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1.4.1 Itô’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
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Introduction

Stochastic Portfolio Theory (SPT), as we currently think of it, began in 1995 with
the manuscript "On the diversity of equity markets", which eventually appeared as
Fernholz (1999) in the Journal of Mathematical Economics.
Stochastic portfolio theory is a relatively new branch of mathematical finance. It
was introduced and studied by Fernholz [10, 9], and then further developed by
Fernholz, Karatzas and Kardaras [11]. It provides a framework for analysing portfolio
performance under an angle which is different from the usual one.

One of the most important notions here is absence of arbitrage (riskless profit) is
the cornerstone of mode in mathematical finance. At the technical level, there are
various formulations of arbitrage but basic economic considerations forbid that such
opportunities persist in a liquid market.

In modern financial practice, asset prices are modelled by means of stochastic
processes. Continuous-time stochastic calculus thus plays a central role in financial
modelling. The approach has its roots in the foundational work of Black, Scholes and
Merton. Asset prices are further assumed to be rationalizable, that is, determined
by the equality of supply and demand in some market. This approach has its roots
in the work of Arrow, Debreu and McKenzie on general equilibrium.

In mathematical finance there has lately been considerable interest in pushing
beyond the by now classical setting of asset prices modelled by semimartingales,cf.
e.g. Delbaen and Schachermayer (2006) and the references therein. New approaches
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that either restrict the class of allowed trading strategies or introduce transaction
costs allow for instance for the use of condition namely conditional full support.
The CFS property was first introduced by Guasoni, Résonyi, and Schachermayer,
where it was proved that the fractional Brownian motion with arbitrary Hurst
parameter has a desired property. This later was generalized by Cherny (2008)
[4] who proved that any Brownian moving average satisfies the conditional full
support condition. Then, the (CSF) property was established for Gaussian processes
with stationary increments by Gasbarra et al. (2011) [12]. In 2013 Attila Her-
czegh et al. provides a new result on conditional full support in higher dimensions [1].

Let’s note that, by the main result of Guasoni et al [13]. asserts that if a continuous
price process has CFS, then for any ε > 0 there exists a socalled ε-consistent price
system, which is a martingale (after an equivalent change of measure).

The existence of ε-consistent price systems for all ε > 0 implies that the price process
does not admit arbitrage opportunities under arbitrary small transaction costs since
any arbitrage strategy would generate arbitrage also in the consistent price system,
which is a contradiction because of the martingale property.

Consistent price systems can be seen as generalizations of equivalent martingale
measures (EMM’s), since if a price process admits an EMM, then the price process
itself qualifies as a trivial ε-consistent price system for any ε > 0.

However, CFS is worth studying even when it comes to price processes that admit
EMM’s, since it enables the construction of specific consistent price systems that
are useful in solving superreplication problems under proportional transaction costs.
This is manifested by the "face-lifting" result in [13].

Aside from having these applications in mathematical finance, CFS is an interesting
fundamental property from a purely mathematical point of view. In particular,
research on the CFS property can be seen as a natural continuation to the classical
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studies of the supports of the laws of continuous Gaussian processes, by Kallianpur
[21], and diffusions, initiated by Stroock and Varadhan [41] and continued by several
other authors (see e.g. [28] and the references therein).

This thesis consists three chapters. In the first chapter we focus on Stochastic Calculus
for finance. We devoted to a brief summary of the theory of stochastic and fractional
calculus. In this chapter we will give definitions and properties of the needed theory.
We briefly recall some basic properties of the Brownian motion and the fractional
Brownian motion, then we discuss integration with respect to Wiener processes (resp
fBm).
The aim of the second chapter is to provide an introduction to the mathematical
methods used in continuous-time modeling of financial markets. It will focus on
problems of pricing of options by arbitrage. The goal is not to provide a comprehensive
presentation of the theory but rather to emphasize the major ideas and techniques.
In this chapter we are looking the description of asset model in continuous time( the
model of Black Scholes), self-financing portfolios, and arbitrage.
In the chapter 3, we study a simple condition on asset prices, namely conditional
full support, which generates a large class of consistent price systems which links the
problems of no-arbitrage. In fact, all natural examples (which we can think of) enjoy
this property. We study the problems of no-arbitrage for asset prices driven by a
continuous process and with constant proportional transaction costs and we studied
the relation between the condition CFS and stochastic integral. In the last section
of this chapter we give a set of conditions to provide our main results on conditional
full support for the processes the Ornstein Uhlenbeck, stochastic integral sach that
the Brownian Bridge is the integrator and Fractional brownian motion and build the
absence of arbitrage opportunities without calculating the risk-neutral probability.



Chapter 1

Preliminary Background

In this chapter the basic concepts and results concerning stochastic calculus of con-
tinuous stochastic processes are given. We omit some introductory facts from prob-
ability theory. For more detail we refer the reader to [3, 17, 22, 23]. We first start
with stochastic process, Wiener process and fractional Brownian motion.

1.1 Basic definitions

In this section the basic notations of the theory of stochastic calculus are considered.
Let (Ω,F ,P) be a complete probability space equipped with a filtration {Fs} satis-
fying the usual conditions :

• Fs =
⋂
t>sFt for all s ≥ 0;

• All A ∈ F with P(A) = 0 are contained in Ft.

A family (X(t), t ≥ 0) of Rd-valued random variables on (Ω,F ,P) is called a stochas-
tic process, this process is adapted if all (X(t), t ≥ 0) are Ft-measurable. Denoting
B, the Borel σ-field on [0,∞). The process X is measurable if (t, ω) 7→ X(t, ω)

is a B
⊗
F -measurable mapping. We say that (X(t), t ≥ 0) is continuous if the

trajectories t 7→ X(t, ω) are continuous for all ω ∈ Ω except on a negligible set.
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1.1.1 Continuous-Time Martingales

The concept of a martingale is fundamental to modern probability and is one of the
key tools needed to study mathematical finance.

Let {Xt, t ≥ 0} be a continuous-time stochastic process. Recall that this implies that
there are uncountably many random variables, one for each value of the time index t.
For t ≥ 0, let Ft denote the information contained in the process up to (and including)
time t. Formally, let

Ft = σ(Xs, 0 ≤ s ≤ t).

We call Ft, t ≥ 0 a filtration, and we say that Xt is adapted if Xt ∈ Ft. Notice that
if s ≤ t, then Fs ⊆ Ft so that Xs ∈ Ft as well.

Definition 1.1.1. A collection {Xt, t ≥ 0} of random variables is said to be a mar-
tingale with respect to the filtration Ft, t ≥ 0 if

(i) Xt is Ft-measurable for all t ≥ 0,

(ii) E[|Xt|] is finite for all t ≥ 0, and

(iii) E[Xt|Fs] = Xs for all 0 ≤ s < t.

Note that in the third part of the definition, the present time t must be strictly larger
than the past time s.

Theorem 1.1.2. [27]
Let {Xt, t ≥ 0} be a stochastic process and consider the filtration {Ft, t ≥ 0} where
Ft = σ(Xs, 0 ≤ s ≤ t). Let Y be a random variable, and let g : Rn → R be a function.
Suppose that 0 ≤ t1 < t2 < . . . < tn are n times, and let s be such that 0 ≤ s < t1.
(Note that if t1 = 0, then s = 0.) It then follows that

(a) E(g(Xt1 , . . . , Xtn)Y |Fs) = g(Xt1), . . . , Xtn)E(Y |Fs) (taking out what is known)

(b) E(Y |Fs) = E(Y ) if Y is independent of Fs, and

(c) E(E(Y |Fs)) = E(Y ).
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1.2 Brownian motion

In what follows, we will state a number of important facts regarding Brownian motion.
Historically:

• 1828: Robert Brown, botanist observes the movement of pollen suspended in
water.

• 1877: Delsaux explains that this is due to the irregular motion of pollen with
shock water molecules (constant changes of direction),

• 1900: Louis Bachelier in his dissertation "Theory of Speculation" models the
course the stock market as a process with independent increments and Gaussian
(problem: the price of the asset, Gaussian process can be negative)

• 1905: Einstein determines the density of the BM and binds to PDEs. the
Schmolushowski described as random walk limit.

• 1923: Rigorous Study of BM by Wiener, among others demonstration of exis-
tence.

Definition 1.2.1. A Brownian motion process is a stochastic process Bt, t ≥ 0, which
satisfy:

1. The process starts at the origin, B0 = 0;

2. Bt has stationary, independent increments;

3. The process Bt is continuous in t;

4. The increments Bt − Bs are normally distributed with mean zero and variance
|t− s|,

Bt −Bs ∼ N(0, |t− s|).

The process Xt = x + Bt has all the properties of a Brownian motion that starts at
x. Since Bt − Bs is stationary, its distribution function depends only on the time
interval t− s,
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P(Bt+s −Bs ≤ a) = P(Bt −B0 ≤ a) = P(Bt ≤ a).

It is worth noting that even if Bt is continuous, it is nowhere differentiable. From
condition 4 we get that Bt is normally distributed with mean E[Bt] = 0

and V ar[Bt] = t

Bt ∼ N(0, t).

This implies also that the second moment is E[B2
t ] = t. Let 0 < s < t. Since the

increments are independent, we can write

E[BsBt] = E[(Bs −B0)(Bt −Bs) +B2
s ] = E[Bs −B0]E[Bt −Bs] + E[B2

s ] = s.

Consequently, Bs and Bt are not independent.

Condition 4 has also a physical explanation. A pollen grain suspended in water is
kicked by a very large numbers of water molecules. The influence of each molecule
on the grain is independent of the other molecules. These effects are average out into
a resultant increment of the grain coordinate.

Proposition 1.2.2. A Brownian motion process Bt is a martingale with respect to
the information set Ft = σ(Bs; s ≤ t).

Proof. The integrability of Bt follows from Jensen’s inequality

E[|Bt|]2 ≤ E[B2
t ] = V ar(Bt) = |t| <∞

Bt is obviously Ft-measurable. Let s < t and write Bt = Bs + (Bt −Bs). Then

E[Bt|Fs] = E[Bs + (Bt −Bs)|Fs]

= E[Bs|Fs] + E[Bt −Bs|Fs]

= Bs + E[Bt −Bs] = Bs + E[Bt−s −B0] = Bs,

where we used that Bs is Fs-predictable (from where E[Bs|Fs] = Bs) and that the
increment Bt−Bs is independent of previous values of Bt contained in the information
set Ft = σ(Bs; s ≤ t).
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A process with similar properties as the Brownian motion was introduced by Wiener.

Definition 1.2.3. A Wiener process Wt is a process adapted to a filtration Ft such
that

1. The process starts at the origin, W0 = 0;

2. Wt is an Ft-martingale with E[W 2
t ] <∞ for all t ≥ 0 and

E[(Wt −Ws)
2] = t− s, s ≤ t;

3. The process Wt is continuous in t.

Theorem 1.2.4. [32](Lévy)
A Wiener process is a Brownian motion process.

Proposition 1.2.5. If Wt is a Wiener process with respect to Ft, then Yt = W 2
t − t

is a martingale.

Proof. Yt is integrable since

E[|Yt|] ≤ E[W 2
t + t] = 2t <∞, t > 0.

Let s < t. Using that the increments Wt −Ws and (Wt −Ws)
2 are independent of

the information set Fs and we have

E[W 2
t |Fs] = E[(Ws +Wt −Ws)

2|Fs]

= E[W 2
s + 2Ws(Wt −Ws) + (Wt −Ws)

2|Fs]

= E[W 2
s |Fs] + E[2Ws(Wt −Ws)|Fs] + E[(Wt −Ws)

2|Fs]
= W 2

s + 2WsE[Wt −Ws|Fs] + E[(Wt −Ws)
2|Fs]

= W 2
s + 2WsE[Wt −Ws] + E[(Wt −Ws)

2]

= W 2
s + t− s,

and hence E[W 2
t − t|Fs] = W 2

s − s, for s < t.
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Proposition 1.2.6. Let 0 ≤ s ≤ t. Then

1. Cov(Ws,Wt) = s;

2. Corr(Ws,Wt) =
√

s
t
.

Proof. 1. Using the properties of covariance

Cov(Ws,Wt) = Cov(Ws,Ws +Wt −Ws)

= Cov(Ws,Ws) + cov(Ws,Wt −Ws)

= V ar(Ws) + E[Ws(Wt −Ws)]− E[Ws]E[Wt −Ws]

= s+ E[Ws]E[Wt −Ws]

= s,

since E[Ws] = 0.We can also arrive at the same result starting from the formula

Cov(Ws,Wt) = E[WsWt]− E[Ws]E[Wt] = E[WsWt].

