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Abstract

The objective of this thesis is the nonparametric estimation core for conditional
hazard functions and their derivatives are considered under different model randomly.
Many techniques have been studied in the literature to treat these different situations
all but only deals with the functional explanatory random variables.

The first part is dedicated to the convergence in quadratic mean and asymptotic
normality of the estimator of the hazard function of a real random variable condi-
tional on a functional variable

In the second part, we are interested in studying The maximum of the conditional
hazard function is a parameter of great importance in seismicity studies, because it
constitutes the maximum risk of occurrence of an earthquake in a given interval of
time. using the kernel nonparametric estimates of the first derivative of the condi-
tional hazard function, we establish uniform convergence properties and asymptotic
normality of an estimate of the maximum in the context of strong mixing dependence.

Key words: Almost complete convergence; Asymptotic normality; Conditional
hazard function; Functional data; Nonparametric estimation; Small ball probability;
Strong mixing processes.



Résumé

L’objectif de cette thèse est l’estimation non paramétrique à noyau pour les
fonctions de risque conditionnel et leurs dérivées sont considérées en vertu du
différent modèle au hasard. De nombreuses techniques ont été étudiées dans la
littérature pour traiter ces différentes situations mais toutes ne traitent que des
variables aléatoires explicatives fonctionnelles.

La première partie est consacrée à la convergence en moyenne quadratique et
la normalité asymptotique de l’estimateur de la fonction de risque d’une variable
aléatoire réelle conditionnellement à une variable fonctionnelle.

Dans le deuxième partie, nous nous intéressons à étudier Le maximum de la fonction
de hasard conditionnelle, est un paramètre d’une grande importance dans les études
de sismicité, car il constitue le risque maximal de survenance d’un tremblement
de terre dans un intervalle de temps donné. en utilisant les estimations non
paramétriques du noyau de la première dérivé de fonction de hasard conditionnelle,
nous établissons des propriétés de convergence uniformes et normalité asymptotique
d’une estimation du maximum dans le contexte de la dépendance de mélange fort.

Mots clés: convergence presque complète; Normalité asymptotique; Fonction
de hasard conditionnelle; Les données fonctionnelles; Estimation non paramétrique;
probabilités de petites boules,; Processus de α-mélangeant,
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Chapter 1

General Introduction

1.1 Functional statistics

The functional statistics has recently become an important area of research which
knew very interesting development in the last few years in which come to mix and to
be supplemented several approaches of the statistics which appear remote a priori.
This way of the statistics studies data resulting from large samples and their functions
are collected on a very fine grids, which can be comparable with curves or surfaces,
for example functions of time or space. The need to consider this kind of data,
maintaining usually met under the name of functional data in the literature, is before
a whole practical need. Account held of the current capacities of measuring equipment
and data-processing storage, them situations being able to provide such data are
multiple and resulting from different fields :one can imagine for example curves of
growth, of temperature, images observed by satellite. . .
The first works in which this idea of functional data is found are relatively old: Rao
(1958) [50] and Tucker (1958) [58] consider principal components analysis and factor
analysis for functional data and consider the functional data even explicitly as a
particular type of data. Thereafter, one finds the work of Deville (1974) [16], Dauxois
and Pousse (1976) [15], Besse and Ramsay (1986) [5]. The concrete Problematic
terminology in statistics for functional variables referring to functional data seems
to be resulting from the work of Ramsay, in 1982, in Psychometric, under the title
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When the dated are functions [46]". This denomination seems to gather a significant
number of statisticians who make statistics of curves, smoothing, decompositions of
infinite-dimension space in basis of functions (by using the Riez theorem for Hilbert
spaces and a little more complex theorems to build Schauder bases for certain Banach
spaces ), differential geometry,. . . For more details, see the monographs of Ramsay and
Silverman (2002 and 2005) [48], [49].

1.2 Concrete problems in statistics for functional

variable

The great strides which the functional statistics through its various fields of applica-
tion make cation is found on the level as of many theoretical approaches developed
for the study of functional random variables, the study of these various models is mo-
tivated at the beginning by practical problems. In this paragraph we wish to quote
some fields in which appear the functional data, to give an idea of the type of problems
which the functional statistics make it possible to solve. it is a non exhaustive list of
situations where such data are met is not not possible, but of the precise examples of
functional data will be approached in these fields.

• In biology, we find first of all the precursory work of Rao ( 1958 [50] ) concerning
a study of growth curves . More recently, another example is the study of the
angle variations of the knee during the walking(step) and the movements of the
knee during the effort under constraint (Antoniadis and Sapatinas, on 2007) [2].
Concerning the animal biology, studies of the laying(eggs) of Mediterranean flies
were made by several authors (Chiou and Müller .and al (on 2007)) [11]. The
data consist of curves giving for every fly the quantity of eggs laid according to
time(weather).

• The chimiometrie is also a part of fields of study convenient to the use of meth-
ods of the functional statistics. More recently, Ferraty and Vieu( 2002 [27] )
were interested in the study of fat volume of meat pieces (variable of interest)
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being given the curves of waves lengthes absorbtion of these pieces of meat (
explanatory variable).

• Applications connected to the environment were studied by several author which
worked on a problem of pollution forecast. These data consist of measures of
peaks of pollution by the ozone every day (variable of interest) given curves of
pollutants as well as meteorological curves of the day before(watch) ( explana-
tory variables).

• The climatology is a domain where the functional data appear naturally. A study
of the phenomenon El Niño ( The common(current) warmth of the ocean Paci?
That) was so realized by Besse, Cardot and Stephenson ( 2000 [6] ); Ramsay
and Silverman ( 2005 [49] ), Hall and Vial ( 2006 [29] ).

• In linguistics, works were realized, in particular concerning the voice recognition.
(Ferraty and Vieu (2003,2006) [26]). These works are strongly connected to
the methods of classification when the explanatory variable is a curve. Briefly,
the data are curves corresponding to recordings of phonemes pronounced by
different individuals. We associate a label with every phoneme (variable of
interest) and the purpose is to establish a classification of these curves by using
as explanatory variable the registered curve.

• In the field of the graphology, the contribution of the techniques of the functional
statistics found there also an application. Ramsay ( 2000 [47] ) for example
models the position of the pen (abscissas and ordered according to time) by
means of differential equations.

• The applications in the economy are also relatively numerous. Recently Studies of
Benko, Härdle and Kneip ( 2006 [4] ), based in particular on a functional main
in components analysis. This estimation method will be analyzed when we
shall use it , even if we can already underline that the basic idea is, during the
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estimation of the operator of covariance, to estimate scalar products between
curves observed instead of estimating curves themselves.

There exist other fields where the functional statistics were employed such as the
signal processing sound or recorded by a radar, demographic studies , geology (Manté
et al. (2007))[38],. . . and of the applications in fields as varied as criminology (how
to model and compare the evolution crime of an individual in the course of time?)
the paléo pathology (can one to say if an individual . . . .. of arthritis starting from
the form of his ?) the study of results with school tests,. . .

Finely , one can have to study functional random variables even if one have real initial
data or multivariate independent. It is thus the case when one wishes to compare
or study functions that one be able to estimate to leave data. Among the typical
examples of this kind of situation one can evoke comparison of different functions of
density, functions of regressions, the study function representing the probability that
an individual has to answer correctly with a test according to its "qualities" (Ramsay
and Silverman (2002) [48],. . .

1.3 survival models

We can make go back up the survival data analysis in 1693 with the astronomer "
Halley " who after a study of the statements of registry office of London gave the
first life tables and taught the way to read it the survival probability of an individ-
ual. These analysis,are not refined until the 19th century, with the appearance of the
following categorizations " exogenous variables " (sex, nationality, socio-professional
groups). In this century, also appear the first modelings concerning the probability to
die at certain age, the probability which will afterward be appointed under the term
of " risk function ".
Finely , analysis of survival data begins to overflow the strict framework of the de-
mographics to invest, in 20th century, in particular years which followed the second
world war, we were interested in more the analysis of survival data for industrial
applications (with the appearance of viability theory ) by using models parametric
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with exponential laws or of Weibull. It is only more recently, motivated by medi-
cal applications (pharmaceutical, biomedical), that appeared nonparametric methods
(Kaplan-Meier on 1958) [32], for nonparametric estimation of survival function . Of
the resultant value, they study the hope, the variance and the asymptotic properties.
The semi-parametric aspect was introduced by Cox in 1972 [12]. This last model
contains exogenous variables which are introduced, in risk function, by means of a
component of parametric regression, the rest of this nonparametric risk function re-
maining indefinite.
The survival models form a class of statistical methods which aim at studying the
number and the times distribution of appearance events . We can be interested in
models where we consider only the time of events appearance , but we are gener-
ally interested more in models where the appearance risk on an event depends on
co-variables. We so find the expression of regression model.

1.3.1 Survival data analysis

The analysis of survival data is the study of the arisen, in time, of one precise event
for one or several groups of given individuals. This event, often called death(deaths),
can be as well the death of an individual as the arisen of a disease, the answer to a
treatment or the breakdown of a machine (generally it is a change of state .) every
observation is defined by:

The origin date: it is the birth date of the subject, if we study the age of the

subject when arises the event or date of putting in touch with an infectious agent,
if we study the duration of incubation of an infectious disease. Every individual has
a date of origin The measure different on the calendar, but which interests us is the
extension since this date. The date of origin defined for every individual the time 0.

To allow the comparison of the survival durations between the individuals, one
definition precise of the interest event is necessary. If it is the death caused by a
disease, it should be made sure that each death is indeed due to the disease studied,
and not with other causes.
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Survival duration: It is defined as the time between the origination date and the
occurring of the interest event.

The survival durations corresponding to positive random variables, of generally dis-
symmetrical distribution, making difficult their description by the usual distribution
laws.

The individuals or groups of individuals are likely to differ for one or several
factors. These factors, called explanatory variable or co-variables can explain an
important difference of the survival duration of the studied subjects. Their effects
are analyzed by models of regression. They can be individual factors(sex, age,
biological parameters relative to a disease, genetics parameters. . . ), or related to
therapeutic test (membership of the group of treatment or with the placebo group,
medicamentous proportioning. . . ).

The analysis of survival data is attached to the description of survival times and
to see up to what point they depend on these explanatory variables. classical
approaches in survival data analysis are of stochastic type, appearance time of
an event is supposed to be the realization of a random process associated with a
particular distribution.

Many work is devoted to survival data analysis : Kalbeisch and Prentice (1980) [31],
Cox and Oakes (1984) [13], Klein and Moeschberger (1997) [33],. . .

1.3.2 Functions associated with the survival distributions

let T be a positive random variable corresponding to survival duration. The proba-
bility law of T can be characterized by several functions dependent between them.
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Definition 1.3.1. The probability density function, noted f(t) :

f(t) = lim
∆t→0+

P(t ≤ T ≤ t+ ∆t)

∆t

f(t)∆t+ o(∆t)is thus the probability of knowing the event of interest between t and
T + ∆t. The distribution function, noted F (T ), satisfy:

F (t) = P(T ≤ t) =

∫ t

0

f(u)du

F (t), define the probability of knowing the event of interest between [0, T ], this func-
tion is monotonous and we have

F (0) = 0 and lim
t→∞

F (t) = 1

Definition 1.3.2. The survival function, denoted S(t), is defined as

S(t) = P(T > t) = 1− F (t).

The survival function is the probability that the time of death is later than some
specified time t. survival function S(t) is monotonically decreasing, such that

S(0) = 1 and lim
t→∞

S(t) = 0.

It Also characterized the law of T .

Definition 1.3.3. The risk function, or fate function, or the immediate risk of change
of state noted h(t), is defined as being the immediate probability that a duration T of
"stay" in a state ends at the moment t + ∆t knowing that we were at the moment t
there, i.e.:

h(t) = lim
∆t→0+

P(t ≤ T ≤ t+ ∆t/T ≥ t)

∆t

We show easily that
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h(t) =
f(t)

S(t)

=
−dlog(s(t))

d(t)

thus a h(t)∆t represent, when∆t is small, the probability "approached" for an indi-
vidual to reach the event of interest before t+ ∆t, conditionally in the fact that it is
still in the previous state just before t. This function is also called immediate risk at
the moment t. We also notice that the function of risk characterizes the law of T (or
S(t)).

Definition 1.3.4. The function of accumulated risk, noted H(t) defined by:

H(t) =

∫ t

0

h(u)du

By manipulation of the previous definitions, we find easily the following relations:

f(t) = −dS(t)

dt
S(t) = exp(−

∫ t
0
h(u)du)

S(t) = exp(−H(t))

f(t) = h(t) exp(−
∫ t

0
h(u)du)

Thus the accumulated risk function characterize the law of T (or S(t)).

Definition 1.3.5. The duration averages survival function , noted r(t) defined by:

r(t) = E(T − t/T > t)

We show that

r(t) =
1

S(t)

∫ ∞
t

S(u)du and S(t) =
r(0)

r(t)
e
−

∫ t
0

1

r(u)
du

What allows to say also that the function of duration average of survival characterizes
the law of T (or S(t).)
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The distribution of the duration of survival T can be described by one of the
functions defined above. However one of the most interesting is the risk function h(t)

because it is a probabilistic description of the immediate future of the subject "still
with risk" and reflect differences between the models often less visible through the
distribution functions or survival functions. In epidemiology, it can in certain cases
be interpreted in terms of incidence.

Note that if h(t) is constant (it is noted λ), then

S(t) = exp(−
∫ t

0

h(u)du) = e−λt

becomes the tail of a distribution of exponential law. That supposes that one can
adopt the Markovian model in two states to estimate survival and the problem be-
comes purely parametric. But in general, h(t) is not constant; what leaves one place
to deal with the problem by using the functional statistics.

1.4 Estimation of the hazard function

The estimate of hazard function has a great interest in statistics. Indeed, it is used in
the analysis of risk or for the study of the phenomena of survival. The unconditional
hazard rate is defined as the instantaneous probability that the change of state is
done in the infinitesimal moment which follows the moment present, noted t. More
precisely, the hazard rate h(t) is defined by:

h(t) = lim
∆t→0+

P(t ≤ T ≤ t+ ∆t/T ≥ t)

∆t
(t > 0)

It is not difficult to see that the hazard rate can be rewritten as the report of the
density f(.) which it is absolutely continuous with respect to Lebesgue measure and
the survival function S(.) = 1− F (.) of T at the moment t; otherwise says:

h(t) =
f(t)

S(t)
(1.1)
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where the function of survival S(t) is not other than the distribution function com-
plement of the considered event. In fact it is the derivative of the probability that the
duration is between t and ∆t, knowing that one reached the period t. More practical
he lies acts of an instantaneous rate of exit of the state at the date t. The survival
curve has particular signification data given by:

S(t) = exp(−
∫ t

0

h(u)du)

There exists a literature extended on the estimator of the nonparametric rate chance,
in an approximate way and for the nonparametric case, two methods were proposed to
estimate the hazard rate. The first approach replaces f(t) and S(t) in the expression

of h(t) by their estimators f̂(t) and Ŝ(t) respectively, which gives us the estimator of
hazard rate by:

ĥ(t) =
f̂(t)

Ŝ(t)
(1.2)

Nielsen and Linton (1995) call this kind of estimator by (external estimator). The
estimator with external kernel of hazard rate of non censured data was introduced by
Watson and Leadbetter (1964) and Munhy (1965). The second method is based on the
relation between the cumulated chance and the rate of chance where the cumulated
chance is defined by:

H(t) =

∫ t

0

h(u)du (1.3)

Nielsen and Linton (1995) call this kind of estimators by (internal estimator). The
relation between the cumulated chance and the rate of chance suggests that h(T ) can
be obtained by smoothing H(T ) by using a kernel in other words:

h(t) =

∫
Kh(t− u)dĤu
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where H is a width of window such as h→ 0 when n→∞. The internal estimator rate
of chance for the data censured at summer also introduced by Watson and Leadbetter
(1964). Ramlau-Hansen (1983), Yandell (1983), To tan and Wong (1983, 1984), Blum
and susarla (1980), Fötdes and Retjö (1981) and Lo, Mack and Wang (1989) similar
estimators in the presence of the censured data studied. Moreover, To tan and Wang
(1984) like Sarda and Vieu (1996) use the selection of width of window for this kind
of estimators. Until now, interest related to the rate of chance generally will depend
on certain covariance, for example, it time of survival of a patient will be has affected
by several characteristics the such age and the kind. The rate of conditional chance
of t knowing Z = z is defined by:

hz(t) = lim
∆t→0

P(T ≤ t+ ∆t/T > t, Z = z)

∆t

Thus the conditional function of chance T knowing Z = z is defined by:

ĥz(t) =
f̂ z(t)

Ŝz(t)

such that F z (resp f z) is the conditional distribution (resp. conditional density)
T knowing Z = z that it is supposed that it is absolutely continuous compared to
measurement of Lebesgue on R.

