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Introduction

Fractional Brownian motion was introduced by Kolmogorov in connection to his work
related to turbulence (1940). Kolmogorov gave a spectral representation of fBm using an
orthogonally scattered Gaussian measure.
In 1968 Mandelbroit and van Ness gave another representation for Kolmogorov process,
and they also renamed the process to fractional Brownian motion.
In 1969 Molchan and Golosov proved a Girsanov theorem for Kolmogorov process. They
also gave a representation theorem for Kolmogorov process in terms of standard Brownian
motion.
In the case of Brownian motion, the famous Lévy characterization theorem states that a

continuous stochastic process (Bt, t ≥ 0) adapted to a right-continuous filtration (Ft, t ≥
0) is an Ft-Brownian motion if and only if B is a local martingale and 〈B〉t = t. A natural
problem is the extension of Lévy characterization theorem to the fractional Brownian
motion.
The purpose of this manuscript is to introduce and study the notion of a fractional

martingale, and apply it to the above problem. The notion of fractional martingales has
been introduced in [11] where the authors proved an extension of Lévy’s characterization
theorem to the fractional Brownian motion.
Fix α ∈ (−1

2
, 1

2
). If {Mt, t ≥ 0} is a continuous local martingale, we denote

by M (α) = (M
(α)
t , t ≥ 0) the stochastic process defined by

M
(α)
t =

∫ t

0

(t− s)αdMs

provided this stochastic integral exists for all t ≥ 0. The process M (α) is called the

Riemann-Liouville process of M . Notice that M (α) is no longer a martingale and we will
say that it is a fractional martingale.
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We are interested here in the variation properties of fractional martingales. The process

M (α) has Hölder continuous trajectories of order γ on any finite interval, for any γ < 1
2
+α,

provided M has Hölder continuous trajectories of order 1
2
− ε, on any finite interval, for

any ε > 0. Then, it is natural to expect that M (α) has a finite and nonzero variation of

order β = (1
2

+ α)−1 . We show that (see Theorem 2.1.1) if d〈M〉t = ξ2
t dt, then M (α) has

a finite β-variation cα
∫ t

0
|ξs|βds under some integrability conditions on ξ, where cα is a

constant depending only on α. The proof of this result is based on the variation properties
of the fractional Brownian motion.
The fractional Brownian motion BH is not a martingale unless H = 1

2
. But the process

Mt =

∫ t

0

s
1
2
−H(t− s)

1
2
−HdBH

s

is a martingale with respect to the filtration generated by the fBm, verifying 〈M〉t =

dHt
2H for some constant dH . We show that if B = (Bt, t ≥ 0) is a continuous square

integrable centered process with B0 = 0, then B is a fractional Brownian motion with
Hurst parameter H if and only if the process B has the following properties:

i) The sample paths of the process B are Hölder continuous of order γ for any γ ∈ (0, H).

ii) The process M defined in above, where BH is replaced by B, is a martingale with

respect to the filtration generated by B. IfH > 1
2
, we also assume that the quadratic

variation of M is absolutely continuous with respect to the Lebesgue measure.

iii) For any t > 0, the process B has 1
H
-variation which equals to cHt on the interval

[0, t].

In order to prove that the conditions (i), (ii) and (iii) imply that B is a fractional

Brownian motion, it suffices to show that the martingale M satisfies 〈M〉t = dHt
2H for

some constant dH , and this will be a consequence of the condition (iii) and the general
result on the β-variation of a fractional martingale.
In a recent work [11], Mishura and Valkeila have proved another extension of the Lévy

characterization theorem, where condition (iii) is replaced by an assumption on the renor-
malized quadratic variation, and no restriction on the quadratic variation ofM is required.
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This senior thesis is orgnized as follows. chapter 1 divided on two section, In the first
we give the definition of fractional Brownian motion (one parameter cases), and some
properties, In the second section we give the necessary notion of Two-parameter frac-
tional Brownian motion and its properties, Chapter 2 is devoted to study the β-variation
of fractional martingales, and contains the proof of the Lévy characterization theorem for
the fBm. Some technical lemmas are included in the Appendix.



Chapter 1

The elements of Fractional Brownian
Motion

1.1 Fractional Brownian Motion

Let (Ω,A,P) be a complete probability space.

Definition 1.1.1 The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1) is

a Gaussian process BH = {BH
t , t ∈ R} on (Ω,A,P), having the properties:

1. BH
0 = 0,

2. E[BH
t ] = 0; t ∈ R,

3. E[BH
t B

H
s ] =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
; s, t ∈ R.

Remark 1.1.1 Since E[BH
t − BH

s ]2 = |t − s|2H and BH is a Gaussian process, it has a
continuous modification, according to the Kolmogorov criterion.

Remark 1.1.2 For H = 1, we set BH
t = B1

t = tξ, where ξ is a standard normal Random
variable.
For H = 1

2
, the characteristic function has the form

φλ(t) = E
[
exp(i

n∑
k=1

λkB
H
tk

)
]

= exp
(
−1

2
(Ctλ, λ)

)
,

where Ct = (E[BH
tK
BH
ti

])1≤i,k≤nand (., .) is the inner product on Rn.
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8 The elements of Fractional Brownian Motion

1.1.1 Stochastic Integral Representation

Here we discuss some of the integral representations for the fBm. In [10] it is proved that
the process

Z(t) =
1

Γ(H + 1
2
)

∫
R
((t− s)H−

1
2

+ − (−s)H−
1
2

+ )dB(s)

=
1

Γ(H + 1
2
)

(∫ 0

−∞
((t− s)H−

1
2 − (−s)H−

1
2 )dB(s)

+

∫ t

0

(t− s)H−
1
2dB(s)

)
.

Where B(t) is a standard Brownian motion and Γ represents the gamma function, is a

fBm with Hurst index H ∈ (0, 1). First we notice that Z(t) is a continuous centered
Gaussian process. Hence, we need only to compute the covariance functions. In the

following computations we drop the constant 1
Γ(H+ 1

2
)
for the sake of simplicity. We obtain

E[Z2(t)] =

∫
R

[
(t− s)H−

1
2

+ − (−s)H−
1
2

+

]2

ds

= t2H
∫
R

[
(1− u)

H− 1
2

+ − (−u)
H− 1

2
+

]2

du

= C(H)t2H ,

where we have used the change of variable s = tu. Analogously, we have that

E[|Z(t)− Z(s)|2] =

∫
R

[
(t− u)

H− 1
2

+ − (s− u)
H− 1

2
+

]2

ds

= t2H
∫
R

[
(t− s− u)

H− 1
2

+ − (−u)
H− 1

2
+

]2

du

= C(H)|t− s|2H .

Now

E[Z(t)× Z(s)] = −1

2

{
E[|Z(t)− Z(s)|2]− E[Z(t)2]− E[Z(s)2]

}
=

1

2

(
t2H + s2H − |t− s|2H

)
.

Hence we can conclude that Z(t) is a fBm of Hurst index H.
We can also represent the fBm over a finite interval, i.e.

B
(H)
t =

∫ t

0

KH(t, s)dBs, t ≥ 0,
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where

1. For H > 1
2
,

KH(t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2du

where cH =
[

H(2H−1)

β(2−2H,H− 1
2

)

] 1
2

and t > s,

2. For H < 1
2
,

KH(t, s) = cH

[( t
s

)H− 1
2

(t− s)H−
1
2 − (H − 1

2
)s

1
2
−H
∫ t

s

uH−
3
2 (u− s)H−

1
2du
]
,

with cH =
[

2H
(1−2H)β(1−2H,H+ 1

2
)

] 1
2

and t > s.

1.1.2 Correlation between two increments

For H =
1

2
, B(H) is a standard Brownian motion; hence, in this case the increments

of the process are independent. On the contrary, for H 6= 1

2
the increments are not

independent. More precisely, by Definition (1.1.1) we know that the covariance between

BH(t+ h)−BH(t) and BH(s+ h)−BH(s) with s+ h ≤ t and t− s = nh is

ρH(n) =
1

2
h2H

[
(n+ 1)2H + (n− 1)2H − 2n2H

]
.

