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Introduction

There are many special functions that arise in the solution of various classical problems of
physics. Some examples include Bessel functions, which are solutions to differential equa-
tions and popular in problems involving circular or cylindrical symmetry or wave propaga-
tion; beta functions, which are definite integrals and related to the gamma function; and
hypergeometric functions, which are solutions to a second-order linear differential equa-
tion called the hypergeometric equationl. Other examples include Airy functions, elliptic
functions, gamma functions, parabolic cylinder functions, Mathieu functions, spheroidal
wave functions, Struve functions, and Kelvin functions.

A Bessel function is a solution to a second-order linear differential equation called
the Bessel equation. They are named after Friedrich Bessel who first introduced them
in 1817. They are used in problems involving circular or cylindrical symmetry (type of
symmetry where a three-dimensional object is invariant under a rotation about an axis.
For example, a cylinder has cylindrical symmetry because it looks the same when rotated
about its central axis) or wave propagation.

The gamma function is one commonly used extension of the factorial function to com-
plex numbers. It is defined for all complex numbers except the non-positive integers. The
gamma function has many applications in mathematics, physics, and engineering. Some
of the most popular extensions of the gamma function include the beta function and hy-
pergeometric functions.

The gamma function has many applications in mathematics, physics, and engineering.
Some of the most common applications of the gamma function include:

e Integration problems

Calculating products

Analytic number theory

Probability theory

Statistics

The gamma function is also used in many other fields such as quantum mechanics,
fluid dynamics, and signal processing.



This report is organized as follow:

The first chpater is devoted to preliminaries of special functions. Second chapter con-
cerns the extensions of fractional derivative based on some extensions of eulerian functions,
properties are given and integral transforms among other. The last chapter is about a
recent work on these extensions, namely Riemann liouville extended fractional derivative.



Chapter

On spectial Functions

1.1 Gamma functions

The Gamma function is a generalization of the factorial function to non-integer num-
bers.
It is often used in probability and statistics, as it shows up in the normalizing constants
of important probability distributions such as the Chi-square and the Gamma.
In this lecture we define the Gamma function, we present and prove some of its prop-
erties, and we discuss how to calculate its values.

1.1.1 Definition

Definition 1.1.1. For z a complex number with R(z) > 0

+oo
['(z)= / e tdt
0

Theorem 1.1.1. (Recursive formula) Given the above definition, it is straightforward to
prove that the Gamma function satisfies the following recursion :

Fz)=E-1)IT'(z-1)

Proof. The recursion can be derived by using integration by parts:

+oo
['(z) = / e tdt
0

+o0o
= [t ] ;roo + / (z — 1) t* 2 dt
0

= (z—1) /+OO te=D e at
= (z—1D(z—1)
_

Theorem 1.1.2. (Relation to the factorial function)
When the argument of the Gamma function is a natural number n € N then its value
is equal to the factorial of n — 1:

I'(n)=(n-1)!

8
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Proof. First of all, we have that

ra =

Using the recursion

we obtain

r(1) = (1—-1)1=1

re = 2-nre-1n=1-r)=2!

@) = 3-1)IT@3-1)=2-I(2)=1-2-3=3]

'n) = m—-HNI'ln—-1)=1-2-3-...-(n—1)=(n—1)!
|

Remark. The integer form of the factorial function can be considered as a special case
of two widely used functions for computing factorials of non-integer arguments, namely
the Pochhammer’s symbol, given as
I'(z+n) (z4n-—1)!
1 2)... —-1) = = >0
(2)y = ¢ FEFVEFDn=1) = =5 CEET. (1.1)
1=0! n=0

and the gamma function (Euler’s integral of the second kind).

T(z) = (z — 1)! (1.2)

Another definition

In another letter written in October 13, 1729 also to his friend Goldbach, Euler gave
another equivalent definition for I'(z)
Fuler Let x > 0 and define

B plp® B p*
Fplz) = z(x+1)..(z+p)  z(l+x/1)..(1+2/p) (13)
Gauss
T(z) = li nin” 0,-1,-2,-3 1.4
(Z>_n1_>r{.loz<z+1)(z+2)(z+n) 7Z7é y T Ay T4y Ty e ()
Weierstrass
i = o e (15)

n=1
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where v is the Euler-Mascheroni constant, defined by
R
y = JE&; o In(n) = 0.57721566490 (1.6)

An excellent approximation of « is given by the very simple formula

1
v = 5(\3/1_0 —1) = 0.5772173...