1.4.1 Tools

Proposition 1.4.1. Let (Xn)n∈N, (Yn)n∈N two real continues random variables . If
Xn converge almost completely to 0 and if there exists ∃δ > 0 such that

∑∞
i=1 P{Yn <

δ} <∞. Then, the sequence (Xn/Yn)n∈N converges almost completely to 0.

Lemma 1.4.2. "Bernstein’s exponential inequality " Let X1, . . . , Xn of the centered,
independent and of the same real random variables law (i.i.d) defined on the probability
space , such that there exist two positive real θ1 and θ2 satisfy X1 < θ1 and EX2

1 < θ2

then , for any ε ∈]0,
θ1

θ2

[ we get :

P

(
n−1

∣∣∣∣∣
∞∑
i=1

Xi

∣∣∣∣∣ ≥ ε

)
≤ 2 exp

(
−nε2

4θ2

)
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Lemma 1.4.3. " Fuk-Nagaev type Inequality under algebraic mixing " Let {∆i, i ∈
N} be a family of random variables valued in R , of algebraically mixing decreasing
coefficient. One pose

s2
n =

n∑
i=1

n∑
j=1

|cov(∆i,∆j)|,

if ∀i, ‖∆i‖∞ <∞, then for all ε > 0 and any r > 1, we have:

P

(∣∣∣∣∣
n∑
i=1

∆i

∣∣∣∣∣ > 4ε

)
≤ 4

(
1 +

ε2

rs2
n

)−r
2

+ 2ncr−1

(
2r

ε

)a+1

Lemma 1.4.4. "Inequality of covariance for limited variables" Let {∆i, i ∈ N} be a
family of strong mixing random variables valued in R such that ∀i, ‖∆i‖∞ <∞, then,
for any i 6= j

|cov(∆i,∆j)| ≤ 4‖∆i‖∞‖∆j‖∞α(|i− j|).

1.5 Structure of this thesis

This thesis is presented in five chapters.
The first chapter is devoted to an overview of the functional model, definitions and
technical tools that we will use to get and build our estimator and the convergence
rates. In particular, we recall the definition of survival models, discussed the
problems addressed by the functional statistics, definitions of the survival function,
chance and the conditional hazard function, the exponential inequality of Bernstein
and the Fuc-Nagaev ...

In the second chapter, we are interested in a non-parametric model for functional
random variables. A kernel estimator for the conditional hazard function with
Complete data under less restrictive terms and conditions, we establish the almost
complete convergence with precision in the case α− mixing is constructed. These
asymptotic properties are closely related to the phenomenon of concentration of the



1.5 Structure of this thesis 22

probability measure of the explanatory variable on small balls.

In the third chapter, we discuss the convergence in quadratic mean and asymptotic
normality of the estimator of the hazard function of a real random variable condi-
tional on a functional variable in the context of addiction (α− mixing) and complete
data.

The fourth chapter is devoted to the study of uniform convergence, properties
and asymptotic normality of estimates of the maximum of the conditional hazard
function in the context of addiction (α-mixing), using estimates not kernel parameter
of the first derivative of the conditional random function.

The last chapter of this thesis is devoted to some comments and discussions on the
many open questions that result.

All chapters of this thesis are the subject of communications or publications.



Chapter 2

Estimation conditional hazard

function

2.1 Introduction

This chapter is devoted to the problem of the estimate of the conditional hazard
function , of a real random variable Y knowing a random variable X valued in a func-
tional space (semi-metric functional probabilistic space) with complete data, i.e one
observes all the event. As in any problem of not-parametric estimate, the dimension
of space F plays an important role in the concentration properties of the variable X.
The estimate is made using kernel method .
The present chapter is divided into two sections. The first one is devoted to the pre-
sentation of the model and the construction of conditional hazard function estimator.
In the second section, we are interested to the almost complete convergence of the
estimator built in the case where the observations are α-mixing

2.2 Nonparametric Model

Let (X, Y ) a couple of random variable valued in F × R where F is a semi-metric
space provided with a semi-metric d(.; .). This section is devoted to the general
problem of the estimate of a conditional hazard function for a real random variable Y
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knowing a random variable X valued in a functional space ( semi-metric functional
probabilistic space,) where X and Y are defined on the same probabilistic spaces
(Ω,A,P). In addition, to be able to extend to the case depending the results got in
the independent case. We will adopt certain assumptions on process (Xi;Yi)i∈N. Are:

Yi : (Ω,A,P) → (R,BR)

Xi : (Ω,A,P) → (F ,F)

whereF are provided with semi-metric a di; i ∈ N, one proposes to estimate the
conditional hazard function of Y knowing X = x. One indicates by F x the condi-
tional distribution function of Y knowing X = x, it is supposed that F x is absolutely
continuous w.r.t Lebesgue measure of density fx.
Given (X1, Y1), . . . , (XN ;YN) a sequence of the observations of same law that (X, Y )

the estimator of conditional distribution function F x by the kernel method (noted

F̂ x), defined by:

F̂ x(y) =

n∑
i=1

K
(
h−1
K d(x,Xi)

)
H
(
h−1
H (y − Yi)

)
n∑
i=1

K
(
h−1
K d(x,Xi)

) ∀y ∈ R.

K is a kernel, H is a distribution function and hK = hK,N (resp. hH = hH,N) is a
sequence of positive real. One pose

Ki(x) = K(h−1
K d(x,Xi)) et Hi(y) = H(h−1

H (y − Yi))

What enables us to express F̂ x(y) by:

F̂ x(y) =
F̂ x
N(y)

F̂ x
D

with

F̂ x
N(y) =

1

nEK1

n∑
i=1

KiHi(y) and F̂ x
D =

1

nEK1

n∑
i=1

Ki
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From this estimator, one deduces an estimator for the conditional density, noted f̂X ,
defined by:

f̂x(y) =

h−1
H

n∑
i=1

K
(
h−1
K d(x,Xi)

)
H ′
(
h−1
H (y − Yi)

)
n∑
i=1

K
(
h−1
K d(x,Xi)

) ∀y ∈ R.

Which is written as

f̂x(y) =
f̂xN(y)

F̂ x
D

where

f̂xN(y) =
1

nhHEK1

n∑
i=1

KiH
(1)
i (y)

The conditional hazard rate of Y knowing X = x is defined by

hx(y) = lim
∆→∞

P(Y ≤ y + ∆y/Y > y,X = x)

∆y
y > 0

Now the hazard rate can be written as the rate of the conditional density fx(.) and
the survival function Sx(.) = 1− F x(.) of y, i.e.:

hx(y) =
fx(y)

Sx(y)

Thus conditional hazard function Y knowing X = x is defined by:

∀X ∈ F , ∀Y ∈ R hx(y) =
fx(y)

1− F x(y)

The main aim of this chapter is to give the speed of convergence of our estimator de-

fined by: ĥx(y) =
f̂x(y)

1− F̂ x(y)
to hx(y) =

fx(y)

1− F x(y)
In the case where the observations

are α-mixing.
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2.3 Dependent Case

The object of this section is to study a model of conditional hasard in which the
explanatory variable X is not necessarily real or multidimensional but only supposed
valued in an abstracts space F provided with semi-metric a d. As in any problem
of not-parametric estimate, the dimension of space F plays an important role in
the concentration properties of the variable X. Thus, when this dimension is not
necessarily finite , functions probability of small balls defined by:

φx(h) = P(X ∈ B(x, h)) = P(X ∈ {x′ ∈ F/d(x, x′) < h})

involved directly in the asymptotic behavior of any non-parametric functional esti-
mator.

2.3.1 General notations and assumptions

All along our study, when no confusion is possible, one note A and/or A′ a generic
constant of R∗+ A point x is fixed in F which one notes Nx a neighborhood of x, S
will be a fixed compact subset of R+ and we put B(x, h) = {x′ ∈ F/d(x, x′) < h}
the ball of center x and of radius h.
We introduce The following assumptions:

(H1) ∀x ∈ F , ∀h > 0,P(X ∈ B(x, h)) = φx(h) > 0

(H2) ∀y ∈ S, F x(y) < 1, ∀(y1, y2) ∈ S × S,∀(x1, x2) ∈ Nx ×Nx,

|F x1(y1)− F x2(y2)| ≤ Ax(d(x1, x2)b1 + |y1 − y2|b2), b1 > 0, b2 > 0,

(H3) ∀(y1, y2) ∈ S × S,∀(x1, x2) ∈ Nx ×Nx

|fx1(y1)− fx2(y2)| ≤ Ax(d(x1, x2)b1 + |y1 − y2|b2), b1 > 0, b2 > 0,

(H4) ∀(y1, y2) ∈ R2, |H(j)(y1)−H(j)(y2)| ≤ A|y1 − y2|∫
|t|b2H(1)(t)dt < 1 and ∃ν > 0,∀j′ ≤ j + 1, lim

y→∞
|y|1+ν |H(j′)(y)| = 0 for some

j = 0, 1

(H5) K a kernel of compact support (0, 1) satisfying 0 < A1 < K(t) < A2 < 1
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(H6) lim
n→∞

hK = 0 and lim
n→∞

log n

nhjHφx(hK)
= 0, ∀j = 0, 1

(H7) lim
n→∞

hH = 0 and lim
n→∞

nαhH = 0, ∀α > 0.

(H8) the sequence (Xi;Yi)i=1,...,n is α-mixing whose coefficient of mixture checks:

∃a > 5 +
√

17

2
, c ∈ R such that α(n) ≤ cn−a

(H9)
sup
i 6=j

P((Xi, Xj) ∈ B(x, h)× b(x, h))

PXi ∈ B(x, h)
= O((n−1φx(h))1/a)

(H10) ∃η > 0, An

3− a
a+ 1

+ η
≤ hhφx(hK) and φx(hK) ≤ A′n

1

1− a .

2.3.2 Asymptotic Properties

Theorem 2.3.1. Under the assumptions (H1)− (H10) we have:

sup
y∈S
|ĥx(y)− hx(y)| = O(hb1K) +O(hb2H) +O

(√
log n

nhHφx(hK)

)
(2.1)

where φx(hK) are the concentration of probability measure of the functional variable
X in the ball of center x and of radius hK .
Proof of theorem (2.3.1):

One can write ĥx(y)− hx(y) as

ĥx(y)− hx(y) =
f̂x(y)

1− F̂ x(y)
− fx(y)

1− F x(y)

=
f̂x(y)− f̂x(y)F x(y)− fx(y) + fx(y)F̂ x(y)

(1− F̂ x(y))(1− F x(y))

=
1

1− F̂ x(y)

[
(f̂x(y)− fx(y)) +

fx(y)

1− F x(y)
(F̂ x(y)− F x(y))

]
(2.2)
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Valid for all y ∈ S. Which for a constant C <∞, this leads

sup
y∈S
|ĥx(y)− hx(y)| ≤ C

{sup
y∈S
|f̂x(y)− fx(y)|+ sup

y∈S
|F̂ x(y)− F x(y)|}

infy∈S |1− F̂ x(y)|
(2.3)

According to the previous decomposition, it’s sufficient to show that:

sup
y∈S
|F̂ x(y)− F x(y)| = O(hb1K) +O(hb2H) +O

(√
log n

nφx(hK)

)
a.co (2.4)

sup
y∈S
|f̂x(y)− fx(y)| = O(hb1K) +O(hb2H) +O

(√
log n

nhHφx(hK)

)
a.co (2.5)

∃δ > 0 such that
∞∑
j=0

P

{
inf
y∈S
|1− F̂ x(y)| < δ

}
<∞. (2.6)

It is noticed that

F̂ x(y)− F x(y) =
1

F̂ x
D

{(
F̂ x
N(y)− EF̂ x

N(y)
)
−
(
F x(y)− EF̂ x

N(y)
)}

+
F x(y)

F̂ x
D

{
F̂ x
D − EF̂ x

D

} (2.7)

f̂x(y)− fx(y) =
1

f̂xD

{(
f̂xN(y)− Ef̂xN(y)

)
−
(
fx(y)− Ef̂xN(y)

)}
+

fx(y)

F̂ x
D

{
F̂ x
D − EF̂ x

D.
} (2.8)

�

What enables us to conclude that the proof of the theorem is based on the results
below.

Lemma 2.3.2. Under the assumptions of the theorem (2.3.1) we have:

F̂ x
D − EF̂ x

D = O

(√
log n

nφx(hK)

)
p.co (2.9)
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proof of lemma (2.3.2)

our objective is to show;

∞∑
n=1

P

(∣∣∣f̂xD − Ef̂xD
∣∣∣ > ε

√
log n

nφx(hK)

)
≤ ∞ (2.10)

we have

f̂xD − Ef̂xD =
1

nEK1

n∑
i=1

∆i

such that ∆i = Ki − EKi It is enough to apply the inequality of Fuc-Nagaev. For
that, we must initially calculate asymptotically s2

n defined by:

s2
n =

n∑
i=1

n∑
j=1

|cov(∆i,∆j)| = s∗
2

n +
n∑
i=1

var(∆i) (2.11)

such that

s∗
2

n =
n∑
i=1

∑
i 6=j

|cov(∆i,∆j)|

thus for all i 6= j we have

cov(∆i,∆j) = E(∆i∆j)− E(∆i)E(∆j)

Thus by definition one finds

|cov(∆i,∆j)| ≤ AE(IB(x,hK)×B(x,hK)(Xi, Xj)) + AE(IB(x,hK)(Xi))E(IB(x,hK)(Xj))

≤ AP((Xi, Xj) ∈ B(x, hK)×B(x, hK)) + AP(Xi ∈ B(x, hK))P(Xj ∈ B(x, hK))

≤ A′φx(hk)
(
(n−1φx(h))1/a + φx(hk)

)
(2.12)

By using the techniques of Masry [?] and defines the sets S1, S2,

S1 = {(i, j) such that 1 ≤ j − i ≤ mn};

S2 = {(i, j) such that mn + 1 ≤ j − i ≤ n− 1}.
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where (mN)N are arbitrary sequences of positive integer checking mN → ∞. Thus
for n rather large one obtains

s∗
2

n =
∑
S1

|cov(∆i,∆j)|+
∑
S2

|cov(∆i,∆j)|

According to the definition of S1 and (2.12) one deduce that

∑
S1

|cov(∆i,∆j)| ≤ A′nmnφx(hk)(n
−1φx(h))1/a

It results according to the covariance inequality for limited variable(Lemma 1.4.4)
one obtains: ∑

S2

|cov(∆i,∆j)| ≤ An2α(mn) ≤ A′n2m−an

Taking mn =

(
n

φx(hk)

)1/a

, it results that

s∗
2

n = O(nφx(hk)).

