t ∈ [0, 1]

This means that we have: Eg(Zn) → Eg(Z) for any bounded, continuous function
g : D(R, ‖ . ‖∞)→ R.

Theorem (Van der Vaart and Wellner)
Suppose that F1, ...,Fk are Donsker classes with ‖ P ‖Fi≤ ∞ for each i. Suppose

that ϕ : Rk → R satisfies:

|ϕ(f(x))− ϕ(g(x))|2 ≤
k∑
l=1

(fl(x)− gl(x))2.

for every f, g ∈ F1× ...×Fk and x. Then the class ϕ(F1, ...,Fk) is Donsker provided
that ϕ(f1, ..., fk) is square integrable for at least one (f1, ..., fk)

Bernstein’s inequality (Theorem)
Let X1, ..., Xn be independent Bernoulli random variables taking values +1 , -1

with probability 1/2, then for every positive ε,

P
( ∣∣∣ 1

n

∑n
i=1Xi

∣∣∣ > ε
)
≤ 2 exp

(
− nε2

2(1+ ε
3 )

)
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Stone’s theorem (Stone 1977).
Consider the following five conditions:

(i) There is a constant C such that, for every Borel measurable function
g : Rd −→ R with E|g(X)| <∞

E[
n∑
i=1
|Wni(X)||g(Xi)|] ≤ CE|g(X)| for all n ≥ 1

(ii) There is a constant D ≥ 1 such that

P{
n∑
i=1
|Wni(X)| ≤ D} = 1 for all n ≥ 1

(iii) For all a > 1,
n∑
i=1
|Wni(X)|1[‖Xi−X‖>a] → 0 in probability

(iv) One has
n∑
i=1

Wni(X)→ 1 in probability

(v) One has
max
1≤i≤n

|Wni(X)| → 0 in probability

If (i)-(v) are satisfied for any distribution of X, then the corresponding regression
function estimate rn is universally Lp−consistent (p ≥ 1), that is

E|rn(X)− r(X)|p → 0

For all distributions of (X, Y ) with E|Y |p <∞, p ≥ 1

Suppose, conversely that rn is universally Lp−consistent. Then (iv) and (v) hold
for any distribution of X. Moreover, if the weights are nonnegative for all n ≥ 1,
then (iii) is satisfied. Finally, if the weights are nonnegative for all n ≥ 1 and (ii)
holds,then (i) holds as well.
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Jensen’s inequality (Theorem).
Let X be a real valued random variable such that E|X| <∞, and let g : R→ R

be convex function such that E|g(X)| <∞. Then

g(EX) ≤ E(g(X))

0.3 Kernel estimator
We will give the estimate of the density p. Let X1, ..., Xn be independent iden-

tically distributed (i.i.d) random variables that have a probability density p with
respect to the Lebesgue measure on R.
Here, the empirical distribution function

Fn(x) = 1
n

n∑
i=1

I(Xi ≤ x)

Where I(.) denotes the indicator function. By the strong law of large numbers, we
have

Fn(x) −→ F (x),∀x ∈ R almost surely as n −→∞.
There fore, Fn(x) is a consistent estimator of F(x) for every x ∈ R. Now, the
question is: How can we estimate the density p?
for sufficiently small h > 0, we can write an approximation

p(x) ≈ F (x+ h)− F (x− h)
2h

Replacing F by the estimate Fn, we define

p̂Rn (x) = Fn(x+ h)− Fn(x− h)
2h

The function p̂Rn is an estimator of p called the Rosenblatt estimator. We can rewrite
it in the form

p̂Rn (x) = 1
2nh

n∑
i=1

I(x− h < Xi ≤ x+ h) = 1
nh

n∑
i=1

K0
(

Xi−x
h

)
Where K0(u) = 1

2I(−1 < u ≤ 1). A simple generalization of the Rosenblatt estima-
tor is given by

p̂n = 1
nh

n∑
i=1

K
(

Xi−x
h

)
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Where
1) K : R −→ R is an integrable function.
2)
∫
K(u)du = 1.

The function K is called a kernel and the parameter h is called a bandwidth of the
estimator p̂n. the function x 7−→ p̂n(x) is called the kernel density estimator or the
Parzen-Rosenblatt estimator.
In the asymptotic framework, as n −→ ∞, we will consider hn is the bandwidth
h that depends on n, and we will suppose that the sequence (hn)n≥1 tends to 0 as
n −→ ∞. The notation h without index n will also be used for brevity whenever
this causes no ambiguity.
We have here, some classical examples of kernels:

name of kernel formula
Rosenblatt(rectangular) K(u) = 1

2I(|u| ≤ 1)
triangular K(u) = (1− |u|)I(|u| ≤ 1)

parabolic(Epanechnikov) K(u) = 3
4(1− u2)I(|u| ≤ 1)

biweight K(u) = 15
16(1− u2)2I(|u| ≤ 1)

Gaussian K(u) = 1√
2π exp(−u2/2)

Silverman K(u) = 1
2 exp(−u/

√
2) sin(|u|/

√
2 + π/4)

Cosine K(u) = π
4 cos(uπ/2)1[−1,1](u)

Note that if the kernel K takes only nonnegative values and if X1, ..., Xn are fixed,
then the function x 7−→ p̂n(x) is a probability density.
The Parzen-Rosenblatt estimator can be generalized to the multidimensional case.
for example if we have a kernel density estimator in two dimensions as follows.
Suppose that we observe n pairs of random variables (X1, Y1),...,(Xn, Yn) such that
(Xi, Yi) are i.i.d. with a density p(x, y) in R2.
A kernel estimator of p(x, y) is then given by the formula

p̂n(x, y) = 1
nh2

n∑
i=1

K
(

Xi−x
h

)
K
(

Yi−y
h

)
Where: K : R −→ R is a kernel defined as above and h > 0 is a bandwidth.
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Chapter 1

k-Nearest Neighbors: State of the
Art

1.1 Literature about the k nearest neighbors method
The method of the kernel is the most used and known in economic nonpara-

metric approaches. However, this method with its window fixed h, sometimes leads
to over-smoothing or sub-smoothing. The first when you can have for a given points
x many points in the interval [x − h; x + h]; and the second when you can get for a
point x given, few points in the same gap in certain beaches of data media.

The method k-nearest neighbor (k-NN) tries to find a solution to this problem. In-
stead of using a fixed bandwidth h and leave the number of points of this interval
[x− h; x+ h] varies depending to x, the method of kNN rather the number of points
of the interval and lets the wooden windows be varied.

In resent years, a wide range of literature in the field of the estimation by the method
of the k-nearest neighbors (k-NN) is provided by the literature reviews because of
many advantages it offers. The first advantage of this method comes from the na-
ture of the smoothing parameter h which is a positive real number. However, in our
method, the latter and by a real random variable is replaced (Hn) for the functional

19
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explanatory variable (X).

Several other aspects of this method; in the functional part, it respects the local
structure of the data, which is essential in infinite dimension. It is commonly used
in practice and like in Ferraty and Vieu (2006) [15] and proves easy to operate
because the user has only one parameter controlling (the number of k nearest neigh-
bor), this parameter takes its values in a finite set. In addition, this method allows
to build a neighborhood in every way adapted to the data.

Our aim is to provide the first theoretical rational and practical to the current use
of the k-NN method in functional nonparametric estimation.

Proposed for the first time by Loftsgaarden and Quesenberry in 1965 for estimating
densities. Then Mack and Rosenblatt(1979) [28] make a detailed study of the use of
this method also for estimating densities, that was formulated and applied for the
first time by Fix and Hodges (1989) in the part of classification problems.

The bibliographic of the estimate by the k-NN method existed for Royall (1966)
and Stone (1977) [39] which is started by estimating the regression function in the
multivariate case. It was used then by Nielson (1967) (Cover and Hart,1967) [13] for
pattern recognition. Other authors has also the interest of studying estimator of the
regression function, find for example Collomb (1980) [12] which showed the different
types of convergence (probability and almost complete), Mack (1981) [27] studied
the L2− convergence and the asymptotic distribution, the uniform convergence is
given by Devroye (1978) [14] and Devroye (1981).

Liu and Lu (1997) study the use of k-NN method for the semi-parametric regres-
sion, and Li and Racine (2004) [23] study the use of this method for nonparametric
regression. In the case of functional data, Ferraty and Vieu (2004) began with an
introduction on the estimation of k-NN, Burba et al.(2008) [10] obtained the almost
complete convergence of the estimator of the regression function with independent
and identically distributed data.

Finally Attouch and Benchikh (2012) [04] established the asymptotic normality of
the regression function.

One of the important issues in this use is the choice of the number of neighbors k to
with hold. This question was dealt with by Ouyang et al.(2006) [34], they proposed



1.1. LITERATURE ABOUT THE K-NEAREST NEIGHBORS METHOD 21

several methods of choosing k; and when k is specified for each variable, the method
of kNN enables to remove automatically the non-significant variables (Li and Gong
2008) [24], and besides the time and memory limitation, Gongde Guo selects the
value of k using model based approach. The model proposed automatically selects
the value of k.

T.M.Cover and P.E.Hart (1967) [13] purpose kNN in which nearest neighbor is cal-
culated on the basis of value of k, that specifies how many nearest neighbors are to be
considered to define class of a sample data point. T.Bailey and A.K.Jain(1978) [05]
improve kNN which is based on weights. The training points are assigned weights
according to their distances from sample data point. But still, the computational
complexity and memory requirements remain the main concern always. To over-
come memory limitation, size of data set is reduced.

For this, the repeated patterns, which do not add extra information, are eliminated
from training samples (K.Chidananda and G.Krishna(1979) [11]) and (E. Alpay-
din(1997) [02]). To further in prove, the data points which do not affect the result
are also eliminated from training data set (Geoffrey W.Gates [17]).

Similarly, many improvements are proposed to improve speed of classical kNN using
concept of ranking; see for example: S.C.Bagui, S.Bagui,K.Pal (2003) . Y.Zeng,
Y.Yang, L.Zhou(2009) [42] give the false neighbor information, clustering by: H.
Parvin, H.Alizadeh and B.Minaei at 2008 [35]. The NN training data set can be
structured using various techniques to improve over memory limitation of kNN. The
kNN implementation can be done using ball tree(T.Liu, A.W.Moore, A.Gray (2006))
and (S.N.Omohundro (1989)), k-d tree (R.F Sproull [38]), nearest feature line (S.Z
Li, K.L.Chan (2000)), tunable metric (Y.Zhou, C.Zhang (2004) [43]), principal axis
search tree (Y.C.Liaw, M.L.Leou [25]) and orthogonal search tree (J.Mcname [30]).
However, the k-NN method presents a major technical difficulty: the selection of the
nearest neighbors gives a random bandwidth. The second problem, linked with the
functional nature of the data, is that we do not suppose the existence of a density;
because, in infinite-dimensional spaces, we do not have any standard measure like
the Lebesgue measure in the multivariate case.
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1.2 The link between the nearest neighbor and
kernel methods

First, we will start by given the idea of the k-nearest neighbor method that is
based on the definition of the probability density,

f(x) = lim
h−→0

(2h)−1P(x− h < X < x + h)

Then, noting that we expect k = n(2h)f(x) observations falling in a box of width 2h
and centered at the point of interest x.
Recall that the naive density estimator is based on using a fixed bandwidth h,
calculating the number k̂ of observations such that :k̂ ∈ [x− h;x+ h];
and we have

f̂n(x) = k̂

2nh (1)

In contrast, the nearest neighbor method is based on a fixed number of points k that
determines the width of a box in a search.
Thus, we calculate the euclidean distance ĥ from the point of interest x to the distant
k-th observation and define the k-th nearest neighbor density estimate by

f̃n(x) = k
2nĥ

(2)

Note that for x less than then smallest data point X(1) we have

ĥ(x) = X(k) − x

(X(k): the k-th ordered observation), namely, that density is inversely proportional to
the size of the box needed to contain a fixed number k of observations. The drawback
of the nearest neighbor method is that the derivative of a nearest neighbor estimate
is discontinuous. as a result, the estimate can give a wrong impression. Also, this
estimate is not integrable due to its heavy tails.
The idea of nearest neighbor method can be used also in a kernel estimator where
the bandwidth is chosen to be ĥ. Such a kernel estimator is called a k-th neighbor
kernel estimate

f̃n(x) = (nĥ(x))−1
n∑
l=1

K((x−Xl)/ĥ(x)) (3)

i.e: (3) is a kernel estimate with a data-driven bandwidth. However, this not an
entirely data-driven method, because a choice of k should be made. Note that this
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generalized estimate becomes the ordinary k-th nearest neighbor estimate when the
kernel function is rectangular.
Now, to define a nearest neighbor estimate in s-dimensional space, let dk(X) be the
euclidean distance from X to the k-th nearest data point; and let Vk(x) be the volume
of the s-dimensional sphere of radius dk(X). Thus

Vk(X) = cs[dk(X)]d

where cs is the volume of the s-dimensional sphere with unit radius , that is, c1 =
2, c2 = π, c3 = 4π/3,...ect Then, the nearest neighbor method is defined by

f̃n(X) = k
nVk(X) (4)

Note that if we set the kernel function K(X) = 1/ck within the sphere of unit
radius and K(X) = 0. otherwise, then the nearest neighbor method is identical to a
kernel smoothing. This connection between the kernel and nearest neighbor method
demonstrates that a study of the nearest neighbor can be based on the theory of
kernel estimation.

1.3 k nearest neighbor to the real and the vector
cases

Definition of k-nearest neighbors
k nearest neighbor is a supervised learning algorithm where the result of new

instance query is classified based on majority of k nearest neighbor category.
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The point x is a k nearest neighbors of the point y if and only if

card{z, d(z, y) ≥ d(x, y)} ≥ n− k

The purpose of this algorithm is to classify a new object based on attributes and
training samples. The classifiers do not use any model to fit and only based on
memory. Given a query point, we find k number of objects or(training points)
closest to the query point. The classification is using majority vote among the
classification of the k objects. any ties can be broken at random. k nearest neighbor
algorithm used neighborhood classification as the prediction value of the new query
instance.

This sense of ordering on many different objects helps us place then in time and space
and to make sense of the world. It is what allows us to build clusters/neighbors-both
in databases on computers as well as in our daily lives.

This definition of nearness that seems to be ubiquitous also allows us to make
predictions, so The nearest neighbor prediction algorithm as:

Objects that are « near » to each other will have similar prediction values as well.
Thus if you know the prediction value of one of the objects you can predict it for it’s
nearest neighbors.

k Nearest neighbor Algorithm
Here is step by step on how to compute k- nearest neighbors (k-NN) algorithm:

1. determine parameter k=number of nearest neighbors.

2. Calculate the distance between the query-instance and all the training samples.

3. Determine nearest neighbors based on the k-th minimum distance.

4. Gather the category Y of the nearest neighbors.

5. Use simple majority of the category of nearest neighbors as the prediction value
of the query instance or predict the mean for numeric prediction.
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A real example of nearest neighbors method
If you look at the people in your neighborhood (those people are in fact geo-

graphically near to you). You may notice that, in general, you all have somewhat
similar incomes. Thus if your neighbor has an income greater than $ 150.000 chances
are good that you too have a high income. Certainly the chances that you have a
high income are greater when all of your neighbors have incomes over $ 150.000 than
if all of your neighbors have incomes of $ 25.000 . Within your neighborhood there
may still be a wide variety of incomes possible among even your «closest» neighbors
but if you had to predict some one’s income based on only knowing their neighbors
you’re best chance of being right would be to predict the incomes of the neighbors
who live closest to the unknown person.

