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Notations

• R The field of real numbers.

• C Set of complex numbers.

• N Set of natural numbers.

• Lp[a, b] Space of measurable integrable power functions p ∈ [0,+∞[ .

• C([a, b]) Space of continuous functions on [a, b].

• Ω a non-empty open set.

• Ω = Ω + ∂Ω it’s closing of Ω.

• Γ(·) Euler Gamma Functions.

• B(·, ·) Beta Functions.

• ‖ · ‖ The norm.

• Iαa Fractional integral in the sense of Riemann-Liouville of order α > 0.

• Dα
a Fractional derivative in the sense of Riemann-Liouville of order

α > 0.

• R− L Riemann-Liouville.

III



Introduction

It is to Leibniz that belongs the glory of having cleared a new path which
is the theory fractional calculus, this theory which extended the derivation
and integration of order integer to non-integer order is currently enjoying
great popularity.

In fact, the history of fractional calculus began with a key question from
Leibniz when he introduced the symbol dny

xn
to denote the nth derivative of

a function f where n is a positive integer. This symbolic representation
then pushed the Hospital to wonder about the possibility of having n frac-
tional and he sent a letter to Leibniz in 1695 wondering if n = 1/2?, Leibniz
replied "that this is a paradox, from which useful consequences will one day
be drawn”.

Since then, many mathematicians have embarked on this question to over-
come this difficulty and several contributions have been developed and many
forms fractional differential operators have been introduced, we can cite the
derivatives fractional type Riemann-Liouville, Caputo, Grunwald-Letnikow
Weyl, Marchaud, Hadamard, Riesz (Hilfer 2000, Kilbas et al. 2006, Podlubny
1999, Samko et al.1993) and other more recent works by Klimek (2005), Kil-
bas and Saigo (2004), Cresson (2007), Katu- gampola (2011), where fractional
operators of variable order introduced by Samko and Ross (1993). For more
historical details, see [17].

However, the first real application of fractional calculus seems to be pro-
posed by N. H. Abel in 1823 who showed that the generalized Tautochrone
problem was written using a differential equation of non-integer order, the
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solution of which he expressed using an integral equation.
During the last three decades, more interest has been lent to fractional calcu-
lus and many researchers have invested themselves in highlighting the results
already established and the fields of application have diversified. As exam-
ples, we will cite some of these fields of application.

• Fractional derivatives have been widely used in the mathematical model
of viscoelastic matter. The advantage of introducing fractional deriva-
tives in theory of viscoelasticity is that it offers possibilities to obtain
constitutive equations for the elastic complex modulus of viscoelastic
materials with only some experimentally determined parameters. Frac-
tional derivatives have also been used in the study of complex moduli
and resistance see [2].

• Electromagnetic problems can be described using the equations Frac-
tional integro-differentials.

• In biology, it turns out that the membranes of biological organism cells
have the fractional order electrical conductance [14].

• In physicochemistry, the current is proportional to the fractional deriva-
tives of the voltage when the fractal interface is placed between a metal
and an ionic medium [10].

• In economics, some systems of nance can display a dynamic of order
fractional, examples on this dynamic can be seen in the reference [18].

Other applications of fractional calculus have been described in several fields
such as: Image processing [10], signal processing [21], automatic control mat-
ics and robotics, and analysis of dynamic systems with order models frac-
tional.

In this work, we discuss existence of solutions for fractional differential
equations, these results are determined, by applying Guo–Krasnoselskii fixed
point theorem of cone expansion and compression of norm type. Our as-
sumed problem will general than the problems considered [5] and [1].
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This work is structured as follows.

The first chapter contains some basic concepts and theorems in addition
to the notions of the functions play an important role in the fractional cal-
culus.

The second chaper, we present the definitions of fractional derivative and
integrals in the sense of Riemann-Liouville and its properties.

In the third chapter,we discuss existence of the solutions of a class of
nonlinear boundary value problem of fractional differential equations with
integral boundary conditions. To state our results, we study Green function
and by applying Guo–Krasnoselskii fixed point theorem, end this chapter
with an illustrative example.

In the final chapter, we discuss existence of positive solution for a Rie-
mann fractional boundary value problem with integral boundary conditions
and parameter dependence, these results are determined, by applying Guo–
Krasnoselskii fixed point theorem of cone expansion and compression of norm
type. Some examples are shown to point out the applicability of the obtained
results.



Chapter 1

Basic tools

In this chapter, we provide some definitions and properties that we will
use the remainder of this work (see [11], [12]).

1.1 Definitions

Definition 1.1.1. ( Banach space).
A normed vector space (E, ‖ · ‖) is said to be complete if any sequence de
Cauchy of elements of E is convergent in (E, ‖ · ‖). An e.v.n. complete is
said Banach space.

The space C (R, | · |) is a simple example of a Banach space.

Definition 1.1.2. (LP Space).
Let Ω a finite or infinite interval of R. We denote by Lp(Ω) with
1 ≤ p < +∞ the Lebesgue space such that f : Ω⇒ K (K = R orC) is
mesurable and

∫
Ω
|f(x)|pdx < +∞, endowed with the norm

‖f‖Lp =

(∫
Ω

|f(x)|pdx
) 1

p

For p =∞, then ∃C ≥ 0, |f(x)| ≤ C for almost every x ∈ Ω and we
notice

‖f‖L∞ = inf {|f(x)| ≤ C for almost every x ∈ Ω}

Theorem 1.1.1.
(Lp(Ω), ‖ · ‖) is a Banach space.

1
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Definition 1.1.3. [9]
Let E,F be two normed spaces and the map (Operator) T : E → F . We say
that f is completely continuous if:

• T is continuous,

• T is relatively compact .

Definition 1.1.4. (Dirichlet’s Formula).
Let h(x, y)be a continuous function and α, β two positive reals. The

following expression is known as the Dirichlet formula:∫ t

0

(t− x)α−1dx

∫ x

0

(x− y)β−1h(x, y)dy =

∫ t

0

dy

∫ t

y

(t− x)α−1(x− y)β−1h(x, y)dx

(1.1)
Certain special cases of Dirichlet’s formula are of particular interest. For
example, if

h(x, y) = g(x)f(y) and g(x) ≡ 1,

then (1.1) takes the form∫ t

0

(t− x)α−1dx

∫ x

0

(x− y)β−1h(x, y)dy = B(α, β)

∫ t

0

(t− y)α+β−1f(y)dy

(1.2)
where B is the Beta function.

We will use Dirichlet’s formula to prove the law of exponents for fractional
integrals.

1.2 Green Function

Green’s functions are involved in solving certain differential equations.
(in particular, the case of fractional differential equations).

Definition 1.2.1. ( Green’s function in one dimension ).
Let (a, b) be a finite interval, q : (a, b)→ R a bounded and continuous
function. We consider the problem of the differential equation and the
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homogeneous boundary conditions:
(
− d2

dx2
+ q(x)

)
f(x) = h(x), 0 < x < 1,

α1f(a) + β1f
′(a) = 0,

α1f(b) + β2f
′(b) = 0.

(1.3)

where h is a given function and αj, βj (j = 1, 2) are given constants.
The Green’s function method consists in solving, for each y ∈]a, b[ fixed,[

− d2

dx2
+ q(x)

]
G(x, y) = δ(x− y) (1.4)

Equation (1.4) must be in the sense of distributions.
Green’s function satisfies the same boundary conditions at x = a and x = b,
we obtain the solution f of (1.3) by:

f(x) =

∫ b

a

G(x, y)h(x)dx (1.5)

Theorem 1.2.1.
Green’s function has the following properties:

1.
[
− d2

dx2
+ q(x)

]
G(x, y) = 0 on (a, y) and on (b, y).

2. G satisfies the boundary conditions.

3. G is continuous at x = y.

4. G(x, y) = G(y, x).

1.3 Some important theorems

Theorem 1.3.1. [25](Ascoli-Arzelà ).
Let T ⊂ C([0, b],Rn)T is relatively compact if:

1. T is bounded, i.e. there exists M > 0

‖y(t)‖ ≤M, ∀t ∈ [0, b] and y ∈ T

2. T is equicontinuous i.e. for all ε > 0 there exists δ(ε) > 0

∀t1, t2 ∈ [0, b], |t1 − t2| < δ ⇒ ‖y(t1)− y(t2)‖ < ε∀y ∈ T
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1.3.1 Guo–Krasnoselskii fixed point theorem

One of the most important tools in fixed point theory is the cone
expansion and compression theorem proved by Krasnoseliskii in 1964 (see,
[24] or [13]). It has been proven to be efficient in showing existence of
positive solutions to various boundary value problems.

Definition 1.3.1. ( cone ).
Let E be a real Banach space. A nonempty closed convex set P ∈ E is

called a cone if it satisfies the following two conditions:

a) x ∈ P , λ > 0 implies λx ∈ P;

b) x ∈ P ,−x ∈ P implies x = 0.

Theorem 1.3.1.1. [13](Fixed point theorem of cone expansion and
compression of norm type ).
Let E be a Banach space, and let P ⊂ E be a cone. Assume that Ω1,Ω2

are open and bounded subsets of E with 0 ∈ Ω1 ⊂ Ω1 ⊂ Ω2, and let
T : P ∩ (Ω2 \ Ω1)→ P be a completely continuous operator such that

1. Compressive form:
‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2;

2. Expansive form:
‖Tu‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and‖Tu‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2.

Then operator T has at least one fixed point in P ∩ (Ω2 \ Ω1).

An illustration of this result in dimension 2 is depicted in Figs (1.1) and
(1.2), with P ∩ ∂Ω1 = Ka, P ∩ ∂Ω2 = Kb, and P ∩ (Ω2 \ Ω1) = K(a, b).
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Figure 1.1: Compressive form.

Figure 1.2: Expansive form.

Proof. (see [4]).
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1.4 Special function

In this section, some basic theory of the special functions that are used in
the other chapters is given. We give here some information on the gamma
and beta functions, these functions play the most important role in the
theory of fractional differential equations.

1.4.1 The Gamma Function

Undoubtedly ,one the basic function of the fractional calculus is Euler’s
gamma function Γ(α), which generalizes the factorial α! and allows α to
take also non-integer and even complex values . We will recall in this
section some results on the gamma function which are important for other
parts of this work.

Definition 1.4.1. [11]
The gamma function Γ(α) is defined by the following integral:

Γ(α) =

∫ +∞

0

e−ttα−1dt, α ∈ R. (1.6)

Γ is continuous in (0,+∞).

Remark 1.4.1.1.
Let’s put t = x2 then

dt = 2xdx

so

Γ(α) =

∫ +∞

0

ex
2

(x2)α−12xdx

= 2

∫ +∞

0

ex
2

x2α−1dx (1.7)

(1.7)is another definition of Gamma function.

Lemma 1.4.1.1. For all α > 0, the Gamma function satisfies the
properties following:

1. Γ(α + 1) = αΓ(α).
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2. Γ(n) = (n− 1)! n ≥ 1.

3. Γ(α + n) = α(α + 1)(α + 2) . . . (α + n− 1)Γ(α).

Some particular values of Γ(α)

• Γ(1) = Γ(2) =
∫ +∞

0
e−tt1−1dt = 1.

• Γ(1
2
) = 2

∫ +∞
0

e−t
2
dt =

√
π. (Gaussian integral)

• Γ(n+ 1
2
) = (2n)!

22nn!

√
π.

1.4.2 The Beta Function

The other important function in fractional calculus is the function Euler
beta

Definition 1.4.2. [11]
The beta function is usually defined by:

B(α, β) =

∫ 1

0

tα−1(1− t)β−1dt, α, β ∈ R∗+ (1.8)

There are also know as the Eulerian integral of first kind.

The beta function is related to the gamma function by:

B(m,n) =
Γ(m)Γ(n)

Γ(m+ n)
(1.9)



Chapter 2

Fractional Derivative and
Integrals

In this chapter we present some of the defnitions, results, theories and
main properties concerning the integral and the fractional derivative in the
Riemann-Liouville sense. [see [11], [12]].

2.1 Riemann-Liouville fractionnal integral

Let f : [a, b]→ R be a continuous function a primitive of f givin by:

(I1
af)(t) =

∫ x

a

f(τ)dτ

For a double integrale we will have:

(I2
af)(t) =

∫ t

a

(∫ s

a

f(τ)dτ

)
ds.