In the second time, one has, for all i = 1, . . . , n

n∑
i=1

var(∆i) =
n∑
i=1

E(∆2
i )− (E(∆i))

2.

One shows by the same method to use in the calculation of the cov(∆I ,∆J) that
cov(∆i,∆j) that

cov(∆i,∆j) ≤ A′φx(hk).

and consequently
n∑
i=1

var(∆i) ≤ O(nφx(hk)) (2.13)

Finally, according to these result one finds

s2
n = O(nφx(hk)) (2.14)
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and one has to complete asymptotically to calculate s2
n.

The Fuk-Nagaev inequality on the variable ∆I involves for ε > 0 and r > 1,

P
(∣∣∣F̂ x

D − EF̂ x
D

∣∣∣ > ε
)

= P

(∣∣∣∣∣
n∑
i=1

∆i

∣∣∣∣∣ > εnEK1

)

≤ 4

(
1 +

ε2n2E2K1

16rs2
n

)−r
2

+ 2ncr−1

(
8r

εnEK1

)a+1

Thus one arrives at

P
(∣∣∣F̂ x

D − EF̂ x
D

∣∣∣ > ε

√
log n

nφx(hK)

)
≤ 4

1 +

ε2n2E2K1
log n

nφx(hK)

16rs2
n


−r
2

+

2ncr−1

(
8r

εnEK1

√
log n

nφx(hK)

)a+1

≤ 4

(
1 +

ε2n log n nφx(hK)

16rs2
n

)−r
2

+

Anraε−(a+1)(n log n nφx(hK))

−(a+ 1)

2

≤ An
1−

(a+ 1)

2 raε−(a+1)(n log n nφx(hK))

−(a+ 1)

2 +

4

(
1 +

ε2 log n

16r

)−r
2

≤ An
1−

(a+ 1)

2 raε−(a+1)(log n)
1−

(a+ 1)

2 φx(hK)
1−

(a+ 1)

2 +

Ae
−r
2

log

(
1 +

ε2 log n

16r

)

One can always choose r in the form r = C(log n)2,
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where C is a constant.

P

(∣∣∣F̂ x
D − EF̂ x

D

∣∣∣ > ε

√
log n

nφx(hK)

)
≤ An

−ε2

32 +A(log n)
2a−

(a+ 1)

2 n
1−

(a+ 1)

2 φx(hK)
−(a+1)

2

Thanks to the left inequality in (H10)

P
(∣∣∣F̂ x

D − EF̂ x
D

∣∣∣ > ε
√

logn
nφx(hK)

)
≤ An

−ε2
32 + A(log n)2a− (a+1)

2 n1− (a+1)
2 n−

(a+1)
2

( 3−a
a+1

+η)

≤ An
−ε2
32 + An2a− (a+1)

2 n1− (a+1)
2 n−

(a+1)
2

( 3−a
a+1

+η)

≤ An
−ε2
32 + An−1−(

(1−a)
2

+
(a+1)

2
η)

for ε sufficiently large and ν > 0 one will lead,

P

(∣∣∣F̂ x
D − EF̂ x

D

∣∣∣ > ε

√
log n

nφx(hK)

)
≤ A′n−1−ν (2.15)

finally,

P

(∣∣∣F̂ x
D − EF̂ x

D

∣∣∣ > ε

√
log n

nφx(hK)

)
≤

∞∑
n=1

A′n−1−ν <∞. (2.16)

�

Corollary 2.3.3. Under the assumptions of the theorem (2.3.1), we have :

n∑
i=1

P
(
F̂ x
D < 1/2

)
<∞

Proof of corollary (2.3.3):

one has {
|F̂ x
D| < 1/2

}
⊆
{
|F̂ x
D − 1| < 1/2

}
consequently

P
{
|F̂ x
D| < 1/2

}
≤ P

{
|F̂ x
D − 1| < 1/2

}
≤ P

{
|F̂ x
D − EF̂ x

D| < 1/2
}
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because EF̂X
D = 1 we apply the result of the lemma (2.3.2), we show that

n∑
i=1

P
(
F̂ x
D < 1/2

)
<∞

�

Lemma 2.3.4. Under the assumptions (H1)− (H6), we have

1

F̂ x
D

sup
y∈S
|F x(y)− EF̂ x

N(y)| = O(hb1K) +O(hb2H) (2.17)

1

F̂ x
D

sup
y∈S
|fx(y)− Ef̂xN(y)| = O(hb1K) +O(hb2H) (2.18)

Proof of lemma (2.3.4):

We obtain successively

EF̂ x
N(y)− F x(y) = 1

nE(K1)

∞∑
i=1

E(Ki)Hi(y)− F x(y)

= 1
E(K1)

[
EK1H1

(
y−Yi
hH

)
F x(y)

]
= 1

E(K1)
E
(
K1

[
E
(
H1(h−1

H (y − Yi)/X)
)
− F x(y)

]) (2.19)

we have

E
(
H1(h−1

H (y − Yi)/X)
)

=

∫
R
H

(
y − u
hH

)
fx(u)du

=

∫
R
H(1)(t)F x(y − hHt)dt

in addition one has

|E
(
H1(h−1

H (y − Yi)/X)
)
− F x(y)| =

∣∣∣∣∫
R
H

(
y − u
hH

)
fx(u)du− F x(y)

∣∣∣∣
=

∫
R
H(1)(t)|F x(y − hHt)− F x(y)|dt

Thus, thanks to the assumption (H2) one obtains

|E
(
H1(h−1

H (y − Yi)/X)
)
− F x(y)| ≤ Ax

∫
R
H(1)(hb1k + |t|b2hb2H)dt (2.20)
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This inequality is uniform in y, while replacing in the equation (2.19) and by simpli-
fying the term E(K1) one finds

EF̂ x
N(y)− F x(y) ≤ Ax

(
hb1k

∫
R
H(1)(t) + hb2H

∫
R
|t|b2H(1)(t)dt

)
Finally, the assumption (H4) and the corollary (2.3.3) involve the proof of the equation
(2.17).
It remains us to show the equation (2.18), indeed

Ef̂xN(y)− fx(y) = 1
hHE(K1)

[
EK1H

(1)
1

(
y−Yi
hH

)
− hHfx(y)

]
= 1

hHE(K1)
E
(
K1

[
E
(
H

(1)
1 (h−1

H (y − Yi)/X)
)
− hHfx(y)

])
moreover

E
(
H

(1)
1 (h−1

H (y − Yi)/X)
)

=

∫
R
H(1)

(
y − u
hH

)
fx(u)du

= hH

∫
R
H(1)(t)fx(y − hHt)dt.

And consequently

|E
(
H

(1)
1 (h−1

H (y − Yi)/X)
)
− hHfx(y)| ≤ hH

∫
R
H(1)(t)|fx(y − hHt)− fx(y)|dt

the assumption (H3) involves that

|E
(
H

(1)
1 (h−1

H (y − Yi)/X)
)
− hHfx(y)| ≤ AxhH

∫
R
H(1)(hb1k + |t|b2hb2H)dt

the assumption (H4) and the corollary (2.3.3) involve the proof of the equation (2.18).
It completes the proof of the lemma (2.3.4). �

Lemma 2.3.5. Under the assumptions (H1) - (H7) one has:

1

F̂ x
D

sup
y∈S
|F̂ x
N(y)− EF̂ x

N(y)| = O

(√
log n

nφx(hK)

)
p.co (2.21)

1

F̂ x
D

sup
y∈S
|f̂xN(y)− Ef̂xN(y)| = O

(√
log n

nhHφx(hK)

)
p.co (2.22)
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Proof of lemma (2.3.5):

The idea of the proof is to cover the compact S by intervals SK with equal lengths.
However, the compactness of S implies that one can extract from this covering a
finished covering of which the number of the intervals will be noted SN . In other

words, S ⊂
Sn⋃
k=1

Sk where Sk = (mk − ln,mk + ln)

Let us put my = arg min
k∈1,...,Sn

|y −mk| by adding and subtracting the term

F̂ x
N(my)− EF̂ x

N(my) and applying the trigonometrical inequality. It is shown that:

|F̂ x
N(y)−EF̂ x

N(y)| ≤ |F̂ x
N(y)− F̂ x

N(my)|+ |F̂ x
N(my)−EF̂ x

N(my)|+ |EF̂ x
N(my)−EF̂ x

N(y)|
Thus

1

F̂xD
sup
y∈S
|F̂ x
N(y)− EF̂ x

N(y)| ≤ 1

F̂ x
D

sup
y∈S
|F̂ x
N(y)− F̂ x

N(my)|︸ ︷︷ ︸
T1

+
1

F̂ x
D

sup
y∈S
|F̂ x
N(my)− EF̂ x

N(my)|︸ ︷︷ ︸
T2

+

1

F̂ x
D

sup
y∈S
|EF̂ x

N(my)− EF̂ x
N(y)|︸ ︷︷ ︸

T3

(2.23)
• Concerning (T1) The assumption (H4) involves

1

F̂xD
sup
y∈S
|F̂ x
N(y)− F̂ x

N(my)| ≤ 1

F̂xD
sup
y∈S

1

nEK1

n∑
i=1

|Hi(y)−Hi(my)|Ki

≤ 1

F̂xD
sup
y∈S

A|y −my|
hH

(
1

nEK1

n∑
i=1

Ki

)
≤ 1

F̂xD
sup
y∈S

A|y −my|
hH

F̂ x
D

≤ A ln
hH
.

(2.24)

By taking lN = n−α−1/2 and one shows that

ln
hH

= O

(√
log n

nφx(hK)

)
= O

(√
log n(nφx(hK))−1

)
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Indeed

lim
n→+∞

ln
hH

(√
nφx(hK)

log n

)
= lim

n→+∞

1

hHnα

(√
nφx(hK)

log n

)
According to the assumption (H7) one has:

lim
n→+∞

1

hHnα

(√
nφx(hK)

log n

)
= 0

and shows that

ln
hH

= O

(√
log n

nφx(hK)

)
= O

(√
log n(nφx(hK))−1

)
in addition we have

∀η > 0, ∃Nη > 0 pour n > Nη,
ln
hH

(√
nφx(hK)

log n

)
≤ η

thus for

η

3
, ∃N0, pour n > N0,

ln
hH

(√
nφx(hK)

log n

)
≤ η

3

and according to the result(2.24) (≤ A ln
hH

) it is deduced that:

1

F̂ x
D

sup
y∈S
|F̂ x
N(y)− F̂ x

N(my)| ≤
η

3

√
log n

nφx(hK)
,

and it results that, for n > N0

P

(
1

F̂ x
D

sup
y∈S
|F̂ x
N(y)− F̂ x

N(my)| >
η

3

√
log n

nφx(hK)

)
= 0 (2.25)

Thus, we can write

∞∑
n=1

P

(
T1 >

η

3

√
log n

nφx(hK)

)
≤

N0∑
n=1

P

(
T1 >

η

3

√
log n

nφx(hK)

)

+
∞∑

n=N0+1

P

(
T1 >

η

3

√
log n

nφx(hK)

)
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the first term of the right member is finite , and the second is null according to the
result (2.25). From where

∞∑
n=1

P

(
T1 >

η

3

√
log n

nφx(hK)

)
<∞ (2.26)

• Concerning (T2)

we have,

P

(
sup
y∈S
|F̂ x
N(my)− EF̂ x

N(my)| >
ε

3

√
log n

nφx(hK)

)
≤

A

ln
max

mk∈(m1,...,mSn )
P

(
|F̂ x
N(my)− EF̂ x

N(my)| >
ε

3

√
log n

nφx(hK)

)

like

F̂ x
N(my)− EF̂ x

N(my) =
1

nEK1

n∑
i=1

Hi(my)Ki − E(Hi(my)Ki)︸ ︷︷ ︸
Λ∗i

Which requires the calculation of s′2N where

s
′2
n =

n∑
i=1

n∑
j=1

|cov(Λ∗i ,Λ
∗
j |

By using the same argument used in s2
N and by taking mN = 1

φX(hK)
, one show that

s
′2
n = O(nφx(hK)) +O(nφx(hK))

The inequality of Fuk-Nagaev on the variable Λ∗I involve for ε > 0 and r > 1

P
(
|F̂ x
N(my)− EF̂ x

N(my)| > ε
)

= P

(∣∣∣∣∣
n∑
i=1

Λ∗i

∣∣∣∣∣ > εnEK1

)

≤ 4
(

1 + ε2n2E2K1

16rs2n

)−r
2

+ 2ncr−1
(

8r
εnEK1

)a+1
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Thus one arrives at

P
(∣∣∣F̂ x

D − EF̂ x
D

∣∣∣ > ε
√

logn
nφx(hK)

)
≤ 4

(
1 +

ε2n2E2K1
logn

nφx(hK )

16rs′2n

)−r
2

+ 2ncr−1
(

8r
εnEK1

√
logn

nφx(hK)

)a+1

≤ 4
(

1 + ε2n logn nφx(hK)

16rs′2n

)−r
2

+

Anraε−(a+1)(n log n nφx(hK))
−(a+1)

2

≤ An1− (a+1)
2 raε−(a+1)(n log n nφx(hK))

−(a+1)
2 +

4
(

1 + ε2 logn
16r

)−r
2

≤ An1− (a+1)
2 raε−(a+1)(log n)1− (a+1)

2 φx(hK)1− (a+1)
2 +

Ae−r
2

log
(

1 + ε2 logn
16r

)
We can always choose r in r = C(logN)2, where C is a constant. what gives

P

(∣∣∣F̂ x
N(my)− EF̂ x

N(my)
∣∣∣ > ε

√
log n

nφx(hK)

)
≤ An

−ε2
32 +A(log n)2a− (a+1)

2 n1− (a+1)
2 φx(hK)

−(a+1)
2

Thanks to the left inequality in (H10)

P

(∣∣∣F̂ x
N(my)− EF̂ x

N(my)
∣∣∣ > ε

√
log n

nφx(hK)

)
≤ An

−ε2
32 +A(log n)2a− (a+1)

2 n1− (a+1)
2 n−

(a+1)
2

( 3−a
a+1

+η)

thus one has

P

(
sup
y∈S
|F̂ x
N(my)− EF̂ x

N(my)| >
ε

3

√
log n

nφx(hK)

)
≤ Al−1

n

(
n
−ε2
32 + n−1− (a+1)

2
η
)
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we apply the corollary (2.3.3), under a suitable choice of ε we show that

n∑
i=1

P

(
sup
y∈S

∣∣∣F̂ x
N(my)− EF̂ x

N(my)
∣∣∣ > ε

3

√
log n

nφx(hK)

)
< +∞

• Concerning (T3) we have

1

F̂ x
D

sup
y∈S
|EF̂ x

N(my)− EF̂ x
N(y)| ≤ 1

F̂ x
D

sup
y∈S
|F̂ x
N(my)− F̂ x

N(y)|

and according to the result (2.24)(≤ A ln
hH

) we have:

1

F̂ x
D

sup
y∈S
|EF̂ x

N(my)− EF̂ x
N(y)| ≤ A

ln
hH

we have {
T3 >

η

3

√
log n

nφx(hK)

}
⊆

{
T1 >

η

3

√
log n

nφx(hK)

}

which implies that

P

{
T3 >

η

3

√
log n

nφx(hK)

}
≤ P

{
T1 >

η

3

√
log n

nφx(hK)

}

and consequently

∞∑
n=1

P

(
T3 >

η

3

√
log n

nφx(hK)

)
≤

∞∑
n=1

P

(
T1 >

η

3

√
log n

nφx(hK)

)

and finally thanks to (2.26) we would have

∞∑
n=1

P

(
T3 >

η

3

√
log n

nφx(hK)

)
<∞ (2.27)
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What proves the equation (2.21) of the lemma (2.3.5). It remains us, now, the
equation (2.22), notice that:

1

F̂xD
sup
y∈S
|f̂xN(y)− Ef̂xN(y)| ≤ 1

F̂ x
D

sup
y∈S
|f̂xN(y)− f̂xN(my)|︸ ︷︷ ︸

F1

+
1

F̂ x
D

sup
y∈S
|f̂xN(my)− Ef̂xN(my)|︸ ︷︷ ︸

F2

+

1

F̂ x
D

sup
y∈S
|Ef̂xN(my)− Ef̂xN(y)|︸ ︷︷ ︸

F3

(2.28)
• Concerning F1 and F3 we use the same arguments employed in the demonstration
of T1 and T3, one replace H by H1 we show that

1

F̂xD
sup
y∈S
|f̂xN(y)− f̂xN(my)| ≤ A

ln
h2
H

and 1

F̂xD
sup
y∈S
|Ef̂xN(my)− Ef̂xN(y)| ≤ A

ln
h2
H

Now, we choose ln in the form ln = n−
3α
2
− 1

2 and according to (H7), we deduces that:

ln
h2
H

= O

(√
log n

nhHφx(hK)

)

• Concerning F2

one has,

P

(
sup
y∈S
|f̂xN(my)− Ef̂xN(my)| >

ε

3

√
log n

nhhφx(hK)

)
≤

A

ln
max

mk∈(m1,...,mSn )
P

(
|f̂xN(my)− Ef̂xN(my)| >

ε

3

√
log n

nhhφx(hK)

)
we have also

f̂xN(my)− Ef̂xN(my) =
1

nhhEK1

n∑
i=1

H
(1)
i (my)Ki − E(H

(1)
i (my)Ki)︸ ︷︷ ︸

Γ∗i

Which requires the calculation of s′2N where

s
′2
n =

n∑
i=1

n∑
j=1

|cov(Γ∗i ,Γ
∗
j |
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By using the same method that in s2
N and by taking mN = 1

hHφX(hK)
, one show that

s
′2
n = O(nhHφx(hK))

The inequality of Fuk-Nagaev gives

P

(
sup
y∈S
|f̂xN(my)− Ef̂xN(my)| >

ε

3

√
log n

nhhφx(hK)

)
< A1 + A2.

with A1 = Ae−r
2

log
(

1 + ε2 logn
16r

)
and A2 = An1− (a+1)

2 raε−(a+1)(hH log n)1− (a+1)
2 φx(hK)1− (a+1)

2

We apply the assumption (H10) and the choice of r = C(logn)2 and ln = n−
3
2
α+ 1

2 one
shows that there exists ν > 0 for η rather large, one has

1

ln
(A1 + A2) ≤ An−1−ν

according to the corollary (2.3.3), we deduced that

P

(
sup
y∈S
|f̂xN(my)− Ef̂xN(my)| >

ε

3

√
log n

nhhφx(hK)

)
≤ An−1−ν

�

Lemma 2.3.6. Under the conditions of the theorem (2.3.1) we have

∃δ > 0, such that
∞∑
n=1

P{inf
y∈S
|1− F̂ x(y)| < δ} <∞

proof of lemma (2.3.6)

by equation (2.4), we have the almost complete convergence of F̂ x(y) to F x(y)

F̂ x(y)
a.co−−→ F x(y).
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Which implies that
∞∑
n=1

P{inf
y∈S
|F̂ x(y)− F x(y)| > ε} <∞

In addition, we would have by the assumption FX < 1 i.e.

1− F̂ x ≥ F x − F̂ x

thus

inf
y∈S
|1− F̂ x(y)| ≤ (1− sup

y∈S
F x(y))/2 =⇒ sup

y∈S
|F̂ x(y)− F x(y)| ≥ (1− sup

y∈S
F x(y))/2

In terms of probability is obtained

P{inf
y∈S
|1− F̂ x(y)| < δ} ≤ P{sup

y∈S
|F̂ x(y)− F x(y)| ≥ (1− sup

y∈S
F x(y))/2} <∞

Finally it suffices to take δ = 1− sup
y∈S

F x(y)/2 and apply the results (2.4)to finish the

proof of the lemma �



Chapter 3

On conditional hazard function

estimate for functional mixing data

This chapter[17] is the subject of a publication in Journal of New Trends in Mathe-
matical Sciences.
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3.1 Introduction

Statistical problems involved in the modelization of functional data have received an
increasing interest in the few past decade. The infatuation for this topic is linked
with many fields of applications in which the data are collected in the functional
order. Under this hypothesis, the statistical analysis focuses on a framework of infinite
dimension for the data under study. This type of data appears in many fields of
applied statistics: environmetrics [14], chemometrics [3], meteorological sciences [6],
etc. This field of modern statistics has received much attention recently, it has been
popularized in the book of Ramsay and Silverman [49].
The nonparametric estimation of the hazard and/or the conditional hazard function
is quite important in a variety of fields such as medicine, reliability, survival analysis
or in seismology. The hazard estimate was introduced by Watson and Leadbetter
[60], after that considerable results have been given, see for example, Ahmad [16],
Singpurwalla and Wong [55], and we can also cite Quintela [41] for a survey, Roussas
[54] (for previous works), Li and Tran [35] (for recent advances and references).
When hazard rate estimation is performed with multiple variables, the result is an
estimate of the conditional hazard rate for the first variable, given the levels of the
remaining variables. Many references, practical examples and simulations in the
case of non-parametric estimation using local linear approximations can be found in
Spierdijk [56].
From a theoretical point of view, a sample of functional data can be involved in
many different statistical problems, such as for instance: classification and principal
components analysis (PCA)[5, 51] or longitudinal studies, regression and prediction
[3, 10].
The literature is strictly not limited in the case where the data is of functional nature
(a curve). The first result in this context, was given by Ferraty et al . [25], authors
established the almost complete convergence of the kernel estimate of the conditional
hazard function in the i.i.d. case and under α-mixing condition, and recently Rabhi
et al. [43] studied the mean quadratic convergence in the i.i.d. case of this estimate.
More recently Mahiddine et al. [37] give the uniform version of the almost complete
convergence rate in the i.i.d. case.
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The recent monograph by Ferraty and Vieu [26] summarizes many of their contri-
butions to the non-parametric estimation with functional data; among other prop-
erties, consistency of the conditional density, conditional distribution and regression
estimates are established in the i.i.d. case as well as under dependence conditions
(strong mixing). Almost complete rates of convergence are also obtained, and the
different techniques are applied to various examples of functional data samples. Re-
lated work can be found in the paper of Masry [39], where the asymptotic normality of
the functional non-parametric regression estimate is proven, considering strong mix-
ing dependence conditions for the sample data. For automatic smoothing parameter
selection in the regression setting, see Rachdi and Vieu [45].
The main aim of this chapter, is to study, under general conditions, the asymptotic
proprieties of the functional data kernel estimate of the conditional hazard function
introduced by Ferraty et al. [25]. More precisely, we establish the asymptotic normal-
ity of the construct estimator. We point out that our asymptotic results are useful
in some statistical problems such as the choice of the smoothing parameters. The
present work extended to dependent case the result of Rabhi et al. [43] given in i.i.d.
case functional. Note that, one of the main difficulties, when dealing with functional
variables, relies on the difficulty for choosing some appropriate measure of reference
in infinite dimensional spaces. The fundamental feature of our approach is to build
estimates and to derive their asymptotic properties without any notion of density for
the functional variable X. This approach allows us to avoid the use of a reference
measure in such functional spaces. In each of the above described sections, we will
give general asymptotic results without assuming existence of such a density, and
each of these results will be discussed in relation with earlier literature existing in the
usual finite dimensional case.
Our chapter presents some asymptotic properties related with the non-parametric
estimation of the conditional hazard function. In a functional data setting, the con-
ditioning variable is allowed to take its values in some abstract semi-metric space.
In this case, Ferraty et al. [25] define non-parametric estimators of the conditional
density and the conditional distribution. They give the rates of convergence (in an
almost complete sense) to the corresponding functions, in an a dependence (α-mixing)
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context. In Rabhi et al. [43], the same properties are shown in an i.i.d. context in the
data sample. We extend their results to dependent case by calculating the bias and
variance of these estimates, and establishing their asymptotic normality, considering
a particular type of kernel for the functional part of the estimates. Because the haz-
ard function estimator is naturally constructed using these two last estimators, the
same type of properties is easily derived for it. Our results are valid in a real (one-
and multi-dimensional) context.
The chapter is organized as follows: In the next section we present our model. In
section 3 we present notations and hypotheses, Section 4 is dedicated for our main
results. Section 5 is devoted to some discuss on the applicability of our asymptotic
result in some statistical problems.

3.2 The model

Consider Zi = (Xi, Yi), i ∈ N be a F × R-valued measurable strictly stationary
process, defined on a probability space (Ω,A,P), where (F , d) is a semi-metric space.
In the following x will be a fixed point in F and Nx will denote a fixed neighborhood
of x. We assume that the regular version of the conditional probability of Y given X
exists. Moreover, we suppose that, for all x ∈ Nx the conditional distribution function
of Y given X = x, F x(·), is 3-times continuously differentiable and we denote by fx

its conditional density with respect to (w.r.t.) Lebesgue’s measure over R. In this
chapter, we consider the problem of the nonparametric estimation of the conditional
hazard function defined, for all y ∈ R such that F x(y) < 1, by

hx(y) =
fx(y)

1− F x(y)
.

In our spatial context, we estimate this function by

ĥx(y) =
f̂x(y)

1− F̂ x(y)

where

F̂ x(y) =

∑n
i=1K(h−1

K d(x,Xi))H(h−1
H (y − Yi))∑n

i=1K(h−1
K d(x,Xi))

, ∀y ∈ R
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and

f̂x(y) =
h−1
H

∑n
i=1 K(h−1

K d(x,Xi))H
′(h−1

H (y − Yi))∑n
i=1 K(h−1

K d(x,Xi))
, ∀y ∈ R

with K is the kernel, H is a given continuously differentiable distribution function,
hK = hK,n (resp. hH = hH,n) is a sequence of positive real numbers and H ′ is the

derivative of H. Furthermore, the estimator ĥx(y) can we written as

ĥx(y) =
f̂xN(y)

F̂ x
D − F̂ x

N(y)
(3.1)

where

F̂ x
D :=

1

nE[K1]

n∑
i=1

K(h−1
K d(x,Xi)), K1 = K(h−1

K d(x,X1))

F̂ x
N(y) :=

1

nE[K1]

n∑
i=1

K(h−1
K d(x,Xi))H(h−1

H (y − Yi))

f̂xN(y) :=
1

nhHE[K1]

n∑
i=1

K(h−1
K d(x,Xi))H

′(h−1
H (y − Yi)).

Our main purpose is to study the L2- consistency and the asymptotic normality of

the nonparametric estimate ĥx of hx when the random filed (Zi, i ∈ N) satisfies the
following mixing condition.

3.3 Notations and hypotheses

All along the chapter, when no confusion is possible, we will denote by C and C ′

some strictly positive generic constants. In order to establish our asymptotic results
we need the following hypotheses:

(L0) ∀r > 0,P(X ∈ B(x, r)) =: φx(r) > 0, where B(x, r) = {x′ ∈ F/d(x, x′) < r}.

(L1) (Xi, Yi)i∈N is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.
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(L2) 0 < sup
i 6=j

P ((Xi, Xj) ∈ B(x, h)×B(x, h)) = O

(
(φx(h))(a+1)/a

n1/a

)
.

Note that (L0) can be interpreted as a concentration hypothesis acting on the distri-
bution of the f.r.v. X, whereas (L2) concerns the behavior of the joint distribution of
the pairs (Xi, Xj). In fact, this hypothesis is equivalent to suppose that, for n large
enough

sup
i 6=j

P ((Xi, Xj) ∈ B(x, h)×B(x, h))

P (X ∈ B(x, h))
≤ C

(
φx(h)

n

)1/a

.

(L3) For l ∈ {0, 2}, the functions Ψl(s) = E
[
∂lFx(y)
∂yl

− ∂lFx(y)
∂yl

∣∣∣d(x,X) = s
]
and

Φl(s) = E
[
∂lfx(y)
∂yl

− ∂lfx(y)
∂yl

∣∣∣d(x,X) = s
]
are derivable at s = 0.

(L4) The bandwidth hK satisfies:

hK ↓ 0, ∀t ∈ [0, 1] lim
hK→0

φx(thK)

φx(hK)
= βx(t) and nhHφx(hK)→∞ as n→∞.

(L5) The kernel K from R into R+ is a differentiable function supported on [0, 1]. Its
derivative K ′ exists and is such that there exist two constants C and C ′ with
−∞ < C < K ′(t) < C ′ < 0 for 0 ≤ t ≤ 1.

(L6) H has even bounded derivative function supported on [0, 1] that verifies∫
R
|t|b2 H ′(t)dt <∞.

(N1) There exist sequences of integers (un) and (vn) increasing to infinity such that
(un + vn) ≤ n, satisfying

(i) vn = o((nhHφx(hK))1/2) and
(

n
hHφx(hK)

)1/2

α(vn)→ 0 as n→ 0,

(ii) qnvn = o((nhHφx(hK))1/2) and qn
(

n
hHφx(hK)

)1/2

α(vn)→ 0 as n→ 0

where qn is the largest integer such that qn(un + vn) ≤ n.
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3.3.1 Remarks on the assumptions

Remark 3.3.1. Assumption (L0) plays an important role in our methodology. It is
known as (for small h) the "concentration hypothesis acting on the distribution of X"
in infinite-dimensional spaces. This assumption is not at all restrictive and overcomes
the problem of the non-existence of the probability density function. In many examples,
around zero the small ball probabilityφx(h) can be written approximately as the product
of two independent functions ψ(z) and ϕ(h) as φz(h) = ψ(z)ϕ(h) + o(ϕ(h)). This
idea was adopted by Masry [39] who reformulated the Gasser et al. [28] one. The
increasing property of φx(.) implies that ζxh(.) is bounded and then integrable (all the
more so ζx0 (.) is integrable).
Without the differentiability of φx(.), this assumption has been used by many authors
where ψ(.) is interpreted as a probability density, while ϕ(.) may be interpreted as

a volume parameter. In the case of finite-dimensional spaces, that is S = Rd, it
can be seen that φx(h) = C(d)hdψ(x) + ohd), where C(d) is the volume of the unit

ball in Rd. Furthermore, in infinite dimensions, there exist many examples fulfilling
the decomposition mentioned above. We quote the following (which can be found in
Ferraty et al. [23]):

1. φx(h) ≈ ψ(h)hγ for som γ > 0.