Using that conditional expectations have the same expectation, factoring the
predictable part out, and using that Wt is a martingale, we have

E(WsWt) = E[E[WsWt|Fs]] = E[WsE[Wt|Fs]]

= E[WsWs] = E[W 2
s ] = s,

so Cov(Ws,Wt) = s.

2. The correlation formula yields Corr(Ws,Wt) = Cov(Ws,Wt)
σ(Wt) σ(Ws)

= s√
s
√
t

=
√

s
t
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1.2.1 Brownian Bridge

The process (Xt = Wt − tW1)0≤t≤1 is called the Brownian bridge fixed at both 0 and
1. Since we can also write

Xt = Wt − tWt − tW1 + tWt

= (1− t)(Wt −W0)− t(W1 −Wt),

using that the increments Wt −W0 and W1 −Wt are independent for all 0 < t < 1

and normally distributed, with

Wt −W0 ∼ N(0, t), W1 −Wt ∼ N(0, 1− t),

it follows that Xt is normally distributed with

E[Xt] = (1− t)E[(Wt −W0)]− tE[(W1 −Wt)] = 0

V ar[Xt] = (1− t)2V ar[(Wt −W0)] + t2V ar[(W1 −Wt)]

= (1− t)2(t− 0) + t2(1− t)

= t(1− t).

This can be also stated by saying that the Brownian bridge tied at 0 and 1 is a
Gaussian process with mean 0 and variance t(1− t), so Xt ∼ N(0, t(1− t)).

1.3 Fractional Brownian Motion

The name fractional Brownian motion (fBm) was given by Mandelbrot and Van Ness
in [26]. However, Kolmogorov studied it first within the Hilbert Space framework.
The fBm is a H-ss process that has stationary increments. In fact, it is the unique
Gaussian H-sssi process. It has very interesting properties for many applications.
One of them is its "memory". It can then be applied in telecommunications as well
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as in finance. This is the process for which we shall study the Wiener integration
with respect to it. Our presentation is based on [8], [38] and [26].

Definition 1.3.1. For H ∈ (0, 1), a standard fractional Brownian motion of Hurst

parameter H is a centered and continuous Gaussian process, denoted by (BH
t ), with

covariance function

E(B
(H)
t B(H)

s ) =
1

2
(| t |2H + | s |2H − | t− s |2H) := RH(t, s)

1.3.1 Selfsimilarity

There is an other classic definition of the fBm using selfsimilar properties, which we
give as a theorem.

Theorem 1.3.2. [18] For H ∈ (0, 1), the fBm (B
(H)
t ) is a Gaussian H-ss process.

1.3.2 Hölder continuity

We have seen that a Brownian motion is locally Hölder continuous of order strictly
less than 1/2. Hence we have the following proposition which generalize this result
to the fBm.

Proposition 1.3.3. [18]. Let H ∈ (0, 1). The fBm BH admits a version whose
sample paths are almost surely Hölder continuous of order strictly less than H.

Proof. It follows from the Kolmogorov’s continuity criterion and the fact that for any
α > 0, we have

E
(∣∣BH

t −BH
s

∣∣α) = E
(∣∣BH

1

∣∣α) |t− s|αH . �

1.3.3 Differentiability

As in the Brownian case, the fBm is a.s., nowhere differentiable. Effectively, we
have the following proposition.
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Proposition 1.3.4. Let H ∈ (0, 1). The fBm sample path BH(·) is not differentiable.
Indeed, for every t0 ∈ [0,∞)

lim
t→t0

sup

∣∣∣∣BH(t)−BH(t0)

t− t0

∣∣∣∣ =∞,

with probability one.

Proof. We refer the reader to [18]

1.3.4 The fBm is not a semimartingale for H 6= 1
2

This is a crucial result of this section. Indeed, the fact that the fBm is not a
semimartingale implies that we are not able to integrate with respect to it as we
usually do in the classical stochastic calculus. Effectively, the most general class of
integrators are semimartingales.
Let us now prove this result (fBm is not a semimartingale).

Proof. In fact, it is sufficient to compute p-variation of BH . More precisely, we asserts
that the index of p−variation of a fBm is 1

H
. Indeed, let us consider for fixed p > 0,

Yn,p :=
n∑
i=1

∣∣∣BH
i
n
−BH

i−1
n

∣∣∣p np(H−1).

Since BH has the self-similarity property, the sequence Yn,p has the same distribution
as

Ỹn,p :=
n∑
i=1

∣∣BH
i −BH

i−1

∣∣p 1

n
.

By the Ergodic theorem (see, [3]) the sequence Ỹn,p converges almost surely and in

L1 to E
[
|BH(1)|p

]
as n tends to infinity; hence, it converges also in probability to

E
[
|BH(1)|p

]
. It follows that

Vn,p :=
n∑
i=1

|BH
i
n
−BH

i−1
n
|p P→

{
0, if pH > 1

∞ if pH < 1
as n→∞. (1.1)
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Then we showed that the index of p−variation is 1
H
. However, for a semimartingale,

the index must be either in [0, 1] either equal to 2, i.e., 1
H
∈ [0, 1] ∪ {2}. But since

H ∈ (0, 1), H−1 6∈ [0, 1]. Therefore, the fBm is a semimartingale only for H = 1
2
.

�

1.3.5 Representions of FBm on a finite interval

There are also representations of the fBm as a Wiener integral but defined on an
interval, e.g. commonly taken as [0, T]. We shall still use fractional analysis. As
for the representation on the real line we would like to have for a one-sided fBm

(B
(H)
t )0≤t≤T a general formula

B
(H)
t =

∫ t

0

KH(t, s)dBs, t ∈ [0, T ] (1.2)

where (Bt)0≤t≤T is a one-sided standard Brownian motion.

Lévy-Hida Representation Note that the fractional Brownian motion is a par-

ticular case of Volterra processes. Following Decreusfond and Üstünel in [?] we have
this kernel

KH(t, s) =
(t− s)H−

1
2

+

Γ(H + 1
2
)
F

(
1

2
−H,H − 1

2
, H +

1

2
, 1− t

s

)
, 0 < s < t <∞

where F is the Gauss hypergeometric function. Remark that, generally, the covariance
RH(t, s) of BH is given by

RH(t, s) =

∫ t∧s

0

KH(t, u)KH(s, u)du.

Indeed, by (1.2), it follows that

RH(t, s) = E(B
(H)
t B(H)

s ) = E

(∫ t∧s

0

KH(t, u)KH(s, u)dBu

)
=

∫ t∧s

0

KH(t, u)KH(s, u)du.
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• Case H ∈
(

1
2
, 1

)

Proposition 1.3.5. [18] For the case H ∈
(

1
2
, 1

)
, the kernel KH can be written

KH(t, s) = cHs
1
2
−H
∫ t

s

| u− s |H−
3
2 uH−

1
2du, t > s,

where

cH =

(
H(2H − 1)

B(2− 2H,H − 1
2
)

) 1
2

where B the Bêta function, i.e. B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt.

Corollary 1.3.6. [18] Besides, we have

RH(t, s) = ($1(H))2

∫ T

0

(
r

1
2
−H(I

H− 1
2

T− uH−
1
21[0,t)(u))(r)

)(
r

1
2
−H(I

H− 1
2

T− uH−
1
21[0,s)(u))(r)

)
dr

with $1(H) =

(
Γ(H− 1

2
)2H(2H−1)

B(2−2H,H6 1
2

)

) 1
2

Theorem 1.3.7. [18] The representation of a fbm for H ∈
(

1
2
, 1

)
over a finite

interval is

B
(H)
t =

∫ t

0

KH(t, s)dWs, s, t ∈ [0, T ],

where (Wt)t∈[0,T ] is a particular Wiener process.

• Case H ∈
(

0, 1
2

)

Proposition 1.3.8. [18] For the case H ∈
(

0, 1
2

)
we have that the kernel is given

by

KH(t, s) = bH

((
t

s

)H− 1
2

(t− s)H−
1
2 −

(
H − 1

2

)
s

1
2
−H
∫ t

s

(u− s)H−
1
2uH−

1
2du

)
,
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where

bH =

(
2H

(1− 2H)B(1− 2H,H + 1
2
)

) 1
2

1.4 Stochastic Integrals with respect to Brownian

Motion

We want to give a meaning to random variable:

∫ T

0

θsdWs

When integrating a function g with respect to a differentiable function f , if g is
regular, its integral is defined as:

∫ T

0

g(s)df(s) =

∫ T

0

g(s)f ′(s)ds

If f is not differentiable but merely of bounded variation, it is still out defining the
integral by:

∫ T

0

g(s)df(s) = lim
πn→0

n−1∑
i=1

g(ti)(f(ti+1)− f(ti)) πn = max(tni−1 − tni )

this integral is called Stieltjes integral.

In our case, the Brownian motion is not bounded variation, so we can not define this
limit path by path.
On the other hand, as it has a finite quadratic variation, it is natural to define the
integral with respect to Brownian motion as a limit in L2 (convergence in the sense
of ‖.‖2) of this random variable.

∫ T

0

θsdWs = lim
Πn→0

n−1∑
i=1

θti(Wti+1
−Wti).
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The convergence in the sense of convergence of random variables in L2(Ω). For that
we will therefore imposed the process θ to be in L2(Ω, [0, T ]).

Will also be imposed θ F -adapted 1 in order that θti is independent of Wti+1
−Wti .

If there was not, we could the same define an integral with respect to Brownian motion
but it would be very different because the quadratic variation of the Brownian motion

is nonzero. A simple example such, as approximations of
∫ T

0
WtdWt, we have among

others the choice between the two following approximations :

n−1∑
i=0

Wti [Wti+1
−Wti ] ou

n−1∑
i=0

Wti+1
[Wti+1

−Wti ].

The gap between the two integrals is then equal to :

n−1∑
i=0

[Wti+1
−Wti ]

2 L2

→ T.

We will build the stochastic integral or the approximation is made at the leftmost
point in order that the integrated is independent of integrating.
This is integral in the sense of Ito. At last, for technical reasons, we will request the
regulatory of the processes that we handle. We assume that the stochastic process
(θt)0≤s≤T is left continuous and is right limited and shall the French abbreviation
(càdlàg).

Finally, we’ll build the stochastic integral on the set

L2
F(Ω, [0, T ]) =

{
(θt)0≤t≤T , processes càdlàg F−adapted s.t E

[(∫ T

0

θ2
sds

)]
<∞

}
.

Firstly build the stochastic integral on the set of the elementary processes.

Definition 1.4.1. A process (θt)0≤t≤T is called the elementary process if there is a
subdivision 0 = t0 ≤ t1 ≤ . . . ≤ tn = T and a discrete process (θi)0≤i≤n−1 such that

1A process θ is said F-adapted if for all t, the variable random θt is Ft-measurable.
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all θi is Fti-adapted and in L2(Ω) such that:

θt(ω) =
n−1∑
i=0

θi(ω)1]ti,ti+1](t)

we note ε the set of elementary process which is a subspace of L2
F(Ω, [0, T ]).

Definition 1.4.2. With the same notations, the stochastic integral between 0 and
t ≤ T of an elementary process θ ∈ ε is the random variable defined by:

∫ T

0

θsdWs :=
k∑
i=0

θi(Wti+1
−Wti) + θi(Wt −Wtk) on ]tk, tk+1],

Proposition 1.4.3. [36]Properties of stochastic integral on E
On the set of elementary processes E, the stochastic integral satisfies the properties:

1. θ 7→
∫ t

0
θsdWs is linear,

2. t 7→
∫ t

0
θsdWs is a.s continuous,

3. (
∫ t

0
θsdWs)0≤t≤T is a process F-adapted,

4. E[
∫ t

0
θsdWs] = 0 and V ar(

∫ t
0
θsdWs) = E[

∫ t
0
θ2
sds],

5. Isometric property :

E

[(∫ t

0

θsdWs

)2]
= E

[ ∫ t

0

θ2
sds

]
,

6. More generally, we have:

E

[ ∫ t

s

θudWu|Fs
]

= 0 et E

[(∫ t

s

θvdWv

)2

|Fs
]

= E

[ ∫ t

s

θ2
vdv|Fs

]
.

7. We even have the more general result:

E

[(∫ t

s

θvdWv

)(∫ u

s

φvdWv|Fs
)

= E

[ ∫ t∧u

s

θvφvdv|Fs
]
.



1.4 Stochastic Integrals with respect to Brownian Motion 26

8.
(∫ t

0
θsdBs

)
0≤t≤T

is a F-martingale.

9. The process
(

(
∫ t

0
θsdWs)

2 −
∫ t

0
θ2
sds

)
0≤t≤T

is a Ft-martingale.