According to Fubini’s theorem, we find

(I2
af)(t) =

∫ t

a

(∫ t

τ

ds

)
f(τ)dτ. (a 6 τ 6 s 6 t 6 b)

=

∫ t

a

(t− τ)f(τ)dτ.

For the triple integral we will have:

8
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(I3
af)(t) =

1

2

∫ t

a

(s− τ)2f(τ)dτ.

Repeating the same operation α times we get:

(Iαa f)(t) =
1

(α− 1)!

∫ t

a

(t− τ)α−1f(τ)dτ (2.1)

for any integer α.
This formula is called the Cauchy formula and as we have (α− 1)! = Γ(α),
Riemann realized that the last expression could make sense even when α
taking non-integers values, so it was natural to define the fractional inte-
gration operator as following:

Definition 2.1.1.
Let f ∈ L1([a, b]), a ∈ R, b can be finite or infinite the Riemann-Liouville

fractional integral to the left of order α > 0 of a function f is defined by:

(Iαa f)(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ, −∞ 6 a < t < +∞ (2.2)

Remark 2.1.1.
I0
af(t) = f(t) (I0

a is the identity operator).

Remark 2.1.2.
By the simple change of variable s = t− τ , we note that Iαa can be written

in the following form:

Iαa f(t) =
1

Γ(α)

∫ t−a

0

sα−1f(t− s)ds (2.3)

(another definition of the integral of R-L).

2.1.1 Properties of the Fractional Integral in the sense
of R-L

Lemma 2.1.1.1.
The integral operator Iαa is linear.
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Proof.
If f and g are two functions such that Iαa f and Iαa g exist, then for c1 and

c2 two arbitrary real numbers we will have:

Iαa (c1f + c2g)(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1(c1f + c2g)(τ)dτ

=
c1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ +
c2

Γ(α)

∫ t

a

(t− τ)α−1g(τ)dτ.

Hence
Iαa (c1f + c2g)(t) = c1I

α
a f(t) + c2I

α
a g(t)

Lemma 2.1.1.2.
f ∈ C[a, b], the Riemann-Liouville fractional integral has the following

semigroup property:
Iαa (Iβa f)(t) = Iα+β

a f(t) (2.4)

to α > 0 and β > 0.

Proof.
Let f ∈ C[a, b], α > 0, β > 0, so:

Iαa (Iβa f)(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1(Iβa f)(τ)dτ

=
1

Γ(α)

∫ t

a

(t− τ)α−1

[
1

Γ(β)

∫ τ

a

(τ − s)β−1f(s)ds

]
dτ

=
1

Γ(α)Γ(β)

∫ t

a

(t− τ)α−1

[∫ τ

a

(τ − s)β−1f(s)ds

]
dτ.

According to the Dirichlet formula(1.1) we find:

Iαa (Iβa f)(t) =
B(β, α)

Γ(α)Γ(β)

∫ t

a

(t− s)α+β−1f(s)ds

=
Γ(α)Γ(β)

Γ(α + β)Γ(α)Γ(β)

∫ t

a

(t− s)α+β−1f(s)ds

=
1

Γ(α + β)

∫ t

a

(t− s)α+β−1f(s)ds.
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Hence
Iαa (Iβa f)(t) = Iα+β

a f(t)

Lemma 2.1.1.3.
let f ∈ C0([a, b)),So we have:

1. d
dt

(Iαa f) (t) = (Iα−1
a f)(t) α > 1.

2. lim
α−→0+

(Iαa f)(t) = f(t) α > 0.

Proof.

1. From the reccurence formula of Euler’s Gamma function
Γ(α) = (α− 1)Γ(α− 1) and as α > 1, we can write

d

dt
(Iαa f)(t) =

d

dt

(
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ

)
=

1

(α− 1)Γ(α− 1)

∫ t

a

d

dt
(t− τ)α−1f(τ)dτ

=
1

(α− 1)Γ(α− 1)

∫ t

a

(α− 1)(t− τ)(α−1)−1f(τ)dτ

=
1

Γ(α− 1)

∫ t

a

(t− τ)(α−1)−1f(τ)dτ.

Hence
d

dt
(Iαa f) (t) = (Iα−1

a f)(t), α > 1

2. If f ∈ C1([a, b]) then an integration by parts gives us

(Iαa f)(t) =
(t− a)αf(a)

Γ(α + 1)
+

1

Γ(α + 1)

∫ t

a

(t− τ)αf ′(τ)dτ

lim
α−→0+

(Iαa f)(t) = f(a) +

∫ t

a

f ′(τ)dτ

= f(a) + [f(t)− f(a)].

Hence
lim

α−→0+
(Iαa f)(t) = f(t) α > 0
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Theorem 2.1.1.1. [23]
If f ∈ L1[a, b], and α > 0 so Iαa f(t)exists for almost all t ∈ [a, b] and we
have Iαa f ∈ L1[a, b].

Proof. let f ∈ L1[a, b]; we have

Iαa f(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ =

∫ +∞

−∞
g(t− τ)h(τ)dτ,

with −∞ 6 a < t < +∞.
Such as

g(u) =


uα−1

Γ(α)
, 0 < u 6 b− a

0, u ∈ R− (0, b− a)

and

h(u) =

{
f(u), a 6 u 6 b

0, u ∈ R− [a, b]

So g.h ∈ L1(R), hence
Iαa f ∈ L1[a, b]

Theorem 2.1.1.2. [23]
Let α > 0 and let (fn)∞n=1 a sequence of uniformly continuous functions
converging in [a, b], then the sequence (Iαa fn)∞n=1 is uniformly convergent
and we can invert the Riemann-Liouville fractional integral and the limit as
follows: (

lim
n−→+∞

Iαa fn

)
(t) =

(
Iαa lim

n−→+∞
fn

)
(t)

Proof. For the first statement we utilize the well known fact, that if f
denotes the limit of the sequence (fn), the function f is continuous. For
α = 0 the stated result follows directly from the uniform convergence and
for α > 0 we can deduce

|Iαa fn(x)− Iαa f(x)| ≤ 1

Γ(α)

∫ x

a

|fn(x)− f(x)| (x− t)α−1dt

≤ 1

Γ(α + 1)
‖fn − f‖∞(b− a)α.
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The last term converges uniformly to zero as k →∞ for all x ∈ [a, b].

A direct consequence of this theorem points out the connection between
fractional integrals and integer-order derivatives of an analytic function.

2.1.2 Examples of Fractional Integrals in the sense of
R-L

Example 2.1.2.1.
let f(t) = (t− a)β and calculat it’s integral of order (α > 0)

(Iβa f)(t) =
1

Γ(α)

∫ t

a

(t− τ)α−1f(τ)dτ

Iαa (t− a)β =
1

Γ(α)

∫ t

a

(t− τ)α−1 (τ − a)β dτ

by using the change of variable τ = a+ (t− a)u, then the beta function we
get

dτ = (t− a)du

τ = a⇒ a+ (t− a)u⇒ u = 0

τ = t⇒ a+ (t− a)u⇒ u = 1

Then

Iαa (t− a)β =
1

Γ(α)

∫ t

a

[t− (a+ (t− a)u)]α−1[(a+ (t− a)u)− a]β(t− a)du

=
1

Γ(α)

∫ t

a

(t− a)α−1(1− u)α−1(t− a)βuβ(t− a)du

=
1

Γ(α)

∫ t

a

(t− a)α(1− u)α−1(x− a)βuβdu

=
1

Γ(α)

∫ t

a

(t− a)α+β(1− u)α−1uβdu

=
(t− a)α+β

Γ(α)

∫ t

a

(1− u)α−1uβdu

=
(t− a)α+β

Γ(α)
· B(β + 1, α)
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=
(t− a)α+β

Γ(α)
· Γ(α)Γ(β + 1)

Γ(α + β + 1)
.

So

Iαa (t− a)β =
(t− a)α+βΓ(β + 1)

Γ(α + β + 1)
(2.5)

For a = 0, we have

Iα0 (t)β = Iα (t)β =
(t)α+βΓ(β + 1)

Γ(α + β + 1)
(2.6)

Example 2.1.2.2.
Fractional integral of the constant function f(t) = C

IαaC =
1

Γ(α)

∫ t

a

(t− τ)α−1Cdτ

=
C

Γ(α)

∫ t

a

(t− τ)α−1dτ

=
C

Γ(α)

(
−(t− τ)α

α

]t
a

=
C

αΓ(α)
(t− a)α

Hence the result:
IαaC =

C

Γ(α + 1)
(t− a)α (2.7)

Example 2.1.2.3.
Fractional integral of the exponential function f(t) = exp(nt) to n > 0 and
α > 0.
Using the formula (2.3)of the integral of R-L with a = −∞, we obtain:

Iα−∞exp(nt) =
1

Γ(α)

∫ +∞

0

sα−1exp(n(t− s))ds

=
exp(nt)

Γ(α)

∫ +∞

0

sα−1exp(−ns)ds

By the change of variable x = ns,we deduce that

Iα−∞exp(nt) =
exp(nt)

Γ(α)

∫ +∞

0

(x
n

)α−1

exp(−x)
dx

n

= n−α
exp(nt)

Γ(α)

∫ +∞

0

xα−1exp(−n)dx

= n−α
exp(nt)

Γ(α)
Γ(α),
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and from it we find

Iα−∞exp(nt) = n−αexp(nt) (2.8)

2.2 Riemann-Liouville fractionnal derivative

Definition 2.2.1.
The Riemann-Liouville fractional derivative of a continuous function
f : [a, b]→ R order α is defined by:

Dα
a f(t) =

(
d

dt

)m
1

Γ(m− α)

∫ t

a

(t− τ)m−α−1f(τ)dτ = Dm
[
Im−αf)(t)

]
(2.9)

with x ∈ [a, b],m ∈ N \ {0} and −1 < α < m.

Where Dm =
d

dt
is derived of integer order m = [α] + 1.

Lemma 2.2.1. [23]
Let α > 0 and f ∈ L1[a, b] then the equality:

Dα
a I

α
a f(t) = f(t)

is true for almost everything on [a, b].

Proof.
Using the definition (2.9) and (2.4) we will have:

Dα
a I

α
a f(t) = Dm

a I
m−α
a (Iαa f(t))

= Dm
a

(
Im−αa Iαa

)
f(t)

= Dm
a I

m
a f(t).

Hence
Dα
a I

α
a f(t) = f(t)

Lemma 2.2.2. [19]
Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional
differential equation Dαu(t) = 0 has the unique solution

u(t) = C1t
α−1 + C2t

α−2 + · · ·+ Cnt
α−n, (2.10)

where Ci ∈ R, i = 1, 2, · · · , n(n = [α] + 1).
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Lemma 2.2.3. ([19], [20])
Assume that u ∈ C(0, 1) ∩ L(0, 1), with a fractional derivative of order
α > 0 that belongs to u ∈ C(0, 1) ∩ L(0, 1). Then

Iα0 D
α
0 f(t) = f(t) +

n∑
k=1

Ckt
α−k, (2.11)

for some Ck ∈ R, and (n = [α] + 1).

Remark 2.2.1.

1. D0
af(t) = D1[I1

af(t)] = f(t) (D0
ais the identity operator).

2. For α = n where n is an integer, the operator gives the same result as
the differentiation classical of order n.

Dn
af(t) = Dn+1In+1−n

a f(t) = Dn+1I1
af(t)

2.2.1 Main properties of R-L fractionnal derivative

Lemma 2.2.1.1. [19]
The R-L derivation operator has the following properties:

1. It’s a linear operator.

2. Dα
a ◦ Iαa = Id.

3. Dα
a

(
Dβ
af(t)

)
= Dα+β

a f(t)−
∑n

j=1

[
Dβ−j
a f(t)

]
t=a

(t− a)−α−j

Γ(1− α− j)
with

α ∈ [m− 1) and β ∈ [n− 1, n).

Proof.

1. Let f(x) and g(x) be two functions defined on [a, b] such that Dα
a f

and Dα
a g exist almost everywhere. Moreover, let λ, µ ∈ R. Then
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Dα
a (λf(x) + µg(x)) exists almost everywhere.