2. φx(h) ≈ ψ(h)hγ exp {C/hp} for som γ > 0 and p > 0.

3. φx(h) ≈ ψ(h)/| lnh|.

The function βxh(.) which intervenes in Assumption (H4) is increasing for all fixed h.
Its pointwise limit βx0 (.) also plays a determinant role. It intervenes in all asymptotic
properties, in particular in the asymptotic variance term. With simple algebra, it is
possible to specify this function (with β0(u) := βx0 (u) in the above examples by:

1. β0(u) = uγ,

2. β0(u) = δ1(u) where δ1(.) is Dirac function,

3. β0(u) = 1]0,1](u).
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Assumption (L2) is classical and permits to make the variance term negligible.

Remark 3.3.2. Assumptions (L3) is a regularity condition which characterize the
functional space of our model and is needed to evaluate the bias.

Remark 3.3.3. Assumptions (L5) and (L6) are classical in functional estimation for
finite or infinite dimension spaces.

3.4 Main results

3.4.1 Mean squared convergence

In this part we establish the L2-consistency of ĥx(y).

Theorem 3.4.1. Under assumptions (L0)-(L6), we have

E
[
ĥx(y)− hx(y)

]2

= B2
n(x, y) +

σ2
h(x, y)

nhHφx(hK)
+ o(h4

H) + o(hK) + o

(
1

nhHφx(hK)

)
,

where

Bn(x, y) =
(Bf

H − hx(y)BF
H)h2

H + (Bf
K − hx(y)BF

K)hK
1− F x(y)

with

Bf
H(x, y) =

1

2

∂2fx(y)

∂y2

∫
t2H ′(t)dt

Bf
K(x, y) = hKΦ′0(0)

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

)
BF
H(x, y) =

1

2

∂2F x(y)

∂y2

∫
t2H ′(t)dt

BF
K(x, y) = hKΨ′0(0)

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

) .

and

σ2
h(x, y) =

β2h
x(y)

(β2
1(1− F x(y))

(with βj = Kj(1)−
∫ 1

0

(Kj)′(s)βx(s)ds, for, j = 1, 2).



3.4 Main results 51

Proof of Theorem (3.4.1)

By using the decomposition

ĥx(y)− hx(y) =
f̂x(y)

1− F̂ x(y)
− fx(y)

1− F x(y)

=
1

1− F̂ x(y)

[
(f̂x(y)− fx(y)) +

fx(y)

1− F x(y)
(F̂ x(y)− F x(y))

]
≤ 1

1− F̂ x(y)

[
(f̂x(y)− fx(y)) +

τ

β
(F̂ x(y)− F x(y))

]
≤

[
(f̂x(y)− fx(y)) +

τ

β
(F̂ x(y)− F x(y))

]
(3.2)

Therefore

E
[
ĥx(y)− hx(y)

]2

≤ E
[
(f̂x(y)− fx(y)) +

τ

β
(F̂ x(y)− F x(y))

]2

(3.3)

We show that the proof of Theorem (3.4.1) can be deduced from the following inter-
mediate results: �

Lemma 3.4.2. Under the hypotheses of Theorem (3.4.1), we have

E
[
f̂xN(y)

]
− fx(y) = Bf

H(x, y)h2
H +Bf

K(x, y)hK + o(h2
H) + o(hK)

and

E
[
F̂ x
N(y)

]
− F x(y) = BF

H(x, y)h2
H +BF

K(x, y)hK + o(h2
H) + o(hK).

Remark 3.4.3. Observe that, the result of this lemma permits to write[
EF̂ x

N(y)− F x(y)
]

= O(h2
H) +O(hK)

and [
Ef̂xN(y)− fx(y)

]
= O(h2

H) +O(hK).



3.4 Main results 52

Lemma 3.4.4. Under the hypotheses of Theorem (3.4.1), we have

V ar
[
f̂xN(y)

]
=

σ2
f (x, y)

nhHφx(hK)
+O

(
1

nhHφx(hK)

)
,

V ar
[
F̂ x
N(y)

]
= O

(
1

nhHφx(hK)

)
and

V ar
[
F̂ x
D

]
= O

(
1

nhHφx(hK)

)
.

where σ2
f (x, y) := fx(y)

∫
H ′

2
(t)dt.

Lemma 3.4.5. Under the hypotheses of Theorem (3.4.1), we have

Cov(f̂xN(y), F̂ x
D) = O

(
1

nhHφx(hK)

)
,

Cov(f̂xN(y), F̂ x
N(y)) = O

(
1

nhHφx(hK)

)
and

Cov(f̂xD, F̂
x
N(y)) = O

(
1

nhHφx(hK)

)
.

Remark 3.4.6. It is clear that, the results of Lemmas (3.4.4 and 3.4.5) allows to
write

V ar
[
F̂ x
D − F̂ x

N

]
= O

(
1

nhHφx(hK)

)

3.4.2 Asymptotic normality

This section contains results on the asymptotic normality of ĥx(y).
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Theorem 3.4.7. Assume that (L0)-(L6) and (N1) hold, and if the following inequal-
ities

∃η > 0, C, C ′ > 0 such that C n
3−a
a+1

+η ≤ hH φx(hK) and φx(hK) ≤ C ′n
1

1−a (3.4)

are verified with a > (5 +
√

17)/2, then we have for any x ∈ A,

(
nhHφx(hK)

σ2
h(x, y)

)1/2 (
ĥx(y)− hx(y)−Bn(x, y)

)
D→ N (0, 1) as n→∞.

where
A = {x ∈ F , fx(y)(1− F x(y)) 6= 0}

and D→ means the convergence in distribution.

Evidently, if one imposes some additional assumptions on the function φx(·) and the
bandwidth parameters (hK and hH) our asymptotic normality can be improved by
removing the bias term Bn(x, y).

Corollary 3.4.8. Under the hypotheses of Theorem (3.4.7) and if the bandwidth
parameters (hK and hH) and if the function φx(hK) satisfies:

lim
n→∞

(h2
H + hK)

√
nφx(hK) = 0

we have (
nhHφx(hK)

σ2
h(x, y)

)1/2 (
ĥx(y)− hx(y)

)
D→ N (0, 1) as n→∞.

Proof of Theorem and Corollary Consider the decomposition

ĥx(y)− hx(y) =
1

F̂ x
D − F̂ x

N(y)

(
f̂xN(y)− Ef̂xN(y)

)
+

1

F̂ x
D − F̂ x

N(y)

{
hx(y)

(
EF̂ x

N(y)− F x(y)
)

+
(
Ef̂xN(y)− fx(y)

)}
+

hx(y)

F̂ x
D − F̂ x

N(y)

{
1− EF̂ x

N(y)−
(
F̂ x
D − F̂ x

N(y)
)}

(3.5)
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Therefore, Theorem (3.4.7) and Corollary (3.4.8) are a consequence of Lemma (3.4.2),
remark (3.4.3) and the following results. �

Lemma 3.4.9. Under the hypotheses of Theorem (3.4.7)

(
nhHφx(hK)

σ2
f (x, y)

)1/2 (
f̂xN(y)− E

[
f̂xN(y)

])
→ N (0, 1).

Lemma 3.4.10. Under the hypotheses of Theorem 3.4.7

F̂ x
D − F̂ x

N(y)→ 1− F x(y) in probability

and (
nhHφx(hK)

σ2
h(x, y)

)1/2 (
F̂ x
D − F̂ x

N(y)− 1 + E[F̂ x
N(y)]

)
= OP(1).

3.5 Appendix

In the following, we will denote ∀i

Ki = K(h−1
H d(x,Xi)), Hi = H(h−1

H (y − Yi) and H ′i = H ′(h−1
H (y − Yi).

Proof of Lemma (3.4.2)

Firstly, for E[f̂xN(y)], we start by writing

E[f̂xN(y)] =
1

E[K1]
E
[
K1E[h−1

H H ′1|X]
]
with h−1

H E [H ′1|X] =

∫
R
H ′(t)fx(y − hHt)dt.

The latter can be re-written, by using a Taylor expansion under (L3), as follows

h−1
H E[H ′1|X] = fx(y) +

h2
H

2

(∫
t2H ′(t)dt

)
∂2fx(y)

∂2y
+ o(h2

H).

Thus, we get

E
[
f̂xN(y)

]
=

1

E[K1]

(
E [K1f

x(y)] +

(∫
t2H ′(t)dt

)
E
[
K1

∂2fx(y)

∂2y

]
+ o(h2

H)

)
.
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Let ψl(·, y) := ∂lf ·(y)
∂ly

: for l ∈ {0, 2}, since Φl(0) = 0, we have

E [K1ψl(X, y)] = ψl(x, y)E[K1] + E [K1 (ψl(X, y)− ψl(x, y))]

= ψl(x, y)E[K1] + E [K1 (Φl(d(x,X))]

= ψl(x, y)E[K1] + Φ′l(0)E [d(x,X)K1] + o(E [d(x,X)K1]).

So,

E
[
f̂xN(y)

]
= fx(y) +

h2
H

2

∂2fx(y)

∂y2

∫
t2H ′(t)dt+ o

(
h2
H

E [d(x,X)K1]

E[K1]

)
+Φ′0(0)

E [d(x,X)K1]

E[K1]
+ o

(
E [d(x,X)K1]

E[K1]

)
.

Similarly to Ferraty et al. [23] we show that

1

φx(hK)
E [d(x,X)K1] = hK

(
K(1)−

∫ 1

0

(sK(s))′βx(s)ds+ o(1)

)
and

1

φx(hK)
E [K1] = K(1)−

∫ 1

0

K ′(s)βx(s)ds+ o(1).

Hence,

E
[
f̂xN(y)

]
= fx(y) +

h2
H

2

∂2fx(y)

∂y2

∫
t2H ′(t)dt

+hKΦ′0(0)

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

) + o(h2
H) + o(hK).

Secondly, concerning E[F̂ x
N(y)], we write by an integration by part

E[F̂ x
N(y)] =

1

E[K1]
E [K1E[H1|X]] with E [H1|X] =

∫
R
H ′(t)F x(y − hHt)dt.
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The same steps used in studying E[f̂xN(y)] can be followed to prove that

E
[
F̂ x
N(y)

]
= F x(y) +

h2
H

2

∂2F x(y)

∂y2

∫
t2H ′(t)dt

+hKΨ′0(0)

(
K(1)−

∫ 1

0
(sK(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

) + o(h2
H) + o(hK).

�

Proof of Lemma (3.4.4) For the first quantity V ar[f̂xN(y)], we have

s2
n = V ar[f̂xN(y)] =

1

(nhHE [K1(x)])2
V ar

[∑
i=1

Γi(x)

]

where
Γi(x) = Ki(x)H ′i(y)− E [Ki(x)H ′i(y)] .

Thus

V ar[f̂xN(y)] =
1

(nhHE [K1])2

∑
i 6=j

Cov (Γi(x),Γj(x))︸ ︷︷ ︸
scovn

+
n∑
i=1

V ar (Γi(x))︸ ︷︷ ︸
svarn

=
1

n(hHE [K1])2
V ar [Γ1] +

1

(nhHE [K1])2

∑
i 6=j

Cov(Γi,Γj).

Let us calculate the quantity V ar [Γ1(x)]. We have:

V ar [Γ1(x)] = E
[
K2

1(x)H ′
2

1 (y)
]
− (E [K1(x)H ′1(y)])

2

= E
[
K2

1(x)
] E [K2

1(x)H ′
2

1 (y)
]

E [K2
1(x)]

− (E [K1(x)])2

(
E [K1(x)H ′1(y)]

E [K1(x)]

)2

.
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So, by using the same arguments as those used in pervious lemma we get

1

φx(hK)
E
[
K2

1(x)
]

= K2(1)−
∫ 1

0

(K2(s))′βx(s)ds+ o(1)

E
[
K2

1(x)H ′
2

1 (y)
]

E [K2
1(x)]

= hHf
x(y)

∫
H ′

2

(t)dt+ o(hH)

E[K1(x)H ′1(y)]

E [K1(x)]
= hHf

x(y) + o(hH)

which implies that

V ar [Γi(x)] = hHφx(hK)fx(y)

∫
H ′

2

(t)dt

(
K2(1)−

∫ 1

0

(K2(s))′βx(s))ds

)
+o (hHφx(hK)) .

(3.6)
Now, let us focus on the covariance term. To do that, we need to calculate the
asymptotic behavior of quantity defined as

∑
i 6=j

∣∣∣Cov(Γi(x),Γj(x))
∣∣∣ =

∑
1≤|i−j|≤cn

∣∣∣Cov(Γi(x),Γj(x))
∣∣∣ = J1,n + J2,n.

with cn →∞, as n→∞.
For all (i, j) we write

Cov (Γi(x),Γj(x)) = E
[
Ki(x)Kj(x)H ′i(y)H ′j(y)

]
− (E [Ki(x)H ′i(y)])

2

and we use the fact that

E
[
H ′i(y)H ′j(y)|(Xi, Xj)

]
= O(h2

H); ∀ i 6= j, E [H ′i(y)|Xi] = O(hH); ∀ i.

For J1,n: by means of the integral realized above and under (L2) and (L5), we get

E
[
KiKjH

′
iH
′
j

]
≤ Ch2

HP [(Xi, Xj) ∈ B(x, hK)×B(x, hK)]

and
E [Ki(x)H ′i(y)] ≤ ChHP (Xi ∈ B(x, hK)) .



3.5 Appendix 58

It follows that, the hypothesis (L0), (L2) and (L5), imply

Cov (Γi(x),Γj(x)) ≤ Ch2
Hφx(hK)

(
φx(hK) +

(
φx(hK)

n

)1/a
)

So

J1,n ≤ C

(
ncnh

2
H

(
φx(hK)

n

)1/a

φx(hK)

)
.

Hence

J1,n = O

(
ncnh

2
H

(
φx(hK)

n

)1/a

φx(hK)

)
.

On the other hand, these covariances can be controlled by mean of the usual Davydov-
Rios’s covariance inequality for mixing processes (see Rio 2000, formula 1.12a). To-
gether with (L1), this inequality leads to:

∀i 6= j, |Cov(Di(x), Dj(x))| ≤ C |i− j|−a.

By the fact,
∑

k≥cn+1

k−a ≤
∫ ∞
cn

t−adt =
c−a+1
n

a− 1
, we get by applying (L1),

J2,n ≤
∑

|i−j|≥cn+1

|i− j|−a ≤ nc−a+1
n

a− 1

Thus, by using the following classical technique (see Bosq, 1998 [8]), we can write

scovn =
∑

0<|i−j|≤un

|Cov(Γi(x),Γj(x))|+
∑

|i−j|>un

|Cov(Γi(x),Γj(x))| .

Thus

scovn ≤ Cn

(
cnh

2
H

(
φx(hK)

n

)1/a

φx(hK) +
c−a+1
n

a− 1

)

Choosing cn = h−2
H

(
φx(hK)

n

)−1/a

, and owing to the right inequality in (3.4), we can

deduce
scovn = o (nhHφx(hK)) . (3.7)
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Finally,

s2
n = o (nhHφx(hK)) +O (nhHφx(hK))

= O (nhHφx(hK))

In conclusion, we have

V ar[f̂xN(y)] =
fx(y)

nhHφx(hK)

(∫
H ′

2

(t)dt

)
(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

)2

+o

(
1

nhHφx(hK)

)
(3.8)

Now, for F̂ x
N(y), (resp. F̂ x

D) we replace H ′i(y) by Hi(y) (resp. by 1) and we follow the
same ideas, under the fact that H ≤ 1

V ar[F̂ x
N(y)] =

F x(y)

nφx(hK)

(∫
H ′

2

(t)dt

)
(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

)2

+o

(
1

nφx(hK)

)
.

and

V ar[F̂ x
D] =

1

nφx(hK)


(
K2(1)−

∫ 1

0
(K2(s))′βx(s)ds

)
(
K(1)−

∫ 1

0
K ′(s)βx(s)ds

)2

+ o

(
1

nφx(hK)

)
.