1.1.2 Some known values

Proposition 1.1.1. A well-known formula, which is often used in probability theory and
statistics, is the following:

Proof. By using the definition and performing a change of variable, we obtain

1 too
F(—) = / t2"te7tdt
2 0

+oo +o0o e—t
_ / / € gt
0 0 \/5
+oo 9
= 2/ e du
0

_ VT
2

— va

By using this fact and the recursion formula previously shown, it is immediate to prove
that
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Proposition 1.1.2.

for n € N.

Proof. The result is obtained by iterating the recursion formula:

) - (ored)rered)

' 1
= — 14+ = Z
(n —1—2) 5
1 1 1 1
= — 14 = — 24+ = (=
(=) (rm2eg) - (3) ()
n—1 1
= VT j+§)
j=0

Proposition 1.1.3. : Duplication Formula
1
22710 () (2 + 5) = /7['(22) (1.7)

Proof. An easy proof can lie on the expression of I',(x) and I',(x + 1/2) from

B plp* _ P
) = e D) r ) o/ (0 + /)

then make the product and find the limit as p — oo.
Notice that by applying the duplication formula for z = 1/2, | we retrieve the value of
I'(1/2), while = 1/6 permits to compute

Proposition 1.1.4. : The complement formula

™

T(2)D(1— 2) = (1.8)

sin 7z
Proof. There is an important identity connecting the gamma function at the complemen-
tary values x and 1 — z. One way to obtain it is to start with Weierstrass formula

o0

1 A\ x
—— =z [+ S)e P
['(z) ;Hl p
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which yields:

L — 2T 1 Tye=alp(1 — Lyealp
lve I+ 1= )

But the functional equation gives I'(—z) = —I'(1 — x) /2 and the equality writes as

1 = x?
fara—s 105

p=1
and using the well-known infinite product :

2

ad T
sin(mx) = x 1——
(mz) lj[l( p2)
p_
finally gives
T
INz)'(1l —2) = 1.9
()P(1 - 2) = —— (19)

Relation above is called the complement (or reflection) formula and is valid when z and
1 — x are not negative or null integers and was discovered by Euler.

1.2 incomplete Gamma functions

Definition 1.2.1. .
v (2, x) :/ t*~te tdt (1.10)
0

Some special values, integrals and series are listed below for convenience [11], [29].

1.2.1 Special Values of v(z,x) and ['(z) for "z" Integer (let z = n)

n k
v(1+ n, ) :n![l—e*mZ%] n=0,1,2. (1.11)
k=0
R
I'(1+n,z) =nle xZg n=0,1,2.. (1.12)
k=0
n—1
(=1)" e k!
P(=n,z) = —=[1(0,2) —e ;(—NW] n=1,23. (1.13)

1.2.2 Integral Representations of the Incomplete Gamma Func-

tions
v(z,z) = xzcosec(wz)/ e? O cos(20 + xsinf)dd x#0,2>0,2#1,2,... (1.14)
0
e Ty? o] e—t —z
I = dt z2<1,z>0 1.15
(2, 2) F(l—z)/o et ST (1.15)

[(z,zy) = yze_my/ e Wit+a)ldt y>0,2>02>0 (1.16)
0
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1.2.3 Series Representations of the Incomplete Gamma Functions

0 (_l)nl,z+n

— A 1.17
(2, 2) 2 it m) (1.17)
o0 ( 1)n$z+n
r =1I'(z2) — 1.1
() =16 -3 T (118)
LZ
(s a) = eoar S Ll (1.19)
—ntl
where L?(x) is the associated Laguerre polynomial (one can refer to [29] for more

details).

1.2.4 Functional Representations of the Incomplete Gamma Func-

tions
Y(z+1,2) =2y(z,2) — 2% (1.20)
I‘(Z_i_]_?‘r) _ ZF(Z7x)+xZe—CE (121>
I(z+1,2) TI(z2) R v +k
— +e* _ 1.22
dy(z,z)  dl(z,2) Al (1.23)

dx dx

1.2.5 Asymptotic Expansion of I'(z, z) for Large x

+.] r— o0 (1.24)

1.2.6 Relationships with Other Special Functions

I'0,2) = —FEi(—x) (1.25)
['0,inl/x) = —Lli(x) (1.26)
[(1/2,2%) = /7(1 — erf(z)) = /mwer fe(x) (1.27)
where complementary error function defined as erfcl —erf
2(1/2,2%) = ver () (1.28)

where erf(x) is the error function (also called the Gauss error function), often denoted
by erf, is a complex function of a complex variable.