Dα
a (λf(x) + µg(x)) =

(
d

dx

)m (
Im−αa (λf(x) + µg(x))

)
=

(
d

dx

)m [
1

Γ(m− α)

∫ x

a

(x− t)m−α−1 (λf(x) + µg(x)) dt

]
=

1

Γ(m− α)

(
d

dx

)m [
λ

∫ x

a

(x− t)m−α−1f(x)dt

+µ

∫ x

a

(x− t)m−α−1g(x)dt

]
= λ

(
d

dx

)m [
1

Γ(m− α)

∫ x

a

(x− t)m−α−1f(x)dt

]
+ µ

(
d

dx

)m [
1

Γ(m− α)

∫ x

a

(x− t)m−α−1g(x)dt

]
.

Hence
Dα
a (λf(x) + µg(x)) = λDα

a f(x) + µDα
a g(x)

2. In order to prove the second property, we need to consider the case of
an integer α = m ≥ 1

[(Dm
a ◦ Ima ) f ] (x) =

(
d

dx

)m
[Ima f(x)]

=

(
d

dx

)m [
1

Γ(m)

∫ x

a

(x− t)m−1f(t)dt

]
=

d

dx

[
1

(m− 1)!

∫ x

a

(
d

dx

)m−1

(x− t)m−1f(t)dt

]

=
d

dx

[
1

(m− 1)!

∫ x

a

(m− 1)!f(t)dt

]
=

d

dx

∫ x

a

f(t)dt = f(x).

Now we take α ∈]m− 1,m[ and using the integral composition
property R-L we will have

[(Dα
a ◦ Iαa ) f ] (x) =

(
d

dx

)m [(
Im−αa (Iαa f)

)
(x)
]

=

(
d

dx

)m
[Ima f(x)]

= f(x).
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Hence
[(Dm

a ◦ Ima ) f ] (x) = f(x)

3. To prove the third property using subsequently the definition of the
R-L fractional derivative (2.9), we obtain:

Dα
a

(
Dβ
af(t)

)
=

(
d

dt

)m
[Im−αa Dβ

af(t)]

=

(
d

dt

)m [
D−(m−α)Dβ

af(t)
]

= Dα+β
a f(t)−

n∑
j=1

[
Dβ−j
a f(t)

]
t=a

(t− a)−α−j

Γ(1− α− j)
.

Dα
a

(
Dβ
af(t)

)
= Dα+β

a f(t)−
n∑
j=1

[
Dβ−j
a f(t)

]
t=a

(t− a)−α−j

Γ(1− α− j)
(2.12)

Interchanging α and β (and therfore m and n ), we can write:

Dβ
a (Dα

a f(t)) = Dα+β
a f(t)−

m∑
j=1

[
Dα−j
a f(t)

]
t=a

(t− a)−β−j

Γ(1− β − j)
(2.13)

Corollary 2.2.1.1.
The comparison of the relationships (2.12) and (2.13) says that in the
general case the R-L fractional derivative operators Dα

a and Dβ
a do not

commute.

2.2.2 Examples of Fractional Derivatives

We consider the same functions of the previous example, and we calculate
their fractional derivatives in the R-L sense of order α.

Example 2.2.2.1.
f(t) = (t− a)β with β > −1

Dα
a (t− a)β =

(
d

dt

)m
[Im−α(t− a))β]
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we have seen the expression of the integral of order α of this function, so
for order m− α we obtain

Im−αa (t− a)β =
Γ(β + 1)

Γ(β + 1 +m− α)
(t− a)β+m−α

So

Dα
a (t− a)β =

(
d

dt

)m [
Γ(β + 1)

Γ(β + 1 +m− α)
(t− a)β+m−α

]
=

Γ(β + 1)

Γ(β + 1 +m− α)

(
d

dt

)m
(t− a)β+m−α

=
Γ(β + 1)

Γ(β + 1 +m− α)

Γ(β +m− α + 1)

Γ(β − α + 1)
(t− a)β−α

Because(
d

dt

)m
(t− a)β+m−α = (β +m− α).(β +m− α− 1).(β +m− α− (m− 1)).(t− a)β−α

=
(β +m− α)!

β +m− α−m)!
(t− a)β−α

=
Γ(β +m− α + 1)

Γ(β − α + 1)
(t− a)β−α.

Hence
Dα
a (t− a)β =

Γ(β + 1)

Γ(β − α + 1)
(t− a)β−α

In the case where a = 0 we have:

Dα
a (t)β =

Γ(β + 1)

Γ(β − α + 1)
(t)β−α

Example 2.2.2.2.
R-L fractional derivative of the constant function f(t) = C

Dα
a =

(
d

dt

)m
(Im−αa C)

we have seen the expression of the integral of order α of this function, so
for order m− α we obtain

Im−αa C =
C

Γ(m− α + 1)
(t− a)m−α
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So

Dα
aC =

(
d

dt

)m(
C

Γ(m− α + 1)
(t− a)m−α

)
=

C

Γ(m− α + 1)

(
d

dt

)m
(t− a)m−α (2.14)

We have(
d

dt

)m
(t− a)m−α = (m− α)(m− α− 1) . . . (1− α)(t− a)−α, (2.15)

and

Γ(m− α + 1) = (m− α)(m− α− 1) . . . (1− α)Γ(1− α). (2.16)

By substituting(2.15) and (2.16) in (2.14) we get

Dα
aC =

C(m− α)(m− α− 1) . . . (1− α)(t− a)−α

(m− α)(m− α− 1) . . . (1− α)Γ(1− α)
,

So
Dα
aC =

C

Γ(1− α)
(t− a)−α

This means that the derivative in the R-L sense of the constant is not
zero.

Example 2.2.2.3.
The exponential function f(t) = exp(nt)to n > 0, and α > 0.
Using the formula (2.9) with a = −∞ and the result (2.8) we get:

Dα
−∞ exp(nt) =

(
d

dt

)
Imα−∞ exp(nt)

=

(
d

dt

)(
nα−m exp(nt)

)
= nα−mnm exp(nt)

So
Dα
−∞ exp(nt) = nα exp(nt)



Chapter 3

Nonlinear fractional differential
equations with integral boundary
value conditions

In this chapter, we show some contributions of researchers to the finding
of the existence of the solution for the different fractional differential
equations. A. Cabada and Z. Hamdi [5] studied the existence of the
solution of the following nonlinear fractional differntial equations with
integral boundary value conditions .{

Dαu(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) = λ
∫ 1

0
u(s)ds.

(3.1)

where 2 < α < 3, 0 < λ, λ 6= α, Dα is the Rieman-Liouville fractional
derivative and f is a continuous function.

3.1 Green function

In this section, using Green’s function and its properties, we will
establish the positivity of the solution of the problem (3.1), for this we need
the next theorem.

Theorem 3.1.1. [5]

21
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Let 2 < α 6 3 and λ 6= α. Assume y ∈ C[0, 1], then auxiliary problem{
Dαu(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) = λ
∫ 1

0
u(s)ds.

(3.2)

has a unique solution u ∈ C1[0, 1], given by the expression

u(t) =

∫ 1

0

G(t, s)y(s)ds

where

G(t, s) =


tα−1(1− s)α−1(α− λ+ λs)− (α− λ)(t− s)α−1

(α− λ)Γ(α)
, 0 6 s 6 t ≤ 1,

tα−1(1− s)α−1(α− λ+ λs)

(α− λ)Γ(α)
, 0 6 t 6 s ≤ 1.

(3.3)

Proof.
In view of Lemma (2.2.3), the equation Dαu(t) + y(t) = 0, is equivalent

to the integral equation

u(t) =

∫ t

0

−(t− s)α−1

Γ(α)
y(s)ds+ C1t

α−1 + C2t
α−2 + C3t

α−3,

with 2 < α 6 3.
The boundary condition u(0) = 0 implies that C3 = 0,because α− 3 < 0,

thus

u(t) =

∫ t

0

−(t− s)α−1

Γ(α)
y(s)ds+ C1t

α−1 + C2t
α−2,

and u′(0) = 0 implies that C2 = 0, Thus

u(t) =

∫ t

0

−(t− s)α−1

Γ(α)
y(s)ds+ C1t

α−1.

In view of the boundary condition u(1) = λ
∫ 1

0
u(s)ds, we conclude that

u(1) = −
∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds+ C1 = λ

∫ 1

0

u(s)ds.

So

C1 =

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds+ λ

∫ 1

0

u(s)ds.
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Therefore, the unique solution of problem (3.2) is

u(t) =

∫ t

0

−(t− s)α−1

Γ(α)
y(s)ds+ tα−1

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds+ tα−1λ

∫ 1

0

u(s)ds.

(3.4)
Suppose A =

∫ 1

0
u(s)ds. From the previous equality, we deduce that

A =

∫ 1

0

u(t)dt

=

∫ 1

0

∫ t

0

−(t− s)α−1

Γ(α)
y(s)dsdt+

∫ 1

0

tα−1

∫ 1

0

(1− s)α−1

Γ(α)
y(s)dsdt

+

∫ 1

0

tα−1λAdt

According to fubini’s theorem we find

A =

∫ 1

0

∫ 1

s

−(t− s)α−1

Γ(α)
y(s)dt ds+

∫ 1

0

tα−1dt

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds

+

∫ 1

0

tα−1 λA dt

= −
∫ 1

0

(1− s)α

αΓ(α)
y(s)ds+

∫ 1

0

(1− s)α−1

αΓ(α)
y(s)ds+

λA

α

A

(
α− λ
α

)
= −

∫ 1

0

(1− s)α

αΓ(α)
y(s)ds+

∫ 1

0

(1− s)α−1

αΓ(α)
y(s)ds

So

A = −
∫ 1

0

(1− s)α

(α− λ)Γ(α)
y(s)ds+

∫ 1

0

(1− s)α−1

(α− λ)Γ(α)
y(s)ds

Replacing this value in (3.4), the unique solution of (3.2) is expressed as

u(t) =

∫ t

0

−(t− s)α−1

Γ(α)
y(s)ds+ tα−1

∫ 1

0

(1− s)α−1

Γ(α)
y(s)ds− tα−1λ

∫ 1

0

(1− s)α

(α− λ)Γ(α)
y(s)ds

+ tα−1λ

∫ 1

0

(1− s)α−1

(α− λ)Γ(α)
y(s)ds,

=

∫ t

0

−(t− s)α−1

Γ(α)
y(s)ds+

∫ 1

0

tα−1(1− s)α−1[α− λ(1− s)]
(α− λ)Γ(α)

y(s)ds,

=

∫ t

0

−(t− s)α−1

Γ(α)
y(s)ds+

∫ t

0

tα−1(1− s)α−1[α− λ(1− s)]
(α− λ)Γ(α)

y(s)ds

+

∫ 1

t

tα−1(1− s)α−1[α− λ(1− s)]
(α− λ)Γ(α)

y(s)ds,
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=

∫ t

0

tα−1(1− s)α−1[α− λ(1− s)]− (α− λ)(t− s)α−1

(α− λ)Γ(α)
y(s)ds

+

∫ 1

t

tα−1(1− s)α−1[α− λ(1− s)]
(α− λ)Γ(α)

y(s)ds.

Hence

u(t) =

∫ 1

0

G(t, s) y(s)ds

Lemma 3.1.0.1. [5]
If α ∈ (2, 3] and λ > 0, then the function G(t, s) defined by (3.3) satisfies
the following properties

1. G(0, s) = G(t, 1) = G(t, 0) = 0 for all t, s ∈ [0, 1] and λ 6= α.

2. G(1, s) = 0 for all s ∈ (0, 1) if and only if λ = 0.

3. (α− λ)G(1, s) > 0 for all t, s ∈ (0, 1) if and only if λ 6= α.

4. G(t, s) 6
1

(α− λ)Γ(α− 1)
for all t, s ∈ [0, 1] and λ ∈ [0, α).

5. G(t, s) is a continuous function for all t, s ∈ [0, 1] and λ 6= α.

Proof.

1. To prove the first property we put t = 0 in expression of G, we get
directly G(t, s) = 0 for all t, s ∈ [0, 1] and λ 6= α, and we obtain the
same result if we substitute s for 1 or 0.