In particular, we obtain that two increments of the form BH(t+ h)−BH(t) and BH(t+

2h)−BH(t+ h) are positively correlated for H >
1

2
, while they are negatively correlated

for H <
1

2
. In the first case the process presents an aggregation behavior and this

property can be used in order to describe (cluster) phenomena (systems with memory and

persistence). In the second case it can be used to model sequences with intermittency
and antipersistence.
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1.1.3 Self-similarity

Definition 1.1.2 We say that an Rd-valued random process X = (Xt)t≥0 is self-similar
or satisfies the property of self-similarity if for every a > 0 there exist b > 0 such that:

law (Xat, t ≥ 0) = law (bXt, t ≥ 0) (1.1)

Note that (1.1) means that the two process Xat and bXt have the same finite-dimensional
distribution functions, i.e., for every choice t1, ..., tn ∈ R,

P (Xat0 ≤ x0, ..., Xatn ≤ xn) = P(bXt0 ≤ x0, ..., bXtn ≤ xn)

For every x0, ..., xn ∈ R.

Remark 1.1.3 If b = a−H in (1.1), then we say that X = (Xt)t0 is a self-similar process

with Hurst index H or that it satisfies the property of (statistical) self-similarity with Hurst

index H. The quantity D = 1
H

is called the statistical fractal dimension of X. Since the

covariance function of the fBm is homogeneous of order 2H, we obtain that BH is a self-

similar process with Hurst index H, i.e., for any constant a > 0 the processes BH(at) and

a−HBH(t) have the same distribution law.

1.1.4 Hölder continuity

We recall that according to the Kolmogorov criterion [16], a process X = (Xt)t∈R admits
a continuous modification if there exist constants α ≥ 1 , β > 0, and k > 0 such that

E[|X(t)−X(s)|α] ≤ k|t− s|1+β

for all s, t ∈ R.

Theorem 1.1.1 Let H ∈ (0, 1). The fractional Brownian motion BH admits a version
whose sample paths are almost surely Hölder continuous of order strictly less than H.

Proof. We recall that a function f : R −→ R is Hölder continuous of order α,
0 < α ≤ 1 and write f ∈ Cα(R), if there exists M > 0 such that

|f(t)− f(s)| ≤M |t− s|α,
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for every s, t ∈ R. For any α > 0 we have

E[|BH(t)−BH(s)|α] = E[|BH(1)|α]|t− s|αH ;

hence, by the Kolmogorov criterion we get that the sample paths of BH are almost every
where Hölder continuous of order strictly less than H. Moreover, by [1] we have

lim sup
t−→0+

|BH(t)|
tH
√

log log t−1
= cH

with probability one, where cH is a suitable constant. Hence BH can not have sample
paths with Hölder continuity’s order greater than H. �

1.1.5 Path differentiability

By [9] we also obtain that the process BH is not mean square differentiable and it does
not have differentiable sample paths.

Proposition 1.1.1 Let H ∈ (0, 1). The fractional Brownian motion sample path BH(.)

is not differentiable. In fact, for every t0 ∈ [0,∞)

lim
t→t0

sup

∣∣∣∣BH
t −BH

t0

t− t0

∣∣∣∣ =∞

With probability one.

1.1.6 The fBm is not a Semimartingale for H 6= 1
2

The fact that the fBm is not a semimartingale for H 6= 1

2
has been proved by several

authors. In order to verify that BH is not a semimartingale for H 6= 1

2
, it is sufficient to

compute the p-variation of BH .

Definition 1.1.3 Let (X(t))t∈[0,T ] be a stochastic process and consider a partition

π = {0 = t0 < t1 < . . . < tn = T}. Put

Sp(x, π) :=
n∑
i=1

|X(ti)−X(ti−1)|p
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The p-variation of X over the interval [0, T ] is defined as

Vp(X, [0, T ]) := sup
π
Sp(X, π),

where π is a finite partition of [0, T ]. The index of p-variation of a process is defined as

I(X, [0, T ]) := inf{p > 0;Vp(X, [0, T ]) <∞}.

We claim that

I(BH , [0, T ]) =
1

H
.

In fact, consider for p > 0,

Yn,p = npH−1

n∑
i=1

∣∣∣∣BH
( i
n

)
−BH

(i− 1

n

)∣∣∣∣p .
Since BH has the self-similarity property, the sequence Yn,p, n ∈ N has the same distri-
bution as

Ỹn,p = n−1

n∑
i=1

∣∣BH(i)−BH(i− 1)
∣∣p .

and By the Ergodic theorem the sequence ỹn,p converges almost surely and in L1 to

E[|BH(1)|p] as n tends to infinity. It follows that

Vn,p =
n∑
i=1

∣∣∣∣BH
( i
n

)
−BH

(i− 1

n

)∣∣∣∣p
converges in probability respectively to 0 if pH > 1 and to infinity if pH < 1 as n tends to

infinity. Thus we can conclude that I(BH , [0, T ]) = 1
H
. Since for every semimartingale X,

the index I(X, [0, T ]) must belong to [0, 1]∪{2}, the fBm BH cannot be a semimartingale

unless H =
1

2
.

1.1.7 Invariance principle

Here we present an invariance principle for fBms due to [2].

Assume that {Xn, n = 1, 2, ...} is a stationary Gaussian sequence with E[Xi] = 0

and E[X2
i ] = 1. Define
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Zn(t) = 1
nH

[nt]∑
k=1

Xk, 0 ≤ t ≤ 1,

where [.] stands for the integer part. We will show that if the covariance of
n∑
0

Xk is

proportional to Cn2H for large n, Zn(t), t ≥ 0 converges weakly to
√
CB

(H)
t in a suitable

metric space. Let as first introduce the real-valued function ωαβ (.) defined by

ωαβ (t) = tα
(

1 + log
1

t

)β
, t > 0,

and we let

||f ||ω
α
β
p = ||f ||Lp(I) sup

0<t≤1

ωp(f, t)

ωαβ (t)
.

The Besov space Lipp(α, β) is the class of functions f in Lp(I) such that ||f ||ω
α
β
p < ∞.

Lipp(α, β) endowed with the norm ||.||ω
α
β
p is a nonseparable Banach space. Let Bα,β

p de-

note the separable subspace of Lipp(α, β) formed by functions f ∈ Lipp(α, β) satisfying

ωp(f, t) = ◦(ωαβ (t)) as t −→ 0. For a continuous function f , denote by {Cn(f), n ≥ 0} the
coefficients of the decomposition of f in the Schauder basis given by

C0(f) = f(0), C1(f) = f(1)− f(0),

and for n = 2j + k, j ≥ 0, and k = 0, . . . , 2j − 1,

Cn(f) = 2.2
j
2

{
f

(
2k + 1

2j+1

)
− 1

2

[
f

(
2k

2j+1

)
+ f

(
2k − 2

2j+1

)]}
.

Lemma 1.1.1 Let α > 1
p
and 0 < β < β′. The space Lipp(α, β) is compactly embedded

in Bα,β′
p .

We refer the reader to [10].

Lemma 1.1.2 Let (X t
n, t ∈ I)n≥1 be a sequence of stochastic processes satisfying
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1. Xn
0 = 0, for all n ≥ 1.

2. There exists a positive constant C and α ∈]0, 1[ such that for p ≥ 1,

E[|Xn
t −Xn

s |p] ≤ C|t− s|pα;

for all s, t ∈ I. Then (Xn(t), t ∈ I)n≥1 is tight in Bα,β
p , β > 0 for p > max( 1

α
, 1
β
).

Proof. By the assumptions, we have C0(Xn) = 0 and C1(Xn) = Xn
1 . To prove the

lemma, by [10] it is enough to show that there exists a constant Cp > 0 such that, for

λ > 0 and 1
p
< β′ < β, we have

P(||Xn||ω
α
β′
p > λ) ≤ Cpλ

−p

for all n ≥ 1.Thus, it suffices to show that

P (M(Xn) > λ) ≤ Cpλ
−p,

where M(Xn) is the maximum of the set

|C0(Xn)|, |C1(Xn)|, sup
j≥0

2−j(
1
2
−α+ 1

p
)

(1 + j)β′

 2j+1∑
m=2j+1

|Cm(xn)|p
 1
p

 .

Now, by the Chebyshev inequality, we have

I = P

sup
j≥0

2−j(
1
2
−α+ 1

p
)

(1 + j)β′

 2j+1∑
m=2j+1

|Cm(Xn)|p
 1
p

> λ


≤

∑
j≥0

2−jp(
1
2
−α+ 1

p
)

(1 + j)pβ′

2j+1∑
m=2j+1

E[|Cm(Xn)|p]λ−p.

Recall that for m = 2j + k,

Cm(Xn) = 2.2
j
2

[
Xn

(2k−1)/2j+1 −
1

2

(
Xn

(2k)/2j+1 +X(2k−2)/2j+1

)]
.
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Thus,

I ≤ Cpλ
−p
∑
j≥0

2−jp(
1
2
−α+ 1

p
)

(1 + j)pβ′
.

