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Chapter 1

General introduction

Natural and Physical Sciences are traditionally attached to the understanding of the

underlying phenomenon observations by creating a model, whose validity and relevance

can be questioned during an experiment. It is through this dialectic between theory and

experimental work, that scienti�c knowledge progresses. To quote H. Poincaré Science

and Hypothesis, note that if science is built on facts learned, "an accumulation of facts

is no more a science than a heap of stones is a house". Also, in developing his theory,

the scientist must constantly submit its assumptions veri�cation by experiment and to

accomplish this validation work, " above all, the scientist must provide".

That is to say, besides its eminently practical interest, the importance of the problem

of prediction, includes basis for the use of statistics for scienti�c purposes.

Obviously, the purpose of this thesis is much smaller compared to these epistemological

issues. This work deals with the prediction Statistics. It tackles this problem from a point

of view nonparametric.

Indeed, most of the physical phenomena in nature have a random element in their

structure, whereby the magnitudes are variable and can not be predicted with certainty.

It is then natural to adopt an approach Statistics. A probabilistic model is then supposed

to describe the behavior of the phenomenon, which evolves according to a probability law.

The approch discussed in this thesis is somewhat di�erent. The probabilistic model

is nonparametric, and a sample of n pairs of random variables are observed (Xi, yi); i =

1, . . . , n independent, identically distributed. It then tries to predict the sense of ex-

plaining the variable Y by the predictor variable X. The interest then focuses on the

parameter estimation of conditional position, constructed from a regression estimator.

For this purpose there is provided a new and studying the regression estimator (Chapters

2 and 3).
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Let (Xi, yi); i = 1, . . . , n independent samples identically distributed random variables

with real value (X, Y ) sitting on a given probability space. To predict the response Y of

the input variable X at a given location x, it is of great interest to estimate the conditional

mean or the regression function E(Y/X = x) = r(x). A natural approach to estimate the

regression would be to exploit the identity

r(x) = E(Y/X = x) =

∫
yf(y/x)dy =

∫
y
f(x, y)

f(x)
dy

Where fXY and fX denote the joint density of (X, Y ) andX , respectively. By introducing

the kernel estimator of Nadaraya-Watson regression , namely ,

r̂(x) =

∑n
i=1 YiK(x−Xi

hn
)∑n

i=1 K(x−Xi
hn

)

However, its form as a quotient of two estimators, the probabilistic behavior of the

Nadaraya-Watson estimator is di�cult to study. It is usually treated with a centering

waiting for the numerator and denominator of the inverse linearization, see e.g. Fan, J.

and Yao, Q. (2005 ) or Bosq, D. (1998 ) for details. As a result, the practical applications

of this estimator can lead to numerical instability when the denominator is close to zero.

So, What criteria can we choose to measure the performance of our prediction? Several

methods exist in the literature, however there is no method universally better than the

other.

To overcome these problems, we propose an estimator which is based on the idea

of using synthetic data, i,e. a data representation more adapted to the problem as the

original. By transforming the data by quantile transformations and using the copula

function, the estimator turns out to have a remarkable product form

r̂(x) = E(Y/X = x) = Y ĉ(F (x), G(y))

His study then is particularly simple: it reduces to those already made on the estima-

tion of nonparametric regression.

Copula theory, following the works of Sklar in 1959, allows a �exible modeling of

dependence between two or more random variables. In recent years, the growing interest

for this theory is phenomenal. Thomas Mikosch stated that in September 2005, a Google
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search on the term "copula" produced 650,000 results. Then, in January 2007, this same

query generates more than 1.13 million. Given the number of publications in scienti�c

journals and the number of papers available on Internet, it is undeniable that passion to

the copula theory is still booming.

The progress of applications of this theory is wide in the �eld of �nance, risk manage-

ment, performance evaluation of assets, the valuation of derivatives, the extreme value

theory, contagion require �exible and practical models of addiction. The construction

and properties of copulas have been studied rather extensively during the last 15 years.

Hutchinson and Lai (1990) were among the early authors who popularized the study of

copulas. Nelsen (1999) presented a comprehensive treatment of bivariate copulas, while

Joe (1997) devoted a chapter of his book to multivariate copulas. Further authoritative

updates on copulas are given in Nelsen (2006). Copula methods have many important

applications in insurance and �nance Cherubini et al. (2004) and Embrechts et al. (2003).

Brie�y speaking, copulas are functions that join multivariate distributions to their

one-dimensional marginal distribution functions. Equivalently, copulas are multivariate

distributions whose marginals are uniform on the interval (0, 1). In this thesis, our

attention id restricted to bivariate copulas. Fisher (1997) gave two major reasons as

to why copulas are of interest to statisticians: �rstly, as a way of studying scale-free

measures of dependence; and secondly, as a starting point for constructing families of

bivariate distributions."
Speci�cally, copulas are an important part of the study of dependence between two

variables since they allow us to separate the e�ect of dependence from the e�ects of the

marginal distributions. This feature is analogous to the bivariate normal distribution

where the mean vectors are unlinked to the covariance matrix and jointly determine

the distribution. Many authors have studied constructions of bivariate distributions with

given marginals: This may be viewed as constructing a copula. Nonparametric estimators

of copula densities have been suggested by Gijbels and Mielnicsuk (1990) and Fermanian

and Scaillet (2005), who used kernel methods, Sancetta (2003) and Sancetta and Satchell

(2004), who used techniques based on Bernstein polynomials. Biau and Wegkamp (2006)

proposed estimating the copula density through a minimum distance criterion. Faugeras

(2008) in his thesis studied the quantile copula approach to conditional density estimation.

There is a fast-growing industry for copulas. They have useful applications in econo-

metrics, risk management, �nance, insurance, etc. The commercial statistics software

SPLUS provides a module in FinMetrics that include copula �tting written by Carmona
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(2004). One can also get copula modules in other major software packages such as R,

Mathematica, Matlab, etc. The International Actuarial Association (2004) in a paper on

Solvency II,1 recommends using copulas for modeling dependence in insurance portfolios.

Moodyïs uses a Gaussian copula for modeling credit risk and provides software for it that

is used by many �nancial institutions. Basle II2, copulas are now standard tools in credit

risk management. There are many other applications of copulas, especially the Gaussian

copula, the extreme-value copulas, and the Archimedean copula. Now, we classify these

applications into several categories.

1.1 Some generalities on Copulas

The study of copulas and their applications in statistics is a rather modern phe-

nomenon. Until quite recently, it was di�cult to even locate the word "copula" in the

statistical literature. There is no entry for "copula" in the nine volume Encyclopedia of

Statistical Sciences, nor in the supplement volume. However, the �rst update volume,

published in 1997, does have such an entry (Fisher 1997). The �rst reference in the

Current Index to Statistics to a paper using "copula" in the title or as a keyword is in

Volume 7 (1981) [the paper is (Schweizer and Wol� 1981)]-indeed, in the �rst eighteen

volumes (1975-1992) of the Current Index to Statistics there are only eleven references

to papers mentioning copulas. There are, however, 71 references in the next ten volumes

(1993-2002).

Further evidence of the growing interest in copulas and their applications in statistics

and probability in the past �fteen years is a�orded by �ve international conferences de-

voted to these ideas: the "Symposium on Distributions with Given Marginals (Fréchet

Classes)" in Rome in 1990; the conference on "Distributions with Fixed Marginals, Dou-

bly Stochastic Measures, and Markov Operators" in Seattle in 1993; the conference on

"Distributions with Given Marginals and Moment Problems" in Prague in 1996; the con-

ference on "Distributions with Given Marginals and Statistical Modelling" in Barcelona in

2000; and the conference on "Dependence Modelling: Statistical Theory and Applications

in Finance and Insurance" in Québec in 2004. As the titles of these conferences indicate,

copulas are intimately related to study of distributions with "�xed" or "given" marginal

distributions. The published proceedings of the �rst four conferences (Dall'Aglio et al.

1991; Rüschendorf et al. 1996; Benes̆ and S̆tĕpn 1997; Cuadras et al.2002) are among the

most accessible resources for the study of copulas and their applications.
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What are copulas? From one point a view, copulas are functions that join or "couple"

multivariate distribution functions to their onedimensional marginal distribution func-

tions. Alternatively, copulas are multivariate distribution functions whose one-dimensional

margins are uniform on the interval (0, 1). this chapter will be devoted to presenting a

complete answer to this question.

Why are copulas of interest to students of probability and statistics? As Fisher (1997)

answers in his article in the �rst update volume of the Encyclopedia of Statistical Sciences,

"Copulas [are] of interest to statisticians for two main reasons: Firstly, as a way of studying

scale-free measures of dependence; and secondly, as a starting point for constructing

families of bivariate distributions, sometimes with a view to simulation."

Proceed brie�y to the history of the developement and the study of copulas. For

more details on those who participated in the evolution of the topic, see documents by

Dall'Aglio (1991) and Schweizer (1991) the work of the Conference of Rome and Article

Sklar (1996) acts conference in Seattle.

The word copula is a Latin noun that means "a link, tie, bond" (Cassell's Latin Dic-

tionary) and is used in grammar and logic to describe "that part of a proposition which

connects the subject and predicate" (Oxford English Dictionary). The word copula was

�rst employed in a mathematical or statistical sense by Abe Sklar (1959) in the theorem

(which now bears his name) describing the functions that "join together" one-dimensional

distribution functions to form multivariate distribution functions .In (Sklar 1996) we have

the following account of the events leading to this use of the term copula:

Feron (1956), in studying three-dimensional distributions had introduced auxiliary

functions, de�ned on the unit cube, that connected such distributions with their one-

dimensional margins. I saw that similar functions could be de�ned on the unit n-cube

for all n ≥ 2 and would similarly serve to link n-dimensional distributions to their one-

dimensional margins. Having worked out the basic properties of these functions, I wrote

about them to Frechet, in English. He asked me to write a note about them in French.

While writing this, I decided I needed a name for these functions. Knowing the word "cop-

ula" as a grammatical term for a word or expression that links a subject and predicate, I

felt that this would make an appropriate name for a function that links a multidimensional

distribution to its one-dimensional margins, and used it as such. Frechet received my note,

corrected one mathematical statement, made some minor corrections to my French, and

had the note published by the Statistical Institute of the University of Paris as Sklar (1959).
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But as Sklar notes, the functions themselves predate the use of the term copula.

They appear in the work of Fréchet, Dall'Aglio, Féron, and many others in the study of

multivariate distributions with �xed univariate marginal distributions. Indeed, many of

the basic results about copulas can be traced to the early work of Wassily Hoe�ding. In

(Hoe�ding 1940, 1941) one �nds bivariate "standardized distributions" whose support is

contained in the square [−1
2
, 1

2
]2 and whose margins are uniform on the interval [−1

2
, 1

2
].

(As Schweizer (1991) opines, "had Hoe�ding chosen the unit square [0, 1]2 instead of

[−1
2
, 1

2
]2 for his normalization, he would have discovered copulas.")

Hoe�ding also obtained the basic best-possible bounds inequality for these functions,

characterized the distributions ("functional dependence") corresponding to those bounds,

and studied measures of dependence that are "scale-invariant," i.e., invariant under strictly

increasing transformations. Unfortunately, until recently this work did not receive the at-

tention it deserved, due primarily to the fact the papers were published in relatively

obscure German journals at the outbreak of the Second World War. However, they have

recently been translated into English and are among Hoe�din's collected papers, recently

published by Fisher and Sen (1994). Unaware of Hoe�ding's work, Fréchet (1951) inde-

pendently obtained many of the same results, which has led to the terms such as "Fréchet

bounds" and "Fréchet classes." In recognition of the shared responsibility for these impor-

tant ideas, we will refer to "Fréchet-Hoe�ding bounds" and "Fréchet-Hoe�ding classes."

After Hoe�ding, Fréchet, and Sklar, the functions now known as copulas were rediscovered

by several other authors. Kimeldorf and Sampson (1975b) referred to them as uniform

representations, and Galambos (1978) and Deheuvels (1978) called them dependence func-

tions.

At the time that Sklar wrote his 1959 paper with the term "copula", he was collab-

orating with Berthold Schweizer in the development of the theory of probabilistic metric

spaces, or PM spaces. During the period from 1958 through 1976, most of the important

results concerning copulas were obtained in the course of the study of PM spaces. Recall

that (informally) a metric space consists of a set S and a metric d that measures "dis-

tances" between points, say p and q, in S. In a probabilistic metric space, we replace the

distance d(p, q) by a distribution function Fpq , whose value Fpq(x) for any real x is the

probability that the distance between p and q is less than x. The �rst di�culty in the

construction of probabilistic metric spaces comes when one tries to �nd a "probabilistic"

analog of the triangle inequality d(p, r) ≤ d(p, q) + d(q, r). What is the corresponding
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relationship among the distribution functions Fpr, Fpq , and Fqr for all p, q, and r in S?

Karl Menger (1942) proposed Fpr(x+ y) ≥ T (Fpq(x), Fqr(y)); where T is a triangle norm

or t-norm. Like a copula, a t-norm maps [0, 1]2 to [0, 1], and joins distribution functions.

Some t-norms are copulas, and conversely, some copulas are t-norms. So, in a sense, it was

inevitable that copulas would arise in the study of PM spaces. For a thorough treatment

of the theory of PM spaces and the history of its development, see (Schweizer and Sklar

1983; Schweizer 1991).

Among the most important results in PM spaces-for the statistician is the class of

Archimedean t-norms, those t-norms T that satisfy T (u, u) < u for all u in (0, 1).

Archimedean t-norms that are also copulas are called Archimedean copulas. Because

of their simple forms, the ease with which they can be constructed, and their many nice

properties,Archimedean copulas frequently appear in discussions of multivariate distribu-

tions - see, for example, (Genest and MacKay 1986a,b; Marshall and Olkin 1988; Joe

1993, 1997).

We now turn our attention to copulas and dependence. The earliest paper explic-

itly relating copulas to the study of dependence among random variables appears to be

(Schweizer and Wol� 1981). In that paper, Schweizer and Wol� discussed and modi�ed

Rényi's (1959) criteria for measures of dependence between pairs of random variables, pre-

sented the basic invariance properties of copulas under strictly monotone transformations

of random variables, and introduced the measure of dependence now known as Schweizer

and Wol�'s σ. In their words, since

... under almost surely increasing transformations of (the random variables), the cop-

ula is invariant while the margins may be changed at will, it follows that it is precisely the

copula which captures those properties of the joint distribution which are invariant under

almost surely strictly increasing transformations. Hence the study of rank statistics-insofar

as it is the study of properties invariant under such transformations-may be characterized

as the study of copulas and copula-invariant properties.