2. From Green’s function which is given by the expression (3.3)we have

G(1, s) =
(1− s)α−1λs

(α− λ)Γ(α)
; ∀ s ∈ (0, 1)

If λ = 0 so, (1− s)α−1λs = 0, then

G(1, s) = 0, ∀ s ∈ (0, 1) if and only if λ = 0
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3. We have

G(1, s) =
(1− s)α−1λs

(α− λ)Γ(α)
; ∀ s ∈ (0, 1)

(α− λ)G(1, s) =
(1− s)α−1λs

Γ(α)
,

and (1− s)α−1λ > 0, where λ > 0, 0 < s < 1, and we have Γ(α) > 0,
which implies that

(α− λ)G(1, s) > 0, for all t, s ∈ (0, 1) if and only if λ 6= α

4. We have λ ∈ [0, α) and α ∈ [2, 3] implies λ < 1.
Consider the first situation, if 0 6 s 6 t 6 1, we have

G(t, s) =
tα−1(1− s)α−1(α− λ+ λs)− (α− λ)(t− s)α−1

(α− λ)Γ(α)

6
tα−1(1− s)α−1(α− λ+ λs)

(α− λ)Γ(α)

6
tα−1(1− s)α−1[α− λ(1− s)]

(α− λ)Γ(α)

Since 1 > t > s we deduce that

6
tα−1(α− λ)

(α− λ)Γ(α)

6
(α− λ)

(α− λ)Γ(α)

6
(α− 1)

(α− λ)Γ(α)

From the properties of Gamma function we conclude this

G(t, s) 6
1

(α− λ)Γ(α− 1)

We do the same steps in the second case, if 0 6 t 6 s 6 1, and we
will get the same result.
So

G(t, s) 6
1

(α− λ)Γ(α− 1)
for all t, s ∈ [0, 1] and λ ∈ [0, α)
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5. We have

G(t, s) =


k(t, s)− g(t, s)

(α− λ)Γ(α)
, 0 6 s 6 t ≤ 1,

k(t, s)

(α− λ)Γ(α)
, 0 6 t 6 s ≤ 1.

with k(t, s) = tα−1(1− s)α−1(α− λ+ λs) and
g(t, s) = (α− λ)(t− s)α−1.
In view of the continuity of the gamma function, g(t, s) and k(t, s) in
[0, 1] the Green function G(t, s) is continuous for all t, s ∈ [0, 1] and
λ 6= α.

Now, we prove two additional inequalities of the Green’s function G. Such
properties, together with the previous ones given above, will be of
fundamental interest to ensure the existence of solutions of problem (3.1)
that will be proven in the next section.

Lemma 3.1.0.2. [5]
Fix 2 < α 6 3 and 0 < λ < α. Let G(t, s) be the Green’s function related

to problem (3.2) given by the expression (3.3). Then the following
inequalities hold:

tα−1G(1, s) 6 G(t, s) 6
α

λ
G(1, s), for all t, s ∈ (0, 1). (3.5)

Proof.
Assume in a first moment that 0 < t 6 s < 1. In such a case:

Suppose the function h(t, s) ≡ G(t, s)

G(1, s)

h(t, s) =
tα−1(1− s)α−1(α− λ+ λs)

(1− s)α−1λs

=
tα−1(α− λ+ λs)

λs

= tα−1

(
1 +

(α− λ)

λs

)
.
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So
tα−1 6 tα−1

(
1 +

(α− λ)

λs

)
= h(t, s)

and we deduce that

tα−1 6 h(t, s) 6 tα−1

(
1 +

(α− λ)

λs

)
6 tα−1 +

tα−1α

λs
− tα−1λ

λs

6 tα−1 +
tα−1α

λs
− tα−1

s

6 tα−1 +
tα−1α

λ
− tα−1

6
tα−1α

λ
, ∀ t 6 s < 1

Hence

tα−1G(1, s) 6 G(t, s) 6
α

λ
G(1, s), ∀ 0 < t 6 s < 1

On the other hand, if 0 < s 6 t < 1 we have that

h(t, s) =
tα−1(1− s)α−1(α− λ+ λs)− (α− λ)(t− s)α−1

(1− s)α−1λs

and since s > ts we deduce that

h(t, s) >
tα−1(1− s)α−1(α− λ+ λs)− (α− λ)(t− ts)α−1

(1− s)α−1λs

h(t, s) >
tα−1(1− s)α−1λs

(1− s)α−1λs
= tα−1

Now, we verify that h(t, s) 6
α

λ
for all 0 < s 6 t < 1.

h(t, s) =
tα−1(1− s)α−1(α− λ+ λs)− (α− λ)(t− s)α−1

(1− s)α−1λs

6
tα−1(1− s)α−1(α− λ+ λs)

(1− s)α−1λs

6 tα−1

(
1 +

(α− λ)

λs

)
,
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Then, we have

tα−1 6 h(t, s) 6 tα−1

(
1 +

(α− λ)

λs

)
6 tα−1 +

tα−1α

λs
− tα−1λ

λs

6 tα−1 +
tα−1α

λs
− tα−1

s

6 tα−1 +
tα−1α

λ
− tα−1

6
tα−1α

λ
, ∀ s 6 t < 1

So
h(t, s) 6

α

λ
, ∀ t < 1

Hence
tα−1G(1, s) 6 G(t, s) 6

α

λ
G(1, s), ∀ 0 < s 6 t < 1

Now, we have that the inequalities (3.5) are fulfilled.

As a corollary of the previous result and Lemma (3.1.0.1), we deduce the
following:

Corollary 3.1.0.1.
Let G be the Green’s function related to problem (3.2), which is given by the
expression (3.3). Then, for all α ∈ (2, 3] and λ > 0, the following property
holds:

G(t, s) > 0 for all t, s ∈ (0, 1) and all λ ∈ [0, α)

3.2 Existence of positive solutions

This section is devoted to prove the existence of a positive solution of the
nonlinear boundary value problem (3.1). To this end, we use the
Guo–Krasnoselskii fixed point theorem (1.3.1.1).
Let E = C[0, 1] be the Banach space endowed with the usual supremum
norm ‖u‖ = max

t∈[0,1]
|u(t)|. And suppose the following assumption:

(f) f : [0, 1]× [0,∞)→ [0,∞) is a continuous function.
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Lemma 3.2.1.
Let 2 < α 6 3 and λ 6= α. If u ∈ E, a solution of the fractional problem
(3.1) then it satisfies

u(t) > 0,∀ t ∈ [0, 1], u(t) >
tα−1λ

α
‖u‖,∀ t ∈ [t0, 1] . (3.6)

with t0 ∈ (0, 1] fixed.

Proof.
By lemma (3.1.0.2) we have

u(t) =

∫ 1

0

G(t, s)y(s)ds

6
α

λ

∫ 1

0

G(1, s)y(s)ds

it follows that

‖u‖ 6 α

λ

∫ 1

0

G(1, s)y(s)ds (3.7)

and we have

u(t) > tα−1

∫ 1

0

G(1, s)y(s)ds

> tα−1λ

α
‖u‖

from it we have

minu(t) >

 tα−1λ

α
‖u‖ if t ∈ [t0, 1], t0 > 0

0 if t ∈ [0, 1]

Let t0 = 1
2
and define a cone P ∩ E as follows

P =

{
u ∈ E, u(t) > 0, ∀ t ∈ [0, 1], u(t) >

tα−1λ

α
‖u‖, ∀ t ∈

[
1

2
, 1

]}
(3.8)

it fulfills the above conditions (1.3.1).
Define now the operator T : E → E as

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds (3.9)
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with G defined in (3.3) and the function u ∈ E, the solution of the problem
(3.1) if and only if Tu(t) = u(t),∀ t ∈ [0, 1].

Lemma 3.2.2.
T : P → P is completely continuous.

Proof.
From the continuity and the non negativeness of functions G and f on their
domains of definition, we have that if u ∈ P then Tu ∈ E and Tu(t) > 0 for
all t ∈ [0, 1].
1. Let us prove in first that T (P) ⊂ P .
Take u ∈ P , then, for all t ∈ [0, 1], by using Lemmas (3.1.0.1) and

(3.1.0.2), the following inequalities are satisfied

Tu(t) =

∫ 1

0

G(t, s)f(s, u(s))ds

> tα−1

∫ 1

0

G(1, s)f(s, u(s))ds

>
tα−1λ

α

∫ 1

0

max
t∈[0,1]

{G(t, s)}f(s, u(s))ds

>
tα−1λ

α
max
t∈[0,1]

{∫ 1

0

G(t, s)f(s, u(s))ds

}
>
tα−1λ

α
‖Tu‖.

In view of the continuity of functions G and f , the operator T : P → P is
continuous.
2. Let Ω ∩ P be bounded, which is to say there exists a positive constant
M > 0 such that ‖u‖∞ 6M for all u ∈ Ω.
Define now

L = max
06t61,06u6M

|f(t, u)|+ 1
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Then, for all u ∈ Ω, it is satisfied that

|Tu(t)| =
∣∣∣∣∫ 1

0

G(t, s)f(s, u(s))ds

∣∣∣∣
6
∫ 1

0

|G(t, s)f(s, u(s))| ds

6 L

∫ 1

0

G(t, s)ds

and we have G(t, s) 6
1

(α− λ)Γ(α− 1)
for all t, s ∈ [0, 1] and λ ∈ [0, α).

So

|Tu(t)| 6 L

(α− λ)Γ(α− 1)

6
(α− 1)L

(α− 1)(α− λ)Γ(α− 1)

6
αL− L

(α− λ)Γ(α)

6
αL

(α− λ)Γ(α)
∀t ∈ [0, 1],

Hence, the set T (Ω) is bounded in E.
3. Finally, we show that T is equicontinuous.
For each u ∈ Ω, ∀ t, s ∈ [0, 1] we have

|(Tu)′(t)| =
∣∣∣∣∫ t

0

−(t− s)α−2

Γ(α− 1)
f(s, u(s))ds+

∫ 1

0

tα−2(1− s)α−1[α− λ(1− s)]
(α− λ)Γ(α− 1)

f(s, u(s))ds

∣∣∣∣
6
∫ t

0

∣∣∣∣−(t− s)α−2

Γ(α− 1)

∣∣∣∣ |f(s, u(s))|ds+

∫ 1

0

∣∣∣∣ αtα−2(1− s)α−1

(α− λ)Γ(α− 1)

∣∣∣∣ |f(s, u(s))|ds

−
∫ 1

0

∣∣∣∣ λtα−2(1− s)α

(α− λ)Γ(α− 1)

∣∣∣∣ |f(s, u(s))|ds

6
L

Γ(α− 1)

∫ t

0

∣∣(t− s)α−2
∣∣ ds+

αL

(α− λ)Γ(α− 1)

∫ 1

0

∣∣tα−2(1− s)α−1
∣∣ ds

− λL

(α− λ)Γ(α− 1)

∫ 1

0

∣∣α−2(1− s)α
∣∣ ds

6
L

Γ(α− 1)

∫ t

0

∣∣(t− s)α−2
∣∣ ds+

αL

(α− λ)Γ(α− 1)

∫ 1

0

∣∣tα−2(1− s)α−1
∣∣ ds

6
L

(α− 1)Γ(α− 1)

∣∣∣[(t− s)α−1
]t

0

∣∣∣+
αL

α(α− λ)Γ(α− 1)

∣∣∣[tα−2(1− s)α
]1

0

∣∣∣
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6
L

Γ(α)
+

L

(α− λ)Γ(α− 1)

6
L

Γ(α)
+

(α− 1)L

(α− 1)(α− λ)Γ(α− 1)

6
L

Γ(α)
+

αL

(α− λ)Γ(α)
− L

(α− λ)Γ(α)

6
L

Γ(α)
+

αL

(α− λ)Γ(α)

= N.

As consequence, for all t1, t2 ∈ [0, 1], t1 < t2, we have

|(Tu)(t2)− (Tu)(t1)| 6
∫ 2

1

|(Tu)′(s)|ds 6 N(t2 − t1)

so the set T (Ω) is equicontinuous in E.
By means of the Arzela-Ascoli theorem (1.3.1), we have T : P → P is
completely continuous.