2j∑
k=1

(
E[|Xn

(2k−1)/2j+1 −X(2k)/2j+1 |p]

+ E[|Xn
(2k−1)/2j+1 −Xn

(2k−2)/2j+1|p]
)

≤ λ−p

[
Cp
∑
j≥0

1

(1 + j)pβ′

]
≤ Cpλ

−p.

which completes the proof. �

Corollaire 1.1.1 Let H ∈ (0, 1), β > 0, and p > max( 1
H
, 1
β
).

Assume that {Xn, n = 1, 2, . . .} is a stationary Gaussian sequence with spectral represen-
tation

Xn =

∫ π

−π
exp(inλ)|λ|

1
2−HB(dλ), n = 1, 2 . . . ,

where B(dλ) is a Gaussian random measure with E[|B(dλ)|2] = dλ. Then there exists a

positive constant C such that (Zn(t), t ∈ [0, 1]) converges weakly to (CBH
t ), t ∈ [0, 1]) in

the space BH,β
p .

1.2 Two-parameter Fractional Brownian Motion

1.2.1 The Main Definition

For technical simplicity we consider two-parameter fbm (fbm field) {BH
t , t ∈ R2

+}, where
t = (t1, t2). We suppose that s ≤ t if s = (s1, s2), t = (t1, t2) and si ≤ ti, i = 1, 2.

Definition 1.2.1 The two-parameter process {BH
t , t ∈ R2

+} is called a (normalized) two-

parameter fBm with Hurst index H = (H1, H2) ∈ (0, 1)2, if it satisfies the assumptions:

(a) BH is a Gaussian field, Bt = 0 for t ∈ ∂R2
+;

(b) EBH
t = 0, EBH

t B
H
s =

1

4

∏
i=1,2

(
t2Hii + s2Hi

i − | ti − si |2Hi
)
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Evidently, such a process has the modification with continuous trajectoires, and we will
always consider such a modification. Moreover, consider "two-parameter" increments:

∆sB
H
t := BH

t − BH
s1t2
− BH

t1s2
+ BH

s for s ≤ t. Then they are stationary. Note, that for

any fixed ti > 0 the process BH
(ti,.)

will be the fbm with Hurst index Hj, i = 1, 2, j = 3− i,

evidently, nonnormalized.

1.2.2 Fractional Integrals and Fractional Derivatives of Two-parameter
Functions

For α = (α1, α2) denote Γ(α) = 1
Γ(α1)Γ(α2)

Definition 1.2.2 [15] Let f ∈ P := [a, b] :=
∏
i=1,2

[ai, bi], a = (a1, a2), b = (b1, b2). Forward

and backward Reimann-Liouville fractional integrals of orders 0 < αi < 1 are defined as

(Iα1α2

a+ f)(x) := Γ(α)

∫
[a,x]

f(u)

ϕ(x, u, 1− α)
du,

and

(Iα1α2

b− f)(x) := Γ(α)

∫
[x,b]

f(u)

ϕ(x, u, 1− α)
du,

correspondingly, where [a, x] =
∏
i=1,2

[ai, xi], [x, b] =
∏
i=1,2

[xi, bi], du = du1du2,

ϕ(u, x, α) =| u1 − x1 |α1 | u2 − x2 |α2 , u, x ∈ [a, b].

Definition 1.2.3 Forward and backward fractional Liouville derivatives of orders
0 < αi < 1 are defined as

(Dα1α2

a+ f)(x) := Γ(1− α)
∂2

∂x1∂x2

∫
[a,x]

f(u)

ϕ(x, u, α)
du,

and

(Dα1α2

b− f)(x) := Γ(1− α)
∂2

∂x1∂x2

∫
[x,b]

f(u)

ϕ(x, u, α)
du, x ∈ [a, b]



1.2 Two-parameter Fractional Brownian Motion 17

Definition 1.2.4 Forward fractional Marchaud derivatives of orders 0 < αi < 1 are
defined as

(D̃α1α2

a+ f)(x) := Γ(1− α)
( f(x)

ϕ(x, u, α)
+ α1α2

∫
[a,x]

∆uf(x)du

ϕ(x, u, 1 + α)

+
∑

i=1,2,j=3−i

αi
xj − aj

αj

∫ xi

ai

f(x)− f(ui, xj)

(xi − ui)1+αi
dui

)
and the backward derivatives can be defined in a similar way.

Let 1 ≤ p ≤ ∞, the classes Iα1α2
+ (Lp(P)) :=

{
f |f = Iα1α2

a+ ϕ, ϕ ∈ Lp(P)
}
, Iα1α2
− (Lp(P)) :={

f |f = Iα1α2

b− ϕ, ϕ ∈ Lp(P)
}

Further we denote Dα1α2

a+ := I
−(α1α2)

a+ . Of course, we can introduce the notion of fractional

integrals and fractional derivatives on R2
+. For exemple, the Riemann-Liouville fractional

integrals and derivatives on R2
+ are defined by the formulas

(Iα1α2
+ f)(x) := Γ(α)

∫
(−∞,x]

f(t)

ϕ(x, u, α)
dt,

(Iα1α2
− f)(x) := Γ(α)

∫
[x,∞)

f(t)

ϕ(x, u, α)
dt,

(I
−(α1α2)
+ f)(x) = (Dα1α2

+ f)(x) := Γ(1− α)
∂2

∂x1∂x2

∫
(−∞,x]

f(t)

ϕ(x, t, α)
dt,

and

(I
−(α1α2)
− f)(x) = (Dα1α2

− f)(x) := Γ(1− α)
∂2

∂x1∂x2

∫
[x,∞)

f(t)

ϕ(x, t, α)
dt,

0 < αi < 1. Evidently, all these operators can be expanded into the product of the form
Iα1α2

+ = Iα1
+ ⊗Iα2

+ , and so on. In what follows we shall consider only the case Hi ∈ (1/2, 1).

Define the operator

MH1H2
± f :=

∏
i=1,2

C
(3)
Hi
Iα1α2
± f.
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Definition 1.2.5 A random field {Xt, t ∈ R2
+} is a field with independent increments if

its increments {∆siXti , i = 1, n} for any family of disjoint rectangles {(si, ti], i = 1, n}
are independent.

Definition 1.2.6 The random field {Wt, t ∈ R2
+} is called the Wiener field if W = 0 on

∂R2
+. W is the field with the independent increments and

E(∆sWt)
2 = area((s, t]) =

∏
i=1,2

(ti − si).

Let we have a probability space (Ω,F ,P) with two-parameter filtration {Ft, t ∈ R2
+} on

it. It means that Fs ⊂ Ft ⊂ F for s < t. Denote F∗s := σ{Fu, s ≤ u}.

Definition 1.2.7 An adapted random field {Xt,Ft, t ∈ R2
+} is a strong martingale if X

vanishes on ∂R2
+, E|Xt| <∞ for all t ∈ R2

+ and for any s < t E(∆sXt|F∗s ) = 0.

Evidently, any random field with constant expectation and independent increments is a
strong martingale, in particular, the Wiener field is a strong martingale.

Definition 1.2.8 Let

f ∈ LH1H2
2 :=

{
f : R2 −→ R :

∫
R2

((MH1H2
− f)(t))2dt <∞

}

Then we denote
∫
R2

f(t)dBH1H2
t as

∫
R2

(MH1H2
− f)(t)dWt for the underlying Wiener process

W.

1.2.3 Hölder Properties of Two-parameter fbm

We fix α = (α1, α2), αi ∈ (0, 1] and let T = [a1, b1]× [a2, b2]. Let f the Riemann-Liouville
fractional integral of order α i.e

(Iαa+f)(x1, x2) =
1

Γ(α1)Γ(α2)

∫ x1

a1

∫ x2

a2

f(t1, t2)

(x1 − t1)1−α1(x2 − t2)1−α2
dt1dt2, (x1, x2) ∈ T

The space Λα,p = (Iαa+)(Lp(T )) is called the Liouville space (or Besov space) and it

becomes separable Banach space with respect to the norm

‖Iαa+f‖α,p = ‖f‖p
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Proposition 1.2.1 [7] For every α, β

Iαa+I
β
a+ = Iα+β

a+ ,

If f ∈ C2
b (T ) and f = 0 on ∂1T = ([a1, b1]× {b1}) ∪ ({a1} × [a2, b2])then the function

Dα
a+f(x1, x2) =

1

Γ(1− α1)Γ(1− α2)

∫ x1

a1

∫ x2

a2

∂2f(t1, t2)

∂t1∂t2

dt1dt2
(x1 − t1)α1(x2 − t2)α2

(1.2)

is the unique function from L∞(T ) such that

Iαa+D
α
a+f = f.