Y(z,z) =z a%e "M (2,1 + 2, 2) (1.29)

Y(z,x) = 2" M(z,1 + z, —x) (1.30)
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Recall that M(z,1+ z, —z) is the Mittag-Leffler function, also written as E, s is a special
function, a complex function which depends on two complex parameters «, and 5 . It
may be defined by the following series when the real part of « is strictly positive:

400 k

Eop(z) = Z m

k=0

More reading for Mittag-Leffler function can be found in [16], [15].

1.3 Beta Function B(x,y)

Another integral which is related to the I'-function is the Beta function B(x,y) which is
defined as

Definition 1.3.1.

1
B(z,y) = / N1 — )yt (1.31)
0
Remark. Other forms of the beta function are obtained by changes of variables. Thus
Bz, y) /Oo W by letting £ = — (1.32)
x,y) = ———du etting t = :
R R I it A g

From the definition it is easily seen that B(z,y) = B(y, ).
w/2
B(x,y) = 2/ sin® ' @ cos?** 1 0dO by letting t = sin® 0 (1.33)
0

Beta Function Properties

The important properties of beta function are as follows:

e This function is symmetric which means that the value of beta function is irrespec-
tive to the order of its parameters, i.e B(p,q) = B(q,p).

e B(p,q) =B(p.q+1)+B(p+1,9)
e B(p+1,9) = B(p,q).[p/(p+q)]

® B(p,q+1) = B(p,q).la/(p+ q)]

® B(p,q).B(p+q,1—q) = 7/psin(rq)

1.4 Incomplete Beta Function B, (z,y)

Like as one can define an incomplete gamma function, so can one define the incomplete
beta function by the variable limit integral

By (z,y) / E 1= dE 0<r <1 (1.34)
0

with @ > 0 and b > 0 if r # 1. One can also define



1.4 Incomplete Beta Function B, (z,y) 15

B,(7,y)
B(z,y)

Clearly when x = 1, B,(x,y) becomes the complete beta function and

I(z,y) =

(1.35)

Il<x>y) =1

The incomplete beta function and I,.(z,y) satisfies the following relationships:

Proposition 1.4.1. 1. I, (z,y) =1—I,_,.(x,y), (Symmetry).
2. L(z,y)=rl(x—1,y)+ (1 —r)l.(z,y — 1), (First recurrence formula).

3. (v +y—ar)l.(z,y) =21 —r)(x+ 1,y — 1) + yl.(x,y + 1), (Second recurrence
formula)

4. (zv+y)l.(z,y) = xl.(z+ 1,y) + yl.(z,y + 1), (Third recurrence formula)

1.4.1 Relationship Between the Gamma and Beta Functions

We know that there are two types of Euler integral functions. One is a beta function,
and another one is a gamma function. Gamma is a single variable function, whereas Beta
is a two-variable function. The relation between beta and gamma function will help to
solve many problems in maths.

Proposition 1.4.2. The gamma and beta functions are related as

['(z).I'(y)

Ble.y) = ['(z +y)

Proof. Since we have another expression of the beta function defined as

/OO o Pl — ['(2)
0 p*

which is obtained from the definition of the I'-function with the change of variable
s = pt.
Setting p=14wu and z = x + y, we get

1 1 o0
— —(1+u)tt$+y—1dt ].36
T e ¢ (1.56)

and substituting this result into the Beta function in

1 o0 o
B(x,y) = ——— e_tt”y_ldt/ e du
(=.9) I'(z+y) /0 0

— —F@) /00 ettt
L(x+y) Jo

(1.37)
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1.5 Hypergeometric Functions