Now, we are in position to prove the existence of positive solutions of the
nonlinear boundary value problem. For this, we use the known Guo– Kras-
noselskii fixed point theorem (1.3.1.1).
Let introduce some notations

f0 = lim
u→0+

{
min

t∈[1/2,1]

{
f(t, u)

u

}}
and f∞ = lim

u→∞

{
min

t∈[1/2,1]

{
f(t, u)

u

}}
,

f 0 = lim
u→0+

{
max
t∈[0,1]

{
f(t, u)

u

}}
and f∞ = lim

u→∞

{
max
t∈[0,1]

{
f(t, u)

u

}}
Theorem 3.1.
Assume that condition (f) holds coupled with one of the two following

conditions:

(i) (sublinear case )f0 =∞ and f∞ = 0.

(ii) (superlinear case )f 0 = 0 and f∞ =∞.

Then for all α ∈ (2, 3] and λ ∈ (0, α), the probleme (3.1) has a positive
solution that belongs to the cone P defined in (3.8).
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Proof.

(i) Consider now the first situation sublinear case (f0 =∞ and f∞ = 0).
Since f0 =∞, then there exists a constant ρ1 > 0 such that
f(t, u) > δ1u for all 0 < u 6 ρ1, where δ1 > 0 and

δ1
λ

α
max
t∈[0,1]

{∫ 1

1
2

sα−1G(t, s)ds

}
> 1 (3.10)

Take u ∈ P , such that ‖u‖ = ρ1, then from expression (3.8), we get

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

G(t, s)f(s, u(s))ds

}

> max
t∈[0,1]

{∫ 1

1
2

G(t, s)f(s, u(s))ds

}

> δ1 max
t∈[0,1]

{∫ 1

1
2

G(t, s)u(s)ds

}

> δ1‖u‖
λ

α
max
t∈[0,1]

{∫ 1

1
2

sα−1G(t, s)ds

}
> ‖u‖.

On the other hand, since f(t, ·) is a continuous function on [0,∞), we
can define the following function :

f̃(t, u) = max
z∈[0,u]

f(t, z)

Clearly f̃(t, ·) is nondecreasing on [0,∞), moreover, since f∞ = 0 it is
obvious that (see [22]).

lim
u→∞

{
max
t∈[0,1]

f̃(t, u)

u

}
= 0

Choos new δ2 > 0 satisfying the following property:

δ2

(α− λ)Γ(α− 1)
6 1 (3.11)



3.2 Existence of positive solutions 34

Therefore there exists a constant ρ2 > ρ1 > 0 such that f̃(t, u) 6 δ2u

for all u > ρ2.
Consider u ∈ P be such that ‖u‖ = ρ2, then, from the definition of f̃ ,
Eq. (3.11) and property (4) in Lemma (3.1.0.1), we attain at the
following inequalities:

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

G(t, s)f(s, u(s))ds

}
6 max

t∈[0,1]

{∫ 1

0

G(t, s)f̃(s, ‖u‖)ds
}

6 δ2‖u‖ max
t∈[0,1]

{∫ 1

0

G(t, s)ds

}
6

δ2

(α− λ)Γ(α− 1)
‖u‖

Hence
‖Tu‖ 6 ‖u‖

Thus, by the first part of Guo–Krasnoselskii fixed point
theorem(1.3.1.1), we conclude that problem (3.1) has at least one
positive solution u such that

ρ1 6 ‖u‖ 6 ρ2

(ii) Consider now superlinear case (f 0 = 0 and f∞ =∞).
Let δ2 > 0 be given as in Eq. (3.11). Since f 0 = 0, there exists a
constant r1 > 0 such that f(t, u) 6 δ2u for 0 6 u 6 r1.
Take u ∈ P , such that ‖u‖ = r1. Then, from the previous calcul, we
have

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

G(t, s)f(s, u(s))ds

}
6

δ2

(α− λ)Γ(α− 1)
‖u‖ 6 ‖u‖.

Consider now δ3 > 0 satisfying

δ3
λ

2α−1α
max
t∈[0,1]

{∫ 1

1
2

G(t, s)ds

}
> 1 (3.12)

The fact that f∞ =∞ says us there exists a constant r2 > r1 > 0

with‖u‖ = r1 such that f(t, u) > δ3u for all u > r2.
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By definition of the cone P we have

r2 > min
t∈[1/2,1]

{
tα−1

α
λr1

}
>

α

2α−1
λ ‖u‖.

Let now u ∈ P be such that ‖u‖ = r2
α
λ
2α−1. As consequence, the

following inequalities holds:

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

G(t, s)f(s, u(s))ds

}
> max

t∈[0,1]

{∫ 1

1
2

G(t, s)f(s, u(s))ds

}

> δ3 max
t∈[0,1]

{∫ 1

1
2

G(t, s)u(s)ds

}

> δ3
tα−1λ

α
‖u‖ max

t∈[0,1]

{∫ 1

1
2

G(t, s)ds

}

> δ3
λ

2α−1α
‖u‖ max

t∈[0,1]

{∫ 1

1
2

G(t, s)ds

}
, ∀t ∈ [1/2, 1]

> ‖u‖.

Hence
‖Tu‖ > ‖u‖

Therefore, by the second part of Guo–Krasnoselskii fixed point theorem
(1.3.1.1), we can conclude that problem (3.1) has at least one positive
solution.

Remark 3.2.1.
It is important to point out that, since G(0, s) = 0, in order to ensure the
existence of r2 in case 2 of the previous theorem, it is necessary to reduce
the interval of definition [0, 1] to the smaller one [1/2, 1].
In fact, given two real constants 0 < a 6 b 6 1, by redefining

f0 = lim
u→0+

{
min
t∈[a,b]

{
f(t, u)

u

}}
and f∞ = lim

u→∞

{
min
t∈[a,b]

{
f(t, u)

u

}}
,
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it is immediate to verify that Theorem (3.1) remains true in the cone

P =

{
u ∈ E, u(t) > 0 ∀ t ∈ [0, 1], u(t) >

tα−1λ

α
‖u‖, ∀ t ∈

[
1

2
, 1

]}
.

3.3 Examples

We now give two examples to illustrate our results. The first example and
the second one are chosen such that the conditions (i) and (ii) are satisfied,
respectively.

Example 3.3.1. [5]
Let consider the fractional differential equation (3.1) with

f(t, u(t)) =
√
u(t) + log(tu2(t) + 2).

One can easily see that for all u > 0

min
t∈[1/2,1]

{
f(t, u)

u

}
=

√
u+ log

(
1
2
u2 + 2

)
u

and
max
t∈[0,1]

{
f(t, u)

u

}
=

√
u+ log (u2 + 2)

u

Now, we calculate f0

lim
u→0+

{
min

t∈[1/2,1]

{
f(t, u)

u

}}
= lim

u→0

(√
u+ log

(
1
2
u2 + 2

)
u

)

= lim
u→0

(√
u− log(2) + log(u2 + 4)

u

)
=∞.

Next, we calculate f∞

lim
u→∞

{
max
t∈[0,1]

{
f(t, u)

u

}}
= lim

u→∞

(√
u+ log (u2 + 2)

u

)
= lim

u→∞

(
4u

3
2 + u2 + 2

2
√
u(u2 + 2)

)

= lim
u→∞

(
2 (3
√
u+ u)

√
u

5u2 + 2

)
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= 2 lim
u→∞

(
(3
√
u+ u)

√
u

5u2 + 2

)

= 2

 lim
u→∞

(
3
√
u+ u

)√
u

lim
u→∞

(
5u2 + 2

)


= 2

 lim
u→∞

(
3

u
+

1√
u

)
lim
u→∞

(
5 +

2

u

)


= 2

(
lim
u→∞

(
3

u

)
+ lim

u→∞

(
1√
u

))
·

 1

lim
u→∞

(
5 +

2

u

)


= 0.

From the first part of Theorem (3.1), we get that the problem (3.1) has a
positive solution.

Example 3.3.2. [5]
Let consider the fractional differential equation (3.1) with

f(t, u(t)) = u2(t)− u(t) + t(eu(t) − 1).

Then, for every u > 0 it is verified that

min
t∈[1/2,1]

{
f(t, u)

u

}
= u− 1 +

eu − 1

2u

and
max
t∈[0,1]

{
f(t, u)

u

}
= u− 1 +

eu − 1

u

Now, we calculate f∞

lim
u→∞

(
u− 1 +

eu − 1

2u

)
= lim

u→∞
(u− 1) +

1

2
lim
u→∞

(
eu − 1

u

)
= lim

u→∞
(u− 1) +

1

2

(
lim
u→∞

(eu − 1)

lim
u→∞

(u)

)

= lim
u→∞

(u− 1) +
1

2

 lim
u→∞

(eu − 1)′

lim
u→∞

(u)′
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= lim
u→∞

(u− 1) +
1

2
lim
u→∞

(eu)

=∞.

Then,we calculate f 0

lim
u→0

(
u− 1 +

eu − 1

u

)
= lim

u→0
(u− 1) + lim

u→0

(
eu − 1

u

)

= lim
u→0

(u− 1) +

 lim
u→0

(eu − 1)′

lim
u→0

(u)′


= lim

u→0
(u− 1) + lim

u→0
(eu)

= 0.

Then, from the second part of theorem (3.1), we get that the problem (3.1)
has at least one positive solution.



Chapter 4

Positive solution for fractional
boundary value problems with
integral boundary conditions and
parameter dependence

In this chapter, we investigate the existence of positive solutions of the
following fractional differential equation with integral boundary conditions
(see [1]).

Dδu(t) + f(t, u(t)) = 0, 0 < t < 1, 1 < δ ≤ 2, (4.1)

u(0) = 0, u(1) = λ

∫ 1

0

h(r)u(r)dr. (4.2)

where Dδ is the Riemann–Liouville fractional derivative and f is a given
function.
The boundary conditions (4.2) can be thought as a mechanism putted at

the end point of an oscillator, which is characterized by theweighted
function h and the parameter λ, that controls its displacement according to
the feedback from devices measuring the displacements along different parts
of the oscillator.
Our assumed problem will more complicated and general than the

problems considered in chapter 3.

39
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4.1 Green function

To get the expression for the Green’s function of boundary value problem
(4.1) and (4.2), we start by solving the following auxiliary problem:

Dδu(t) + σ(t) = 0, 0 < t < 1, 1 < δ ≤ 2, (4.3)

u(0) = 0, u(1) = λ

∫ 1

0

h(r)u(r)dr. (4.4)

Lemma 4.1.1. [1]
Let 1 < δ ≤ 2. Suppose that 1− λ

∫ 1

0
h(r)rδ−1dr 6= 0. A function u ∈ C[0, 1]

is a solution of the linear boundary value problem (4.3) and (4.4) if and
only if it satisfies the integral equation

u(t) =

∫ 1

0

G(t, s)σ(s)ds

where G(t, s) is the Green’s function given by

G(t, s) = G1(t, s) +G2(t, s)

with

G1(t, s) =


tδ−1(1− s)δ−1 − (t− s)δ−1

Γ(δ)
, 0 ≤ s ≤ t ≤ 1;

tδ−1(1− s)δ−1

Γ(δ)
, 0 ≤ t ≤ s ≤ 1.

(4.5)

and

G2(t, s) =
λtδ−1

1− λ
∫ 1

0
h(r)rδ−1dr

∫ 1

0

h(r)G1(r, s)dr (4.6)

Proof.
By lemma (2.2.3) we have that the u is a solution of the linear equation
(4.3) if and only if it satisfies

u(t) = −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds+ C1t

δ−1 + C2t
δ−2

Condition u(0) = 0 implies necessarily that C2 = 0, so

u(t) = −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds+ C1t

δ−1
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and

u(1) = −
∫ 1

0

(1− s)δ−1

Γ(δ)
σ(s)ds+ C1

Since u(1) = λ
∫ 1

0
h(r)u(r)dr, we have that

u(1) = λ

∫ 1

0

h(r)

(
−
∫ r

0

(r − s)δ−1

Γ(δ)
σ(s)ds+ C1r

δ−1

)
dr

= λC1

∫ 1

0

h(r)rδ−1dr − λ

Γ(δ)

∫ 1

0

h(r)

∫ 1

0

(r − s)δ−1σ(s)ds dr.