For a rectangle D = [s1, t1]× [s2, t2] ⊂ T we define the increment on D of the function
f : T → R by

f(D) = f(t1, t2)− f(t1, s2)− f(s1, t2) + f(s1, s2).

We denote by Cαi([ai, bi]) the space of all αi−Hölder functions on [ai, bi] and

‖f‖[ai,bi],αi = sup
u6=v,ai≤u,v≤bi

|f(u)− f(v)|
(u− v)αi

.

Also, we denote by Cα1,α2(T ) the space of all (α1, α2)−Hölder functions on T , i.e.,

f ∈ Cα1,α2(T ) if f is continuous,

‖f(a1, .)‖[a2,b2],α2 <∞, ‖f(., a2)‖[a1,b1],α1 <∞

and

‖f‖T,α1,α2 = sup
ui 6=vi

|f([u1, v1]× [u2, v2])|
|u1 − v1|α1|u2 − v2|α2

<∞.

Proposition 1.2.2 [4] Let 0 < β1 < α1, 0 < β2 < α2 and p ≥ 1. Then we have the
continuous inclusions Λα,p ⊂ Λβ,p,

Λα,p ⊂ Cα1−p−1,α2−p−1

, Cβ1,β2 ⊂ Λγ,p if αip > 1, βi > γi > 0

ici il faut tout d’abord dfinir la fonction gnralis
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Proposition 1.2.3 [4] Assume that f, g are C1([a, b])−function with f(a) = 0. Let α, β ∈
(0, 1] be such that α + β > 1 and let δ := {a = t0 < ... < tn = b} be a partition of [a, b]

with the norm ‖δ‖ = max
j
|tj+1 − tj|. Then for every 0 < ε < α + β − 1 the following

estimates hold: ∣∣∣∣∫ b

a

f(t)dg(t)

∣∣∣∣ ≤ C(α, β)‖f‖[a,b],α‖g‖[a,b],β(b− a)1+ε, (1.3)

∣∣∣∣∣
∫ b

a

f(t)dg(t)−
∑
i

f(ti) [g(ti+1)− g(ti)]

∣∣∣∣∣ ≤ C(α, β)‖f‖[a,b],α‖g‖[a,b],β(b− a)ε. (1.4)



Chapter 2

Fractional martingales and
characterization of the fractional
Brownian motion

2.1 β-variation of α-martingales

Let (Ω,F ,P) be a complete probability space equipped with a right-continuous filtration

(Ft, t ≥ 0) such that F0 contains the P-null sets. Fix a parameter α ∈ (−1
2
, 1

2
). We

introduce the following notion.

Definition 2.1.1 A continuous Ft-adapted process (M
(α)
t , t ≥ 0) is called a fractional

martingale of order α if there is a continuous local martingale (Mt, t ≥ 0) such that for
all t ≥ 0, ∫ t

0

(t− s)2αd〈M〉s <∞ (2.1)

almost surely, and

M
(α)
t =

∫ t

0

(t− s)αdMs (2.2)

Notice that by Fubini’s theorem condition (2.1) holds true for almost all t ≥ 0.

if α ∈ (0, 1
2
), then (2.1) is always fulfilled. Moreover, an integration by parts implies that

the integral appearing in (2.2) exists as a Riemann-Stieltjes integral and

M
(α)
t = Γ(α + 1)Iα0+(Mt), where Iα0+ is the left-sided fractional integral of order α.

21
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For any α ∈ (−1
2
, 0) we introduce the following hypothesis:

(H). The trajectories of M are α′-Hölder continuous on finite intervals for some α′ > −α
Then we have the following result.

Lemma 2.1.1 Fix α ∈ (−1
2
, 0) and let M be a continuous local martingale satisfying con-

dition (H). Then (2.1) holds, M (α)
t exists as a Riemann-Stieltjes integral and it coincides

with M (α)
t = Γ(α + 1)D−α0 (M)t where D−α0+ is the left-sided fractional derivative of order

−α.

Proof. Set

Zt = |Mt|+ 〈M〉t + sup
0≤s≤u≤t

|Ms −Mu|
|s− u|−α′

For any integer n ≥ 1 we define

TN = inf{t ≥ 0 : Zt > N}.

Then, TN is an nondecreasing sequence of stopping times such that TN ↑ ∞. For any
s < t we can write

E(|〈M〉t∧TN − 〈M〉s∧TN |p) ≤ CpE(|Mt∧TN −Ms∧TN |2p) ≤ CpN
2p|t− s|2pα′ .

By Kolmogorovs continuity criterion the sample paths of 〈M〉 are Hölder continuous of

order γ for any γ < 2α′ , on any finite interval. This implies (2.1), and it is easy
to check that the stochastic integral is a Riemann-Stieltjes integral and coincides with

Γ(α + 1)D−α0+ (M)t. �

From fractional calculus, assuming condition (H) if α < 0,we haveMt = 1
Γ(α+1)

I−α0+ (M (α))t

where I−α = Dα if α > 0. Using the definition of the leftsided fractional integral and
derivative, we have

Mt =

{
1

Γ(α+1)Γ(−α)

∫ t
0
(t− s)−1−αdM

(α)
s , ifα < 0

1
Γ(α+1)Γ(1−α)

∫ t
0
(t− s)−αdM (α)

s , ifα > 0.
(2.3)

In order to define the β-variation, let us first introduce some notation. Fix a time
interval [a, b], and consider the uniform partition

Πn = {a = tn0 < tn1 < . . . < tnn = b},
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where tni = a+ i
n
(b−a) for i = 0, . . . , n. let β ≥ 1 and let X = (Xt, t ≥ 0) be a continuous

stochastic process.

Definition 2.1.2 We define the β-variation of X on the interval [a, b], denoted by 〈X〉β,[a,b],
as the limit in probability of

S
[a,b]
β,n :=

n∑
i=1

|∆n
iX|β, (2.4)

if the limit exists, where ∆n
iX = Xtni

−Xtni−1
. We say that the β-variation of X on [a, b]

exist in L1 if the above limit exists in L1.

We also denote 〈X〉β,[0,t] by 〈X〉β,t. For instance, a continuous local martingale as a finite

2-variation, denoted by 〈M〉t and the fractional Brownian motion BH
t of Hurst parameter

H ∈ (0, 1) has 1
H
-variation which is equal to cHt, where cH = (E|BH

1 |)
1
H .

A direct consequence of the above definition is that if 〈X〉β,[a,b] exists, then for any a <

b < c, both 〈X〉β,[a,b] and 〈X〉β,[b,c] exist and

〈X〉β,[a,c] = 〈X〉β,[a,b] + 〈X〉β,[b,c]. (2.5)

It is also easy to see that the following triangular inequality holds:

S
[a,b]
β,n (X + Y )

1
β ≤ S

[a,b]
β,n (X)

1
β + S

[a,b]
β,n (Y )

1
β . (2.6)

This inequality implies that if X and Y are two continuous stochastic processes such that
〈X〉β,[a,b] exists and 〈Y 〉β,[a,b] = 0

〈X + Y 〉β,[a,b] = 〈X〉β,[a,b]. (2.7)

Let W = (Wt, t ≥ 0) be an Ft-Brownian motion. We want to compute the β-variation

of M (α), where M is a martingale of the form Mt =
∫ t

0
ξsdWs.