Of course, copulas appear implicitly in earlier work on dependence by many other

authors, too many to list here, so we will mention only two. Foremost is Hoe�ding. In

addition to studying the basic properties of "standardized distributions" (i.e., copulas),

Hoe�ding (1940, 1941) used them to study nonparametric measures of association such

as Spearman's rho and his "dependence index" φ2. Deheuvels (1979, 1981a,b,c) used
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"emperical dependence functions" (i.e., empirical copulas, the sample analogs of copulas)

to estimate the population copula and to construct various nonparametric tests of inde-

pendence. Section 1.1.2 is devoted to an introduction to the role played by copulas in the

study of dependence.

The study of copulas and the role they play in probability, statistics, and stochastic

processes is a subject still in its infancy. There are many open problems and much work

to be done.

1.1.1 De�nitions and Basic Properties

As we have just refer that the copulas are "functions or join multivariate distribution

functions to their one-dimensional marginal distribution functions" and also "distribution

functions whose one-dimensional margins are uniform". But neither of these statements

is a de�nition-hence we will devote this section to giving a precise de�nition of copulas

and to examining some of their elementary properties.

But �rst we present a glimpse of where we are headed. Consider for a moment a pair

of random variables X and Y , with distribution functions F (x) = P [X ≤ x] and G(y) =

P [Y ≤ y], respectively, and a joint distribution function H(x, y) = P [X ≤ x, Y ≤ y] (we

will review de�nitions of random variables, distribution functions, and other important

topics as needed in the course of this chapter). To each pair of real numbers (x, y) we

can associate three numbers: F (x), G(y), and H(x, y). Note that each of these numbers

lies in the interval [0, 1]. In other words, each pair (x, y) of real numbers leads to a point

(F (x), G(y)) in the unit square [0, 1]× [0, 1], and this ordered pair in turn corresponds to a

numberH(x, y) in [0, 1]. We will show that this correspondence, which assigns the value of

the joint distribution function to each ordered pair of values of the individual distribution

functions, is indeed a function. Such functions are copulas. To accomplish what we

have outlined above, we need to generalize the notion of "nondecreasing" for univariate

functions to a concept applicable to multivariate functions. We begin with some notation

and de�nitions. Throughout this work we limit ourselves to two-dimensional case.

1.1.1.1 Preliminaries

The focus of this section is the notion of a "2-increasing" function-a two-dimensional

analog of a nondecreasing function of one variable. But �rst we need to introduce some

notation. We will let R denote the ordinary real line (−∞,∞), R denote the extended

13



real line [−∞,∞], and R2
denote the extended real plane R × R. A rectangle in R2

is

the Cartesian product B of two closed intervals: B = [x1, x2] × [y1, y2] . The vertices of

a rectangle B are the points (x1, y1), (x1, y2), (x2, y1), and (x2, y2). The unit square I2 is

the product I× I where I = [0, 1]. A 2-place real function H is a function whose domain,

DomH, is a subset of R2
and whose range, RanH, is a subset of R.

De�nition 1.1.1. Let S1 and S2 be nonempty subsets of R, and let H be a two-place real

function such that DomH = S1×S2. Let B = [x1, x2]× [y1, y2] be a rectangle all of whose

vertices are in DomH. Then the H-volume of B is given by

VH(B) = H(x2, y2)−H(x2, y1)−H(x1, y2) +H(x1, y1). (1.1)

Note that if we de�ne the �rst order di�erences of H on the rectangle B as

∆x2
x1

= H(x2, y)−H(x1, y) and ∆y2
y1

= H(x, y2)−H(x, y1),

then the H-volume of a rectangle B is the second order di�erence of H on B,

VH(B) = ∆y2
y1

∆x2
x1
H(x, y).

De�nition 1.1.2. A 2-place real function H is 2-increasing if VH(B) ≥ 0 for all rectangles

B whose vertices lie in DomH. When H is 2-increasing, we will occasionally refer to the

H-volume of a rectangle B as the H-measure of B. Some authors refer to 2-increasing

functions as quasi-monotone. We note here that the statement "H is 2-increasing" neither

implies nor is implied by the statement "H is nondecreasing in each argument".

The following lemmas will be very useful in the next section in establishing the con-

tinuity of subcopulas and copulas. The �rst is a direct consequence of De�nitions 1.1.1

and 1.1.2.

Lemma 1.1.1. [Nelsen (2006)] Let S1 and S2 be nonempty subsets of R, and let H be

a 2-increasing function with domain S1 × S2. Let x1, x2 be in S1 with x1 ≤ x2 , and let

y1, y2 be in S2 with y1 ≤ y2 . Then the function t 7→ H(t, y2)−H(t, y1) is nondecreasing

on S1, and the function t 7→ H(x2, t)−H(x1, t) is nondecreasing on S2.

As an immediate application of this lemma, we can show that with an additional

hypothesis, a 2-increasing function H is nondecreasing each argument. Suppose S1 has
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a least element a1 and that S2 has a least element a2 . We say that a function H from

S1 × S2 into R is grounded if H(x, a2) = 0 = H(a1, y) for all (x, y) in S1 × S2. Hence we

have

Lemma 1.1.2. [Nelsen (2006)] Let S1 and S2 be nonempty subsets of R, and let H be a

grounded 2-increasing function with domain S1 × S2. Then H is nondecreasing in each

argument.

DomF = S1, and F (x) = H(x, b2) for all x in S1;

DomG = S2, and G(y) = H(b1, y) for all y in S2.

Lemma 1.1.3. Let S1 and S2 be nonempty subsets of R, and let H be a grounded 2-

increasing function, with margins, whose domain is S1 × S2. Let (x1, y1) and (x2, y2) be

any points in S1 × S2. Then

|H(x2, y2)−H(x1, y1)| ≤ |F (x2)− F (x1)|+ |G(y2)−G(y1)|.

1.1.1.2 Copulas

We are now in a position to de�ne the functions-copulas that are the subject of this

chapter. To do so, we �rst de�ne subcopulas as a certain class of grounded 2-increasing

functions with margins; then we de�ne copulas as subcopulas with domain I2.

De�nition 1.1.3. A two-dimensional subcopula (or 2-subcopula, or brie�y, a subcopula)

is a function C
′
with the following properties:

1. DomC
′
= S1 × S2, where S1 and S2 are subsets of I containing 0 and 1;

2. C
′
is grounded and 2-increasing;

3. For every u in S1 and every v in S2,

C
′
(u, 1) = u and C

′
(1, v) = v. (1.2)

Note that for every (u, v) in DomC
′
, 0 ≤ C

′
(u, v) ≤ 1, so that RanC

′
is also a

subset of I.
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De�nition 1.1.4. A two-dimensional copula (or 2-copula, or brie�y, a copula) is a 2-

subcopula C whose domain is I2.

Equivalently, a copula is a function C from I2 to I with the following properties:

1. For every u, v in I,

C(u, 0) = 0 = C(0, v) (1.3)

and
C(u, 1) = u and C(1, v) = v; (1.4)

2. For every u1, u2, v1, v2 in I such that u1 ≤ u2 and v1 ≤ v2 ,

C(u2, v2)− C(u2, v1)− C(u1, v2) + C(u1, v1) ≥ 0. (1.5)

Because C(u, v) = VC([0, u]× [0, v]) , one can think of C(u, v) as an assignment of a

number in I to the rectangle [0, u]× [0, v] . Thus (1.5) gives an "inclusion-exclusion" type

formula for the number assigned by C to each rectangle [u1, u2]× [v1, v2] in I2 and states

that the number so assigned must be nonnegative.

The distinction between a subcopula and a copula (the domain) may appear to be a

minor one, but it will be rather important in the next section when we discuss Sklar's

theorem. In addition, many of the important properties of copulas are actually properties

of subcopulas.

Theorem 1.1.1. Let C
′
be a subcopula. Then for every (u, v) in DomC

′
,

max(u+ v − 1, 0) ≤ C
′
(u, v) ≤ min(u, v). (1.6)

Because every copula is a subcopula, the inequality in the above theorem holds for

copulas. Indeed, the bounds in (1.6) are themselves copulas and are commonly denoted

by M(u, v) = min(u, v) and W (u, v) = max(u + v − 1, 0) . Thus for every copula C and

every (u, v) in I2,

W (u, v) ≤ C(u, v) ≤M(u, v). (1.7)

Inequality (1.7) is the copula version of the Fréchet-Hoe�ding bounds inequality, which

we shall encounter later in terms of distribution functions. We refer to M as the Fréchet-

Hoe�ding upper bound and W as the Fréchet-Hoe�ding lower bound. A third important

copula that we will frequently encounter is the product copula Π(u, v) = uv. The following
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theorem, which follows directly from Lemma 1.1.3, establishes the continuity of subcopulas

and hence of copulas via a Lipschitz condition on I2.

Theorem 1.1.2. [Nelsen (2006)] Let C
′
be a subcopula. Then for every (u1, u2), (v1, v2)

in DomC
′
,

|C ′
(u2, v2)− C ′

(u1, v1)| ≤ |u2 − u1|+ |v2 − v1|. (1.8)

Hence C
′
is uniformly continuous on its domain.

The sections of a copula will be employed in section 1.1.2 to provide interpretations

of certain dependence properties.

De�nition 1.1.5. Let C be a copula, and let a be any number in I. The horizontal section

of C at a is the function from I to I given by t 7→ C(t, a); the vertical section of C at

a is the function from I to I given by t 7→ C(a, t); and the diagonal section of C is the

function δC from I to I de�ned by δC(t) = C(t, t).

The following corollary is an immediate consequence of Lemma 1.1.2 and Theorem

1.1.2.

Corollary 1.1.1. [Nelsen (2006)] The horizontal, vertical, and diagonal sections of a

copula C are all nondecreasing and uniformly continuous on I.

Various applications of copulas that we will encounter in later sections of this chapter

involve the shape of the graph of a copula, i.e., the surface z = C(u, v). It follows

from De�nition 1.1.4 and Theorem 1.1.2 that the graph of any copula is a continuous

surface within the unit cube I3 whose boundary is the skew quadrilateral with vertices

(0, 0, 0), (1, 0, 0), (1, 1, 1), and (0, 1, 0); and from Theorem 1.1.1 that this graph lies between

the graphs of the Fréchet-Hoe�ding bounds, i.e., the surfaces z = M(u, v) and z =

W (u, v). In Figure 1.1 we present the graphs of the copulas M and W , as well as the

graph of Π, a portion of the hyperbolic paraboloid z = uv.

A simple but useful way to present the graph of a copula is with a contour diagram

(Conway 1979), that is, with graphs of its level sets-the sets in I2 given by C(u, v) = a

constant, for selected constants in I. In Figure 1.2 we present the contour diagrams of the

copulas M , Π,and W . Note that the points (t, 1) and (1, t) are each members of the level

set corresponding to the constant t. Hence we do not need to label the level sets in the

diagram, as the boundary conditions C(1, t) = t = C(t, 1) readily provide the constant
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Figure 1.1: Graphs of the copulas M,Π, and W .

for each level set.

Figure 1.2: Contour diagrams of the copulas M,Π, and W .

Also note that, given any copula C, it follows from (1.7) that for a given t in I the

graph of the level set {(u, v) ∈ I2/C(u, v) = t} must lie in the shaded triangle in Figure

1.3, whose boundaries are the level sets determined by M(u, v) = t and W (u, v) = t.

We conclude this subsection with the two theorems concerning the partial derivatives

of copulas. The word "almost" is used in the sense Lebesgue measure.

Theorem 1.1.3. Let C be a copula. For any v in I, the partial derivative ∂C(u,v)
∂u

exists

for almost all u, and for such v and u,

0 ≤ ∂C(u, v)

∂u
≤ 1 (1.9)
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Figure 1.3: The region that contains the level set {(u, v) ∈ I2/C(u, v) = t}.

Similarly, for any u in I, the partial derivative ∂C(u,v)
∂v

exists for almost all v, and for such

u and v,

0 ≤ ∂C(u, v)

∂v
≤ 1 (1.10)

Furthermore, the functions u 7→ ∂C(u,v)
∂v

and v 7→ ∂C(u,v)
∂u

are de�ned and nondecreasing

almost everywhere on I.

Theorem 1.1.4. [Nelsen (2006)] Let C be a copula. If ∂C(u,v)
∂v

and ∂2C(u,v)
∂u∂v

are continous

on I2 and ∂C(u,v)
∂u

exists for all u ∈ (0, 1) when v = 0, then

∂C(u,v)
∂u

and ∂2C(u,v)
∂v∂u

exist in (0, 1)2 and ∂2C(u,v)
∂u∂v

= ∂2C(u,v)
∂v∂u

.

1.1.1.3 Sklar's Theorem

The theorem in the title of this subsection is central to the theory of copulas and is the

foundation of many, if not most, of the applications of that theory to statistics. Sklar's

theorem elucidates the role that copulas play in the relationship between multivariate

distribution functions and their univariate margins. Thus we begin this section with a

short discussion of distribution functions.

De�nition 1.1.6. A distribution function is a function F with domain R such that

1. F is nondecreasing,

2. F (−∞) = 0 and F (∞) = 1.
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De�nition 1.1.7. A joint distribution function is a function H with domain R2
such that

1. H is 2-increasing,

2. H(x,−∞) = H(−∞, y) = 0, and H(∞,∞) = 1.

Thus H is grounded, and because DomH = R2
, H has margins F and G given by

F (x) = H(x,∞) and G(y) = H(∞, y). By virtue of Corollary 1.1.1, F and G are

distribution functions.

Note that there is nothing "probabilistic" in these de�nitions of distribution functions.

Random variables are not mentioned, nor is leftcontinuity or right-continuity. All the

distribution functions of one or of two random variables usually encountered in statistics

satisfy either the �rst or the second of the above de�nitions. Hence any results we derive

for such distribution functions will hold when we discuss random variables, regardless of

any additional restrictions that may be imposed.

Theorem 1.1.5 (Sklar's Theorem). [Nelsen (2006)] Let H be a joint distribution function

with margins F and G. Then there exists a copula C such that for all x, y in R,

H(x, y) = C(F (x), G(y)). (1.11)

If F and G are continuous, then C is unique; otherwise, C is uniquely determined on

RanF × RanG. Conversely, if C is a copula and F and G are distribution functions,

then the function H de�ned by (1.11) is a joint distribution function with margins F and

G.