In this part, we give definitions and some properties of the hypergeometric functions, We
refer to ([30], [12], [31], [18] for more details.
In 1769, Euler formed the second order linear differential equation

d? d
z(l—z)d—j—i—[c—(a—i-b—i-l)z]d—z—aby:O

(1.38)

where a,b and ¢ are complex parameters, also known as the hypergeometric differential
equation . The solutions (as series expansion) of the hypergeometric equation are valid
in the neighborhood of z = 0, 1 or co. The hypergeometric differential equation is a
prototype: every ordinary differential equation of second-order with at most three regular
singular points can be brought to the hypergeometric differential equation by means of a
suitable change of variables. The solutions of hypergeometric differential equation include
many of the most interesting special functions of mathematical physics. Solutions to the
hypergeometric differential equation are built out of the hypergeometric series. The solu-
tion of FKuler?s hypergeometric differential equation is called hypergeometric function or
Gaussian function o F7 introduced by Gauss (more details of finding solutions are available
in [13] and [18] for series expansions).

Thus, if ¢ is not an integer, the general solution of differential equation is valid in a
neighborhood of the origin and can be given by :

y=AyFi(a,b;c;2) + B2 F(a—c+1,b—c+1;2 —¢;2)
where A and B are arbitrary constants, and

ab ala+1)bb+1) ,
F b . — 1 —2 + —2" T .....
2Fi(a,b;c; 2) Tttt T der iz ©F

(c#0,—-1,-2,.....)
where (\), denotes the Pochhammer symbol defined by

LA+ o)

(MNo=1and (M), := ey

Hence
= n(b)n 2"
Fifa,bciz) = 3 DB
n=0

(¢)n !

is called Gauss hypergeometric function. This series is convergent for |z| < 1 where
Re(c) > Re(b) > 0 and |z| = 1 where Re(c —a —b) > 0.
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Definition 1.5.1. The Gauss hypergeometric function can be given by Fuler?s integral
representation as follows:

o Fi(a,b;c; 2) = L(o) ] /01 71— )N (1 — 2t) %t

L(y)L'(c—10b
(|z] < 1; Re(c) > Re(b) > 0)

z
Remark. Replacing z = 7 and by letting |b| — oo, in Gauss’s hypergeometric equation
eq. (1.5), we obtain
d?y

dy
z@—l—(c—z)%—ay—o

This equation has a regular singularity at z = 0, The simplest solution of the equation
is

ola;cz) = 1+ilz+—z + o
c.

Hence, we get

¢(a;6;2)=2%2

nl
= (c)n 0!

which is called confluent hypergeometric function.

1.5.1 Confluent hypergeometric function

Definition 1.5.2. The confluent hypergeometric function can be given by an integral
representation as follows:

ola;cz) = L(c) ) /01 t N1 — 1) eap(2t)dt

F(x)(c—a
(Re(c) > Re(a) > 0)

1.5.2 Generalized hypergeometric function

A generalized form of the hypergeometric function is
Definition 1.5.3.

(1)) 2
Fo, s s s ooy 2) = S e Op)n 2 1.39
D Q( 1 py V1 Yq ) Z (’71)n .... 'Yq)n n ( )

n=0

(p,g=0,1,....)



1.5 Hypergeometric Functions 18

Remark. 1. Settingp =2, ¢ = 11in (1.39), we get the Gauss hypergeometric function,

o TL

041 042
F(OébCVQ;’Yl;Z) = 2F1(041,CYQ§71, E -
n=0 '

2. Setting p = ¢ =1 in 1.39, we get confluent hypergeometric function

3

Plar;mi;2) =1 Fi(oa;mis 2 Z

1.5.3 Euler integral

and establish the Euler type integral representations:

Definition 1.5.4.

Fya,biez) = — | / "1 (1 o) e [—L)} it

B(b,c—b) J, t1—t

(p>0; p=0 and |arg(1-z)|<m < p, Re(c) > Re(b) > 0)and

oy exp(2) b b b—1 D
%(b,c,z)-m/o t (1—1¢)" "exp {_Zt_t(l—t)l dt

(p>0; p=0and Re(c) > Re(b) > 0)

Remark. They called these functions as extended Gauss hypergeometric function (EGHF)
and extended confluent hypergeometric function, respectively, since Fy(a, b; ¢; z) =5 Fi(a,b; c; 2)
and ¢o(b; c; z) =1 Fi1(b; ¢; 2)

1.5.4 The Extended Appell’s Functions

In mathematics, Appell series are a set of four hypergeometric series Fi, Fy, F3, F) of
two variables that were introduced by Paul Appell (1880) and that generalize Gauss’s
hypergeometric series o F} of one variable. Appell established the set of partial differential
equations of which these functions are solutions, and found various reduction formulas
and expressions of these series in terms of hypergeometric series of one variable.