This yields the proof.
�

Proof of Lemma (3.4.5)

The proof of this lemma follows the same steps as the previous Lemma. For this, we
keep the same notation and we write

Cov(f̂xN(y), F̂ x
N(y)) =

1

nhH(E [K1(x)])2
Cov (Γ1(x),∆1(x))

+
1

n2hH(E [K1(x)])2

∑
i 6=j

Cov(Γi(x),∆j(x))
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where
∆i(x) = Ki(x)Hi(y)− E [Ki(x)Hi(y)] .

For the first term, we have under (L4)

Cov (Γ1(x),∆1(x)) = E[K2
1(x)H1(y)H ′1(y)]− E[K1(x)H1(y)]E[K1(x)H ′1(y)]

= O(hHφx(hK)) +O(hHφ
2
x(hK))

= O(hHφx(hK)).

Therefore,

1

nhH(E [K1(x)])2
Cov (Γ1(x),∆1(x)) = O

(
1

nφx(hK)

)
= O

(
1

nhHφx(hK)

)
. (3.9)

So, by using similar arguments as those invoked in the proof of Lemma (4.3.5), and
we use once again the boundedness of K and H, and the fact that (L1) and (L6)
imply that

E (H ′i(y)|Xi) = O(hH).

Moreover, the right part of (L7b) implies that

Cov (Γi(x),∆j(x)) = O

(
hHφx(hK)

(
φx(hK)

n

)1/a

+ φx(hK)

)
,

Meanwhile, using the Davydov-Rio’s inequality in Rio (2000) for mixing processes
leads to

|Cov (Γi(x),∆j(x))| ≤ Cα (|i− j|) ≤ C|i− j|−a,

we deduce easily that for any cn > 0 :

∑
i 6=j

Cov (Γi(x),∆j(x)) = O

(
n cn hHφx(hK)

(
φx(hK)

n

)1/a

+ φx(hK)

)

+ O
(
nhH c

−a
n

)
.
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It suffices now to take cn = h−1
H

(
φx(hK)

n

)−1/a

to get the following expression for the

sum of the covariances:∑
i 6=j

Cov (Γi(x),∆j(x)) = o (nφx(hK)) . (3.10)

From (3.9) and (3.10) we deduce that

Cov(f̂xN(y), F̂ x
N(y)) = O

(
1

nhHφx(hK)

)
.

The same arguments can be used to shows that

Cov(f̂xN(y), F̂ x
D) = O

(
1

nhHφx(hK)

)
and Cov(F̂ x

N(y), F̂ x
D) = O

(
1

nhHφx(hK)

)
.

�

Proof of Lemma (3.4.9)

Let

Sn =
n∑
i=1

Λi(x)

where

Λi(x) :=

√
hHφx(hK)

hHE[K1(x)]
Γi(x). (3.11)

Obviously, we have

√
nhHφx(hK) [σf (x, y)]−1

(
f̂xN(y)− Ef̂xN(y)

)
=
(
n(σf (x, y))2

)−1/2
Sn.

Thus, the asymptotic normality of (n(σf (x, y))2)
−1/2

Sn, is sufficient to show the proof
of this Lemma. This last is shown by the blocking method, where the random variables
Λi are grouped into blocks of different sizes defined.
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We consider the classical big- and small-block decomposition. We split the set
{1, 2, . . . , n} into 2kn + 1 subsets with large blocks of size un and small blocks of
size vn and put

kn :=
[ n

un + vn

]
.

Assumption (N1)(ii) allows us to define the large block size by

un =:
[(nhHφx(hK)

qn

)1/2 ]
.

Using Assumption (N1) and simple algebra allows us to prove that

vn
un
→ 0,

un
n
→ 0,

un√
nhHφx(hK)

→ 0, and
n

un
α(vn)→ 0 (3.12)

Now, let Υj, Υ′j and Υ
′′
j be defined as follows:

Υj =

j(u+v)+u∑
i=j(u+v)+1

Λi(x), 0 ≤ j ≤ k + 1,

Υ′j =

(j+1)(u+v)+u∑
i=j(u+v)+u+1

Λi(x), 0 ≤ j ≤ k + 1,

Υ
′′

j =
n∑

i=k(u+v)+1

Λi(x), 0 ≤ j ≤ k + 1.

Clearly, we can write

Sn =
k−1∑
j=0

Υj +
k−1∑
j=0

Υ′j + Υ
′′

kr =: S ′n + S ′′n + S
′′′

n .

We prove that

(i)
1

n
E(S ′′n)2 −→ 0, (ii)

1

n
E(S

′′′

n )2 −→ 0, (3.13)
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∣∣∣E{exp
(
itn−1/2S ′n

)}
−

k−1∏
j=0

E
{

exp
(
itn−1/2Υj

)} ∣∣∣ −→ 0, (3.14)

1

n

k−1∑
j=0

E
(
Υ2
j

)
−→ σ2

f (x, y), (3.15)

1

n

k−1∑
j=0

E
(

Υ2
j1{|Υj |>ε

√
nσ2

f (x,y)}

)
−→ 0 (3.16)

for every ε > 0.

Expression (3.13) show that the terms S ′′n and S
′′′
n are negligible, while Equations

(3.14) and (3.15) show that the Υj are asymptotically independent, verifying that

the sum of their variances tends to σ2
f (x, y). Expression (3.16) is the Lindeberg-

Feller’s condition for a sum of independent terms. Asymptotic normality of Sn is a
consequence of Equations (3.13)-(3.16).

• Proof of (3.13) Because E(Λj) = 0, ∀j, we have that

E(S ′′n)2 = V ar

(
k−1∑
j=0

Υ′j

)
=

k−1∑
j=0

V ar
(
Υ′j
)

+
∑

0≤i<j≤k−1

Cov
(
Υ′i,Υ

′
j

)
:= Π1 + Π2.

By the second-order stationarity we get

V ar
(
Υ′j
)

= V ar

 (j+1)(un+vn)∑
i=j(un+vn)+un+1

Λi(x)


= vnV ar(Λ1(x)) +

vn∑
i 6=j

Cov (Λi(x),Λj(x)) .
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Then

Π1

n
=

kvn
n
V ar(Λ1(x)) +

1

n

k−1∑
j=0

vn∑
i 6=j

Cov (Λi(x),Λj(x))

≤ kvn
n

{
φx(hK)

hHE2K1(x)
V ar (Γ1(x))

}
+

1

n

n∑
i 6=j

∣∣∣Cov (Λi(x),Λj(x))
∣∣∣

≤ kvn
n

{
1

hHφx(hK)
V ar (Λ1(x))

}
+

1

n

n∑
i 6=j

∣∣∣Cov (Λi(x),Λj(x))
∣∣∣.

Simple algebra gives us

kvn
n
∼=
(

n

un + vn

)
vn
n
∼=

vn
un + vn

∼=
vn
un
−→ 0 as n→∞.

Using Equation (3.7) we have

lim
n→∞

Π1

n
= 0. (3.17)

Now, let us turn to Π2/n. We have

Π2

n
=

1

n

k−1∑
i=0i 6=j

k−1∑
j=0

Cov (Υi(x),Υj(x))

=
1

n

k−1∑
i=0i 6=j

k−1∑
j=0

vn∑
l1=1

vn∑
l2

Cov
(
Λmj+l1 ,Λmj+l2

)
,

with mi = i(un + vn) + vn. As i 6= j, we have |mi−mj + l1− l2| ≥ un. It follows
that

Π2

n
≤ 1

n

n∑
i=1 |i−j|≥un

n∑
j=1

Cov (Λi(x),Λj(x)) ,

then

lim
n→∞

Π2

n
= 0. (3.18)
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By Equations (3.17) and (3.18) we get Part(i) of the Equation(3.13).

We turn to (ii), we have

1

n
E
(
S
′′′

n

)2

=
1

n
V ar (Υ′′k)

=
ϑn
n
V ar (Λ1(x)) +

1

n

ϑn∑
i=1 i 6=j

ϑn∑
j=1

Cov (Λi(x),Λj(x)) ,

where ϑn = n− kn(un + vn); by the definition of kn, we have ϑn ≤ un + vn.

Then

1

n
E
(
S
′′′

n

)2

≤ un + vn
n

V ar (Λ1(x)) +
1

n

ϑn∑
i=1 i 6=j

ϑn∑
j=1

Cov (Λi(x),Λj(x))

and by the definition of un and vn we achieve the proof of (ii) of Equation (3.13).

• Proof of (3.14) We make use of Volkonskii and Rozanov’s lemma (see the
appendix in Masry, 2005) and the fact that the process (Xi, Xj)is strong mixing.

Note that Υa is F jaia -mesurable with ia = a(un+vn)+1 and ja = a(un+vn)+un;

hence, with Vj = exp
(
itn−1/2Υj

)
we have

∣∣∣E{exp
(
itn−1/2S ′n

)}
−
k−1∏
j=0

E
{

exp
(
itn−1/2Υj

)} ∣∣∣ ≤ 16knα(vn+1) ∼=
n

vn
α(vn+1)

which goes to zero by the last part of Equation (3.12). Now we establish Equa-
tion (3.15).

• Proof of (3.15) Note that V ar(S ′n) −→ σ2
f (x, y) by Equation (3.13) and since

V ar(S ′n) −→ σ2
f (x, y) (by the definition of the Λi and Equation (3.8)). Then

because

E (S ′n)
2

= V ar (S ′n) =
k−1∑
j=0

V ar (Υj) +
k−1∑
i=0 i 6=j

k−1∑
j=0

Cov (Υi,Υj) ,
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all we have to prove is that the double sum of covariances in the last equation
tends to zero. Using the same arguments as those previously used for Π2 in the
proof of first term of Equation (3.13)we obtain by replacing vn by un we get

1

n

k−1∑
j=0

E
(
Υ2
j5
)

=
kun
n
V ar (Λ1) +O(1).

As V ar (Λ1) −→ σ2
f (x, y) and kun/n −→ 1, we get the result.

Finally, we prove Equation (3.16).

• Proof of (3.16) Recall that

Υj =

j(un+vn)+un∑
i=j(un+vn)+1

Λi.

Making use Assumptions (L5) and (L6), we have∣∣∣Λi

∣∣∣ ≤ C (hHφx(hK))−1/2

thus ∣∣∣Υj

∣∣∣ ≤ Cun (hHφx(hK))−1/2 ,

which goes to zero as n goes to infinity by Equation (3.12). Then for n large

enough, the set
{
|Υj| > ε

(
nσ2

f (x, y)
)−1/2

}
becomes empty, this completes the

proof and therefore that of the asymptotic normality of (n(σf (x, y))2)
−1/2

Sn,

�

Proof of Lemma (3.4.10):

It is clear that, the result of Lemma (3.4.2) and Lemma (3.4.4) permits us

E
(
F̂ x
D − F̂ x

N − 1 + F x(y)
)
−→ 0
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and

V ar
(
F̂ x
D − F̂ x

N − 1 + F x(y)
)
−→ 0

then

F̂ x
D − F̂ x

N − 1 + F x(y)
P−→ 0.

Moreover, the asymptotic variance of F̂ x
D−F̂ x

N given in remark (3.4.6) allows to obtain

nhHφx(hK)

σh(x, y)2
V ar

(
F̂ x
D − F̂ x

N − 1 + E
(
F̂ x
N(y)

))
−→ 0.

By combining result with the fact that

E
(
F̂ x
D − F̂ x

N − 1 + E
(
F̂ x
N(y)

))
= 0

we obtain the claimed result. �
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4.1 Introduction

The statistical analysis of functional data studies the experiments whose results
are generally the curves. Under this supposition, the statistical analysis focuses on
a framework of infinite dimension for the data under study. This field of modern
statistics has received much attention in the last 20 years, and it has been popularised
in the book of Ramsay and Silverman [49]. This type of data appears in many
fields of applied statistics: environmetrics (Damon and Guillas,[14]), chemometrics
(Benhenni et al., [3]), meteorological sciences (Besse et al.,[6]), etc.

From a theoretical point of view, a sample of functional data can be involved in many
different statistical problems, such as: classification and principal components anal-
ysis (PCA) (1986,1991) or longitudinal studies, regression and prediction (Benhenni
et al., [3]; Cardo et al., [10]). The recent monograph by Ferraty and Vieu [26] sum-
marizes many of their contributions to the non-parametric estimation with functional
data; among other properties, consistency of the conditional density, conditional dis-
tribution and regression estimates are established in the i.i.d. case under dependence
conditions (strong mixing). Almost complete rates of convergence are also obtained,
and different techniques are applied to several examples of functional data samples.
Related work can be seen in the paper of Masry [39], where the asymptotic normality
of the functional nonparametric regression estimate is proven, considering strong mix-
ing dependence conditions for the sample data. For automatic smoothing parameter
selection in the regression setting, see Rachdi and Vieu [45].

4.1.1 Hazard and conditional hazard

The estimation of the hazard function is a problem of considerable interest, especially
to inventory theorists, medical researchers, logistics planners, reliability engineers
and seismologists. The non-parametric estimation of the hazard function has been
extensively discussed in the literature. Beginning with Watson and Leadbetter
(1964), there are many papers on these topics: Ahmad [16], Singpurwalla and Wong
[55], etc.We can cite Quintela [41] for a survey.
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The literature on the estimation of the hazard function is very abundant, when ob-
servations are vectorial. Cite, for instance, Watson and Leadbetter (1964), Roussas
[54], Lecoutre and Ould-Saïd [34], Estèvez et al. [19] and Quintela-del-Rio [40] for
recent references. In all these works the authors consider independent observations or
dependent data from time series. The first results on the nonparametric estimation of
this model, in functional statistics were obtained by Ferraty et al. [25]. They studied
the almost complete convergence of a kernel estimator for hazard function of a real
random variable dependent on a functional predictor. Asymptotic normality of the
latter estimator was obtained, in the case of α- mixing, by Quintela-del-Rio [42]. We
refer to Ferraty et al. [22] and Mahhiddine et al. [37] for uniform almost complete
convergence of the functional component of this nonparametric model. When haz-
ard rate estimation is performed with multiple variables, the result is an estimate of
the conditional hazard rate for the first variable, given the levels of the remaining
variables. Many references, practical examples and simulations in the case of non-
parametric estimation using local linear approximations can be found in Spierdijk
[56].
Our chapter presents some asymptotic properties related with the non-parametric
estimation of the maximum of the conditional hazard function. In a functional data
setting, the conditioning variable is allowed to take its values in some abstract semi-
metric space. In this case, Ferraty et al. [24] define non-parametric estimators of the
conditional density and the conditional distribution. They give the rates of conver-
gence (in an almost complete sense) to the corresponding functions, in a dependence
(α-mixing) context. We extend their results by calculating the maximum of the
conditional hazard function of these estimates, and establishing their asymptotic nor-
mality, considering a particular type of kernel for the functional part of the estimates.
Because the hazard function estimator is naturally constructed using these two last
estimators, the same type of properties is easily derived for it. Our results are valid
in a real (one- and multi-dimensional) context.
If X is a random variable associated to a lifetime (ie, a random variable with values
in R+, the hazard rate of X (sometimes called hazard function, failure or survival
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rate ) is defined at point x as the instantaneous probability that life ends at time x.
Specifically, we have:

h(x) = lim
dx→0

P (X ≤ x+ dx|X ≥ x)

dx
. (x > 0)

When X has a density f with respect to the measure of Lebesgue, it is easy to see
that the hazard rate can be written as follows:

h(x) =
f(x)

S(x)
=

f(x)

1− F (x)
, for all x such that F (x) < 1,

where F denotes the distribution function of X and S = 1− F the survival function
of X.