This theorem �rst appeared in (Sklar 1959). The name "copula" was chosen to empha-

size the manner in which a copula "couples" a joint distribution function to its univariate

margins. The argument that we give below is essentially the same as in (Schweizer and

Sklar 1974). Also it is very important because it allows to associate with each a two-

dimensional distribution copula. The equation (1.11) gives a canonical representation of

the distribution function H, by bringing one side, the distributions F and G of unidi-

mentionnelles distributions and on the other side, the copula which allows "be cemented"

these margins; this copula expresses the dependence between the one-dimensional func-

tions.

Thus, it requires two lemmas.
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Lemma 1.1.4. Let H be a joint distribution function with margins F and G. Then there

exists a unique subcopula C
′
such that

1. DomC
′
= RanF ×RanG,

2. For all x, y in R, H(x, y) = C
′
(F (x), G(y)).

Lemma 1.1.5. [Nelsen (2006)] Let C
′
be a subcopula. Then there exists a copula C such

that C(u, v) = C
′
(u, v) for all (u, v) in DomC

′
; i.e., any subcopula can be extended to a

copula. The extension is generally non-unique.

Now, Using the theorem of Sklar, we can express the density of a random vector

(X, Y ) depending on the density of the copula and its margins F and G by the following

de�nition :

De�nition 1.1.8. Let H be a joint distribution function absolutely continuous with mar-

gins F and G, and C the copula such that for all x, y in R:

H(x, y) = C(F (x), G(y)).

Then we assume that the copula function C(u, v) has a density c(u, v) with respect to

the Lebesgue measure on [0, 1]2 in such a way that c(u, v) := ∂2C(u,v)
∂u∂v

and that F and G are

strictly increasing and di�erentiable with densities f and g. C(u, v) and c(u, v) are then

the cumulative distribution function (c.d.f.) and density respectively of the transformed

variables (U, V ) = (F (x), G(y)). By di�erentiating formula of H(x, y), we get for the joint

density,

h(x, y) =
∂2F (x, y)

∂x∂y
=
∂F (x)

∂x

∂G(y)

∂y

∂2C(F (x), G(y))

∂F (x)∂G(y)
= f(x)g(y)c(F (x), G(y)),

Equation (1.11) gives an expression for joint distribution functions in terms of a copula

and two univariate distribution functions. But (1.11) can be inverted to express copulas

in terms of a joint distribution function and the "inverses" of the two margins. However,

if a margin is not strictly increasing, then it does not possess an inverse in the usual sense.

Thus we �rst need to de�ne "quasi-inverses" of distribution functions (recall De�nition

1.1.6).
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De�nition 1.1.9. Let F be a distribution function. Then a quasi-inverse of F is any

function F (−1) with domain I such that

1. if t is in RanF , then F (−1)(t) is any number x in R such that F (x) = t, i.e., for all

t in RanF ,

F (F (−1)(t)) = t;

2. if t is not in RanF , then

F (−1)(t) = inf {x/F (x) ≥ t} = sup {x/F (x) ≤ t} .

If F is strictly increasing, then it has but a single quasi-inverse, which is of course the

ordinary inverse, for which we use the customary notation F−1.

Using quasi-inverses of distribution functions, we now have the following corollary to

Lemma 1.1.4.

Corollary 1.1.2. [Nelsen (2006)] Let H,F,G, and C
′
be as in Lemma 1.1.4, and let F (−1)

and G(−1) be quasi-inverses of F and G, respectively. Then for any (u, v) in DomC
′
,

C
′
(u, v) = H(F (−1)(u), G(−1)(v)). (1.12)

When F and G are continuous, the above result holds for copulas as well and provides

a method of constructing copulas from joint distribution functions.

1.1.1.4 The Fréchet-Hoe�ding Bounds for Joint Distribution Functions

In Subsect. 1.1.1.2 we encountered the Fréchet-Hoe�ding bounds as universal bounds

for copulas, i.e., for any copula C and for all u, v in I,

W (u, v) = max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v) = M(u, v).

As a consequence of Sklar's theorem, if X and Y are random variables with a joint

distribution function H and margins F and G, respectively, then for all x, y in R,

max(F (x) +G(y)− 1, 0) ≤ H(x, y) ≤ min(F (x), G(y)) (1.13)

Because M and W are copulas, the above bounds are joint distribution functions and

are called the Fréchet-Hoe�ding bounds for joint distribution functions H with margins
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F and G. Of interest in this section is the following question: What can we say about

the random variables X and Y when their joint distribution function H is equal to one

of its Fréchet-Hoe�ding bounds?

To answer this question, we �rst need to introduce the notions of nondecreasing and

nonincreasing sets in R2
.

De�nition 1.1.10. A subset S of R2
is nondecreasing if for any (x, y) and (u, v) in

S, x < u implies y ≤ v. Similarly, a subset S of R2
is nonincreasing if for any (x, y) and

(u, v) in S, x < u implies y ≥ v.

The following �gure illustrates a simple nondecreasing set.

Figure 1.4: The graph of a nondecreasing set.

We will now prove that the joint distribution function H for a pair (X, Y ) of random

variables is the Fréchet-Hoe�ding upper bound (i.e., the copula is M) if and only if the

support of H lies in a nondecreasing set. The following proof is based on the one that

appears in (Mikusiński, Sherwood and Taylor 1991-1992). But �rst, we need two lemmas:

Lemma 1.1.6. Let S be a subset of R2
. Then S is nondecreasing if and only if for each

(x, y) in R2
, either

1.
for all (u, v) in S, u ≤ x implies v ≤ y; or (1.14)

2.
for all (u, v) in S, v ≤ y implies u ≤ x. (1.15)
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Lemma 1.1.7. Let X and Y be random variables with joint distribution function H.

Then H is equal to its Fréchet-Hoe�ding upper bound if and only if for every (x, y) in R2

, either

P [X > x, Y ≤ y] = 0 or P [X ≤ x, Y > y] = 0.

We are now ready to prove

Theorem 1.1.6. Let X and Y be random variables with joint distribution function H.

Then H is identically equal to its Fréchet-Hoe�ding upper bound if and only if the support

of H is a nondecreasing subset of R2
.

Theorem 1.1.7 (Nelsen (2006)). Let X and Y be random variables with joint distribution

function H. Then H is identically equal to its Fréchet-Hoe�ding lower bound if and only

if the support of H is a nonincreasing subset of R2
.

When X and Y are continuous, the support of H can have no horizontal or vertical

line segments, and in this case it is common to say that "Y is almost surely an increasing

function of X" if and only if the copula of X and Y is M ; and "Y is almost surely a

decreasing function of X" if and only if the copula of X and Y is W . If U and V are

uniform (0, 1) random variables whose joint distribution function is the copula M , then

P [U = V ] = 1; and if the copula is W , then P [U + V = 1] = 1.

Random variables with copula M are often called comonotonic, and random variables

with copula W are often called countermonotonic.

1.1.2 Dependence

In this section, we explore ways in which copulas can be used in the study of depen-

dence or association between random variables. As Jogdeo (1982) notes,

Dependence relations between random variables is one of the most widely studied sub-

jects in probability and statistics. The nature of the dependence can take a variety of

forms and unless some speci�c assumptions are made about the dependence, no meaning-

ful statistical model can be contemplated.

There are a variety of ways to discuss and to measure dependence. As we shall see,

many of these properties and measures are, in the words of Hoe�ding (1940, 1941), "scale-

invariant", that is, they remain unchanged under strictly increasing transformations of

the random variables. As we noted in the Introduction, "...it is precisely the copula which
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captures those properties of the joint distribution which are invariant under almost surely

strictly increasing transformations" (Schweizer and Wol� 1981). The focus of this section

is an exploration of the role that copulas play in the study of dependence.

Dependence properties and measures of association are interrelated, and so there are

many places where we could begin this study. Because the most widely known scale-

invariant measures of association are the population versions of Kendall's tau and Spear-

man's rho, both of which "measure" a form of dependence known as concordance, we will

begin there.

A note on terminology: we shall reserve the term "correlation coe�cient" for a measure

of the linear dependence between random variables (e.g., Pearson's product-moment cor-

relation coe�cient) and use the more modern term "measure of association" for measures

such as Kendall's tau and Spearman's rho.

1.1.2.1 Concordance

Informally, a pair of random variables are concordant if "large" values of one tend

to be associated with "large" values of the other and "small" values of one with "small"

values of the other. To be more precise, let (xi, yi) and (xj, yj) denote two observations

from a vector (X, Y ) of continuous random variables. We say that (xi, yi) and (xj, yj) are

concordant if xi < xj and yi < yj , or if xi > xj and yi > yj . Similarly, we say that

(xi, yi) and (xj, yj) are discordant if xi < xj and yi > yj or if xi > xj and yi < yj . Note

the alternate formulation: (xi, yi) and (xj, yj) are concordant if (xi− xj)(yi− yj) > 0 and

discordant if (xi − xj)(yi − yj) < 0.

1.1.2.2 Kendall's tau

The sample version of the measure of association known as Kendall's tau is de�ned

in terms of concordance as follows (Kruskal 1958; Hollander and Wolfe 1973; Lehmann

1975): Let {(x1, y1), (x2, y2), ..., (xn, yn)} denote a random sample of n observations from

a vector (X, Y ) of continuous random variables. There are (n,2) distinct pairs (xi, yi) and

(xj, yj) of observations in the sample, and each pair is either concordant or discordant-let

c denote the number of concordant pairs and d the number of discordant pairs. Then

Kendall's tau for the sample is de�ned as

τ =
c− d
c+ d

= (c− d)/(n, 2) (1.16)
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Equivalently, τ is the probability of concordance minus the probability of discordance

for a pair of observations (xi, yi) and (xj, yj) that is chosen randomly from the sample.

The population version of Kendall's tau for a vector (X, Y ) of continuous random vari-

ables with joint distribution function H is de�ned similarly. Let (X1, Y1) and (X2, Y2)

be independent and identically distributed random vectors, each with joint distribution

function H. Then the population version of Kendall's tau is de�ned as the probability of

concordance minus the probability of discordance:

τ = τX,Y = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0] (1.17)

In order to demonstrate the role that copulas play in concordance and measures of

association such as Kendall's tau, we �rst de�ne a "concordance function" Q, which is the

di�erence of the probabilities of concordance and discordance between two vectors (X1, Y1)

and (X2, Y2) of continuous random variables with (possibly) di�erent joint distributions

H1 and H2 , but with common margins F and G. We then show that this function

depends on the distributions of (X1, Y1) and (X2, Y2) only through their copulas.

Theorem 1.1.8. Let (X1, Y1) and (X2, Y2) be independent vectors of continuous random

variables with joint distribution functions H1 and H2, respectively, with common margins

F (of X1 and X2) and G (of Y1 and Y2). Let C1 and C2 denote the copulas of (X1, Y1) and

(X2, Y2), respectively, so that H1(x, y) = C1(F (x), G(y)) and H2(x, y) = C2(F (x), G(y)).

Let Q denote the di�erence between the probabilities of concordance and discordance of

(X1, Y1) and (X2, Y2), i.e., let

Q = P [(X1 −X2)(Y1 − Y2) > 0]− P [(X1 −X2)(Y1 − Y2) < 0]. (1.18)

Then

Q = Q(C1, C2) = 4

∫ ∫
I2
C2(u, v)dC1(u, v)− 1. (1.19)

Because the concordance functionQ in Theorem 1.1.8 plays an important role through-

out this subsection, we summarize some of its useful properties in the following corollary.

Corollary 1.1.3. [Nelsen (2006)] Let C1, C2, and Q be as given in Theorem 1.1.8. Then

1. Q is symmetric in its arguments: Q(C1, C2) = Q(C2, C1).
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2. Q is nondecreasing in each argument: if C1 ≺ C
′
1 and C2 ≺ C

′
2 for all (u, v) in I2,

then Q(C1, C2) ≤ Q(C
′
1, C

′
2).

3. Copulas can be replaced by survival copulas in Q, i.e., Q(C1, C2) = Q(Ĉ1, Ĉ2).

Theorem 1.1.9. [Nelsen (2006)] Let X and Y be continuous random variables whose

copula is C. Then the population version of Kendall's tau for X and Y (which we will

denote by either τXY , or τC ) is given by

τX,Y = τC = Q(C,C) = 4

∫ ∫
I2
C(u, v)dC(u, v)− 1. (1.20)

Thus Kendall's tau is the �rst "concordance axis" in the �gure below. Note that the

integral that appears in (1.20) can be interpreted as the expected value of the function

C(U, V ) of uniform (0, 1) random variables U and V whose joint distribution function is

C, i.e.,

τC = 4E(C(U, V ))− 1. (1.21)

Figure 1.5: The partially ordered set (C,≺) and several "concordance axes".

When the copula C is a member of a parametric family of copulas (e.g., if C is denoted

Cθ or Cα,β, ), we will write τθ and τα,β, rather than τCθ and τCα,β , respectively.

In general, evaluating the population version of Kendall's tau requires the evaluation

of the double integral in (1.20). For an Archimedean copula, the situation is simpler, in

that Kendall's tau can be evaluated directly from the generator of the copula, as shown

in the following corollary (Genest and MacKay 1986a,b). Indeed, one of the reasons
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that Archimedean copulas are easy to work with is that often expressions with a one-

place function (the generator) can be employed rather than expressions with a two-place

function (the copula).

Corollary 1.1.4. [Nelsen (2006)] Let X and Y be random variables with an Archimedean

copula C generated by ϕ in Ω. The population version τC of Kendall's tau for X and Y

is given by

τC = 1 + 4

∫ 1

0

ϕ(t)

ϕ′(t)
dt. (1.22)

1.1.2.3 Spearman's rho

As with Kendall's tau, the population version of the measure of association known

as Spearman's rho is based on concordance and discordance. To obtain the population

version of this measure (Kruskal 1958; Lehmann 1966), we now let (X1, Y1), (X2, Y2), and

(X3, Y3) be three independent random vectors with a common joint distribution function

H (whose margins are again F and G) and copula C. The population version rXY , of

Spearman's rho is de�ned to be proportional to the probability of concordance minus the

probability of discordance for the two vectors (X1, Y1) and (X2, Y3) i.e., a pair of vectors

with the same margins, but one vector has distribution function H, while the components

of the other are independent:

rX,Y = 3(P [(X1 −X2)(Y1 − Y3) > 0]− P [(X1 −X2)(Y1 − Y3) < 0]) (1.23)

(the pair (X3, Y2) could be used equally as well). Note that while the joint distribution

function of (X1, Y1) is H(x, y), the joint distribution function of (X2, Y3) is F (x)G(y)

(because X2 and Y3 are independent).

