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Introduction

During the past two decades, fractional differential equations have gained considerable im-
portance due to their application in various sciences, such as physics, mechanics, and engineering

[24, 43]. There has been a great deal of interest in the solutions of fractional differential equa-

tions in analytical and numerical senses. One can see the monographs of Kilbas et al. [28], Miller

and Ross [33], Podlubny [38], and Lakshmikantham et al. [30] and the survey of Agarwal et al.

[3, 5].

To study the theory of abstract differential equations with fractional derivatives in infinite
dimensional spaces, the first step is how to introduce new concepts of mild solutions. A pioneering

work has been reported by El-Borai [11]. Very recently, Hernández et al.[22] showed that some

recent papers of fractional differential equations in Banach spaces were incorrect and used another
approach to treat abstract equations with fractional derivatives based on the well developed

theory of resolvent operators for integral equation. Moreover, Wang and Zhou [45], Zhou and

Jiao [48] also introduced a suitable definition of mild solutions based on Laplace transform and

probability density functions.

On the other hand, the theory of impulsive differential equations has become an active area of
invetigation due to its applications in fields such as mechanics, electrical engineering, medicine,

biology, and ecology. One can refer to [47] and the references therein. Recently, the problems

of existence of solutions of impulsive differential equations have been extensively studied [13].

Benedetti in [6] proved an existence result for impulsive functional differential in Banach spaces.

Obukhovskii and Yao [37] considered local and global existence results for semilinear functional

differential inclusions with infinite delay and impulse characteristics in a Banach space. Some
existence results were obtained for certain classes of functional differential equations in Banach

spaces under assumption that the linear part generates an compact semigroup (see, e.g, [1, 2]).

The problem of existence of solution in general and the existence of almost periodic solution
in particular of impulsive differential equations have been generalized to stochastic differential

equations with impulsive conditions [8, 4, 22].

We would like to mention that the impulsive effects also widely exist in fractional stochastic

differential systems [21, 41], and it is important and necessary to discuss the qualitative properties

for stochastic fractional equations with impulsive perturbations and delay.
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At present, there are few works in the existence problem of impulsive fractional stochastic
differentian equation with delay and the aim of this thesis is to fill this gap.

This thesis is structured as follows: The thesis begins in chapter 1 with a brief summary
of the theory of stochastic and fractional calculus. In this chapter we will give definitions and
properties of the needed theory. We briefly recall some basic notions of the Brownian motion,
then we skim through the fractional Brownian motion we review rapidly the basic concepts, then
we discuss integration with respect to Brownian motion and fractional Brownian motion.

Next, In chapter 2 , we briefly present some basic notations and preliminaries, and discuss
the existence of solutions for a class of impulsive fractional stochastic differential equations with
infinite delay by using some appropriate fixed point theorems and evolution system theory. This
chapter is concluded with an example to illustrate the obtained results.

Finally, in chapter 3, we introduce a class of impulsive stochastic differential equations with
delays, and the relating notations, definitions and lemmas which would be used later, in Section
2, a new sufficient condition is proposed to ensure the existence and uniqueness of mean square
almost periodic solutions. In Section 3, an example is constructed to show the effectiveness of
our results.

All chapters of this thesis are the subject of communications and publications.
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Chapter 1

Preliminary Background

In this chapter the basic concepts and results concerning stochastic calculus of continuous
stochastic processes in Euclidean spaces are established. We omit some introductory facts from

probability theory. For more detail we refer the reader to [10, 16, 23, 27, 18]. We first start with

stochastic process, Wiener process and fractional Brownian motion.

1.1 Notations and definitions

A stochastic process X is an umbrella term for any collection of random variables {X(t, w)}
depending on time t, which is defined on the same probability space (Ω,Ft,P). Time can be

discrete, for example, t = 0, 1, 2, . . . , or continuous, t ≥ 0.
For fixed time t, the observation is described by a random variable which we denote by Xt or

X(t).

For fixed ω ∈ Ω, X(t) is a single realization (single path) of this process. Any single path is a

function of time t, xt = x(t), t ≥ 0.

At a fixed time t, properties of the random variable X(t) are described by a probability

distribution ofX(t), P (X(t) ≤ x). A stochastic process is determined by all its finite dimensional

distributions, that is, probabilities of the form

P (X(t1) ≤ x1, X(t2) ≤ x2, . . . , X(tn) ≤ xn),

for any choice of time points 0 ≤ t1 < t2 < . . . < tn, any n ≥ 1 with x1, . . . , xn ∈ R.

Definition 1.1.1 [18] If all finite dimensional distributions of a stochastic process is Gaussian

(multi normal), then the process is called a Gaussian process. Because, a multivariate normal

distribution is determined by its mean and covariance matrix, a Gaussian process is determined

by it mean function m(t) = EX(t) and covariance function γ(t, s) = Cov{X(t), X(s)}.
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8 Preliminary Background

1.2 Brownian Motion

We start by recalling the definition of Brownian motion, which is a fundamental example

of a stochastic process. The underlying probability space (Ω,F ,P) of Brownian motion can be

constructed on the space Ω = C0(R+) of continuous real-valued functions on R+ started at 0.

Definition 1.2.1 [35] The standard Brownian motion is a stochastic process (W (t))t∈R+ such

that
(i) W (0) = 0 almost surely,

(ii) The sample trajectories t 7→W (t) are continuous, with probability 1.

(iii) For any finite sequence of times t0 < t1 < . . . < tn, the increments

W (t1)−W (t0),W (t2)−W (t1), . . . ,W (tn)−W (tn−1)

are independent.

(iv) For any given times 0 ≤ s < t,W (t)−W (s) has the Gaussian distribution N (0; t− s) with

mean zero and variance t− s.

We refer the reader theorem 10, 28 of [17] and to Chapter 1 of [35] for the proof about the

existence of Brownian motion as a stochastic process (W (t))t∈R+ satisfying the above properties

(i)-(iv).

Definition 1.2.2 Brownian motion is a continuous adapted real-valued process W (t), t ≥ 0 such

that

• W (0) = 0.

• W (t)−W (s) is independent of Fs for all 0 ≤ s < t.

• W (t)−W (s) is N (0; t− s)-distributed for all 0 ≤ s ≤ t.

1.2.1 Simple Properties of Brownian Motion

Let W (t) be a fixed Brownian motion. We give below some simple properties that follow

directly from the definition of Brownian motion.

Proposition 1.2.1.1 [18]. Brownian motion is a Gaussian process because the increments

W (t1) = W (t1) − W (t0),W (t2) − W (t1), . . . ,W (tm) − W (tm−1) are independent and normal

distributed, as their linear transform, the random variables W (t1),W (t2), . . . ,W (tm) are jointly
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normally distributed, that is, the finite dimensional of Brownian motion is multivariate normal.
So Brownian motion is a Gaussian process with mean 0 and covariance function

γ(t, s) = Cov{X(t), X(s)} = EW (t)W (s).

If t < s, then W (s) = W (t) +W (s)−W (t), and

EW (t)W (s) = EW 2(t) + EW (t)(W (s)−W (t)) = EW 2(t) = t.

Similarly if t > s, EW (t)W (s) = s. Therefore

γ(t, s) = min(t, s)

Proposition 1.2.1.2 [18] (Translation invariance.) For fixed t0 ≥ 0, the stochastic process

W̃ (t) = W (t+ t0)−W (t0) is also a Brownian motion.

Proof. The stochastic process W̃ (t) obviously satisfies the usual conditions of a Brownian motion.

For any s < t,

W̃ (t)− W̃ (s) = W (t+ t0)−W (s+ t0). (1.1)

We see that W̃ (t)−W̃ (s) is normally distributed with mean 0 and variance (t+t0)−(s+t0) = t−s.

Thus W̃ (t) satisfies condition to independent increments. To check independent increments for

W̃ (t), we may assume that t0 > 0. Then for any 0 ≤ t1 < t2 < . . . < tn, we have 0 < t0 ≤ t1+t0 <

. . . < tn + t0. Hence by condition independent increments of W (t), W (tk + t0) − B(tk−1 + t0),

k = 1, 2, . . . , n, are independent random variables. Thus by Equation (1.1), the random vari-

ables W̃ (tk)−W̃ (tk−1), k = 1, 2, . . . , n, are independent and so W̃ (t) has independent increments.

�

1.2.2 Quadratic variation and Brownian motion

Proposition 1.2.2.1 Let W (t)t∈R+ be a Brownian motion. For t ≥ 0, for all sequence of

subdivisions ∆n[0, t], such that lim
n→∞

|∆n[0, t]| = 0 we have

lim
n→∞

2n∑
i=1

(
W it

2n
−W (i−1)t

2n

)2

= t, p.s.

Proof. The proof can be found in ([23], p 46).
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1.2.3 Brownian paths

Proposition 1.2.3.1 [27]. A Brownian motion has its paths a.s, locally γ-Hölder continuous

for γ ∈ [0, 1/2).

Proof. Let T > 0; n ∈ N and 0 ≤ s ≤ t. Then we have,

E((Wt −Ws)
2n) =

2n!

2nn!
(t− s)n.

Hence, by using the Kolomogorov continuity theorem , there exists a continuous modification

(W̃t)0≤t≤T of (Wt)0≤t≤T , whose the paths are locally γ-Hölder continuous ∀γ ∈ [0, n−1
2n ]. More-

over, we have

P(∀t ∈ [0, T ],Wt = W̃t) = 1

because the two processes are continuous. It implies that also almost all the paths of (Wt)0≤t≤T

are locally γ-Hölder continuous.
�

Proposition 1.2.3.2 [27]. The Brownian motion’s sample paths are a.s., nowhere differentiable.

1.2.4 Brownian motion and martingales

As a stochastic process, we could ask, knowing all well properties of martingales, if the
Brownian motion is one.

Proposition 1.2.4.1 [16]. Let (Wt)t∈R+ be a Brownian motion. Then the following processes

are (FWt )-martingales:

1. (W (t))t∈R+;

2. (W 2(t)− t)t∈R+;

3. (euW (t)−u
2

2
t)t∈R+ For any u ∈ R.

Proof. The proof can be found in ([16], p.40).

1.2.5 Cylindrical stochastic processes

Let (Ω,F ,P) be a probability space with a filtration {Ft}t≥0. Similarly to the correspon-

dence between measures and random variables there is an analogue random object associated to
cylindrical measures.
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Definition 1.2.5.1 A cylindrical random variable X in U is a linear map

X : U∗ → L0(Ω).

A cylindrical process X in U is a family (X(t) : t ≥ 0) of cylindrical random variables in U ,

where U be a separable Banach space with dual U∗ The dual pairing is denoted by 〈u, u∗〉, for
u ∈ U and u∗ ∈ U∗.
The characteristic function of a cylindrical random variable X is defined by

ϕX : U∗ → C, ϕX(u∗) = E[exp(iXu∗)].

The concepts of cylindrical measures and cylindrical random variables match perfectly. Because
the characteristic function of a cylindrical random variable is positive-definite and continuous on
finite subspaces there exists a cylindrical measure µ with the same characteristic function. We

call µ the cylindrical distribution of X. Vice versa, for every cylindrical measure µ on C(U) there

exists a probability space (Ω,F ,P) and a cylindrical random variable X : U∗ → L0(Ω) such that

µ is the cylindrical distribution of X, see ([32], VI.3.2).

Remark 1.2.5.1 Our definition of cylindrical processes is based on the definitions in [7]. In [32]

cylindrical random variables are considered which have values in Lp(Ω) for p > 0. They assume

in addition that a cylindrical random variable is continuous. The continuity of a cylindrical

variable is reflected by continuity properties of its characteristic function, see [[32], Prop.IV. 3.4].

The notion of weakly independent increments origins from [7].

Definition 1.2.5.2 An adapted cylindrical process W = (W (t) : t > 0) in U is a weakly

cylindrical Wiener process, if for all u∗1 . . . , u
∗
n and n ∈ N the Rn-valued stochastic process

((W (t)u∗1 . . . ,W (t)u∗n) : t ≥ 0) is a Wiener process.

Our definition of a weakly cylindrical Wiener process is an obvious extension of the definition
of a finite-dimensional Wiener processes and is exactly in the spirit of cylindrical processes.

Lemma 1.2.5.1 For an adapted cylindrical process W = (W (t) : t ≥ 0) the following are

equivalent:

(a) W is a weakly cylindrical Wiener process;

(b) W satisfies

(i) W has weakly independent increments;

(ii) (W (t)u∗ : t ≥ 0) is a Wiener process for all u∗ ∈ U∗.
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Proof. We have only to show that (b) implies (a). By linearity we have

β1(W (t)−W (s))u∗ + . . .+ βn(W (t)−W (s))u∗n = (W (t)−W (s))

(
n∑
i=1

βiu
∗
n

)
,

for all βi ∈ R and u∗ ∈ U∗. Which shows that the increments of ((W (t)u∗1, . . . ,W (t)u∗n)) : t ≥ 0)

are normally distributed and stationary. The independence of the increments follows by (i).

�

Let (Ω,F , {Ft}t≥0,P) be a complete probability space equipped with some filtration {Ft}t≥0

satisfying the usual conditions (i.e, it is right continuous and F0 contains all P -null sets) and K,
H be two separable Hilbert spaces with the inner product 〈·, ·〉, and we will use the notation || · ||
to denote the norms in H,K. Let {ei}∞i=1 be a complete orthonormal basis of K. Suppose that

{W (t) : t ≥ 0} is a cylindrical K-valued Wiener process with a finite trace nuclear covariance

operator Q ≥ 0, denote Tr(Q) =
∞∑
i=1

λi = λ < ∞, which satisfies that Qei = λiei. So, actually,

W (t) =

∞∑
i=1

√
λiWi(t)ei, where {Wi(t)}∞i=1 are mutually independent one-dimensional standard

Wiener processes. We assume that F = {σW (s) : 0 ≤ s ≤ t is the σ-algebra generated by W

and Fb = F .
Now,we introduce the following notions which can be used in the next chapters. Let L(K,H)

denote the space of all bounded linear operators from K into H equipped with the usual operator

norm || · ||L(K,H) . For ψ(t) ∈ L(K,H) we define

||ψ||2Q = Tr(ψQψ∗) =
∞∑
n=1

||
√
λnψen||2.

If ||ψ||2Q < ∞, then ψ is called a Q-Hilbert-Schmidt operator. Let LQ(K,H) denote the space

of all Q-Hilbert-Schmidt operators. The completion LQ(K,H) of L(K,H) with respect to the

topology induced by the norm ||Q|| where ||ψ||2Q = 〈ψ,ψ〉 is a Hilbert space with the above norm

topology.

1.3 Fractional Brownian Motion

The fractional Brownian motion (fBm) is a generalization of the more simple and more stud-

ied stochastic process of standard Brownian motion. More precisely, the fractional Brownian
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motion is a centered continuous Gaussian process with stationary increments and H-self similar
properties. The Hurst parameter H, due to the British hydrologist H. E. Hurst, is between 0

and 1. The case H = 1
2 corresponds to standard Brownian motion.

Let us start with some basic facts about the fractional Brownian motion (fBm) and the

stochastic calculus that can be developed with respect to this process.

Definition 1.3.1 The fractional brownian motion (fbm) with Hurst index (H ∈ (0, 1)) is a

Gaussian process BH = {BH
t , t ∈ R} on (Ω,F ,P), having the properties:

1. BH
0 = 0,

2. E[BH
t ] = 0; t ∈ R,

3. E[BH
t B

H
s ] =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
; s, t ∈ R.

Remark 1.3.1 Since E[BH
t −BH

s ]2 = |t−s|2H and BH is a Gaussian process, it has a continuous

modification, according to the Kolmogorov theorem.

Remark 1.3.2 ForH = 1, we set BH
t = B1

t = tξ, where ξ is a standard normal random variable.

For H = 1
2 , the characteristic function has the form

φλ(t) = E
[
exp(i

n∑
k=1

λkB
H
tk

)
]

= exp
(
−1

2
(Ctλ, λ)

)
,

where Ct = (E[BH
tK
BH
ti ])1≤i,k≤n and 〈., .〉 is the inner product on Rn.

1.3.1 Stochastic Integral Representation

Here we discuss some of the integral representations for the fBm. In [10] it is proved that the
process

Z(t) =
1

Γ(H + 1
2)

∫
R

((t− s)H−
1
2

+ − (−s)H−
1
2

+ )dB(s)

=
1

Γ(H + 1
2)

(∫ 0

−∞
((t− s)H−

1
2 − (−s)H−

1
2 )dB(s)

+

∫ t

0
(t− s)H−

1
2dB(s)

)
,

where B(t) is a standard Brownian motion and Γ represents the gamma function, is a fBm with

Hurst index H ∈ (0, 1). First we notice that Z(t) is a continuous centered Gaussian process.