In many practical situations, we may have an explanatory variable Z and the main
issue is to estimate the conditional random rate defined as

hz(x) = lim
dx→0

P (X ≤ x+ dx|X > x, Z)

dx
, for x > 0

which can be written naturally as follows:

hz(x) =
f z(x)

Sz(x)
=

f z(x)

1− F z(x)
, once F z(x) < 1. (4.1)

Study of functions h and hz is of obvious interest in many fields of science ( biology,
medicine, reliability , seismology, econometrics, ... ) and many authors are interested
in construction of nonparametric estimators of h.

In this chapter we propose an estimate of the maximum risk, through the nonpara-
metric estimation of the conditional hazard function.

The layout of the chapter is as follows. Section 4.2 describes the non-parametric
functional setting: the structure of the functional data and the mixing conditions, the
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conditional density, distribution and hazard operators, and the corresponding non-
parametric kernel estimators. Section 4.3 states the almost complete convergence1

(with rates of convergence2) for nonparametric estimates of the derivative of the
conditional hazard and the maximum risk. In Section 4.4, we calculate the variance of
the conditional density, distribution and hazard estimates, the asymptotic normality
of the three estimators considered is developed in this Section. Finally, Section 4.5
includes some proofs of technical Lemmas.

4.2 Nonparametric estimation with dependent func-

tional data

Let {(Zi, Xi), i = 1, . . . , n} be a sample of n random pairs, each one distributed as
(Z,X), where the variable Z is of functional nature and X is scalar. Formally, we will
consider that Z is a random variable valued in some semi-metric functional space F ,
and we will denote by d(., .) the associated semi-metric. The conditional cumulative
distribution of X given Z is defined for any x ∈ R and any z ∈ F by

F z(x) = P(X ≤ x|Z = z),

while the conditional density, denoted by f z(x) is defined as the density of this
distribution with respect to the Lebesgue measure on R. The conditional hazard is
defined as in the non-infinite case (4.1).

In a general functional setting, f , F and h are not standard mathematical objects.
Because they are defined on infinite dimensional spaces, the term operators may be
a more adjusted in terminology.

1Recall that a sequence (Tn)n∈N of random variables is said to converge almost completely to
some variable T , if for any ε > 0, we have

∑
n P(|Tn − T | > ε) < ∞. This mode of convergence

implies both almost sure and in probability convergence (see for instance Bosq and Lecoutre, (1987)).
2Recall that a sequence (Tn)n∈N of random variables is said to be of order of complete convergence

un, if there exists some ε > 0 for which
∑

n P(|Tn| > εun) <∞. This is denoted by Tn = O(un), a.co.
(or equivalently by Tn = Oa.co.(un)).
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4.2.1 Dependance structure

We assume the sample data (Zi, Xi)1≤i≤n to be dependent and to satisfy the strong
mixing condition (α-mixing), introduced by Rosenblatt [53], defined as:
let N∗ denotes the set of positive integers, and for any i and j in N∗ ∪ ∞, (i ≤ j),

define F ji to be σ algebra spanned by the variables (zi, xi) · · · (zj, xj). The sequence
(Zi, Xi) is said to be α mixing if there exist mixing coefficients α(k) such that
|P(A ∩ B) − P(A)P(B)| ≤ α(k), for any sets A and B, that are, respectively, Fmi
measurable F∞m+k measurable (k,m positive integers), and α(k) ↓ 0.

This is the weakest condition used in studies of dependent samples (for example, the
ARMA process, generated by a continuous white noise verifies it). The reader can
see Doukhan [18] for a more complete discussion of the strong mixing condition.

4.2.2 The functional kernel estimates

Following in Ferraty et al. [25], the conditional density operator f z(.) is defined by
using kernel smoothing methods

f̂ z(x) =

n∑
i=1

h−1
H K

(
h−1
K d(z, Zi)

)
H ′
(
h−1
H (x−Xi)

)
n∑
i=1

K
(
h−1
K d(z, Zi)

) ,

where K and H ′ are kernel functions and hH and hK are sequences of smoothing
parameters. The conditional distribution operator F z(.) can be estimated by

F̂ z(x) =

n∑
i=1

K
(
h−1
K d(z, Zi)

)
H
(
h−1
H (x−Xi)

)
n∑
i=1

K
(
h−1
K d(z, Zi)

) ,
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with the function H(.) defined by H(x) =
∫ x
−∞H

′(t)dt. Consequently, the conditional

hazard operator is defined in a natural way by

ĥz(x) =
f̂ z(x)

1− F̂ z(x)
.

For z ∈ F , we denote by hz(.) the conditional hazard function of X1 given Z1 = z. We
assume that hz(.) is unique maximum and its high risk point is denoted by θ(z) := θ,
which is defined by

hz(θ(z)) := hz(θ) = max
x∈S

hz(x) (4.2)

A kernel estimator of θ is defined as the random variable θ̂(z) := θ̂ which maximizes

a kernel estimator ĥz(.), that is,

ĥz(θ̂(z)) := ĥz(θ̂) = max
x∈S

ĥz(x) (4.3)

where hz and ĥz are defined above.
Note that the estimate θ̂ is note necessarily unique and our results are valid for any
choice satisfying (4.3). We point out that we can specify our choice by taking

θ̂(z) = inf

{
t ∈ S such that ĥz(t) = max

x∈S
ĥz(x)

}
As in any non-parametric functional data problem, the behavior of the estimates is
controlled by the concentration properties of the functional variable Z.

φz(h) = P(Z ∈ B(z, h)),

where B(z, h) being the ball of center z and radius h, namely
B(z, h) = {f ∈ F , d(z, f) < h} (for more details, see Ferraty and Vieu [26], Chapter
6 ).
In the following, z will be a fixed point in F , Nz will denote a fixed neighborhood
of z, S will be a fixed compact subset of R+. We will led to the hypothesis below
concerning the function of concentration φz
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(M0) ∀h > 0, 0 < P (Z ∈ B(z, h)) = φz(h) and lim
h→0

φz(h) = 0

(M1) (Zi, Xi)i∈N is an α-mixing sequence whose the coefficients of mixture verify:

∃a > 0, ∃c > 0 : ∀n ∈ N, α(n) ≤ cn−a.

(M2) 0 < max
i 6=j

ψi,j(h) = sup
i 6=j

P ((Zi, Zj) ∈ B(z, h)×B(z, h)) = O

(
(φz(h))(a+1)/a

n1/a

)
.

Note that (MO) can be interpreted as a concentration hypothesis acting on the distri-
bution of the f.r.v. of Z, whereas (M2) concerns the behavior of the joint distribution
of the pairs (Zi, Zj). In fact, this hypothesis is equivalent to assume that, for n large
enough

sup
i 6=j

P ((Zi, Zj) ∈ B(z, h)×B(z, h))

P (Z ∈ B(z, h))
≤ C

(
φz(h)

n

)1/a

.

This is one way to control the local asymptotic ratio between the joint distribution
and its margin. Remark that the upper bound increases with a. In other words, more
the dependence is strong, more restrictive is (M2). The hypothesis (M1) specifies
the asymptotic behavior of the α-mixing coefficients.

Our nonparametric models will be quite general in the sense that we will just need the
following simple assumption for the marginal distribution of Z, and let us introduce
the technical hypothesis necessary for the results to be presented. The non-parametric
model is defined by assuming that

(M3)

{
∀(x1, x2) ∈ S2,∀(z1, z2) ∈ N 2

z , for some b1 > 0, b2 > 0

|F z1(x1)− F z2(x2)| ≤ Cz(d(z1, z2)b1 + |x1 − x2|b2),

(M4)

{
∀(x1, x2) ∈ S2,∀(z1, z2) ∈ N 2

z , for some j = 0, 1, ν > 0, β > 0

|f z1 (j)(x1)− f z2 (j)(x2)| ≤ Cz(d(z1, z2)ν + |x1 − x2|β),

(M5) ∃γ <∞, f ′z(x) ≤ γ, ∀(z, x) ∈ F × S,
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(M6) ∃τ > 0, F z(x) ≤ 1− τ, ∀(z, x) ∈ F × S.

(M7) H ′ is twice differentiable such that

(M7a) ∀(t1, t2) ∈ R2; |H(j)(t1)−H(j)(t2)| ≤ C|t1 − t2|, for j = 0, 1, 2

and H(j)are bounded for j = 0, 1, 2

(M7b)
∫
R
t2H ′2(t)dt <∞,

(M7c)
∫
R
|t|β(H ′′(t))2dt <∞

(M8) The kernel K is positive bounded function supported on [0, 1] and it is of class
C1 on (0, 1) such that ∃C1, C2, −∞ < C1 < K ′(t) < C2 < 0 for 0 < t < 1

(M9) There exists a function ζz0 (.) such that for all t ∈ [0, 1] lim
h→0

φz(th)

φz(h)
= ζz0 (t).

(M10) The bandwidth hH and hK , small ball probability φz(h) and arithmetical α
mixing coefficient with order a > 3 satisfying

(M10a)∃C > 0, h2j+1
H φz(hK) ≥ C

n2/(a+1) , for j = 0, 1

(M10b)
(
φz(hK)

n

)1/a

+ φz(hK) = o
(

1
n2/(a+1)

)
, for j = 0, 1

(M10c) lim
n→∞

hK = 0, lim
n→∞

hH = 0, and lim
n→∞

log n

nh2j+1
H φz(hK)

= 0, j = 0, 1;

Remark 4.2.1. Assumptions (M3) and (M4) are the only conditions involving the
conditional probability and the conditional probability density of Z given X. It means
that F (∆|∆) and f(.|.) and its derivatives satisfy the Hölder condition with respect to
each variable. Therefore, the concentration condition (MO) plays an important role.
Here we point out that our assumptions are very usual in the estimation problem for
functional regressors (see, e.g., Ferraty et al. [24]).

Remark 4.2.2. Assumptions (M7), (M8) and (M10) are classical in functional es-
timation for finite or infinite dimension spaces.
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4.3 Nonparametric estimate of the maximum of the

conditional hazard function

Let us assume that there exists a compact S with a unique maximum θ of hz on S.
We will suppose that hz is sufficiently smooth ( at least of class C2) and verifies that

h′z(θ) = 0 and h′′ z(θ) < 0.

Furthermore, we assume that θ ∈ S◦, where S◦ denotes the interior of S, and that θ
satisfies the uniqueness condition, that is; for any ε > 0 and µ(z), there exists ξ > 0

such that |θ(z)− µ(z)| ≥ ε implies that |hz(θ(z))− hz(µ(z))| ≥ ξ.

We can write an estimator of the first derivative of the hazard function through the
first derivative of the estimator. Our maximum estimate is defined by assuming that

there is some unique θ̂ on S◦.

It is therefore natural to try to construct an estimator of the derivative of the function
hz on the basis of these ideas. To estimate the conditional distribution function and
the conditional density function in the presence of functional conditional random
variable Z.

The kernel estimator of the derivative of the function conditional random functional
hz can therefore be constructed as follows:

ĥ′
z
(x) =

f̂ ′
z
(x)

1− F̂ z(x)
+ (ĥz(x))2, (4.4)

the estimator of the derivative of the conditional density is given in the following
formula:

f̂ ′
z
(x) =

n∑
i=1

h−2
H K(h−1

K d(z, Zi))H
′′(h−1

H (x−Xi))

n∑
i=1

K(h−1
K d(z, Zi))

(4.5)
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Later, we need assumptions on the parameters of the estimator, ie onK,H,H ′, H ′′, hH
and hK are little restrictive. Indeed, on one hand, they are not specific to the problem
estimate of hz (but inherent problems of F z, f z and f ′z estimation), and secondly
they consist with the assumptions usually made under functional variables.

We state the almost complete convergence (withe rates of convergence) of the maxi-
mum estimate by the following results:

Theorem 4.3.1. Under assumption (MO)-(M8) we have

θ̂ − θ → 0 a.co. (4.6)

Remark 4.3.2. The hypothesis of uniqueness is only established for the sake of clar-
ity. Following our proofs, if several local estimated maxima exist, the asymptotic
results remain valid for each of them.

Proof of theorem (4.3.1). Because h′z(·) is continuous, we have, for all ε >

0. ∃ η(ε) > 0 such that

|x− θ| > ε⇒ |h′z(x)− h′z(θ)| > η(ε).

Therefore,

P{|θ̂ − θ| ≥ ε} ≤ P{|h′z(θ̂)− h′z(θ)| ≥ η(ε)}.

We also have

|h′z(θ̂)− h′z(θ)| ≤ |h′z(θ̂)− ĥ′z(θ̂)|+ |ĥ′z(θ̂)− h′z(θ)| ≤ sup
x∈S
|ĥ′z(x)− h′z(x)|, (4.7)

because ĥ′z(θ̂) = h′z(θ) = 0.

Then, uniform convergence of h′z will imply the uniform convergence of θ̂. That is
why, we have the following lemma.

Lemma 4.3.3. Under assumptions of Theorem (4.3.1), we have

sup
x∈S
|ĥ′z(x)− h′z(x)| → 0 a.co. (4.8)
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The proof of this lemma will be given in Appendix.

Theorem 4.3.4. Under assumption (M1)-(M8) and (M10c) we have

sup
x∈S
|θ̂ − θ| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nh3
Hφz(hK)

)
(4.9)

Proof of theorem (4.3.4). By using Taylor expansion of the function h′z at the

point θ̂, we obtain

h′z(θ̂) = h′z(θ) + (θ̂ − θ)h′′z(θ∗), (4.10)

with θ∗ a point between θ and θ̂. Now, because h′z(θ) = ĥ′z(θ̂)

|θ̂ − θ| ≤ 1

h′′z(θ∗n)
sup
x∈S
|ĥ′z(x)− h′z(x)| (4.11)

The proof of Theorem will be completed showing the following lemma.

Lemma 4.3.5. Under the assumptions of Theorem (4.3.4), we have

sup
x∈S
|ĥ′z(x)− h′z(x)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nh3
Hφz(hK)

)
(4.12)

The proof of lemma will be given in the Appendix.

4.4 Asymptotic normality

To obtain the asymptotic normality of the conditional estimates, we have to add the
following assumptions:

(H7d)
∫
R
(H ′′(t))2dt <∞,
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(H11) 0 = ĥ′
z
(θ̂) < |ĥ′

z
(x)|),∀x ∈ S, x 6= θ̂

The following result gives the asymptotic normality of the maximum of the conditional
hazard function. Let

A = {(z, x) : (z, x) ∈ S × R, ax2F z(x) (1− F z(x)) 6= 0}

Theorem 4.4.1. Under conditions (MO)-(H11) we have (θ ∈ S/f z(θ), 1−F z(θ) > 0)(
nh3

Hφz(hK)
)1/2

(
ĥ
′z(θ)− h′z(θ)

)
D→N

(
0, σ2

h′(θ)

)
where →D denotes the convergence in distribution,

axl = K l(1)−
∫ 1

0

(
K l(u)

)′
ζx0 (u)du for l = 1, 2

and

σ2
h′(θ) =

ax2h
z(θ)

(ax1)2 (1− F z(θ))

∫
(H ′′(t))2dt.