The nearest neighbor prediction algorithm works in very much the same way except
that «nearness» in a data base may consist of a variety of factors not just where
the person lives. It may, for instance, be far more important to know which school
someone attended and what degree they attained when predicting income. The
better definition of «near» might in fact be other people that you graduated from
college with rather than the people that you live next to.

Nearest Neighbor techniques are among the easiest to use; and understand because
they work in a way similar to the way that people think-by detecting closely match-
ing examples. They also perform quite well in terms of automation, as many of the
algorithms are robust with respect to dirty data and missing data.

Univariate case
In this case x is a real number, we denote by : Rx = Rn(x) the euclidean

distance between the point x and k-th nearest neighbor of x amongst the xi ; this is
the smallest ball of center x contains k points of {1,...,n}.
The density estimator f at the point x by the kNN method is given by the following
formula

f̂(x) = 1
nRx

n∑
i=1

(
1
2

)
1
(
|x−Xi|

Rx ≤ 1
)

= k
2nRx

where

1(x) =


1, |x−Xi|

Rx ≤ 1, ∀i

0, otherwise
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A consistent estimator is obtained for f(x) where k = k(n) is chosen such k −→∞
and k

n
−→ 0 when n −→∞. k

n
that plays a similar role in the approach by kernel.

Indeed, the condition k −→∞ and k
n
−→ 0 is nk −→∞ and h −→ 0.

Multivariate case
In this case x is a q-vector (x ∈ Rq). The estimator of f at x by the k-NN

approach is as follows

f̂(x) = 1
nRq

x

n∑
i=1

1
c0
1
(
‖x−Xi‖

Rx ≤ 1
)

= k
c0nRq

x

(5)

where
c0 = πq/2

Γ( q+2
2 )

is the volume of the unit ball in Rq, and Γ(.) is the function defined by

Γ(α) =
∫ ∞

0
tα−1e−tdt.

(Γ(α + 1) = αΓ(α),Γ(1/2) =
√
π, and Γ(1) = 1).

The general form of equation (5) is given by

f̂(x) = 1
nRq

x

n∑
i=1

w
(
‖x−Xi‖

Rx

)
(6)

where w(.) is a function of bounded weight, symmetrical, non-negative integral such
that ∫

Rq
w(v)dv = 1 (7)

considering the weight function:

w(v) =


1
c0
, ‖ v ‖≤ 1.

0, ‖ v ‖> 1

1.3.1 Some asymptotic results for density estimator
Let (X1, ..., Xn) be i.i.d observations with common distribution µ onRd, equipped

with the standard euclidean norm ‖ . ‖. The empirical measure µn based on
(X1, ..., Xn) is defined, for any Borel set A ⊂ Rd by

µn(A) = 1
n

n∑
i=1
1[xi∈A].



1.3. K NEAREST NEIGHBOR TO THE REAL AND THE VECTOR CASES 27

Moreover, given a sequence of positive integer {kn} such that 1 ≤ kn ≤ n. for
mn = kn/n the function dµn,mn takes the simple form

d2
µn,mn(x) = 1

kn

kn∑
j=1
‖ X(j)(x)− x ‖2

is a weighted sum of the squares of the distance from x to its first kn nearest
neighbors.
where Xj(x) is the j-th nearest neighbor to x among X1, ..., Xn and ties are broken
arbitrarily.
Thus

‖ X(1)(x)− x ‖≤ ... ≤‖ X(n)(x)− x ‖ .

Our goal is to establish some pointwise asymptotic properties of the estimate fn.
To this aim, we note once and for all that for any ρ > 0. All quantities of the form∫

[0,1] t
ρν(dt) are finite and positive. Moreover, for ρ ≥ 1 as kn −→∞,

1
kρn

kn∑
j=1

pnjjρ =
∫

[0,1]
tρν(dt)

(
1 +O

( 1
kn

) )
.

The symbol λ stands for the Lebesgue measure on Rd. We start by establishing the
weak pointwise consistency of fn.

Theorem 1.1
if kn → ∞ and kn/n → 0 ; then generalized k-nearest neighbor estimate fn is

weakly consistent at λ- almost all x; that is fn(x)→ f(x) in probability at λ-almost
all x as n→∞.

Our next result states the mean square consistency of the generalized k-nearest
neighbor estimate.

Theorem 1.2
We have, at λ-almost all x, E([f 2

n (x)]) < ∞. whenever kn ≥ 5. Furthermore, if
kn →∞ and kn/n→ 0, then, for such x, E[fn(x)− f(x)]2 → 0 as n→∞.

The asymptotic normality of the original Loftsgaarden and Quesenberry k-NN es-
timate has been established by Moore and Yackel. These authors proved that for f
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sufficiently smooth in a neighborhood of x; f(x) > 0, kn → ∞ and kn/n2/(d+2) → 0
as n→∞ ,then √

kn
fn(x)− f(x)

f(x) →D N.

Where N is a standard normal random variable, Γ(.) be the gamma function; and
[∂2f(x)/∂x2] is the Hessian matrix of f at x which is given by

[
∂2f(x)
∂x2

]
i,j

= ∂2f(x)
∂xi∂xj

Notation.

tr(A) stand for the trace of the square matrix A.
{ζn} is a sequences of random variables and {un} is a deterministic sequence. Where

ζn = o(un)⇒ ζn/un → 0 in probability as n→∞

and

ζn = O(un)⇒ ζn/un is bounded in probability as n→∞

Theorem 1.3
Let x ∈ Rd and assume that f has derivatives of second order at x; with f(x) > 0.

Let:
v2 =

∫ 1
0 (1− φ(t))2dt

[
∫

[0,1] tν(dt)]2 and b =
∫

[0,1] t
1+2/dν(dt)∫

[0,1] tν(dt)

with φ(t) =
∫

[0,1]
ν(du), t ∈ [0, 1]

Let also c(x) = 1
2(d+ 2)πΓ2/d

(
d+2

2

)
tr
[
∂2f(x)
∂x2

]
Then; if N denotes a standard normal random variable, and if kn →∞ and kn

n
→ 0

fn(x)− f(x) =D f(x)v√
kn

N + c(x)b
f 2/d(x)

(
kn
n

)2/d
+ o

(
1√
kn

+
(
kn
n

)2/d
)
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1.3.2 Proof of Theorems.
Throughout this section, we let B(x, r) be the closed ball in Rd of radius r

centered at x and denote by µ the probability measure associated with the density
f. The collection of all x with µ(B(x, ε)) > 0 for all ε > 0 is called the support of µ.
We denote it by supp µ and note that it may alternatively be defined as the smallest
closed subset of Rd of µ-measure 1.

Two basic Lemmas.
We will make repeated use of the following two lemmas:

Lemma 1.1.

Let U1, ..., Un be i.i.d uniform [0, 1] random variables with order statistics U(1) ≤
... ≤ U(n). Then

(U(1), ..., U(n)) =D
( ∑1

j=1Ej
n+1 , ...,

∑n
j=1Ej
n+1

)
(1 + ζn)

Where E1, ..., En is a sequence of i.i.d standard exponential random variables and
ζn = OP(n−1/2) as n→∞.
Furthermore, for all positive integers

sup
n≥2r

[nr/2E|ζn|r] <∞.

Proof.
It is well known that if E1, ..., En+1 is a sequence of i.i.d standard exponential

random variables (see, e.g.,Devroye (1986, Chapter 5)), then

(U(1), ..., U(n)) =D
 ∑1

j=1Ej∑n+1
j=1 Ej

, ...,
∑n
j=1Ej∑n+1
j=1 Ej


Let Gn+1 be the gamma (n+1) random variable ∑n+1

j=1 Ej. Then by the central limit
theorem √

n
(

Gn+1
n+1 − 1

)
→D N
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Where N is a standard normal random variable. Thus, by an application of the
delta method, we obtain

√
n
(

n+1
Gn+1
− 1

)
→D N

and the first part of the lemma follows by setting

ζn = n+ 1
Gn+1

− 1

To prove the second statement observe that by the Cauchy-Schwarz inequality

E

∣∣∣∣ n+1
Gn+1
− 1

∣∣∣∣r ≤ √E|Gn+1 − (n+ 1)|2r ×
√
EG−2r

n+1

The first term in the above product is O(nr/2) (see e.g, Willink(2003)) whereas
the second one is infinite for n+ 1 ≤ 2r and O(1/nr) otherwise.
It follows that

sup
n≥2r

[
nr/2E

∣∣∣ n+1
Gn+1

− 1
∣∣∣r ] <∞

Lemma 1.2.
Let E1, E2, .. be a sequence of i.i.d standard exponential random variables and let

{kn} be a sequence of positive integers. For j = 1, ..., kn; let

pnj =
∫

] j−1
kn

, j
kn

]
ν(dt)

where ν is a given probability measure on [0, 1] with no atom at 0. Fix ρ ≥ 1; then,
if kn →∞ ∑kn

j=1 pnj(E1 + ...+ Ej)ρ∑kn
j=1 pnjj

ρ
= 1 + ζn

where ζn = OP(k−1/2
n ) and, for all positive integers r

sup
n≥1

[kr/2n E|ζn|r] <∞

In addition, letting: φ(t) =
∫

[0,t] ν(du), t ∈ [0, 1] and σ2 =
∫ 1

0 (1−φ(t))2dt. Then,
on an appropriate probability space, there exists a standard normal random variable
N such that

1
kn

kn∑
j=1

pnj(E1 + ...+ Ej) =
∫

[0,1]
tr(dt) + σ√

kn
N + ζ ′n
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where ζ ′n = oP(k−1/2
n ) and, for all positive integers r

sup
n≥1

[kr/2n E|ζ ′n|r] <∞.

Proof.
Denote by d.e the ceiling function and observe that, since ν has no atom at 0,∑kn

j=1 pnj(E1 + ...+Ej)ρ =
∫

[0,1](E1 + ...+Edtkne)ρν(dt) =
∫

[0,1](dtkneρν(dt), where we
set:

Sdtkne =
dtkne∑
j=1

(Ej − 1)

Note that Sdtkne is a sum of i.i.d zero mean random variables. There for,

kn∑
j=1

pnj(E1 + ...+ Ej)ρ =
∫

[0,1]
dtkneρν(dt) +

∫
[0,1]

[ (
1 + Sdtkne

dtkne

)ρ
− 1

]
dtkneρν(dt)

By an application of Donsker’s and continuous mapping theorems (see,e.g.Vander
Vaart and Wellner [41]), as kn →∞

∫
[0,1]

[ (
1 + Sdtkne

dtkne

)ρ
− 1

]
dtkneρν(dt) =

∫
[0,1]

ρ
Sdtkne
dtkne

dtkneρν(dt) + kρnζn1

where ζn1 = OP(k−1
n ) and, for all positive integers r ; supn≥1[krnE|ζn1|r] < ∞.

Similarly: ∫
[0,1]

ρ
Sdtkne
dtkne

dtkneρν(dt) = kρnζn2

where ζn2 = OP(k−1/2
n ) and, for all positive integers r, supn≥1[kr/2n E|ζn2|r] < ∞.

Consequently,
1
kρn

kn∑
j=1

pnj(E1, ..., Ej)ρ =
∫

[0,1]
tρν(dt) + ζn

where ζn = OP(k−1/2
n ) and, for all positive integers r, ∑n≥1[kr/2n E|ζn|r] < ∞.

The conclusion of the first assertion follows by observing that, for ρ ≥ 1,

1
kρn

kn∑
j=1

pnjj
ρ =

∫
[0,1]

tρν(dt)
(

1 +O
(

1
kn

) )
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The proof of the second assertion requires a bit more care we already know that

1
kn

kn∑
j=1

pnj(E1 + ...+ Ej) =
∫

[0,1]
tr(dt) + 1

kn

∫
[0,1]

Sdtkneν(dt) + ζn3 (1.1)

where ζn3 = O(k−1
n ). With respect to the second term on the right-hand side of

(1.1) , we have

1
kn

∫
[0,1]

Sdtkneν(dt) = 1
kn

kn∑
j=1

[(Ej − 1)
∫

] j−1
kn

,1]
ν(dt)]

Clearly, letting

σnj =
∫

] j−1
kn

,1]
ν(dt), j = 1, ..., kn

and
φ(t) =

∫
[0,t]

ν(du), t ∈ [0, 1]

We may write
kn∑
j=1

σ2
nj =

kn∑
j=1

(
1− φ

(
j−1
kn

) )2

as a consequence, setting

σ2 =
∫ 1

0
(1− φ(t))2dt,

and using the fact that

0 ≤ (1− φ(t))2 ≤ 1
is a monotone nonincreasing function, a Riemannian argument shows that

1
kn

kn∑
j=1

σ2
nj ∈

[
σ2, σ2 + 1

kn

]
(1.2)

There for, we obtain via the Komlós, Major and Turnády strong approximation
result (see Komlós, Major, and Tusnády and Mason) that, on the same probability
space, there exists a sequence E1, E2,...of i.i.d standard exponential random variables
and a sequence N1, N2,...of standard normal random variables such that, for positive
constants C1 and λ1 and for all x ≥ 0,

P

( √
kn

∣∣∣∣∣ 1√∑kn
j=1 σ

2
nj

∑kn
j=1 σnj(Ej − 1)−Nkn

∣∣∣∣∣ > x

)
≤ C1e

−λ1x
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Using (1.2), we deduce that, for positive constants λ2, λ3 and all n large enough

P
( √

kn
∣∣∣ 1√

kn

∑kn
j=1 σnj(Ej − 1)− σNkn

∣∣∣ > x
)
≤ C1e

−λ2x

+P(|Nkn| > λ3

√
knx)

Thus, writing

ζn4 = 1
kn

kn∑
j=1

σnj(Ej − 1)− σ√
kn
Nkn

We see that
1
kn

∫
[0,1]

Sdtkneν(dt) = σ√
kn
Nkn + ζn4

where

ζn4 = oP(k−1/2
n ) and sup

n≥1
[kr/2n E|ζn4|r] <∞

for all positive integers r. Plugging this identity into (1.1) leads to the desired result.

Proof of Theorem 1.1.
Let x be a Lebesgue point of f, that is an x for which

lim
r→0

µ(B(x, r))
λ(B(x, r)) = lim

r→0

∫
B(x,r) f(Y )dY∫
B(x,r) dY

= f(x)

as f is a density, we know that λ−almost all x satisfy the property given above.
Assume first that f(x) > 0. Fix ε ∈ (0, 1) and find δ > 0 such that

sup
0<r≤δ

∣∣∣∣∣
∫
B(x,r) f(Y )dY∫
B(x,r) dY

− f(x)
∣∣∣∣∣ ≤ εf(x) (1.3)

Let F be the (continuous) univariate distribution function of W =‖ X −x ‖d. Note
that if w ≤ δd, then

F (x) = P(‖ X − x ‖d≤ w)
= P(X ∈ B(x, w1/d))

=
∫
B(x,w1/d)

f(Y )dY ∈ [(1− ε)Vdf(x)w, (1 + ε)Vdf(x)w]
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Define Wj =‖ Xj − x ‖d; j = 1, ..., n, and let W(1) ≤ ... ≤ W(n) be the order
statistics, we have in fact the representation W(j) =D F inv(U(j)) jointly for all j.
Thus, provided U(j) ≤ F (δd)

U(j)

(1 + ε)Vdf(x) ≤ F inv(U(j)) ≤
U(j)

(1− ε)Vdf(x) (1.4)

There for, on the event [U(kn) ≤ F (δd)] the generalized k-nearest neighbor esti-
mate may be written as follows

fn(x) =D θf(x)
n

∑kn
j=1 pnjj∑kn

j=1 pnjU(j)

Where θ denotes some arbitrary random variable with values in [1− ε, 1 + ε].
Observe that F (δd) > 0 and; as kn/n → 0, P(U(kn) ≤ F (δd)) → 1 as n → ∞
(see,e.g.Devroye et al.). Thus, to prove that fn(x)→ f(x) in probability, it suffices
to show that ∑kn

j=1 pnjj

n
∑kn
j=1 pnjU(j)

→ 1 in probability

But, by Lemma 1.1, we know that

(U(1), ..., U(n)) =D
( ∑1

j=1 Ej

n+1 , ...,
∑n

j=1 Ej

n+1

)
(1 + ζn)

Where E1, ..., En are i.i.d standard exponential random variables and ε → 0 in
probability. Consequently∑kn

j=1 pnjj

n
∑kn
j=1 pnjU(j)

=D n+ 1
n
×

∑kn
j=1 pnjj∑kn

j=1 pnj(E1 + ...+ Ej)
× 1

1 + ζn

which goes to 1 in probability as kn →∞ according to the first statement of Lemma
1.2.
If f(x) = 0, two cases are possible. Suppose first that x belongs to the complement
of supp µ. Then, clearly, for some positive constant C and all n ≥ 1, almost surely,

fn(x) ≤ Ckn
n
.