14 Preliminary Background

Hence, we need only to compute the covariance functions. In the following computations we

drop the constant 1
Γ(H+ 1

2
)
for the sake of simplicity. We obtain

E[Z2(t)] =

∫
R

[
(t− s)H−

1
2

+ − (−s)H−
1
2

+

]2
ds

= t2H
∫
R

[
(1− u)

H− 1
2

+ − (−u)
H− 1

2
+

]2
du

= C(H)t2H ,

where we have used the change of variable s = tu.
Analogously, we have that

E[|Z(t)− Z(s)|2] =

∫
R

[
(t− u)

H− 1
2

+ − (s− u)
H− 1

2
+

]2
ds

= t2H
∫
R

[
(t− s− u)

H− 1
2

+ − (−u)
H− 1

2
+

]2
du

= C(H)|t− s|2H .

Now,

E[Z(t)− Z(s)] = −1

2

{
E[|Z(t)− Z(s)|2]− E[Z(t)2]− E[Z(s)2]

}
=

1

2

(
t2H + s2H − |t− s|2H

)
.

Hence we can conclude that Z(t) is a fBm of Hurst index H.

We can also represent the fBm over a finite interval, i.e.

B
(H)
t =

∫ t

0
KH(t, s)dBs, t ≥ 0,

where

1. For H > 1
2 ,

KH(t, s) = cHs
1
2
−H
∫ t

s
(u− s)H−

3
2uH−

1
2du,

with cH = [ H(2H−1)

β(2−2H,H− 1
2

)
]
1
2 and t > s,

2. For H < 1
2 ,

KH(t, s) = cH [(
t

s
)H−

1
2 (t− s)H−

1
2 − (H − 1

2
)s

1
2
−H
∫ t

s
uH−

3
2 (u− s)H−

1
2du],

with cH = [ 2H
(1−2H)β(1−2H,H+ 1

2
)
]
1
2 and t > s.
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1.3.2 Correlation between two increments

For H =
1

2
, B(H) is a standard Brownian motion; hence, in this case the increments of the

process are independent. On the contrary, for H 6= 1

2
the increments are not independent. More

precisely, by Definition 1.3.1 we know that the covariance between B(H)(t + h) − B(H)(t) and

B(H)(s+ h)−BH(s) with s+ h ≤ t and t− s = nh is

ρH(n) =
1

2
h2H

[
(n+ 1)2H + (n− 1)2H − 2n2H

]
.

In particular, we obtain that two increments of the form BH(t+ h)−BH(t) and BH(t+ 2h)−

BH(t+ h) are positively correlated for H >
1

2
, while they are negatively correlated for H <

1

2
.

In the first case the process presents an aggregation behavior and this property can be used in

order to describe (cluster) phenomena (systems with memory and persistence). In the second

case it can be used to model sequences with intermittency and antipersistence.

1.3.3 Self-similarity and long-range dependence

We will first define the self-similarity and long-range dependence in the framework of general
stationary stochastic processes.

Definition 1.3.3.1 We say that an Rd-valued random process X = (Xt)t≥0 is self-similar or

satisfies the property of self-similarity if for every a > 0 there exists b > 0 such that

law(Xat, t ≥ 0) = law(bXt, t ≥ 0). (1.2)

Note that (1.2) means that the two processes Xat and bXt have the same finite-dimensional

distribution functions, i.e., for every choice t1, ..., tn in R,

P(Xat0 ≤ x0, ..., Xatn ≤ xn) = P(bXt0 ≤ x0, ..., bXtn ≤ xn)

For every x0, ..., xn in R.

Definition 1.3.3.2 If b = a−H in definition (1.2), then we say that X = (Xt)t0 is a self-similar

process with Hurst index H or that it satisfies the property of (statistical) self-similarity with

Hurst index H. The quantity D = 1
H is called the statistical fractal dimension of X. Since the

covariance function of the fBm is homogeneous of order 2H, we obtain that BH is a self-similar
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process with Hurst index H, i.e., for any constant a > 0 the processes BH(at) and a−HBH(t)

have the same distribution law.

Theorem 1.3.3.1 The fractional Brownian motion {BH(t), t ≥ 0} is a H-self-similar process

(H-ss, for short ).

Definition 1.3.3.3 A stationary sequence (Xn)n∈N exhibits long-range dependence if the auto-

covariance functions ρ(n) := cov(Xk, Xk+n) satisfy

lim
n→∞

ρ(n)

cn−α
= 1,

for some constant c and α ∈ (0, 1). In this case, the dependence between Xk and Xk+n decays

slowly as n tends to infinity and
∞∑
n=1

ρ(n) =∞.

Hence, we obtain immediately that the increments Xk := BH(k) − BH(k − 1) of BH and

Xk+n := BH(k+n)−BH(k+n− 1) of BH have the long-range dependence property for H > 1
2

since

ρH(n) :=
1

2
[(n+ 1)2H + (n− 1)2H − 2n2H ] ∼ H(2H − 1)n2H−2,

as n goes to infinity. In particular,

lim
n→∞

ρH(n)

H(2H − 1)n2H−2
= 1.

• If H ∈ (0, 1
2), then

∑∞
n=1 |ρH(n)| <∞.

• If H ∈ (1
2 , 1), then

∑∞
n=1 ρH(n) = ∞, in this case we say that fBm BH has the property

of long-range dependence.

In general, self-similarity and long-range dependence are not equivalent. As an example, the

increments of a standard Brownian motion are self-similar with Hurst parameter H = 1/2, but

clearly not long-range dependent (the increments are even independent).
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1.3.4 Hölder continuity

We recall that according to the Kolmogorov criterion [44], a process X = (Xt)t∈R admits a

continuous modification if there exist constants α ≥ 1 , β > 0, and k > 0 such that

E[|X(t)−X(s)|α] ≤ k|t− s|1+β

for all s, t ∈ R.

Theorem 1.3.4.1 Let H ∈ (0, 1). The fbm B(H) admits a version whose sample paths are

almost surely Hölder continuous of order strictly less than H.

Proof. We recall that a function f : R −→ R is Hölder continuous of order α, 0 < α ≤ 1 and

write f ∈ Cα(R), if there exists M > 0 such that

|f(t)− f(s)| ≤M |t− s|α,

for every s, t ∈ R. For any α > 0 we have

E[|BH(t)−BH(s)|α] = E[|BH(1)|α]|t− s|αH ;

hence, by the Kolmogorov criterion we get that the sample paths of BH are almost every where

Hölder continuous of order strictly less than H. Moreover, by [12] we have

lim sup
t−→0+

|B(H)|(t)
tH
√

log log t−1
= cH

with probability one, where cH is a suitable constant. Hence BH can not have sample paths
with Hölder continuity’s order greater than H.

�

1.3.5 Path differentiability

By [31] we also obtain that the process BH is not mean square differentiable and it does not

have differentiable sample paths.

Proposition 1.3.5.1 Let H ∈ (0, 1). The fBm sample path BH(.) is not differentiable. In fact,

for every t0 ∈ [0,∞)

lim
t→t0

sup

∣∣∣∣BH(t)−BH(t0)

t− t0

∣∣∣∣ =∞

with probability one.
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Proof. Here we recall the proof of [31]. Note that we assume BH(0) = 0. The result is proved

by exploiting the self-similarity of BH . Consider the random variable

Rt,t0 :=
BH(t)−BH(t0)

t− t0

that represents the incremental ratio of BH . Since BH is self-similar (see[10]), we have that the

law of Rt,t0 is the same of (t− t)H−1
0 BH(1). If one considers the event

A(t, w) :=

{
sup

0≤s≤t

∣∣∣∣BH(s)

s

∣∣∣∣ > d

}
,

then for any sequence (tn)n∈N decreasing to 0, we have

A(tn, w) ⊇ A(tn+1, w),

and

A (tn, w) ⊇ (|B
H(tn)

tn
| > d) =

(
|BH(1)| > t1−Hn d

)
.

The thesis follows since the probability of the last term tends to 1 as n −→∞. �

1.3.6 The fBm is not a Semimartingale for H 6= 1
2

The fact that the fBm is not a semimartingale for H 6= 1

2
has been proved by several authors.

In order to verify that BH is not a semimartingale for H 6= 1

2
, it is sufficient to compute the

p-variation of BH .

Definition 1.3.2 Let (X(t))t∈[0,T ] be a stochastic process and consider a partition π = {0 =

t0 < t1 < ...... < tn = T}. Put

Sp(x, π) :=

n∑
i=1

|X(ti)−X(ti−1)|p.

The p-variation of X over the interval [0, T ] is defined as

Vp(X, [0, T ]) := sup
π
Sp(X,π),
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where π is a finite partition of [0, T ]. The index of p-variation of a process is defined as

I(X, [0, T ]) := inf{p > 0;Vp(X, [0, T ]) <∞}.

We claim that

I(BH , [0, T ]) =
1

H
.

In fact, consider for p > 0,

Yn,p = npH−1
n∑
i=1

∣∣∣∣BH(
i

n
)−BH(

i− 1

n
)

∣∣∣∣p .
Since BH has the self-similarity property, the sequence Yn,p, n ∈ N has the same distribution as

ỹn,p = n−1
n∑
i=1

∣∣BH(i)−BH(i− 1)
∣∣p ,

and by the Ergodic theorem (see, for example, [39]) the sequence ỹn,p converges almost surely and

in L1 to E[|BH(1)|p] as n tends to infinity. It follows that

Vn,p =
n∑
i=1

∣∣∣∣BH(
i

n
)−BH(

i− 1

n
)

∣∣∣∣p

converges in probability respectively to 0 if pH > 1 and to infinity if pH < 1 as n tends to

infinity. Thus we can conclude that I(BH , [0, T ]) = 1
H . Since for every semimartingale X, the

index I(X, [0, T ]) must belong to [0, 1] ∪ {2}, the fBm BH cannot be a semimartingale unless

H =
1

2
.

1.3.7 Invariance principle

Here we present an invariance principle for fBms due to [12].

Assume that {Xn, n = 1, 2, ...} is a stationary Gaussian sequence with E[Xi] = 0 and

E[X2
i ] = 1. Define

Zn(t) = 1
nH

[nt]−1∑
k=1

Xk, 0 ≤ t ≤ 1,
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where [·] stands for the integer part. We will show that if the covariance of
n∑
0

Xk is proportional

to C2H
n for large n, Zn(t), t ≥ 0 converges weakly to

√
CB

(H)
t in a suitable metric space. Let as

first introduce the real-valued function ωαβ (.) defined by

ωαβ (t) = tα
(

1 + log
1

t

)β
, t > 0,

and we let

||f ||
ωαβ
p = ||f ||Lp(I) sup

0<t≤1

ωp(f, t)

ωαβ (t)
.

The Besov space Lipp(α, β) is the class of functions f in Lp(I) such that ||f ||
ωαβ
p <∞. Lipp(α, β)

endowed with the norm ||.||
ωαβ
p is a nonseparable Banach space. Let Bα,β

p denote the separable

subspace of Lipp(α, β) formed by functions f ∈ Lipp(α, β) satisfying ωp(f, t) = ◦(ωαβ (t)) as t −→

0. For a continuous function f , denote by {Cn(f), n ≥ 0} the coefficients of the decomposition

of f in the Schauder basis given by

C0(f) = f(0), C1(f) = f(1)− f(0),

and for n = 2j + k, j ≥ 0, and k = 0, . . . , 2j − 1,

Cn(f) = 2.2
j
2

{
f

(
2k + 1

2j+1

)
− 1

2

[
f

(
2k

2j+1

)
+ f

(
2k − 2

2j+1

)]}
.

Lemma 1.3.7.1 Let α > 1
p and 0 < β < β′. The space Lipp(α, β) is compactly embedded in

Bα,β′
p .

We refer the reader to [12].

Lemma 1.3.7.2 Let (Xt
n, t ∈ I)n≥1 be a sequence of stochastic processes satisfying

1. Xn
0 = 0, for all n ≥ 1.

2. There exists a positive constant C and α ∈]0, 1[ such that for p ≥ 1,

E[|Xn
t −Xn

s |p ≤ C|t− s|pα;

for all s, t ∈ I. Then (Xn(t), t ∈ I)n≥1 is tight in Bα,β
p , β > 0 for p > max( 1

α ,
1
β ).
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Proof. By the assumptions, we have C0(Xn) = 0 and C1(Xn) = Xn
1 . To prove the lemma, by

lemma (1.9.3, see [36]) it is enough to show that there exists a constant Cp > 0 such that , for

λ > 0 and 1
p < β′ < β, we have

P(||Xn||
ωαβ′
p > λ) ≤ Cpλ−p

for all n ≥ 1.Thus, it suffices to show that

P (M(Xn) > λ) ≤ Cpλ−p,

where M(Xn) is the maximum of the set

|C0(Xn)|, |C1(Xn)|, sup
j≥0

2
−j( 1

2
−α+ 1

p
)

(1 + j)β′

 2j+1∑
m=2j+1

|Cm(xn)|p
 1
p

 .

Now, by the Chebyshev inequality, we have

I = P

sup
j≥0

2
−j( 1

2
−α+ 1

p
)

(1 + j)β′

 2j+1∑
m=2j+1

|Cm(Xn)|p
 1
p

> λ


≤

∑
j≥0

2
−jp( 1

2
−α+ 1

p
)

(1 + j)pβ′

2j+1∑
m=2j+1

E[|Cm(Xn)|p]λ−p.

Recall that for m = 2j + k,

Cm(Xn) = 2.2
j
2

[
Xn

(2k−1)/2j+1 −
1

2

(
Xn

(2k)/2j+1 +X(2k−2)/2j+1

)]
.

Thus,

I ≤ Cpλ
−p
∑
j≥0

2
−jp( 1

2
−α+ 1

p
)

(1 + j)pβ′

2j∑
k=1

(E[|Xn
(2k−1)/2j+1 −X(2k)/2j+1 |p]

+ E
[
|Xn

(2k−1)/2j+1 −Xn
(2k−2)/2j+1 |p

]
)

≤ λ−p

Cp∑
j≥0

1

(1 + j)pβ′

 ≤ Cpλ−p.
which completes the proof.

�
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Corollary 1.3.7.1 [12]. Let H ∈ (0, 1), β > 0, and p > max( 1
H ,

1
β ). Assume that {Xn, n =

1, 2, . . .} is a stationary Gaussian sequence with spectral representation

Xn =

∫ π

−π
exp(inλ)|λ|

1
2−HB(dλ), n = 1, 2 . . . ,

where B(dλ) is a Gaussian random measure with E[|B(dλ)|2] = dλ. Then there exists a positive

constant C such that (Zn(t), t ∈ [0, 1]) converges weakly to (CBH
t ), t ∈ [0, 1]) in the space BH,β

p .

1.4 Stochastic Integration w.r.t SBM

This section is devoted to the study of an integration where the integrator is Brownian motion.
In fact, we would like to define ∫

T
fsdWs, (1.3)

where fs is a certain stochastic process. Note that there are various notation for the stochastic

integral. We use (1.3) or IW (f) as well as f ·W .

Besides, we would like that this integral satisfies the common property of the usual Riemann

(Lebesgue) integral. For example, if the integrands is fs = 1, then
∫ T

0 dWt = WT −W0, we want

the integral satisfies the (splitting) property, i.e. the integration over [0, T ] is equal to the sum

of the integration over [0, a) and [a, T ]. Also, we ask for the linearity.

1.4.1 Wiener Integral

Now let us consider the following integral:

∫ b

a
f(t)dW (t, ω),

where f is a deterministic function (i.e, it does not depend on ω) and W (t, ω) is a Brownian

motion. Suppose for each ω ∈ Ω we want to use the integration by parts formula to define this
integral in the Riemann-Stieltjes sense by

∫ b

a
f(t)dW (t, ω) = f(t)dW (t, ω)]ba −

∫ b

a
W (t, ω)df(t).
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Then the class of functions f(t) for which the integral
∫ b

a
f(t)dW (t, ω) is defined for each ω ∈ Ω

is rather limited, i.e, f(t) needs to be a continuous function of bounded variation.

We need a different idea in order to define the integral
∫ b

a
f(t)dW (t, ω) for a wider class of

functions f(t). This new integral, called the Wiener integral of f , is defined for all functions

f ∈ L2[a, b]. Here L2[a, b] denotes the Hilbert space of all real-valued square integrable functions

on [a, b].