Definition 1.5.5. The extensions of the Appell’s functions Fi(a, b, ¢; d; x, y; p), Fo(a, b, ¢;d, ¢; x, y; p),

and the extended Lauricella’s hypergeometric function F ;}p(a, b,c,d;e;x,y, z) by

. By(a+m+n,d—a) "y

> — O)n(m =
B(a,d — a) n! m!

Fi(a,b,c;dyx,y;p) :=
n,m=0
(maz{|z|,|y|} < 1)

By(b+n,d =b)By(c+m,e—c)a" y"
B(b,d —b)B(c;e — c) nlm!

FQ(aa b: (6N d,@,x,y,p) = Z

n,m=0

(] + [yl < 1)
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and
. Byla+mtn+re—a)b)m(c)(d), z™y" 2"
3 < e . — p ) mA-jn —__Z -
FD,p(a’v ba ¢, da€71’7y72> T mnzrjzo B((l,@ . (l) m! n! rl
(V[ + Iyl + [z < 1)
respectively.

Remark. Notice that the case p = 0 give the original functions. Like the Gauss hyperge-
ometric series o F7, the Appell double series entail recurrence relations among contiguous
functions.

For example, a basic set of such relations for Appell’s F1 is given by:
Theorem 1.5.1. We have:
1. (a—by—by)Fi(a,by,be,c;x,y) —a Fi(a+1,b1,bo,c;2,y) + b1 Fy(a, b1+ 1, b, ¢, y) +
boFi(a,by,be + 1,¢c;2,y) =0
2. cFi(a,by, by, c;x,y)— (c—a)Fi(a,by,ba,c+ 1;2,y) —a Fi(a+1,by,be,c+ 1;2,y) = 0,

3. cFi(a,by, by, c;xy) + c(x — 1) Fi(a,by + 1,bs, 52, y) — (¢ — a)x Fi(a, by + 1,ba, ¢+
Lz,y) =0,

4. CFl(aablu b27c;$7y> + C<y - 1)F1(a7b17 b2 + 176;:(;73/) - (C - a)yFl(a, b17b2 + 17C +
L;z,y) =0.

Functions defined by Appell’s double series can be represented in terms of double inte-

grals involving elementary functions only [14]. However, Emile Picard (1881) discovered
that Appell’s F} can also be written as a one-dimensional Euler-type integral.

1.5.5 Integral representations of the functions Fi(a,b,c;d;x,y;p)
and Fy(a,b,c;d, e;x,y;p)

Now we proceed by obtaining the integral representations of the functions Fi(a, b, ¢; d; x, y; p)

and Fy(a,b,c;d, e;x,y;p)

Theorem 1.5.2. [27]
For the extended Appell’s functions Fi(a,b,c;d;z,y;p), we have the following integral
representation:

—F(x)ll:(((fi)— ) X/o t 7 1—t) 0 (1 —wt) P (1—yt) Cexp {_t(lp— t)} dt
(p>0;, p=0 and |arg(l —z)| <m, |arg(l —y)| < m; Re(d) > Re(a) > 0)
(Re(b) > 0, Re(c) >0)

Fl(&> b? & d7$7y7p) =

Theorem 1.5.3. [27]
For the function Fy(a,b, c;d, e; x,y;p), we have the following integral representation:

/1 tbfl(l o )dfbflscfl(l _ S)efcfl
0

t
(1 — ot —ys)®

1 1
Fy(a,b, c;d,e;,y;p) = '

h(a,b,c;d,e;x,y;p) B(b,d —b)B(c,e — ¢) /o
P p

X exp _t(l - — S _8)} dtds

(p>0;p=0and |z|+ |yl <1)
Re(d) > Re(b), Re(e) > Re(c) >0, Re(a) >0




Chapter 2

Extended special functions and
Riemann-Liouville type fractional
derivative operator

Introduction

Extensions and generalizations of some known special functions are important both from
the theoretical and applied point of view. Also many extensions of fractional derivative
operators have been developed and applied by many authors (see [3], [24],[7],[2],]17]-..)-
These new extensions have proved to be very useful in various fields such as physics,
engineering, statistics, actuarial sciences, economics, finance, survival analysis, life testing
and telecommunications. The above-mentioned applications have largely motivated our
present study.