But f(x) = 0 and, by using the condition kn → 0, we deduce that

fn(x)→ f(x) in probability
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as n→∞.
If x belongs to supp µ, the proof is similar to the case f(x) > 0.
Just fix ε ∈ (0, 1) and find δ > 0 such that

sup
0<r≤δ

∣∣∣∣∣
∫
B(x,r) f(Y )dY∫
B(x,r) dY

∣∣∣∣∣ ≤ ε

Proof of Theorem 1.2.
Choose x a Lebesgue point of f. Assume first that f(x) > 0 and fix ε and δ as

in (1.3). Note that

f 2
n(x) = 1

n2V 2
d

( ∑kn
j=1 pnjj∑kn

j=1 pnj‖X(j)(x)−x‖d

)2

Using 1
kn
∑kn
j=1 pnjj →

∫
[0,1] tr(dt) and lim infn→∞

∑kn
dkn/2e pnj ≥

∫
[1/2,1] ν(dt),

we have, for some positive constant C1 and all n ≥ 1

E[f 2
n(x)] ≤ C1k

2
n

n2 E
[ 1
‖X(dkn/2e)(x)−x‖2d

]
If U(1) ≤ ... ≤ U(n) are uniform [0, 1] order statistics, we may write, using in-

equality (1.4)

E
[ 1
‖X(dkn/2e)(x)−x‖2d

]
≤ C2

(
E
[ 1
U2

(dkn/2e)

]
+ 1

δ2d

)

For some positive constant C2, it is know that U(dkn/2e) is beta distributed with
parameters dkn/2e and n+ 1− dkn/2e (see, e.g,Devroye (1986)). Consequently, for
dkn/2e > 2

E
[ 1
‖X(dkn/2e)(x)−x‖2d

]
≤ C3

(
n2

k2
n

+ 1
δ2d

)
Whence, for kn ≥ 5, E[f 2

n(x)] ≤ C4, for some positive constant C4. Next, if f(x) =
0, two cases are possible. If x belongs to the complement of supp µ, then, clearly,
for some positive constant C5 and all n ≥ 1

E[f 2
n(x)] ≤ C5k

2
n

n2 ≤ C5
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If x belongs to suppµ, the proof is similar to the case f(x) > 0. Just fix ε ∈ (0, 1)
and find δ > 0 such that

sup
0<r≤δ

∣∣∣∣∣
∫
B(x,r) f(Y )dY∫
B(x,r) dY

∣∣∣∣∣ ≤ ε.

This shows the first part of the theorem. One proves, with similar arguments that
there exists a positive constant C6 such that, for all n large enough, E[f 3

n(x)] ≤ C6.
Consequently, for all n large enough, the sequence {f 2

n(x)} is uniformly integrable
and, since

fn(x)− f(x)→ 0 in probability (by Theorem 1.1)

this implies

E[fn(x)− f(x)]2 → 0 as n→∞

Proof of Theorem 1.3.
fix x ∈ Rd and assume that f has derivatives of second order at x, with f(x) > 0,

let G(u) = P(‖ X−x ‖≤ u) =
∫
B(x,u) f(Y )dY be the univariate distribution function

of ‖ X − x ‖ . We may write by a Taylor-Young expansion of f around x,

G(u) = Vdf(x)ud +
[
∂f(x)
∂x

]T ∫
B(x,u)

(Y − x)dY

+ 1
2

∫
B(x,u)

(Y − x)T
[
∂2f(x)
∂x2

]
(Y − x)dY + o(ud+2) as u→ 0 (1.5)

where the symbol T denotes transposition and [∂f(x)/∂x] and [∂2f(x)/∂x2]
are a vector and a matrix given by

[
∂f(x)
∂x

]
=
(
∂f(x)
∂x1

, ..., ∂f(x)
∂xd

)T
and

[
∂2f(x)
∂x2

]
i,j

= ∂2f(x)
∂xi∂xj

.

In view of the symmetry of the ball B(x, u), the first term in (1.5) is seen to be zero.
using the linearity of trace and relations tr(AZZT ) = ZTAZ, tr(AB) = tr(BA) for
matrices A, B an vector Z , (1.5) becomes

G(u) = Vdf(x)ud + 1
2 tr{[

∫
B
(y − x)(y − x)Tdy][∂2f(x)/∂x2]}+ o(ud+2).
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letting z = (y − x)/u that maps B(x, u) to B(0, 1), and using a hyperspherical
coordinate change of variables (see,e.g,Miller[1964,chapter 1]), the integral inside
the trace term simplifies to∫

B(0,1)
u2z zTuddz =

[
Vd

d+2u
d+2 ] Id

where Id is the d×d identity matrix, thus, denoting by Γ(.) the gamma function an
recalling that, for the euclidean norm Vd = πd/2

Γ(1+d/2) , we obtain

Gu = Vdf(x)ud + c(x)V 1+d/2
d ud+2 + o(ud+2) as u→ 0

where

c(x) = 1
2(d+ 2)πΓ2/d

(
d+2

2

)
tr
[
∂2f(x)
∂x2

]
Consequently

Ginv(u) = 1
V

1/d
d f 1/d(x)

u1/d − c(x)
dV

1/d
d f 1+3/d(x)

u3/d + o(u3/d) as u→ 0

and

[Ginv(u)]d = 1
Vdf(x)u−

c(x)
Vdf 2+2/d(x)u

1+2/d + o(u1+2/d) as u→ 0

Let F be the univariate distribution function of w =‖ X − x ‖d. Clearly F inv(u) =
[Ginv(u)]d. Define Wj =‖ Xj − x ‖d, j = 1, .., n and let W(1) ≤ ... ≤ W(n) be the
order statistics for W1, ..,Wn . If U(1) ≤ ... ≤ U(n) are uniform [0,1] order statistics,
using the representation W(j) =D F inv(U(j)) jointly for all j , we may write

fn(x) =D 1
n

∑kn
j=1 pnjj

f−1(x)∑kn
j=1 pnjU(j) + c′(x)∑kn

j=1 pnjo(U
1+2/d
(j) )

where
c′(x) = − c(x)

f 2+2/d(x)
thus

f−1
n (x) =D n

(
f−1(x)

∑kn
j=1 pnjU(j)∑kn

j=1 pnjj
+ c′(x)

∑kn
j=1 pnjU

1+2/d
(j)∑kn

j=1 pnjj
+
∑kn

j=1 pnjo(U1+2/d
(j) )∑kn

j=1 pnjj

)
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Consequently, by lemma 1.1. letting E1, ..., En+1 be i.i.d standard exponential
random variables and

V(j) =
∑j
i=1Ei∑n+1
i=1 Ei

.

we obtain

f−1
n (x) =D

f−1(x)∑kn
j=1 pnj(E1 + ...+ Ej)∑kn

j=1 pnjj
(1 + ζn1)

+
c′(x)∑kn

j=1 pnj(E1 + ...+ Ej)1+2/d

n2/d∑kn
j=1 pnjj

(1 + ζn2) +
n
∑kn
j=1 pnjo(V

1+2/d
(j) )∑kn

j=1 pnjj

Besides, for j = 1, 2, ζnj = OP(n−1/2) and, for all positive integers r,

lim sup
n→∞

[nr/2E|ζnj|r] <∞.

on the one hand, using the second statement of Lemma 1.2. and the identity

1
kn

kn∑
j=1

pnjj =
∫

[0,1]
tr(dt)

(
1 +O

(
1

kn

) )
as kn →∞, we may write, on an appropriate probability space

f−1∑kn
j=1 pnj(E1 + ...+ Ej)∑kn

j=1 pnjj
= f−1(x) + f−1(x)v√

kn
N + ζn3,

where N is a standard normal random variable

v2 =
∫ 1
0 (1− φ(t))2dt

[
∫ 1

0 tr(dt)]2

and ζn3 = oP(k−1/2
n ) with, for all positive integers r, supn≥1[kr/2n E|ζn3|r] <∞. Next,

recalling that for ρ ≥ 1;

1
kρn

kn∑
j=1
pnjjρ =

∫
[0,1]

tν(dt)
(

1 +O
(

1
kn

) )

and applying the first statement of Lemma 1.2, we obtain

c′(x)∑kn
j=1 pnj(E1 + ...+ Ej)1+2/d

n2/d∑kn
j=1 pnjj

= c′(x)b
(
kn
n

)2/d
+
(
kn
n

)2/d
ζn4
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where

b =
∫ 1

0 t
1+2/dν(dt)∫ 1
0 tν(dt)

and ζn4 = oP(1) with, for all positive integers ν , supn≥1E|ζn4|r <∞
Similarly∣∣∣∣∣∣∣

n
∑kn
j=1 pnjo(V

1+2/d
(j) )∑kn

j=1 pnjj

∣∣∣∣∣∣∣ ≤
(E1 + ...+ Ekn)1+2/d

n2/d∑kn
j=1 pnjj

×
o(V 1+2/d

(kn) )
V

1+2/d
(kn)

× (1 + ζn5)

where ζn5 = OP(n−1/2) and for all positive integers r

lim sup
n→∞

[nr/2E|ζn5|r] <∞.

thus ∣∣∣∣∣∣∣
n
∑kn
j=1 pnjo(V

1+2/d
(j) )∑kn

j=1 pnjj

∣∣∣∣∣∣∣ ≤
(
kn
n

)2/d
ζn6

where ζn6 = oP(1). Moreover, we clearly have, for some ε0 ∈ (0, 1) and all r > 0

lim sup
n→∞

E[|ζn6|r1[V(kn)≤ε0]] <∞,

Thus, putting all the pieces together, we obtain

f−1
n (x) =D f−1(x) + f−1(x)v√

kn
N + c′(x)b

(
kn
n

)2/d
+ ζn7 +

(
kn
n

)2/d
ζn8

where
ζn7 = oP(k−1/2

n )
and

ζn8 = oP(1).
Besides, for all positive integers r,

lim sup
n→∞

[kr/2n E|ζn7|] <∞

and

lim sup
n→∞

E[|ζn8|r1[V(kn)≤ε0]] <∞
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we see in particular that, for all positive integers r and all n large enough, the
sequence {kr/2n ζrn7} is uniformly integrable and, consequently, that

E|ζn7|r = o(k−r/2n )

(see, e.g,Billing sley[ [07],chapter 5]). Likewise

E[|ζn8|r1[V(kn)≤ε0]] = o(1)

It follows that

f−1
n (x) =D f−1(x) + f−1(x)v√

kn
N + c′(x)b

(
kn
n

)2/d
+ ζn9

where ζn9 = oP(k−1/2
n + (kn/n)2/d) and

E[|ζn9|r1[V(kn)≤ε0]] = o
(

1
k
r/2
n

+
(

kn
n

)2r/d
)

(1.6)

as kn →∞ and kn/n→ 0 note that, by definition f−1
n (x) is almost surely finite

and positive. Therefore,setting

Tn(x) = v√
kn
N + f(x)c′(x)b

(
kn

n

)2/d
+ f(x)ζn9

and using the identity 1
1+t = 1− t+ t2

1+t valid for t 6= −1, we finally get

fn(x) =D f(x)− f(x)v√
kn

N + c(x)b
f 2/d(x)

(
kn
n

)2/d
+ ζn10 + f(x)T 2

n(x)
1 + Tn(x)

where ζn10 = oP(k−1/2
n + (kn/n)2/d) and

E[ζ2
n101[V(kn)≤ε0]] = o

(
1
kn

+
(
kn

n

)4/d
)

Clearly
T 2
n(x)

1 + Tn(x) = oP

(
1√
kn

+
(
kn

n

)2/d
)

Next, observing that

E

[
1

1+Tn(x)

]4
= f−4(x)E[f 4

n(x)]
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it follows from an immediate adaptation of the proof of Theorem 1.2. that

lim sup
n→∞

E

[
1

1+Tn(x)

]4
<∞

Thus, using the Cauchy-Schwarz inequality and (1.6), we see that

E

[ (
T 2

n(x)
1+Tn(x)

)2
1[V(kn)≤ε0]

]
= o

(
1
kn

+
(
kn

n

)4/d
)

In conclusion:

fn(x) =D f(x)− f(x)v√
kn

N + c(x)b
f 2/d(x)

(
kn

n

)2/d
+ ζn

where ζn = oP(k−1/2
n + (kn/n)2/d), as desired. In addition

E[ζ2
n1[V(kn)≤ε0]] = o

(
1
kn

+
(
kn

n

)4/d
)

1.3.3 Some asymptotic results for regression estimator
The data in our model can be rewritten as

Yi = r(Xi) + εi, 1 ≤ i ≤ n

where εi = Yi − r(Xi) satisfies E[εi/Xi] = 0.
The nearest neighbor estimate is

rn(x) =
n∑
i=1

wniY(i)(x)

where (wni, ..., wnn) is a given (deterministic) weight vector summing to one.

In this section , we study the local rate of convergence of rn(x) and to simplify the
notation, we will study only the weak convergence properties of rn(0) − r(0). We
let the conditional variance of Y be:

σ2(x) = E[|Y − r(X)|2/X = x]

and assume the following:
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i) There exists a sequence of positive integers {k} = {kn} with
k →∞, k/n→ 0, and a positive constant c such that

|wni| ≤


c
k
, for 1 ≤ i ≤ k

0, otherwise

and ∑n
i=1wni = 1

ii) The random variable X has a density f on Rd that is twice continuously differ-
entiable in a neighborhood of 0. Also f(0) > 0

iii) The regression function r is twice continuously differentiable in a neighborhood
of 0.

iv) One has ‖ Y ‖∞≤ 1. This condition can be weakened to either
‖ Y − r(X) ‖∞≤ 1 or even :supx∈Rd E[|Y − r(X)|3/X = x] <∞.

v) The function σ is continuous in a neighborhood of 0 and σ2(0) > 0.