10. The quadratic variation of the stochastic integral is given by:〈∫ t

0

θsdWs

〉
=

∫ t

0

θ2
sds.

11. The quadratic covariation between two stochastic integrals is given by:〈∫ t

0

θsdWs,

∫ u

0

φsdWs

〉
=

∫ t∧u

0

θsφsds.

Finally, the stochastic integral of an element of E is a continuous martingale square
integrable. We denote M2([0, T ]) the set of the continuous martingale square inte-
grable:

M2([0, T ]) := {MFt −martingales s.t E[M2
t ] <∞ ∀t ∈ [0, T ]}.

The stochastic integral is a function of E × [0, T ] inM2([0, T ]).
Will now, as announced, extend the definition of the stochastic integral to the process
adapted having a moment in order 2, i.e. to :

L2
F(Ω, [0, T ]) =

{
(θt)0≤t≤T , process càdlàg F − adapted s.t E

[(∫ T

0

θ2
sds

)]
<∞

}

1.4.1 Itô’s Formula

Here is the tool to calculate the stochastic integrals without going approximating.

Theorem 1.4.4. [36] Any function f ∈ C2(R) to second derivative bounded verifies
a.s:

f(Bt) = f(B0) +

∫ t

0

f ′(Bs)dBs +
1

2

∫ t

0

f ′′(Bs)ds ∀t ≤ T.
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The infinitesimal notation of this relationship is:

df(Bs) = f ′(Bs)dBs +
1

2
f ′′(Bs)ds.

Theorem 1.4.5. Any function f ∈ C2(R) verifies a.s

f(BT ) = f(B0) +

∫ T

0

f
′
(Bs)dBs +

∫ T

0

f
′′
(Bs)ds.

1.4.2 Itô’s Process

Introduce a new class of processes by which we can still define a stochastic integral.

Definition 1.4.6. A Itô’s process is a process of the form

Xt = X0 +

∫ t

0

ϕsds+

∫ t

0

θsdBs, (1.3)

with X0 F0-measurable, θ and ϕ two processes F-adapted verifying the integrability
conditions ∫ T

0

|θs|2ds <∞ a.s and

∫ T

0

|ϕs|ds <∞ a.s,

We note infinitesimal way:
dXt = ϕsds+ θsdBs.

The study that we conducted until now requires integrability conditions stronger on
process θ and ϕ. We will need to impose the following integrability conditions (IC)

E

[ ∫ T

0

|θs|2ds
]
<∞ and E

[ ∫ T

0

|ϕs|2ds
]
<∞

Definition 1.4.7. The concept of stochastic integral with respect to Itô’s process is
defined in the following natural way.
For φ element of L2

F(Ω, [0, T ]), satisfying good integrability conditions, we define:∫ t

0

φsdXs :=

∫ t

0

φsθsdBs +

∫ t

0

φsϕsds.

Itô’s formula generalizes to Itô’s process .
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Theorem 1.4.8. [36] Let f a function C2, so we have:

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dXs +
1

2

∫ t

0

f ′′(Xs)d < X >s

= f(X0) +

∫ t

0

f ′(Xs)ϕsds+

∫ t

0

f ′(Xs)θsdWs +
1

2

∫ t

0

f ′′(Xs)θ
2
sds.

The infinitesimal notation of this relationship is:

df(Xt) = f ′(Xs)dXs +
1

2
f ′′(Xs)d < X >s

Example 1.4.9. Suppose a stock price, St, satisfies the SDE

dSt = µtStdt+ σtStdWt.

Then we can use the substitution, Yt = log(St) and Itô’s Lemma applied to the func-
tion f(x) := log(x) to obtain

St = S0 exp

(∫ t

0

(µs − σ2
s/2)ds+

∫ t

0

σsdWs

)
. (1.4)

Note that St does not appear on the right-hand-side of (1.4) so that we have indeed
solved the SDE. When µs = µ and σsσ are constants we obtain

St = S0 exp((µ− σ2/2)t+ σWt) (1.5)

so that log(St) ∼ N((µ− σ2/2)t, σ2t)

Example 1.4.10. (Ornstein-Uhlenbeck Process)
Let St be a security price and suppose Xt = log(St) satisfies the SDE

dXt = [−γ(Xt − µt) + µ]dt+ σdWt.
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Then we can apply Itô’s Lemma to Yt := exp(γt)Xt to obtain

dYt = exp(γt)dXt +Xtd(exp(γt))

= exp(γt)([−γ(Xt − µt) + µ]dt+ σdWt) +Xtγ exp(γt)dt

= exp(γt)([γµt+ µ]dt+ σdWt)

so that

Yt = Y0 + µ

∫ t

0

eγt(γs+ 1)ds+ σ

∫ t

0

eγsdWs. (1.6)

or alternatively(after simplifying the Riemann integral in (1.6))

Xt = X0e
−γt + µt+ σe−γt

∫ t

0

eγsdWs. (1.7)

Once again, note that Xt does not appear on the right-hand-side of (1.7) so that we
have indeed solved the SDE. We also obtain E[Xt] = X0e

−γt + µt and

V ar(Xt) = V ar

(
σe−γt

∫ t
0
eγsdWs = σ2 exp(−2γt)E

[(∫ t

0

eγsdWs

)2]

= σ2 exp(−2γt)

∫ t

0

e2γsds (by Itô′s isometry)

=
σ2

2γ
(1− e−2γt).

(1.8)
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1.5 Stochastic Integration with respect to Fractional

Brownian Motion

To construct the integral with respect to fractional Brownian motion (H ∈ (0, 1),
we use the generalized (fractional) Stieltjes integral (see [31]-[43]).
Consider two nonrandom functions f and g, defined on some interval [a, b] ⊂ R.
Suppose that the limits f(u+) := limδ↓0 f(u + δ) and g(u−) := limδ↓0 g(u − δ), a ≤
u ≤ b exist. Put fa+(x) := (f(x)− f(a+))1(a,b)(x), gb−(x) := (g(b−)− g(x))1(a,b)(x).

1.5.1 Generalized Stieltjes integral

Let α ∈ (0, 1
2
). For any measurable function f : [0, T ] → R we introduce the

following notation

‖f‖α := |f(t)|+
∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds. (1.9)

Denote by Wα,∞ the space of measurable functions f : [0, T ]→ R such that

‖f‖α,∞ := sup
t∈[0,T ]

‖f(t)‖α <∞. (1.10)

An equivalent norm can be defined by

‖f‖α,µ := sup
t∈[0,T ]

e−µt
(
|f(t)|+

∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds

)
, µ ≥ 0. (1.11)

Note that for any ε, (0 < ε < α), we have the inclusions

Cα+ε([0, T ];R) ⊂ Wα,∞([0, T ];R) ⊂ Cα−ε([0, T ];R).

In particular, both the fractional Brownian motion BH , with H > 1
2
, and the stan-

dard Brownian motion W , have their trajectories in Wα,∞. We refer the reader to

([15], [29]) for further details on this topics. We denote byW 1−α,∞
T ([0, T ];R) the space

of continuous functions g : [0, T ]→ R such that

‖g‖1−α,∞,T := sup
0<s<t<T

(
|g(t)− g(s)|
(t− s)1−α +

∫ t

s

|g(y)− g(s)|
(y − s)2−α dy

)
<∞.
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Clearly, for all ε > 0 we have

C1−α+ε([0, T ];R) ⊂ W 1−α,∞
T ([0, T ];R) ⊂ C1−α([0, T ];R).

Denoting

Λα(g; [0, T ]) =
1

Γ(1− α)
sup

0<s<t<T
|(D1−α

t− gt−)(s)|,

where Γ(α) =
∫∞

0
rα−1e−rdr is the Euler function and

(D1−α
t− gt−)(s) =

eiπ(1−α)

Γ(α)

(
g(s)− g(t)

(t− s)1−α + (1− α)

∫ t

s

g(s)− g(y)

(y − s)2−α dy

)
1(0,t)(s).

We also define the space Wα,1([0, T ];R) of measurable functions f on [0, T ] such that

‖f‖α,1;[0,T ] =

∫ T

0

[
|f(t)|
tα

+

∫ t

0

|f(t)− f(y)|
(t− y)α+1

dy

]
dt <∞.

We have Wα,∞([0, T ];R) ⊂ Wα,1([0, T ];R) and ‖f‖α,1;[0,T ] ≤
(
T + T 1−α

1−α

)
‖f‖α,∞;[0,T ].

In [43], Zähle introduced the generalized Stieltjes integral as follows.

Definition 1.5.1. Suppose that fa+ ∈ Iαa+(Lp[a, b]) and

gb− ∈ I1−α
b− (Lq[a, b]) for some p ≥ 1, q ≥ 1, 1

p
+ 1

q
≤ 1, 0 ≤ α ≤ 1.

Under these assumptions, the generalized (fractional) Stieltjes integral
∫ T

0

f(x)dg(x)

is defined in terms of the fractional derivative operators

(Dα
a+fa+)(t) =

1

Γ(1− α)

(
fa+(t)

(t− a)α
+ α

∫ t

a

fa+(t)− fa+(y)

(t− y)α+1
dy

)
1(a,b)(t),

and

(D1−α
b− gb−)(t) =

e−iπα

Γ(α)

(
gb−(t)

(b− t)1−α + (1− α)

∫ b

t

gb−(t)− gb−(y)

(y − t)2+α
dy

)
1(a,b)(t),

as ∫ b

a

f(t)dg(t) := (−1)α
∫ b

a

(Dα
a+f)(t)(D1−α

b− gb−)(t)dt. (1.12)
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The following proposition gives an estimation of the generalized Stieltjes integral.

Proposition 1.5.2. ([29]). Fix 0 < α < 1
2
. Given two functions g ∈ W 1−α,∞

T (0, T )

and f ∈ Wα,1(0, T ) we set

Gt
s(f) =

∫ t

s

frdgr.

Then for all s < t ≤ T we have

∣∣∣∣∫ t

s

frdgr

∣∣∣∣ ≤ sup
s≤r<τ≤t

|(D1−α
τ− gτ−)(r)|

∫ t

s

|(Dα
τ−gs+)(τ)|dτ

≤ Λα(g; [s, t])‖f‖α,1;[0,T ]

≤ cα,TΛα(g; [s, t])‖f‖α,∞,

(1.13)

cα,T =
(
T + T 1−α

1−α

)
.

As follows from [39], for any 1 − H < α < 1 there is exists a fractional derivative

D1−α
b− BH

b−(t) ∈ L∞[a, b]. Therefore, for f ∈ Iαa+(L1[a, b]) we can define the integral

w.r.t. the fBm according to (1.12).

Definition 1.5.3. ([30]). The integral with respect to the fBm is defined as

∫ b

a

fdBH := (−1)α
∫ b

a

(Dα
a+f)(t)(D1−α

b− BH
b−)(t)dt. (1.14)



Chapter 2

Modelisation of Financial Markets

The purpose of this chapter is to provide an introduction to mathematical methods
used in modeling continuous time financial markets.

2.1 Introduction to financial markets

A major revolution took place for thirty years in the financial markets, following a
strong political deregulation.
This new financial landscape was born including imbalances and uncertainties about
international economic relations since the early 1970. The development of inflation
and the volatility of interest rates have affected investors’ expectations. On the other
hand, the internationalization of capital, technological advances in computing and
communication have changed the relationships between different financial centers:
New York, London ... it is now possible at any moment to intervene in all markets.
in France, the reforms started in mid-1984 as the goal, the deregulation of markets
and the creation of a single capital market, the modernization of financial markets.
A major element of this policy was the creation of two very active financial markets,
and with high liquidity, on which will be negotiated new financial instruments:

• MATIF Forward market or International of France, created in 1985, which are
traded in forward.
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• MONEP or Negotiable Options Market Paris, created in 1987, is a very active
market organized options.

Users of these new cash instruments form a very wide range: industrial and commer-
cial business, insurance company, banks .. These new instruments come to the rescue
of investors to offset instability in market parameters such as interest rate, exchange
rates ...

2.1.1 The derivative

For thirty years, we are witnessing a major revolution in the financial markets.
This financial activity is developed through many instruments such as the circulation
of currency expressed in different currencies, loans operations and well on the actions
issued by companies that reflect their capitalization.
The great variability and sometimes even the instability of these parameters (of
interest rates, exchange rates ...) or these stocks led naturally a demand for risk
transfer from certain market participants.
Banks have therefore proposed and created a number of new financial products,
called derivatives, to meet this demand.