We will denote by C a generic constant that may depend on α. Consider first the case
where the martingale is just a standard Wiener process. We recall that

β =
2

1 + 2α
.
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Lemma 2.1.2 Let W = (Wt, t ≥ 0) be a Wiener process, and set

Xt = W
(α)
t =

∫ t

0

(t− s)(α)dWs

Then the β-variation of X exists in L1 and 〈X〉β,[a,b] = cα(b − a), where cα = cHk
− 1
H

H ,

H = 1
2

+ α, cH = (E|BH
1 |)

1
H , and

kH =

(
2HΓ(3

2
−H)

Γ(H + 1
2
)Γ(2− 2H)

) 1
2

. (2.8)

Proof. Because of (2.5), it is sufficient to show that 〈X〉β,t = cαt .We can extend

the underlying probability space in such a way that (W−t, t ≥ 0) is a Brownian motion

independent of W . Then, the process BH defined by

BH
t = kH

(∫ t

0

(t− s)αdWs +

∫ 0

−∞
((t− s)α − (−s)α)dWs

)
;

is a fractional Brownian motion with Hurst parameter H (see Mandelbrot and Van Ness

[8]). Hence,

Xt = k−1
H BH

t − Zt,

where Zt =
∫ 0

−∞((t − s)α − (−s)α)dWs. From the 1
H
-variation property of fractional

Brownian motion we know 〈BH〉β,t = cHt, in L1, because β = 1
H
. Then, by (2.7) it

suffices to show that lim
n→∞

E(|S[0,t]
β,n (Z)|) = 0 for all t ≥ 0. We have

n∑
i=1

E(|Ztni − Ztni−1
|β) = C

n∑
i=1

(∫ 0

−∞
((tni − s)α − (tni−1 − s)α)2ds

)β
2

= C

n∑
i=1

(∫ ∞
0

((
tni−1 +

t

n
+ s
)α
− (tni−1 + s)αds

))β
2

≤ C
( ∫∞

0

((
t
n

+ s
)α
− sα

)2

ds
)β

2

+ C
nβ

n∑
i=2

(∫ ∞
0

(tni−1 + s)2α−2ds
)β

2

= I1 + I2
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It is easy to see by the dominated convergence theorem that I1 → 0 as n → ∞. On
the other hand,

I2 ≤ Ctn−1

n∑
i=2

(i− 1)(2α−1)β
2 ≤ Ctn

(2α−1)
(2α+1) → 0

since α < 1
2
. This proves the lemma. �

We will make use of the following lemma.

Lemma 2.1.3 Fix a > 0. For t ≥ a let Xt =
∫ a

0
(t− s)αdWs where W = (Wt, t ≥ 0) is a

Wiener process. Then, for all t ≥ a

lim
n→∞

E(|S[a,t]
β,n (X)|) = 0 (2.9)

Proof. Take β = 2
(1+2α)

. First we have

n∑
i=1

E
∣∣∣ ∫ a

0

[(tni − s)α − (tni−1 − s)α]dWs

∣∣∣β ≤ C
n∑
i=1

{∫ a

0

[(tni − s)α − (tni−1 − s)α]2ds

}β
2

,

where t ≥ a and {tni } is a uniform partition on [a, t]. Then we apply a similar argument
as in the proof of Lemma 2.1.2 �

The following theorem is the main result of this section.

Theorem 2.1.1 Set β = 2
(1+2α)

. Consider a continuous local martingale of the form

Mt =

∫ t

0

ξsdWs , where ξ = (ξt, t ≥ 0) is a progressively measurable process such that, for

all t ≥ 0,
∫ t

0

(E(| ξs |β))
β
β′ ds <∞, for some β′ > β, if α < 0,∫ t

0

(E(ξ2
s ))

β
2 ds <∞, if α > 0.

(2.10)

Then, the β-variation of M (α) on any interval [0, t] exists in L1

and 〈M (α)〉β,t = cα

∫ t

0

(| ξs |)βds , where cα = cHk
−1
H
H , H = 1

2
+ α, and kH is defined in

(2.8)
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Proof. We can represent the martingale M as a stochastic integral Mt =

∫ t

0

ξsdWs,

where W = (Wt, t ≥ 0) is a Brownian motion defined on an extension (Ω̃, F̃ , P̃ ) of our

original probability space (Ω,F , P ). The space (Ω̃, F̃ , P̃ ) is the product of (Ω,F , P ), and

another space (Ω̂, F̂ , P̂ ) supporting a Brownian motion independent of M. Clearly, if the
conclusion of the theorem holds in the extended space, it also holds in the original space.
Notice that if α < 0, by Hölder’s inequality condition (2.10) implies that

∫ t

0

(t− s)−2αE(ξ2
s )ds <∞,

and (2.1) holds.

Suppose first that the process ξ has the form ξt = Y I(t1,t2](t), where 0 ≤ t1 < t2 and Y

is a bounded Ft1-measurable random variable. In this case the process M (α), denoted by
X, is given by

Xt = Y I[t1,∞)

∫ t∧t2

t1

(t− s)αdWs.

For t ∈ [0, t1], we clearly have 〈X〉β,t = 0. For t ∈ [t1, t2],

Xt = Y

∫ t

0

(t− s)αdWs − Y
∫ t1

0

(t− s)αdWs,

and by Lemmas (2.1.2)and (2.1.3), for any interval [a, b] ∈ [t1, t2], the β-variation of X

exists in L1, and

〈X〉β,[a,b] = cα | Y |β (b− a).

Finally, by Lemma (2.1.3), for any interval [a, b] ⊂ [t2,∞), 〈X〉β,[a,b] = 0, in L1.

Hence, we have proved that

〈X〉β,t = cα | Y |β (t ∧ t2 − t1)+ = cα

∫ t

0

| ξs |β ds.

Let us denote by S the space of step functions of the form
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ξt =
n∑
i=1

YiI(ti−1,ti](t),

where Yi is Fti−1
− measurable and bounded, and 0 = t0 < . . . < tn. For ξ ∈ S, we have

Xt =
n∑
i=1

X i
t , where X i

t =

∫ t

0

ξit(t− s)αdWs and ξit = YiI(ti−1,ti](t). From (2.1.3) we have

〈X〉β,t =
n∑
i=1

〈X〉β,[ti−1,ti]∩[0,t].

From the first part of the proof we see that

〈Xj〉β,[ti−1,ti]∩[0,t] =

{
cα|Yi|β(ti ∧ t− ti−1)+, if j = i,
0 if j 6= i.

and applying the triangular inequality (2.6), we see then that

〈X〉β,[ti−1,ti]∩[0,t] = 〈X i〉β,[ti−1,ti]∩[0,t].

Hence,

〈X〉β,[0,t] = cα

n∑
i=1

| Yi |β (ti ∧ t− ti−1)+ = cα

∫ t

0

| ξs |β ds, (2.11)

and this proves the result for step functions.
To complete the proof, we use a density argument. Fix a time interval [0, T ]. We can find

a sequence of step functions (ξk, k ≥ 1) in S such that if α > 0, then

lim
k→∞

∫ T

0

(E(| ξs − ξks |2))
β
2 ds = 0,

and if α < 0, then

lim
k→∞

∫ T

0

(E(| ξs − ξks |β))
β′
β ds = 0.
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Define Xk
t =

∫ t

0

(t− s)αξksdBs for t ∈ [0, T ]. From the triangular inequality (2.6) and the

Burkholder-Davis-Gundy inequality (see, for instance,[6]), we have, for t ∈ [0, T ],

E(|S[0,t]
β,n (X)

1
β − S[0,t]

β,n (Xk)
1
β |) ≤ E((S

[0,t]
β,n (X −Xk))

1
β )

≤ C

(
E

(
n∑
i=1

∣∣∣ ∫ tni

0

((tni − s)α − (tni−1 − s)α+)(ξs − ξks )dWs

∣∣∣β)) 1
β

≤ C

(
E

(
n∑
i=1

∣∣∣ ∫ tni

0

((tni − s)α − (tni−1 − s)α+)2(ξs − ξks )2ds
∣∣∣β2)) 1

β

.

(2.12)

Now we will consider two cases depending on the sign of α.

1. If α > 0, namely, β < 2, then by the concavity of x
β
2 and Lemma in [6]), we have

E(|S[0,t]
β,n (X)

1
β − S[0,t]

β,n (Xk)
1
β |) ≤ C

(
n∑
i=1

∣∣∣ ∫ tni

0

((tni − s)α − (tni−1 − s)α+)2E(|ξs − ξks |2)ds
∣∣∣β2) 1

β

≤ C
(∫ t

0

(E(|ξs − ξks |2)
β
2 ds)

) 1
β

.

(2.13)
Then

E

(∣∣∣S[0,t]
β,n (X)

1
β −

(
cα

∫ t

0

∣∣∣ξs |β ds) 1
β ∣∣∣) ≤ E(|S[0,t]

β,n (X)
1
β − S[0,t]

β,n (Xk)
1
β |)

+ E

(∣∣∣S[0,t]
β,n (X)

1
β −

(
cα

∫ t

0

|ξks |β ds
) 1

β ∣∣∣)

+ c
1
β
αE

(∣∣∣(∫ t

0

| ξks |β ds
) 1

β

−
(∫ t

0

|ξs |β ds
) 1

β ∣∣∣) .