Theorem 1.4
Assume that conditions (i), (iv) and (v) are satisfied. Then:

Vn

σ(0)
√∑n

i=1w
2
ni

→ N

Where N is a standard normal random variable.
Theorem 1.5 (Pointwise rate of convergence)

Assume that conditions (i),(v) are satisfied. Then the corresponding nearest
neighbor regression function estimate rn satisfies:

rn(0)− r(0) =D σ(0)
√√√√ n∑
i=1

w2
ni(N + oP(1))

+β
(

k
n

)2/d
( ∑k

i=1wni
(

i
k

)2/d
)

(1 + oP(1)) + oP

( (
k
n

)2/d
)



1.3. K NEAREST NEIGHBOR TO THE REAL AND THE VECTOR CASES 43

Where N is a standard normal random variable and

β =def f(0)tr(r′′(0)) + 2r′(0)Tf ′(0)
2dV 2/d

d f 1+2/d(0)

for the standard k nearest neighbor estimate, one has:

wni =


1
k
, for 1 ≤ i ≤ k

0, for k < i ≤ n

where {k} = {kn} is a sequence of integers such that 1 ≤ k ≤ n. In this case,∑n
i=1w

2
ni = 1

k
and ∑n

i=1wni
(

i
k

)2/d
= d

d+2(1 + o(1))

Theorem 1.6(L2 rates of convergence)
Let rn(x) = ∑n

i=1wniY(i)(x) be the nearest neighbor regression function estimate,
where (wn1, ..., wnn) is a probability weight vector. Assume that X takes values in
[0, 1]d. Assume,in addition, that for all x and x′ ∈ Rd,

|r(x)− r(x′)| ≤ L ‖ x− x′ ‖

and
sup
x∈Rd

σ2(x) ≤ σ2

for some positive constants L and σ2. Then

(i) For d = 1

E|rn(X)− r(X)|2 ≤ σ2
n∑
i=1

w2
ni + 8L2

n∑
i=1

wni
i

n

(ii) For d ≥ 2

E|rn(X)− r(X)|2 ≤ σ2
n∑
i=1

w2
ni + c′dL

2
n∑
i=1

wni
(

i
n

)2/d

where

c′d = 23+ 2
d (1 +

√
d)2

V
2/d
d

for the standard k nearest neighbor estimate, we have the following corollary:
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Corollary 1.1

Let rn be the k nearest neighbor regression function estimate, then under the
condition of theorem 1.6
(i) for d = 1, there exists a sequence {k} = {kn}, for some positive universal

constant Λ1

(ii) for d ≤ 2, there exists a sequence {k} = {kn} with k ∼
(

σ2

L2

) d
d+2 n

2
d+2 such

that
E|rn(X)− r(X)|2 ≤ Λd

(
σ2L2

n

) 2
d+2

for some positive universal constant Λd.

1.3.4 Proof of Theorems

Proof of Theorem 1.4
It is useful to recall the Berry-Essen inequality

For sums of i.r.v W1, ...,Wn such that EWi = 0, ∑n
i=1EW

2
i > 0, andE|Wi|3 <∞ :

sup
t∈Rd

∣∣∣∣ P{ ∑n

i=1 Wi√∑n

i=1 EW
2
i

≤ t
}
− P{N ≤ t}

∣∣∣∣ ≤ γ
∑n
i=1E|Wi|3

(∑n
i=1EW

2
i )3/2 (1.7)

for some universal constant γ > 0.
We apply this inequality with the formal replacement Wi = wni(Y(i) − m(Z(i)),
conditional on Z1, ..., Zn. Since, conditional on Z1, ..., Zn;

EW 2
i = w2

niτ
2(Z(i)) and E|Wi|3 ≤

8c
k
w2
ni

The bound in (1.7) becomes

8cγ∑n
i=1w

2
ni

k(∑n
i=1w

2
niτ

2(Z(i)))3/2 ≤ 8cγ
k
√∑n

i=1w
2
ni ×min3/2(τ 2(Z(1)), ..., τ 2(Z(k)))

≤ 8cγ
k1/2 min3/2(τ 2(Z(1)), ..., τ 2(Z(k)))
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(since ∑n
i=1w

2
ni ≥ 1

k
; by the Cauchy-Schwarz inequality), observe that:

∑n
i=1wni(Y(i) −m(Z(i)))
τ(0)

√∑n
i=1w

2
ni

=
∑n
i=1wni(Y(i) −m(Z(i)))√∑n

i=1w
2
niτ

2(Z(i))
×

√∑n
i=1w

2
niτ

2(Z(i))

τ(0)
√∑n

i=1w
2
ni

=def I× II

Now: II→ 1 in probability as noted earlier.
For I, we have:

sup
t∈R
|P{I ≤ t/Z1, ..., Zn} − P{N ≤ t}| = O(1/

√
k)

min3/2(τ 2(Z(1)), ..., τ 2(Z(k))

Hence

sup
t∈R

∣∣∣ P{I ≤ t} − P{N ≤ t}
∣∣∣ = sup

t∈R
|EP{I ≤ t/Z1, ..., Zn} − P{N ≤ t}|

≤ O(1/
√
k)

τ 3(0) + P{min(τ 2(Z(1), .., Z(k))) <
τ 2(0)

2 }

The latter probability tends to zero since τ(0) > 0, τ is continuous at 0, and
Z(k) → 0 in probability. Thus, I→D N ; so that I× II→D N.

Proof of Theorem 1.5
We will applies the following result

Proposition 1.1

Assume that f and r are twice continuously differentiable in a neighborhood of
0,and f(0) > 0. Then, as z ↓ 0

m(z) = r(0) + αz2 + o(z2)

where
α = f(0)tr(r′′(0)) + 2r′(0)Tf ′(0)

2df(0)
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Lemma 1.3

For x ∈ Rd; set ρx = inf{‖ Y − x ‖: Y ∈ supp(µ)}. If k/n→ 0, then

‖ X(k)(x)− x ‖→ ρx almost surely

In particular, if x ∈ supp(µ) and k/n −→ 0; then

‖ X(k)(x)− x ‖−→ 0 almost surely.

Lemma 1.4

If k→∞, then

U(k)

k/n
→ 1 in probability.

Proposition 1.2

Assume that condition (i) is satisfied. Then

Wn =
(

k
n

)2/d
( ∑k

i=1wni
(

i
k

)2/d
)

(1 + oP(1)) + oP

( (
k
n

)2/d
)

Proof.

By proposition 1.1, where α is defined, we have

Bn =
n∑
i=1

wni(m(Z(i))−m(0))

= α
n∑
i=1

wniZ
2
(i) +

n∑
i=1

wniϕ(Z(i))

= I + II
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where ϕ(z) = O(z2) as z ↓ (0). Clearly

|II| ≤
n∑
i=1
|wni| sup

0<z≤Z(k)

|ϕ(z)|

≤
n∑
i=1
|wni|Z2

(k) sup
0<z≤Z(k)

∣∣∣ ϕ(z)
z2

∣∣∣
≤ cZ2

(k) sup
0<z≤Z(k)

∣∣∣ ϕ(z)
z2

∣∣∣
= oP(Z2

(k))

since Z(k) → 0 in probability (by Lemma 1.3 and the fact that 0 belongs to the
support of X (see condition (ii))).

Next, recall the decomposition

Z(i) =D
(

U(i)
Vdf(0)

)1/d
+ ψ(U(i))

where ψ(u) = O(u1/d) as u ↓ 0 and
? (U(1), ..., U(n)) =D

(
G1
Gn+1

, ..., Gn
Gn+1

)
where

Gi =
i∑

j=1
Ej; 1 ≤ i ≤ n+ 1

and E1, ..., En+1 are independent standard exponential random variables.

? (Z(1), ..., Z(n)) =D (G−1(U(1)), ..., G−1(U(n))) and

G−1(u) = inf{t ≥ 0, G(t) ≥ u}, u ∈ [0, 1]

? Since: G−1(u) =
(

u′

Vdf(0)

)1/d
+ ψ(u); it will be convenient to replace Z(i) by

Z(i) =D
(

U(j)
Vdf(0)

)1/d
+ ψ(U(i))

Thus

I = β
n∑
i=1

wniU
2/d
(i) + 2α

n∑
i=1

wni
(

U(i)
Vdf(0)

)1/d
ψ(U(i)) +

n∑
i=1

wniψ
2(U(i))
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Where β = α

V
2/d
d

f2/d(0)
. Using the fact that U(k) −→ 0 in probability and |wni| ≤ c/k

for 1 ≤ i ≤ k, it is easy to see that

I = β
n∑
i=1

wniU
2/d
(i) +OP(U2/d

(k) ) = β
n∑
i=1

wniU
2/d
(i) +OP

( (
k
n

)2/d
)

By the well-known fact(Lemma 1.4) that U(k) = OP(k/n)
Combining this result with proposition 1.2 proves the theorem.

Proof of Theorem 1.6

Lemma 1.5

Let X takes values in [0, 1]d. Then,for d ≥ 2;

E ‖ X(k)(X)−X ‖2≤ c′d
(

k
n

)2/d

where

c′d = 23+ 2
d (1 +

√
d)2

V
2/d
d

for d = 1 we have
E ‖ X(k)(X)−X ‖2≤ 8k

n
The proof of this theorem relies on lemma 1.5, which bounds the expected square
distance between X and its i-th nearest neighbor. Letting r̃n(x) = ∑n

i=1wnir(X(i)(x)),
we start with the variance/bias decomposition

E|rn(X)− r(X)|2 = E|rn(X)− r̃n(X)|2 + E|r̃n(X)− r(X)|2

to bound the first term, note that

E
∣∣∣ rn(X)− r̃n(X)

∣∣∣2 = E
∣∣∣ ∑n

i=1Wni(X)(Yi − r(Xi))
∣∣∣2

where Wni(X) = wn
∑

i
and (∑1, ...,

∑
n) is a permutation of (1,...,n) such that Xi is

the ∑i−th nearest neighbor estimate

E
∣∣∣ ∑n

i=1Wni(X)(Yi − r(Xi))
∣∣∣2 = E

[ ∑n
i=1W

2
ni(X)|Yi − r(Xi)|2

]
= E

[ ∑n
i=1Wni(X)σ2(Xi)

]
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So that
E|rn(X)− r̃n(X)|2 ≤ σ2

n∑
i=1

w2
ni

Finally

E|r̃n(X)− r(X)|2 = E
∣∣∣ ∑n

i=1wni(r(X(i)(X)− r(X))
∣∣∣2

≤ E

[ ( ∑n
i=1wni|r(Xi(X))− r(X)|

)2
]

≤ L2E

[ ( ∑n
i=1wni ‖ X(i)(X)−X ‖

)2
]

≤ L2
( ∑n

i=1wniE ‖ X(i)(X)−X ‖2
)

(by Jensen’s inequality). The conclusion follows by applying lemma 1.5.

1.4 Cross-validation with k nearest neighbors es-
timation

This section present for the kNN locally constant estimator three k parameter
selection methods from ĝ(x). We always considered the nonparametric regression:

Yi = g(Xi) + ui

with E(u/X) = 0, var(u/X) = σ2(X)
The three methods below to select the value of k. These methods have been

studied by Li(1987).

1. CL or Cp of Mallows (Mallows (1973)):
This method consists of selecting the k̂ that minimizes the objective function

below
CL = n−1

n∑
i=1

(yi − ĝ(xi))2 + 2σ2tr(Mn(k))/n

where σ2 is the variance of ui. In practice σ2 is estimated by

σ̂ = n−1
n∑
i=1

û2
i ; ui = yi − ĝ(x).
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2. Generalised Cross-Validation by Craven & Wahba (1979):
This method consists to select the k̂ that minimizes the objective function below

GCVk

∑n
i=1(yi − ĝ(xi))2

(1− n−1tr(Mn(k)))2

3. Cross-Validation ("Leave one out" (Stone 1974)):
This method is to select the k̂ that minimizes the objective function below

CVk =
n∑
i=1

(yi − ĝ(−i)(xi))2

where
ĝ(−i)(xi) =

∑
j 6=i

yiWij/
∑
j 6=i

Wij

(
Wij = w

(
xi−xj

Ri

) )
is the "Leave one out" kNN estimator of g(xi).
The methods CL and GCVk are less costly in terms of computing time unlike the
CVk method.
Li (1987) showed that the three approaches are asymptotically equivalent and pro-
vide an optimal smoothing in the sense∫

[ĝk̂(x)− g(x)]2dF (x)∫
[ĝ(x)− g(x)]2dF (x) −→

p 1

where ĝk̂(x) is the kNN estimator using one of the above approaches to select k.
Li and Ouyang (2004) showed that for all values of k ∈ Λ = [nε, n1−ε], ε ∈ (0, 1/2).
CVk can be put in the form below

CVkc = φ1(k/n)4/q + φ2k−1 + o((k/n)4/q + k−1)

where:
φ1 = c

−4/q
0 k2

2

∫
([12 f(x)tr])

φ2 = c0k
∫
σ2(x)M(x)f(x)dx.

with:
c0 = πq/2/Γ((q + 2)/2).
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In the second part, we redo the same analysis but considering the local linear
kNN estimator. Recall that δ(x) = (g(x),∇g(x)′)′.δ(x) is a vector (q+ 1)× 1 where
the first element is g(x) and the other elements are the partial derivatives of g(x).
the optimal number of neighbors is selected by minimizing the objective function of
Cross-validation below

CVkL = n−1
n∑
i=1

(yi − ĝ(−i,L)(xi))2M(xi)

with M(.) a weight function.
Li and Ouyang(2004) showed that, for all k ∈ ∇

CVkL(k) = φ1,L(k
n

)4/q + φ2k−1 + oP((k
n

)4/q + k−1)

where φ2 is defined in the same manner as previously and

φ1,L = c
−4/q
0 k2

2

∫
(1
2f(x)tr([∇2g(x)]))2 M(x)

f(x)(q+4)/4dx

1.5 Automatic selection of k the number of near-
est

for choosing the tuning parameter k it remains to introduce a loss function Loss.
Among the kNN estimators, we retain the loss function that allowing us to build a
local version of our kNN estimator.

Loss function
Loess was introduced by Cleveland(1988), and is a multivariate version of Lowess

Cleveland (1979), which is another version of LPR. Loess is described by

f̂(x) =
n∑
i=1

ai(x)Yi,

where a(x) = IT1 β̂x and IT1 = (1, 0, ..., 0), where the polynomial degree is one (d = 1)
or two (d = 2). For the bandwidth selection and weight calculation, loess is similar
to kNN . Its weights are calculated with: Kb(u) = 1

b
K(D(u)

b
) , where u = (xi − x),

and D(.) is u’s L2− norm in the predictor space and b is the euclidean distance
between the input vector x and its kth nearest neighbor. The weight function chosen
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by Cleveland and Delvin(1988) was the Tricube kernel, however it is not mandatory.
The main goal is to compute the quantity

pLCVg (x) =
∑
{i:yi=g}K(d(xi, x)/hLCV (xi0))∑n
i=1K(d(xi, x)/hLCV (xi0))

where
i0 = arg min

i=1,...,n
d(x, xi) and hLCV (xi0)

is the bandwidth corresponding to the optimal number of neighbors at xi0 ob-
tained by the following Cross-Validation procedure

kLCV (xi0) = arg min
k
LCV (k, i0),

where
LCV (k, i0) =

G∑
g=1

(1[yi0=g] − p(−i0)
g,k (xi0))2;

and
p

(−i0)
g,k (xi0) =

∑n
{i:yi=g,i6=i0}K(d(xi, xi0)/hk(xi0 ))∑n
i=1,i 6=i0 K(d(xi, xi0)/hk(xi0 )

The main feature of such an estimator concerns the local behavior of the bandwidth.
More precisely, the optimal number of neighbors depends on the functional point
at which the kNN estimator is evaluated. This is the reason why we use the term
local selection. Note that many other loss functions can be built as in the predic-
tion setting. Now, the estimation procedure is entirely determinated as soon as a
semi-matric d(.,.) and a kernel function K(.) are fixed.
In order to give an idea of the performance of the procedure, we include the com-
putation of the misclassification rate for the learning sample (xi, yi)i=1,..,n (i.e: the
sample of curves for which the class numbers are observed): for

i ∈ {1, 2, .., n} : yLCVi ←− arg max
g∈{1,..,G}

pLCVg (xi)

end do
Misclas←− 1

n

n∑
i=1
1[yi 6=yLCVi ].