A derivative is a financial instrument that is bought or sold and that derives its
value of those other basic financial assets. These assets are called underlying assets
or derivative product support.
The assets underlying classics are negociated in different markets:

• equity markets

• exchange market: purchase / sale of foreign currency

• commodities market: oil, metals . . .

• Energy Market: electricity, gas . . .

• market interest rates
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These derivatives allow to protect against a determined risk: down stock prices,
interest rate risk . . . .

The most commonly traded derivatives are forward and options. Mainly we will
focus on the problems of the options that has been the engine of the theory and
shows remarkably mathematical applications in finance.

2.1.2 Forward

A forward contract is an agreement/contract between two parties that gives the right
and the obligation to one of the parties to purchase (or sell) a specified commodity (or
financial instrument) at a specified price at a specific future time. No money changes
hands at the outset of the agreement.

• The terms of trade are permanently fixed to the date the contract is established,
but the exchange of money takes place only at maturity. these contracts can
cover both tons of petroleum, financial instruments, or any other property, the
quality or quantity are clearly specified

• There is a risk of the counterparty with whom the contract was forged not meet
its obligations. it is the risk of non-performance. its elimination led financial
markets to adopt operating rules for these slightly different contracts. we talk
on future contracts.

• Forwards are symmetrical, ie a priori each counterparty is as likely as the other
to win or lose money without the future

• For stakeholders, the interest in forwards is to know the courtyard of an opera-
tion in the future. It is in this case a hedge.

• Any operation in the future may be implemented for speculative purposes. An
operator who expects a certain kind of movement can buy a contract hoping
for gain.
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• As stressed Aftalion and poncet, these markets play an important role in terms
of information dissemination. Futures prices reflect in some sense the forecast
participants markets, although we will see that arbitrage arguments compel
significantly.

• Another risk is permanently present on the futures markets: is liquidity risk.
A stakeholder who would like to exchange his contract prior to maturity dates
can not find matching quickly.
Organized markets have ssay to establish operating rules that limit both coun-
terparty risk and liquidity.

• Derivatives also allow for a link between different markets, (exchange rate,
stock) so that all the available prices form a coherent.
Indeed, combinations of several operations in different markets can help earn
money for sure without losing any risk: We realize what is called arbitrage.

The presence of many very competent professionals in the trading rooms led by
the law of supply and demand to price adjustments that reduce these arbitrage
opportunities.

Another well known and most fundamental example is an option on a stock.

2.1.3 The options

An option is a contract giving the holder the right, not the obligation, to buy or sell
a certain amount of an asset or to a date (Maturity) and fixed at an agreed price in
advance.
The parameters of an option are:

• The maturity of the option which limits its exercise period.

• The strike price is the price fixed in advance which is the transaction if the
option is exercised.

• The premium is the contract price paid by the buyer to the seller of the option.
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European Call and Put Options

The buyer of the stock may seek protection from a market crash by purchasing a
contract that allows him to sell his asset at time T at a guaranteed price K fixed
at time t. This contract is called a put option with strike price K and exercise date T .

Definition 2.1.1. A (European) put option is a contract that gives its holder the
right (but not the obligation) to sell a quantity of assets at a predefined price K called
the strike price (or exercise price) and at a predefined date T called the maturity.

The major problem we face in the options is the calculation of the premium.
To formalize the ideas, consider the case of a European call option on a share whose
price at time t is ST , maturity T and strike price K.
Then ST falls down below the level K, exercising the contract will give the holder of
the option a gain equal to K − ST in comparison to those who did not subscribe the
option and sell the asset at the market price ST . In turn, the issuer of the option
will register a loss also equal to K − ST .

If ST is above K then the holder of the option will not exercise the option as he may
choose to sell at the price ST . In this case the profit derived from the option is 0.
In general, the payoff of a (so called European) put option will be of the form

φ(ST ) = (K − ST )+ =

{
K − ST , ST ≤ K,

0, ST ≥ K.

On the other hand, if the trader aims at buying some stock or commodity, his interest
will be in prices not going up and he might want to purchase a call option, which is
a contract allowing him to buy the considered asset at time T at a price not higher
than a level K fixed at time t. Here, in the event that ST goes above K, the buyer of
the option will register a potential gain equal to ST −K in comparison to an agent
who did not subscribe to the call option.

Definition 2.1.2. A (European) call option is a contract that gives its holder the
right (but not the obligation) to buy a quantity of assets at a predefined price K
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called the strike and at a predefined date T called the maturity.

In general, a (European) call option is an option with payoff function

φ(ST ) = (ST −K)+ =

{
ST −K, ST > K,

0, ST ≤ K.

Remark 2.1.3. The adjective European is to be contrasted with American. While a
European option can be exercised only on the expiry date, an American option can be
exercised at any time between the start date and the expiry date. In Chapter 18 of
Higham [7], it is shown that American call options have the same value as European
call options. American put options, however, are more complicated.

In market practice, options are often divided into a certain number n of warrants,
the (possibly fractional) quantity n being called the entitlement ratio.
In order for an option contract to be fair, the buyer of the option should pay a fee
(similar to an insurance fee) at the signature of the contract. The computation of
this fee is an important issue, which is known as option pricing.
The second important issue is that of hedging, i.e. how to manage a given portfolio
in such a way that it contains the required random payoff (K − ST )+ (for a put
option) or (ST −K)+ (for a call option) at the maturity date T .

The answer to these two questions are closely related, is based course a minimum of
assumptions that must be:
a modeling assumption of the markets and especially the prices of financial assets
and an assumption of no arbitrage, which essentially says that is not possible to
make money without taking risks.

2.2 Arbitrage

One of the key principles on which option valuation theory rests is no arbitrage.
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There is never an opportunity to make a risk-free profit that gives a greater return
than that provided by the interest from a bank deposit.

Note that this assumption applies only to risk-free profit, it is not relevant to
portfolios that have a good chance of making a greater return than a bank deposit.

To justify the no arbitrage assumption, suppose it were possible to put together a
portfolio that gave a guaranteed improvement on the bank’s interest rate.
Sensible investors would simply borrow money from the bank and spend it on the
portfolio, thereby locking in to a guaranteed risk-free profit.
The forces of supply and demand would then cause the yield from the portfolio to
drop, or the interest rate to increase, or both, until parity was restored.
Further justification for this assumption is provided by the existence of arbitrageurs
who scour the markets seeking to exploit any opportunities for risk-free profits beyond
the interest rate level.

2.3 Stochastic models

To calculate the price of a derivative, we need a stochastic model to describe the
uncertain evolution of or underlying securities. A stochastic model should reflect
the observations of price history as well as possible from a statistical point of view.
Meanwhile, the stochastic model must fit into a mathematical framework that enables
efficient analysis of option prices. A "good" model must capture both the statistical
properties of the dynamics of prices and their effective integration into the theory of
stochastic analysis. The famous Black-Scholes model is a compromise between these
two requirements and in many cases gives explicit formulas of option prices. In this
introductory chapter to financial mathematics, we will study mainly this model.
There has been in recent years a major fad for developing more general models that
the Black-Scholes model to better "stick" to the historical price observations. These
are called stochastic volatility models with jumps ... Whatever the model used, it
must then determine the game in the model parameters from the observation of the



2.4 Valuation of financial markets by arbitrage 40

underlying price and the same price of traded options : it is the problem of estimation
and model calibration.

2.4 Valuation of financial markets by arbitrage

This section introduces the basic principles of financial market models in continuous
time that the Black-Scholes model is a standard reference.
Before addressing this model, it is useful to give a brief overview of its history.

2.4.1 A little history

The origins of the mathematization of modern finance back to the thesis Louis Bache-
lier called "Théorie de la spéculation" sustained at the Sorbonne in 1900.
This work marked the birth of a share of stochastic continuous time processes in
probability, and secondly that of continuous-time strategies for hedging in finance.
The mathematical side, his thesis that greatly influence research of A. N. Kolmogorov
on continuous time processes in the 1920 and those K.Itô - the inventor of stochastic
calculus - in 1950.
In contrast, as regards finance, approach Bachelier was forgotten for almost three
quarters of a century, until 1973 with the release of Black works, Scholes and Merton.
Let’s go back to that time in the 1970 to better understand the context. That’s when
the political will emerges to deregulate the financial markets, making them volatile
interest rates and fluctuating exchange rates. In this deregulated environment, indus-
trial companies and business are subject to increased risks related to such extreme
variability of exchange rates: this is uncomfortable, especially when revenues and
expenses are denominated in different currencies (dollar and euro say).
To provide businesses with tools adapted to these problems and more generally to
allow insurance companies and banks to cover these new risks, new organized markets
were created, allowing stakeholders to massively exchanging insurance products.
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2.4.2 Continuous time model

The continuous time models are models or agents are allowed to negotiate contin-
uously on the market and where we must model the evolution of asset prices as
continuous time processes.
We make the assumptions made on the financial markets: there is no friction
markets, ie no transaction costs for the sale and purchase of shares, no restrictions
on short sales, assets are infinitely divisible and at any time there are buyers and
sellers for all securities market.

The uncertainty in the financial markets is modeled by a probability space (Ω,F ,P)

provided with a filtration F = (Ft)t≥0 where

• Ω represents all the states of the world

• the tribe F represents the global information structure available on the market

• (Ft) is an increasing filtration describing the information available to market
agents at time t, Ft ⊂ F

• probability P which gives the a priori probabilities of events considered. It is
the historical or objective probability.

We distinguish the basic securities, stocks, bonds, ... which are the elements con-
stituent portfolios and derivatives, options, futures contracts that are the subject of
the problem of valuation and coverage.
The basic tracks

There are d+ 1 basic assets on the market, denoted S0, S1, . . . , Sd, can be traded on
any date t ≥ 0.
Sit(ω) is the price of the asset i at time t in the state of the world ω ∈ Ω. it is

assumed that the price process (Sit)t≥0 are continuous in time, i.e. for almost all ω

the application t → Sit(ω) is continuous. We note X = (S0, S1, . . . , Sd) the price
process of d+ 1 assets.
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The asset S0 is cash, i.e. the financial product that describes the value of 1 euro
capitalized on a daily basis to the bank. It is considered without risk because its
performance in a time interval [t, t+ dt] is known at date t of the operation.
We denote r the interest rate per unit of time, assumed constant, for placement
between t and t+ dt in the bank.
The evolution of the cash assets S0 is:

dS0
t = rS0

t dt, S0
0 = 1. (2.1)

In other words, 1 euro capitalized in the bank reports:

S0
t = ert

euros at time t.
Assets S = (S1, ..., Sd) usually represent the prices of risky assets such as stocks,
bonds . . . Our reference model is given by the famous model of Black-Scholes-Merton
for d = 1 risky asset:

dSt = St(bdt+ σdWt) (2.2)

where W is a Brownian motion with respect to F its filtration, and b, σ are constants.
This model was introduced by Black, Scholes and Merton in 1973 (Merton and Scholes
received the Nobel Prize in 1997 for this work; Black died before). There is actually
an explicit formula for the price given by:

St = S0exp

(
σWt +

(
b− σ2

2

)
t

)
(2.3)

2.4.3 Self-financing portfolio

We model the concept of dynamic portfolio management. Consider an agent who can
invest in basic market assets. In a continuous time model, a self-financing portfolio
strategy (in assets X = (S0, . . . , Sd) ) is the data of a process adapted φ = (φ0, ϕ) as

the stochastic integral
∫
φdX exists and whose portfolio value is characterized by:

Vt(φ) = φtXt = V0(φ) +

∫ t

0

φudXu
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We also write the dynamics of the value of a self-financing portfolio as differential:

dVt(φ) = = φ0
tdS

0
t + ϕtdSt = (Vt(φ)− ϕtSt)rdt+ ϕtdSt

= rVt(φ)dt+ ϕt(−rStdt+ dSt).

(2.4)

Actualization by cash

We examine the condition of self-financing when updated by the cash. we note

S̃it = Sit/S
0
t = e−rtSit , i = 1, . . . , d, the discounted price (compared to cash) of

risky assets, and Ṽt(φ) = Vt(φ)/S0
t = e−rtVt(φ) discounted wealth.

So by the Ito formula and (3.3.5), the dynamics of the value of a self-financing port-
folio:

dṼt(φ) = −re−rtVt(φ)dt+ e−rtdVt(φ) = e−rt[−rVt(φ)dt+ dVt(φ)]

= e−rtϕt(−rStdt+ dSt)

= ϕtdS̃t,

what writes:

Ṽt(φ) = Ṽ0(φ) +

∫ t

0

ϕudS̃u (2.5)

2.4.4 Arbitrage and risk-neutral probability

The assumption of absence of arbitrage opportunities is a crucial condition in the
theory of the valuation of derivatives. We formalize this concept with the following
definition.