From (2.13) and (2.11) we obtain
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lim sup
n→∞

E

(∣∣∣S[0,t]
β,n (X)

1
β −

(
cα

∫ t

0

∣∣∣ξs|βds) 1
β ∣∣∣)

≤ C

(∫ t

0

(E(| ξs − ξks |2))
β
2 ds

) 1
β

+ c
1
β
αE
(∣∣∣ (∫ t

0

| ξks |β ds
) 1

β

−
(∫ t

0

|ξs |β ds
) 1

β ∣∣∣)
and letting k tend to zero, we prove the desired result.

2. If α < 0, namely, β > 2, then applying the Minkovski inequality in (2.12) and using
Lemma 3.1.3, we have

E(| S[0,t]
β,n (X)

1
β− | S[0,t]

β,n (Xk)
1
β |)

≤ C
( n∑
i=1

∣∣∣ ∫ tni

0

((tni − s)α − (tni−1 − s)α+)2(E(| ξs − ξks |β))
2
β ds
∣∣∣β2) 1

β

≤ C

(∫ t

0

(E(| ξs − ξks |β))
β
′

β

) 1
β′

.

Now in the same way as for the case α > 0, we can show

lim
n→∞

E

(∣∣∣S[0,t]
β,n (X)

1
β −

(
cα

∫ t

0

|ξs |β ds
) 1

β ∣∣∣) = 0.

This proves the theorem. �

Remark 2.1.1 If α > 0 and
∫ t

0
E(ξ2

s )ds < ∞, then
∫ t

0
(E(ξ2

s ))
β
2 ds < ∞, and the β -

variation of the fractional martingale M (α) exists in L1, and 〈M (α)〉β,t = cα
∫ t

0
|ξs|βds.

Using a localization argument, we can prove that this result remains true with the conver-

gence in probability, for any continuous local martingale such that 〈M〉t =
∫ t

0
ξ2
sds for all

t ≥ 0.

On the other hand, if α < 0 and 〈M〉t =
∫ t

0
E(|ξs|β

′
)ds < ∞ for all t ≥ 0 , and for

some β′ > β , then the β-variation of the fractional martingale M (α) exists in L1 and
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〈M (α)〉β,t = cα
∫ t

0
|ξs|βds. As a consequence, again by a localization argument, the result

remains true with the convergence in probability, for any continuous local martingale such

that 〈M〉t =
∫ t

0
ξ2
sds, assuming that

∫ t
0
|ξs|β

′
ds < ∞ almost surely, for all t ≥ 0,and for

some β′ > β.

Corollaire 2.1.1 Consider a continuous local martingale M = (Mt, t ≥ 0) with M0 = 0

and 〈M〉t =
∫ t

0
ξ2
sds , where ξ = (ξt, t ≥ 0) is a progressively measurable process. Suppose

that M satisfies (2.1) for some α ∈ (−1
2
, 1

2
). Then there exists C > 0, such that

lim inf
n→∞

E(S
[a,b]
β,n (M (α))) ≥ C

∫ b

a

E(|ξs|β)ds

.

Proof.For each integer N ≥ 1 let ψN(x) = x if |x| ≤ N and ψN(x) = N
x

if |x| > N

.Denote M (α),N
t =

∫ t
0
(t− s)αψN(ξs)dMs. An application of Burkholders inequality yields

E(S
[a,b]
β,n (M (α))) = E

( n∑
i=1

∣∣∣ ∫ tni

0

((tni − s)α − (tni−1 − s)α+)dMs

∣∣∣β)
≥ CE

( n∑
i=1

∣∣∣ ∫ tni

0

((tni − s)α − (tni−1 − s)α+)2|ξs|2
∣∣∣β2)

≥ CE
( n∑
i=1

∣∣∣ ∫ tni

0

((tni − s)α − (tni−1 − s)α+)2(|ξs| ∧N)2ds
∣∣∣β2)

≥ CE(S
[a,b]
β,n (M (α),N)).

By Theorem (2.1.1) S[a,b]
β,n (M (α),N) converges to

∫ b
a
(|ξs|∧N)βds in L1 as n tends to infinity.

So,

lim
n→∞

E(S
[a,b]
β,n (M (α),N)) =

∫ b

a

(|ξs| ∧N)βds

and, consequently,

lim
n→∞

inf E(S
[a,b]
β,n (M (α))) ≥ C

∫ b

a

E(|ξs|β)ds.

�
So far we have considered continuous local martingales such that 〈Mt〉 is absolutely con-
tinuous with respect to the Lebesgue measure. The next result says that in the case α < 0
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if the quadratic variation of the martingale is not absolutely continuous with respect to
the Lebesgue measure with positive probability, then the β-variation is infinite.

Proposition 2.1.1 Fix −1
2
< α < 0. Suppose that M = (Mt, t ≥ 0) is a continuous

local martingale, satisfying (2.1). Consider the Lebesgue decomposition of its quadratic

variation given by 〈M〉t = µt + νt where µt and νt are continuous nondecreasing adapted
processes such that dµt is absolutely continuous with respect to the Lebesgue measure, and

dνt is singular. If P(νt 6= 0) > 0 , then we have lim
n→∞

E(S
[a,b]
β,n (M (α))) =∞, for all t ≥ 0

Proof By Burkholders inequality, we have

E
( n∑
i=1

|M (α)
tni
−M (α)

tni−1
|β
)
≥ C

n∑
i=1

E
(∫ tni

0

((tni − s)α − (tni−1 − s)α+)2d〈M〉s
)β

2

≥ C
n∑
i=1

E
(∫ tni

0

((tni − s)α − (tni−1 − s)α+)2dµs

)β
2

+ C
n∑
i=1

E
(∫ tni

0

((tni − s)α − (tni−1 − s)α+)2dνs

)β
2

.

Then the result follows from the above inequality and Lemma 3.1.3. �

On the other hand, the next result says that in the case α ∈ (0, 1
4
), the β-variation is zero

if the quadratic variation of the martingale is singular.

Proposition 2.1.2 Suppose that M = (Mt, t ≥ 0) is a continuous local martingale, such

that almost surely the measure d〈M〉t is singular with respect to the Lebesgue measure.

Then, if α ∈ (0, 1
4
), we have

lim
n→∞

E(S
[a,b]
β,n (M (α))) = 0,

for all t ≥ 0.

Proof. The result is an immediate consequence of Lemma 3.1.3. �
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2.2 Characterization of fractional Brownian motion

Suppose that BH is a fractional Brownian motion with Hurst parameter H ∈ (0, 1). The

process BH admits the following representation (see [6]):

BH
t =

∫ t

0

ZH(t, s)dWs (2.14)

where

ZH(t, s) = kH

[( t
s

)H− 1
2

(t− s)H−
1
2 −

(
H − 1

2

)
s

1
2
−H
∫ t

s

uH−
3
2 (u− s)H−

1
2du
]

(2.15)

with kH defined in (2.8).
The next theorem is the main result of this chapter and provides an extension of Lévy

characterization to the fractional Brownian motion.

Theorem 2.2.1 Fix H ∈ (0, 1), H 6= 1
2
. Suppose that B = (Bt, t ≥ 0) is a zero mean

continuous stochastic process. The following two conditions are equivalent:

1. B is a fractional Brownian motion with Hurst parameter H.

2. The process B satisfies the following conditions:

i) The trajectories of B are Hölder continuous of order H−ε for any H−ε ∈ (0, H).

ii) Let

Mt =

∫ t

0

s
1
2
−H(t− s)

1
2
−HdBs. (2.16)

Then M is a local martingale. Furthermore, if H > 1
2
, the quadratic varia-

tion of the martingale M is absolutely continuous with respect to the Lebesgue
measure almost surely.

iii) For any t > 0, the 1
H
-variation of B in the interval [0, t] exists in L1, and

〈B〉 1
H
,t = cHt, where cH = E(|ξ| 1H ) and ξ is a standard normal random variable.