Definition 2.0.1. K,(z) is the modifed Bessel function of the third kind, or the Mac-
donald function with its integral representation given by:

Koe) = | explohielnlzin 2.1)
where R(z) > 0 and
k(z|t) = %(t + %) (2.2)

1
For a = 2 we have

Ki(z) = \/ge—z (2.3)

2.1 Extended special functions

2.1.1 Extended gamma and Beta functions

In 1994, Chaudhry and Zubair [9] introduced the following extension gamma function.

20
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Definition 2.1.1. The extended gamma function is defined by :
Iy(z) = / t"Lexp(—t — pt)dt (2.4)
0

(R(z) >0, R(p) > 0)
In 1997, Chaudhry et al. [5] presented the following extension of Euler’s beta function.

Definition 2.1.2. The extended beta function is defined by :

B,(z) = /O 11— t)y_le:cp(—ﬂlp;_t))dt (2.5)

(R(p) > 0, R(z) >0, R(y) > 0)

Obviously we see that I'g(z) = I'(x) and By(z,y) = B(z,y). All the properties of the
Beta function can be derived from the relationships linking the I'-function and the Beta
function.

2.1.2 Extended incomplete gamma and incomplete Beta func-
tions

Definition 2.1.3. (Extended incomplete gamma functions) The extended in-
complete gamma functions constructed by using the exponential function are defined by

Ve, 2;p) = /0 " exp(—t — g)dt (R(p) > 0;p =0, R(ar) > 0) (2.6)

T(a, 2 p) = /O o exp(—t — Pyit (R(p) > 0 2.7)

with |arg z| < 7, which have been studied in detail by Chaudhry and Zubair (see, for
example, [10] and [11]).

Remark. The extended incomplete gamma functions y(a, z;p) and T'(«, z; p) satisfy the
following decomposition formula

Y(a, z;p) + T(e, z;p) = Ty(a) = 2p*? K, (2v/7)  (R(p) > 0) (2.8)

where I',(«) is called extended gamma function.
Furthermore, the extension of incomplete beta function B, (a,b) is given by [?]

Definition 2.1.4. (Extended incomplete beta functions)

p
tt—1)

By(a,b;r) = / tH1—t)" " exp < > dt ,R(p) > 0,R(a), R(b) > 0and0 < r < 1.
0

(2.9)
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2.1.3 Extended hypergeometric function

Definition 2.1.5. The extended Gauss hypergeometric function F),(a,b;c; z; p;m) is de-
fined by

o0

B, (b+n,c—b;p;m) 2"
Fu(a,b;c;Z;p;m)ZZ(‘Z)n : B(b,c —b) )

n=0

- (2.10)

where R(p) > 0, R(u) > 0,0 < R(b) < R(c) and |z| < 1.

Definition 2.1.6. The extended Appell hypergeometric function F} , is defined by

> By(a+n+k,d—ap,m)z"y*
Fyy(a,b,c;dizyipym) = > (D)l A Bla.d— ) )FE (2.11)
n,k=0 ’ o

where R(p) > 0, R(u) > 0,0 < R(a) < R(d) and |z| < 1, |y| < 1.

Definition 2.1.7. The extended Appell hypergeometric function F;, is defined by

= Bu(b+n,d —b;p;m) B,(c+ k,e — ¢;p;m) a™ y*

Paulabed erypm) = ) @wn="—ga— O —
n,k=0 ’ ’ LR

(2.12)

R(p) > 0,R(u) > 0,0 < R(b) < R(d), 0 < R(c) < R(e) and |z| + |y| < 1.

Definition 2.1.8. The extended Lauricella hypergeometric function F gy 18

= Byla+n+k+re—a;pm)a™yk
ot s = 35 0ol SO reumm)yt
n,k,r=0 ) CRUT

(2.13)

where R(p) > 0, R(u) > 0,0 < R(a) < R(e) and |z| < 1,]y| < 1,|z| < 1.
Here, it is important to mention that when we take m = 1, x = 0 and then letting p — 0,
function 2.10 reduces to the ordinary Gauss hypergeometric function defined by

o F1(a,b;¢;2) =2 { a’cb © } = i (@)n(b)n " (2.14)

—~ (¢)n n!
where (x),, denotes the Pochhammer symbol defined previously.