Now we define the Wiener integral in two steps:

Step 1. Suppose f is a step function given by f =
∑n

i=1 ai1[ti−1,ti), where t0 = a and tn = b. In

this case, define

I(f) =
n∑
i=1

ai(W (ti),W (ti−1)). (1.4)

Obviously, I(af + bg) = aI(f) + bI(g) for any a, b ∈ R and step functions f and g. Moreover,

we have the following lemma.

Lemma 1.4.1.1 For a step function f , the random variable I(f) is Gaussian with mean 0 and

variance

E(I(f)2) =

∫ b

a
f(t)2dt. (1.5)

Proof. It is well known that a linear combination of independent Gaussian random variables is

also a Gaussian random variable. Hence by definition 1.2.2, the random variable I(f) defined by

Equation (1.4) is Gaussian with mean 0. To check Equation (1.5), note that

E(I(f)2) = E
n∑

i,j=1

aiai(W (ti),W (ti−1))(W (tj),W (tj−1)).

By Definition 1.2.2, we have

E(W (ti),W (ti−1)) = ti − ti−1,

and for i 6= j,

E(W (ti),W (ti−1))(W (tj),W (tj−1)) = 0.

Therefore,

E(I(f)2) =

n∑
i=1

a2
i (ti − ti−1) =

∫ b

a
f(t)2dt.
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�

Step 2. We will use L2(Ω) to denote the Hilbert space of square integrable real-valued random

variables on Ω with inner product 〈X,Y 〉 = E(XY ). Let f ∈ L2[a, b]. Choose a sequence

{fn}∞n=1 of step functions such that fn → f in L2[a, b]. By Lemma 1.4.1.1 the sequence {I(fn)}

is Cauchy in L2(Ω). Hence it converges in L2(Ω). Define

I(f) = lim
n→∞

I(fn), in L2(Ω). (1.6)

Question. Is I(f) well-defined?

In order for I(f) to be well-defined, we need to show that the limit in Equation (1.6) is

independent of the choice of the sequence {fn}. Suppose {gm} is another such sequence, i.e,

the gm are step functions and gm → f in L2[a, b]. Then by the linearity of the mapping I and

equation (1.6),

E(|I(fn)− I(gm))|2) = E(|I(fn − gm)|2) =

∫ b

a
(fn(t)− gm(t))2dt.

Write fn(t)−gm(t) = [fn(t)−f(t)]−[gm(t)−f(t)] and then use the inequality (x−y)2 ≤ 2(x2+y2)

to get ∫ b

a
(fn(t)− gm(t))2dt ≤ 2

∫ b

a

(
[fn(t)− f(t)]2 + [gm(t)− f(t)]2

)
dt

→ 0, as n,m→∞.

It follows that lim
n→∞

I(fn) = lim
m→∞

I(gm) in L2(Ω). This shows that I(f) is well-defined.

Definition 1.4.1.1 Let f ∈ L2[a, b]. The limit I(f) defined in Equation (1.6) is called the

Wiener integral of f .

The Wiener integral I(f) of f will be denoted by

I(f)(ω) =

(∫ b

a
f(t)dW (t)

)
(ω), ω ∈ Ω, almost surely.

For simplicity, it will be denoted by
∫ b

a
f(t)dW (t) or

∫ b

a
f(t)dW (t, ω). Note that the mapping

I is linear on L2[a, b].

Theorem 1.4.1.1 For each f ∈ L2[a, b], the Wiener integral
∫ b

a
f(t)dW (t, ω) is a Gaussian

random variable with mean 0 and variance ||f ||2 =

∫ b

a
f(t)2dt.
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Proof. By Lemma 1.4.1.1, the assertion is true when f is a step function. For a general

f ∈ L2[a, b], the assertion follows from the following well-known fact: If Xn is Gaussian with

mean µn and variance σ2
n and Xn converges to X in L2(Ω), then X is Gaussian with mean

µ = lim
m→∞

µn and variance σ = lim
m→∞

σn.

�

Example 1.4.1 The Wiener integral
∫ 1

0
s2dWs is a gaussian r.v. with mean zero and variance∫ 1

0
(s2)2ds = 1.

Definition 1.4.1.2 [35]. The stochastic integral with respect to Brownian motion (Wt)t∈R+ of

the simple step functions f is defined by

∫ ∞
0

f(t)dWt :=

n∑
i=1

(Wti −Wti−1).

1.4.2 Itô integral

In this section, we will study the simplest stochastic integral, where the integrand and the
integrator are random variable. The first who defined this integral was K.Itô in 1944. Therefore
we named this integral after him. In fact, the integrand will be an adapted stochastic process
w.r.t the natural filtration of the Brownian motion. Besides, to be well defined, we will need
another hypothesis on the integrand.
There are many reason to developp the stochastic integration. For example, we showed in

theorem 8 in [26] that the following stochastic process given by the random variables

Mt =

∫ t

a
f(s)dWs, a ≤ t ≤ b, (1.7)

is an FWt -martingale, where f ∈ L2([a, b]).

A natural question is whether the following process (yet not defined)

Mt =

∫ t

a
fs(ω)dWs(ω), a ≤ t ≤ b,

is a martingale, where (ft)t∈R+ is now a stochastic process. (We emphazise the randomness by

adding the ω.)
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Riemann-type Approach

As soon as we want to define an integral, often we would like to have a Riemann approach, i.e.

we want the integral to be the a.s. limit of the so-called Riemann sums
∑

iHui(Wti ,Wti+1),

where (Ht) is the integrand process and ui ∈ [ti, ti+1]. Moreover, since the Brownian motion is

a martingale, if we consider discrete-time processes, we have seen definition 39 in [26]. that the

so-called martingale transform ∑
i

Hui(Wti+1∧t,Wti∧t)

is a martingale. Thus, we could take the limit and define as Riemann did an integral with
continuous-time processes.

However, we cannot have yet a such approach. Indeed, as we proved in Corollary 4 in [26] the

Brownian motion is not of bounded variation. Besides, the Riemann-Stieltjes integration theory
says that we can have a such approach only if the paths are locally of bounded variation. Thus,
the Riemann sums does not converge pathwise almost surely. However, it can be shown that it
converges in probability.

Therefore, we will use a generalization of the Wiener type integral.

Wiener-type Approach

We have seen in (1.7) how to define an integral, where the integrand was a non-stochastic function

and the integrator was a Brownian motion. Then, we will adopt the same way as we did in (1.7).

First, we will consider in the sequel a Brownian motion (Wt)t∈R+ defined on the filtered

probability space (Ω,Ft, (Ft)t∈R+ ,P) satisfying the usual conditions.

Definition 1.4.2.1 [35] We denote by L2
ad(Ω × T, (Ft)t∈T ) the set of càglàd (Ft)-adapted pro-

cesses (Ht)t∈T satisfying

E
(∫

T
H2
sds

)
<∞ (1.8)

Remark 1.4.2.1 These are These are càglàd (continu à gauche, limité à droite) processes. Note

that, for the integration with respect to a Brownian, we can also take right-continuous functions.
But, the point is that when we change the integrator, as in the next section, when we deal with
martingales, we can take only the left-continuous functions.

Remark 1.4.2.2 Recall that the càglàd (Ft)-adapted processes are equivalent to the progres-

sively measurable processes.
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Lemma 1.4.2.1
(
L2
ad(Ω× T, (Ft)t∈T , || · ||L2

ad(Ω×T )

)
is a Hilbert space with the following norm

||H||L2
ad(Ω×T ) = E

(∫
T
H2
sds

)
.

This Hilbert space will be the space of our integrands. let us start with the simplest case of
random integrands.

Integrands as stochastic step processes

Let us denote by ξ the set of simples (Ft)-predictables processes (Ht)t∈R+ , i.e.

Ht(ω) =
n∑
i=1

hi(ω)1[ti−1,ti](t), t ∈ T. (1.9)

with 0 ≤ t0 ≤ t1 ≤ . . . ≤ tn tn and hi a Fti−1-measurable random variable which belongs to

L2(Ω).

Then we can define the integral for H ∈ ξ w.r.t a brownian motion by.

I(H) = (H ·W )s =

∫
T
HsdWs =


n∑
i=1

hi(Wti ,Wti−1) if T = R+,

n∑
i=1

hi(Wti∧T ,Wti−1∧T ) if T = [0, T ]

(1.10)

Proposition 1.4.2.1 For I(H) defined by (1.10), we have

E (I(H)) = 0 and E
(
I(H)2

)
= E

(∫
T
H2
t dt

)
.

Proof. The proof can be found in ([26], p.47).

Remark 1.4.2.3 Note that if H 6∈ ξ ⊂ L2(Ω), we would not have a finite variance.

Integrands as square integrable stochastic processes

The idea is to extend, by density of ξ in L2(Ω), the definition of I(H) in (1.10) to larger processes,

i.e. processes in L2(Ω) as the limit of processes in ξ, like we did for the Wiener integral. Indeed,



28 Preliminary Background

by density, we have for each (Ht)t∈R+ ∈ L2(Ω) there exists a sequence (Ht)t∈R+ ∈ L2(Ω))n∈N

such that

lim
n→∞

∫
R+

(|Ht −Ht,n|)dt = 0. (1.11)

However, our integrands, as the L2 limit of processes in ξ, must satisfy certain constraints to

be well-defined. Therefore, we will take as the space of integrands L2
ad(Ω× T, (Ft)t∈T ).

Obviously we have ξ ⊂ L2
ad(Ω×T, (Ft)t∈T ) and ξ̃ = L2

ad(Ω×T, (Ft)t∈T ). In this way, we have

the following theorem which defines the so-called Itô integral.

Theorem 1.4.2.1 [35] There exists a unique linear application

I : L2
ad(Ω× T, (Ft)t∈T )→ L2(Ω,Ft,P)

such that:

1. For Ht(ω) =
∑n

i=1 hi(ω)1(ti−1,t1](t) ∈ ξ,

I(H) =


n∑
i=1

hi(Wti ,Wti−1) if T = R+,

n∑
i=1

hi(Wti∧T ,Wti−1∧T ) if T = [0, T ]

(1.12)

2. For H̃ ∈ L2
ad(Ω× T, (Ft)t∈T )

E(I(H̃)2) = E(

∫
T
H̃2
sds). (1.13)

Definition 1.4.2.2 The application defined in Theorem 1.4.2.1 is called the Itô integral w.r.t
the brownian motion.

Proposition 1.4.2.2 The definition of the stochastic integral
∫ ∞

0
f(t)dWt can be extended to

any measurable function f ∈ L2(R+), i.e, to f such that

∫ ∞
0
|f(t)|2dt <∞.
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In this case,
∫ ∞

0
f(t)dWt has a centered Gaussian distribution

∫ ∞
0

f(t)dWt ' N (0,

∫ ∞
0
|f(t)|2dt)

with variance
∫ ∞

0
|f(t)|2dt and we have the Itô isometry

E
[
(

∫ ∞
0

f(t)dWt)
2

]
=

∫ ∞
0
|f(t)|2dt.

proof. We refer the reader to proposition 4.1 in [35]

1.5 Stochastic Integration w.r.t FBM

Fractional Brownian motion is not a semimartingale, and hence the stochastic integral with

respect to fractional Brownian motion BH becomes more challenging. It turns out that fractional
calculus creates a path to defining a kind of integral with respect to paths of fractional Brownian
motion. For a complete treatment of deterministic fractional calculus, see the book by Samko

[28].

1.5.1 Fractional calculus on a finite interval

Let a < b be two real numbers and f : [a, b] → R be a function. Then by a straightforward

induction argument, a multiple integral of f can be expressed as

∫ tn

a
. . .

∫ t2

a

∫ t1

a
f(u)dt1dtn−1 =

1

(n− 1)!

∫ tn

a
f(u)(tn − u)n−1du, (1.14)

where tn ∈ [a, b] and n ≥ 1. (By convention, (0)! = 1 and a0 = 1.) We know that (n−1)! = Γ(n).

So replacing n by a real number α > 0 in (1.14), we are motivated to define the so-called fractional

integrals as follows.

Definition 1.5.1.1 Let f ∈ L1[a, b] and α > 0. The integrals

(Iαa+f)(x) =
1

Γ(α)

∫ x

a
f(t)(x− t)α−1dt, (1.15)
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for t ∈ (a, b), and

(Iαb−f)(x) =
1

Γ(α)

∫ b

x
f(t)(t− x)α−1dt, (1.16)

where t ∈ (a, b), are called fractional integrals of order α.

The fractional integral Iαa+ is called left-sided since the integration in (1.16) is over the left

hand side of the interval [a, t] of the interval [a, b]. Similarly, the fractional integral Iαb− is called

right-sided. Both integral Iαa+ and Iαb− are also called Riemann-Liouville fractional integrals

Remark 1.5.1.1 [34]. The fractional integrals Iαa+ and Iαb− are well-defined for functions f ∈

L1[a, b], and so also for functions f ∈ Lp[a, b], for p > 1 as well, i.e. the integrals in (1.15) and

(1.16) converge for almost all t ∈ (a, b) with respect to Lebesgue measure.

Remark 1.5.1.2 The left (right)-sided fractional integrals can be defined on the whole real line

in a similar way.

Proposition 1.5.1.1 [34]. For α > 0, the fractional integrals Iαa+ and Iαb−. have the following

properties:

(i) Semigroup property: for f ∈ L1[a, b] and α, β > 0

Iαa+I
β
a+f = Iα+β

a+ f and Iαb−I
β
b−f = Iα+β

b− (1.17)

(ii) Fractional integration by parts formula: let f ∈ Lp[a, b] and g ∈ Lq[a, b] either with p, q ≥ 1

and 1
p + 1

q ≤ 1 + α, or with p, q > 1 and p, q ≥ 1 and 1
p + 1

q = 1 + α.

Then we have ∫ b

a
f(t)(Iαa+g)(t)dt =

∫ b

a
g(t)(Iαb−f)(t)dt. (1.18)

(iii) If Iαa+f = 0 or Iαb−f = 0 then f(u) = 0 almost everywhere.

For 0 < α < 1, we define the operator I−αa+ (I−αb− ) as the inverse of the fractional integral

operator in the following way.

Definition 1.5.1.2 Let 0 < α < 1. The integrals

Dα
a+f(t) = (I−αa+ )(t) =

1

Γ(1− α)

d

dt

∫ t

a
f(s)(t− s)−αds, (1.19)
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Dα
b−f(t) = (I−αb− )(t) = − 1

Γ(1− α)

d

dt

∫ b

t
f(s)(t− s)−αds, (1.20)

for t ∈ (a, b), are called fractional derivatives of order α. Both (1.19) and (1.20) are also called

the Riemann-Liouville fractional derivatives.

Remark 1.5.1.3 The fractional derivatives Dα
a+f and Dα

b−f are well defined if, for example,

function f can be expressed as f = Dα
a+φ or f = Dα

b−φ, for some φ ∈ Lp[a, b] and p ≥ 1.

1.5.2 The Lebesgue-Stieltjes integral

Let us starting by recall the Riemann-Liouville fractional derivatives

(Dα
a+f)(x) =

1

Γ(1− α)

d

dx

∫ x

a
f(t)(x− t)−αdt,

and

(Dα
b−f)(x) = − 1

Γ(1− α)

d

dx

∫ b

x
f(t)(x− t)−αdt,

for α > 0.
We refer the reader to [34] for futher information in this topics.

Consider two nonrandom functions f and g defined on some interval [a, b] ⊂ R and suppose

that the limits f(u+) := lim
δ↓0

f(u + δ) and g(u−) := lim
δ↓0

g(u − δ), a ≤ u ≤ b, exist. Put

fa+(x) := (f(x)− f(a+))1(a,b)(x), gb−(x) := (g(b−)− g(x))1(a,b)(x).

Suppose also that fa+ ∈ Iαa+(Lp[a, b]), gb− ∈ I1−α
b− (Lp[a, b]) for some p ≥ 1, q ≥ 1, 1/p + 1/q ≤

1, 0 ≤ α ≤ 1. Then, evidently, Dα
a+fa+ ∈ Lp[a, b], D1−α

b− gb− ∈ Lq[a, b].

Let α > 0 (and in most cases below α < 1 though this is not obligatory). Define the Riemann-

Liouville left-sided and right-sided fractional integrals on (a, b) of order α by

(Iαa+f)(x) =
1

Γ(α)

∫ x

a
f(t)(x− t)α−1dt,

and

(Iαb−f)(x) =
1

Γ(α)

∫ b

x
f(t)(t− x)α−1dt,

respectively.