Remark 2.2.1 Notice that condition (i) is always true if H < 1
2
, and the Riemann-

Stieltjes integral in (2.16) exists
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Proof of theorem2.2.1 From the properties of the fractional Brownian motion we know
that (1) implies (2). Suppose that (2) holds. Fix H − ε ∈ (0, H), and T > 0. We are
going to show that B is a fractional Brownian motion with Hurst parameter H in the
time interval [0, T ] . Denote by ‖B‖H−ε the Hölder norm of order H − ε on [0, T ]. The
proof is divided into several steps.
Step 1. From (2.16), we can solve the integral equation to express B as a functional of

M . This can be done as in the proof of Theorem 5.2 of [12]. In this way we obtain

Bt = dH

[
tH−

1
2Rt −

(
H − 1

2

)
Yt

]
,

where dH = B(3
2
−H,H + 1

2
)−1,

Rt =

∫ t

0

(t− s)H−
1
2dMs,

and

Yt =

∫ t

0

(∫ t

s

uH−
3
2 (u− s)H−

1
2du

)
dMs

Comparing with the representation formula (2.14) for the fractional Brownian motion, it
suffices to prove that

d〈M〉s = (kHd
−1
H s

1
2
−H)2ds, (2.17)

because this implies that M is a Gaussian martingale, and B has the covariance of the
fractional Brownian motion with Hurst parameter H. In order to show (2.17), we are

going to compute the 1
H
-variation of R, from the decomposition

Rt = d−1
H t

1
2
−HBt +

(
H − 1

2

)
t
1
2
−HYt. (2.18)

Step 2. Fix 0 < ε < H ∧ 1
2
∧ (1 − H) and suppose that E(‖B‖

1
H
H−ε) < ∞ . We will

first show that the 1
H
-variation of the process Zt = t

1
2
−HBt exists in L1 in any interval

[0, t] ⊂ [0, T ] , and

〈Z〉 1
H
,t = 2HcHt

1
(2H) . (2.19)
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An application of the triangular inequality yields

S
[0,t]
1
H
,n

(Z) ≤
∣∣∣( n∑

i=1

(tni )
1

(2H)−1 |Btni
−Btni−1

|
1
H

)H

(2.20)

+

(
n∑
i=1

|(tni )
1
2
−H − (tni−1)

1
2
−H |

1
H |Btni−1

|
1
H

)H ∣∣∣ 1
H

,

and

S
[0,t]
1
H
,n

(Z) ≥
∣∣∣( n∑

i=1

(tni )
1

(2H)−1 |Btni
−Btni−1

|
1
H

)H

(2.21)

−

(
n∑
i=1

|(tni )
1
2
−H − (tni−1)

1
2
−H |

1
H |Btni−1

|
1
H

)H ∣∣∣ 1
H

.

We have

n∑
i=1

|(tni )
1
2
−H − (tni−1)

1
2
−H |

1
H |Btni−1

|
1
H ≤ C‖B‖

1
H
H−ε

(
t
n

) 1
2H
− ε
H
∑n

i=2(i− 1)
−1

(2H)
− ε
H

≤ C‖B‖
1
H
H−εt

1
2H
− ε
H n1− 1

H , (2.22)

which converges in L1 to 0 as n tends to infinity. From (2.20) to (2.22) we obtain

lim
n−→+∞

S
[0,t]
1
H
,n

(Z) = lim
n−→+∞

n∑
i=1

(tni )
1

2H
−1|Btni

−Btni−1
|
1
H (2.23)

in L1, provided that the limit on the right-hand side of (2.23) exists. Denote Inj =

[tnj−1, t
n
j ] for j = 1, 2, . . . , n. We divide every subinterval Inj into m parts, and we get a

finer partition 0 = tnm0 < . . . < tnmnm = t. Then, we have∣∣∣∣∣
nm∑
i=1

(tnmi )
1

(2H)
−1|Btnmi

−Btnmi−1
|
1
H −

n∑
j=1

cH(tnj )
1

(2H)
−1(tnj − tnj−1)

∣∣∣∣∣
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=
∣∣∣ n∑
j=1

( jm∑
i=(j−1)m+1

((tnmi )
1

2H
−1 − (tnj )

1
2H
−1)|Btnmi

−Btnmi−1
|
1
H

+(tnj )
1

2H
−1
( jm∑
i=(j−1)m+1

|Btnmi
−Btnmi−1

|
1
H − cH(tnj − tnj−1

))∣∣∣
≤

n∑
j=1

|(tnj )
1

2H
−1 − (tnj−1)

1
2H
−1|

jm∑
i=(j−1)m+1

|Btnmi
−Btnmi−1

|
1
H

+(tnj )
1

2H
−1
∣∣∣ jn∑
i=(j−1)m+1

|Btnmi
−Btnmi−1

|
1
H − cH(tnj )

1
2H
−1)
∣∣∣.

Letting m tend to infinity and using assumption (ii), we obtain

lim
n−→+∞

n∑
i=1

(tni )
1

(2H)
−1|Btni

−Btni−1
|
1
H = 2HcHt

1
(2H) ,

in L1, which shows (2.19).

Step 3. We claim that the 1
H
-variation of the process Vt = t

1
2
−HYt in L1 is zero. The

increment |Yt− Ys| can be estimated by Lemma 3.1.3 in the Appendix with α = 1
2
−H, f

being a trajectory of the process B and β = H − ε. Notice that α + β = 1
2
− ε, and

2α + β = 1−H − ε. Hence, for any s, t ∈ [0, T ] , we have

|Yt − Ys| ≤ C‖B‖H−ε(tβ − sβ).

Therefore, as in (2.20), we have

E(S
[0,t]
1
H
,n

(V )) ≤ C
n∑
i=1

(tni )
1

(2H)
−1E(|Ytni − Ytni−1

|1/H)

+C
n∑
i=1

((tni )
1
2
−H − (tni−1)

1
2
−H)

1
HE(|Ytni−1

|
1
H )

= An +Bn.
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For the term An we have

An ≤ C‖B‖
1
H
H−ε

n∑
i=1

(tni )
1

(2H)
−1((tni )H−ε − (tni−1)H−ε)

1
H

= C‖B‖
1
H
H−ε

(
t

n

) 1
(2H)

− ε
H

n∑
i=1

i
1

(2H)
−1(i− 1)1− ε

H
− 1
H

≤ C‖B‖
1
H
H−ε

(
t

n

) 1
(2H)

− ε
H

n−
1

(2H)
− ε
H

+1.

By Lemma 3.2.3, lim
n→∞

E(An) = 0.

For the term Bn, using that

E(|Ytni−1
| 1
H

) ≤ CE(‖B‖
1
H
H−ε)|t

n
i−1|1−

ε
H

, we obtain

E(Bn) ≤ CE(‖B‖
1
H
H−ε)

n∑
i=1

(tni−1)−
1

2H − ε

H

(
t

n

) 1
H

≤ CE(‖B‖
1
H
H−ε)

(
t
n

)−1+ 1
H
− ε
H → 0.

Hence, 〈Y 〉 1
H
,t = 0, in L1 , for t ∈ [0, T ].

Step 4. From (2.18), (2.19), Step 3 and (2.7), we get that the 1
H

-variation of the process

R in any interval [0, t] ⊂ [0, T ] exists in L1, and

〈R〉 1
H
.t = cHd

− 1
H

H 2Ht
1

(2H) . (2.24)

On the other hand, since Rt is an H − 1
2
martingale, Theorem (2.1.1) and Proposition

(2.1.1) imply that if H < 1
2
, the quadratic variation d〈M〉s must be absolutely continuous

with respect to the Lebesgue measure, almost surely. In the case H > 1
2
this is true by the

assumption (ii). This implies that 〈M〉t =
∫ t

0
ξ2
sds. where ξ = (ξt, t ≥ 0) is a progressively

measurable process.
By Corollary (2.1.1), there is a positive constant C such that, for any t1, t2 ∈ [0, T ],
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C
∫ t2
t1
s

1
(2H)

−1ds ≥
∫ t2
t1

E(|ξs|
1
H )ds Then E(|ξs|

1
H ) ≤ Cs

1
(2H)

−1. Thus, we can apply Theorem

(2.1.1) to obtain 〈R〉 1
H
.t = cHk

− 1
H

H

∫ t
0
|ξs|

1
H ds.

Comparing this with (2.24), we obtain

|ξs| = kHd
−1
H s

1
2
−H , 0 ≤ s ≤ t,

and (2.17) holds. This proves that B is a fractional Brownian motion with Hurst parameter

H under the condition E(‖B‖
1
H
H−ε <∞).

Step 5. If E(‖B‖
1
H
H−ε) is not necessarily finite, we can use a localization argument. Denote

Tk = inf{t ≥ 0 : ‖B‖t,H−ε ≥ K} ∧ T.

and BK
t = Bt∧Tk . Since

n∑
i=1

|BK
tni
− BK

tni−1
|
1
H ≤

n∑
i=1

|BK
tni
− BK

tni−1
|
1
H + (K

t

n
)

1
H , by the domi-

nated convergence theorem, we can also get

lim
n

E

(∣∣∣∣∣
n∑
i=1

|BK
tni
−BK

tni−1
|
1
H − cH(t ∧ Tk)

∣∣∣∣∣
)

= 0.