Theorem 1.1.10. Let X and Y be continuous random variables whose copula is C. Then

the population version of Spearman's rho for X and Y (which we will denote by either

ρXY , or ρC ) is given by

ρXY = ρC = 3Q(C,Π), (1.24)

= 12

∫ ∫
I2
uvdC(u, v)− 3 (1.25)

= 12

∫ ∫
I2
C(u, v)dudv − 3 (1.26)
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Thus Spearman's rho is essentially the second "concordance axis" in the �gure above.

The coe�cient "3" that appears in (1.23) and (1.24) is a "normalization" constant, because

Q(C,Π) ∈ [−1/3, 1/3]. As was the case with Kendall's tau, we will write ρθ and ρα,β,

rather than ρCθ and ρCα,β , respectively, when the copula C is given by Cθ or Cα,β,

Any set of desirable properties for a "measure of concordance" would include those in

the following de�nition (Scarsini 1984).

De�nition 1.1.11. A numeric measure κ of association between two continuous random

variables X and Y whose copula is C is a measure of concordance if it satis�es the

following properties (again we write κXY , or κC when convenient):

1. κ is de�ned for every pair X, Y of continuous random variables;

2. −1 ≤ κX,Y ≤ 1, κX,X = 1, and κX,−X = −1;

3. κX,Y = κY,X ;

4. if X and Y are independent, then κX,Y = κΠ = 0;

5. κ−X,Y = κX,−Y = −κX,Y ;

6. if C1 and C2 are copulas such that C1 ≺ C2 , then κC1 ≤ κC2 ;

7. if {(Xn, Yn)} is a sequence of continuous random variables with copulas Cn , and if

{Cn} converges pointwise to C, then limn→∞ κCn = κC .

As a consequence of De�nition 1.1.11, we have the following theorem.

Theorem 1.1.11. [Nelsen (2006)] Let κ be a measure of concordance for continuous

random variables X and Y :

1. if Y is almost surely an increasing function of X, then

κX,Y = κM = 1;
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2. if Y is almost surely a decreasing function of X, then

κX,Y = κW = −1;

3. if a and b are almost surely strictly monotone functions on RanX and RanY , re-

spectively, then
κα(X),β(Y ) = κX,Y .

In the next theorem, we see that both Kendall's tau and Spearman's rho are measures

of concordance according to the above de�nition.

Theorem 1.1.12. If X and Y are continuous random variables whose copula is C, then

the population versions of Kendall's tau (1.20) and Spearman's rho (1.24, 1.25 and 1.26)

satisfy the properties in De�nition 1.1.11 and Theorem 1.1.11 for a measure of concor-

dance.

The fact that measures of concordance, such as r and t, satisfy the sixth criterion in

De�nition 1.1.11 is one reason that "≺" is called the concordance ordering.

Spearman's rho is often called the "grade" correlation coe�cient. Grades are the

population analogs of ranks that is, if x and y are observations from two random variables

X and Y with distribution functions F and G, respectively, then the grades of x and y are

given by u = F (x) and v = G(y). Note that the grades (u and v) are observations from

the uniform (0, 1) random variables U = F (X) and V = G(Y ) whose joint distribution

function is C. Because U and V each have mean 1/2 and variance 1/12, the expression

for ρC in (1.25) can be re-written in the following form:

ρX,Y = ρC = 12
∫ ∫

I2
uvdC(u, v)− 3 = 12E(UV )

= E(UV )−1/4
1/2

= E(UV )−E(U)E(V )√
V arU

√
V arV

.

As a consequence, Spearman's rho for a pair of continuous random variables X and Y

is identical to Pearson's product-moment correlation coe�cient for the grades of X and

Y , i.e., the random variables U = F (X) and V = G(Y ).

1.1.2.4 The Relationship between Kendall's tau and Spearman's rho

Although both Kendall's tau and Spearman's rho measure the probability of concor-

dance between random variables with a given copula, the values of ρ and τ are often quite
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di�erent. In this subsection, we will determine just how di�erent ρ and τ can be.

The next theorem1.1.13, due to Daniels (1950), gives universal inequalities for these

measures. For the proof see Kruskal (1958).

Theorem 1.1.13. [Nelsen (2006)] Let X and Y be continuous random variables, and let τ

and ρ denote Kendall's tau and Spearman's rho, de�ned by (1.17) and (1.23), respectively.

Then
−1 ≤ 3τ − 2ρ ≤ 1. (1.27)

The next theorem gives a second set of universal inequalities relating ρ and τ . It is

due to Durbin and Stuart (1951); and again the proof is adapted from Kruskal (1958):

Theorem 1.1.14. [Nelsen (2006)] Let X, Y, τ, and ρ be as in Theorem 1.1.12. Then

1 + ρ

2
≥
(

1 + τ

2

)2

(1.28)

and

1− ρ
2
≥
(

1− τ
2

)2

(1.29)

The inequalities in the preceding two theorems combine to yield

Corollary 1.1.5. Let X, Y, τ, and ρ be as in Theorem 1.1.12. Then

3τ − 1

2
≤ ρ ≤ 1 + 2τ − τ 2

2
, τ ≥ 0, (1.30)

and
τ 2 − 2τ − 1

2
≤ ρ ≤ 1 + 3τ

2
, τ ≤ 0,

1.1.2.5 Why the copula and not the correlation coe�cient?

Undoubtedly, the dependence between random variables plays a very important role

in many areas of mathematics. It is a widely studied topics in probability and statistics.

A huge variety of this concept has been studied by many authors to propose de�nitions

and useful properties with applications. A measure of dependence is regularly used the

linear correlation by Bravais Pearson ( 1896) ; This correlation measures the linear rela-

tionship between two random variables X and Y , and can take any value from the interval
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[−1, 1]. The linear correlation coe�cient is a measure of dependence easily calculated.

This indicator is e�cient when the dependence is linear and the universe considered Gaus-

sian. It is very useful for families of elliptic distributions ( because these distributions for

non correlation implies independence). However, this dependence measure often used by

practitioners has several limitations; we cite some problems related to this concept:

• The correlation coe�cient is unde�ned if the moments of order two random variables

are not �nished. This is not an appropriate measure of dependence for heavy-tailed

distributions where the variances can be �nished.

• It is easy to construct examples where the linear correlation coe�cient of Pearson is

not invariant under strictly increasing transformations; for example the correlation

between two random variables X and Y is not the same between log(X) and log(Y );

Indeed, changes a�ect the feedback data correlations .

• The correlation is simply a scalar measured dependence; it can not tell us everything

we want to know about the structure of dependence.

• The absolute positive dependence is not necessarily a correlation of +1; same neg-

ative dependency perfect not necessarily a correlation of −1.

In �nance, the Gaussian case is rarely used; to remedy this we use other indicators

of dependence based on concordance and discordance observed in a sample. We then use

the coe�cients of non-linear and non-parametric correlation, such as Kendall's tau or

Spearman's rho. These are good indicators of the overall dependence between random

variables. In addition, they are between −1 and +1, as the linear correlation coe�cient,

a value +1 means a perfect match.

Measure the length using statistical indicators is one thing, the model by a function

of dependence is another. Copula meets this objective. Indicators of dependence (linear

correlation, Kendall's tau and Spearman's rho) can be de�ned in this framework from the

parameters of the copula (when it is parametric).

The tool is relatively copula innovative modeling the dependency structure of several

random variables. Knowledge of this statistical tool is essential to understanding many

application areas of quantitative �nance: measurement multiple credit risk assessment of

structured credit products, replicating the performance of hedge funds, measure multiple

risk market, portfolio management using Monte Carlo simulations,... . Thus, whenever it

is necessary to model the dependence structure of several random variables, we can use
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the copula. The relationship between the joint distribution and the copula allows us to

study the dependence structure of (X, Y ) separately from their marginal.

• Instead of summarizing the structure of dependence by a single number as the linear

correlation coe�cient, we can use a model that re�ects a more detailed knowledge

on risk management issues that we deal with.

• The copula is a multivariate distribution function that helps us to understand the

multivariate risk factor data, and then �nd the marginal models for the various

individual risk factors and copula models for their dependence structure.

• As an appropriate model we have a wide range of families of copulas which you can

select; This allows us to choose a particular family of copulas as random variables

of multivariate data that we are trying to model.

• If the marginal distributions are known, the copula can be used to suggest an ap-

propriate form for the joint distribution; this means that we can create functions

and marginal distributions we can extract the copula functions from well-known

multivariate distributions.

• Sklar's theorem is "powerful" multivariate copula analysis tool, as it allow to build

models of multivariate distributions compatible with the one-dimensional marginal

models, this compatibility is often very important in �nancial modeling ( for models

estimate of the value at risk VaR).

• The copula solves another problem: the development of non-Gaussian models. The

family of non-Gaussian distributions is not only small but powerful; the disadvantage

is that the margins are identical. But with the copula, one can construct such a

distribution with a Gaussian marginal and marginal uniform or Gaussian inverse...

• The function of multivariate distribution carries more information than the di�erent

marginal distributions and this generally helps us to avoid the disadvantages of

correlation as a measure of dependence.

• Copulas are a way to test to extract the dependence structure from the joint distri-

bution function and separate dependence and marginal behavior.

• It allows us to make possible natural extensions of some results obtained in the

univariate case to the multivariate case. Multidimensional distributions are obtained

bene�t in line with reality, especially in the use of �nancial statstiques.
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1.1.3 Exemples Copulas

There are several methods for the construction of the copula which can be found in

the literature (Joe (1997), Nelsen (2006)); in this subsection we will present some of the

most used copula. These copulas are of great interest for risk management because they

help build parametric or semi-parametric models.

1.1.3.1 Gaussian copula

De�nition 1.1.12. Bivariate Gaussian copula is de�ned as follows:

C(u, v; ρ) = Φρ(Φ
−1(u)Φ−1(v))

Where ρ is the correlation coe�cient and Φρ is the standard normal distribution bi-

variate correlation ρ.

Figures 1.6 and 1.7 to visualize the density of the Gaussian copula for di�erent values

of the linear correlation coe�cient and the density of a bivariate Gaussian distribution,

which is, remember, composed of Gaussian margins and a copula Gaussian.

We have the following expression of Kendall's tau:

τ =
2

π
arcsin ρ

Figure 1.6: Density bivariate of three gaussian copulas for di�erent values of ρ.
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Figure 1.7: Density of three bivariate laws built from Gaussian centered reduced margins
and a Gaussian copula for di�erent values of ρ with their curves corresponding levels.

1.1.3.2 Archimedean copulas

De�nition 1.1.13. The Archimedean copulas are de�ned as follows:

C(u1u2) =

{
ϕ−1(ϕ(u1), ϕ(u2)), if ϕ(u1) + ϕ(u2) ≤ ϕ(0);

0, otherwise.

With ϕ the generating function of the copula, checking

ϕ(1) = 0, ϕ
′
(u) < 0 and ϕ

′′
(u) > 0 for all 0 ≤ u ≤ 1

Kendall's tau τ is equal to the Archimedean copulas to:

1 + 4

∫ 1

0

ϕ(u)

ϕ′(u)
du

Density of three bivariate laws built from Gaussian centered reduced margins and a Gaus-

sian copula for di�erent values of rho with their curves corresponding levels

Some examples of bivariate Archimedean copulas are noting ũ = − lnu
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Table 1.1: Examples bivariate Archimedean copula.

Figure 1.8: Density of three Archimedean copulas with parameter θ = 3.

Figure 1.9: Three bivariate densities constructed from Gaussian centered reduced margins
laws and Archimedean copula with parameter θ = 3, with their curves corresponding
levels.
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1.2 Description of the thesis

The objective of this thesis is devoted to the estimation of a regression model by a

function of copulae and our work is divided into three chapters and is organized as follows:

In Chapter 1, we �rst give a general introduction as well as de�nitions and tools;

We start with the basic properties of copulas and then proceeds to present the copula

construction methods and examine the role played by copulas in the modeling and the

study of addiction. The emphasis is on bivariate copulas, we indicate Sklar's theorem that

illuminates the role of copulas in the relationship between the distribution functions of

two variables and their univariate marginal.(This chapter was taken from Nelsen (2006)

with some slight modi�cations.).

In chapter 2, we estimate the regression using the copula function , we present our

model, and then we study its asymptotic properties and obtain, from classical results of

convergence of kernel estimators of regression and under the usual regularity conditions

on the densities and kernels, the following results:

• Point consistency in probability,

Theorem: Let the regularity assumptions (i)-(vii) on the density and the kernel be

satis�ed, if hn tends to zero as n→∞ in such a way that

na4
n →∞,

√
ln lnn

na3
n

→ 0,

then,

r̂n(x) = r(x) +OP

(
h2
n +

1√
nh2

n

+
1

nh4
n

+

√
ln lnn

nh3
n

)

Corrolary: We get the rate of convergence, by choosing the bandwidth which

balance the bias and variance trade-o�: for an optimal choice of hn ' n−1/6, we get

r̂n(x) = r(x) +OP (n−1/3)

• Point almost sure consistency,

Theorem: Let the regularity assumptions (i)-(vii) on the densitie and the kernel
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be satis�ed.If the bandwidth hn tends to zero as n→∞ in such a way that

√
lnn ln lnn

nh3
n

→ 0,
ln lnn

nh4
n

→ 0,

then,

r̂n(x) = r(x) +Oa.s

(
h2
n +

√
ln lnn

nh2
n

+
ln lnn

nh4
n

+

√
lnn ln lnn

nh3
n

)

Corollary: For hn ' (ln lnn/n)1/6 which is the optimal trade-o� between the bias

and the stochastic term, one gets the optimal rate

r̂n(x) = r(x) +Oa.s

(
ln lnn

n

)1/3

.

In Chapter 3, we present a note on the asymptotic normality of the regression model

by a copula function for this; we introduce the model, and then we make some notations

and assumptions of regularity for our main result contained in the last part of this note.

Thus, one has

Corollary: Consider the model (3.6). If the regularity assumptions (i)-(vii) on the

densitie and the kernel be satis�ed,then,

1.
√
nh (r̂(x)− r(x)) N

(
0,

(φ(x)− r2(x))

f(x)
‖K‖2

2

)
2.