Definition 2.4.1. An arbitrage opportunity on [0, T ] is a self-financing portfolio strat-
egy φ whose value V (φ) satisfies:

(i) V0(φ) = 0,

(ii) VT (φ) ≥ 0 and P[VT (φ)] > 0.
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Thus, arbitration is the dynamic management of a self-financing portfolio allowing
from zero capital, to create a profit without risk..
In continuous time models, we will be forced to make additional assumptions in-
tegrability on portfolio strategies to ensure the absence of arbitrage opportunities.
Indeed, there are strategies that are arbitrage opportunities as shown in the following
example.

Example 2.4.2. Let a market with a risk-free asset S0 = 1 and a risky asset St = Wt

brownian motion. Let x > 0 and τx the time to stop corresponding to the first time
where S = W touch x. Consider the risky asset strategy ϕ = 1]0,τx]. So starting from

zero initial wealth V0 = 0, the value of this portfolio is Vt =
∫ t

0
1]0,τx](u)dWu = Wt∧τx

and tends to a positive wealth Wτx = x > 0 for an infinite horizon.

We subsequently propose the integrability conditions on strategies to exclude such
pathologies. We call admissible strategies such strategies. This set of admissible
strategies must be rich enough to allow assessment and coverage of many derivatives
and not too big to avoid arbitrage opportunities.
The condition of no arbitrage opportunity also imposes conditions on prices. In a
model in continuous time, this condition implies the existence of a probability Q,
called risk-neutral, equivalent to the objective probability as the price of discounted
assets is a martingale.
Generally, it is then introduced the following definition.

Definition 2.4.3. A Q probability is called risk-neutral probability or probability mar-

tingale if Q is equivalent to P and if the discounted price S̃t = e−rtSt is a martingale
under Q.

The condition of equivalence between Q and P means that for every event A ⊂ Ω, if
P(A) > 0 then Q(A) > 0 and vice versa. In other words, that predicted a positive
probability, Q also predicted and the converse is true.
The name comes naturally martingale property of the discounted price and the word
risk neutral is that the return on assets is equal to the interest rate r of Q.



Chapter 3

Conditional Full Support and

applications to finance

3.1 Introduction

In this section, we study a simple condition on asset prices, namely conditional full
support, which generates a large class of consistent price systems. In fact, all nat-
ural examples (which we can think of) enjoy this property. We study the problems
of no-arbitrage for asset prices driven by a continuous process and with constant
proportional transaction costs.
The conditional full support (CFS) introduced by Guasoni, Rasonyi, and Schacher-
mayer [13], in connection to mathematical finance, via. pricing models with
transaction costs. Their main result asserts that if a continuous price process has
CFS, then for any ε > 0 there exists a socalled ε-consistent price system, which is a
martingale (after an equivalent change of measure).

The existence of ε-consistent price systems for all ε > 0 implies that the price process
does not admit arbitrage opportunities under arbitrary small transaction costs, since
any arbitrage strategy would generate arbitrage also in the consistent price system,
which is a contradiction because of the martingale property.
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Consistent price systems can be seen as generalizations of equivalent martingale
measures (EMM’s), since if a price process admits an EMM, then the price process
itself qualifies as a trivial ε-consistent price system for any ε > 0.

Before starting the relation between the CFS and no arbitrage, let us introduce the
conditional full support condition which prescribes that from any given time on,
the asset price path can continue arbitrarily close to any given path with positive
conditional probability.
To this end, recall first that when E be a separable metric space and µ : B(E)→ [0, 1]

a Borel probability measure.

Definition 3.1.1. We say that the support of µ is the (unique) minimal closed set
A ⊂ E such that µ(A) = 1. We denote this set by supp(µ).

Let(Xt)t∈[0,T ] be a continuous process taking values in an open interval I ⊂ R, defined

on a complete probability space (Ω,F ,P). and let F = (Ft)t∈[0,T ] be a filtration on

this space. Moreover, let Cx([u, v], I) be the space of functions f ∈ C([u, v], I) such
that f(u) = x ∈ I. As usual, we equip the spaces C([u, v], I) and Cx([u, v], I), x ∈ I
with the uniform topologies.

Definition 3.1.2. We say that the process X has conditional full support (CFS) with
respect to the filtration F, or briefly F-CFS, if

1. X is adapted to F

2. for all t ∈ [0, T ] and P-almost all ω ∈ Ω,

supp(Law[(Xu)u∈[t,T ]|Ft](ω)) = Cxt(ω)([t, T ], I) (3.1)

3.2 Basic results on the conditional full support

property

Since CFS is a very recent concept, in the absence of any comprehensive account, it
is instructive to present a few basic results that can be used to establish the property.
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We will consider processes and their CFS in the largest possible state space R.

Notations and conventions

Let T ⊂ [0,∞) be a left-closed interval and (Xt)t∈T a generic stochastic process on
(Ω,F ,P).

For any t ∈ T, we write X̃ t := (Xs −Xt)s≥t.

We denote by F̃X = (F̃Xt )t∈T the raw natural filtration of X and by FX = (FXt )t∈T

its usual augmentation (the minimal right-continuous augmentation of F̃X such that

FminTX contains all P-null sets in F̃Xt for all t ∈ T).
As usual, ‖.‖∞ denotes the sup-norm, and for any f, g ∈ C(T) := C(T,R) and r > 0,
write B(g, r) := {h ∈ C(T) : ‖h− g‖∞ < r} and I(f, g, r) := 1B(g,r)(f).

Finally, R+ := (0,∞), Q+ := Q ∩ R+, and λ stands for the Lebesgue measure on R.

Remark 3.2.1. If I ⊂ R is an open interval and f : R → I is a homeomorphism
then g 7−→ f ◦ g is a homeomorphism between Cx([0, T ]) and Cf(x)([0, T ]). Hence, for

f(X), understood as a process in I, we have

f(X) has F− CFS ⇐⇒ X has F− CFS (3.2)

We begin with an alternative "small-ball" characterization of CFS, which is more
tractable than the original definition.

Lemma 3.2.2. [33]((Small-ball probabilities)
Let (Xt)t∈[0,T ] be a continuous process, adapted to filtration F = (Ft)t∈[0,T ]. Then, X
has F-CFS if and only if

E[I(X̃ t, f, ε)|Ft] > 0 a.s (3.3)

for all t ∈ [0, T ), f ∈ C0([t, T ]), and ε > 0.

Lemma 3.2.3. [33](Positivity)
Let G and H be σ-algebras such that G ⊂ H, and Y ∈ L1 such that Y ≥ 0.
If E[Y |H] > 0 a.s., then E[Y |G] > 0 a.s.
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Corollary 3.2.4. [33](Smaller filtration)
Let (Xt)t∈[0,T ] be a continuous process, adapted to filtrations F = (Ft)t∈[0,T ] and G =

(Gt)t∈[0,T ] that satisfy Gt ⊂ Ht for all t ∈ [0, T ). Then, if X has F-CFS, then it has
also G-CFS.

Lemma 3.2.5. [33](Usual augmentation)
Let (Xt)t∈[0,T ] be a continuous process, adapted to filtration F = (Ft)t∈[0,T ]. Then, X
has F-CFS if and only if it has CFS with respect to the usual augmentation of F .

Lemma 3.2.6. [33]Law invariance

Let (Xt)t∈[0,T ] and (Yt)t∈[0,T ] be a continuous processes (possibly defined on distinct

probability spaces) such that X =law Y . Then, X has FX-CFS if and only if Y has

FY -CFS.

3.3 Consistent Price System and Conditional Full

support

In markets with transaction costs, consistent price systems (CPS) play the same role
as martingale measures in frictionless markets. Guasoni, Rasonyi, and Schachermayer
[13] prove that if a continuous price process has conditional full support, then it admits
consistent price systems for arbitrarily small transaction costs. This result applies to
a large class of Markovian and non-Markovian models, including fractional Brownian
motion.
The first main result of [13] shows that the condition of CFS implies the existence of
consistent price systems.

Theorem 3.3.1. Let Xt be an Rd
+-valued, continuous adapted process satisfying

(CFS); then X admits an ε-consistent pricing system for all ε > 0

The proof of this theorem is quite intuitive, at least in dimension d = 1: Guasoni,
Rasonyi, and Schachermayer [13] show that any continuous price process satisfying
the conditional full support condition (CFS) is arbitrarily close to the archetypal
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model of a "random walk with retirement", where martingale measures are charac-
terized in terms of "retirement probabilities".
Moreover it help to explain the difference between transaction costs and frictionless
markets as regards option pricing and hedging.

3.3.1 One asset with proportional transaction costs

we present now the proof of Theorems 3.3.1 for a market with one asset and with
proportional transaction costs.

Guasoni, Rasonyi, and Schachermayer [13] assume that the bid and ask prices are
given by (1 + ε)−1St and (1 + ε)St, respectively, where (St) is a continuous adapted
process with strictly positive trajectories and ε > 0 is fixed.
They begin with the definition of a CPS:

Definition 3.3.2. Let ε > 0. An ε-consistent price system is a pair (S̃, P̃), of a

probability P̃ equivalent to P and a P̃-martingale S̃ (adapted to Ft) such that

1

1 + ε
≤ S̃it
Sit
≤ 1 + ε, almost surely for all t ∈ [0, T ] and 1 ≤ i ≤ d.

The previous definition show that constructing consistent price systems is a key to
solve the no-arbitrage problems under transaction costs by duality methods. They
begin by introducing the basic model of Random Walk with Retirement, which allows
a large class of consistent price systems to be produced. In the following, they employ
this construction first to show the existence of consistent price systems (Theorem
3.3.1).
Random walk with retirement. Consider a discrete-time filtered probability space
(Ω,G, (Gn),P) such that G0 is trivial and

∨
n Gn = G.

Definition 3.3.3. A Random Walk with Retirement is a process (Xn), adapted to
(Gn), of the form

Xn = X0(1 + ε)
∑n
i=1Ri , n ≥ 1,
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where ε > 0,X0 ∈ R++ and the process {Rn}n≥1 has values in {−1, 0,+1} and satis-
fies:

(i) P(Rm = 0 for all m ≥ n|Rn = 0) = 1 for n ≥ 1;

(ii) P(Rn = x|Gn−1) > 0 on {Rn−1 6= 0} for all x ∈ {−1, 0,+1} and
n ≥ 1(they set R0 6= 0 := Ω as a convention);

(iii) P(Rn 6= 0 for all n ≥ 1) = 0.

In plain English, a Random Walk with Retirement is just a random walk on the
geometric grid (X0(1+ε)k)k∈Z, starting at X0 and "retiring" at the a.s. finite stopping
time ρ = min{n ≥ 1 : Rn = 0}. Note that the filtration (Gn) is, in general, larger
than the one generated by X.
In the following lemma, they describe the general form of a probability measure
Q � P such that X is a Q-martingale. The martingale condition determines the
relative weights of probabilities of upward and downward movements. By contrast,
at each time, they may choose arbitrarily the conditional probability of retirement,
denoted by α.

Lemma 3.3.4. [13] Let (Xn) be a Random Walk with Retirement, and (αn, n ≥ 1) a
predictable (i.e., αn is Gn−1-measurable) process with values in [0, 1] If α satisfies

lim
n→∞

E

[ n∏
i=1

(1− αi)
]

= 0

then there exists a (unique) probability Qα on G such that:

(i) Qα is absolutely continuous with respect to P;

(ii) X is a Qα-martingale;

(iii) Qα(Rn = 0|Gn−1) = αn a.s. on {Rn−1 6= 0}.

We have Q ∼ P iff αn ∈ (0, 1) a.s. for n ≥ 1.
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The next lemma shows that, by choosing high probabilities of early retirement, one
obtains an equivalent martingale measure with arbitrary integrability conditions. In
particular, this implies the existence of equivalent martingale measures for which X
is uniformly integrable.

Lemma 3.3.5. [13] Let (Xn) be a Random Walk with Retirement. Then, for any
function f : R++ 7−→ R and any ε > 0, there exists some Qα ∼ P as in Lemma 3.3.4
such that

EQα

[
supn≥0f(Xn)

]
<∞.

Consistent price systems.

Now they employ the previous construction to prove the existence of consistent price
systems. They construct an increasing sequence of stopping times at which the pro-
cess S behaves like a "Random Walk with Retirement"; the conditional full support
assumption is key to making this construction possible. Martingale measures for a
Random Walk with Retirement are obtained by arbitrarily specifying the probability

of retirement, as in Lemma 3.3.4 above. The Q-martingale S̃ is then defined as the
continuous-time martingale determined by the terminal value of the random walk
with retirement.
For technical reasons, we state a formally stronger version of the conditional full
support condition in terms of stopping times.