Chapter 2

The k nearest neighbor method
for functional data

2.1 Introduction
In contrast to the first chapter, here our aim is to studies the kNN method in

the functional case with the independent identically distributed data. A regression
analysis is a statistical technique for estimating the value of a variable as a function
of independent variables. They are widely applied in science and engineering, they
are used in problems like function estimation, financial forecasting, and time series
prediction.

In many practical situations, one is faced with functional type phenomena. It is
now possible to take into account their functional nature thanks to technological
improvements permitted to collect data discretized on thinner grids. The statistical
problems involved in the modelization of functional random variables have received
an increasing interest in recent literature, we only refer to the good overviews in
parametric models given by Bosq(2000) [08], Ramsay& Silverman [36].

The literature of the kNN method for estimation of regression function date bakes to

53
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Royall (1966) [14] & Stone (1977) [39] for the multivariate case. For the functional
data studies, the kNN kernel estimate was first introduced in the monograph of Fer-
raty & Vieu (2006) [15], Burba et al.(2009) [09] obtained the rate of almost complete
convergence of the regression function using the kNN method for independent data.

2.2 Models and estimators
Let (Xi, Yi)i=1,..,n be n pairs independent and identically distributed as (X , Y )

and valued in E × R. (E,d) is a semi-metric space, E is not necessarily of finite
dimension and we do not suppose the existence of a density for the functional random
variable (f.r.v) X. The general frame is the functional nonparametric regression:

Y = r(X ) + ε with E(ε/X ) = 0.

then, the object we want to estimate is the non-linear operator r(.) = E[Y/X = .]

for a fixed χ ∈ E, the k NN kernel estimator can be written as

r̂kNN(χ) =
n∑
i=1

Yiwi,n(χ)

where
wi,n(χ) = K(Hn,k(χ)−1d(χ,Xi))∑n

i=1K(Hn,k(χ)−1d(χ,Xi))
where K is an asymmetrical kernel and Hn,k(χ) is defined as follows

Hn,k(χ) = min
{
h ∈ R+/

∑n
i=1 1B(χ,h)(Xi) = k

}
(2.1)

It is clear that Hn,k(χ) is a positive random variable (r.v) which depends on
(X1, ...,Xn). The random feature of the kNN bandwidth represents both its main
quality and also its major disadvantage.

Indeed, the fact that Hn,k(χ) is a r.v creates technical difficulties in proofs because
we can not use the same tools as in the standard kernel method. But the random-
ness of Hn,k(χ) allows to define a neighborhood adapted to χ and to respect the
local structure of the data.
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Continuity-type and Lipschitz-type
In order to link the existing literature with this work, and to emphasise differ-

ences between the kNN method and the traditional kernel approach, we remind that
the functional version of the Nadaraya-Watson kernel type estimator(introduces in
Ferraty and Vieu (2006) [15]) of nonparametric functional regression is

r̂(χ) =
∑n
i=1 YiK(h−1d(χ,Xi))∑n
i=1K(h−1d(χ,Xi))

(2.2)

where χ ∈ E is fixed, K is an asymmetrical kernel and h is non-random band-
width.
we will consider two kinds of nonparametric models:

Continuity-type
This model is defined as:

r ∈ C0
E = {f : E → R/ lim

d(χ,χ′)→0
f(χ′) = f(χ)} (2.3)

and will issue pointwise consistency results (see Thoerem 2.1 and 2.3 below).

Lipschitz-type
The model assumes the existence of an α > 0 and r ∈ LipE,α. Such that

LipE,α = {f : E → R/∃C > 0,∀χ′ ∈ E, |f(χ)− f(χ′)| < Cd(χ, χ′)α} (2.4)

and will allow to obtain the rates of convergence (see Theorem 2.2 and Theorem
2.4 below)

2.3 Asymptotic properties
First, let us introduce the notation

ϕχ(ε) = P(X ∈ B(χ, ε))

The concentration function ϕχ(ε) can be interpreted as a small ball probability
(when ε is small) and will play a major role in our methodology. From one side,
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it will avoid introducing density assumptions on X , wile from the order side it will
control rates of convergence of the estimate.

To establish asymptotic properties we need some hypotheses on the distribution of
(X , Y ) and on the estimator r̂kNN

(H1) Concentration of the f.r.v. X .
∀ε > 0, ϕχ(ε) > 0 with ϕχ(.) continuous and strictly increasing on a neighbor-

hood of 0 and ϕχ(0) = 0.

(H2) Conditional moments of the response r.v.y
∀m ≥ 2,E[|Y |m/X = χ] = σm(χ) <∞ with σm(.) continuous in χ

(H3) kernel K.
there exist two constants 0 < C1 < C2 <∞ such that

C11[0,1] ≤ k ≤ C21[0,1]

Note that hypothesis (H3) can be extended, to continuous kernels:

(H ′3) The support of K is [0, 1], the derivative K ′ exists on [0, 1] and satisfies, for
two real numbers

−∞ < C2 < C1 < 0 and C2 ≤ K ′ ≤ C1

In this case of (H ′3), we also suppose that

∃C3 > 0,∃ε0,∀ε < ε0,
∫ ε

0
ϕχ(u)du > C3εϕχ(ε) (2.5)

Before studying the kNN estimator, we remind asymptotic properties of r̂ defined
by Equation (2.2). Ferraty and Vieu first showed the almost complete convergence
of this estimator.
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2.3.1 Some results of kernel estimator of regression for func-
tional data

Theorem 2.1.
Under the continuity-type model (2.3), suppose (H1)-(H3) or ((H ′3) and Equation

(2.5)), and suppose also that h = hn is a sequence of positive real numbers such that
h→ 0 and logn/nϕχ(h)→ 0; then we have

r̂(χ)→(aco) r(χ)

They also established the rate of almost complete convergence.

Theorem 2.2.
Under the Lipschitz-type model (2.4), suppose (H1)-(H3) or ((H ′3) and Equation

(2.5)), and suppose also that h = hn is a sequence of positive real numbers such that
h→ 0 and logn/nϕχ(h)→ 0, then we have

r̂(χ)− r(χ) = O(hα) +Oaco

( √
logn
nϕχ(h) .

)

2.3.2 Asymptotic properties of k-NN method estimator of
regression function

Remark 2.1.

The rate of convergence of r̂ is divided into two parts.
The first part comes from the bias of the estimator, The second part comes from the
dispersion of r̂ .

Now let us focus on the kNN method. First, we state the almost complete convergence
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of r̂kNN defined by Equation (2.1).

Theorem 2.3.
Equation under the continuity-type model (2.3), suppose (H1)−(H3) or ((H ′3)

and equation (2.5)), and suppose also that k = kn is a sequence of positive real
numbers such that k/n→ 0 and logn/k → 0 then we have

r̂kNN(χ)→(aco) r(χ).

then, we establish the rate of almost complete convergence:

Theorem 2.4.
Under the Lipschitz-type model (2.4), suppose (H1)-(H3) or ((H ′3) and equation

(2.5)), and suppose also that k = kn is a sequence of positive real numbers such that
k/n→ 0 and logn/k → 0, then we have

r̂kNN(χ)− r(χ) = O
(
ϕ−1
χ

(
k
n

)α )
+Oaco

( √
logn
k

)

2.3.3 Proof of Theorems.

Lemma 2.1

Let (Dn)n∈N be a sequence of r.r.v and (un)n∈N a decreasing positive sequence.
(i) If l = lim un 6= 0 and if for all increasing sequence βn ∈]0, 1[, there exist two

sequences of r.r.v (D−n (βn))n∈N and (D+
n (βn))n∈N such that

(L1) D−n ≤ D+
n ; ∀n ∈ N and 1{D−n≤Dn≤D+

n } −→
(aco) 1

(L2) ∑n
i=1G(D−n , Ai)/

∑n
i=1G(D+

n , Ai)− βn = Oaco(un)

(L3) cn(D−n )− c = Oaco(un) and cn(D+
n )− c = Oaco(un)

Then cn(Dn)− c = Oaco(un)

(ii) If l = 0 and if (L1), (L2) and (L3) are checked for any increasing sequence
βn ∈]0, 1[ with limit 1. then the same result holds.
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We give now the same kind of results but using the oaco

Lemma 2.2

Let (Dn)n∈N be a sequence of r.r.v and (vn)n∈N a decreasing positive sequence.
(i) If l′ = lim vn 6= 0 and if, for all increasing sequence βn ∈]0, 1[, there exist two

sequences of r.r.v (D−n (βn))n∈N and (D+
n (βn))n∈N such that

(L1) D−n ≤ D+
n ; ∀n ∈ N and 1{D−n≤Dn≤D+

n } −→
(aco) 1

(L′2)
∑n
i=1G(D−n , Ai)/

∑n
i=1G(D+

n , Ai)− βn = oaco(vn)

(L′3) cn(D−n )− c = oaco(vn) and cn(D+
n )− c = oaco(vn)

Then , cn(Dn)− c = oaco(vn).

(ii) If l′ = 0 and if L1 L
′
2 and L′3 are checked for any increasing sequence βn ∈]0, 1[

with limit 1, then the same result holds.

Now, let us use Chernoff-type exponential inequality for Bernoulli random variables
to give the essential technical tool in the verification of (L1)

Lemma 2.3

Let X1, ..., Xn be independent r.v’s in {0, 1}. Note X = ∑n
i=1 and µ = E(X)

then
∀δ > 0 :
? P(X > (1 + δ)µ) < (eδ/(1 + δ)1+δ)µ

? P(X < (1− δ)µ) < e−δ
2/2µ

We will give now a quick demonstration for Lemmas and for Theorems
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Proof of Lemmas

Proof of Lemma 2.1
For technical reasons, we supposed in this proof that the r.v Bi are positive. The

result for any real valued r.v Bi can be deduce by taking Bi = B+
i −B−i where

B+
i = max(Bi, 0) and B−i = −min(Bi, 0)

we prove simultaneously both assertion (i) and (ii).

First, remark that, for all sequence βn ∈]0, 1[, (L2) and (L3) give

c−n (βn) =
∑n
i=1BiG(D−n (βn), Ai)∑n
i=1G(D+

n (βn), Ai
= βnc+Oaco(un) (2.6)

and

c+
n (βn) =

∑n
i=1BiG(D+

n (βn), Ai)∑n
i=1G(D−n (βn), Ai

= c

βn
+Oaco(un) (2.7)

For all ε > 0 ; we note

Tn(ε) = {c− εun ≤ cn(Dn) ≤ c+ εun}

and for all sequence βn ∈]0, 1[:

S−n (ε, βn) = {c− εun ≤ c−n (βn) ≤ c+ εun}

S+
n (ε, βn) = {c− εun ≤ c+

n (βn) ≤ c+ εun}

Sn(βn) = {c−n (βn) ≤ cn(D) ≤ c+
n (βn)}

It is obvious that

∀ε > 0; ∀βn ∈]0, 1[; S−n (ε, βn) ∩ S+
n (ε, βn) ∩ Sn(βn) ⊂ Tn(ε) (2.8)

Under (ii), we choose

βn = βn,ε = 1− εun
3c ; ∀ε < ε0 = 1 (2.9)
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whereas, under (i), we take

βn = βn,ε = 1− εl

3c ; ∀ε < ε0 = 3c
l
. (2.10)

By denoting

G−n (ε) =
{
βn,εc− εun

3 ≤ c−n (βn,ε) ≤ βn,εc+ εun
3

}

G+
n (ε) =

{
c

βn,ε
− εun

3 ≤ c+
n (βn,ε) ≤ c

βn,ε
+ εun

3

}
Gn(ε) =

{
D−n (βn,ε) ≤ Dn ≤ D+

n (βn,ε)
}

We see that Equation (2.9) and (2.10) imply that

c− εun ≤ βn,εc− εun/3

βn,εc+ εun/3 ≤ c+ εun

and
c− εun ≤ c/βn,ε − εun/3
c/βn,ε + εun/3 ≤ c+ εun.

So, we have

G−n (ε) ⊂ S−n (ε, βn,ε) and G+
n (ε) ⊂ S+

n (ε, βn,ε) (2.11)

(L0) implies that Gn(ε) ⊂ Sn(βn,ε) ; so by combining Equation (2.8) and (2.11),
we obtain

∀ε ∈]0, ε0[, Tn(ε)c ⊂ G−n (ε)c ∪G+
n (ε)c ∪Gn(ε)c.

Then
P(|cn(Dn)− c| > εun) ≤ P

(
|c−n (βn,ε)− βn,εc| > εun

3

)
+P

( ∣∣∣ c+
n (βn,ε)− c

βn,ε

∣∣∣ > εun
3

)
+ P(Dn 6∈ [D−n (βn,ε),D+

n (βn,ε)])

According to Equation (2.6) and (2.7), there exists 0 < ε1 < ε0 such that∑
n∈N

P
(
|c−n (βn,ε1c| > ε1un

3

)
<∞

and ∑
n∈N

P
( ∣∣∣ c+

n (βn,ε1)− c
βn,ε1

∣∣∣ > ε1un
3

)
<∞
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Now, according to (L1),∀ε > 0∑
n∈N

P(Dn 6∈ [D−n (βn,ε),D+
n (βn,ε)]) <∞

There, there exists 0 < ε1 < ε0 such that ∑n∈N P(|cn(Dn)− c| > ε1un) <∞.

Proof of Lemma 2.2
For all sequence βn ∈]0, 1[, (L′2) and (L′3) give

c−n (βn) =
∑n
i=1BiG(D−n (βn), Ai)∑n
i=1G(D+

n (βn), Ai)
= βnc+ oaco(vn) (2.12)

and

c+
n (βn) =

∑n
i=1BiG(D+

n (βn), Ai)∑n
i=1G(D−n (βn), Ai)

= c

βn
+ oaco(vn) (2.13)

With the same arguments as in the previous proof, we arrive at ∀ε > 0

P(|cn(Dn − c| > εvn) ≤ P
(
|c−n (βn,ε)− βn,εc| > εvn

3

)
+P

( ∣∣∣ c+
n (βn,ε)− c

βn,ε

∣∣∣ > εvn
3

)
+ P(Dn 6∈ [D−n (βn,ε),D+

n (βn,ε)])

According to equation (2.12) and (2.13), ∀ε > 0
∑
n∈N

P
(
|c−n (βn,ε)− βn,εc| > εvn

3

)
<∞

and ∑
n∈N

P
(
|c+
n (βn,ε)− c

βn,ε
| > εvn

3

)
<∞

Then, ∀ε > 0,∑n∈N P(|cn(Dn)− c| > εvn) <∞.