Bo = E(r̂(x))− r(x) = B(x)h2 + o(h2),

and

V0 = V ar(r̂(x)) = V (x)
1

nh
+ o

(
1

nh

)
with

B(x) =

∫
t2K(t)dt(g(2)(x)− r(x)f (2))

2f(x)
,
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V (x) =

∫
K2(t)dt

(φ(x)− r2(x))

f(x)

and g(x) = 1
n

∑
YiK

(
x−Xi
h

)
, f(x) = 1

n

∑
K
(
x−Xi
h

)
, φ(x) = E(Y 2/X = x)

These results are then extended to compact R, in the following theorem:

Theorem: Let the regularity assumptions (i)-(vii) on the density and the kernel be

satis�ed, if hn ' (lnn/n)1/6 then,

sup
x∈R
|r̂n(x)− r(x)| = OP

((
lnn

n

)1/3
)

and

sup
x∈R
|r̂n(x)− r(x)| = Oa.s

((
lnn

n

)1/3
)

Finally we conclude this thesis by giving some perspectives for future research and

appendix consisting of classical results and tools used in this thesis.
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Abstract

Copula models are becoming an increasingly powerful tool for modeling the dependen-

cies between random variables, they have useful applications in many �elds such as bio-

statistics, actuarial science, and �nance. In this paper, we investigate the estimating of a

regression model, by use of the copula representation. We study its asymptotic properties;

the convergence almost surely as the convergence rate.
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2.1 Introduction

Copula theory, following the works of Sklar in 1959, allows a �exible modeling of

dependence between two or more random variables. In recent years, the growing interest

for this theory is phenomenal. In [18] Thomas Mikosch stated that in September 2005,

a Google search on the term "copula" produced 650,000 results. Then, in January 2007,

this same query generates more than 1.13 million. Given the number of publications in

scienti�c journals and the number of papers available on Internet, it is undeniable that

passion to the copula theory is still booming.

The progress of applications of this theory is wide in the �eld of �nance, risk manage-

ment, performance evaluation of assets, the valuation of derivatives, the extreme value

theory, contagion require �exible and practical models of addiction.

The construction and properties of copulas have been studied rather extensively during
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the last 15 years or so. Hutchinson and Lai (1990) [15] were among the early authors who

popularized the study of copulas. Nelsen (1999) [20] presented a comprehensive treatment

of bivariate copulas, while Joe (1997) [16] devoted a chapter of his book to multivariate

copulas. Further authoritative updates on copulas are given in Nelsen (2006) [19]. Copula

methods have many important applications in insurance and �nance Cherubini et al.

(2004) [3] and Embrechts et al. (2003) [6].

Brie�y speaking, copulas are functions that join multivariate distributions to their

one-dimensional marginal distribution functions. Equivalently, copulas are multivariate

distributions whose marginals are uniform on the interval (0, 1). In this paper, we restrict

our attention to bivariate copulas. Fisher (1997) [13] gave two major reasons as to why

copulas are of interest to statisticians: �rstly, as a way of studying scale-free measures of

dependence; and secondly, as a starting point for constructing families of bivariate distri-

butions." Speci�cally, copulas are an important part of the study of dependence between

two variables since they allow us to separate the e�ect of dependence from the e�ects of

the marginal distributions. This feature is analogous to the bivariate normal distribu-

tion where the mean vectors are unlinked to the covariance matrix and jointly determine

the distribution. Many authors have studied constructions of bivariate distributions with

given marginals: This may be viewed as constructing a copula.

Nonparametric estimators of copula densities have been suggested by Gijbels and

Mielnicsuk [14] and Fermanian and Scaillet [10], who used kernel methods, Sancetta [24]

and Sancetta and Satchell [25], who used techniques based on Bernstein polynomials. Biau

and Wegkamp[1] proposed estimating the copula density through a minimum distance

criterion. Faugeras [7] in his thesis studied the quantile copula approach to conditional

density estimation.

The aim of this paper is devoted to the estimation of a regression model via a copulae

function, the rest of the paper is organized as follows; at �rst in section 2 we state Sklar's

theorem which elucidates the role that copulas play in the relationship between bivariate

distribution functions and their univariate marginals and at the end of the section we

introduce our model, then in section 3 we make some regularity assumptions on the

kernels and the densities which, although far from being minimal, are somehow customary

in kernel density estimation, the main result and its proof is given in the fourth part of

this paper. Then we �nish this work by a small conclusion.
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2.2 The model

Let (Xi;Yi); i = 1, 2, . . . , n be an independent identically distributed sample from real-

valued random variables (X, Y ) sitting on a given probability space. For predicting the

response Y of the input variable X at a given location x, it is of great interest to estimate

not only the conditional mean or regression function E(Y/X = x), but the full conditional

density f(y/x). Indeed, estimating the conditional density is much more informative, since

it allows not only to recalculate from the density the conditional expected value E(Y/X),

but also many other characteristics of the distribution such as the conditional variance. In

particular, having knowledge of the general shape of the conditional density, is especially

important for multi-modal or skewed densities, which often arise from nonlinear or non-

Gaussian phenomena, where the expected value might be nowhere near a mode, i.e. the

most likely value to appear.

A natural approach to estimate the conditional density f(y/x) of Y given X = x

would be to exploit the identity

f(y/x) =
fXY (x, y)

fX(x)
, fX(x) 6= 0, (2.1)

where fXY and fX denote the joint density of (X, Y ) and X, respectively.

By introducing Parzen-Rosenblatt [21, 22] kernel estimators of these densities, namely,

f̂n,XY (x, y) =
1

n

n∑
i=1

K ′h′(Xi − x)Kh(Yi − y),

f̂n,X(x) =
1

n

n∑
i=1

K ′h′(Xi − x),

where Kh(.) = 1
h
K(./h) and K ′h′(.) = 1

h′
K ′(./h′) are (rescaled) kernels with their associ-

ated sequence of bandwidth h = hn and h
′ = h′n going to zero as n→ 1, one can construct

the quotient

f̂n(y/x) =
f̂n,XY (x, y)

f̂n,X(x)
,

and obtain an estimator of the conditional density.
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Formally, Sklar's theorem below elucidates the role that copulas play in the relationship

between bivariate distribution functions and their univariate marginals see Sklar[28].

Theorem 2.2.1. (Sklar 1959) For any bivariate cumulative distribution function FX,Y

on R2, with marginal cumulative distribution functions F of X and G of Y, there exists

some function C : [0, 1]2 → [0, 1], called the dependence or copula function, such as

FX,Y (x, y) = C(F (x), G(y)), −∞ ≤ x, y ≤ +∞. (2.2)

If F and G are continuous, this representation is unique with respect to (F,G). The copula

function C is itself a cumulative distribution function on [0, 1]2 with uniform marginals.

This theorem gives a representation of the bivariate c.d.f. as a function of each univari-

ate c.d.f. In other words, the copula function captures the dependence structure among

the components X and Y of the vector (X, Y ), irrespectively of the marginal distribution

F and G. Simply put, it allows to deal with the randomness of the dependence structure

and the randomness of the marginals separately.

Copulas appear to be naturally linked with the quantile transform: in the case F and

G are continuous, formula (3.2) is simply obtained by de�ning the copula function as

C(u, v) = FX,Y (F−1(u), G−1(v)), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. For more details regarding

copulas and their properties, one can consult for example the book of Joe [17]. Copulas

have witnessed a renewed interest in statistics, especially in �nance, since the pioneering

work of Räuschendorf [23] and Deheuvels [4], who introduced the empirical copula process.

Weak convergence of the empirical copula process was investigated by Deheuvels [5], Van

der Vaart and Wellner [29], Fermanian, Radulovic and Wegkamp [9]. For the estimation

of the copula density, refer to Gijbels and Mielniczuk [14], Fermanian [8] and Fermanian

and Scaillet [11].

From now on, we assume that the copula function C(u, v) has a density c(u, v)

with respect to the Lebesgue measure on [0, 1]2 and that F and G are strictly increas-

ing and di�erentiable with densities f and g. C(u, v) and c(u, v) are then the cumula-

tive distribution function (c.d.f.) and density respectively of the transformed variables

(U, V ) = (F (x), G(y)). By di�erentiating formula (3.2), we get for the joint density,

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
= f(x)g(y)c(F (x), G(y)),
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where c(u, v) := ∂2C(u,v)
∂u∂v

is the above mentioned copula density. Eventually, we can obtain

the following explicit formula of the conditional density

f(y/x) =
fXY (x, y)

f(x)
= g(y)c(F (x), G(y)), f(x) 6= 0. (2.3)

So, let

fn(y/x) = ĝn(y)ĉn(Fn(x), Gn(y)),

be an estimator which builds on the idea of using synthetic data. where ĝn(y), ĉn, Fn(x),

Gn(y) are estimators of the density g of Y, the copula density c, the c.d.f. F of X and G

of Y respectively. Its study then reveals to be particularly simple: it reduces to the ones

already done on nonparametric density estimation.

From now on, we assume that the copula function C(u, v) has a density c(u, v)

with respect to the Lebesgue measure on [0, 1]2 and that F and G are strictly increas-

ing and di�erentiable with densities f and g. C(u, v) and c(u, v) are then the cumula-

tive distribution function (c.d.f.) and density respectively of the transformed variables

(U, V ) = (F (X), G(Y )).

Now, To build an estimator of the conditional density we have to use a Parzen-

Rosenblatt kernel type non parametric estimator of the marginal density g of Y.

ĝn(y) :=
1

nhn

n∑
i=1

K0

(
y − Yi
hn

)
,

the empirical distribution functions Fn(x) and Gn(y) for F (x) and G(y) respectively,

Fn(x) =
n∑
j=1

1Xj≤x and Gn(y) =
n∑
j=1

1Yj≤y.

Concerning the copula density c(u, v), we noted that c(u, v) is the joint density of the

transformed variables (U, V ) := (F (x), G(y)). Therefore, c(u, v) can be estimated by the

bivariate Parzen-Rosenblatt kernel type non parametric density (pseudo) estimator,

cn(u, v) :=
1

nhnbn

n∑
i=1

K

(
u− Ui
hn

,
v − Vi
bn

)
, (2.4)
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where K is a bivariate kernel and hn, bn its associated bandwidth. For simplicity, we

restrict ourselves to product kernels, i.e. K(u, v) = K1(u)K2(v) with the same bandwidths

hn = bn.

Nonetheless, since F and G are unknown, the random variables (Ui, Vi) are not ob-

servable, i.e. cn is not a true statistic. Therefore, we approximate the pseudo-sample

(Ui, Vi), i = 1, 2, . . . , n by its empirical counterpart (Fn(Xi), Gn(Yi)), i = 1, 2, . . . , n. We

therefore obtain a genuine estimator of c(u, v).

ĉn(u, v) :=
1

nh2
n

n∑
i=1

K1

(
u− Fn(Xi)

hn

)
K2

(
v −Gn(Yi)

hn

)
. (2.5)

Now, let us present Our estimated model, the regression function r(x), is given as

follows:

r(x) = Y cn(F (x), G(y)), |Y | ≤M, Y,m ∈ R.

This regression function r(x) is estimated by a function r̂ = Y ĉn(F (x), G(y)).

To state our main result, we will have to make some regularity assumptions on the

kernels and the densities which, although far from being minimal, are somehow customary

in kernel density estimation.

2.3 Notations and Assumptions

Set x and y two �xed points in the interior of supp(f) and supp(g) respectively.

The support of the densities function f and g are noted by

supp(f) = {x ∈ R; f(x) > 0} and supp(g) = {y ∈ R; g(y) > 0},

where A stands for the closure of a set A.

N.B. oP (.) and Op(.) (respectively oa.s(.) and Oa.s(.))will stands for convergence and

boundedness in probability (respectively almost surely).

Assumptions

• (i) the c.d.f F of X and G of Y are strictly increasing and di�erentiable.
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• (ii) the densities g and c are twice continuously di�erentiable with bounded second

derivatives on their support.

• (iii) the densities g and c are uniformly continuous and non-vanishing almost every-

where on a compact set J := [a, b] and D ⊂ (0, 1) × (0, 1) included in the interior

of supp(g) and supp(c), respectively.

• (iv) K and K0 are of bounded support and of bounded variation.

• (v) 0 ≤ K ≤ C and 0 ≤ K0 ≤ C for some constant C.

• (vi) K and K0 are second order kernels.

• (vii) K it is twice di�erentiable with bounded second partial derivatives.

Recall that cn(u, v) is the kernel copula (pseudo) density estimator from the unob-

servable, but �xed with respect to n, pseudo data (F (Xi), G(Yi)), and that ĉn(u, v) is its

analogue made from the approximate data (Fn(Xi), Gn(Yi). The heuristic of the reason

why our estimator works is that the n−1/2 in probability rate of convergence in uniform

norm of Fn and Gn to F and G is faster than the 1/
√
nh2

n rate of the non parametric

kernel estimator cn of the copula density c. Therefore, the approximation step of the un-

known transformations F and G by their empirical counterparts Fn and Gn does not have

any impact asymptotically on the estimation step of c by cn. Put in another way, one

can approximate ĉn(Fn(x), Gn(y)) by cn(F (x), G(y)) at a faster rate than the convergence

rate of cn(F (x), G(y)) to c(F (x), G(y)).

2.4 Main Result

This part of the paper is devoted to the asymptotic study the convergence in proba-

bility and almost surely (with rate) of our estimators introduced above.
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Theorem 2.4.1. Let the regularity assumptions (i)-(vii) on the densitie and the kernel

be satis�ed, if hn tends to zero as n→∞ in such a way that

nh4
n →∞,

√
ln lnn

nh3
n

→ 0,

then,

r̂n(x) = r(x) +OP

(
h2
n +

1√
nh2

n

+
1

nh4
n

+

√
ln lnn

nh3
n

)

Proof theorem 3.4.1: Let r̂(x) = Y cn(F (x), G(x)), to demonstrate that r̂(x) con-

verge to r(x) it is su�cient to prove that ĉn(U, V )→ cn(U, V ), with U = F (x), V = G(x).

For (Xi, i = 1, 2, . . . , n) an i.i.d. sample of a real random variableX with common c.d.f.

F, the Kolmogorov-Smirnov statistic is de�ned as Dn := ‖Fn − F‖. Glivenko-Cantelli,
Kolmogorov and Smirnov, Chung, Donsker among others have studied its convergence

properties in increasing generality (See e.g. [27] and [28] for recent accounts). For our

purpose, we only need to formulate these results in the following rough form:

Lemma 2.4.1. For an i.i.d. sample from a continuous c.d.f. F,

‖Fn − F‖∞ = OP

(
1√
n

)
, i = 1, 2, . . . , n, (2.6)

‖Fn − F‖∞ = Oa.s

(
ln lnn

n

)
i = 1, 2, . . . , n. (2.7)

Since F is unknown, the random variables Ui = F (Xi) are not observed. As a con-

sequence of the preceding lemma, one can naturally approximate these variables by the

statistics Fn(Xi). Indeed,

‖F (Xi)− Fn(Xi)‖ ≤ sup
x∈R
‖F (x)− Fn(x)‖ = ‖Fn − F‖∞a.s.