Definition 3.3.6. Let τ be a stopping time of the filtration (Ft, t ∈ [0, T ]).
Let us define St := ST for t > T and let µτ (., ω) be (a regular version of) the Ft-
conditional law of the C+[0, T ]-valued random variable (Sτ+t).
We say that the strong conditional full support condition (SCFS) holds if, for each
[0, T ]-valued stopping time τ and for almost all ω ∈ {τ < T}, the following is true:

for each path f ∈ C+
Sτ (ω)[0, T − τ(ω)] and for any η > 0, the η-tube around f has

positive Fτ -conditional probability, that is,

µτ (Bf,η(ω), ω) > 0,
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where

Bf,η =

{
g ∈ C+

Sτ (ω)[0, T ] : sups∈[0,T−τ(ω)]|f(s)− g(s)| < η

}
.

In other words, this property means that for all τ ,
(SCFS)

supp(P(S|[τ,T ]|Fτ ]) = C+
Sτ

[τ, T ] a.s.,

that is, the conditional full support condition (CFS) also holds with respect to stopping
times, while it was formulated in terms of deterministic times only in Definition 3.1.2
above.

The conditions (SCFS) and (CFS) are, in fact, equivalent. The precise formulation
of this idea is somewhat technical, thus the proof of the next lemma is postponed to
the [[13],Appendix].

Lemma 3.3.7. The conditional full support condition (CFS) implies the strong con-
ditional full support condition (SCFS), hence they are equivalent.

We now present the proof of Theorem 3.3.1 in dimension one and under the above
(SCFS) hypothesis. In this case, the arguments are hopefully transparent and intu-
itive.

Proof. Guasoni, Rasonyi, and Schachermayer [13] may suppose that ε ∈ (0, 1). For
any such ε, they associate to the process (St) a "random walk with retirement" as
follows. They define the increasing sequence of stopping times

τ0 = 0, τn+1 = inf

{
t ≥ τn :

St
Sτn

/∈ ((1 + ε)−1, 1 + ε)

}
∧ T.

For n ≥ 1, they set

Rn =

{
sign(Sτn − Sτn−1), ifτn < T

0, ifτn = T
(3.4)

Recall from the previous section the Random Walk with Retirement (Xn, n ≥ 0)

Xn = X0(1 + ε)
∑n
i=1Ri
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adapted to the filtration (Gn) where Gn = Fτn . To check the properties in Defini-
tion 3.3.3, observe that (i) is trivial, while (iii) follows from the continuity of paths.
Furthermore, the (CFS) condition implies (ii) by the following Lemma

Lemma 3.3.8. [13] Let S be an R++-valued continuous process satisfying (CFS)
and let Rn be defined by (3.4). Then, P(Rn+1 = z|Fτn) > 0 a.s. on τn < T for
z = −1, 0,+1 and n ≥ 0.

By Lemma 3.3.5, there exists some Qα ∼ P on F = G :=
∨
n G such that

EQα

[
supn≥0Xn

]
<∞.

Thus, X is a uniformly integrable (Qα, (Gn))-martingale and is closed by its terminal
value X∞. Define

S̃t := EQα [X∞|Ft], t ∈ [0, T ].

Fix 0 ≤ t ≤ T , define the random times σ = max{τn : τn ≤ t} and
τ = min{τn : τn > t} and observe that τ is a stopping time. We have, by definition,

1 + ε−1 ≤ St
Sσ
,
Sτ
Sσ
≤ 1 + ε, almost surely for all t ∈ [0, T ]

and they therefore obtain

1 + ε−2 ≤ Sτ
St
≤ (1 + ε)2, almost surely for all t ∈ [0, T ]

By construction, S̃τn = Xn and Sτn = Xn on τn < T for all n ≥ 0. On τn = T , we
have the estimate

1 + ε−1 ≤ S̃τn
Sτn
≤ (1 + ε)

for all n ≥ 0.
The optional sampling theorem then implies that

S̃t
St

=
EQα [S̃τ |Ft]

St
= EQα

[
S̃τ
Sτ

Sτ
St
|Ft
]
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and therefore that

1 + ε−3 ≤ S̃t
St
≤ (1 + ε)3, almost surely for all t ∈ [0, T ],

which completes the proof, up to the passage to a smaller ε.

3.3.2 Previous results

To illustrate the scope of our results, Guasoni, Rasonyi, and Schachermayer [13]
present some important classes of models where the conditions of Theorem 3.3.1 can
be checked.

Fractional Brownian motion

We now turn to models based on fractional Brownian motion (FBM).
Models of asset prices based on fractional Brownian motion have long attracted the
interest of researchers for their properties of long-range dependence [[5], [24], [25],
[42]]. However, in a frictionless setting, it turns out that these models lead to arbi-
trage opportunities [[34], [37], [40]] and therefore cannot be meaningfully employed
for studying optimal investment and derivatives pricing.
This situation is completely different as soon as arbitrarily small transaction costs
are introduced. There then exist consistent price systems.
The next result improves on Proposition 5.1 of [14] and follows from a similar argu-
ment.

Proposition 3.3.9. Let St = exp{σXt + ft}, where Xt is FBM with parameter
0 < H < 1 and ft is a deterministic continuous function. (St, t ∈ [0, T ]) then satisfies
the conditional full support condition (CFS) with respect to its (right-continuous and
saturated) natural filtration.

Proof. Let us fix v ∈ [0, T ]. It is enough to prove that the conditional
lawP(X|[v,T ]|Fv) has full support on CXv([v, T ],R) almost surely. From the rep-

resentation of Corollary 3.1 in [6], we know that, for some square-integrable kernel
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KH(t, s), one has

Xt =

∫ t

0

KH(t, s)dWs, (3.5)

for some Brownian motion (Wt) generating the same filtration as (Xt).
It is easily seen, by directly calculating the conditional joint characteristic function
of finite-dimensional distributions of X, that for any v ∈ [0, T ], the process
(Xt, t ∈ [v, T ]) is Gaussian, conditionally on Fv. Its conditional expectation and
conditional covariance function are given by

ct := E[Xt|Fv] =

∫ v

0

KH(t, s)dWs t ≥ v,

Γ̃(t, s) := covFv(Xt, Xs) =

∫ t∧s

v

KH(t, u)KH(s, u)du, t, s ≥ v.

Observe that Γ̃(t, s) does not depend on ω. Hence, for almost all ω, the law of
(Xt, t ∈ [v, T ]) conditional on Fv is equal to the law of Yt+ct(ω), where (Yt, t ∈ [v, T ])

is a centered Gaussian process with continuous paths on [v, T ] and with covariance

function Γ̃ Thus, recalling the kernel representation 3.5, it suffices to prove that the
centered Gaussian process

Yt :=

∫ t

v

KH(t, s)dWs, t ∈ [v, T ]

has full support on C0([v, T ],R).
Theorem 3 in [21] states that the topological support of a continuous Gaussian process
(Yt, t ∈ [v, T ]) is equal to the norm closure of its reproducing kernel Hilbert space,
defined by

H :=

{
f ∈ C0([v, T ],R) : f(t) =

∫ t

v

KH(t, s)g(s)ds, for some g ∈ L2[v,T]

}
.

Thus, it is sufficient to show that H is norm-dense in C0([v, T ],R).
To achieve this, we need to recall the Liouville fractional integral operator for any
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f ∈ L1[a, b] and α > 0

(Iαa+f)(t) :=
1

Γ(α)

∫ t

a

f(s)(t− s)α−1ds, a ≤ t ≤ b,

and to introduce the kernel operator KH ,

(KHf)(t) :=

∫ t

0

KH(t, s)f(s)ds, f ∈ L2[0, T ], t ∈ [0, T ].

(1) We first treat the case H < 1
2

In this case, we have by [6], Theorem 2.1, that

(KHf) = I2H
0+ (s

1
2
−HI

1
2
−H

0+ (sH−
1
2f(s)))

For general v, The argument needs to be split into two steps.

• Step 1

Lemma 3.3.10. If f ∈ C0[v, T ], then L1f ∈ C0([v, T ], where

(L1f)(t) = (I
1
2
−H

0+ (sH−
1
2f(s)))(t)

Morever, L1 : C0[v, T ] −→ C0[v, T ] is continuous and has dense range (with respect
to the uniform norm).

Proof. Clearly, L1f is a continuous function and (L1f)(0) = 0. The operator is
continuous by the estimate

‖L1f − L1g‖∞ ≤ vH−1/2

∫ T

0

(T − s)H−1/2ds‖f − g‖∞.

Recall the identity for a, b > 0,

∫ t

0

(t− u)a−1ub−1du = C(a, b)ta+b−1,
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where C(a, b) 6= 0 is a constant. Defining, for a fixed α > 0,

g(s) := 1[v,T ]
(s− v)α

sH−
1
2

,

we obtain, for t ∈ [v, T ],

(L1g)(t) =

∫ t

v

(t− s)−H−
1
2 g(s)sH−

1
2ds =

∫ t

v

(t− s)−H−
1
2 (s− v)αds

=

∫ t−v

0

uα(t− v − u)−H−
1
2du = C(α + 1,

1

2
−H)(t− v)α−H+ 1

2 .

Varying α, we find that (t − v)n ∈ Im(L1) for n ≥ 1 and the Stone-Weierstrass
theorem guarantees that Im(L1) is dense in C0[v, T ].

• Step 2

Lemma 3.3.11. If f ∈ C0[v, T ], then L2g ∈ C0([v, T ], where

(L2f)(t) = (I2H
O+(s

1
2
−Hf(s)))(t)

and L2 : C0[v, T ] −→ C0[v, T ] is continuous and has dense range.

Proof. The same argument applies, but this time we use the estimation

‖L1f − L1g‖∞ ≤ T 1/2−H
∫ T

0

(T − s)2H−1ds‖f − g‖∞.

and the function

g(s) := 1[v,T ]
(s− v)α

s
1
2
−H

,

Since the restriction of KH to C0[v, T ] is exactly L2 ◦ L1, we may conclude that
KH : C0[v, T ] −→ C0[v, T ] has dense range and, a fortiori, H is norm-dense in C0[v, T ].
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(2) In the case H ≥ 1
2

, a similar representation holds

KHf = I1
0+(sH−

1
2 I

H− 1
2

0+ (s
1
2
−Hf)),

and the same argument carries over.

And more generally all Brownian moving averages with non-vanishing kernels [4].
Moreover, Gaussian processes with stationary increments that satisfy a certain
spectral density condition have CFS [12].

In the case of continuous Markov processes, showing CFS reduces to showing
that the support of the (unconditional) law of the process is the largest possible, as
pointed out in [13].
Moreover, it was shown in [13], that if continuous process X has CFS, then the Rie-

mann integral process
∫ .

0
Xtdt has CFS, which allows (using iteration) the construction

of processes that have CFS and arbitrarily smooth paths.

3.4 Conditional full support for stochastic integrals

We shall establish the CFS for processes of the form

Zt := Ht +

∫ t

0

ksdWs, t ∈ [0, T ]

where H is a continuous process, the integrator W is a Brownian motion, and the
integrand k satisfies some varying assumptions (to be clarified below). We focus on
three cases, each of which requires a separate treatment (see [33] ).
First, we study the case:

1. Independent integrands and Brownian integrators

Theorem 3.4.1. [33] Let us define

Zt := Ht +

∫ t

0

ksdWs, t ∈ [0, T ]
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Suppose that

• (Ht)t∈[0,T ] is a continuous process

• (kt)t∈[0,T ] is a measurable process s.t.
∫ T

0
K2
sds <∞ a.s,

• (Wt)t∈[0,T ] is a standard Brownian motion independent of H and k.

If we have
meas(t ∈ [0, T ] : kt = 0) = 0 P− a.s (3.6)

then Z has CFS.

Remark 3.4.2. It follows from Fubini’s theorem, that if kt 6= 0 a.s. for all
t ∈ [0, T ], then the condition 3.6 holds. Hence, in particular whenever kt has
continuous distribution for all t, the previous theorem applies.

The proof of this Theorem requires some preparation. Specifically, we shall
show that the Wiener integral of an almost-everywhere non-vanishing function
has positive small-ball probabilities, using a time-change argument similar.

Lemma 3.4.3. (Wiener integrals) Let h ∈ C([0, T ]), k ∈ L2([0, T ]),
(Wt)t∈[0,T ] Brownian motion, and define

Jt := h(t) +

∫ t

0

k(s)dWs, t ∈ [0, T ].