From it we deduce

C1

(
1− λ

∫ 1

0

h(r)rδ−1dr

)
=

1

Γ(δ)

(∫ 1

0

(1− s)δ−1σ(s)ds− λ
∫ 1

0

h(r).∫ 1

0

(r − s)δ−1σ(s)ds dr

)
Now, since 1− λ

∫ 1

0
h(r)rδ−1dr 6= 0, we have

C1 =
1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

(∫ 1

0

(1− s)δ−1σ(s)ds− λ
∫ 1

0

h(r).∫ r

0

(r − s)δ−1σ(s)ds dr

)
Finally, we have the expression

u(t) = −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds+

tδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

(1− s)δ−1σ(s)ds

− λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)

∫ r

0

(r − s)δ−1σ(s)ds dr

= −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds

+
tδ−1(1− λ

∫ 1

0
h(r)rδ−1dr + λ

∫ 1

0
h(r)rδ−1dr)

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

(1− s)δ−1σ(s)ds

− λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)

∫ r

0

(r − s)δ−1σ(s)ds dr
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= −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds+

tδ−1

Γ(δ)

∫ 1

0

(1− s)δ−1σ(s)ds

+
λtδ−1

∫ 1

0
h(r)rδ−1dr

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

(1− s)δ−1σ(s)ds

− λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)

∫ r

0

(r − s)δ−1σ(s)ds dr

= −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds+

tδ−1

Γ(δ)

∫ t

0

(1− s)δ−1σ(s)ds+
tδ−1

Γ(δ)

∫ 1

t

(1− s)δ−1σ(s)ds

+
λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)rδ−1dr

∫ 1

0

(1− s)δ−1σ(s)ds

− λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)

∫ r

0

(r − s)δ−1σ(s)ds dr

= −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds+

tδ−1

Γ(δ)

∫ t

0

(1− s)δ−1σ(s)ds+
tδ−1

Γ(δ)

∫ 1

t

(1− s)δ−1σ(s)ds

+
λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)

∫ 1

0

rδ−1(1− s)δ−1σ(s)ds dr

− λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)

∫ r

0

(r − s)δ−1σ(s)ds dr

= −
∫ t

0

(t− s)δ−1

Γ(δ)
σ(s)ds+

tδ−1

Γ(δ)

∫ t

0

(1− s)δ−1σ(s)ds+
tδ−1

Γ(δ)

∫ 1

t

(1− s)δ−1σ(s)ds

+
λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)

∫ r

0

rδ−1(1− s)δ−1σ(s)ds dr

− λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)

∫ r

0

(r − s)δ−1σ(s)ds dr

+
λtδ−1

Γ(δ)(1− λ
∫ 1

0
h(r)rδ−1dr)

∫ 1

0

h(r)

∫ 1

r

rδ−1(1− s)δ−1σ(s)ds dr

=

∫ 1

0

G1(t, s)σ(s)ds+
λtδ−1

1− λ
∫ 1

0
h(r)rδ−1dr

∫ 1

0

h(r) ·
∫ 1

0

G1(r, s)σ(s)ds dr

=

∫ 1

0

G1(t, s)σ(s)ds+
λtδ−1

1− λ
∫ 1

0
h(r)rδ−1dr

∫ 1

0

h(r)G1(r, s)σ(s)ds dr.

And on it

u(t) =

∫ 1

0

G1(t, s)σ(s)ds+

∫ 1

0

G2(t, s)σ(s) ds
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Lemma 4.1.0.3. [1]
The function G1(t, s) defined in Lemma (4.1.1) has the following

properties:

1. G1(t, s) ∈ C([0, 1]× [0, 1]).

2. G1(t, s) > 0 for (t, s) ∈ (0, 1)× (0, 1) and G1(0, s) = 0 = G1(1, s) for
s ∈ [0, 1].

3. G1(t, s) = G1(1− s, 1− t), ∀ t, s ∈ [0, 1].

Proof.

1. We have

G1(t, s) =


g1(t, s)− g2(t, s)

Γ(δ)
, 0 ≤ s ≤ t ≤ 1;

g1(t, s)

Γ(δ)
, 0 ≤ t ≤ s ≤ 1.

with g1(t, s) = tδ−1(1− s)δ−1 and g2(t, s) = (t− s)δ−1.
Since Γ(δ), g1(t, s) and g2(t, s) are a continuous function in [0, 1] they
follows that G1(t, s) is a continous function in [0, 1]× [0, 1].

2. We consider the first case 0 ≤ s ≤ t ≤ 1 if ts > s > 0 implies that

tδ−1(1− s)δ−1 > (t− s)δ−1 > 0

and since Γ(δ) > 0 we deduce that

G1(t, s) > 0

and if t = 1 we have tδ−1(1− s)δ−1 = (t− s)δ−1.
So

G1(t, s) = 0

On the other hand, if 0 < t ≤ s < 1 we have 0 < ts < t so
tδ−1(1− s)δ−1 > 0 and on it G1(t, s) > 0

and if t = 0 so G1(t, s) = 0.
From it we conclude that

G1(t, s) > 0 ∀ t, s ∈ (0, 1) and G1(0, s) = G1(1, s) = 0, ∀ s ∈ [0, 1]
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3. If 0 < s ≤ t < 1 we have

G1(t, s) =
tδ−1(1− s)δ−1 − (t− s)δ−1

Γ(δ)

Let’s put t = 1− s then s = 1− t, so

G1(1− s, 1− t) =
(1− s)δ−1 (1− (1− t))δ−1 − ((1− s)− (1− t))δ−1

Γ(δ)

=
(1− s)δ−1tδ−1 − (t− s)δ−1

Γ(δ)

= G1(t, s).

In next result, we deduce two inequalities that, as we will see, will be
fundamental to ensure the existence of the solutions of the nonlinear
problem (4.1) and (4.2).

Lemma 4.1.0.4. [1]
Let the function G1(t, s) be defined in Lemma 2.3 and fix t0 ∈ (0, 1), then
G1 satisfies the following inequalities:

G1(t, s) ≤ sδ−1(1− s)δ−1

Γ(δ)
, ∀ t ∈ [0, 1] (4.7)

and
sδ−1(1− s)δ−1K(t, t0) ≥ G1(t, s), ∀t ∈ [0, 1], s ∈ [t0, 1] (4.8)

with

K(t, t0) =


tδ−1

Γ(δ)
, if 0 ≤ t ≤ t0 < 1,

min

{
tδ−1

Γ(δ)
,
tδ−1(1− t0)δ−1(t− t0)δ−1

Γ(δ)tδ−1(1− t0)δ−1

}
, if 0 < t0 < t ≤ 1.

(4.9)

Proof.
For s > t,

∂G1

∂t
(t, s) =

δ − 1

Γ(δ)
(1− s)δ−1tδ−2 > 0
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For s < t, since 1 < δ ≤ 2, we have

∂G1

∂t
(t, s) =

δ − 1

Γ(δ)

(
(1− s)δ−1tδ−2 − (t− s)δ−2

)
≤ δ − 1

Γ(δ)

(
tδ−2 − (t− s)δ−2

)
hence

∂G1

∂t
(t, s) < 0

As a consequence, it is fulfilled that

G1(t, s) ≤ G1(s, s) =
sδ−1(1− s)δ−1

Γ(δ)
, ∀t, s ∈ [0, 1]

and inequality (4.7) holds.
On the other hand, we have that

∂G1

∂s
(t, s) =

(
(t− s)δ−2 − (1− s)δ−2tδ−1

)
(δ − 1)

Γ(δ)
0, for 0 ≤ s < t ≤ 1

and
∂G1

∂s
(t, s) =

−
(
(1− s)δ−2tδ−1

)
(δ − 1)

Γ(δ)
, for 0 ≤ t < s ≤ 1.

Then, we have

(1− s)δ−2 > tδ−1(1− s)δ−2 > 0 and (t− s)δ−2 > (1− s)δ−2

So
(t− s)δ−2 − tδ−1(1− s)δ−2 > 0

As a consequence, we deduce that

∂G1

∂s
(t, s) > 0, for 0 ≤ s < t ≤ 1

∂G1

∂s
(t, s) < 0, for 0 ≤ t < s ≤ 1

Now, we introduce the following function:

F1(t, s) =
G1(t, s)

sδ−1(1− s)δ−1
, (t, s) ∈ [0, 1]× (0, 1)
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as a direct consequence of previous arguments, we deduce that

∂F1

∂t
(t, s) < 0 for 0 ≤ s < t ≤ 1,

and
∂F1

∂t
(t, s) > 0 for 0 ≤ t < s ≤ 1.

As a consequence, we have that

G1(t, s)

sδ−1(1− s)δ−1
≤ G1(s, s)

sδ−1(1− s)δ−1
=

1

Γ(δ)

By the other hand,

∂F1

∂s
(t, s) =


− tδ−1

Γ(δ − 1)sδ
, 0 ≤ t < s ≤ 1,

(δ − 1)
(
t (s2 − 2st+ t) (t− s)δ − (t− s)2tδ(1− s)δ

)
t Γ(δ)(t− s)2(1− s)δsδ

, 0 ≤ s < t ≤ 1.

As a direct consequence, we deduce that

∂F1

∂s
(t, s) < 0 for 0 ≤ t < s ≤ 1

On the other hand, for the case 0 ≤ s < t ≤ 1, we have that

∂F1

∂s
(t, s) =

(δ − 1) (h1(t, s, δ)− h2(t, s))

t Γ(δ)(t− s)2(1− s)δsδ

with h1(t, s, δ) = (t− s)2−δtδ−1(1− s)δ and h2(t, s) = s2 − 2st+ t.

So, we have that
∂F1

∂s
(t, s) > 0 if and only if h1(t, s, δ) > h2(t, s).

Now, since

∂h1

∂δ
(t, s, δ) = (1− s)δtδ−1(t− s)2−δ log

(
t− ts
t− s

)
we have that h1 is strictly increasing on the δ interval [1, 2] for any
0 ≤ s < t ≤ 1 given.
Thus, since h2(t, s)− h1(t, s, 2) = (1− t)s2 > 0, we conclude that

∂F1

∂s
(t, s) > 0 for all 0 < s < t < 1
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So, for any t0 ∈ (0, 1) fixed, ∀t ∈ [0, 1], s ∈ [t0, 1], we have that

G1(t, s)

sδ−1(1− s)δ−1
≥ min

{
lim
s→1−

G1(t, s)

s(1− s)δ−1
,

G1(t, t0)

tδ−1
0 (1− t0)δ−1

}
= min

{
tδ−1

Γ(δ)
,

G1(t, t0)

tδ−1
0 (1− t0)δ−1

}
= K(t, t0).

and the result is concluded.

By virtue of this lemma, we can give now the main result of this section.

Lemma 4.1.0.5. [1]
Let t0 ∈ (0, 1) be fixed and h introduced at boundary condition (3.2).

Denote by A =
∫ 1

0
h(r)rδ−1dr, B =

∫ 1

0
h(r)dr and C0 =

∫ 1

t0
K(t, t0)h(r)dr.

Assume that h ≥ 0 on [0, 1] and 1− λA > 0. Then the Green’s function
G(t, s) defined in Lemma (4.1.1) satisfies the inequalities

λC0t
δ−1

1− λA
sδ−1(1− s)δ−1 ≤ G(t, s) ≤ 1

Γ(δ)

(
1 +

λB

1− λA

)
sδ−1(1− s)δ−1, ∀t, s ∈ [0, 1]

(4.10)

Proof.
From the definition of G, the inequality (4.7) and the fact that 1 < δ ≤ 2,

we have the following inequalities for all t, s ∈ [0, 1]:

G(t, s) = G1(t, s) +G2(t, s)

= G1(t, s) +
λtδ−1

1− λA

∫ 1

0

h(r)G1(t, s)dr

≤ 1

Γ(δ)
sδ−1(1− s)δ−1 +

λtδ−1

1− λA

∫ 1

0

1

Γ(δ)
sδ−1(1− s)δ−1h(r)dr

≤ 1

Γ(δ)

(
1 +

λtδ−1

1− λA

∫ 1

0

h(r)dr

)
sδ−1(1− s)δ−1

≤ 1

Γ(δ)

(
1 +

λtδ−1B

1− λA

)
sδ−1(1− s)δ−1

≤ 1

Γ(δ)

(
1 +

λB

1− λA

)
sδ−1(1− s)δ−1.