Let

cn(U, V ) =
1

nh2
n

n∑
i=1

K1

(
U − Fn(Xi)

hn

)
K2

(
V −Gn(Yi)

hn

)
,
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ĉn(U, V ) =
1

nh2
n

n∑
i=1

K1

(
U − Fn(Xi)

hn

)
K2

(
V −Gn(Yi)

hn

)
.

So, we must show that Fn(Xi) converge to F (Xi) and Gn(Yi) converge to G(Yi).

ĉn(U, V )− cn(U, V ) =
1

nh2
n

(
n∑
i=1

K1

(
U − Fn(Xi)

hn

)
K2

(
V −Gn(Yi)

hn

)

−
n∑
i=1

K1

(
U − F (Xi)

hn

)
K2

(
V −G(Yi)

hn

))
,

with

Πi,n = K1

(
U − Fn(Xi)

hn

)
K2

(
V −Gn(Yi)

hn

)
−K1

(
U − F (Xi)

hn

)
K2

(
V −G(Yi)

hn

)
.

Let

Zi,n =

(
Fn(Xi)− F (Xi)

Gn(Yi)−G(Yi)

)
‖Fn(Xi) − F (Xi)‖ ≤ ‖Fn − F‖∞ and ‖Gn(Yi) − G(Yi)‖ ≤ ‖Gn − G‖ a.s. for every i =

1,2,. . . , n. Preceding Lemma thus entails that the norm of Zi,n is independent of i and

such that

‖Zi,n‖ = OP

(
1√
n

)
, i = 1, 2, . . . , n, (2.8)

‖Zi,n‖ = Oa.s

(
ln lnn

n

)
i = 1, 2, . . . , n. (2.9)

Now, for every �xed (u, v) ∈ [0, 1]2, since the kernel K is twice di�erentiable, there

exists, by Taylor expansion, random variables Ũi,n and Ṽi,n such that, almost surely,

Π =
1

nh3
n

n∑
i=1

ZT
i,n∇

(
K1

(
U − Fn(Xi)

hn

)
K2

(
V −Gn(Yi)

hn

))

+
1

2nh4
n

n∑
i=1

ZT
i,n∇2

(
K1

(
U − Ũi,n
hn

)
K2

(
V − Ṽi,n
hn

))
Zi,n = Π1 + Π2,
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where ZT
i,n denotes the transpose of the vector Zi,n and ∇K and ∇2K the gradient and

the Hessian respectively of the multivariate kernel function K.

By centering at expectations, decompose further the �rst term Π1 as,

Π1 =
1

nh3
n

n∑
i=1

Zi,n∇
(
K1

(
U − F (Xi)

hn

)
K2

(
V −G(Yi)

hn

))

−E∇
(
K1

(
U − F (Xi)

hn

)
K2

(
V −G(Yi)

hn

))

+
1

nh3
n

n∑
i=1

ZT
i,nE∇

(
K1

(
U − F (Xi)

hn

)
K2

(
V −G(Yi)

hn

))
= Π11 + Π12

We again decompose one step further Π11, Set

Ai = ∇
(
K1

(
U − F (Xi)

hn

)
K2

(
V −G(Yi)

hn

))
−E∇

(
K1

(
U − F (Xi)

hn

)
K2

(
V −G(Yi)

hn

))
.

Then

|Π11| ≤
‖Zi,n‖
nh3

n

n∑
i=1

(‖Ai‖ − E‖Ai‖) +
‖Zi,n‖
nh3

n

n∑
i=1

E‖Ai‖ = Π111 + Π112.

We now proceed to the study of the order of each terms in the previous decompositions.

• Negligibility of Π2.

By the boundedness assumption on the second-order derivatives of the kernel, and

equations (3.7) and (3.8),

Π2 = OP

(
1

nh4
n

)
, and Π2 = Oa.s

(
ln lnn

nh4
n

)

• Negligibility of Π12.

Bias results on the bivariate gradient kernel estimator (See Scott [26] chapter 6) entail

that

E∇
(
K1

(
U − F (Xi)

hn

)
K2

(
V −G(Yi)

hn

))
= h3

n∇c(u, v) +O(h5
n)
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Cauchy-Schwarz inequality yields that

|Π12| ≤
‖nZi,n‖
nh3

n

∥∥∥∥E∇(K1

(
U − F (Xi)

hn

)
K2

(
V −G(Yi)

hn

))∥∥∥∥
In turn, with equations (3.7) and (3.8),

Π12 = OP

(
1√
n

)
, and Π12 = Oa.s

(
ln lnn

n

)

• Negligibility of Π11

• Negligibility of Π111.

Boundedness assumption on the derivative of the kernel imply that ‖Ai‖ ≤ 2C a.s. We

apply Hoe�ding inequality for independent, centered, bounded by M, but non identically

distributed random variables (ηj) (e.g. see [2]),

P

(
n∑
j=1

ηj > t

)
≤ exp

(
−t2

2nM2

)

Here, for every ε > 0, with M = 2C, ηj = ‖Ai‖ − E‖Ai‖, t = ε
√

1
n

ln lnn, therefore,

n∑
i=1

(‖Ai‖ − E‖Ai‖) = Op(
√
n ln lnn)

which is the de�nition of almost complete convergence (a.co.), see e.g. [12] de�nition A.3.

p. 230. In turn, it means that

n∑
i=1

(‖Ai‖ − E‖Ai‖) = Oa.co

(√
n lnn

)

and by the Borell-Cantelli lemma,

n∑
i=1

(‖Ai‖ − E‖Ai‖) = Oa.s(
√
n lnn)
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Therefore, using equations equations (3.7) and (3.8), we have that

Π111 = OP

(√
ln lnn

nh3
n

)
= Oa.s

(
√

lnn

√
ln lnn

nh3
n

)

• Negligibility of Π112

The r.h.s. of the previous inequality is, after an integration by parts, of order a3 n by

the results on the kernel estimator of the gradient of the density (See Scott [26] chapter

6). Therefore,
n∑
i=1

E‖Ai‖ = O(nh2
n)

Π112 =
‖nZi,n‖
nh3

n

n∑
i=1

E‖Ai‖ = OP

(
1√
n

)
= Oa.s

(√
ln lnn

n

)

by equations (3.7) and (3.8).

Recollecting all elements, we eventually obtain that

Π = Π111 + Π112 + Π12 + Π2 = OP

(
1√
n

)
+OP

(
ln lnn

nh3
n

)
+OP

(
1

nh4
n

)

= Oa.s

(√
ln lnn

n

)
+Oa.s

(√
lnn
√

ln lnn

nh3
n

)
+Oa.s

(
ln lnn

nh4
n

)
.

By this last step we conclude the proof of our theorem. �

After giving the proof of the convergence in probability, let us present the rate of conver-

gence in the following corollary.

Corollary 2.4.1. We get the rate of convergence, by choosing the bandwidth which balance

the bias and variance trade-o�: for an optimal choice of hn ' n−1/6, we get

r̂n(x) = r(x) +OP (n−1/3)

Therefore, our estimator is rate optimal in the sense that it reaches the minimax rate

n−1/3 of convergence.

Now, Almost sure results can be proved in the same way: we have the following strong

consistency result,
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Theorem 2.4.2. Let the regularity assumptions (i)-(vii) on the densitie and the kernel

be satis�ed.If the bandwidth hn tends to zero as n→∞ in such a way that

√
lnn ln lnn

nh3
n

→ 0,
ln lnn

nh4
n

→ 0,

then,

r̂n(x) = r(x) +Oa.s

(
h2
n +

√
ln lnn

nh2
n

+
ln lnn

nh4
n

+

√
lnn ln lnn

nh3
n

)

For the proof of this theorem, It is su�cient to follow the same lines as the preceding

theorem , but uses the a.s. results of the consistency of the kernel density estimators of

lemmas 3.13 and 3.15 and of the approximation propositions 3.16 and 3.17. It is therefore

similar and omitted [7].

Corollary 2.4.2. For hn ' (ln lnn/n)1/6 which is the optimal trade-o� between the bias

and the stochastic term, one gets the optimal rate

r̂n(x) = r(x) +Oa.s

(
ln lnn

n

)1/3

.

For the he proof, we follow the same way given in [7]

2.5 Conclusion

In this paper we established the convergence Almost surely and in Probability (with rate)

of regression model via copula function approach, it will be interesting in further work to

study the asymptotic normality of such a model.
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Chapter 3

Asymptotic normality

This chapter is the subject of a paper submitted to Forum Proba Stat.
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Abstract

Over the last decade, there has been signi�cant and rapid development of the the-

ory of copulas. Much of the work has been motivated by their applications to stochastic

processes, economics, risk management, �nance, insurance, the environment (hydrology,

climate, etc.), survival analysis, and medical sciences. In many statistical models. The

copula approach is a way to solve the di�cult problem of �nding the whole bivariate or

multivariate distribution. The goal of this note is give the asymptotic normality of the

copulae function in a regression model.

Keywords: 62N02, 62H12, 62J05.

2000 MSC No: Copulas, nonparametric estimation, regression model.

3.1 Introduction

Copula models are becoming an increasingly tool for modelling the dependencies

between random variables, especially in such �elds as biostatistics, actuarial science, and

�nance. The construction and properties of copulas have been studied rather extensively

during the last 15 years. Hutchinson and Lai (1990) [16] were among the early authors who

popularized the study of copulas. Nelsen (1999) [21] presented a comprehensive treatment

of bivariate copulas, while Joe (1997) [17] devoted a chapter of his book to multivariate

copulas. Further authoritative updates on copulas are given in Nelsen (2006) [20]. Copula

methods have many important applications in insurance and �nance [Cherubini and al.

(2004) [4] and Embrechts and al. (2003) [7]].
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Brie�y speaking, copulas are functions that join or "couple" multivariate distributions

to their one-dimensional marginal distribution functions. Equivalently, copulas are mul-

tivariate distributions whose marginals are uniform on the interval (0, 1). In this chapter,

we restrict our attention to bivariate copulas. Fisher (1997) [14] gave two major reasons

as to why copulas are of interest to statisticians: "Firstly, as a way of studying scale-free

measures of dependence; and secondly, as a starting point for constructing families of

bivariate distributions." Speci�cally, copulas are an important part of the study of de-

pendence between two variables since they allow us to separate the e�ect of dependence

from the e�ects of the marginal distributions. This feature is analogous to the bivariate

normal distribution where the mean vectors are unlinked to the covariance matrix and

jointly determine the distribution. Many authors have studied constructions of bivariate

distributions with given marginals: This may be viewed as constructing a copula. There

is a fast-growing industry for copulas. They have useful applications in econometrics,

risk management, �nance, insurance, etc. The commercial statistics software SPLUS pro-

vides a module in FinMetrics that include copula �tting written by Carmona (2004) [3].

One can also get copula modules in other major software packages such as R, Mathe-

matica, Matlab, etc. The International Actuarial Association (2004) [30] in a paper on

Solvency II,1 recommends using copulas for modeling dependence in insurance portfolios.

Moodyïs uses a Gaussian copula for modeling credit risk and provides software for it that

is used by many �nancial institutions. Basle II2 copulas are now standard tools in credit

risk management. There are many other applications of copulas, especially the Gaussian

copula, the extreme-value copulas, and the Archimedean copula. We now classify these

applications into several categories Nonparametric estimators of copula densities have

been suggested by Gijbels and Mielnicsuk [15] and Fermanian and Scaillet [11], who used

kernel methods, Sancetta [25] and Sancetta and Satchell [26], who used techniques based

on Bernstein polynomials. Biau and Wegkamp[1] proposed estimating the copula density

through a minimum distance criterion. Faugeras [8] in his thesis studied the quantile

copula approach to conditional density estimation.

the main goal of this note is devoted to the asymptotic normality of a regression model

via a copulae function, for that; At �rst we introduce the model, then we make some

notations and regularity assumptions for our main result given in the last part of this

note.
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3.2 The model

Let ((Xi;Yi); i = 1, . . . , n) be an independent identically distributed sample from real-

valued random variables (X, Y ) sitting on a given probability space. For predicting the

response Y of the input variable X at a given location x, it is of great interest to estimate

not only the conditional mean or regression function E(Y/X = x), but the full conditional

density f(y/x). Indeed, estimating the conditional density is much more informative, since

it allows not only to recalculate from the density the conditional expected value E(Y/X),

but also many other characteristics of the distribution such as the conditional variance. In

particular, having knowledge of the general shape of the conditional density, is especially

important for multi-modal or skewed densities, which often arise from nonlinear or non-

Gaussian phenomena, where the expected value might be nowhere near a mode, i.e. the

most likely value to appear.

A natural approach to estimate the conditional density f(y/x) of Y given X = x

would be to exploit the identity

f(y/x) =
fXY (x, y)

fX(x)
, fX(x) 6= 0, (3.1)

where fXY and fX denote the joint density of (X, Y ) and X, respectively.

By introducing Parzen-Rosenblatt [22, 23] kernel estimators of these densities, namely,

f̂n,XY (x, y) =
1

n

n∑
i=1

K ′h′(Xi − x)Kh(Yi − y),

f̂n,X(x) =
1

n

n∑
i=1

K ′h′(Xi − x),

where Kh(.) = 1/hK(./h) and K ′h′(.) = 1/h′K ′(./h′) are (rescaled) kernels with their

associated sequence of bandwidth h = hn and h′ = h′n going to zero as n → 1, one can

construct the quotient

f̂n(y/x) =
f̂n,XY (x, y)

f̂n,X(x)
,

and obtain an estimator of the conditional density.
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Formally, Sklar's theorem below elucidates the role that copulas play in the relationship

between bivariate distribution functions and their univariate marginals see Sklar[29].

Theorem 3.2.1 (Sklar 1959). For any bivariate cumulative distribution function FX,Y

on R2, with marginal cumulative distribution functions F of X and G of Y, there exists

some function C : [0, 1]2 → [0, 1], called the dependence or copula function, such as

FX,Y (x, y) = C(F (x), G(y)), −∞ ≤ x, y ≤ +∞. (3.2)

If F and G are continuous, this representation is unique with respect to (F,G). The copula

function C is itself a cumulative distribution function on [0, 1]2 with uniform marginals.