For conditions of convergence and other related details of this function, see [1],[21] and
[23]. Similarly, we can reduce the functions 2.11,2.12 and 2.13 to the well-known Appell
functions Fy,F, and Lauricella function F3, respectively (see [23]).

Now, we establish the integral representations of the extended hypergeometric functions
given by (2.10- 2.13) as follows.

Theorem 2.1.1. The following integral representation for the extended Gauss hyperge-
ometric function F),(a, b; c; z; p;m) is valid

Fu(a,b;c;zpym) = \/ »__L /1tb %(1—75)0 b %(1—,275) ‘K S —
o m B(b,c—d) J, s tm(1 —t)m
(2.15)

where |arg(1l — z)| < m,R(p) > 0,m > 0 and R(p) > 0.
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Proof. By using ?? and employing the binomial expansion

(1= =Y (@), 2

n=0

(|2t] < 1) (2.16)

n!
[ |

we get the above integral representation.

Theorem 2.1.2. The following integral representation for the extended hypergeometric
function Fy , is valid

2p 1
Fiu(a,b,c;d;x, y;pym) = T Blad—a)
x/1ta—3(1—t)d-a—iu—xt)—bu—yt)—CK R (—— (2.17)
: sk i oy

proof

For simplicity, let J denote the left-hand side of (2.17). Then, using (2.10) yields

B > Bu.(a+n+k,d— a;p;m)z™y*
= > (Ole) Blad—a) — % (2.18)

By applying ?? to the integrand of 2.17, after a little simplification, we have

= 2p [* s a3 p (O)n(c)e 2™ yF
3= 2 rerrthes et () R
) Z { T /0 ( ) Wtz (tm(l - t)m) } B(a,d —a) n! k!

n,k=0
(2.19)
By interchanging the order of summation and integration in 2.19, we get

2p 1 1 _3 d—aq—3 P
J= | Ee——— [ 21—t K
T B(a,d—a)/o ( ) wts <tm(1 —t)m

X { 3 (Z)!” (m)"} {Z %(yt)k} dt

2p 1 ! -3 d—a—23
e R (L
WB(a,d—a)/O *( ) ’

x (1 —at) (1 — yt) K, (ﬁ) dt (2.20)

2

M8

which proves the integral representation 2.17.
To establish Theorem 2.1.6, we need to recall the following elementary series identity
involving the bounded sequence of {f(N)}%_, stated in the following result.

Lemma 2.1.1. For a bounded sequence { f(N)}%_, of essentially arbitrary complex num-

bers, we have
N © n ,k
FonEEY)” ZZf(mLk)%% (2.21)

N!
0 n=0 k=0

WE

i
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Theorem 2.1.3. The following integral representation for the extended hypergeometric
function Fy , is valid

2p 1
m B(b,d —b)B(c,e — c)

1l
X / / tb_%(l — )b gbe g(1 - w)e_c_%(l —at —yw)™
o Jo

p p
XK“_,_% (tm(l—t)m>K“+; <wm(1_w)m) dtdw (2.22)

Fy,(a,b,c;d,e;x,y;p;m) =

proof

Let £ denote the left-hand side of 2.22. Then, using 2.12 yields

L(b+n,d—b;p;m) Bu(c+ k,e —c;p;m) z" yF
L= n ’ = ’ S R 2.23
Z *’“ B(b,d — b) Blc,e — ) nl k! (223)

n,k=0

By applying ?? to the integrand of 2.25, we have

e=2 5 ([ om0t (Gt o)

n,k=0

1
b—i—n—% 1— e—c—%K N p
et (Gt o}

(a’)n "
- B(b,d — b)géfc e—c)n! i;l (2.24)

Next, interchanging the order of summation and integration in [?], which is guaranteed,

yields
£= 27fB(b d—b / / (L) R R (1 )
o <ﬁ ) (Wﬁ)
X (f_: (a)n—i-k(?;) (y;:) >dtd (2.25)

Finally, applying 2.21 to the double series in 2.25, we obtain the right-hand side of 2.22.