We say that the function f ∈ D(Ia+(b−)) (the symbol D(.) denotes the domain of the

corresponding operator),
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Definition 1.5.2.1 [34]. The generalized (fractional) Lebesgue-Stieltjes integral∫ b
a f(x)dg(x) is defined as

∫ b

a
f(x)dg(x) :=

∫ b

a
(Dα

a+fa+)(x)(D1−α
b−

gb−)(x)dx+ f(a+)(g(b−)− g(a+)).

Lemma 1.5.2.1 Definition 1.5.2.1 does not depend on the possible choice of α.

Proof. Let fa+ ∈ (Iαa+ ∩ I
α+β
a+ (Lp[a, b]), gb− ∈ (I1−α

b− ∩ I1−α−β
b− (Lp[a, b]) for some α, β such that

0 ≤ α ≤ 1, 0 ≤ α + β ≤ 1, 1/p + 1/q ≤ 1. Then, according to (1.1.5) (composition formula for

fractional derivatives) and (1.1.6) (integration-by-parts formula),[34].

∫ b

a
(Dα+β

a+ fa+)(x)(D1−α−β
b−

gb−)(x)dx =

∫ b

a
(Dβ

a+D
α
a+fa+)(x)(D1−α−β

b−
gb−)(x)dx

=

∫ b

a
(Dα

a+fa+)(x)(Dβ
b−
D1−α−β
b−

gb−)(x)dx

=

∫ b

a
(Dα

a+fa+)(x)(D1−α
b−

gb−)(x)dx.

�



Chapter 2

Stochastic Evolution Equations With
Infinite Delay

In this chapter1, we are interested in studying the existence of mild solutions of the following
impulsive fractional stochastic differential equations with infinite delay in the form

cDα
t [x(t)− g(t, xt)] = A[x(t)− g(t, xt)] + f(t, xt, B1x(t)) + σ(t, xt, B2x(t))dw(t)

dt ,
t ∈ J := [0, T ], T > 0, t 6= tk,

∆x(tk) = Ikx(t−k ), k = 1, 2, . . . ,m,
x(t) = φ(t), φ(t) ∈ Bh,

(2.1)

Where cDt is the Caputo fractional derivative of order α, 0 < α < 1; x(.) takes the value in the

separable Hilbert space H;A : D(A) ⊂ H → H is the infinitesimal generator of an α-resolvent

family Sα(t)t≥0. The history xt : (−∞, 0] → H, xt(θ) = x(t + θ), θ ≤ 0, belongs to an abstract

phase space Bh, g : J ×Bh → H, f : J ×Bh ×H → H and σ : J ×Bh ×H → L2
0 are appropriate

functions to be specified later; Ik : Bh → H, k = 1, 2, ...,m, are appropriate functions. The terms

B1x(t) and B2x(t) are given by

B1x(t) =

∫ t

0
K(t, s)x(s)ds

and

B2x(t) =

∫ t

0
P (t, s)x(s)ds

respectively, where K,P ∈ C(D,R+) are the set of all positive continuous functions on D =

{(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T}. Here 0 = t0 < t1 < ... < tm < tm+1 = T , ∆x(tk) =

1The chapter is based on the paper [19].

33
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x(t+k ) − x(t−k ), x(t+k ) = lim
h→0

x(tk + h) and x(t−k ) = lim
h→0

x(tk − h) represent the right and left

limits of x(t) at t = tk, respectively. The initial data φ = {φ(t), t ∈ (−∞, 0]} is an F0-measurable,

Bh-valued random variable independent of with finite second moments.

2.1 Preliminaries And Basic Properties

LetH,K be two separable Hilbert spaces and L(K,H) be the space of bounded linear operators

from K into H. For convenience, we will use the same notation ||.|| to denote the norms in H,K
and L(K,H), and use 〈., .〉 to denote the inner product of H and K without any confusion. Let

(Ω,F , {Ft}t≥0,P) be a filtered complete probability space satisfying the usual condition, which

means that the filtration is a right continuous increasing family and F0 contains all P-null sets.
W = (Wt)t≥0 be a Q-Wiener process defined on (Ω,F , {Ft}t≥0,P) with the covariance operator

Q such that trQ <∞. We assume that there exists a complete orthonormal system {ek}k≥1 in

K, a bounded sequence of nonnegative real numbers λk such that Qek = λkek, k = 1, 2, ... and a

sequence {βk}k≥1 of independent Brownian motions such that

(w(t), e)K =
∞∑
k=1

√
λk(ek, e)Kβk(t), e ∈ K, t ∈ [0, b].

Let L2
0 = L2(Q1/2H,H) be the space of all Hilbert Schmidt operators from Q1/2K into H with

the inner product 〈ψ, π〉L2
0

= tr[ψQπ?].

Assume that h : (−∞, 0] → (0,∞) with l =

∫ 0

−∞
h(t)dt < ∞ a continuous function. We

define the abstract phase space Bh by

Bh =

{
φ : (−∞, 0]→ H, for any a > 0, (E|φ(θ)|2)1/2 is bounded and measurable

function on [−a, 0] with φ(0) = 0 and

∫ 0

−∞
h(s) sup

s≤θ≤0
(E|φ(θ))|2)1/2ds <∞

}
.

If Bh is endowed with the norm

‖φ‖Bh =

∫ 0

−∞
h(s) sup

s≤θ≤0
(E|φ(θ))|2)1/2ds, φ ∈ Bh,
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then (Bh, ‖.‖Bh) is a Banach space [14].

We consider the space

Bb =

{
x : (−∞, 0]→ H, such that x|Jk ∈ C(Jk,H) and there exist

x(t+k ) and x(t−k ) with x(tk) = x(t−k ), x = φ ∈ Bh, k = 1, 2, ...,m

}
,

where x|Jk is the restriction of x to Jk = (tk, tk+1], k = 1, 2, ...,m. the function ||.||Bh to be

a seminorm in Bb, it is defined by

‖x‖Bb = ‖φ‖Bh + sup
0≤s≤T

(E|φ(θ)|2)1/2, x ∈ Bb

Lemma 2.1.1 Assume that x ∈ Bh; then for t ∈ J, xt ∈ Bh. Moreover,

l(E||x(t)||2)1/2 ≤ l sup
0≤s≤T

(E||x(s)||2)1/2 + ‖x0‖Bh ,

where l =

∫ 0

−∞
h(s)ds <∞.

Let us recall the following known definitions. For more details see [28].

Definition 2.1.1 The fractional integral of order α with the lower limit 0 for a function f is
defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(s)

(t− s)1−αds, t > 0, α > 0

provided the right-hand side is pointwise defined on [0,∞), where Γ is the gamma function.

Definition 2.1.2 Riemann-Liouville derivative of order α with lower limit 0 for a function f :

[0,∞)→ R can be written as

LDαf(t) =
1

Γ(n− α)

dn

dtn

∫ t

0

f(s)

(t− s)α+1−nds, t > 0, n− 1 ≤ α ≤ n. (2.2)

Definition 2.1.3 The Caputo derivative of order α for a function f : [0,∞)→ R can be written
as

cDαf(t) =L Dα

(
f(t)−

n−1∑
k=0

tk

k!
fk(0)

)
, t > 0, n− 1 < α < n. (2.3)
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If f(t) ∈ Cn[0,∞), then

cDαf(t) =
1

Γ(n− α)

∫ t

0
(t− s)n−α−1fn(s)ds = In−αfn(s), t > 0, n− 1 < α < n,

Obviously, the Caputo derivative of a constant is equal to zero. The Laplace transform of the
Caputo derivative of order α > 0 is given as

L{cDαf(t); s} = sαf̂(s)−
n−1∑
k=0

sα−k−1f (k)(0); n− 1 ≤ α < n.

Definition 2.1.4 [28] A two parameter function of the Mittag-Leffler type is defined by the series

expansion

Eα,β(z) =

∞∑
k=0

zk

Γ(αk + β)
=

1

2πi

∫
C

µα−βeµ

µα − z
dµ, α, β ∈ C,R(α) > 0,

where C is a contour which starts and ends at −∞ end encircles the disc |µ| ≤ |z|1/2 counter

clockwise.

For short, Eα(z) = Eα,1(z). It is an entire function which provides a simple generalization of

the exponent function: E1(z) = ez and the cosine function: E2(z2) = cosh(z), E2(−z2) = cos(z),

and plays a vital role in the theory of fractional differential equations. The most interesting
properties of the Mittag-Leffler functions are associated with their Laplace integral

∫ ∞
0

e−λttβ−1Eα,β(ωtα)dt =
λα−β

λα − ω
, Reλ > ω1/α, ω > 0,

and for more details see [28].

Definition 2.1.5 [41]. A closed and linear operator A is said to be sectorial if there are constants

ω ∈ R, θ ∈ [π2 , π],M > 0, such that the following two conditions are satisfied:

• ρ(A) ⊂ Σθ,ω = {λ ∈ C, λ 6= ω, |arg(λ− ω)| < θ},

• ||R(λ, ω)|| = ||(λI −A)−1|| ≤ M
|λ−ω| , λ ∈ Σθ,ω.
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Definition 2.1.6 [15]. Let A be a closed and linear operator with the domain D(A) defined in

a Banach space H. Let ρ(A) be the resolvent set of A. We say that A is the generator of an α-

resolvent family if there exist ω ≥ 0 and a strongly continuous function Sα : R+ → L(H), where

L(H) is a Banach space of all bounded linear operators from H into H and the corresponding

norm is denoted by ||.||, such that {λα : Reλ > ω} ⊂ ρ(A) and

(λαI −A)−1x =

∫ ∞
0

eλtSα(t)xdt, Reλ > ω, x ∈ H, (2.4)

where Sα(t) is called the α-resolvent family generated by A.

Definition 2.1.7 Let A be a closed and linear operator with the domain D(A) defined in a

Banach space H and α > 0. We say that A is the generator of a solution operator if there exist

ω ≥ 0 and a strongly continuous function Sα : R+ → L(H) such that {λα : Reλ > ω} ⊂ ρ(A)

and

λα−1(λαI −A)−1x =

∫ ∞
0

eλtSα(t)xdt, Reλ > ω, x ∈ H, (2.5)

where Sα(t) is called the solution operator generated by A.

The concept of the solution operator is closely related to the concept of a resolvent family. For

more details on α-resolvent family and solution operators, we refer the reader to [15].

Lemma 2.1.2 [15]. If f satisfies the uniform Hölder condition with the exponent β ∈ (0, 1] and

A is a sectorial operator, then the unique solution of the Cauchy problem

cDα
t = Ax(t) + f(t, xt, Bx(t)), t > t0, t0 ≥ 0, 0 < α < 1,

x(t) = φ(t), t ≤ t0.
(2.6)

is given by

x(t) = Tα(t− t0)(x(t+0 )) +

∫ t

t0

Sα(t− s)f(s, xs, Bx(s))ds, (2.7)

where

Tα(t) = Eα,1(Atα) =
1

2πi

∫
B̂r

eλt
λα−1

λα −A
dλ, (2.8)

Sα(t) = tα−1Eα,α(Atα) =
1

2πi

∫
B̂r

eλt
λα−1

λα −A
dλ, (2.9)

here B̂r denotes the Bromwich path; Sα(t) is called the α-resolvent family and Tα(t) is the solution

operator generated by A.
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Proof. Let t− t0 = u, then we get

Du
αx(u+ t0) = Ax(u+ t0) + f(u+ t0, xu+t0 , Bx(u+ t0)), u > 0. (2.10)

Taking the Laplace transform of (2.10), we have

λαL{x(u+ t0)} − λα−1x(t+0 ) = AL{x(u+ t0)}+ L{f(u+ t0, xu+t0 , Bx(u+ t0))}. (2.11)

Since (λαI −A)−1 exists, that is, λα ∈ ρ(A), from (2.11), we obtain

L{x(u+ t0)} = λα−1(λαI −A)−1x(t+0 ) + (λαI −A)−1L{f(u+ t0, xu+t0 , Bx(u+ t0))}. (2.12)

By the inverse Laplace transform of (2.12), we get

x(u+t0) = Eα,1(Auα)x(t+0 )+

∫ u

0
(u−s)α−1Eα,α(A(u−s)α)f(s+t0, xs+t0 , Bx(s+t0))ds. (2.13)

Set u+ t0 = t, in (2.13), we have

x(t) = Eα,1(A(t− t0)α)x(t+0 )

+

∫ t−t0

0
(t− t0 − s)α−1Eα,α(A(t− t0 − s)α)f(s+ t0, xs+t0 , Bx(s+ t0))ds.

(2.14)

On simplification, we obtain

x(t) = Eα,1(A(t− t0)α)x(t+0 )

+

∫ t−t0

0
(t− θ)α−1Eα,α(A(t− θ)α)f(θ, xθ, Bx(θ))dθ.

(2.15)

Set Tα(t) = Eα,1(Atα) and Sα(t) = tα−1Eα,α(Atα), in (2.15). We have

x(t) = Tα(t− t0)x(t+0 ) +

∫ t

t0

Sα(t+ θ)f(θ, xθ, Bx(θ))dθ.

This completes the proof of the lemma.
�

Theorem 2.1.1 [15]. Let B be a nonempty closed convex of a Banach space (H, || · ||). Suppose
that P and Q map B into H such that

• Px+Qy ∈ B whenever x, y ∈ B;
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• P is compact and continuous;

• Q is a contraction mapping.
Then there exists z ∈ B such that z = Pz +Qz.

Theorem 2.1.2 [42]. If α ∈ (0, 1) and A ∈ Aα(θ0, ω0) is a sectorial operator, then for any

x ∈ H and t > 0, we have

||Sα(t)|| ≤ Ceωt(1 + tα−1), t > 0, ω > ω0,

where C is a constant depending only on θ and ω.

At the end of this section, we recall the fixed point theorem of Sadovskii [40] which is used to

establish the existence of the mild solution to the impulsive fractional system (2.1).

Theorem 2.1.3 [40]. Let Φ be a condensing operator on a Banach space H, that is, Φ is

continuous and takes bounded sets into bounded sets, and µ(Φ(B)) ≤ µ(B) for every bounded set

B of H with µ(B) > 0. If Φ(N) ⊂ N for a convex, closed and bounded set N of H, then Φ has

a fixed point in H (where µ(.) denotes Kuratowski’s measure of noncompactness).

2.2 The mild solution and existence

In this section, we consider the fractional impulsive system (2.1). We first present the defini-

tion of mild solutions for the system based on the paper [15].

Definition 2.2.1 An H-valued stochastic process {x(t), t ∈ (−∞, T ]} is said to be a mild solution

of the system (2.1) if x0 = φ ∈ Bh satisfying x0 ∈ L2
α(Ω,H) and the following conditions hold.

i. x(t) is Ft adapted and measurable, t ≥ 0;

ii. xt is Bh-valued and the restriction of x(.) to the interval (tk, tk+1], k = 1, 2, ...,m is contin-
uous;

iii. for each t ∈ J, x(t) satisfies the following integral equation
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x(t) =



φ(t), t ∈ (−∞, 0],

Tα(t)[φ(0) + g(0, φ)]− g(t, xt) +

∫ t

0
Sα(t− s)f(s, xs, B1x(s))ds

+

∫ t

0
Sα(t− s)σ(s, xs, B2x(s))dω(s), t ∈ [0, t1],

Tα(t)[φ(0) + g(0, φ)] + Tα(t− t1)I1((t−1 ))− g(t, xt)
+Tα(t− t1)[g(t1, xt1 + I1(t−1 ))− g(t1, xt1)]

+

∫ t

0
Sα(t− s)f(s, xs, B1x(s))ds+

∫ t

0
Sα(t− s)σ(s, xs, B2x(s))dω(s), t ∈ (t1, t2],

...

Tα(t)[φ(0) + g(0, φ)] +

m∑
k=1

Tα(t− tk)Ik(x(t−k ))− g(t, xt)

+

m∑
k=1

Tα(t− tk)[g(ttK , xtk , Ik(xt−k
))− g(tk, xtk)]

+

∫ t

0
Sα(t− s)f(s, xs, B1x(s))ds+

∫ t

0
Sα(t− s)σ(s, xs, B2x(s))dω(s), t ∈ (tm, T ].

(2.16)

iv. ∆x|t=tk = Ik(x(t−k )), k = 1, 2, ...,m the restriction of x(.) to the interval [0, T )\{t1, . . . , tm}
is continuous.

In order to explain our theorem, we need the following assumptions.

(H1): If α ∈ (0, 1) and A ∈ Aα(θ0, ω0), then for x ∈ H and t > 0 we have ||Sα(t)|| ≤ Ceωt(1 +

tα−1) and ||Tα(t)|| ≤Meωt ,ω > ω0. Thus we have

||Tα(t)|| ≤ M̃T and ||Sα(t)|| ≤ tα−1M̃S ,

where M̃T = sup
0≤t≤T

||Tα(t)||, M̃S = sup
0≤t≤T

Ceωt(1 + t1−α) (fore more details, see [42]).