Proof of Lemma 2.3
For t > 0, we use Markov inequality to obtain

P(X > (1 + δ)µ) ≤ E[etX ]
e(1+δ)tµ (2.14)
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Then, the independence of the Bernoulli variables X, gives

E[etX ] =
n∏
i=1

(1 + P(Xi = 1)(et − 1))

Using the fact that ∀x > 0, 1 + x < ex, we arrive at

E[etX ] ≤ e(et−1)µ (2.15)

The first result comes by combining equation (2.14) and (2.15) and taking t =
ln(δ + 1).
For the second point, we follow the same way to have

P(X < (1− δ)µ) ≤ e(e−t−1)µ

e(δ−1)tµ

Which is minimized in t = ln(1/1− δ). Then, we obtain

P(X < (1− δ)µ) <
(

e−δ

(1−δ)(1−δ)

)µ
Using Taylor expansion, we show that (1−δ)(1−δ) > e−δ+δ2/2 and the result follows.

Proof of Theorems

Proof of Theorem 2.3
We use Lemma 2.2 (i) with wn = 1, cn(Hn,k(χ)) = r̂kNN(χ) and c = r(χ). We

first remind that, under the same conditions as in Theorem 2.1. Ferraty and Vieu
(2006) [15] showed that

1
nϕχ(h)

n∑
i=1

K(h−1d(χ,Xi)) −→(aco) 1 (2.16)

Let β ∈]0, 1[, we choose D−n and D+
n such that

ϕχ(D−n ) =
√
β
k

n

ϕχ(D+
n ) = 1√

β

k

n
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This choice and hypotheses on k allow us to use Theorem 2.1 with h−1 = D−n =
ϕ−1
χ (
√
β(k/n)) and with h+ = D+

n = ϕ−1
χ ((1/

√
β)(k/n)) to have

cn(D−n ) −→(aco) c.

cn(D+
n ) −→(aco) c.

So that (L′3) is checked. Now, by applying equation (2.16) both with h− and h+, we
have that

1
nϕχ(D−n )

n∑
i=1

K((D−n )−1d(χ,Xi))→(aco) 1

1
nϕχ(D+

n )

n∑
i=1

K((D+
n )−1d(χ,Xi))→(aco) 1

then ∑n
i=1K((D−n )−1d(χ,Xi))∑n
i=1K((D+

n )−1d(χ,Xi))
→(aco) β

So (L′2) is checked. Finally, we have to verify (L1): the first part is obvious and the
second one does not deal with rates of convergence. We have to show that, for all
ε > 0 ∑

n∈N
P
( ∣∣∣ 1{D−n≤Hn,k(χ)≤D+

n } − 1
∣∣∣ > ε

)
<∞

Let ε > 0, we have

P
( ∣∣∣ 1{D−n≤Hn,k(χ)≤D+

n } − 1
∣∣∣ > ε

)
≤ P(Hn,k(χ) < D−n ) + P(Hn,k(χ) > D+

n )

which can be written as

P(|1{D−n≤Hn,k(χ)≤D+
n } − 1| > ε) ≤

P
( ∑n

i=1 1B(χ,D−n )(Xi) > k
)

+ P
( ∑n

i=1 1B(χ,D+
n )(Xi) < k

)
Now, we use Lemma 2.3 to show that

P
( ∑n

i=1 1B(χ,D−n )(Xi) > k
)
<
(
n− log[

√
β exp(1−

√
β)]

)−k/ logn

and
P
( ∑n

i=1 1B(χ,D+
n )(Xi) < k

)
<
(
n(1−
√
β)2/2
√
β
)−k/ logn

Then, because log n/k → 0∑
n∈N

P(|1{D−n≤Hn,k(χ)≤D+
n } − 1| > ε) <∞ ∀ε > 0
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So, (L1) is checked and this end the proof of Theorem 2.3.

Proof of Theorem 2.4
The scheme of the proof is likely the same as for Theorem 2.3 before. The main

change consists in using Lemma 2.1 (ii) in place of Lemma 2.2 (i). First, we remind
that, under the same conditions as Theorem 2.2. Ferraty and Vieu (2006) [15]
showed that

1
n

n∑
i=1

K(h−1d(χ,Xi))− ϕχ(h) = Oaco

( √
logn
nϕχ(h)

)
(2.17)

Let βn ∈]0, 1[ be an increasing sequence with limit 1, we choose D−n and D+
n such

that
ϕχ(D−n ) =

√
βn
k

n

ϕχ(D+
n ) = 1√

βn

k

n

So, we can use Theorem 2.2 with h− = D−n = ϕ−1
χ (
√
βn(k/n)) and with h+ = D+

n =
ϕ−1
χ ((1/

√
βn)(k/n)) and, because βn is bounded by 1, we have

cn(D−n )− c = O
(
ϕ−1
χ

(
k
n

)α )
+Oaco

( √
logn
k

)

cn(D+
n )− c = O

(
ϕ−1
χ

(
k
n

)α )
+Oaco

( √
logn
k

)
So that (L3) is checked. Now, by applying Equation (2.17) both with h+ and h−

and, because βn is bounded by 1, we have that

1
n

n∑
i=1

K((D−n )−1d(χ,Xi)) =
√
βn
k

n
+Oaco

( √
logn
k

)

and
1
n

n∑
i=1

K((D+
n )−1d(χ,Xi)) = 1√

βn

k

n
+Oaco

( √
logn
k

)
Then, we have ∑n

i=1K((D−n )−1d(χ,Xi))∑n
i=1K((D+

n )−1d(χ,Xi))
− βn = Oaco

( √
logn
k

)
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and (L2) is checked. The verification of (L1) is the same as in previous proof.

2.3.4 Other results about the rate of convergence by k near-
est neighbors method

Consider the simple additive noise model Y = r(X ) + ε where ε takes val-
ues in H, and E[ε/χ] = 0. Given n copies of independent observations Dn =
{(X1, Y1), ..., (Xn, Yn)}, the kNN estimate at any x ∈ F is defined by

r̂(χ) =
n∑
i=1

wniYi (2.18)

where (wn1, ..., wnn) is a (possibly random) probability vector. Note we consider
estimation and convergence at a fixed x and thus we sometimes omit explicitly
stating the fixed covariate. For example, a nearest neighbor always refers to the
nearest neighbor of a fixed x. We have here an example of wni follow.

Example 2.1.

Take wni = K(d(Xi, χ)/H)/∑jK(d(Xj, χ)/H) where K is a kernel function and
H is the distance of the k-th nearest neighbor. Mathematically

H = min{h ∈ R :
n∑
i=1

I{Xi ∈ B(χ, h)} ≥ k} (2.19)

where B(χ, h) = {χ′ ∈ F : d(χ, χ′) ≤ h} and I{.} denotes the indicator function.
For simplicity we consider the case where the kernel function K is compactly sup-
ported and nonincreasing on [0,1].

Naturally we need the following assumption on the regression function to obtain
meaningful rate of convergence.

Assumption 2.1. r is bounded and Lipschitz continuous at χ, that is ‖ r(χ) ‖≤
B, ∀χ ∈ F and ‖ r(χ)− r(χ) ‖≤Md(χ, χ′)α. The Lipschitz condition only needs to
be satisfied locally on an open neighborhood of the fixed χ.

Assumption 2.2. Suppose that∑n
i=k+1wni = O(bn) and denote ‖ w ‖s= (∑n

i=1w
8
ni)1/8;

we assume bn → 0, ‖ w ‖2→ 0, where the asymptotic orders are in the sense of al-
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most sure convergence. We also require that k/n→ 0 and k/ log n→∞.

Assumption 2.3. E ‖ ε ‖r<∞ for some r > 2.

Assumption 2.4. P(‖ ε ‖> a) ≤ exp{−Cap} with C > 0 and p > 0; for any
a > 0.

Theorem 2.5.
If Assumption 1,2 and 3 hold and ∑∞n=1(log n)(r−2)/2(‖ w ‖r / ‖ w ‖2)r < ∞,

then ‖ r̂(χ)− r(χ) ‖= O(bn + [φ−1(2k/n)]α + (log n)1/2 ‖ w ‖2) almost surely, where

φ−1(χ) := inf{h : φ(h) ≥ χ}

.

Alternatively, assuming exponential tail decay, we have

Theorem 2.6.
If Assumptions 1,2 and 4 hold, then ‖ r̂(χ) − r(χ) ‖= O(bn + [φ−1(2k/n)]α +

(log n)1+1/p ‖ w ‖2) almost surely

The theorems above are stated for general weight vector wni, 1 ≤ i ≤ n. When
specialized to some commonly used weight vector, we have the following corollary.

Corollary 2.1.

For the simple k-NN estimates (wni = 1/k for i ≤ k and 0 otherwise), the
theorems above hold with bn = 0 and ‖ w ‖2= O(1/

√
k). The same applies to

Example(with a kernel compactly supported and bounded away from zero on [0,1])
presented previously.

2.3.5 Proof of Theorems
In the proofs, different appearances of C denote possibly different positive con-

stants, even within the same expression. We start by showing a relatively simple
result on the distance from χ to its k-th nearest neighbor.
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Lemma 2.4.

Suppose k/n → 0 and k/ log n → ∞. Let H be the distance from χ to its k-th
nearest neighbor as defined in (2.19),then P(H ≥ φ−1(2k/n), i.o.) → 0, where i.o.
mean «infinitely often», and φ−1(χ) := inf{h : φ(h) ≥ χ}.

Proof. First we note that φ is right-continuous and non-decreasing and thus h =
φ−1(χ) implies φ(h) ≥ χ. Denote a = φ−1(2k/n), p = φ(a) and thus np ≥ 2k. We
have

P(H ≥ φ−1(2k/n)) = P(
∑
i

I{Xi ∈ B(χ, a)} ≤ k)

= P(
∑
i

I{Xi ∈ B(χ, a)} − np ≤ k − np)

≤ P(|
∑
i

I{Xi ∈ B(χ, a)} − np| ≥ np/2)

≤ 2 exp{−1
2(np/2)2/[np(1− p) + (np/6)]}

≤ 2 exp{−Cnp}

where we applied the Bernstein’s inequality for Bernoulli random variables. Then
P(H ≥ φ−1(2k/n), i.o.) → 0 can be shown using Borel-Cantelli lemma noting that
k/ log n→∞.

Proof of Theorem 2.5
We use the following decomposition into the bias term and the variance term.

‖ r̂(χ)−r(χ) ‖≤‖
∑
i

wni(r(Xi)−r(χ)) ‖ + ‖
∑
i

wniεi ‖ (2.20)

The bias term is easier to deal with. In fact

‖
∑
i

wni(r(Xi)− r(χ)) ‖ ≤ 2B
n∑

i=k+1
wni+ ‖

k∑
i=1

wni(r(Xi)− r(χ)) ‖

= O(bn + [φ−1(2k
n

)]α)
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by assumption 2.1 and Lemma 2.4.

Now we deal with the variance term. Let

Sn =
n∑
i=1

wniεi

and the following arguments are conditional on {X1, ...,Xn} (in effect treating wni
as non random weights). We will write

‖ Sn ‖ −E ‖ Sn ‖=‖
n∑
i=1

wniεi ‖ −E ‖
n∑
i=1

wniεi ‖=
n∑
i=1

di

where we remind the reader that the expectation is conditional on {X1, ...,Xn}, with

di = E[‖ Sn ‖ |Gi]− E[‖ Sn ‖ |Gi−1]

where Gi is the σ−algebra generated by ε1, ..., εi (G0 is the trivial σ−algebra).
It is easy to see that {di} is a real-valued martingale difference sequence which
enables us to use relevant exponential type inequalities below.
we know that

|di| ≤‖ ε ‖ wni+wniE ‖ εi ‖≤‖ εi ‖ wni+Cwni (2.21)

and

E(d2
i |Gi−1) ≤ w2

niE ‖ ε ‖2 (2.22)

We bound the variance term in four steps
Step 1: We show

E ‖ Sn ‖ = O(‖ w ‖2)

E ‖ Sn ‖ = E ‖
n∑
i=1

wniεi ‖

≤

√√√√E <
n∑
i=1

wniεi,
n∑
i=1

wniεi >

= O(
√∑

i

w2
ni)

= O(‖ w ‖2).
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Step 2: Let d′i = diI{|di| ≤ L} for some L > 0 to be specified later. We have

P(
n∑
i=1

(d′i|Gi−1)) > a) ≤ exp{−Ca2/(aL+ (
∑
i

w2
ni))},∀a > 0

Using (2.22)

E[(d′i − E(d′i|Gi−1))2|Gi−1] ≤ E(d′2i |Gi−1) ≤ E(d′2i |Gi−1) = O(w2
ni)

and together with
|d′i − E(d′i|Gi−1)| ≤ 2L

we get
E(|d′i − E(d′i|Gi−1)|r|Gi−1) ≤ C(2L)r−2w2

ni.

Since
d′i − E(d′i|Gi−1); i ≤ n

is a martingale difference sequence, (using Bernstein’s inequality for martin-
gales), we obtain the desired bound.

Step 3: Let
d′′i = di − d′i = diI{|di| > L}

We have
P(
∑
i

|d′′i − E(d′′i |Gi−1)| > a) ≤ C(
∑
i

wmni)L1−m/a

Using Hölder’s inequality and Markov’s inequality, we have

E(|d′′i − E(d′′i Gi−1)|) ≤ 2E(|d′′i |)
= 2E(|di|I{|di| > L})
≤ 2{E(|dmi |)}1/mP(|di| > L)1−1/m

≤ 2{E(|dmi |)}1/m{E(|di|m)
Lm

}1−1/m

= 2E(|di|m)L1−m

≤ CwmniL
1−m

and note that in the last line above we used the bound (2.21). Thus we have

P(
∑
i

|d′′i − E(d′′i |Gi−1)| > a) ≤ E[
∑
i

|d′′i − E(d′′i |Gi−1)|]/a

≤ C(
∑
i

wmni)L1−m/a



2.3. ASYMPTOTIC PROPERTIES OF K-NN METHOD 71

Step 4: Finally, we demonstrate the bound for the variance term in (2.20).
Using

E(di|Gi−1) = E(d′i|Gi−1) + E(d′′i |Gi−1) = 0

we have that
di = d′i − E(d′i|Gi−1) + (d′′i − E(d′′i |Gi−1))

and then

P(‖ Sn ‖ −E ‖ Sn ‖> 2a)
≤ P(

∑
i

(d′i − E(d′i|Gi−1)) > a) + P(
∑
i

(d′′i − E(d′′i |Gi−1)) > a)

≤ exp{Ca2/(aL+ (
∑
i

w2
ni))}+ C(

∑
i

wmni)L1−m/a

By the previous two steps. Setting

a = C(log n)1/2 ‖ w ‖2

for a constant C large enough and

L =‖ w ‖2 (log n)−1/2

an application of the Borel-Cantelli Lemma leads to

‖ Sn ‖ −E ‖ Sn ‖= O((log n)1/2 ‖ w ‖2)

using the assumption that∑
i

(log n)(m−2)/2(‖ w ‖m / ‖ w ‖2)m <∞

Combining this with the result from Step 1, the variance term is thus

‖ Sn ‖= O((log n)1/2 ‖ w ‖2)

Proof of Theorem 2.6.
The general proof strategy is the same as Theorem 2.5. In particular, the bias

term is bounded in the same way. For the variance term, only Step 3 and Step 4
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need to be replaced by the following.