If kt 6= 0 for a.a. t ∈ [0, T ], then for all t ∈ [0, T ], f ∈ C0([t, T ]), and ε > 0 we
have

P

[
sup
t∈[t,T ]

|Jt − Jt − f(t)| < ε

]
> 0.

Proof. Clearly, we may assume that h = 0. Let t ∈ [0, T ], f ∈ C0([t, T ]), and
ε > 0. Denote

g(t, t) :=

∫ t

t

d〈J, J〉u =

∫ t

t

k(s)2ds, t ∈ [t, T ],
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and note that since k(t) 6= 0 for a.a. t ∈ [0, T ], g is a homeomorphism between

[t, T ] and [0, K], where K :=
∫ T
t
k(s)2ds. By the Dambis, Dubins-Schwarz the-

orem, there exists a Brownian motion (Bs)s∈[0,K] such that Jt − Jt = Bg(t), t ∈
[t, T ] a.s. Hence, we obtain

supt∈[t,T ] |Jt − Jt − f(t)| = sup
t∈[t,T ]

|Bg(t) − (f ◦ g−1)(g(t))|

= sup
s∈[0,K]

|Bu − (f ◦ g−1)(u)| a.s.

Since f ◦ g−1 is continuous, and since the Wiener measure is supported on
C0([0, K]), we have

P

[
sup
t∈[t,T ]

|Jt − Jt − f(t)| < ε

]
= P

[
sup
s∈[0,K]

|Bs − (f ◦ g−1)(s) < ε

]
> 0

We shall now deduce the theorem from Lemma 4.3.1 using a suitable condition-
ing scheme.

Proof. of Theorem
(beginning)
Let t ∈ [0, T ], f ∈ C0([t, T ]), and ε > 0.

Further, let (Ω,F ,P be the completed probabilility space that carries W, H,
and k. By Lemma 4.2.1, it suces to show that

E[I(Ẑt, f, ε)|F̃Zt ] > 0 P− a.s., (3.7)

The proof of this assertion becomes more transparent when we work on an
extension of the space (Ω,F ,P). Namely, we show an analogous property for
a variant of Z, denoted by Z∗, in which the integrator is W up to time t, but
further Brownian increments of the integrator are defined on an auxiliary space.
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Then, since Z and Z∗ have the same distribution, it follows that (3.7) holds.
We define the extended space by

Ω∗ := Ω× C0([0, T ]), F∗ := F ⊗ B(C0([0, T ])), P∗ := P⊗ ν,

where ν is the Wiener measure on C0([0, T ]) and the bars denote completion.

For any ω∗ = (ω, ω
′
) ∈ Ω∗, we define Bt(ω

∗) := Bt(ω
′
) := ω

′
(t) and

W ∗
t (ω∗) := Bt∨t(ω

′
)−Bt(ω

′
) +Wt∧t(ω) for all t ∈ [0, T ].

Moreover, we denote by E∗ the expectation with respect to P∗, by X the
identity map on Ω, which can be seen as a random element in the measurable
space (Ω,F), and by Z∗ the process analogous to Z, with W ∗ as the integrator.
Note that by joint measurability, we have Ht(ω) = φ(t, ω) and kt(ω) = ψ(t, ω)

and φ and ψ F -measurable functions from [0, T ]× Ω to R.

For the conclusion of the proof we need the following auxiliary result, which
asserts that "freezing" randomness on the original probability space Ω reduces
Z∗ to a Wiener integral with a drift.

Lemma 3.4.4. [33](Freezing)
For P-a.a. ω ∈ Ω, we have

(Ẑ∗,tt (ω, .))t∈[t,T ] =

(
φ(t, ω)− φ(t, ω) +

∫ t

t

ψ(s, ω)dBs

)
t∈[t,T ]

(3.8)

up to ν-indistinguishability, where the integral on the right hand side is a Wiener
integral.

(conclusion)

Let us denote G := F⊗C0([0, T ]). We shall show that E∗[I(Ẑ∗,t, f, ε)|G] > 0 P∗-
a.s., which by Lemma 4.2.2 implies that the same holds also with respect to

F̃Z∗t ⊂ G, which in turn implies that (3.7) holds. We may compose
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Ẑ∗,t(ω, ω
′
) = Ẑ∗,t(X(ω), B(ω

′
)), (ω, ω

′
) ∈ Ω∗.

Moreover, by independence, ν is a version of the regular G-conditional law of B
on C0([0, T ]). By the disintegration theorem (Theorem 6.4 of [20]), we have
P∗-a.s.

E∗[I(Ẑ∗,t, f, ε)|G] = E∗[1B(f,ε)(Ẑ
∗,t(X,B))|G]

=

∫
C0([0,T ])

1B(f,ε)(Ẑ
∗,t(X,ω

′
))ν(dω

′
) := Y (X).

By Lemma 4.3.2, for P-a.a. ω ∈ Ω, 1B(f,ε)(Ẑ
∗,t(ω, .)) = 1B(f,ε)(J

ω) ν-a.s.,

where Jω is the right hand side of 3.8. But for P-a.a. ω ∈ Ω the map ψ(., ω) is
a.e. non-vanishing, so it follows from Lemma 3.6 that for P-a.a. ω ∈ Ω,

Y (X(ω)) =

∫
C0([0,T ])

1B(f,ε)(J
ω(ω

′
))ν(dω

′
) > 0.

Hence, Y > 0 also P∗-a.s., which concludes the proof.

As an application of this result, we show that several popular stochastic
volatility models have the CFS property.

Application to stochastic volatility model:

Let us consider price process (Pt)t∈[0,T ] in R+ given by :

dPt = Pt(f(t, Vt)dt+ ρg(t, Vt)dBt +
√

1− ρ2g(t, Vt)dWt,

P0 = p0 ∈ R+ where

(a) f, g ∈ C([0, T ]× Rd,R),

(b) (B,W) is a planar Brownian motion,
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(c) ρ ∈ (−1, 1),

(d) V is a (measurable) process in Rd s.t. g(t, Vt) 6= 0 a.s. for all t ∈ [0, T ],

(e) (B,V) is independent of W,

write using Itô’s formula:

logPt = logP0 +

∫ t

0

(f(s, Vs)−
1

2
g(s, Vs)

2)ds+ ρ

∫ t

0

g(s, Vs)dBs︸ ︷︷ ︸
=Ht

+
√

1− ρ2

∫ t

0

g(s, Vs)dWs︸ ︷︷ ︸
=Ks

Since W is independent of B and V, the previous Theorem implies that logP
has CFS, and from the next remark which it follows that P has CFS.

Next, we relax the assumption about independence, and consider the second
case:

2. Progressive integrands and Brownian integrators

Remark 3.4.5. The assumption about independence between W and (H,k) can-
not be dispensed with in general without imposing additional conditions.
Namely, if e.g.

Ht = 1; kt := eWt− 1
2
t; t ∈ [0, T ]

then Z = k = ξ(W ), the Doléans exponential of W,
which is stricly positive and thus does not have CFS, if process is consider in
R.

Theorem 3.4.6. [33]

Suppose that

• (Xt)t∈[0,T ] and (Wt)t∈[0,T ] are continuous process
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• h and k are progressive [0, T ] ∗ C([0, T ])2 −→ R,

• ε is a random variable.

• and Ft = σ{ε,Xs,Ws : s ∈ [0, t]}, t ∈ [0, T ]

If W is an Ft∈[0,T ] −Brownian motion and

• E[eλ
∫ T
0 k−2

s ds] <∞ for all λ > 0

• E[e2
∫ T
0 k−2

s h2sds] <∞ and

•
∫ T

0
k2
sds ≤ K a.s for some constant K ∈ (0,∞)

then the process

Zt = ε+

∫ t

0

hsds+

∫ t

0

ksdws, t ∈ [0, T ]

has CFS.

3. Independent integrands and general integrators

Since Brownian motion has CFS, one might wonder if the preceeding results
generalize to the case where the integrator is merely a continuous process with
CFS. While the proofs of these results use quite heavily methods speciFIc to
Brownian motion (martingales, time changes), in the case independent inte-
grands of finite variation we are able to prove this conjecture.

Theorem 3.4.7. [33] Suppose that

• (Ht)t∈[0,T ] is a continuous process

• (kt)t∈[0,T ] is a process of finite variation, and

• X = (Xt)t∈[0,T ] is a continuous process independent of H and k.

Let us define
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Zt := Ht +

∫ t

0

ksdXs, t ∈ [0, T ]

If X has CFS and
inf

t∈[0,T ]
|kt| > 0 P− a.s

then Z has CFS.

3.5 Main results

The main aim of this section is to enjoy this property by thinking of the problems of
no arbitrage for asset prices on a new financial models .
First for the Ornstein Uhlenbeck process , secondly for other financial model where the
stochastic integration is w.r.t the Brownian Bridge 1 (resp w.r.t fractional Brownain
motion 2)
We will use the theorem 3.3.1 to demonstrate the absence of arbitration without
calculating the risk-neutral probability for the two models below.

3.5.1 Ornstein-Uhlenbeck Process driven by Brownian Motion

The (one-dimensional) Gaussian Ornstein-Uhlenbeck process X = (Xt)t≥0 can be
defined as the solution to the stochastic differential equation (SDE)

dXt = θ(µ−Xt)dt+ σdWt t > 0

Where we see

Xt = X0e
−θt + µ(1− e−θt) +

∫ t

0

σeθ(s−t) dWs. t ≥ 0

1This application is the subject of a publication in Journal of Acta Univesitatis Sapientiae Math-
ematica in Vol. 8, No. 2,2016

2This application is the subject of article who submitted to publication in Journal of Math.
Notes, October 2015



3.5 Main results 66

It is readily seen that Xt is normally distributed. We have

Xt = X0e
−θt + µ(1− e−θt)︸ ︷︷ ︸

Ht

+

∫ t

0

σeθ(s−t)︸ ︷︷ ︸
Ks

dWs. t ≥ 0 (3.9)

to establish the property of CFS for this process, the conditions of theorem 3.1 will
be applied.

The processes (Hs) and (Ks) in (3.9) satisfy

1. Process (Hs) is a continuous process,

2. (Ks) is a measurable process such that
∫ T

0
K2
sds <∞ a.s, and

3. (Wt) is a standard Brownian motion independent of H and K.

Consequently, the process (Xt) has the property of CFS and there is the consistent
price systems which can be seen as generalization of equivalent martingale measures.
This observation we basically say that this price process doesn’t admit arbitrage
opportunities under arbitrary small transaction, with it we guarantee no-arbitrage
without calculating the risk-neutral probability.

3.5.2 Independent integrands and Brownian Bridge integra-

tors.

To state our main result for the application of CFC in which the Brownian Bridge is
the integrator, we need to recall some facts of Brownian bridge.

Let us start with a Brownian motion B = (Bt, t ≥ 0) and its natural filtration FB.

Define a new filtration as G = (Gt, t ≥ 0) with Gt = F (B1)
t = FBt ∨ σ(B1). In this

filtration, the process (Bt, t ≥ 0) is no longer a martingale. It is easy to be convinced

of this by looking at the process (E(B1 | F (B1)
t ), t ≤ 1): this process is identically

equal to B1, not to Bt, hence (Bt; t ≥ 0) is not a G-martingale. However, (Bt, t ≥ 0)
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is a G-semi-martingale, as follows from the next proposition 3.5.2.

In general, if H = (Ht, t ≥ 0) is a filtration larger than F = (Ft, t ≥ 0), i.e.,
Ft ⊂ Ht,∀t ≥ 0 (we shall write F ⊂ H), it is not true that an F-martingale remains
a martingale in the filtration H. It is not even true that F-martingales remain
H-semi-martingales.

Before giving this proposition, we recall the definition of Brownian bridge.

Definition 3.5.1. The Brownian bridge (bt; 0 ≤ t ≤ 1) is defined as the conditioned
process (Bt; t ≤ 1|B1 = 0).

Note that Bt = (Bt − tB1) + tB1 where, from the Gaussian property, the process
(Bt − tB1; t ≤ 1) and the random variable B1 are independent. Hence

(bt; 0 ≤ t ≤ 1) =law (Bt − tB1; 0 ≤ t ≤ 1).

The Brownian bridge process is a Gaussian process, with zero mean and covariance
function s(1− t); s ≤ t. Moreover, it satisfies b0 = b1 = 0.

Proposition 3.5.2. [36] Let F (B1)
t = ∩ε>0Ft+ε ∨ σ(B1). The process

βt = Bt −
∫ t∧1

0

B1 −Bs

1− s
ds

is an F(B1)-martingale, and an F(B1) Brownian motion. In other words,

Bt = βt −
∫ t∧1

0

B1 −Bs

1− s
ds

is the decomposition of B as an F(B1)-semi-martingale.