4.2 Existence of positive solutions 48

On the other hand, by Lemma (4.1.0.3), (4.2) and (4.8), we have for all
t, s ∈ [0, 1]:

G(t, s) = G1(t, s) +G2(t, s)

≥ G2(t, s)

≥ λtδ−1

1− λA

∫ 1

0

h(r)G1(t, s)dr

≥ λtδ−1

1− λA

∫ 1

0

h(r)sδ−1(1− s)δ−1K(t, t0)dr

≥ λtδ−1

1− λA
C0s

δ−1(1− s)δ−1,

as we want to prove.

As a direct consequence, we deduce the following Corollary.

Corollary 4.1.0.2.
If h ≥ 0 on [0, 1] and 1− λA > 0 then the Green’s function G(t, s) defined
in Lemma (4.1.1) satisfies the inequalities

λ tC0

1− λA
sδ−1(1− s)δ−1 ≤ t2−δG(t, s) ≤ 1

Γ(δ)

(
1 +

λB

1− λA

)
sδ−1(1− s)δ−1, ∀t, s ∈ [0, 1]

4.2 Existence of positive solutions

In this section we study the existence of positive solution for Riemann
fractianal boundary value problem with integral boundary condition and
paramater dependance (4.1) and (4.2) with help of Guo-Krasnoselskii fixed
point theorem (1.3.1.1).
Now for any u : (0, 1]→ R, we define function u : [0, 1]→ R as follows:

u(t) =

{
t2−δu(t) if t ∈ (0, 1],

lim
t→0+

t2−δu(t) if t = 0,

provided that such limit exists.
Consider the Banach space

E = Cδ[0, 1] := {u : [0, 1]→ R, is a continous functin in [0, 1]}

endowed with the maximum norm ‖u‖ = max
0≤t≤1

|u(t)| .
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Lemma 4.2.1.
Let δ ∈ [1, 2] and λ 6= α. If u ∈ E a solution of the fractional problem (4.3)
and (4.4) then it satisfies

min
t∈[0,1]

u(t) > t2−δP (t, t0)‖u‖, ∀t ∈ [0, 1] (4.11)

with P (t, t0) =

(
Γ(δ)

λtδ−1

1− λA
C0

)
(

1 +
λB

1− λA

)
Proof.

u(t) =

∫ 1

0

G(t, s)σ(s)ds

≤ 1

Γ(δ)

(
1 +

λB

1− λA

)∫ 1

0

sδ−1(1− s)δ−1σ(s)ds

and on it

‖u‖ ≤ 1

Γ(δ)

(
1 +

λB

1− λA

)∫ 1

0

sδ−1(1− s)δ−1σ(s)ds

On the other hand, we have

u(t) =

∫ 1

0

G(t, s)σ(s)ds

≥ λtδ−1

1− λA
C0

∫ 1

0

sδ−1(1− s)δ−1σ(s)ds

≥

(
Γ(δ)

λtδ−1

1− λA
C0

)
(

1 +
λB

1− λA

) ‖u‖

So
min
t∈[0,1]

u(t) ≥ P (t, t0)‖u‖

and we have u(t) = t2−δu(t).
Then

min
t∈[0,1]

u(t) = min
t∈[0,1]

t2−δu(t) ≥ t2−δP (t, t0)‖u‖
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Notice that, provided that h > 0 on [0, 1] and 1− λA > 0, we deduce from
(4.10) that 0 ≤ P (t, t0) ≤ 1 for all t ∈ [0, 1] and t0 ∈ (0, 1).
Define now the cone P0 ⊂ E by

P0 = {u ∈ E, u(t) ≥ t2−δP (t, t0)‖u‖,∀t ∈ [0, 1]}

Now,we assume the following hypothesis on the nonlinear part of the
equation:
(H1) Function , f : [0, 1]× R→ [0,∞) is continuous. So, we define the
operator T : P0 → E by

(Tu) (t) =

∫ 1

0

G(t, s)f(s, u(s))ds, t ∈ [0, 1] (4.12)

Lemma 4.2.2. [1]
T : P0 → P0 is completely continuous.

Proof.
Let us prove in first that T (P0) ⊂ P0. Notice from the definition of T and
Corollary (4.1.0.2) that for u ∈ P0, Tu(t) ≥ 0 for all t ∈ [0, 1] and

t2−δ (Tu) =

∫ 1

0

t2δG(t, s)f(s, u(s))ds

≥
∫ 1

0

t2−δ
λtδ−1

1− λA
C0s

δ−1(1− s)δ−1f(s, u(s))ds

= t2−δ
Γ(δ)

λtδ−1

1− λA
C0(

1 +
λB

1− λA

) ∫ 1

0

(
1 +

λB

1− λA

)
Γ(δ)

sδ−1(1− s)δ−1f(s, u(s))ds

≥ t2−δP (t, t0)

∫ 1

0

max
0≤t≤1

{
t2−δG(t, s)

}
f(s, u(s))ds

≥ t2−δP (t, t0) max
0≤t≤1

{∫ 1

0

t2−δG(t, s)f(s, u(s))ds

}
= t2−δP (t, t0)‖Tu‖.

Thus, T (P0) ⊂ P0.
In addition, since f is a continuous function it folows that T is a continuous
operator.
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Next, we show that T is uniformly bounded. Let D ⊂ P be a bounded set,
i.e. ther exists a constant L > 0 such that ‖u‖ ≤ L, for all u ∈ D. Set

M = max
0≤s≤1,0≤u≤L

{f(s, u(s))}

and denoting the Beta function as

B(a, b) =

∫ 1

0

ta−1(1− t)b−1dt

Then, from Lemma (4.1.0.5), and for all u ∈ D, we have

|t2−δTu(t)| =
∣∣∣∣∫ 1

0

t2−δG(t, s)f(s, u(s))ds

∣∣∣∣
≤ M

Γ(δ)

(
1 +

λB

1− λA

)∫ 1

0

sδ−1(1− s)δ−1ds

=
M

Γ(δ)

(
1 +

λB

1− λA

)
B(δ, δ)

= M

(
1 +

λB

1− λA

)
Γ(δ)

Γ(2δ)
.

Hence, T (D) is bounded.
Finally, we show that T is equicontinuous, as follows.
For all ε > 0 and for each u ∈ P , let t1, t2 ∈ [0, 1], be such that t1 < t2.
We have to prove that there is η > 0 valid for all u ∈ D, such that
|t2−δTu(t2)− t2−δTu(t1)| < ε, when t2 − t1 < η.
One has

|t2−δTu(t2)− t2−δTu(t1)| =
∣∣∣∣∫ 1

0

[
t2−δ2 G(t2, s)− t2−δ1 G(t1, s)

]
f(s, u(s))ds

∣∣∣∣
≤
∫ 1

0

∣∣t2−δ2 G(t2, s)− t2−δ1 G(t1, s)
∣∣ f(s, u(s))ds

≤M

∫ 1

0

∣∣t2−δ2 G(t2, s)− t2−δ1 G(t1, s)
∣∣ ds.

Then we have∫ 1

0

∣∣t2−δ2 G(t2, s)− t2−δ1 G(t1, s)
∣∣ ds ≤ ∫ 1

0

∣∣t2−δ2 G1(t2, s)− t2−δ1 G1(t1, s)
∣∣ ds

+

∫ 1

0

∣∣t2−δ2 G2(t2, s)− t2−δ1 G2(t1, s)
∣∣ ds
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From the expression of G1, we get∫ 1

0

∣∣t2−δ2 G1(t2, s)− t2−δ1 G1(t1, s)
∣∣ ds =

∫ t1

0

∣∣t2−δ2 G1(t2, s)− t2−δ1 G1(t1, s)
∣∣ ds

+

∫ t2

t1

∣∣t2−δ2 G1(t2, s)− t2−δ1 G1(t1, s)
∣∣ ds+

∫ 1

t2

∣∣t2−δ2 G1(t2, s)− t2−δ1 G1(t1, s)
∣∣ ds

=

∫ t1

0

∣∣∣∣t2(1− s)δ−1 − t2−δ2 (t2 − s)δ−1

Γ(δ)
− t1(1− s)δ−1 − t2−δ1 (t1 − s)δ−1

Γ(δ)

∣∣∣∣ ds
+

∫ t2

t1

∣∣∣∣t2(1− s)δ−1 − t2−δ2 (t2 − s)δ−1

Γ(δ)
− t1(1− s)δ−1

Γ(δ)

∣∣∣∣ ds
+

∫ 1

t2

∣∣∣∣t2(1− s)δ−1

Γ(δ)
− t1(1− s)δ−1

Γ(δ)

∣∣∣∣ ds
=

∫ t1

0

∣∣∣∣(t2 − t1)(1− s)δ−1 + t2−δ1 (t1 − s)δ−1 − t2−δ2 (t2 − s)δ−1

Γ(δ)

∣∣∣∣ ds
+

∫ t2

t1

∣∣∣∣(t2 − t1)(1− s)δ−1 − t2−δ2 (t2 − s)δ−1

Γ(δ)

∣∣∣∣ ds+

∫ 1

t2

∣∣∣∣(t2 − t1)(1− s)δ−1

Γ(δ)

∣∣∣∣ ds
=

∣∣∣∣∣−(t2 − t1)
[
(1− s)δ

]t1
0
− t2−δ1

[
t1 − s)δ

]t1
0

+ t2−δ2

[
(t2 − s)δ

]t1
0

δ Γ(δ)

∣∣∣∣∣
+

∣∣∣∣∣−(t2 − t1)
[
(1− s)δ

]t2
t1

+ t2−δ2

[
t2 − s)δ

]t2
t1

δ Γ(δ)

∣∣∣∣∣+

∣∣∣∣∣−(t2 − t1)
[
(1− s)δ

]1
t2

δ Γ(δ)

∣∣∣∣∣
=

∣∣∣∣∣−(t2 − t1)
[
(1− t1)δ − 1

]
+ t2−δ2 (t2 − t1)δ + t21 − t22

δ Γ(δ)

∣∣∣∣∣
+

∣∣∣∣∣−(t2 − t1)
[
(1− t2)δ − (1− t1)δ

]
− t2−δ2

[
(t2 − t1)δ

]
δ Γ(δ)

∣∣∣∣∣+
(t2 − t1)(1− t2)δ

δ Γ(δ)

=

∣∣∣∣∣t2−δ2 (t2 − t1)δ + (t1 − t2)
[
(1− t1)δ + t1 + t2 − 1

]
Γ(δ + 1)

∣∣∣∣∣
+

∣∣∣∣∣(t2 − t1)
[
(1− t1)δ − (1− t2)δ

]
− t2−δ2

[
(t2 − t1)δ

]
Γ(δ + 1)

∣∣∣∣∣+
(t2 − t1)(1− t2)δ

Γ(δ + 1)
.

So, we have that there is η > 0 valid for all u ∈ D, such that
|t2−δTu(t2)− t2−δTu(t1)| < ε, when t2 − t1 < η.
Now, denote by H(s) =

∫ 1

0
h(r)G1(r, s)ds and h∗ = max

t∈[0,1]
{h(t)}.
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Then, from the expression of G2(t, s) and the inequality (4.7), using that∫ 1

0

H(s)ds ≤ h∗
∫ 1

0

∫ 1

0

G1(r, s)drds

≤ h∗
∫ 1

0

∫ 1

0

rδ−1(1− s)δ−1

Γ(δ)
drds

≤ h∗
∫ 1

0

sδ−1(1− s)δ−1

Γ(δ)
ds, ∀ r ≤ s

= h∗
1

Γ(δ)
B(δ, δ)

= h∗
1

Γ(δ)

Γ(δ)Γ(δ)

Γ(2δ)

= h∗
Γ(δ)

Γ(2δ)

we get ∫ 1

0

|t2−δ2 G2(t2, s)− t2−δ1 G2(t1, s)|ds =

∫ 1

0

λ(t2 − t1)

1− λA
H(s)ds

≤ Γ(δ)

Γ(2δ)

λh∗

1− λA
(t2 − t1).

Thus, we obtain theat the set T (D) is equicontinuous in E.
Now, from the Arzelà-Ascoli Theorem we conclude that T : P → P is
completely continuous operator.