(H2): The function g : J × Bh → H is continuous and there exists some constant Mg > 0 such

that
E||g(t, ψ1)− g(t, ψ2)||2H ≤Mg||ψ1 − ψ2||2Bh , (t, ψi) ∈ J × Bh, i = 1, 2,

E||g(t, ψ)||2H ≤Mg

(
||ψ||2Bh + 1

)
.

(H3): The function f : J × Bh ×H → H satisfies the following properties:

i. f(t, ., .) : Bh → H is continuous for each t ∈ J and for each (ψ, x) ∈ Bh × H, f(., ψ, x) :

J → H is strongly measurable;
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ii. there exist two positive integrable functions µ1, µ2 ∈ L1([0, T ]) and a continuous nonde-

creasing function Ξf : [0,∞) → (0,∞) such that for every (t, ψ, x) ∈ J × Bh × H, we
have

E||f(t, ψ, x)||2H ≤ µ1(t)Ξf (||ψ||2Bh) + µ1(t)E||x||2H, lim inf
q→∞

Ξf (q)

q
= Λ <∞.

iii. there exist two positive integrable functions µ1, µ2 ∈ L1([0, T ]) such that

E||f(t, ψ, x)− f(t, ϕ, y)||2H ≤ µ1(t)||ψ − ϕ||2Bh + µ2(t)E||x− y||2H,

for every (t, ψ, x) and (t, ϕ, y) ∈ J × Bh ×H.

(H4): The function σ : J × Bh ×H → L2
0 satisfies the following properties:

i. σ(t, ., .) : Bh×H → L2
0 is continuous for each t ∈ J and for each (ψ, x) ∈ Bh×H, σ(., ψ, x) :

J → L2
0 is strongly measurable;

ii. there exist two positive integrable functions ν1, ν2 ∈ L1([0, T ]) and a continuous nonde-

creasing function Ξσ : [0,∞) → (0,∞) such that for every (t, ϕ, x) ∈ J × Bh × H, we
have

E||σ(t, ψ, x)||2L2
0
≤ ν1(t)Ξσ(||ψ||2Bh) + ν1(t)E||x||2H, lim inf

q→∞

Ξσ(q)

q
= Υ <∞.

iii. there exist two positive integrable functions ν1, ν2 ∈ L1([0, T ]) such that

E||σ(t, ψ, x)− σ(t, ϕ, y)||L2
0
≤ ν1(t)||ψ − ϕ||2Bh + ν2(t)E||x− y||2H,

for every (t, ψ, x) and (t, ϕ, y) ∈ J × Bh ×H.

(H5): The function Ik : H → H is continuous and there exists Θ > 0 such that

Θ = max
1≤k≤m, x∈Bq

{
E||Ik(x)||2H

}
,

where Bq = {y ∈ B0
b , ||y||2B0

b
≤ q, q > 0}.

The set Bq is clearly a bounded closed convex set in B0
b for each q and for each y ∈ Bq. From
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Lemma 2.1.1, we have

||yt − z̄t||2Bh ≤ 2(||yt||2Bh + ||z̄t||2Bh)

≤ 4

(
l2 sup

0≤t≤T
E||y(t)||2H + ||y0||2Bh

)
+ 4

(
l2 sup

0≤t≤T
E||y(t)||2H) + ||z̄0||2Bh

)
≤ 4(||φ||2Bh) + l2q).

(2.17)

The main object of this chapter is to explain and prove the following theorem.

Theorem 2.2.1 Assume that the assumptions (H1)-(H5) hold. Then the impulsive stochastic

fractional system (2.1) has a mild solution on (−∞, T ] provided that

C̃ + 16Mgl
2 + 7M̃2

s T
2α

[
η1

α2
+

η2

T (2α− 1)

]
< 1. (2.18)

and

Mgl
2 + 7M̃2

s T
2α

[
υ1

α2
+

υ2

T (2α− 1)

]
< 1, (2.19)

C̃ is a positive constant depending only on M̃T ,Mg and l.

Proof. Consider the operator P : Bb → Bb defined by

P(t) =



φ(t), t ∈ (−∞, 0],

Tα(t)[φ(0) + g(0, φ)]− g(t, xt) +

∫ t

0
Sα(t− s)f(s, xs, B1x(s))ds

+

∫ t

0
Sα(t− s)σ(s, xs, B2x(s))dω(s), t ∈ [0, t1],

Tα(t)[φ(0) + g(0, φ)] + Tα(t− t1)I1(x(t−1 ))− g(t, xt)
+Tα(t− t1)[g(t1, xt1 + I1(t−1 ))− g(t1, xt1)]

+

∫ t

0
Sα(t− s)f(s, xs, B1x(s))ds+

∫ t

0
Sα(t− s)σ(s, xs, B2x(s))dω(s), t ∈ (t1, t2],

...

Tα(t)[φ(0) + g(0, φ)] +
m∑
k=1

Tα(t− tk)Ik((t−k ))− g(t, xk)

+

m∑
k=1

Tα(t− tk)[g(ttk , xtk , Ik(xt−k
))− g(tk, xtk)]

+

∫ t

0
Sα(t− s)f(s, xs, B1x(s))ds+

∫ t

0
Sα(t− s)σ(s, xs, B2x(s))dω(s), t ∈ (tm, T ].

(2.20)
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We shall show that P has a fixed point, which is then a mild solution for the impulsive system

(2.1).

For φ ∈ Bh, define

z̄(t) =

{
φ(t), t ∈ (−∞, 0];
0, t ∈ J.

Then z̄(t) ∈ Bb. Let x(t) = y(t) + z̄(t), t ∈ (−∞, T ]. It is easy to check that x satisfies (2.1) if

and only if y0 = 0 and

y(t) =



Tα(t)[φ(0) + g(0, φ)]− g(t, yt + z̄t) +

∫ t

0
Sα(t− s)f(s, ys + z̄s, B1(y(t) + z̄(t)))ds

+

∫ t

0
Sα(t− s)σ(s, ys + z̄s, B2(y(t) + z̄(t)))dω(s), t ∈ [0, t1],

Tα(t)[φ(0) + g(0, φ)] + Tα(t− t1)I1(y(t−1 ))− g(t, yt + z̄t)
+Tα(t− t1)[g(t1, yt1 + z̄t1 + I1(yt−1

+ z̄t−1
))− g(t1, yt1 + z̄t1)]

+

∫ t

0
Sα(t− s)f(s, ys + z̄s, B1(y(t) + z̄(t))ds

+

∫ t

0
Sα(t− s)σ(s, ys + z̄s, B2(ys + z̄s)dω(s), t ∈ (t1, t2],

...

Tα(t)[φ(0) + g(0, φ)] +

m∑
k=1

Tα(t− tk)Ik(y(t−k ))− g(t, yt + z̄t)

+

m∑
k=1

Tα(t− tk)[g(ttk , ytk + z̄tk , Ik(xt−k
))− g(tk, xtk)]

+

∫ t

0
Sα(t− s)f(s, ys + z̄s, B1(y(t) + z̄(t)))ds

+

∫ t

0
Sα(t− s)σ(s, ys + z̄s, B2(y(t) + z̄(t))dω(s), t ∈ (tm, T ].

Set

B0
b = {y ∈ Bb, y0 = 0 ∈ Bh}

Thus, for any y ∈ B0
b we have

||y||b = ||y0||Bh + sup
0≤s≤T

(
E||y(s)||2

) 1
2

= sup
0≤s≤T

(
E||y(s)||2

) 1
2

.
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Therefore, (B0
b , ||.||b) is a Banach space.

Consider the map Π on B0
b defined by

(Πy)(t) =



Tα(t)[φ(0) + g(0, φ)]− g(t, yt + z̄t) +

∫ t

0
Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s)))ds

+

∫ t

0
Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s))dω(s), t ∈ [0, t1],

Tα(t)[φ(0) + g(0, φ)] + Tα(t− t1)I1(y(t−1 ))− g(t, yt + z̄t)
+Tα(t− t1)[g(t1, yt1 + z̄t1 + I1(yt−1

+ z̄t−1
))− g(t1, yt1 + z̄t1)]

+

∫ t

0
Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s)))ds

+

∫ t

0
Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s))dω(s), t ∈ (t1, t2],

...

Tα(t)[φ(0) + g(0, φ)] +
m∑
k=1

Tα(t− tk)Ik(y(t−k ))− g(t, yt + z̄t)

+

m∑
k=1

Tα(t− tk)[g(ttk , ytk + z̄tk , Ik(xt−K
))− g(tk, xtk)]

+

∫ t

0
Sα(t− s)f(s, ys + z̄s, B1(y(s) + z̄(s))ds

+

∫ t

0
Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s))dω(s), t ∈ (tm, T ].

It is clear that the operator P has a fixed point if and only if Π has a fixed point. So let us prove
that Π has a fixed point. Now, we decompose Π as Π = Π1 + Π2, where

(Π1y)(t) =



0, t ∈ [0, t1],
Tα(t− t1)I1(y(t−1 ))
+Tα(t− t1)[g(t1, yt1 + z̄t1 + I1(yt−1

+ z̄t−1
))− g(t1, yt1 + z̄t1)], t ∈ [t1, t2],

...
m∑
k=1

Tα(t− tk)Ik(y(t−k ))

+

m∑
k=1

Tα(t− tk)[g(t1, ytk + z̄tk + Ik(yt−k
+ z̄t−k

))− g(t1, ytk + z̄tk)], t ∈ [tm, T ],

(Π2y)(t) = Tα(t)g(0, φ)− g(t, yt + z̄t) +

∫ t

0
Sα(t− s)f(s, ys + z̄s, B1(y(t) + z̄(t)))ds

+

∫ t

0
Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s))dω(s)), t ∈ J.
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In order to use Theorem 2.1.3 we will verify that Π1 is compact and continuous while Π2 is a
contraction operator. For the sake of convenience, we divide the proof into several steps.

Step1. We show that there exists a positive number q such that Π(Bq) ⊂ Bq. If this is not true,

then for each q > 0, there exists a function yq(.) ∈ Bq, but Π(yq) ∈ Bq, that is E||(Πyq)(t)||2H > q.

An elementary inequality can show that, for t ∈ [0, t1].

q ≤ E ‖(Π(yq)(t)‖2H

≤ 4E||Tα(t)g(0, φ)||2H + 4E‖g(t, yqt + z̄t)‖2H + 4E
∥∥∥∥∫ t

0
Sα(t− s)f(s, yqs + z̄s, B1(yq(s) + z̄(s)))ds

∥∥∥∥2

H

+4E
∥∥∥∥∫ t

0
Sα(t− s)σ(s, ys + z̄s, B2(y(s) + z̄(s))dω(s)

∥∥∥∥2

H

= 4
∑4

i=1 Ii.

(2.21)

Let us now estimate each term above Ii, i = 1, . . . , 4. By Lemma 2.1.1 and assumptions (H1)−
(H2), we have

I1 ≤ M̃2
TE||g(0, φ)||2H ≤ M̃2

TMg(||φ||2Bh + 1), (2.22)

I2 ≤Mg(||yqt + z̄t||2Bh + 1) ≤Mg

[
4(||φ||2Bh + l2q) + 1

]
. (2.23)

Together with assumption (H3) and (2.17), we have

I3 ≤
∫ t

0
||Sα(t− s)||ds+

∫ t

0
||Sα(t− s)||E||f(s, yqs + z̄s, B1(yq(s) + z̄(s)))||2Hds

≤ M̃2
s

∫ t

0
(t− s)α−1ds+

∫ t

0
(t− s)α−1[µ1(s)Ξf (||yqt + z̄t||2Bh) + µ2E||B1(yq(s) + z̄(s))||2H]ds

≤ M̃2
S
Tα

α

∫ t

0
(t− s)α−1

[
Ξf (4(||φ||2Bh + l2q))µ∗1 +B∗1µ

∗
2 sup

0≤s≤T
E||yqs + z̄s||2Hds

]
≤ M̃2

S
T 2α

α2

∫ t

0
(t− s)α−1

[
Ξf4(||φ||2Bh + l2q)µ∗1 +B∗1µ

∗
2q
]
,

(2.24)
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where B∗1 = sup
t∈[0,T ]

∫ t

0
K(t, s)ds <∞, µ∗1 = sup

s∈[0,t]
µ1(s), µ∗2 = sup

s∈[0,t]
µ2(s).

A similar argument involves assumption (H4), we obtain

I4 ≤
∫ t

0
||Sα(t− s)||2E||σ(s, yqs + z̄s, B1(yq(s) + z̄(s)))||2L2

0
ds

≤ M̃2
S

∫ t

0
(t− s)α−1

[
Ξσ4(||φ||2Bh + l2q)ν∗1 +B∗1ν

∗
2 sup

0≤s≤T
E||yqs + z̄s||2Hds

]
≤ M̃2

S
T 2α−1

2α−1

∫ t

0
(t− s)α−1

[
Ξσ4(||φ||2Bh + l2q)ν∗1 +B∗1ν

∗
2q
]
,

(2.25)

where B∗2 = sup
t∈[0,T ]

∫ t

0
K(t, s)ds <∞, ν∗1 = sup

s∈[0,t]
ν1(s), ν∗2 = sup

s∈[0,t]
ν2(s).

Combining these estimates (2.21)-(2.25) yields

q ≤ E||(Πyq)(t)||2H
≤ L0 + 16Mgl

2q + 4M̃2
S
T 2α

α2

∫ t

0

[
Ξσ4(||φ||2Bh + l2q)µ∗1 +B∗1µ

∗
2q
]

+4M̃2
S
T 2α−1

2α−1

∫ t

0
(t− s)α−1

[
Ξσ4(||φ||2Bh + l2q)ν∗1 +B∗1ν

∗
2q
]
,

(2.26)

where

L0 = 4M̃2
TMg(||φ||2Bh + 1) + 4Mg(1 + 4||φ||2Bh).

Dividing both sides of (2.26) by q and taking q →∞, we obtain

16Mgl
2 + 4M̃2

S
T 2α

α2 [4Λµ∗1 +B∗1µ
∗
2] + 4M̃2

S

T 2α−1

2α− 1
[4Υν∗1 +B∗2ν

∗
2 ]

= 16Mgl
2 + 4M̃2

ST
2α
[
η1
α2 + η2

T (2α−1)

]
≥ 1.

which is a contradiction to our assumption in (2.18).

For t ∈ (t1, t2], we have

q ≤ E||(Πyq)(t)||2H
≤ 7||Tα(t− t1)||2E||I1(yq(t−1 ))||2H + 7||Tα(t− t1)||2E||g(t1, y

q
t1

+ z̄t1 + I1(yq
t−1

+ z̄t−1
))||2H

+7||Tα(t− t1)||2||g(t1, y
q
t1

+ z̄t1 ||2H + 7E||Tα(t)g(0, φ)||2H + 7E||g(t, yqt + z̄t||2H

+4E
∥∥∥∥∫ t

0
Sα(t− s)f(s, yqs + z̄s, B1(yq(s) + z̄(s)))ds

∥∥∥∥2

H

+7E
∥∥∥∥∫ t

0
Sα(t− s)σ(s, yqs + z̄s, B2(yq(s) + z̄(s)))dω(s)

∥∥∥∥2

H
.

(2.27)
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Using assumptions (H1)-(H5) we obtain

E||(Πyq)(t)||2H
≤ L1 + 70M̃2

TMgl
2q + 28Mgl

2q + 7M̃2
S
T 2α

α2

∫ t

0

[
Ξf (4(||φ||2Bh + l2q))µ∗1 +B∗1µ

∗
2q
]

+7M̃2
S
T 2α−1

2α−1

∫ t

0

[
Ξσ(4(||φ||2Bh + l2q))ν∗1 +B∗1ν

∗
2q
]
,

where

L1 = 7M̃2
T

(
Θ +Mg

[
1 + 6

(
||φ||2Bh + l2Θ

)])
+ 7M̃2

TMg(1 + ||φ||2Bh) + 7Mg

(
1 + 4||φ||2Bh

)
.