Proof of theorem (4.4.1). Using again (4.17), and the fact that

(1− F z(x))

(1− F̂ z(x)) (1− F z(x))
−→ 1

1− F z(x)

and
f ′z(x)(

1− F̂ z(x)
)

(1− F z(x))
−→ f ′z(x)

(1− F z(x))2

The asymptotic normality of (nh3
Hφz(hK))

1/2
(
ĥ′
z
(θ)− h′z(θ)

)
can be deduced from

both following lemmas,

Lemma 4.4.2. Under Assumptions (MO)-(M3) and (M7)-(M9), we have

(nφz(hK))1/2
(
F̂ z(x)− F z(x)

)
D→N

(
0, σ2

F z(x)

)
(4.13)

where

σ2
F z(x) =

ax2F
z(x) (1− F z(x))

(ax1)2
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Lemma 4.4.3. Under Assumptions (MO)-(M4) and (M6)-(M10), we have

(nhHφz(hK))1/2
(
ĥz(x)− hz(x)

)
D→N

(
0, σ2

hz(x)

)
(4.14)

where

σ2
hz(x) =

ax2h
z(x)

(ax1)2 (1− F z(x))

∫
R
(H ′(t))2dt

Lemma 4.4.4. Under Assumptions of Theorem (4.4.1), we have

(
nh3

Hφz(hK)
)1/2

(
f̂ ′
z
(x)− f ′z(x)

)
D→N

(
0, σ2

f ′z(x)

)
(4.15)

where

σ2
f ′z(x) =

ax2f
z(x)

(ax1)2

∫
R
(H ′′(t))2dt

The proofs of Lemma (4.4.2) can be seen in Ezzahrioui and Ould-Saïd [20].

Finally, by this last result and (4.10), the following theorem follows:

Theorem 4.4.5. Under conditions (M1)-(M11) we have (θ ∈ S/f z(θ), 1−F z(θ) > 0)

(
nh3

Hφz(hK)
)1/2

(
θ̂ − θ

)
D→N

(
0,

σ2
h′(θ)

(h′′z(θ))2

)

with

σ2
h′(θ) =

ax2h
z(θ)

(ax1)2 (1− F z(θ))

∫
(H ′′(t))2dt.

4.5 Proofs of technical lemmas

Proof of lemma (4.3.3) and lemma (4.3.5). Let

ĥ′z(x) =
f̂ ′z(x)

1− F̂ z(x)
+ (ĥz(x))2, (4.16)
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with

ĥ′z(x)− h′z(x) =

{(
ĥz(x)

)2

− (hz(x))2

}
︸ ︷︷ ︸

Γ1

+

{
f̂ ′z(x)

1− F̂ z(x)
− f ′z(x)

1− F z(x)

}
︸ ︷︷ ︸

Γ2

(4.17)

for the first term of (4.17) we can write

∣∣∣ (ĥz(x)
)2

− (hz(x))2
∣∣∣ ≤ ∣∣∣ĥz(x)− hz(x)

∣∣∣.∣∣∣ĥz(x) + hz(x)
∣∣∣ (4.18)

because the estimator ĥz(·) converge a.co. to hZ(·) we have

sup
x∈S

∣∣∣ (ĥz(x)
)2

− (hz(x))2
∣∣∣ ≤ 2

∣∣∣hz(θ)∣∣∣ sup
x∈S

∣∣∣ĥz(x)− hz(x)
∣∣∣ (4.19)

for the second term of (4.17) we have

f̂ ′z(x)

1− F̂ z(x)
− f ′z(x)

1− F z(x)
=

1

(1− F̂ z(x))(1− F z(x))

{(
f̂ ′
z
(x)− f ′z(x)

)
+f ′z(x)

(
F̂ z(x)− F z(x)

)
− FZ(x)

(
f̂ ′
z
(x)− f ′z(x)

)}
,

=
1

(1− F̂ z(x))(1− F z(x))

{
(1− F z(x))

(
f̂ ′
z
(x)− f ′z(x)

)
+f ′z(x)

(
F̂ z(x)− F z(x)

)}
Valid for all x ∈ S. Which for a constant C <∞, this leads

sup
x∈S

∣∣∣ f̂ ′z(x)

1− F̂ z(x)
− f ′z(x)

1− F z(x)

∣∣∣ ≤

C

{
sup
x∈S

∣∣∣f̂ ′z(x)− f ′z(x)
∣∣∣+ sup

x∈S

∣∣∣F̂ z(x)− F z(x)
∣∣∣}

inf
x∈S

∣∣∣1− F̂ z(x)
∣∣∣ (4.20)
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Therefore, the conclusion of the lemma follows from the following results:

sup
x∈S
|F̂ z(x)− F z(x)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nφz(hK)

)
(4.21)

sup
x∈S
|f̂ ′z(x)− f ′z(x)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nh3
Hφz(hK)

)
(4.22)

sup
x∈S
|ĥz(x)− hz(x)| = O

(
hb1K + hb2H

)
+Oa.co.

(√
log n

nhHφz(hK)

)
(4.23)

∃δ > 0 such that
∞∑
1

P
{

inf
y∈S
|1− F̂ z(x)| < δ

}
<∞ (4.24)

The proofs of (4.22) appear in Ferraty et al. [24], and (4.21),(4.23)(4.24) is proven in
chapter 2.

Proof of lemma (4.4.3). We can write for all x ∈ S

ĥz(x)− hz(x) =
f̂ z(x)

1− F̂ z(x)
− f z(x)

1− F z(x)

=
1

D̂z(x)

{(
f̂ z(x)− f z(x)

)
+ f z(x)

(
F̂ z(x)− F z(x)

)
−F z(x)

(
f̂ z(x)− f z(x)

)}
,

=
1

D̂z(x)

{
(1− F z(x))

(
f̂ z(x)− f z(x)

)
+f z(x)

(
F̂ z(x)− F z(x)

)}
(4.25)

with D̂z(x) = (1− F z(x))
(

1− F̂ z(x)
)
.
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As a direct consequence of the Lemma (4.4.2), the result (4.26) (see Ezzahrioui and
Ould-Saïd [21]) and the expression (4.25), permit us to obtain the asymptotic nor-
mality for the conditional hazard estimator.

(nhHφz(hK))1/2
(
f̂ z(x)− f z(x)

)
D→N

(
0, σ2

fz(x)

)
(4.26)

where

σ2
fz(x) =

ax2f
z(x)

(ax1)2

∫
R
(H ′(t))2dt

Proof of lemma (4.4.4). For i = 1, . . . , n, we consider the quantities Ki =

K
(
h−1
K d(z, Zi)

)
, H ′′i (x) = H ′′

(
h−1
H (x−Xi)

)
and let f̂ ′

z

N(x) (resp. F̂ z
D) be defined

as

f̂ ′
z

N(x) =
h−2
H

nEK1

n∑
i=1

KiH
′′
i (x) (resp. F̂ z

D =
1

nEK1

n∑
i=1

Ki).

This proof is based on the following decomposition

f̂ ′
z
(x)− f ′z(x) =

1

F̂ z
D

{(
f̂ ′
z

N(x)− Ef̂ ′
z

N(x)
)
−
(
f ′z(x)− Ef̂ ′

z

N(x)
)}

+

f ′z(x)

F̂ z
D

{
EF̂ z

D − F̂ z
D

}
(4.27)

and on the following intermediate results.√
nh3

Hφz(hK)
(
f̂ ′
z

N(x)− Ef̂ ′
z

N(x)
)
D→N

(
0, σ2

f ′z(x)

)
(4.28)

where σ2
f ′z(x) is defined as in Lemma (4.4.4).

lim
n→∞

√
nh3

Hφz(hK)
(
Ef̂ ′

z

N(x)− f ′z(x)
)

= 0 (4.29)

√
nh3

Hφz(hK)
(
F̂ z
D(x)− 1

)
P→ 0, as n→∞. (4.30)
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• Concerning (4.28). By the definition of f̂ ′
z

N(x), it follows that

√
nh3

Hφz(hK)
(
f̂ ′
z

N(x)− Ef̂ ′
z

N(x)
)

=
n∑
i=1

√
φz(hK)√
nhHEK1

(KiH
′′
i − EKiH

′′
i ) =

n∑
i=1

∆i,

which leads

n∑
i=1

E∆2
i =

φz(hK)

hHE2K1

EK2
1(H ′′1 )2 − φz(hK)

hHE2K1

(EK1H
′′
1 )

2
= Π1n − Π2n. (4.31)

As for Π1n, by the property of conditional expectation, we get

Π1n =
φz(hK)

E2K1

E
{
K2

1

∫
H ′′2(t)

(
f ′z(x− thH)− f ′Z(x) + f ′z(x)

)
dt

}
.

Meanwhile, by (MO), (M4), (M8) and (M9), it follows that:

φz(hK)EK2
1

E2K1

−→
n→∞

ax2
(ax1)2

,

which leads

Π1n −→
n→∞

ax2f
Z(x)

(ax1)2

∫
(H ′′(t))2dt, (4.32)

Regarding Π2n, by (MO), (M4) and (M7), we obtain

Π2n −→
n→∞

0. (4.33)

This result, combined with (4.31) and (4.32), allows us to get

lim
n→∞

n∑
i=1

E∆2
i = σ2

f ′Z(x) (4.34)

Secondly, by the boundedness of H ′′, we have

E (|∆i∆j|) ≤
Cφz(hK)

nE2K1

(KiKj + EKiKj)

≤ C

nhH

{(
φz(hK)

n

)1/a

+ φz(x)(hK)

}
, ∀i 6= j.
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Then, taking

δn = max
1≤i 6=j≤n

{E (| ∆i∆j|)} =
C

nhH

((
φz(hK)

n

)1/a

+ φz(x)(hK)

)
.

leads

nmnδn =
Cmn

hH

((
φz(hK)

n

)1/a

+ φz(x)(hK)

)
. (4.35)

Similarly, the boundedness of H ′′ and K allows us to take

Ci = O

(
1√

nh3
Hφz(hK)

)
,

which implies that(
∞∑

j=mn+1

α(j)

)
n∑
i=1

C2
i ≤

C

hHφz(hK)

∫
t≥mn

t−adt =
C

hHφz(hK)

m−a+1
n

a− 1
. (4.36)

Then, the sum of the right side of (4.35) and (4.36) is of type Amn+Bm−a+1
n , by

talking mn = (A/B)−1/a = {(a− 1)φz(hK)((φz(hK)
n

)1/a + φz(hK))}−1/a →∞, it

is clear that, under conditions (H10a) and (H10b), combining (4.35) and (4.36)
allows us to get

nmnδn = o(1), (4.37)

and (
∞∑

j=mn+1

α(j)

)
n∑
i=1

C2
i = o(1), (4.38)

respectively. Finally, by choosing %n =
√

nh3Hφz(hK)

logn
, under (H10a) again and

a > 3, we have
%n√
n

= o(1) (4.39)
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and

n

%n
α(ε%n) ≤ C

(log n)(a+1)/2

n(a−1)/2(h3
Hφz(hK))(a+1)/2

≤ C
(log n)(a+1)/2

n(a−3)/2
→ 0 as n→∞.

Therefore, combining (4.33)-(4.39) with Corollary 2.2 in Liebscher [36], (4.28)
is valid.

• Concerning (4.29). The proof is completed along the same steps as that of Π1n.
We omit it here.

• Concerning (4.30). The idea is similar to that given by Ferraty et al. [24].

By definition of F̂ z
D(x), we have

√
nh3

Hφz(hK)(F̂ z
D(x)− 1) = Ωn − EΩn,

where Ωn =

√
nh3Hφz(hK)

∑n
i=1Ki

nEK1
. In order to prove (4.30), similar to Ferraty et

al. (2005), we only need to proov V ar Ωn → 0, as n→∞. In fact, since

V ar Ωn =
nh3

Hφz(hK)

nE2K1

(
nV arK1 +

∑
1≤i

∑
j≤n

cov(Ki, Kj)

)

≤ nh3
Hφz(hK)

E2K1

EK2
1 +

nh3
Hφz(hK)

nE2K1

∑∑
0≤|i−j|≤vn

cov(Ki, Kj)

+
nh3

Hφz(hK)

nE2K1

∑∑
0≤|i−j|≥vn

cov(Ki, Kj)

= Ψ1 + Ψ2 + Ψ3,

then, using the boundedness of function K allows us to get that:

Ψ1 ≤ Ch3
Hφz(hK)→ 0, as n→∞.
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Meanwhile, by (MO) and (M1), it follows that

Ψ2 ≤ vnh
3
H

{(
φz(hK)

n

)1/a

+ φz(hK)

}
. (4.40)

Finally, using the Davydov-Rio’s inequality in Rio [52] for mixing processes
leads to

|cov(Ki, Kj| ≤ Cα(|i− j|),

for all i 6= j. Then, we have

Ψ3 ≤
h3
Hφz(hK)

nE2K1

n2Cα(|i− j|)

≤ C
h3
Hφz(hK)

nE2K1

n2v−a+1
n

≤ Ch3
Hnv

−a+1
n . (4.41)

Since the right side of (4.40) and (4.41) is also of type Avn +Bv−a+1
n ,

by choosing vn = [n−1((φz(hK)
n

)1/a + φz(hK))]−1/a →∞
and simple calculations, we get that Ψ2 → 0 and Ψ3 → 0 as n → ∞, respec-
tively.
Therefore, the proof of this result is completed.

Therefore, the proof of this lemma is completed.



Chapter 5

General Conclusion and prospects

5.1 General conclusion

We were interested specifically in this thesis to a non-parametric model that treats the
case of functional variables in which "response" variable is true while the explanatory
variable is functional. The objective was the estimation of the derivative of the
conditional hazard function by means of the conditional distribution function and its
derivative by the kernel method. The case in question deals with complete data.
The richness of this functional statistical research area offers many perspectives both
theoretically and practically. In the following, we will comment on some results
already obtained, with the major concern of focusing on all open issues some of
which are under development.

5.2 prospects

The work developed in this thesis offers many prospects in the short and long term.
Regarding the short-term prospects:
• one can consider while adapting the tools developed by Niang and Rhomari (2003)
to study the convergence standard Lp of our estimators in the case dependent and
ergodic case.
•Another possible prospect is to obtain convergence rates and the formula of the
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smoothing parameter using the integrated square error and square error.
• Other issues can be addressed such as the long-term by conditioning p functional
variables or a linear combination of these functional variables p.
• The work on the estimation of conditional quantiles and the conditional hazard
function for functional explanatory variable opens several perspectives. For example,
another estimator may consider using a different method than the estimate by the
kernel method as Fourier techniques: Fourier series decomposition, wavelet series
decomposition, series decomposition of polynomials .. .,
• The search for optimal convergence rates are all interesting topics in the field
• On another front, regarding the mixing hypothesis, it is also possible to obtain
convergence rates for ergodic data, making ergodic hypothesis with a neighboring
spectral gap of the unit
• In the latter study truncated data and censored at a time can be interesting.
• estimation with spatial functional data can be approached in several ways.
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