By modifying the proof in Steps 1-4 slightly, we get

|ξs| = kHd
−1
H s

1
2
−H , 0 ≤ s ≤ t ∧ TK .

Clearly, lim
K→∞

TK = T , and then

|ξs| = kHd
−1
H s

1
2
−H , 0 ≤ s ≤ T.

�

Remark 2.2.2 Notice that in the case H > 1
2
we have imposed the additional assump-

tion that the martingale (2.16) has an absolutely continuous quadratic variation. This is
true, for instance, if the filtration generated by the process B is included in the filtration
generated by a Brownian motion.



38 Fractional martingales and characterization of the fractional Brownian motion

The next proposition shows that this condition is necessary at least in the case H ∈ (1
2
, 3

4
).

Proposition 2.2.1 Suppose that H ∈ (1
2
, 3

4
). There exists a process B , satisfying condi-

tions (i) and (iii) of Theorem 2.2.1, such that the process M defined in (2.16) is a local
martingale, and B is not a fractional Brownian motion.

Proof. Let BH be a fractional Brownian motion with Hurst parameter H ∈ (1
2
, 3

4
).

Define

Mt =

∫ t

0

s
1
2
−H(t− s)

1
2
−HdBH

s .

Let Nt = Wφ(t), where W is a Brownian motion independent of BH , and φ is a strictly

increasing, Holder continuous function of exponent γ for any γ < 1, null at zero, such that
the measure dφ(t) is singular with respect to the Lebesgue measure (for the existence of

such function, see Lemma 3.3.1 in the Appendix). Set

M̃t = Mt +Nt and B̃H
t = BH

t + Yt.

where

Yt = dH

(
tH−

1
2

∫ t

0

(t− s)H−
1
2dNs −

(
H − 1

2

)∫ t

0

(∫ t

s

uH−
3
2 (u− s)H−

1
2du

)
dNs

)
.

The process B̃H clearly satisfies (i) and it is not a fractional Brownian motion. Finally,

〈B̃H〉 1
H
.t = cHt in L1, because the 1

H
-variation of

∫ t
0
(t− s)H− 1

2dNs is zero by Proposition

2.1.2, and, by the same arguments as in the proof of Theorem 2.2.1, we can show that

the 1
H
-variation of Y vanishes. �



Chapter 3

Appendice

3.1 Some technical lemmas.

Lemma 3.1.1 Let α ∈ (0, 1
2
). Fix an interval [0, t]. For any natural number m, we

define tmi = i
m
t, 0 ≤ i ≤ m. Let g be a measurable function on [0,∞) such that, for all

t ≥ 0,
∫ t

0
|g(s)|ds <∞. Then there exists a function C(t) > 0 satisfying

lim sup
m→∞

m∑
i=1

(∫ tmi

0

((tmi − s)α − (tmi−1 − s)α+)2|g(s)|ds
)β

2 ≤ C(t)

∫ t

0

|g(s)|
β
2 ds.

Lemma 3.1.2 Let α ∈ (−1
2
, 0). Fix an interval [0, t]. For any natural number m, we

define tmi = i
m
t, 0 ≤ i ≤ m. Let g be a measurable function on [0,∞) such that, for all

t ≥ 0,
∫ t

0
|g(s)|β

′
2 ds < ∞. for some β′ > β. Then there exists a constant C depending on

t such that

m∑
i=1

(∫ tmi

0

((tmi − s)α − (tmi−1 − s)α+)2|g(s)|ds
)β

2

≤ C
(∫ t

0

|g(s)|
β′
2 ds
)β′
β

.

Lemma 3.1.3 Suppose that v is a measure on an interval [0, t], which is singular with
respect to the Lebesgue measure. We have the following conditions:

(i) If α ∈ (−1
2
, 0), then

lim
n→∞

n∑
i=1

(∫ tni

0

((tni − s)α − (tni−1 − s)α+)2dvs

)β
2

=∞.

39
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(ii) If α ∈ (0, 1
4
), then

lim
n→∞

n∑
i=1

(∫ tni

0

((tni − s)α − (tni−1 − s)α+)2dvs

)β
2

= 0.

3.2 Transformations of Hölder continuous functions.

Let β ∈ (0, 1]. We denote by Cβ ∈ ([0, T ]) the set of Hölder continuous functions on

[0, T ]. For any function f in Cβ ∈ ([0, T ]) and any 0 < a < b ≤ T , we will write

‖f‖β, a, b = sup
a≤s<t≤b

|f(t)− f(s)|
|t− s|β

. (3.1)

We also set ‖f‖β = ‖f‖β,0,T .

Lemma 3.2.1 Suppose that f ∈ Cβ ∈ ([0, T ]), and assume that 0 ≤ a < b < v ≤ T . Let,
γ ≥ 0 and α + β 6= 0. Then

∣∣∣ ∫ b

a

sγ(v − s)αdf(s)
∣∣∣ ≤ ‖f‖β(2 +

∣∣∣ α

α + β

∣∣∣)bγ((v − b)α+β + (v − a)α+β).

Lemma 3.2.2 Suppose that f ∈ Cβ ∈ ([0, T ]), and suppose α < 0, α + β > 0. Let

g(t) =
∫ t

0
sαdf(s). Then, g ∈ Cα+β ∈ ([0, T ]), and

‖g‖α+β ≤
β

α + β
‖f‖β.

Proposition 3.2.1 Fix α ∈ (−1
2
, 1

2
) and β ∈ (0, 1] such that 0 < α + β ≤ 1. Suppose

that f ∈ Cβ ∈ ([0, T ]), and let g(t) =
∫ t

0
sα(t− s)αdf(s). Then:

1. If α > 0, g ∈ Cα+β ∈ ([0, T ]) and for any 0 ≤ a < b ≤ T , we have

|g(b)− g(a)| ≤ C‖f‖βbα(b− a)α+β. (3.2)

2. If α < 0 and 0 < 2α + β ≤ 1, then g ∈ C2α+β ∈ ([0, T ]) and

|g(b)− g(a)| ≤ C‖f‖β(b− a)2α+β. (3.3)
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Lemma 3.2.3 fix α ∈ (−1
2
, 1

2
) and β ∈ (0, 1] such that 0 < α + β ≤ 1. Suppose that

f ∈ Cβ ∈ ([0, T ]), and let g(t) =
∫ t

0
sα(t− s)αdfs. Set:

h(t) =

∫ t

0

u−α−1
(∫ u

0

(u− s)−αdgs
)
du.

Then for any 0 ≤ a < b ≤ T , we have

|h(b)− h(a)| ≤ C‖f‖β(bβ − aβ).

3.3 Existence of singular Hölder continuous distribu-
tion functions.

Let 0 < H < 1 and ρ > 1. Suppose that X = (Xt, t ≥ 0) is a zero mean Gaussian process

with stationary increments and a variance σ2(t) = E(X2
t ) given by

σ2(t) =

∫ ∞
0

(1− cos(xt))g(x)dx, (3.4)

where g(x) = x−2H−1I[0,2)(x) + (| log x|ρx)−1I[2,∞)(x). If we replace g(x) by gH(x) =

x−2H−1 in equation (3.4) then the process X is a fractional Brownian motion with Hurst

parameter H. Taking into account that g(x) ≥ CgH(x) for some constant C > 0, it
follows that the process X satisfies the local nondeterminism property in some interval
(0, d) (see Theorem 4.1 in [3]). The following lemma implies the existence of finite mea-
sures on the real line which are singular with respect to the Lebesgue measure, and whose
distribution function is Hölder continuous of order γ , for any γ < 1 on any finite interval.

Lemma 3.3.1 Let X be the Gaussian process introduced above. Then, there exists a
version of its local time L(t, x), jointly continuous in t and x, with the following properties:

(i) For each x ∈ R and γ < 1, L(t, x) is Hölder continuous of order γ with respect to t
, On any finite interval.

(ii) L(t, x) is a nondecreasing function of t .

(iii) For each x ∈ R the support of the measure L(dt, x) is the set S,XS = x, which has
a Lebesgue measure 0.



Conclusion

This manuscript has investigated the fractional martingales and characterization of the
fractional Brownian motion. Our future goal is to study an possible extension of lévy
characterization to the Two parameter fractional Brownian motion defined in the first
chapter. We think that it’s possible to employ the obtained result in the study of some
class of stochastic differential equations
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