A Similar argument gives

70M̃2
TMgl

2 + 28Mgl
2 + 7M̃2

S
T 2α

α2 [4Λµ∗1 +B∗1µ
∗
2] + 7M̃2

S
T 2α−1

2α−1 [4Υν∗1 +B∗2ν
∗
2 ]

= 70M̃2
TMgl

2 + 28Mgl
2 + 7M̃2

ST
2α
[
η1
α2 + η2

T (2α−1)

]
≥ 1,

which is a contradiction to our assumption in (2.18). Similarly for t ∈ (ti, ti+1], i = 1, 2, . . . ,m,

we obtain

C̃ + 16Mgl
2 + 7M̃2

S
T 2α

α2 [4Λµ∗1 +B∗1µ
∗
2] + 7M̃2

S
T 2α−1

2α−1 [4Υν∗1 +B∗2ν
∗
2 ]

= C̃ + 16Mgl
2 + 7M̃2

ST
2α
[
η1
α2 + η2

T (2α−1)

]
≥ 1,

with η1 = 4Λµ∗1 + B∗1µ
∗
2,η2 = 4Υν∗1 + B∗2ν

∗
2 and C̃ is a positive constant depending only on M̃t

,Mg and l. This is a contradiction to our assumption in (2.18).

Thus, for some positive number q, Π(Bq) ⊂ Bq.
Step 2. The map Π1 is continuous on Bq.

Let {yn}∞n=1 be a sequence in Bq with lim yn → y ∈ Bq. Then for t ∈ (ti, ti+1], we have

E||(Π1y
n)(t)− (Π1y)(t)||

≤ 3
∑i

k=1 ||Tα(t− tk)||2
[
E||Ik(yn(t−k ))− Ik(y(t−1 ))||2H

+E
∥∥∥g(tk, y

n
tk

+ z̄tk + Ik(y
n
t−k

+ z̄t−k
)− g(tk, ytk + z̄tk + Ik(yt−k

+ z̄t−k
))
∥∥∥2

H

+E
∥∥g(tk, y

n
tk

+ z̄tk)− g(tk, ytk + z̄tk))
∥∥2

H

]
.

Since the functions g, Ii, i = 1, 2, . . . ,m are continuous, hence lim
n→∞

E‖Π1y
n − Π1y‖2 = 0 which

implies that the mapping Π1 is continuous on Bq.
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Step 3. Π1 maps bounded sets into bounded sets in Bq.

Let us prove that for q > 0 there exists a δ > 0 such that for each y ∈ Bq, we have

E||(Π1y)(t)||2H ≤ δ for t ∈ (ti, ti+1], i = 0, 1, . . . ,m. We have

E||(Π1y)(t)||2H ≤ 3
i∑

k=1

||Tα(t− tk)||2
[
E||Ik(y(t−k ))||2H + E||g(tk, ytk + z̄tk)||2H

+E||g(tk, ytk + z̄tk + Ik(yt−k
+ z̄t−k

))||2H
]

≤ 3M̃2
T

[
Θ(1 + 6Mgl

2) + 2Mg + 10Mg(||φ||2Bh + l2q)
]

:= δ,

which proves the desired result.

Step 4. The set {Π1y, y ∈ Bq} is an equicontinuous family of functions on J .

Let u, v ∈ (ti, ti+1], ti ≤ u < v ≤ ti+1, i = 0, 1, . . . ,m, y ∈ Bq. We have

E||(Π1y)(v)− (Π1y)(u)||2H

≤ 3
i∑

k=1

||Tα(v − tk)− Tα(u− tk)||2
[
E||Ik(y(t−k ))||2H + E||g(tk, ytk + z̄tk)||2H

+E||g(tk, ytk + z̄tk + Ik(yt−k
+ z̄t−k

))||2H
]

≤ 3

[
Θ(1 + 6Mgl

2) + 2Mg + 10Mg(||φ||2Bh + l2q)

] i∑
k=1

||Tα(v − tk)− Tα(u− tk)||2.

Since Tα is strongly continuous and it allows us to conclude that lim
u→v
||Tα(v−tk)−Tα(u−tk)||2 = 0

for all k = 1, 2, . . . ,m, which implies that the set {Π1y, y ∈ Bq} is equicontinuous.
Finally, combining Step 1 to Step 4 together with Ascoli’s theorem, we conclude that the oper-
ator Π1 is compact.

Step5. Π2 is contractive. Let y, y∗ ∈ Bq and t ∈ (ti, ti+1], i = 0, 1, . . . ,m. Then

E||(Π2y)(t)− (Π2y
∗)(t)||2H

≤ 3E||g(t, yt + z̄t)− g(t, y∗t + z̄t)||2H

+3E
∥∥∥∥∫ t

0
Sα(t− s)

[
f(s, ys + z̄s, B1(y(s) + z̄(s))− f(s, y∗s + z̄s, B1(y∗(s) + z̄(s)))

]
ds

∥∥∥∥2

H

+3E
∥∥∥∥∫ t

0
Sα(t− s)[σ(s, ys + z̄s, B2(y(s) + z̄(s)))− σ(s, y∗s + z̄s, B2(y∗(s) + z̄(s)))dω(s)

∥∥∥∥2

H
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≤ 3E||g(t, yt + z̄t)− g(t, y∗t + z̄t)||2H + 3

∫ t

0
||Sα(t− s)||ds

∫ t

0
||Sα(t− s)||

×E||f(s, ys + z̄s, B1(y(t) + z̄(t))− f(s, y∗s + z̄s, B1(y∗(s) + z̄(s))||2Hds

+3

∫ t

0
||Sα(t− s)||2E||σ(s, ys + z̄s, B2(y(s) + z̄(s))− σ(s, y∗s + z̄s, B2(y∗(s) + z̄(s))||2L2

0
ds

≤ 3Mg||yt − y∗t ||2Bh + 3M̃2
S

∫ t

0
(t− s)α−1ds

×
[
µ1(s)||ys − y∗s ||2Bh + µ2(s)E||B1(y(t) + z̄(t))−B1(y∗(s) + z̄(s))||2H

]
ds

+3M̃2
S

∫ t

0
(t− s)2(α−1)

[
ν1(s)||ys − y∗(s)||2Bh + ν2E||B2(y(s) + z̄(s))−B2(y∗(s) + z̄(s))||2H

]
ds

≤ 3Mg||yt − y∗t ||2Bh + 3M̃2
S

Tα

α

×
∫ t

0
(t− s)α−1

[
µ∗1l

2 supE||y(s)− y∗(s)||2H + µ∗2B
∗
1 supE||y(s)− y∗(s)||H2

]
ds

+3M̃2
S

∫ t

0
(t− s)2(α−1)

[
ν∗1 l

2 sup ||yt − y∗(t)||2Bh + ν∗2B
∗
1 sup ||yt − y∗(t)||2Bh

]
ds

≤ 3

(
l2Mg + M̃2

S [
1

α2
(µ∗1l

2 + µ∗2B
∗
1) +

1

T (2α− 1)
(ν∗1 l

2 + ν∗2B
∗
2)]

)
||y − y∗||2B0b

= 3

(
l2Mg + M̃2

S

[
v1

α2
+

v2

T (2α− 1)

])
||y − y∗||2B0b .

So Π2 is a contraction by our assumption in (2.19). Hence, by Sadovskii’s fixed point theorem

we can conclude that the problem (2.1) has at least one solution on (−∞, T ]. This completes

the proof of the theorem.
�
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2.3 An example.

In this section, we consider an example to illustrate our main theorem. We examine the existence
of solutions for the following fractional stochastic partial differential equation of the form

Dq
t

[
u(t, x) +

∫ t

−∞
a(t, x, s− t)Q1(u(s, x))ds

]
= ∂2

∂x2
[u(t, x) +

∫ t

−∞
a(t, x, s− t)Q1(u(s, x))ds]

+

∫ t

−∞
H(t, x, s− t)Q2(u(s, x))ds+

∫ t

0
k(s, t)e−u(s,x)ds

+

[∫ t

−∞
V (t, x, s− t)Q3(u(s, x))ds+

∫ t

0
p(s, t)e−u(s,x)ds

]
dβ(t)
dt ,

x ∈ [0, π], t ∈ [0, b], t 6= tk
u(t, 0) = 0 = u(t, π), t ≥ 0
u(t, x) = φ(t, x), t ∈ (−∞, 0], x ∈ [0, π],

4u(ti)(x) =

∫ t

−∞
qi(ti − s)u(s, x)ds, x ∈ [0, π],

(2.28)

where β(t) is a standard cylindrical Wiener process inH defined on a stochastic space (Ω, {Ft},F ,P);

Dq
t is the Caputo fractional derivative of order 0 < q < 1; 0 < t1 < t2 < . . . < tn = T are prefixed

numbers; a,Q1, H,Q2, V,Q3 are continuous; φ ∈ Bh.
Let H = L2([0, π]) with the norm || · ||. Define A : H → H by Ay = y′′ with the domain

D(A) =
{
y ∈ H; y, y′ are absolutely continuous, y′′ ∈ H and y(0) = y(π) = 0

}
.

Then, Ay =
∞∑
n=1

n2(y, yn)yn, y ∈ D(A), where yn(x) =
√

2
πsin(nx), n = 1, 2, . . . , is the orthog-

onal set of eigenvectors of A. It is well known that A is the infinitesimal generator of an analytic

semigroup (T (t))t≥0 in H is given by

T (t)y =

∞∑
n=1

exp−n
2t(y, yn)yn, for all y ∈ H, t > 0.

It follows from the above expressions that (T (t))t≥0 is a uniformly bounded compact semigroup,

so that, R(λ,A) = (λI −A)−1 is a compact operator for all λ ∈ ρ(A).

Let h(s) = e2s, s < 0, then l =

∫ t

−∞
h(s)ds =

1

2
and define

||φ||Bh =

∫ t

−∞
h(s) sup

s≤θ≤0
(E|φ(θ)|2)

1
2ds.
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Hence for (t, φ) ∈ [0, T ] × Bh, where φ(θ)(y) = φ(θ, y), (θ, y) ∈ (−∞, 0] × [0, π]. Set u(t)(x) =

u(t, x),

g(t, φ)(x) =

∫ 0

−∞
a(t, x, θ)Q1(φ(θ)(x))dθ,

f(t, φ,B1u(t))(x) =

∫ 0

−∞
H(t, x, θ)Q1(φ(θ)(x))dθ +B1u(t)(x),

σ(t, φ,B2u(t))(x) =

∫ 0

−∞
V (t, x, θ)Q3(φ(θ)(x))dθ +B2u(t)(x),

Ii(φ)(x) =

∫ 0

−∞
qi(−θ)φ(θ)(x)dθ,

where B1u(t) =

∫ t

0
k(s, t)e−u(s,x)ds and B2u(t) =

∫ t

0
p(s, t)e−u(s,x)ds. Then with these settings

the equations in (2.28) can be written in the abstract form of Eq. (2.1). All conditions of

Theorem 2.2.1 are now fulfilled, so we deduce that the system (2.28) has a mild solution on

(−∞, T ].



Chapter 3

Almost periodic mild solutions for
stochastic delay functional differential
equations driven by a FBM

In the present chapter1, we investigate the existence and stability of quadratic-mean almost
periodic mild solutions for stochastic delay functional differential equations

{
dx(t) = (Ax(t) + b(t, x(t), xt))dt+ σH(t)dBH

Q (t), t ∈ [0, T ],

x(t) = ϕ(t), −r ≤ t ≤ 0, r ≥ 0,
(3.1)

where BH
Q = {BH

Q (t), t ∈ [0, T ]} is a fBm with Hurst index H ∈ (1
2 , 1). For more detail we

refer the reader to [8, 46].

3.1 Preliminaries

In this section we introduce some notations, definitions, a technical lemmas and preliminary
fact which are used in what follows.

Let (Ω,F , (Ft, t ∈ [0, T ]),P) be a complete probability space with a filtration satisfying the

standard conditions. Let T > 0 and denote by Υ the linear space of R-valued step functions on

[0, T ], that is, φ ∈ Υ if

φ(t) =

n−1∑
i=1

ziχ[ti,ti+1)(t),

1The chapter is based on the paper [20]

52
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where t ∈ [0, T ], zi ∈ R and 0 = t1 < t2 < . < tn = T . For φ ∈ Υ its Wiener integral with respect

to BH is ∫ T

0
φ(s)dBH(s) =

n−1∑
i=1

zi(B
H(ti+1)−BH(ti)).

Let H be the Hilbert space defined as the closure of Υ with respect to the scalar product

〈χ[0,t], χ[0,s]〉H = RH(t, s). Then the mapping

φ =

n−1∑
i=1

ziχ[ti,ti+1)(t) 7→
∫ T

0
φ(s)dBH(s)

is an isometry between Υ and the linear space span{BH(t), t ∈ [0, T ]}, which can be extended

to an isometry between H and the first Wiener chaos of the fBm spanL
2(Ω){BH(t), t ∈ [0, T ]},

(see[34]). The image of an element φ ∈ H by this isometry is called the Wiener integral of φ

with respect to BH .

Let us now consider the Kernel

KH(t, s) = cHs
1
2
−H
∫ t

s
(u− s)H−3/2uH−1/2du

Where cH = ( H(2H−1)

β(2−2H,H− 1
2

)
)
1
2 , where β denoting the Beta function, and t > s. It is not difficult

to see that
∂KH

∂t
(t, s) = H(

t

s
)H−

1
2 (t− s)H−

3
2 .

Let KH : Υ 7→ L2([0, T ]) be the linear operator given by

KHφ(s)(s) =

∫ t

s
φ(t)

∂KH

∂t
(t, s)dt.

Then (KHχ[0,t])(s) = KH(t, s)χ[0,t](s) is an isometry between Υ and L2([0, T ]) that can be

extended to H. Denoting L2
H([0, T ]) = {φ ∈ H,KHφ ∈ L2([0, T ])}. since H > 1/2, we have

L1/H([0, T ]) ⊂ L2
H([0, T ]). (3.2)

Moreover the following result hold:
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Lemma 3.1.1 [34]. For φ ∈ L1/H([0, T ]),

H(2H − 1)

∫ T

0

∫ T

0
|φ(r)||φ(u)||r − u|2H−2drdu ≤ cH ||φ||2L1/H([0,T ])

.

Let us now consider two separable Hilbert spaces (U, |·|U , 〈·, ·〉U ) and (V, |·|V , 〈·, ·〉V ), Let L(V,U)

denote the space of all bounded linear operator from V to U and Q ∈ L(V, V ) be a non-negative

self adjoint operator. Denote by L0
Q(V,U) the space of all ξ ∈ L(V,U) such that ξQ

1
2 is a

Hilbert-Schmidt operator. the norm is given by

|ξ|2L0
Q(V,U) = |ξQ

1
2 |2HS = tr(ξQξ∗).

Then ξ is called a Q-Hilbert-Schmidt operator from V to U.

Let {BH
n (t)}n∈N be a sequence of two-side one-dimensional fBm mutually independent on the

complete probability space (Ω,F ,P), {en}n∈N be a complete orthonormal basis in V .

Define the V -valued stochastic process BH
Q (t) by

BH
Q (t) =

∞∑
n=1

BH
n (t)Q

1
2 en, t ≥ 0.

If Q is a non-negative self-adjoint trace class operator, then this series converges in the space V ,

that is, it holds that BH
Q (t) ∈ L2(Ω, V ). Then, we say that BH

Q (t) is a V -valued Q-cylindrical

fBm with covariance operator Q. Let ψ : [0, T ]→ L0
Q(V,U) such that

∞∑
n=1

‖KH(ψQ
1
2 )en‖L2([0,T ],U) <∞. (3.3)

Definition 3.1.1 Let ψ : [0, T ] → L0
Q(V,U) satisfy (3.3). Then, its stochastic integral with

respect to the fBm BH
Q is defined for t ≥ 0 as

∫ t

0
ψ(s)dBH

Q (s) :=
∞∑
n=1

∫ t

0
ψ(s)Q1/2endB

H
n (s) =

∞∑
n=1

∫ t

0
(KH(ψQ1/2en))(s)dW (s),

where W is a Wiener process.



3.1 Preliminaries 55

Notice that if
∞∑
n=1

‖ψQ
1
2 en‖L1/H([0,T ],U) <∞, (3.4)

then in particular (3.4) holds, which follows immediately from (3.3).

The following lemma is proved in [34] and obtained as a simple application of Lemma 3.1.1.

Lemma 3.1.2 ([34]). For any ψ : [0, T ] → L0
Q(V,U) such that (3.4) holds, and for any α, β ∈

[0, T ] with α > β,

E
∣∣∣∣∫ α

β
ψ(s)dBH

Q (s)

∣∣∣∣2
U

≤ cH(2H − 1)(α− β)(2H−1)
∞∑
n=1

∣∣∣∣∫ α

β
ψQ

1
2 en

∣∣∣∣2
U

ds,

where c = c(H). If in addition

∞∑
n=1

∣∣∣ψQ 1
2 en

∣∣∣
U

is uniformly convergent for t ∈ [0, T ], (3.5)

then

E
∣∣∣∣∫ α

β
ψ(s)dBH

Q (s)

∣∣∣∣2
U

≤ cH(2H − 1)(α− β)(2H−1)

∫ α

β
t|ψ(s)|2L0

Q(V,U)ds. (3.6)

For more detail (see [8]). Now, we recall the following

Definition 3.1.2 1. A stochastic process X : [0, T ] → L2(Ω, U) is said to be continuous,

provided that, for any s ∈ [0, T ], lim
t→s

E|X(t)−X(s)|2U = 0.