Step 3′: We show

P(
∑
i

E(d′i|Gi−1) > a) + P(for some i, |di| > L) = O(n. exp{−CLp/wpn1})

if we set a = C(log n)1+1/p ‖ w ‖2 and L = C(log n)1/pwn1
for C large enough. Consider the first probability, we have

E(d′i|G) ≤ E(|di|I{|di| > L|Gi−1})
≤ (E|di|m|Gi−1))1−mP (|di| > L|Gi−1)1−1/m

≤ C(E ‖ εi ‖m wmni)1/m exp{−C(L− Cwni)p/wpni}
≤ Cwni exp{−CLp/wpni}
≤ C exp{−CLp/wpn1}

using (2.22) and assumption 2.4 in the third inequality above.
Thus

E(d′i Gi−1) ≤ a/n

if we set
a = C(log n)1+1/p ‖ w ‖2

( note that a ≥‖ w ‖2≥ wn1 ≥ 1/n)
and

L = C(log n)1/pwn1

and then
P(
∑
i

E(d′i|Gi−1) > a) = 0.

For the other probability term, again using (2.22) and assumption 2.4, we have

P(for some i, |di| > L) ≤ 1− P(∀i, wni ‖ εi ‖≤ L− Cwni)
≤ 1− (1− exp{−C(L− Cwni)p/wpni})n

≤ 1− (1− exp{−CLp/wpn1})n

≤ n. exp{−CLp/wpn1}

where in the last line above we used the simple inequality (1− χ)n ≥ 1− nχ.
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Step 4′: To demonstrate the bound for the variance term, we use

P(‖ Sn ‖ −E ‖ Sn ‖> 2a)
= P(

∑
i

di > 2a)

= P(
∑
i

(d′i − E(d′i|Gi−1)) > a) + P(E(d′i|Gi−1) > a) + P(for some i, |di| > L)

≤ exp{−Ca2/(aL+
∑
i

w2
ni)}+ n. exp{−CLp/wpn1}

By the bounds obtained in Step 2 and Step 3’. Finally set

a = C1(log n)1+1/p ‖ w ‖2 and L = C2(log n)1/pwn1

(choose C2 large enough to make the second term above summable and then
choose C1 large enough to make the first term summable) and apply the Borel-
Cantelli Lemma and then use the result from Step 1 to get

‖ Sn ‖= O((log n)1+1/p ‖ w ‖2)

Proof of Corollary 2.1.
For the simple k-NN method this is obvious. For kernel k-NN, it is also obvious

that bn = 0 by the definition of H. Since

wni = K(d(Xi, χ)/H)/
∑
j

K(d(Xj, χ)/H) ≤ C/
∑
j

K(d(Xj, χ)/H)

and
K(d(Xj, χ)/H)

is bounded away from zero for j ≤ k and 0 for j > k by the assumptions made on
K, we have

wni =


O(1/k), for i ≤ k

0, otherwise

It then follows that ‖ w ‖2= O(1/
√
k).
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Chapter 3

Simulation using the k nearest
neighbors method

3.1 Regression versus classification problems

In this chapter, we will give a simulation study of qualitative and quantitative re-
sponses using the k nearest neighbors method, also we want to compare this method
with linear regression method, this one is given by Gareth James, not forget the clas-
sification problems.

Some statistical methods such as k nearest neighbors and boosting, can be used in
the case of either quantitative or qualitative responses (also known as categorical).
Quantitative variables take on numerical values. Examples: person’s age, height, or
income. In contrast, qualitative variables take on values in one of k different classes,
or categories. Examples: person’s gender (male or female), a parson’s defaults on
a debt(Yes or No). We tend to refer to problems with a quantitative responses as
regression problems, while those involving a qualitative response are often referred
to as classification problems.

75
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Classification problem
In this part, we discuss some of the most important concepts that arise in selecting
a statistical learning procedure for a specific data set. We will explain how the
concepts presented here can be applied in practice.
In theory we would always like to predict qualitative responses using the Bayes
classifier. But for real data, we do not know the conditional distribution of Y
given X, and so computing the Bayes classifier is impossible.There for; we use the
k nearest neighbors classifier. Given a positive integer k and a test observation x0,
the k-NN classifier first identifies the k points in the training data that are closed
to x0, represented by N0. It then estimates the conditional probability for class j as
the fraction of points in N0 whose response values equal j:

Pr(Y = j/X = x0) = 1
k

∑
i∈N0

I(yi = j)

Finally,k-NN applies Bayes rule and classifies the test observation x0 to the class
with the largest probability.

Figure 3.1: 3-nearest
neighbors

Figure 3.2: 15-nearest
neighbors

Figure 3.1: provides an example of k-NN approach. We have plotted a large training
data of ElemStatLearn Library of mixture.example set consisting of three blue; and
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three orange observations. Our goal is to make a prediction for the points labeled
by the black cross. Suppose that we choose k = 3.
Then k-NN will first identify the three observations that are closest the cross. This
neighborhood is shown as a circle. It consists of two blue points and one orange
point,resulting in estimated probabilities of 2/3 for the blue class and 1/3 for the
orange class. Hence k-NN will predict that the black cross belongs to the blue class.
In the next Figure 3.2, we use the same Library, we have applied the kNN approach
with k = 15 at all of the possible values for X1 and X2, and have drown in the
corresponding kNN decision boundary.

Figure 3.3: 1-nearest
neighbors

Figure 3.4: 100-
nearest neighbors

The choice of k has a drastic effect on the kNN classifier obtained. In the Figure
3.3 and Figure 3.4 , using k=1 and k=100. When k=1, the decision boundary is
overly flexible and finds patterns in the data. This corresponds to a classifier that
has low bias but very high variance. As k grows, the method becomes less flexible
and produces a decision boundary that is close to linear.

This corresponds to a low-variance but high-bias classifier. On this simulated data
set, neither k=1 nor k=100 give good predictions: they have test error rates of
0.1695 and 0.1925, respectively.

Just as in the regression setting, there is not a strong relationship between the
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training error rate and the test error rate. With k=1, the k-NN training error rate
is 0, but the test error rate may be quite high. In general, as we use more flexible
classification methods, the training error rate will decline but the test error rate
may not.

Figure 3.5: Misclassification error rate

In the Figure 3.5, we have plotted the k-NN test and training errors as a func-
tion of k the number of neighborhood. using the Misclassification method given in
chapter 1; and also we compare between CV (also given in chapter 1); and Bayes
error rate. As in the regression setting, the training error rate consistently declines
as the flexibility increases. However, the test error exhibits a characteristic U-shape,
declining at first (with a minimum at approximately k = 10) before increasing again
when the method becomes excessively flexible and overfits.

In both the regression and classification settings, choosing the correct level of flexi-
bility is critical to the success of any statistical learning method.
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3.2 Comparison of Linear regression with k near-
est neighbors

3.2.1 Linear regression

We want in this section to compare between linear regression as a parametric
method and our method k nearest neighbors, first we give linear regression in R.
Linear regression is an example of a parametric approach because it assumes a
linear functional form for f(X). Parametric methods have several advantages. They
are often easy to fit, because one need estimate only a small number of coefficients.
But parametric methods do have a disadvantage: by construction, they make strong
assumptions about the form of f(X). If the specifier functional form is far from the
truth, and prediction accuracy is our goal, then the parametric method will perform
poorly.

In contract, nonparametric methods do not explicitly assume a parametric form for
f(X), and there by provide an alternative and more flexible approach for performing
regression. Here, we consider one of the simplest and best-known nonparametric
methods, k-nearest neighbors regression.

The k-NN regression method is closely related to the k-NN classifier discussed in
last section. Given a value for k and a prediction points x0, kNN regression first
identifier the k training observations that are closest to x0, represented by N0. It
then estimates f(x0) using the average of all the training responses in N0. In other
words

f̂(x0) = 1
k

∑
xi∈N0

yi

In general, the optimal value for k will depend on the bias-variance tradeoff,
which a small value for k provides the most flexible fit, which will have low bias but
hight variance. This variance is due to the fact that the prediction in a given region
is entirely dependent on just one observation.

In contrast, larger values of k provide a smoother and less variable fit; the prediction
in a region is an average of several points, and so changing one observation has a
smaller effect. However, the smoothing may cause bias by masking some of the
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structure in f(X).

In next section, we introduce several approaches for estimating test error rates.
These methods can be used to identify the optimal value of k in kNN regression.
In what setting will a parametric approach such as least squares linear regression
out perform a nonparametric approach such as kNN regression?
The answer is simple: the parametric approach will out perform the nonparametric
approach if the parametric form that has been selected is close to the true form of f.

Simple linear regression in R

Here we load the MASS package, which is very large collection of data sets and

Figure 3.6: Linear regression

function. We also load the ISLR package, which includes the data sets associated.
The MASS library contains the Boston data set, which records medv(median house
value) for 506 neighborhoods around Boston. We will seek to predict medv using
13 predictors such as rm (average number of rooms per house), age (average age of
houses), and Istat(percent of households with low socioeconomic status).
For instance, the 95% confidence interval associated with a Istat value of 10 is



3.2. COMPARISON OF LINEAR REGRESSION WITH K-NN 81

(24.47,25.63), and the 95% prediction interval is (12.828,37.28). As expected, the
confidence and prediction intervals are centered around the same point(a predicted
value of 25.05 for medv when Istat equals 10), but the latter are substantially wider.
There is some evidence for non-linearity in the relationship between Istat and medv.

Figure 3.7: Diagnostic plots

Next, in Figure 3.7 we examine some diagnostic plots (several of which were
discussed) four diagnostic plots are automatically produced by applying the plot().

Alternatively, in Figure 3.8 we can compute the residuals from a linear regression
fit using the residuals() function. The function rstudent() will return the studentized
residuals, and we can use this function to plot the residuals against the fitted values.
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Figure 3.8: Diagnostic plots for residuals

Multiple linear regression
In order to fit a multiple linear regression model using least squares. We again

use the Under the lm() function. The syntax lm(y ∼ x1+x2+x3) is used to fit a
model with three predictors.
As the last section, the Boston data set would be cumbersome to have to type all of
these, in order to perform a regression using all of the predictors. Instead, we can
use the following short-hand:
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>lm.fit=lm(medv .,data=Boston).

What if we would like to perform a regression using all of the variables but one?

>library(car)
>vif(lm.fit)
For example, in the above regression out put, vif() function is a part of the car
package that we must install it in R, age has a high p-value. So we may wish to
run a regression excluding this predictor. The following syntax results in regression
using all except age
>lm.fit1=lm(medv .,-age,data=Boston)
Alternatively, the update() function can be used
lm.fit1=update(lm.fit, .-age).

3.2.2 Non-linear transformations of the predictors

Figure 3.9: Non-linear regression
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The lm() function can also accommodate non-linear transformations of the pre-
dictors. For the instance, The function I() is neededWe now perform a regression
of medv onto Istat and Istat2, we use the anova() function to further quantify the
extent to which the quadratic fit is superior to the linear fit.
In the Figure 3.9; the near-zero p-value associated with the quadratic term suggests
that it leads to an improved model.

Qualitative predictors
In the Figure 3.10 , we will examine the Carseats data, which is part of the ISLR

library, and it includes qualitative predictors such as Shelveloc (an indicator of the
quality of the shelving location). We will attempt to predict Sales (child car seat
sales) in 400 locations based on a number of predictors.

Figure 3.10: Qualitative prediction
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3.3 The regression of the density function by k
nearest neighbors

In this section, we want to give the simulation of the section(1.7.1).
we must first install the nor1mix package and loading her library to estimate the
density function. It make a comparison of the true density function of a mixture
with the estimate from the function fknn; using different kernel like : Cosine , Sil-
vermen, uniform and Epanechnikov kernel, and with different values of k using the
cross-validation method given in chapter one. Also, we will compare between the
kernel and the k nearest neighbors methods.
The Figures 3.11,3.12,3.13,3.14,3.15,3.16,3.17 and 3.18 gives this results.

Figure 3.11 Figure 3.12
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Figure 3.13 Figure 3.14

Figure 3.15 Figure 3.16

Figure 3.19 and Figure 3.20 : The next application concerns a comparison between
the kernel and k-NN locally linear estimator by Cross-validation . Using the Prestige
database for car library to studying the effect of the salary and the prestige of
education. this given in Figure 3.19 and Figure 3.20.
Figure 3.21 : the same results given in the three dimensional space.
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Figure 3.17 Figure 3.18

Figure 3.19 Figure 3.20

3.4 Classification & Logistic regression

The linear regression model discussed in the last section assumes that the re-
sponse variable Y is quantitative. But in many situations; the response variable
is instead qualitative. For example, eye color is qualitative, taking on values blue,
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Figure 3.21

brown,..ect. Often qualitative variables are referred to as categorical. We will pre-
dict this qualitative responses, a process that is known as classification.Predicting
a qualitative response for an observation can be referred to as classifying that ob-
servation. On the other hand,often the methods used for classification first predict
the probability of each of the categories of a qualitative variable, as the basis for
making the classification. In this sense; they also behave like regression methods.

In this section, we discuss one of the most widely-used classifiers: Logistic regression
and k nearest neighbors.

An overview of classification
Classification problems occur often, perhaps even more so than regression prob-

lems. Some examples include:
1) A person arrives at the emergency room with a set of symptoms that could

possibly be attributed to one of three medical conditions. Which of the three
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conditions does the individual have?

2) An online banking service must be able to determine whether or not a transaction
being performed on the site is fraudulent, on the basis of the user’s IP address,
past transaction history, and so forth.

3) On the basis of DNA sequence data for a number of patients with and without
a given disease, a biologist would like to figure out which DNA mutations are
deleterious (disease-causing) and which are not.

Now, we will illustrate the concept of classification using the simulated Default data
set. e are interested in predicting whether an individual will default on his or her
credit card payment, on the basis of annual income and monthly credit card balance.

3.4.1 Logistic regression
Consider again the Default data set, where the response default falls into one of

two categories, Yes or Not. Rather than modeling this response Y directly, logistic
regression models the probability that Y belongs to a particular category. For ex-
ample:the probability of default given balance can be written as:
Pr(default=Yes/balance)
The values of Pr(default=Yes/balance), which we abbreviate P(balance), will range
between 0 and 1. Then for any given value of balance, a prediction can be made for
default.
For example,one might predict default=Yes for any individual for whom p(balance) >
0.5. Alternatively, if a company wishes to be conservative in predicting individuals
who are at risk for default, then they may choose to use a lower threshold, such as
p(balance) > 0.1.

The Logistic model
How should we model the relationship between p(X) = Pr(Y = 1/X) and X?

(For convenience we are using the generic 0/1 coding for the response).
We will talked of using a linear regression model to represent these probabilities:

p(X) = β0 + β1X (3.0)

If we use this approach to predict default=Yes using balance, we see the problem
with this approach: for balances close to zero we predict a negative probability of
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default; if we were to predict for very large balances, we would get values bigger
than 1. These predictions are not sensible,since of course the true probability of
default, regardless of credit card balance, must fall between 0 and 1.
This problem is not unique to the credit default data. Any time a straight line is
fit to a binary response ;that is coded as 0 or 1, in principle; we can always predict
p(X) < 0 for some values of X and p(X) > 1 for others (unless the range of X is
limited).
To avoid this problem, we must model p(X) using a function that gives outputs
between 0 and 1 for all values of X. Many functions meets this description. In
logistic regression , we use the logistic function

p(X) = eβ0+β1X

1 + eβ0+β1X
(3.1)

To fit the model (3.1), we use a maximum likelihood method.

3.5 A Comparison of Classification Methods
In this section we give an example to make a comparison between the nearest

neighbors method and the logistic regression model.

How the k nearest neighbors algorithm works in R ?
We will now perform kNN using the knn() function, which is part of the class

library. This function works rather differently from the other model-fitting functions
that we have encountered thus far. Rather than a two steps approach in which we
first fit the model and then we use the model to make predictions, knn() forms
predictions using a single command. The function requires four inputs.
1) A matrix containing the predictors associated with the training data, labeled

train.X below.