Now, we are in position to prove the existence of positive solutions of the
nonlinear boundary value problem. For this, we use the known
Guo–Krasnoselskii fixed point theorem (1.3.1.1).
Let introduce some notations:

f0 = lim
u→0+

{
min
t∈[0,1]

{
f(t, u)

u

}}
and f∞ = lim

u→∞

{
min
t∈[0,1]

{
f(t, u)

u

}}
,

f 0 = lim
u→0+

{
max
t∈[0,1]

{
f(t, u)

u

}}
and f∞ = lim

u→∞

{
max
t∈[0,1]

{
f(t, u)

u

}}
.

Theorem 4.2.1. [1]
Assume that h ≥ 0 on [0, 1], 1− λA > 0 and (H1) hold coupled with one of
the following conditions:
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1. Sublinear case: f0 =∞ and f∞ = 0.

2. Superlinear case: f 0 = 0 and f∞ =∞.
Then Problem (4.1) and (4.2) has at least one positive solution.

Proof.

1. Consider the first situation (1):
Since f0 =∞, then there exists a constant R1 > 0 such that
f(t, u) ≥ r1u for all 0 < u ≤ R1 and t ∈ [0, 1], where r1 > 0 is defined
as

r1 =
(1− λA)(1− λA+ λB)Γ(1 + 2δ)

λ2C2
0 δ Γ3(δ)

(4.13)

Take u ∈ P0 such that ‖u‖ = R1. Then from expression (4.13), we get

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

t2−δG(t, s)f(s, u(s))ds

}
≥ r1 max

t∈[0,1]

{∫ 1

0

t2−δG(t, s)u(s)ds

}
≥ r1 max

t∈[0,1]

{∫ 1

0

t2−δG(t, s) s2−δ P (s, t0)‖u‖ds
}

≥ r1‖u‖ max
t∈[0,1]

{
t

∫ 1

0

λ

1− λA
C0 s (1− s)δ−1P (s, t0)ds

}
= r1‖u‖

λ2C2
0 Γ(δ)

(1− λA)(1− λA+ λB)

∫ 1

0

sδ(1− s)δ−1ds

= r1‖u‖
λ2C2

0 Γ(δ)

(1− λA)(1− λA+ λB)
B(δ + 1, δ)

= r1‖u‖
λ2C2

0 Γ(δ)

(1− λA)(1− λA+ λB)

Γ(δ + 1)Γ(δ)

Γ(1 + 2δ)

= r1‖u‖ ·
λ2C2

0 δ Γ3(δ)

(1− λA)(1− λA+ λB) Γ(1 + 2δ)

= ‖u‖.

On the other hand, since f(t, ·) is a continuous function on [0,∞), we
define a new function:

f̂(t, u) = max
y∈[0,u]

{f(t, y)}
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Cleary f̂(t, ·) is nondecreasing on [0,∞). Moreover, since f∞ = 0 it is
obvious that

lim
u→∞

{
max
t∈[0,1]

f̂(t, u)

u

}
= 0

Choos now r2 > 0 defined as the following constant:

r2 =
(1λA) Γ(2δ)

(1− λA+ λB) Γ(δ)
(4.14)

Therefore, there exists a constant R2 > R1 > 0 such that
f̂(t, u) ≤ r2 u for all u ≥ R2 and t ∈ [0, 1]. Consider u ∈ P0 such that
‖u‖ = R2. Then from the definition of f̂ , inequality (4.14) and
Lemma (4.1.0.4), we attain at the following inequalities:

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

t2−δ G(t, s)f(s, u(s))ds

}
≤ max

t∈[0,1]

{∫ 1

0

t2−δ G(t, s)f̂(s, ‖u‖)ds
}

≤ r2‖u‖ max
t∈[0,1]

{∫ 1

0

t2−δ G(t, s)ds

}

≤ r2‖u‖
(1− λA+ λB)

(1− λA) Γ(δ)

∫ 1

0

sδ−1(1− s)δ−1ds

= r2‖u‖
(1− λA+ λB)

(1− λA) Γ(δ)
B(δ, δ)

= r2‖u‖
(1− λA+ λB)

(1− λA) Γ(δ)

Γ2(δ)

Γ(2δ)

= r2‖u‖
(1− λA+ λB) Γ(δ)

(1− λA) Γ(2δ)

= ‖u‖.

Thus, by the first part of Guo–Krasnoselskii fixed point theorem
(1.3.1.1), we conclude that the problem (4.1) and ( 4.2) has at least
one positive solution u such that

R1 ≤ ‖u‖ ≤ R2
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2. Consider now the second case (2)
Let r2 > 0 be chosen as in Eq. (4.14). Since f0 = 0, there exists a
constant τ1 > 0 such that f(t, u) ≤ r2 u for 0 ≤ u ≤ τ1 and t ∈ [0, 1].

Take u ∈ P0 such that ‖u‖ = τ1. Then, arguing as in the previous
case, we have

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

t2−δG(t, s)f(s, u(s))ds

}
≤ r2‖u‖

(1− λA+ λB) Γ(δ)

(1− λA) Γ(2δ)

= ‖u‖.

Now, by denoting the incomplete beta function as

Bz(a, b) =

∫ z

0

ta−1(1− t)b−1dt

for any fixed t1 ∈ (0, 1), we define r3 > 0 as follows:

r3 =
(1− λA)(1− λA+ λB)

λ2C2
0 Γ(δ)

 √
π Γ(δ)

Γ

(
δ +

1

2

)
4δ
− Bt1(δ + 1, δ)


−1

(4.15)
The fact that f∞ =∞ ensures that there exists a constant τ2 > τ1 > 0

such that f(t, u) ≥ r3u for all u ≥ τ2 and t ∈ [0, 1].
By the definition of P (t, t0) is clear that

P1 = min
t∈[t1,1]

{
t2−δ P (t, t0)

}
> 0

Let now u ∈ P0 be such that ‖u‖ = τ2/P1. As consequence, since
u ∈ P0, the following inequality holds:

u(t) ≥ t2−δ P (t, t0) ‖u‖ ≥ P1 ‖u‖ = τ2, ∀ t ∈ [t1, 1]
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So, condition (2) gives us the following properties:

‖Tu‖ = max
t∈[0,1]

{∫ 1

0

t2−δG(t, s)f(s, u(s))ds

}
≥ max

t∈[0,1]

{∫ 1

t1

t2−δG(t, s)f(s, u(s))ds

}
≥ r3 max

t∈[0,1]

{∫ 1

t1

t2−δ G(t, s)u(s)ds

}
≥ r3 ‖u‖ max

t∈[0,1]

{∫ 1

t1

t2−δ G(t, s) s2−δ P (s, t0)ds

}
≥ r3 ‖u‖ max

t∈[0,1]

{
t

∫ 1

t1

λ

1− λA
C0 s(1− s)δ−1 P (s, t0)ds

}
= r3 ‖u‖

λ2C2
0 Γ(δ)

(1− λA)(1− λA+ λB)

∫ 1

t1

sδ(1− s)δ−1ds

= r3 ‖u‖
λ2C2

0 Γ(δ)

(1− λA)(1− λA+ λB)

(∫ 1

0

sδ(1− s)δ−1ds−
∫ t1

0

sδ(1− s)δ−1ds

)
= r3 ‖u‖

λ2C2
0 Γ(δ)

(1− λA)(1− λA+ λB)
(B(δ + 1, δ)− Bt1(δ + 1, δ))

= r3 ‖u‖
λ2C2

0 Γ(δ)

(1− λA)(1− λA+ λB)

(
Γ(δ + 1)Γ(δ)

Γ(2δ + 1)
− Bt1(δ + 1, δ)

)
= r3 ‖u‖

λ2C2
0 Γ(δ)

(1− λA)(1− λA+ λB)

(
Γ(δ)2

2Γ(2δ)
− Bt1(δ + 1, δ)

)

= r3 ‖u‖
λ2C2

0 Γ(δ)

(1− λA)(1− λA+ λB)

 Γ(δ)
√
π

4δ Γ

(
δ +

1

2

) − Bt1(δ + 1, δ)


= ‖u‖.

Because according to the properties of gamma function we have

Γ(2δ) =
Γ(δ) Γ

(
δ + 1

2

)
21−2 δ Γ

(
1
2

) with Γ

(
1

2

)
=
√
π

Therefore, by the second part of Guo–Krasnoselskii fixed point
theorem (1.3.1.1), we conclude that the problem (4.1) and (4.2) has at
least one positive solution.
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4.3 Examples

We now give two examples to illustrate our results. The first example
and the second one are chosen such that the conditions of theorem (4.2.1)
sublinear case (1) and superlinear case (2) are satisfied, respectively.

Example 4.3.1. [1]
The problem {

D
3
2 u(t) + f(t, u(t)) = 0

u(0) = 0, u(1) = λ
∫ 1

0
s

1
2u(s)ds,

(4.16)

with

f(t, x) =

{
t+
√
x arctan

(
1
x

)
if x > 0, t ∈ [0, 1]

t if x = 0, t ∈ [0, 1]

Here, δ =
3

2
and h(t) = t

1
2 .

Then

A =

∫ 1

0

h(t) tδ−1 dt

=

∫ 1

0

t
1
2 t

3
2
−1 dt

=

[
t

2

]1

0

=
1

2

1− λA > 0 for any λ < 2.

It is clear that f(t, u) : [0, 1]× [0,+∞)→ [0,+∞) is continuous and for
every u > 0 it is verified that

min
t∈[0,1]

{
f(t, u)

u

}
=

√
u arctan

(
1
u

)
u

=
arctan

(
1
u

)
√
u

and

max
t∈[0,1]

{
f(t, u)

u

}
=

1 +
√
u arctan

(
1
u

)
u

=
1

u
+

arctan
(

1
u

)
√
u
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Now, we calculate f0

lim
u→0+

{
min
t∈[0,1]

{
f(t, u)

u

}}
= lim

u→0+

{
arctan

(
1
u

)
√
u

}

=

lim
u→0+

(
arctan

(
1

u

))
lim
u→0+

(√
u
)

=
∞
0

=∞.

Then, we calculate this f∞

lim
u→∞

{
max
t∈[0,1]

{
f(t, u)

u

}}
= lim

u→∞

{
1

u
+

arctan
(

1
u

)
√
u

}

= lim
u→∞

(
1

u

)
+ lim

u→∞

(
arctan

(
1
u

)
√
u

)

= lim
u→∞

(
1

u

)
+

lim
u→∞

(
arctan

(
1

u

))
lim
u→∞

(√
u
)

= 0 +
0

∞
= 0.

Then by the first part of Theorem (4.2.1), the problem (4.16) has at least
one positive solution for any 0 < λ < 1.

Example 4.3.2. [1]
The problem {

D
3
2u(t) + uβ(t) + (t− 1)u(t) = 0, t ∈ (0, 1)

u(0) = 0, u(1) = λ
∫ 1

0
esu(s)ds.

(4.17)

Here, δ =
3

2
, h(t) = et and f(t, u) = uβ + (t− 1)u.

A numerical calculation leads to A =
∫ 1

0
et t

1
2 dt ≈ 1.25563 and

1− λA > 0 for any 0 < λ < 1
A
.
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f(t, u) : [0, 1]× [0,+∞)→ [0,+∞) is continuous function and for every
u > 0 it’s verified that

min
t∈[0,1]

{
f(t, u)

u

}
=
uβ − u
u

= uβ−1 − 1

and

max
t∈[0,1]

{
f(t, u)

u

}
=
uβ

u
= uβ−1

Now, we calculat f 0, we find for any β > 1

lim
u→0+

{
max
t∈[0,1]

{
f(t, u)

u

}}
= lim

u→0+

(
uβ−1

)
= 0

Then, we count f∞

lim
u→+∞

{
min
t∈[0,1]

{
f(t, u)

u

}}
= lim

u→+∞

(
uβ−1 − 1

)
= lim

u→+∞

(
uβ−1

)
+ lim

u→+∞
(−1)

So f∞ = +∞, ∀ β > 1

Then, from the second part of Theorem (4.2.1), the problem (4.17) has at
least one positive solution for any β > 1 and λ ∈ (0, 0796413).



Conclusion

In this work, we study the existence of solutions of fractional differential
equations involving a Riemann-Liouville derivative of order Alpha by using
some fixed point theorems notably, Guo-Krasnoselskii theorem of expansion
and compression of cones.
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