2. A stochastic process X : [0, T ] → L2(Ω, U) is said to be stochastically bounded, whenever

lim
N→∞

P[|X(t)|U > N ] = 0.

Let us consider the Banach space C([0, T ];L2(Ω, U)) = C([0, T ];L2(Ω,F ,P, U)) of all continuous

and uniformly bounded processes from [0, T ] in to L2(Ω, U) equipped with the sup norm.

Definition 3.1.3 A continuous stochastic process X : [0, T ]→ L2(Ω, U) is said to be quadratic-

mean almost periodic, provided that, for each ε > 0, the set

J(X, ε) :=

{
k : sup

t∈[0,T ]
E|X(t+ k)−X(t)|2U < ε

}
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is relatively dense in R, i.e., there exists a constant c = c(ε) > 0 such that J(X, ε)∩ [t, t+c] 6= ∅,

for any t ∈ [0, T ].

Denote the set of all quadratic-mean almost periodic stochastic processes by Ĉ([0, T ], L2(Ω, U)).

Notice that this set is a closed subspace of C([0, T ];L2(Ω, U)). therefore, Ĉ([0, T ], L2(Ω, U))

equipped with the sup norm is a Banach space.

Definition 3.1.4 A function b(t, Y ) : [0, T ]×L2(Ω, U)→ L2(Ω, V ), which is jointly continuous,

is said to be quadratic-mean almost periodic in t ∈ [0, T ], uniformly for Y ∈ K, where K ⊂

L2(Ω, U) is compact; if for any ε > 0, there exists a constant c(ε,K) > 0 such that any interval

of length c(ε,K) contains at least a number k satisfying

sup
t∈[0,T ]

(
E|b(t+ k, Y )− b(t, Y )|2V

)
< ε,

for each stochastic process Y : [0, T ]→ K.

The collection of such functions will be denoted by Ĉ([0, T ]× L2(Ω, U)), L2(Ω, V )).

The following lemma is also proved in [8].

Lemma 3.1.3 Let C̃([−r, 0];L2(Ω, U)) be the space of all continuous functions from [−r, 0] into

L2(Ω, U) with the sup norm

||Z||
C̃([−r,T ];L2(Ω,U))

= sup{|Z(s)|U ;Z ∈ C̃,−r ≤ s ≤ 0},

K ⊂ L2(Ω, U) × C̃([−r, 0];L2(Ω, U)) be a compact set. Assume that the function b(t, x, y) :

[0, T ] × L2(Ω, U) × C̃([−r, 0];L2(Ω, U)) → L2(Ω, V )) be quadratic-mean almost periodic in t ∈
[0, T ], uniformly for (x, y) ∈ K; furthermore, there exists a constant c1 > 0 such that

|b(t, x, y)− b(t, x̃, ỹ)|2V ≤ c1

(
|x− x̃|2U + ||y − ỹ||

C̃2([−r,0];L2(Ω,U))

)
,

for t ∈ [0, T ] and (x, y), (x̃, ỹ) ∈ L2(Ω, U) × C̃([−r, 0];L2(Ω, U)), then for any quadratic-mean

almost periodic stochastic process ψ : [0, T ] → L2(Ω, U), the stochastic process t → b(t, ψ(t), ψt)

is quadratic-mean almost periodic.
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3.2 Almost Periodic Mild Solutions

In this section we study the existence of quadratic-mean almost periodic mild solutions for
stochastic delay functional differential equations

dx(t) = (Ax(t) + b(t, x(t), xt))dt+ σH(t)dBH
Q (t), t ∈ [0, T ],

x(t) = ϕ(t), −r ≤ t ≤ 0, r ≥ 0,
(3.7)

where BH
Q (t) is the fractional Brownian motion which was introduced in the previous section,

the initial data ϕ ∈ C̃([−r, 0];L2(Ω, U)) is a function defined by ϕt(s) = ϕ(t + s), s ∈ [−r, 0],

and A : Dom(A) ⊂ U → U is the infinitesimal generator of a strongly continuous semigroup

S(.) on U , that is, for t ≥ 0, it holds |S(t)|U ≤ Meρt,M ≥ 1, ρ ∈ R. The coefficients b :

[0, T ]× U × C̃([−r, 0];U)→ U and σH : [0, T ]→ L0
Q(U, V ) are appropriate functions.

Definition 3.2.1 A U -valued process x(t) is called a mild solution of (3.7) if

x ∈ C̃([−r, T ];L2(Ω, U)), x(t) = ϕ(t) for t ∈ [−r, 0], and, for t ∈ [0, T ], satisfies

x(t) = S(t)ϕ(0) +

∫ t

0
S(t− s)b(s, x(s), xs)ds+

∫ t

0
S(t− s)σH(s)dBH

Q (s) P− a · s. (3.8)

Now, we state our first main result. We will make use of the following assumptions on the
coefficients.

(Hb) The function b ∈ Ĉ([0, T ]× U × C̃, U), and there exists a constant cb > 0 such that

|b(t, x, y)− b(t, x̃, ỹ)|2U ≤ cb
(
|x− x̃|2U + ||y − ỹ||2

C̃
,
)
,

where the space C̃ is defined in Section 1, (x, y), (x̃, ỹ) ∈ U × C̃, t ∈ [0, T ].

(HσH) The function σH : [0, T ]→ L0
Q(U, V ) satisfies the following conditions: for the complete

orthonormal basis {en}n∈N in V , we have

∞∑
n=1

‖σHQ
1
2 en‖L2([0,T ],U) <∞.

∞∑
n=1

|σH(t, x(t))Q
1
2 en|U is uniformly convergent for t ∈ [0, T ].

Note that assumption (HσH) immediately imply that, for every t ∈ [0, T ],
∫ t

0
|σH(s)|2L0

Q(U,V ) <

∞.



58
Almost periodic mild solutions for stochastic delay functional differential equations driven by a

FBM

Theorem 3.2.1 Under the assumptions on A, the conditions (Hb) and (HσH) , for every ϕ ∈

C̃([−r, T ];L2(Ω, U)), Eq. (3.7) has a unique quadratic-mean almost periodic mild solution x

whenever

γ = 2MeρT
√
Tcb < 1,

where cb is a positive constant.

Proof. We can assume that ρ > 0, otherwise we can take ρ0 > 0 such that, for t ≥ 0, |S(t)| ≤

Meρ0t. Define the operator L on Ĉ([0, T ], U) by

(Lx)(t) := S(t)ϕ(0) +

∫ t

0
S(t− s)b(s, x(s), xs)ds+

∫ t

0
S(t− s)σH(s)dBH

Q (s)

:= S(t)ϕ(0) + Φx(t) + Ψ(t). P− a · s.
(3.9)

Firstly, it suffices to show that Φx(.) is quadratic-mean almost periodic whenever x is quadratic-

mean almost periodic.

Indeed, assuming that x is quadratic-mean almost periodic, using condition (Hb) and Lemma

3.1.3, one can see that s 7→ b(s, x(s), xs) is quadratic-mean almost periodic. Therefore, for each

ε > 0, there exists c(ε) > 0 such that any interval of length c(ε) contains at least κ satisfying

sup
0≤t≤T

E|b(t+ κ, x(t+ κ), xt+κ)− b(t, x(t), xt)|2U ≤
ε

(TMeρT )2
, (3.10)

for T > 0 fixed. Furthermore

E|Φx(t+ κ)− Φx(t)|2U

= E
∣∣∣∣∫ t

0
S(t− s)b(s+ κ, x(s+ κ), xs+κ)ds−

∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣∣2
U

≤ tE
∫ t

0
|S(t− s) (b(s+ κ, x(s+ κ), xs+κ)− b(s, x(s), xs))|2U ds

≤ tM2e2ρTE
∫ t

0
|S(t− s)(b(s+ κ, x(s+ κ), xs+κ)− b(s, x(s), xs))|2Uds

≤ TM2e2ρT

∫ t

0
sup

0≤τ≤s
E|b(τ + κ, x(τ + κ), xτ+κ)− b(τ, x(τ), xτ ))|2Uds

< ε.

Secondly, for the chosen υ > 0 small enough, we have
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E|Ψ(t+ υ)−Ψ(t)|2

= E
∣∣∣∣∫ t+υ

0
S(t+ υ − s)σH(s)dBH

Q (s)−
∫ t

0
S(t− s)σH(s)dBH

Q (s)

∣∣∣∣2
≤ 2E

∣∣∣∣∫ t

0
[S(t+ υ − s)− S(t− s)]σH(s)dBH

Q (s)

∣∣∣∣2 + 2E
∣∣∣∣∫ t+υ

t
S(t− s)σH(s)dBH

Q (s)

∣∣∣∣2
:= I1 + I2.

Applying inequality (3.5) to I1 we get

I1 ≤ 2cH(2H − 1)t2H−1

∫ t

0
|S(t− s)(S(υ)− Id)σH(s)|2L0

Q(U,V ) ds

≤ 2cH(2H − 1)t2H−1M2e2ρT

∫ t

0
|(S(υ)− Id)σH(s)|2L0

Q(V,U) ds

≤ 2cH(2H − 1)t2H−1M4e2ρT (1 + e2ρυ)

∫ t

0
|σH(s)|2L0

Q(V,U) ds.

Applying now inequality (3.5) to I2 we obtain

I2 ≤ 2cH(2H − 1)υ2H−1M2e2ρυ

∫ t+υ

0
|σH(s)|2L0

Q(V,U) ds.

We observe that the condition (HσH) ensures the existence of a positive constants c1 and c2

such that

2cH(2H − 1)t2H−1M4e2ρT (1 + e2ρυ)

∫ t

0
|σH(s)|2L0

Q(V,U) ds ≤ c1,

and

2cH(2H − 1)υ2H−1M2e2ρυ

∫ t+υ

0
|σH(s)|2L0

Q(V,U) ds ≤ c2.

Therefore, for the chosen υ > 0 and all t ≥ 0 we have

E|Ψ(t+ υ)−Ψ(t)|2 ≤ c1 + c2 = c3.

From the above discussion, it is clear that the operator L maps Ĉ([0, T ], U) into itself.

Finally we claim that L is a contraction mapping on Ĉ([0, T ], U). We have
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E|(Lx)(t)− (Ly)(t)|2 = E
∣∣∣∣∫ t

0
S(t− s)[b(s, x(s), xs)− b(s, y(s), ys)]ds

∣∣∣∣2
≤ 2M2e2ρtE

∫ t

0
|b(s, x(s), xs)− b(s, y(s), ys)|2Uds

≤ 2M2e2ρTE
∫ t

0
sup

0≤τ≤s
|b(τ, x(τ), xτ )− b(τ, y(τ), yτ )|2Uds

≤ 2TM2e2ρT cb sup
0≤τ≤s

(
|x− y|2U + ||x− y||2

C̃

)
≤ 4TM2e2ρT sup

0≤τ≤s
||x− y||2∞.

Hence,

||(Lx)(t)− (Ly)(t)||∞ ≤ 2MeρT
√
cb||x− y||∞ = γ||x− y||∞. (3.11)

As γ < 1,by (3.11), we know that L is a contraction mapping. Hence, by the contraction mapping

principle, L has a unique fixed point x, which obviously is the unique quadratic-mean almost

periodic mild solution to Eq. (3.7).

�
Now, we give another main result. We first need to state the following conditions:

(H′) The semigroup {S(t)}t≥0 is bounded, i.e., there exists a constant M1 > 0 such that

|S(t)|U ≤M1;

(H′b) The function b ∈ Ĉ([0, T × U × C̃, U), and for each natural number n, there exists a

function ηn : R→ R+ such that

sup
|x|≤n

E|b(t, x(t), xt)|2U ≤ ηn(t), for (x, xt) ∈ U × C̃, t ∈ [0, T ];

(H′σH) The function σH : [0;T ]→ L0
Q(U, V ), and there exists a function ϑ : R→ R+ such that

|σH(t)|2L0
Q(U,V ) ≤ ϑ(t), for t ∈ [0, T ];

(H′′) lim inf
n→∞

1

n

(∫ T

0
ηn(s)ds+ tr(Q)cH(2H − 1)T 2H−1

∫ T

0
ϑ(s)ds

)
= Ω <∞.

Theorem 3.2.2 Let the conditions , (H′b), (H′σH) and (H′′) be satisfied. Then Eq. (3.7) has

a quadratic-mean almost periodic mild solution whenever ΩM2
1 <

1
3 .

Proof. Let L be the operator defined by (3.9). First, we use the Schauder fixed point theorem

to prove that L has a fixed point. The proof will be given in several steps.
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Step 1. Let {xn} be a sequence such that xn → x. Using the continuity of b(t, x(t), xt) with

respect to x(t) and xt, we get b(t, xn(t), (xn)t)→ b(t, x(t), xt) as n→∞. For each 0 ≤ t ≤ T we

have

E|(Lxn)(t)− (Lx)(t)|2 = E
∣∣∣∣∫ t

0
S(t− s)[b(s, xn(s), (xn)s)− b(s, x(s), xs)]ds

∣∣∣∣2
≤ 2M2

1E
∫ t

0
|b(s, xn(s), (xn)s)− b(s, x(s), xs)|2Uds

≤ 2M2
1E
∫ t

0
sup

0≤τ≤s
|b(τ, xn(τ), (xn)τ )− b(τ, x(τ), xτ )|2Uds,

which implies that L is continuous.

Step 2. Let Dn = {x ∈ Ĉ([0, T ], U); |x| ≤ n}, for each natural number n. We want to show

that the operator L maps bounded sets into bounded sets, i.e. there exists a natural number n∗

such that LDn∗ ⊂ Dn∗ . If it is not true, then for each n, there exist xn ∈ Dn and tn ∈ [0, T ]

such that Lxn(tn) > n. This, together with (H′), (H′b) , (H′σH) and (H′′) yields

n < |Lxn(tn)|2U

= E
∣∣∣∣S(t)ϕ(0) +

∫ tn

0
S(tn − s)b(s, xn(s), (xn)s)ds+

∫ tn

0
S(tn − s)σH(s)dBH

Q (s)

∣∣∣∣2
≤ 3E |S(t)ϕ(0)|2 + 3E

∣∣∣∣∫ tn

0
S(tn − s)b(s, xn(s), (xn)s)ds

∣∣∣∣2
+3E

∣∣∣∣∫ tn

0
S(tn − s)σH(s)dBH

Q (s)

∣∣∣∣2
≤ 3M2

1E |ϕ(0)|2 + 3

∫ T

0
E |S(t− s)b(s, x(s), xs)|2 ds

+3M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ T

0
|σH(s)|2L0

Q(V,U)ds

≤ 3M2
1E |ϕ(0)|2 + 3M2

1

∫ T

0
ηn(s)ds+ 3M2

1 tr(Q)cH(2H − 1)T 2H−1

∫ T

0
ϑ(s)ds.

(3.12)

Dividing both sides of (3.12) by n and taking the lower limit as n→∞, one obtains

1 < lim inf
n→∞

3M2
1

n

∫ T

0
ηn(s)ds+

3M2
1 tr(Q)cH(2H − 1)T 2H−1

n

∫ T

0
ϑ(s)ds.

This is a contradiction to the assumption ΩM2
1 <

1
3 . Then LDn∗ ⊂ Dn∗ .