2) A matrix containing the predictors associated with the data for which we wish
to make predictions,labeled test.X below.

3) A vector containing the class labels for the training observations labeled
train.Direction below.

4) A value for k, the number of nearest neighbors to be used by the classifier.

> Library(class)
> train.X=cbind(Lag1,Lag2)[train,]
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> test.X=cbind(Lag1,Lag2)[!train,]
> train.Direction=Direction[train]
Now the knn() function can be used to predict the market’s movement for the dates
in 2005. We set a random seed before we apply knn() because if several observations
are tied as nearest neighbors, then R will randomly break the tie. Therefore, a seed
must be set in order to ensure reproducibility of results.

for k=1:

> set.seed(1)
> knn.pred=knn(train.X,test.X,train.Direction,k=1)
> table(knn.pred,Direction.2005)

for k=3:

> knn.pred=knn(train.X,test.X,train.Direction,k=3)
> table(knn.pred,Direction.2005)
> mean(knn.pred==Direction.2005)

The results have improved slightly. But increasing k further turns out to provides no
further improvements. It appears that for this data, QDA provides the best results.

3.5.1 An application to Caravan Insurance Data
Finally, we will apply the kNN approach to the Caravan dataset, which is part

of the ISLR library, and it includes 85 predictors that measure demographic char-
acteristics for 5.822 individuals. The response variable is Purchase, which indicates
whether or not a given individual purchases a caravan insurance policy.
In this dataset, only 6% of people purchased caravan insurance.

>dim(Caravan)
>attach(Caravan)
>summary(Purchase)

Because the kNN classifier predicts the class of a given test observation by identify-
ing the observations that are nearest to it, the scale of the variables matters. Any
variables that are on a large scale will have a much larger effect on the distance
between the observations, and hence on the kNN classifier, than variables that are
on a small scale. For instance, imagine a data set that contains two variables, salary
and age(measured in dollars and years, respectively). As far as kNN is concerned,
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a difference of $1,000 in salary is enormous compared to a difference of 50 years
in age. Consequently, salary will drive the kNN classification results, and age will
have almost no effect. This is contrary to our intuition that a salary difference of
$1,000 is quite small compared to an age difference of 50 years. Furthermore, the
importance of scale to the kNN classifier leads to another issue: if we measured
salary in Japanese yen, or if we measure age in minutes, then we’d get quite dif-
ferent classification results from what we get if these two variables are measured in
dollars and years.

A good way to handle this problem is to standardize the data, so that all variables
are given a mean of zero and a standard deviation of one. Then all variables will
be on a comparable scale. The scale() function does just this. In standardizing the
data, we exclude column 86, because that is the qualitative Purchase variable.
> standardized.X=scale(Caravan[,-86])
Now, every column of standardized.X has a standard deviation of one and a mean
of zero.
We now split the observations into a test set, containing the first 1,000 observations,
and a training set containing the remaining observations. We fit a kNN model on
the training data using k = 1, and evaluate its performance on the test data.
>test=1:1000
>train.X=standardized.X[-test,]
>test.X=standardized.X[test,]
> train.Y=Purchase[-test]
>test.Y=Purchase[test]
>set.seed(1)
>knn.pred=knn(train.X,test.X,train.Y,k=1)
> mean(test.Y!=knn.pred)
> mean(test.Y!="No")

The k-NN error rate on the 1,000 test observations is just under 12%. At first
glance, this may appear to be fairly good. However, since only 6% of customers
purchased insurance, we could get the error rate down to 6% by always predicting
No regardless of the values of the predictors.

Suppose that there is some non-trivial cost to trying to sell insurance to a given
individual. For instance, perhaps a salesperson must visit each potential customer.
If the company tries to sell insurance to a random selection of customers, then the
success rate will be only 6%, which many be far too low given the costs involved.
Instead, the company would like to try to sell insurance only to customers who are
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likely to buy it. So the overall error rate is not of interest. Instead, the fraction of
individuals that are correctly predicted to buy insurance is of interest.

It turns out that k-NN which k=1 does far better than random guessing among
the customers that are predicted to buy insurance. Among 77 such customers,9,
or 11.7%, actually do Purchase insurance. This is double the rate that one would
obtain from random guessing.
If we use k=3, the success rate increases to 19%, and with k=5 the rate is 26,7. This
is over four times the rate that results from random guessing. It appears that k-NN
is finding some real patterns in a difficult data set!

How the Logistic regression algorithm works in R ?

As a comparison, we can also fit a logistic regression model to the data. If we
use 0.5 as the predicted probability cut-off for the classifier, then we have a problem:
only seven of the test observations are predicted to Purchase insurance. Even worse,
we are wrong about all of these! However we are not required to use a cut-off of
0,5. If we instead predict a Purchase exceeds 0,25, we get much better results: we
predict that 33 people will Purchase insurance, and we are correct for about 33% of
these people. This is over five times better than random guessing!
>glm.fit=glm(Purchase .,data=Caravan,family=binomial,subset=-test)
>glm.probs=predict(glm.fit,Caravan[test,],type="response")
>glm.pred=rep("No",1000)
>glm.pred[glm.probs>0.5]="Yes"
>table(glm.pred,test.Y)
>glm.pred=rep("No",1000)
>glm.pred[glm.probs>0.25]="Yes"
>table(glm.pred,test.Y)

3.6 The usefulness of the k-NN method
In this section, we propose to illustrate the effectiveness of the kNN method. We

will show that the more heterogeneous the dataset is, the more the kNN method is
able to capture this heterogeneity. We first detail a complete study in a simulated
finite sample situation. This example will be voluntarily simple in order to clearly
and educationally illustrate our purpose. Then, we present a concrete situation
which deals with spectrometric curves.
We start by presenting the simulated datasets and we explain what homogeneity
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and heterogeneity are. In the second paragraph we describe our study (regression
operator, model, parameters, ect) an then we give various results and comments.
Finally, we present the spectrometric dataset and give the results of prediction.

The simulated curves
Now, we will present the dataset we use in our study. To illustrate how the

kNN method works, it is important to compare the results when data becomes
more heterogeneous. Indeed, we saw previously that the local structure of the data
has a major role in infinite-dimensional problems. More precisely, we talked about
the importance of the concentration function. so, in the following, the notions of
homogeneity and heterogeneity will refer to the concentration of the data. The idea
here is to simulate a dataset which presents an homogeneous concentration and then
to make it more and more heterogeneous by allowing the concentration of the data to
differ noticeably from one location to another one. Now , we explain how to simulate
this kind of dataset and we illustrate homogeneity in terms of concentration.
We simulate n = 300 pairs (Xi, Yi)i=1,...,n such that:

Xi(t) = ai cos(2t)

Where t takes 100 values in [0, π] and where

ai ∼ N (0, 1) for i = 1, ..., 150

ai ∼ N (3, σ2) for i = 151, ..., n.

We take different values for σ2. This creates two groups of curves inside the dataset
with concentration being different from one group to the other one. We detail the
results for the two extreme cases the most homogeneous one when σ2 = 1 and the
most heterogeneous one when σ2 = 0.1.
Note that in both cases we will take 250 curves to construct the testing sample and
the other 50 will constitute the learning sample.
As we can see in Figure 3.22 and 3.23, it is not easy to see which dataset is more
homogeneous or more heterogeneous and the second more heterogeneous, in terms
of concentration of the data. To do this, we study the concentration function and
more precisely distances between curves. We estimate the values of the concentration
function by

ϕ̂Xi(h) = 1
n

n∑
j=1
1B(χi,h)(χj)
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Figure 3.22: represents the most homogeneous case.

Figure 3.23: represents the most heterogeneous case.

Where X = {Xi, i = 1, ..., n} is the dataset and h is a fixed bandwidth. We use here
the standard L2 semi-metric:

d(Xi,Xj) =
√∫

(Xi(t)−Xj(t))2dt

We represent in Figure 3.24 the values of ϕ̂Xi(h)(i = 1, ..., n) in our two extreme
cases. For each case, the bandwidth h is the one obtained by a cross-validation pro-
cedure (see later). Other plots for other values of h looked similar and are therefore
not presented here.
Figure 3.24 provides real evidence of the high difference between both datasets, in
terms of concentration of the data. For the first datasets (left plot), each of the 300
curves has roughly the same number of neighbors(around 20% of the dataset in each
ball of radius h). At the opposite(right plot), the second dataset shows high hetero-
geneity since both groups of curves have very different numbers of neighbors(20%
for one group and 50% for the other one). Note that this kind of concentration plot
allows us to have information which was hard to obtain directly from the simple
plot of the curves like in Figure 3.22 and 3.23.
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Figure 3.24: Values of ϕ̂χi(h) for the optimal h(left: the most homogeneous
case,right: the most heterogeneous case)

3.6.1 Description of the study
Our aim is to study the following regression model:

Yi = r(Xi) + εi

Where εi ∼ N (0, 0.05) and χi will be the dataset with σ2 = 1 or σ2 = 0.1. We will
observe the behavior of the two methods(kNN method and kernel method) in these
two extreme cases and in order to catch precisely how the kNN method works, we
voluntarily choose a quite simple regression operator:

r(Xi) = a2
i

Now, we give a few important informations from a practical point of view. The
R procedures used for predictions, we will use two of them to estimate the differ-
ent regression operators: the first one is based on the kNN method and is called
funopare.knn.gcv, the second one uses the traditional kernel method and is called
funopare.kernel.cv. These two R procedures use global smoothing parameters se-
lected by an automatic cross-validation type procedure. The optimal bandwidth
hopt of the kernel estimator is defined such that

hopt = arg min
h
CV (h)
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Where

CV (h) =
n∑
i=1

(Yi − r̂(−i)(Xi))2

With

r̂(−i)(x) =
∑n
j=1,j 6=i YjK(d(Xj, x)/h)∑n
j=1,j 6=iK(d(Xj, x)/h)

Whereas the optimal number of neighbors kopt is defined by

kopt = arg min
k
CV (k)

where

CV (k) =
n∑
i=1

(Yi − r̂(−i)
kNN(Xi))2

with

r̂
(−i)
kNN(x) =

∑n
j=1,j 6=i YjK(d(Xj, x)/hk(x))∑n
j=1,j 6=iK(d(Xj, x)/hk(x))

for d, we use the standard L2 semi-metric and the kernel is

K(u) = 3
4(1− u2)1[0,1](u)

3.7 Results prediction of mean square error for
kernel and k-NN methods

We present in this section the results of predictions. Note that, in the whole
following. MSEP is the mean square error of prediction (i.e, the sum of square
errors between predicted values and responses of the testing sample).We start by
presenting the results for the two extreme cases (σ2 = 0.1, σ2 = 1). Figure 3.25
shows the prediction for the most homogeneous case, while Figure 3.26 concerns the
most heterogeneous case.
While for the homogeneous dataset (Figure 3.25) both methods give good results,
the kNN one is much more efficient in the heterogeneous situation with a MSEP of
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Figure 3.25: kNN method vs kernel method in the most homogeneous case (σ2 = 1).

Figure 3.26: kNN method vs kernel method in the most heterogeneous case(σ2 =
0.1).
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σ2 1 0.7 0.5 0.3 0.1
ρ 0.958 0.836 0.253 0.072 0.027

Figure 3.27: k-NN method vs kernel method in the most heterogeneous case (σ2 =
0.1).

0.01(against 0.36 for the kernel method).

Comparison between kernel and k-NN methods using MSEP
In the previous paragraph, we compared the two extreme cases, the most ho-

mogeneous one and the most heterogeneous one. We illustrate in this paragraph
what happens when we take different values for σ2 in order to see the effects of
kNN method when the dataset become more and more heterogeneous. We study
the behavior of the two methods with σ2 = 0.1, 0.3, 0.5, 0.7, 1.
To make things clearer, we consider the following quantity:

ρ = MSEP (kNN)
MSEP (kernel) .

where MSEP(kNN) is the mean square error of prediction of the kNN method and
MSEP(kernel) is the mean square error of prediction of kernel method. When ρ is
close to 1, the two methods are equivalent and when ρ approaches to 0, the kNN
method is better.
Now, we present in Figure 3.28 the values of ρ according to σ2.

3.7.1 Simulated example
This study allows us to illustrate the real interest of the kNN method on finite

sample situation. We see that, in cases where the concentration of the data is homo-
geneous, the two methods give Equivalent results. In the most heterogeneous case,
we see in Figure 3.26 that k-NN method is better. On one hand, the MSEP is much
smaller for kNN method and, on the other hand, the k-NN method is well adapted
for the second group of curves. In fact, since the bandwidth is fixed in the kernel
method, the predictions are precise when the data have an homogeneous concentra-
tion, but, in the second group of curves; where concentration is heterogeneous, the
fixed bandwidth is not adapted because it does not create a neighborhood adapted
to sparse data. This can be clearly seen in Figure 3.26.
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Figure 3.28: The spectrometric dataset.

Now, we can complete this practical section with a concrete example which really
illustrates the effectiveness of the kNN method.

3.8 A real dataset application

Spectrometry is a modern and useful tool for analysing the chemical composition
of any substance.
It provides many datasets which are useful for developing a functional nonparamet-
ric methodology. We focus here on a quality control problem in the food industry.
The original data concerns a sample of finely chopped meat, Each curve represents
the second derivative of the absorbance versus wavelength and the aim is to predict
the fact content(Ferraty and Vieu (2006) [15]).These data are presented in Figure
3.28.
As we can see in Figure 3.27, the shape of the second derivative of the spectrometric
curves reveals some peaks and valleys. This sample of size 215 was splitted into a
learning sample of size 160; and a testing sample of size 55. The parameters k and
d are the same as in the simulated example before.

In previous paragraphs, we pointed out the great importance of heterogeneity and
homogeneity, so it is important in this concrete case to see what happens. Figure
3.29 displays the concentration function for each spectrometric curve.

We can clearly see in Figure 3.29 some heterogeneity in the structure of the spectro-
metric curves. Now, we can compare how the kNN method and traditional kernel
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Figure 3.29: Values of ϕ̂χi(h) for the spectrometric dataset.

Figure 3.30: k-NN method vs kernel method for predicting fat content from spec-
trometric curves.

method work in this example.
Figure 3.30 shows the predicted values obtained by these two methods on the testing
sample.
The results are very clear: in this situation where the data set has a very hetero-
geneous structure , the kNN method gives better predictions than kernel method.
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3.9 Conclusion
We present in this work a few convergence results of the k-NN kernel estimator in

nonparametric regression for the functional, real and vector data. Also we illustrate
How the k-NN algorithm work in R and in our daily life.
For nonparametric estimation, we showed some of many asymptotic property that
this method gives; the almost complete pointwise convergence of this estimator and
we established its rate of convergence. We remarked that this rate is similar to
the rate of convergence of Nadaraya-Watson type kernel estimator (optimal rates
are the same). So, from a theoretical point of view, these two methods have the
same asymptotical properties and we do not have any loss of effectiveness. This
is in concordance with the knowledge in multivariate (unfunctional) nonparametric
situations for which methods are known to achieve optimal rates of convergence [40],
however, the infinite dimension of the data makes the use of the k-NN method more
natural. The real interest of the k-NN method appears on practical examples. The
fact that the smoothing parameter k takes its values in a discrete set makes things
more simple from an implementation points of view. Moreover, we make example in
finance to compare between the k-NN method and the logistic regression, and also
we showed in examples that k-NN method takes into account the local structure
of the data and gives better predictions when the data are heterogeneously concen-
trated.
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