This theorem gives a representation of the bivariate c.d.f. as a function of each univari-

ate c.d.f. In other words, the copula function captures the dependence structure among

the components X and Y of the vector (X, Y ), irrespectively of the marginal distribution

F and G. Simply put, it allows to deal with the randomness of the dependence structure

and the randomness of the marginals separately.

Copulas appear to be naturally linked with the quantile transform: in the case F and

G are continuous, formula (3.2) is simply obtained by de�ning the copula function as

C(u, v) = FX,Y (F−1(u), G−1(v)), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1. For more details regarding

copulas and their properties, one can consult for example the book of Joe [18]. Copulas

have witnessed a renewed interest in statistics, especially in �nance, since the pioneering

work of Räuschendorf [24] and Deheuvels [5], who introduced the empirical copula pro-

cess. Weak convergence of the empirical copula process was investigated by Deheuvels

[6], Van der Vaart and Wellner [31], Fermanian, Radulovic and Wegkamp [10]. For the

estimation of the copula density, refer to Gijbels and Mielniczuk [15], Fermanian [9] and

Fermanian and Scaillet [12].

From now on, we assume that the copula function C(u, v) has a density c(u, v)

with respect to the Lebesgue measure on [0, 1]2 and that F and G are strictly increas-

ing and di�erentiable with densities f and g. C(u, v) and c(u, v) are then the cumula-

tive distribution function (c.d.f.) and density respectively of the transformed variables

(U, V ) = (F (x), G(y)). By di�erentiating formula (3.2), we get for the joint density,

fXY (x, y) =
∂2FXY (x, y)

∂x∂y
=
∂2C(F (x), G(y))

∂F (x)∂G(y)

∂F (x)

∂x

∂G(y)

∂y
= f(x)g(y)c(F (x), G(y)),
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where c(u, v) := ∂2C(u,v)
∂u∂v

is the above mentioned copula density. Eventually, we can obtain

the following explicit formula of the conditional density

f(y/x) =
fXY (x, y)

f(x)
= g(y)c(F (x), G(y)), f(x) 6= 0. (3.3)

Concerning the copula density c(u, v), we noted that c(u, v) is the joint density of the

transformed variables (U, V ) := (F (x), G(y)). Therefore, c(u, v) can be estimated by the

bivariate Parzen-Rosenblatt kernel type non parametric density (pseudo) estimator,

cn(u, v) :=
1

nhnbn

n∑
i=1

K

(
u− Ui
hn

,
v − Vi
bn

)
, (3.4)

where K is a bivariate kernel and hn, bn its associated bandwidth. For simplicity, we

restrict ourselves to product kernels, i.e. K(u, v) = K1(u)K2(v) with the same bandwidths

hn = bn.

Nonetheless, since F and G are unknown, the random variables (Ui, Vi) are not observ-

able, i.e. cn is not a true statistic. Therefore, we approximate the pseudo-sample (Ui, Vi),

i = 1, ..., n by its empirical counterpart (Fn(Xi), Gn(Yi)), i = 1, ..., n. We therefore obtain

a genuine estimator of c(u, v).

ĉn(u, v) :=
1

nh2
n

n∑
i=1

K1

(
u− Fn(Xi)

hn

)
K2

(
v −Gn(Yi)

hn

)
. (3.5)

the empirical distribution functions Fn(x) and Gn(y) for F (x) and G(y) respectively,

Fn(x) =
n∑
j=1

1Xj≤x and Gn(y) =
n∑
j=1

1Yj≤y.

Our estimated model is given as follows: the regression function r(x) is estimated by

a function r̂n(x)

r(x) = E(Y/X = x) =

∫
yf(y/x)dy =

∫
yg(y)c(F (x), G(y))dy = E(Y c(F (x), G(y))).

(3.6)
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This regression function r(x) is estimated by a function r̂n(x) =
∫
yf̂n(y/x)dy, thus, we

obtain

r̂n(x) =
1

n

n∑
i=1

Yiĉn(Fn(x), Gn(y)) = Y ĉn(Fn(x), Gn(y))

For more detail see [8]

To state our result, we will have to make some regularity assumptions on the kernels

and the densities which, although far from being minimal, are somehow customary in

kernel density estimation.

3.3 Notations and Assumptions

We note the ith moment of a generic kernel (possibly multivariate) K as

mi(K) :=

∫
uiK(u)du

and the Lp norm of a function h by ‖s‖p :=
∫
sp. We use the sign ' to denote the order

of the bandwidths. Set (u, v) �xed point in the interior of supp(c). The support of the

densitie function c is noted by supp(c) = {(u, v) ∈ R2; c(u, v) > 0} where Ā stands for the

closure of a set A.Finally, OP (.) and Op(.) (respectively oa.s(.) and Oa.s(.))will stands for

convergence and boundedness in probability (respectively almost surely).

Assumptions

• (i) the c.d.f F of x and G of Y are strictly increasing and di�erentiable.

• (ii) the densitie c is twice continuously di�erentiable with bounded second deriva-

tives on its support.

• (iii) the densitie c is uniformly continuous and non-vanishing almost everywhere on

a compact set D ⊂ (0, 1)× (0, 1) included in the interior of supp(c) .

• (iv) K is of bounded support and of bounded variation.
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• (v) 0 ≤ K ≤ α and 0 ≤ K0 ≤ α for some constant α.

• (vi) K is second order kernels. m0(K) = 1,m1(K) = 0 et m2(K) < +∞

• (vii) K it is twice di�erentiable with bounded second partial derivatives.

Recall that cn(u, v) is the kernel copula (pseudo) density estimator from the unobservable,

but �xed with respect to n, pseudo data (F (Xi), G(Yi)), and that ĉn(u, v) is its analogue

made from the approximate data (Fn(Xi), Gn(Yi). The heuristic of the reason why our

estimator works is that the n−1/2 in probability rate of convergence in uniform norm of

Fn and Gn to F and G is faster than the 1/
√
na2

n rate of the non parametric kernel

estimator cn of the copula density c. Therefore, the approximation step of the unknown

transformations F and G by their empirical counterparts Fn and Gn does not have any

impact asymptotically on the estimation step of c by cn. Put in another way, one can

approximate ĉn(Fn(x), Gn(y)) by cn(F (x), G(y)) at a faster rate than the convergence

rate of cn(F (x), G(y)) to c(F (x), G(y)).

3.4 Main Result

This part of the paper is devoted to the asymptotic study the convergence in prob-

ability and almost surely of our estimators introduced above. But at �rst let us present

the rate convergence of the estimator.

Theorem 3.4.1. Let the regularity assumptions (i)-(vii) on the densitie and the kernel

be satis�ed, if hn tends to zero as n→∞ in such a way that

nh4
n →∞,

√
ln lnn

nh3
n

→ 0,

then,

r̂n(x) = r(x) +OP

(
h2
n +

1√
nh2

n

+
1

nh4
n

+

√
ln lnn

nh3
n

)
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The main ingredient of the proof follows from the fact that

r̂n(x)− r(x) = Y (ĉn(Fn(x), Gn(y))− cn(F (x), G(y)))

On the one hand, convergence results for the kernel density estimators of what will follow

entail that,

cn(F (x), G(y))− c(F (x), G(y)) = OP (h2
n + 1/

√
nh2

n).

Thus, by lemmas 3.13 and 3.4.1 respectively [8].

Corollary 3.4.1. we get the rate of convergence, by choosing the bandwidth which balance

the bias and variance trade-o�: for an optimal choice of hn ' n−1/6, we get

r̂n(x) = r(x) +OP (n−1/3)

Therefore, our estimator is rate optimal in the sense that it reaches the minimax rate

n−1/3 of convergence.

Almost sure results can be proved in the same way: we have the following strong

consistency result,

Theorem 3.4.2. Let the regularity assumptions (i)-(vii) on the densitie and the kernel

be satis�ed.If the bandwidth hn tends to zero as n→∞ in such a way that

√
lnn ln lnn

nh3
n

→ 0,
ln lnn

nh4
n

→ 0,

then,

r̂n(x) = r(x) +Oa.s

(
h2
n +

√
ln lnn

nh2
n

+
ln lnn

nh4
n

+

√
lnn ln lnn

nh3
n

)

For the proof of this theorem, It is su�cient to follow the same lines as the preceding

theorem , but uses the a.s. results of the consistency of the kernel density estimators

of lemmas 3.13 and 3.4.1 and of the approximation propositions 3.4.1 and 3.4.2[8]. It is

therefore similar and omitted.

Corollary 3.4.2. For hn ' (ln lnn/n)1/6 which is the optimal trade-o� between the bias
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and the stochastic term, one gets the optimal rate

r̂n(x) = r(x) +Oa.s

(
ln lnn

n

)1/3

.

Let r̂n(x) = Y ĉn(Fn(x), Gn(x)), to demonstrate that r̂n(x) converge to r(x) it is su�-

cient to prove that ĉn(u, v)→ cn(u, v).

Recall a preliminary result that will be needed for the main result.

For (Xi, i = 1, ..., n) an i.i.d. sample of a real random variable X with common c.d.f.

F, the Kolmogorov-Smirnov statistic is de�ned as Dn := ‖Fn − F‖∞. Glivenko-Cantelli,
Kolmogorov and Smirnov, Chung, Donsker among others have studied its convergence

properties in increasing generality (See e.g. [?] and [?] for recent accounts). For our

purpose, we only need to formulate these results given in the Lemma 3.13 [8]:

Via Lemma 3.13 [8], we get naturally

|F (Xi)− Fn(Xi)| ≤ sup
x∈R
|F (x)− Fn(x)| = ‖Fn − F‖∞ a.s.

Apply this result to the estimator cn. And for this let us introduce the following result

Lemma 3.15 page 82 given in [8].

Lemma 3.4.1. [8] With the previous assumptions, for (u, v) ∈ (0, 1)2, we have,

• for a bandwidth chosen such as hn ' n−1/6,

|cn(u, v)− c(u, v)| = OP (n−1/3),

• for a point (u, v) where c(u, v) > 0, and hn = o(n−1/6),

√
nh2

n(
cn(u, v)− c(u, v)√

cn(u, v)‖K‖2
2

) N(0, 1)
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• for a bandwidth chosen of hn ' (ln lnn/n)1/6,

|cn(u, v)− c(u, v)| = Oa.s

((
ln lnn

n

)1/3
)

Now, we need two proposed approximation ĉn par le cn

Proposition 3.4.1. Let (u, v) ∈ (0, 1)2. If the kernel K(u, v) = K1(u)K2(v) is twice

di�erentiable with bounded second derivative, then

|ĉn(u, v)− cn(u, v)| = OP

(
1√
n

+

√
ln lnn

nh3
n

+
1

nh4
n

)

|ĉn(u, v)− cn(u, v)| = Oa.s

(√
ln lnn

n
+

√
lnn
√

ln lnn

nh3
n

+
ln lnn

nh4
n

)

Proposition 3.4.2. with the same assumptions as in the previous proposal was

• If hn → 0, nh3
n →∞

|ĉn(Fn(x), Gn(y))− cn(F (x), G(y))| = OP

(
1√
n

+
1

nh4
n

)

• If hn → 0, nh3
n/ ln lnn→∞

|ĉn(Fn(x), Gn(y))− cn(F (x), G(y))| = Oa.s

(√
ln lnn

n
+

ln lnn

nh4
n

)

Corollary 3.4.3. [13] Consider the model (3.6). If the regularity assumptions (i)-(vii)

on the densitie and the kernel be satis�ed,then,

1.
√
nh (r̂(x)− r(x)) N

(
0,

(φ(x)− r2(x))

f(x)
‖K‖2

2

)
2.

Bo = E(r̂(x))− r(x) = B(x)h2 + o(h2),
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and

V0 = V ar(r̂(x)) = V (x)
1

nh
+ o

(
1

nh

)
with

B(x) =

∫
t2K(t)dt(g(2)(x)− r(x)f (2))

2f(x)
,

V (x) =

∫
K2(t)dt

(φ(x)− r2(x))

f(x)

and g(x) = 1
n

∑n
i=1 YiK

(
x−Xi
h

)
, f(x) = 1

n

∑n
i=1K

(
x−Xi
h

)
, φ(x) = E(Y 2/X = x)

Theorem 3.4.3. Let the regularity assumptions (i)-(vii) on the densitie and the kernel

be satis�ed, if hn ' (lnn/n)1/6 then,

sup
x∈R
|r̂n(x)− r(x)| = OP

((
lnn

n

)1/3
)

and

sup
x∈R
|r̂n(x)− r(x)| = Oa.s

((
lnn

n

)1/3
)

Proof theorem 3.4.3 The proof is identical to the ones of theorems (3.4.1) and

(3.4.2), but uses propositions (3.4.4) and (3.4.3) below instead of propositions (3.4.1) and

(3.4.2).

Proposition 3.4.3. Let the regularity assumptions (i)-(vii) on the density and the kernel

be satis�ed,then, for a compact set D ⊂ (0, 1)2, hn → 0 and nh3
n/ lnn→∞ entails

sup
(x,y)∈D

|ĉn(Fn(x), Gn(y))− cn(F (x), G(y))| = OP

(
1

nh4
n

+
lnn√
n

)

sup
(x,y)∈D

|ĉn(Fn(x), Gn(y))− cn(F (x), G(y))| = Oa.s

(
lnn
√

ln lnn√
n

+
ln lnn

nh4
n

)
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Proposition 3.4.4. Let the regularity assumptions (i)-(vii) on the densitie and the kernel

be satis�ed,then, for a compact set D ⊂ (0, 1)2 and hn ' (lnn/n)1/6 , one has

sup
(u,v)∈D

|ĉn(u, v)− cn(u, v)| = OP

((
lnn

n

)1/3
)

= Oa.s

((
lnn

n

)1/3
)
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Conclusion and Prospects

In this thesis we have introduced and studied a new approach to nonparametric esti-

mation of regression. We modeled the regression by the transformed copula and estimated

this model by the kernel method. This model is based on an e�cient data transformation

by transform quantile and the use of the copula representation it was found to have a

remarkable product form.

The concept of copula was discussed, as their essential properties. Our study allowed

us to establish convergence Probability and almost sure (with rates) of regression model

through the copula function approach and asymptotic normality of the model.

Thus, it was found that Khn depends on the number of observations n. In some spe-

ci�c situations, the sample size is �uctuating, so the regression is estimated by our model,

an increase of this size, even a few observations, leads to completely recalculate the esti-

mator and this may be an additional computational load and lost considerable time even

for powerful computers.