Step 3. Let D∗n be a bounded set as in Step 2, and x ∈ Dn∗ . Then for t1 < t2 we have
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E|(Lx)(t2)− (Lx)(t1)|2U
≤ 3E |[S(t2)− S(t1)]ϕ(0)|2 + 3E|

∫ t2

0
S(t2 − s)b(s, x(s), xs)ds−

∫ t1

0
S(t1 − s)b(s, x(s), xs)ds|2

+3E|
∫ t2

0
S(t2 − s)σH(s)dBH

Q (s)−
∫ t1

0
S(t1 − s)σH(s)dBH

Q (s)|2

≤ 3E |[S(t2)− S(t1)]ϕ(0)|2

+3E
∣∣∣∣∫ t2

0
S(s)b(t2 − s, x(t2 − s), xt2−s)ds−

∫ t1

0
S(s)b(t1 − s, x(t1 − s), xt1−s)ds

∣∣∣∣2
+3E

∣∣∣∣∫ t2

0
S(s)σH(t2 − s)dBH

Q (s)−
∫ t1

0
S(s)σH(t1 − s)dBH

Q (s)

∣∣∣∣2
≤ E |[S(t2)− (t1)]ϕ(0)|2 + 6E

∣∣∣∣∫ t2

t1

S(t)b(t2 − s, x(t2 − s), xt2−s)ds
∣∣∣∣2

+6E
∣∣∣∣∫ t1

0
S(s)[b(t2 − s, x(t2 − s), xt2−s)− b(t2 − s, x(t2 − s), xt2−s)]ds

∣∣∣∣2
+6E

∣∣∣∣∫ t1

0
S(s)[σH(t2 − s)− σH(t1 − s)]dBH

Q (s)

∣∣∣∣2 + 6E
∣∣∣∣∫ t2

t1

S(s)σH(t2 − s)dBH
Q (s)

∣∣∣∣2 .
Applying (3.6) of Lemma 3.1.2, the assumptions (H′b) and (H′σH), we obtain

E|(Lx)(t2)− (Lx)(t1)|2U
≤ 3E |[S(t2)− S(t1)]ϕ(0)|2 + 6M2

1

∫ t2

t1

E |b(t2 − s, x(t2 − s), xt2−s)|
2 ds

+6M2
1

∫ t1

0
E |b(t2 − s, x(t2 − s), xt2−s)− b(t1 − s, x(t1 − s), xt1−s)|

2 ds

+6M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ t1

0
|σH(t2 − s)− σH(t1 − s)|2L0

Q(U,V ) ds

+6M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ t2

t1

|σH(t2 − s)|2L0
Q(U,V ) ds

≤ 3E |[S(t2)− S(t1)]ϕ(0)|2 + 6M2
1

∫ t2

t1

ηt2−n(s)ds

+6M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ t2

t1

ϑ(t2 − s)ds

+6M2
1

∫ t1

0
E |b(t2 − s, x(t2 − s), xt2−s)− b(t1 − s, x(t1 − s), xt1−s)|

2 ds

+6M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ t1

0
|σH(t2 − s)− σH(t1 − s)|2L0

Q(U,V ) ds.

Thus L is equicontinuous.

It remains to prove that Θ(t) = {Lx(t);x ∈ Dn∗} is relatively compact in U . S(t) is compact

in U , since it is generated by the dense operator A. Then Θ(0) = S(0)x0 is relatively compact

in U .
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Now, for t fixed and for each ε ∈ (0, t), x ∈ Dn∗ we define Lεx(t) as follow

Lεx(t) = S(t)ϕ(0) +

∫ t−ε

0
S(t− s)b(s, x(s), xs)ds+

∫ t−ε

0
S(t− s)σH(s)dBH

Q (s). (3.13)

Then the sets Θε(t) = {Lεx(t);x ∈ Dn∗} are relatively compact in U . Moreover, for each

x ∈ Dn∗ , one has

|Lx(t)− Lεx(t)|2U ≤ 2M2
1

(∫ t

t−ε
ηn(s)ds+ tr(Q)cH(2H − 1)T 2H−1

∫ t

t−ε
ϑ(s)ds

)
, (3.14)

from which, by combining the condition (H′′), follows that there are relatively compact sets

arbitrarily close to Θ(t) and hence Θ(t) is also relatively compact in U . Thus, the Arzela-Ascoli

theorem implies that LD∗n is relatively compact, and L is completely continuous on Dn∗ .

As a consequence of Steps1-3 together with the Schauder fixed point theorem, we deduce that L
has a fixed point in Dn∗ which is a quadratic-mean almost periodic mild solution to Eq. (3.7).

�
Now, we give the third main result. In this sequence, we require the following assumptions.

(H′′b) The function b ∈ Ĉ([0, T ]× U × C̃, U), and there exists a function η : R→ R+ such that

supE|b(t, x(t), xt)|2U ≤ η(t), for (x, xt) ∈ U × C̃, t ∈ [0, T ];

(H′′′) The integral
∫ t

0
η(t− s)ds+ tr(Q)cH(2H − 1)T 2H−1

∫ t

0
ϑ(t− s)ds exists for all t ∈ [0, T ].

Theorem 3.2.3 Let the conditions (H′′b), (H′σH) and (H′′′) be satisfied. Then Eq. (3.7) has a

quadratic-mean almost periodic mild solution.

Proof. We shall also apply the Schauder fixed point theorem to prove this theorem. The proof
of Step 1 in this theorem is the same as the proof of Step 1 in Theorem 3.2.2 and so is omitted.
Now, we start our proof from Step 2.

Step 2. Let D = {x ∈ Ĉ([0, T ], U); |x| ≤ k}, where k = 3M1
2 (E|ϕ(0)|2 +M2) and M2 is the

integral defined in (H′′′). We have

|(Lx)(t)|2U = E
∣∣∣∣S(t)ϕ(0) +

∫ t

0
S(s)b(t− s, x(t− s), xt−s)ds+

∫ t

0
S(s)σH(t− s)dBH

Q (s)

∣∣∣∣2
≤ 3M2

1E |ϕ(0)|2 + 3

∫ t

0
E |S(s)b(t− s, x(t− s), xt−s)|2 ds

+3M2
1 tr(Q)cH(2H − 1)T 2H−1

∫ t

0
|σH(t− s)|2L0

Q(U,V ) ds

≤ 3M2
1

(
E |ϕ(0)|2 +

∫ t

0
η(t− s)ds+ tr(Q)cH(2H − 1)T 2H−1

∫ t

0
ϑ(t− s)ds

)
= k.
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Therefore, L : D → D.
Step 3. Let D be a bounded set as in Step 2, t1 < t2 and x ∈ D. We have

E|(Lx)(t2)− (Lx)(t1)|2

≤ 3E |S(t2)− S(t1)ϕ(0)|2 + 6M2
1

∫ t2

t1

η(t2 − s)ds+ 6M2
1 tr(Q)cH(2H − 1)T 2H−1

×
∫ t2

t1

ϑ(t− s)ds+ 6M2
1

∫ t1

0
E |b(t2 − s, x(t2 − s), xt2−s)− b(t1 − s, x(t1 − s), xt1−s)|

2 ds

+6M2
1 cH(2H − 1)T 2H−1tr(Q)

∫ t1

0
|σH(t2 − s)− σH(t1 − s)|2L0

Q(U,V )ds.

Thus, L is equicontinuous.

Set Θ(t) = {Lx(t) : x ∈ D. Fix t, for each ε ∈ (0, t) and x ∈ D. Let Lε be the operator de-

fined by (3.13); then the sets Θε(t) = {Lεx(t) : x ∈ D} are relatively compact in U . Meanwhile,

(3.15) implies that Lε arbitrarily close to Θ(t) and Θ(t) is also relatively compact in U . Thus,

the ArzelaAscoli theorem implies that LD is relatively compact, L is completely continuous on
D.
Finally, we can conclude from Step 1-2 that LD → D is continuous and completely continuous.
Thus,L has a fixed point in D by using the Schauder fixed point theorem. So, it follow that Eq.

(3.7) has at least a quadratic-mean almost periodic mild solution.

�

3.3 Stability

As in this section we first assume that the operator A is a closed linear operator generat-

ing a strongly continuous exponentially stable semigroup S(.) on U , that is, for t ≥ 0, it

holds |S(t)|U ≤ Me−λt,M, λ > 0. We also assume in addition to assumption (HσH) that∫ ∞
0

eλs|σH(s)|2L0
Q(U,V )ds < ∞. Our first result on the stability of the quadratic-mean almost

periodic mild solution is the following theorem.

Theorem 3.3.1 Under the assumptions on A, the conditions (Hb) and (HσH), the quadratic-

mean almost periodic mild solution x(t) to Eq. (3.7) is globally exponentially stable.
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Proof. Using the assumptions, one can choose a positive constant η such that 0 < η < λ. One
has

eηtE|x(t)|2 ≤ 3eηtE|S(t)ϕ(0)|2 + 3eηtE
∣∣∣∣∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣∣2
+eηtE

∣∣∣∣∫ t

−∞
S(t− s)σH(s)dBH

Q (s)

∣∣∣∣2
= 3eηtE|S(t)ϕ(0)|2 + I1 + I2.

(3.15)

Estimating the terms on the right-hand side of (3.15) yields

3eηtE|S(t)ϕ(0)|2 ≤ 3e(η−ρ)tM2E|ϕ(0)|2 → 0 as t→∞, (3.16)

and

I1 ≤ 3eηtM2cb

∫ t

0
e−λ(t−s)ds

∫ t

0
e−λ(t−s)

(
|x(s)|2U + ‖xs‖2C̃

)
ds.

For the chosen parameter θ, and any x(t) ∈ U we have

I1 ≤ 3
λM

2cbe
ηt

∫ t

0
e−λ(t−s)

(
|x(s)|2U + ‖x(s)‖2

C̃

)
ds

= 3
λM

2cbe
−θt
∫ t

0
eθseηs

(
|x(s)|2U + ‖xs‖2C̃

)
ds.

Now, for any ε > 0, there exists a constant υ > 0 such that eηs(|x(s − r)|2U < ε, for s ≥ υ, and

we have

I1 ≤ 3
λM

2cbe
−θt
∫ t

υ
eθseηs

(
|x(s)|2U + ‖xs‖2C̃

)
ds

+ 3
λcbe

−θt
∫ υ

0
eθseηs

(
|x(s)|2U + ‖xs‖2C̃

)
ds

≤ 6M2cbε
λθ + 3

λM
2cbe

−θt ∫ υ
0 e

θseηs(|x(s)|2U + ‖xs‖2C̃)ds.

(3.17)

Using the fact that e−θt → 0 as t → ∞, it follows that there exists a constant u ≥ v such that
for any t ≥ u,

3

λ
M2cbe

−θt
∫ ϑ

−∞
eθseηs

(
|x(s)|2U + ‖xs‖2C̃

)
ds < ε− 6M2cbε

λθ
. (3.18)

Thus, from (3.17) and (3.18), we get for any t ≥ u,

I1 = 4eηtE
∣∣∣∣∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣∣2 < ε,



66
Almost periodic mild solutions for stochastic delay functional differential equations driven by a

FBM

which implies

I1 = 4eηtE
∣∣∣∣∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣∣2 → 0 as t→∞. (3.19)

Estimating I2, for any x(t) ∈ U , t ≥ −r, we have

I2 ≤ 3cH(2H − 1)M2t2H−1eηt
∫ t

0
e−2λ(t−s)|σH(s)|2L0

Q(U,V )ds

≤ 3cH(2H − 1)M2t2H
∫ t

0
eλs|σH(s)|2L0

Q(U,V )ds,

and the additional assumption to (HσH) ensures the existence of a positive constant ε such that

3cH(2H − 1)M2T 2H

∫ t

0
eλs|σH(s)|2L0

Q(U,V )ds ≤ ε for all t ≥ −r. (3.20)

Thus, from (3.15), (3.19) and (3.20), we obtain eηt|x(s)|2
L0
Q(U,V )

→ 0 as t → ∞. The quadratic-

mean almost periodic mild solution of (3.7) is exponentially stable.

�
Now we study the uniform stability of the quadratic-mean almost periodic mild solution to Eq.

(3.7). We first require the following assumption:

(H′′′b) The function b ∈ Ĉ([0, T ]×U × C̃, U), and there exists a function cb : R→ R+ such that

|b(t, x, y)|2U ≤ cb(t)
(
|x|2U + ||y||2

C̃

)
,

where (x, y) ∈ U × C̃, t ∈ [0, T ].

Theorem 3.3.2 Under the assumptions (H′), (HσH) and (H′′′b), the quadratic-mean almost

periodic mild solution to Eq. (3.7) is uniformly stable whenever M2
1 I ≤ 1

6 where I =

∫ t

0
cb(s)ds.

Proof. Let x(t) be a solution of

x(t) = S(t)ϕ(0) +

∫ t

0
S(t− s)b(s, x(s), xs))ds+

∫ t

0
S(t− s)σH(s)dBH

Q (s), (3.21)
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such that x(0) = x0, where x0 ∈ U . Then

|x(t)|2U ≤ 3E |S(t)ϕ(0)|2 + 3E
∣∣∣∣∫ t

0
S(t− s)b(s, x(s), xs)ds

∣∣∣∣2
+3E

∣∣∣∣∫ t

0
S(t− s)σH(s)dBH

Q (s)

∣∣∣∣2
≤ 3M2

1E |ϕ(0)|2 + 3M2
1

∫ t

0
cb(s)

(
|x(s)|2U + ||xs||2C̃

)
ds

+3M2
1 cH(2H − 1)T 2H−1tr(Q)

∫ t

0
|σH(s)|2L0

Q(U,V )ds.

Using the assumption (HσH) we obtain

|x(t)|2U ≤ 3M2
1 ||ϕ(0)||2∞ + 6M2

1

(∫ t

0
cb(s)ds

)
||x||2∞ + c3

= 3M2
1 ||ϕ(0)||2∞ + 6M2

1 I||x||2∞ + c3,

c3 is a positive positive constant.
Thus

||x(t)||2∞ ≤ 3M2
1 ||ϕ(0)||2∞ + 6M2

1 I||x||2∞ + c3,

6M2
1 I ≤ 1 yields

||x(t)||2∞ ≤
1

1− 6M2
1 I

(
c3 + 3M2

1 ||ϕ(0)||2∞
)
.

Therefore, if ||ϕ(0)||2∞ < λ(ε), then ||x||2∞ < ε, which implies that the quadratic-mean almost

periodic mild solution to Eq. (3.7) is uniformly stable.

�

3.4 Example

Consider the following stochastic evolution equation:
dξ(t, x) =

[
∂2

∂x2
ξ(t, x) + δ[ξ(t, x)(sin(t) + sin(

√
2t))]

]
dt+ σH(t)dBH

Q (t), t ∈ [0, t], x ∈ [0, π]

ξ(t, 0) = ξ(t, π) = 0,
ξ(t, x) = ϕ(t, x) = 0, t ∈ [−r, 0],

(3.22)

where r ∈ (0, 1), ϕ(·, x) ∈ C̃([−r, 0],R) and BH
Q (t) is a Q-cylindrical fractional Brownian motion

with Hurst parameter H ∈ (1
2 , 1) satisfying tr(Q) = 1. Denote U = L2(P;L2[0, π]), and define
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A : D(A) ⊂ U → U given by A = ∂2

∂x2
with D(A) = {ξ(.) ∈ U : ξ′′ ∈ U, ξ′ ∈ U is absolutely

continuous on [0, π], ξ(0) = ξ(π) = 0}.
It is well known that a strongly continuous semigroup S, generated by the operator A, satisfies

|S(t)| ≤ e−t, for t ≥ 0. Taking b(t, ϕ, ϕt)(θ) = δ[ϕ(θ)(sin(t) + sin(
√

2t))], and σH satisfies

assumption (HσH). Thus one has

|b(t, x, xt)− b(t, y, yt)|2U ≤ 4δ2|x− y|2U .

Therefore, Eq. 3.20 has a quadratic-mean almost periodic mild solution, provided that, δ ≤
√

3
6

according to Theorem 3.2.2.

Let ηn(t) = δn(t) = δ2(sin(t) + sin(
√

2tt))2 for n ∈ N, Eq. 3.20 has a quadratic-mean almos

periodic mild solution according to Theorem 3.2.2.

Let η(t) = δn(t) = δ2(sin(t) + sin(
√

2tt))2, Eq. 3.22 has a quadratic-mean almost periodic

mild solution according to Theorem 3.2.3.
The quadratic-mean almost periodic mild solution to Eq. 3.22 is exponentially stable according
to Theorem 3.3.1.
The quadratic-mean almost periodic mild solution to Eq. 3.22 is uniformly stable, provided that,

δ <
√

3
6 according to Theorem 3.3.2.



Conclusion

In this thesis, We have studied the existence of mild solutions for a class of impulsive fractional
stochastic differential equations in Hilbert spaces, which is new and allow us to develop the exis-
tence of various fractional differential equations and stochastic fractional differential equations.
An example is provided to illustrate the applicability of the new result. The results presented in

this chapter extend and improve the corresponding ones announced by Dabas et al [15], Dabas

and Chauhan [15], Shu et al [40], Sakthivel et al [42] and others.

At the same time, We conquer the difficulty of existence of impulsive, delay and stochastic
factors in a dynamic system, and give a result for the existence and uniqueness of mean al-
most periodic solutions. Moreover, our results have important applications in almost periodic
stochastic delayed networks with impulsive stability.
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