Example of application : The following example was studied by Monique
Jeanblanc et al. [36], we will later introduce our approach to this application, this
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approach is based on the conditional full support property. M.Jeanblanc et al.
study within the problem occurring in insider trading: existence of arbitrage using
strategies adapted w.r.t. the large filtration.

Our approach is to prove the existence of no arbitrage in the case 0 ≤ t < 1 without
calculating the dynamics of wealth and risk neutral probability.

Let
dSt = St(µdt+ σdbt),

where µ and σ are constants and St defines the price of a risky asset. Assume that
the riskless asset has a constant interest rate r.

The wealth of an agent is

dXt = rXtdt+ π̂t(dSt − rStdt) = rXtdt+ πtσXt(dWt + θdt); X0 = x,

where θ = µ−r
σ

and π = (π̂St/Xt) assumed to be an FB-adapted process.

Here, π̂ is the number of shares of the risky asset, and π the proportion of wealth
invested in the risky asset. It follows that

ln(Xπ,x
T ) = ln x+

∫ T

0

(r − 1

2
π2
sσ

2 + θπsσ)ds+

∫ T

0

σπsdWs

Then,

E(ln(Xπ,x
T )) = ln x+

∫ T

0

E

(
r − 1

2
π2
sσ

2 + θπsσ

)
ds

The solution of maxE(ln(Xπ,x
T )) is πs = θ

σ
and

supE(ln(Xπ,x
T ) = ln x+ T

(
r +

1

2
θ2

)
Note that, if the coefficients r, µ and σ are F-adapted, the same computation leads to

supE(ln(Xπ,x
T ) = ln x+

∫ T

0

E

(
rt +

1

2
θ2
t

)
dt,
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where θt = µt−rt
σt

.

We now enlarge the filtration with S1.

In the enlarged filtration, setting, for t < 1, αt = B1−Bt
1−t , the dynamics of S are

dSt = St((µ+ σαt)dt+ σdβt),

and the dynamics of the wealth are

dXt = rXtdt+ πtσXt(dβt + θ̃tdt), X0 = x

with θ̃t = µ−r
σ

+ αt.

The solution of maxE(ln(Xπ,x
T )) is πs = θ̃s

σ
.

Then, for T < 1,

ln(Xπ,x,∗
T ) = ln x+

∫ T

0

(r +
1

2
θ̃2
s)ds+

∫ T

0

σπsdβs

E(ln(Xπ,x,∗
T )) = ln x+

∫ T

0

(r+
1

2
(θ2+E(α2

s)+2θE(αs))ds = lnx+(r+
1

2
θ2)T+

1

2

∫ T

0

E(α2
s)ds,

where we have used the fact that E(αt) = 0 (if the coefficients r, µ and σ are
F-adapted, α is orthogonal to Ft, hence E(αtθt) = 0).

Let

V F(x) = maxE(ln(Xπ,x
T )); π is F admissible

V G(x) = maxE(ln(Xπ,x
T )); π is G admissible

Then V G(x) = V F(x) + 1
2
E
∫ T

0
α2
sds = V F(x)− 1

2
ln(1− T ).

If T = 1, the value function is infinite: there is an arbitrage opportunity and there
exists no an e.m.m. such that the discounted price process (e−rtSt, t ≤ 1) is a
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G-martingale. However, for any ε ∈]0; 1], there exists a uniformly integrable G-
martingale L defined as

dLt =
µ− r + σςt

σ
Ltdβt, t ≤ 1− ε, L0 = 1,

such that, setting dQ |Gt= LtdP |Gt , the process (e−rtSt; t ≤ 1 − ε) is a (Q,G)-
martingale.

This is the main point in the theory of insider trading where the knowledge of the
terminal value of the underlying asset creates an arbitrage opportunity and this is
effective at time 1.

Our approach to this example : We consider the previous example. Let

dSt = St(µdt+ σdbt),

The standard Brownian bridge b(t) is a solution of the following stochastic equation.

dbt = − bt
1− t

dt+ dWt; 0 ≤ t < 1

b0 = 0.
(3.10)

The solution of the above equation is

bt = (1− t)
∫ t

0

1

1− s
dWs,

We may now verify that S has CFS.

By positivity of S, Itô’s formula yields

logSt = logS0 +

{(
µ− σ2

2

)
t+ σ

(
1− t

)∫ t

0

1

1− s
dWs

}
, 0 ≤ t < 1.



3.5 Main results 71

We have

logSt = logS0 +

(
µ− σ2

2

)
t︸ ︷︷ ︸

=:Ht

+

∫ t

0

σ

(
1− t

)
1

1− s︸ ︷︷ ︸
=:Ks

dWs, 0 ≤ t < 1.

1. (Ht) is a continuous process,

2. (Ks) = σ(1− t) 1
1−s is a measurable process s.t.

∫ t
0
K2
sds <∞ a.s,

3. (Wt) is a standard Brownian motion independent of H and K,

which clearly satisfy the assumptions of theorem (3.1) and logSt has CFS, then S has
CFS for 0 ≤ t < 1 and there is the consistent price systems and this is a martingale.
Using it, we guarantee no-arbitrage without calculating the risk-neutral probability.

3.5.3 Conditional full support for Fractional Brownian Motion

We now present in this section an important class of model Fractional Brownian
motion and proove a new result for etablish the CFS.

Theorem 3.5.3. Let us consider the process

St = Rt +

∫ t

0

φsdB
H
s

where

• (Rt)t∈[0,T ] is a continuous adapted process,

• (φt)t∈[0,T ] is elementary predictable s.t.
∫ T

0
φ2
sds <∞, and

• (BH
t )t∈[0,T ] is a fractional brownian motion independent of R and φ.
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If we have
meas(t ∈ [0,T] : φt = 0) = 0 P− a.s.,

then S has CFS.

Proof. We adapt the proof of proposition 3.3.9.
Let us denote

J(t) =

∫ t

0

φsdB
H
s .

By considering the restriction of S on an interval [v, µ], v < µ < T , it is enough to
prove that the conditional lawP(J[v,T] | Fv) has full support on CJv([v, µ],R) almost
surely. It is sufficient to prove this property on an interval where φ is constant with
respect to time (and thus continuous). Thus, without loss of generality, we can take
T small enough such that φ has the form φ(t) = ξ on [v, T ], where ξ 6= 0 and it is
Fv-measurable. It suffices to prove that

J(t) =

∫ t

v

φsKH(t, s)dBs s ∈ [v, T ]

has full support on C0([v, T ],R).
Theorem 3 in [21] states that the topological support of a continuous Gaussian process
is equal to the norm closure of its reproducing kernel Hilbert space.
In our case, the support of J(t) is

H :=

{
f ∈ C0([v, T ],R) : f(t) =

∫ t

v

φ(s)KH(t, s)g(s)ds, for some g ∈ L2[v,T]

}
.

Thus, it is sufficient to show that H is norm-dense in C0([v, T ],R).
To achieve this, we need to recall the Liouville fractional integral operator for any
f ∈ L1[a, b] and α > 0

(Iαa+g)(t) :=
1

Γ(α)

∫ t

a

g(s)(t− s)α−1ds, a ≤ t ≤ b,

and to introduce the kernel operator KH ,

(KHg)(t) :=

∫ t

0

KH(t, s)g(s)ds, f ∈ L2[0, T ], t ∈ [0, T ].
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(1) We first treat the case H < 1
2

(KH(gφ))(t) := ξ

∫ t

v

KH(t, s)g(s)ds, g ∈ L2[0, T ], t ∈ [0, T ].

In this case, we have

(KH(gφ)) = I2H
0+ (s

1
2
−HI

1
2
−H

0+ (sH−
1
2 (gφ)(s)))

The argument needs to be split into two steps.

• Step 1

Lemma 3.5.4. [13] If g ∈ C0[v, T ], then L1g ∈ C0([v, T ], where

(L1g)(t) = (I
1
2
−H

0+ (sH−
1
2 (g)(s)))(t)

Morever, L1 : C0[v, T ] −→ C0[v, T ] is continuous and has dense range (with respect
to the uniform norm).

We have ϕ ∈ C0[v, T ], then L1ϕφ ∈ C0([v, T ]), where

(L1ϕφ)(t) = (I
1
2
−H

0+ (sH−
1
2 (gφ)(s)))(t)

Recall the identity for a, b > 0,∫ t

0

(t− u)a−1ub−1du = C(a, b)ta+b−1,

where C(a, b) 6= 0 is a constant. Defining, for a fixed α > 0,

ϕ(s) :=
(s− v)α

ξsH−
1
2

,

we obtain, for t ∈ [v, T ],

(L1ϕφ)(t) =
ξ

Γ(1
2
−H)

∫ t

v

(t− s)−H−
1
2ϕ(s)sH−

1
2ds =

1

Γ(1
2
−H)

∫ t

v

(t− s)−H−
1
2 (s− v)αds

≤
∫ t−v

0

uα(t− v − u)−H−
1
2du = C

(
1

2
−H,α + 1

)
(t− v)α−H+ 1

2 .
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Varying α, we find that (t − v)n ∈ Im(L1) for n ≥ 1 and the Stone-Weierstrass
theorem guarantees that Im(L1) is dense in C0[v, T ].

• Step 2

Lemma 3.5.5. [41] If g ∈ C0[v, T ], then L2g ∈ C0([v, T ], where

(L2g)(t) = (I2H
O+(s

1
2
−Hg(s)))(t)

and L2 : C0[v, T ] −→ C0[v, T ] is continuous and has dense range.

We have g ∈ C0[v, T ], then L1gφ ∈ C0([v, T ]), where

(L2gφ)(t) = (I2H
O+(s

1
2
−H(gφ)(s)))(t)

and L2 : C0[v, T ] −→ C0[v, T ] is continuous and has dense range.

Since the restriction of KH to C0[v, T ] is exactly L2 ◦ L1, we may conclude that
KH : C0[v, T ] −→ C0[v, T ] has dense range and, a fortiori, H is norm-dense in C0[v, T ].

(2) In the case H ≥ 1
2

, a similar representation holds

KH(gφ) = I1
0+(sH−

1
2 I

H− 1
2

0+ (s
1
2
−H(gφ))),

Also this argument needs to be split into two steps.

• Step 1 We have g ∈ C0[v, T ], then L3gφ ∈ C0([v, T ], where

(L3(gφ))(t) = ξ(I1
0+(sH−

1
2 g(s)))(t)

Defining, for a fixed α > 0,

g(s) :=
(s− v)α

ξs
1
2
−H

,
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we obtain, for t ∈ [v, T ],

(L3gφ)(t) =
ξ

Γ(H − 1
2
)

∫ t

v

(t− s)H−
3
2 g(s)s

1
2
−Hds =

1

Γ(H − 1
2
)

∫ t

v

(t− s)H−
3
2 (s− v)αds

≤
∫ t−v

0

uα(t− v − u)H−
3
2du = C(H − 1

2
, α + 1)(t− v)α+H− 1

2 .

Varying α, we find that (t − v)n ∈ Im(L3) for n ≥ 1 and the Stone-Weierstrass
theorem guarantees that Im(L3) is dense in C0[v, T ].

• Step 2 We have g ∈ C0[v, T ], then L4gφ ∈ C0([v, T ], where

(L4(gφ))(t) = ξ(I1
0+(sH−

1
2 (gφ)(s)))(t)

and Im(L4) is dense in C0[v, T ].

Since the restriction of KH to C0[v, T ] is exactly L4 ◦ L3, we may conclude that
KH : C0[v, T ] −→ C0[v, T ] has dense range and, a fortiori, H is norm-dense in C0[v, T ].



Conclusion

The aim of this thesis is to provide an introduction to the mathematical methods used
in continuous-time modeling of financial markets. It will focus on options valuation
problems by arbitration.
The absence of arbitrage opportunity assumption is a crucial condition in the theory
of the valuation of derivatives. which imposes conditions on prices. This condition
AOA implies the existence of a probability, called risk-neutral probability, which is
equivalent to the objective probability.

Our goal is not to provide a complete account of the theory of finance models but to
insist on major ideas and techniques for the conditional full support(CFS).
Firstly we have introduce the basics notions on stochastic calculus in providing
the appropriate mathematical tools description of the financial models methods
of calculation of derivative asset prices. Secondly we study the conditional full
support, which generates a large class of consistent price systems which guarantees
the absence of arbitrage without calculating the risk neutral probability and finally
we provide new applications of CFS in finance.

Our future work, is to give new applications for establish the CFS when the sub
fractional brownian motion is the integrator, and to define a new conditions of CFS
for Rosemblat processes, Dirichlet processes and Hermilte processes.
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