Therefore, this theory is not used to its full potential, it o�ers plenty of opportunities

for research that should be explored, especially in the areas of: Modeling in dimension

n(n > 2), the survival function, hazard function and then it would be very interesting

to extend our work to the recursive methods since they o�er a kind of balance between

accuracy and speed of calculation.
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Appendix

Proof Propsition 3.4.1

Let

cn(u, v) =
1

nh2
n

n∑
i=1

K1

(
u− F (Xi)

hn

)
K2

(
v −G(Yi)

hn

)
,

ĉn(u, v) =
1

nh2
n

n∑
i=1

K1

(
u− Fn(Xi)

hn

)
K2

(
v −Gn(Yi)

hn

)
.

So, we must show that Fn(Xi) converge to F (Xi) and Gn(Yi) converge to G(Yi).

ĉn(u, v)− cn(u, v) =
1

nh2
n

n∑
i=1

[
K1

(
u− Fn(Xi)

hn

)
K2

(
v −Gn(Yi)

hn

)
−K1

(
u− F (Xi)

hn

)

K2

(
v −G(Yi)

hn

)]
with

Πi,n = K1

(
u− Fn(Xi)

hn

)
K2

(
v −Gn(Yi)

hn

)
−K1

(
u− F (Xi)

hn

)
K2

(
v −G(Yi)

hn

)

Let

Zi,n =

(
Fn(Xi)− F (Xi)

Gn(Yi)−G(Yi)

)
|Fn(Xi) − F (Xi)| ≤ ‖Fn − F‖∞ and |Gn(Yi) − G(Yi)| ≤ ‖Gn − G‖∞ a.s. for every

i = 1, ..., n. Preceding Lemma thus entails that the norm of Zi,n is independent of i and
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such that

‖Zi,n‖ = OP

(
1√
n

)
, i = 1, ..., n, (3.7)

‖Zi,n‖ = Oa.s

(√
lnlnn

n

)
i = 1, ..., n. (3.8)

Now, for every �xed (u, v) ∈ [0, 1]2, since the kernel K is twice di�erentiable, there exists,

by Taylor expansion, random variables Ũi,n and Ṽi,n such that, almost surely,

Π = 1
nh3n

∑n
i=1 Z

T
i,n∇K

(
u−F (Xi)

hn
, v−G(Yi)

hn

)
+ 1

2nh4n

∑n
i=1 Z

T
i,n∇2K

(
u−Ũi,n
hn

,
v−Ṽi,n
hn

)
Zi,n

:= Π1 + Π2

where ZT
i,n denotes the transpose of the vector Zi,n and ∇K and ∇2K the gradient and

the Hessian respectively of the multivariate kernel function K.

By centering at expectations, decompose further the �rst term Π1 as,

Π1 = 1
nh3n

∑n
i=1 Z

T
i,n

(
∇K

(
u−F (Xi)

hn
, ...
)
− E∇K

(
u−F (Xi)

hn
, ...
))

+ 1
nh3n

∑n
i=1 Z

T
i,nE∇K

(
u−F (Xi)

hn
, v−G(Yi)

hn

)
:= Π11 + Π12

We again decompose one step further Π11, Set

hi = ∇K
(
u− F (Xi)

hn
,
v −G(Yi)

hn

)
− E∇K

(
u− F (Xi)

hn
,
v −G(Yi)

hn

)
Then

|Π11| ≤
‖Zi,n‖
nh3

n

n∑
i=1

(‖hi‖ − E‖Ai‖) +
‖Zi,n‖
nh3

n

n∑
i=1

E‖Ai‖ = Π111 + Π112.
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We now proceed to the study of the order of each terms in the previous decompositions.

• Negligibility of Π2.

By the boundedness assumption on the second-order derivatives of the kernel, and

equations (3.7) and (3.8),

Π2 = OP

(
1

nh4
n

)
, and Π2 = Oa.s

(
ln lnn

nh4
n

)
• Negligibility of Π12.

Bias results on the bivariate gradient kernel estimator (See Scott [?] chapter 6) entail

that

E∇
(
K1

(
u− F (Xi)

hn

)
K2

(
v −G(Yi)

hn

))
= h3

n∇c(u, v) +O(h5
n)

Cauchy-Schwarz inequality yields that

|Π12| ≤
n‖Zi,n‖
nh3

n

∥∥∥∥E∇(K1

(
u− F (Xi)

hn

)
K2

(
v −G(Yi)

hn

))∥∥∥∥
In turn, with equations (3.7) and (3.8),

Π12 = OP

(
1√
n

)
, and Π12 = Oa.s

(√
ln lnn

n

)

• Negligibility of Π11

• Negligibility of Π111.

Boundedness assumption on the derivative of the kernel imply that ‖Ai‖ ≤ 2α a.s. We

apply Hoe�ding inequality for independent, centered, bounded by M, but non identically

distributed random variables (ηj) (e.g. see [?]),

P

(
n∑
j=1

ηj > t

)
≤ exp

(
−t2

2nM2

)

Here, for every ε > 0, with M = 2α, ηj = ‖Ai‖ − E‖Ai‖, t = ε
√

1
n

ln lnn, Therefore,
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n∑
i=1

(‖Ai‖ − E‖Ai‖) = OP (
√
n ln lnn)

which is the de�nition of almost complete convergence (a.co.), see e.g. [?] de�nition

A.3. p. 230. In turn, it means that

n∑
i=1

(‖Ai‖ − E‖Ai‖) = Oa.co

(√
n lnn

)
and by the Borell-Cantelli lemma,

n∑
i=1

(‖Ai‖ − E‖Ai‖) = Oa.s(
√
n lnn)

Therefore, using equations (3.7) and (3.8), we have that

Π111 = OP

(√
ln lnn

nh3
n

)
= Oa.s

(√
lnn ln lnn

nh3
n

)

• Negligibility of Π112

The r.h.s. of the previous inequality is, after an integration by parts, of order a3
n by

the results on the kernel estimator of the gradient of the density (See Scott [?] chapter 6).

Therefore,

n∑
i=1

E‖Ai‖ = O(nh3
n)

and

Π112 =
‖Zi,n‖
nh3

n

n∑
i=1

E‖Ai‖ = OP

(
1√
n

)
= Oa.s

(√
ln lnn

n

)
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by equations (3.7) and (3.8) Recollecting all elements, we eventually obtain that

Π = Π111 + Π112 + Π12 + Π2

= OP (n−1/2) +OP (
√

ln lnn
na3n

) +OP ( 1
na4n

)

or = Oa.s

(√
lnn ln lnn
na3n

)
+Oa.s

(√
ln lnn
n

)
+Oa.s

(
ln lnn
na4n

)
By this last step we conclude the proof of our theorem. �

Proof Proposition 3.4.2

We proceed as in the previous proposal. and we get

Π
′
(x, y) = OP ( 1√

n
+ 1

nh4n
)

or = Oa.s(
√

ln lnn
n

+ n
nh4n

)

By this last step we conclude the proof of our theorems.

�

Proof Propostion 3.4.3

Set

Wi,n = ∇K
(
u− F (Xi)

hn
,
v −G(Yi)

hn

)
By Taylor expansions, we still have the decomposition

Π(x, y) = ZTn (x,y)
nh3n

∑n
i=1Wi,n(F (x), G(y))

+ ZTn (x,y)
2nh4n

∑n
i=1 Z

T
i,n(x, y)∇2K

(
u−F (Xi)

hn
, v−G(Yi)

hn

)
+ ‖Zn‖2

h4n
R3

with the remainder term R3 = Oa.s(1) uniformly. By bounding the ∇2K, and us-

ing the properties of the Kolmogorov-Smirnov statistic, the last two terms are of order
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OP

(
1
nh4n

)
,or Oa.s

(
ln lnn
nh4n

)
, uniformly in x, y. For the �rst term, by Cauchy-Schwarz in-

equality,

sup
(x,y)∈D

∣∣∣∣∣ZT
n (x, y)

nh3
n

n∑
i=1

Wi,n(F (x), G(y))

∣∣∣∣∣ ≤ ‖Zn‖ sup
(x,y)∈D

∥∥∥∥∥ 1

nh3
n

n∑
i=1

Wi,n(F (x), G(y))

∥∥∥∥∥
The convergence results of the kernel estimator n−1h−3

n

∑n
i=1 Wi,n(u, v) of the gradi-

ent of the density c(u, v) can easily be derived from those of the kernel estimator (see

Scott [?] ). From the convergence results uniformly on a compact set of the latter ob-

tained by e.g. Deheuvels [41] for the almost sure rates and Bickel and Rosenblatt [16]

for the in probability rates, with the assumption that the gradient is uniformly bounded

on D and that nh3
n/ lnn → ∞, one gets that the uniform norm of the estimator of the

gradient is an OP (lnn) or an Oa.s(lnn). In turn, sup(x,y)∈D |Π(x, y)| = OP (lnn/n−1/2) or

Oa.s(lnn(ln lnn/n)1/2). Thus the claimed result.

�

Proof Propostion 3.4.4

For convenience, set ‖(x1, ..., xd)‖ = max1≤j≤d |xj|. Set D = [u0, u∞]×[v0, v∞] ⊂ (0, 1)2

a compact subset where 0 < u0 ≤ u∞ < 1 and 0 < v0 ≤ v∞ < 1. We mimic the proof of

proposition 3.4.1. We still have the additive decomposition,

Π(u, v) = Π1(u, v) + Π2(u, v)

= Π11(u, v) + Π12(u, v) + Π2(u, v)

with

Π11(u, v) =
1

nh3
n

n∑
i=1

Zi,n(Wi,n(u, v)− EWi,n(u, v))

Π12(u, v) =
1

nh3
n

n∑
i=1

Zi,nEWi,n(u, v)

and

Wi,n = ∇K
(
u− F (Xi)

hn
,
v −G(Yi)

hn

)
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• Negligibility of Π2.

The proof remains the same:

sup
(x,y)∈D

|Π2(u, v)| = OP

(
1

nh4
n

)
, and Π2 = Oa.s

(
ln lnn

nh4
n

)
• Negligibility of Π12.

Recall that in the Taylor's expansion of the bias of the kernel estimator, the O(.) is

uniform in (u, v), therefore one gets that

sup
(u,v)∈D

‖EWi,n(u, v)− h3
n∇c(u, v)‖ = O(h5

n)

Thus,

sup
(u,v)∈D

|Π12(u, v)| = OP (1/
√
n), or Oa.s((ln lnn/n)1/2).

• Negligibility of Π11.

De�ne a covering of D by M2
n compact hypercubes Dk centered in (uk, vk),

Dk = {(u, v) ∈ D : ‖(u, v)− (uk, vk)‖ ≤ 1/Mn}, 1 ≤ k ≤M2
n

One can write

sup(x,y)∈D |Π11(u, v)| ≤ max1≤k≤M2
n

sup(x,y)∈D |Π11(u, v)− Π11(uk, vk)|

+ max1≤k≤M2
n
|Π11(uk, vk)|

:= (I) + (II)

• Negligibility of (I)

For (I), by boundedness and Lipshitz assumption on the product kernel K, there exists

a constant ζ such that,

‖∇K(u, v)−∇K(uk, vk)‖ ≤ ζ‖(u, v)− (uk, vk)‖
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Therefore for (u, v) ∈ Dk,

∥∥∥∥∇K (u− F (Xi)

hn
,
v −G(Yi)

hn

)
−∇K

(
uk − F (Xi)

hn
,
vk −G(Yi)

hn

)∥∥∥∥ ≤ ζ

Mnhn

since K is product-shaped. In turn, the same bound is valid by Jensen's inequality for

the expectations of the di�erence, so that

(I) ≤ 2ζ‖Zn‖
Mnh4

n

Setting Mn = n1/2h3
n ' n/

√
lnn for hn ' (lnn/n)1/6, one has that (I) = Oa.s

(√
lnn
nh2n

)
or OP ((nh2

n)−1/2).

• Negligibility of (II)

For the second term, set as before, Ai(u, v) = Wi,n(u, v)− EWi,n(u, v), and majorize,

for each k,

|Π11(uk, vk)| ≤ ‖Zn‖
nh3n

∑n
i=1 ‖Ai(uk, vk)‖

≤ ‖Zn‖
nh3n

∑n
i=1(‖Ai(uk, vk)‖ − E‖Ai(uk, vk) + E‖Ai(uk, vk)‖)

≤ ‖Zn‖
nh3n

∑n
i=1 ηi(uk, vk) + ‖Zn‖

nh3n

∑n
i=1E‖Ai(uk, vk)‖

where we have set ηi(uk, vk) = ‖Ai(uk, vk)‖ −E‖Ai(uk, vk). For the expectation term,

as the product kernel is of �nite variation, and with the assumption that the gradient of

the copula density remains bounded on D, one has that max1≤k≤M2
n

∑n
i=1E‖Ai(uk, vk)‖ =

O(h3
n). This yields that

max
1≤k≤M2

n

‖Zn‖
nh3

n

n∑
i=1

E‖Ai(uk, vk)‖ = OP (n−1/2), or Oa.s

((
ln lnn

n

)1/2
)
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It remains to deal with the deviation term

‖Zn‖
nh3

n

n∑
i=1

ηi(uk, vk)

We have

P

(
max

1≤k≤M2
n

∣∣∣∣∣
n∑
i=1

ηi(uk, vk)

∣∣∣∣∣ > ε

)
≤

M2
n∑

k=1

P

(∣∣∣∣∣
n∑
i=1

ηi(uk, vk)

∣∣∣∣∣ > ε

)

and apply Hoe�ding's inequality to the summand, to get that, for every ε > 0,

P

(∣∣∣∣∣
n∑
i=1

ηi(uk, vk)

∣∣∣∣∣ > ε
√
n lnn

)
≤M2

ne
− ε

2 lnn
ζ ≤ e

√
2 lnMn− ε

2 lnn
ζ

For hn ' (lnn/n)1/6 and Mn = n1/2h−3
n ' n/

√
lnn,

e
√

2 lnMn− ε
2 lnn
ζ ≈ e−

ε2 lnn
ζ =

1

nε2/ζ

which is absolutely summable for an ε large enough. Therefore,

max
1≤k≤M2

n

∣∣∣∣∣
n∑
i=1

ηi(uk, vk)

∣∣∣∣∣ = Oa.co(
√
n lnn)

and eventually,

‖Zn‖
nh3

n

max
1≤k≤M2

n

∣∣∣∣∣
n∑
i=1

ηi(uk, vk)

∣∣∣∣∣ = Oa.s

(√
lnn ln lnn

nh3
n

)

for the choice hn ' (lnn/n)1/6.

Recollecting all elements gives the claimed result with the given choice of hn. �
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