Theorem 2.1.4. The following integral representation for the extended hypergeometric
function Fg# is valid

1 2p
Fpula,be,de ot zpm) = Blae—aV =

1 ta—%(l _ t)e—a—% D
e A G I (226)
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Proof. A similar argument in the proof of Theorem 2.1.7 will be able to establish the
integral representation in 2.26. Therefore, details of the proof are omitted. Wl

Theorem 2.1.5. Let z,y € C,m > 0, R() > 0 and

R(s) > max{R(u), —~ + L i@ 1 1 R,

2 2m m 2 2m m

Then we have the following relation

M{B,(x,y;p;m) :p — s}

1T+l — 5Tz +ms + "D (y + ms + 75)

o oon FE+5T(x+y+2ms+m—1)
1 T(s+ )5 -5 -1 —1

= — B _— - 2.27
o NEET (w+ms+ 5 y+ms+ 5 ) (2.27)

Proof. First, we have
M{B(z,y;p;m) : p — s}

2
/ p/ t$_7 1—t K P dt
V =)
sz ,E s+l 1 p
\/7/t 1—t 2{/ 2 K“Jr% (m)dp}dt
x+m(s _3 m(s > s+1
\/>/ grmlsta)=3 (1 — g)ytmlsts 2dt/0 u'e — 1K, 1 (u)du

2T + 2 (y + ms + 254
L E e 2 P
T Mz+y+2ms+m—1) 0 Hra

Since the Mellin transform of the Macdonald function K,(z) is given by [[?],p. 37,
Eq.(1.7.41)]:

m\»—-

MK, (2): 2 — s} = 28—2r<§ + g)r(g - g) (2.29)

the last integral in 2.28 can be evaluated as

R 3 1.8 1, s+l —5)
H3UE o (W)du =222 4+ 2+ (S — By =905 2 2
(2.30)
where we have used - .
['(2z2) = NG L)l (z+ 5)

Finally, we get
1 T(s+ (& — 5T (z + ms + 5T (y + ms + 271)

M{B ;pym) = o
[
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2.2 Fractional calculus

Fractional calculus concerns integrals and derivatives of (real or multivalued) functions
at the non-integer order integrals and derivatives. These are called fractional derivatives
and fractional integrals, which can be of real or complex orders and may include integer
orders. During the last century, fractional differential equations have been proved to be
powerful tools in the modelling of many phenomena in various fields of engineering, bi-
ology, physics and economics. We refer for more details to monograph of Kilbas et al.
[16]. In this section we shall give some basic formulas and techniques which are necessary
to better understand the rest of this thesis. The Riemann-Liouville approach will be ex-
plored by means of Euler-gamma and beta functions connected with this function.

Fractional integral and fractional derivative

The fractional derivatives are defined using fractional integrals. We present only one
type of fractional integral operators, but there are several known forms of the fractional
integrals.

For every 0 > 0 and a given local integrable function f.

Definition 2.2.1. |16, 22] ( Fractional Integral of order ¢)
The right Riemann-Liouville fractional integral of order « is defined by:

JOf(t) = ﬁ/a (t—u)’'f(u)du —oo<a<t<oo (2.31)

Alternatively, it can be defined also the left fractional integral as :

1 b
JOF(t) = m/t (u—t)° " f(uw)du —oo<t<b<oo (2.32)

For particular values of the a and b, the following cases are known :

(i) Riemann: a =0, b=4o0

(ii) Liouville: a = —co, b=10
Theorem 2.2.1. [16, 22]
We have

O () + Cog(t)] = Crall f(2) + Coullg(2)

where '} and () are constants and f, g are two arbitrary functions.

Definition 2.2.2. [16, 22] (Fractional derivative of order ¢)
For every §, Let n = []. The Riemann-Liouville derivative of order § can be defined as :
1 d\" n—~o
D0 = () wrr (2.33)

_ ﬁ (%)n / (t = w5 fw)du (2.34)
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Theorem 2.2.2. |16, 22|
The following integro-derivation rules are valid :

/ () I20(z)dr = / () I f( (2.35)
/ )iy = [ g0 (2.36)
Also, notice that 1%, D’ f(z) = f(z) for 0 < 6 < 1.

Theorem 2.2.3. |16, 22|
The following integration and derivation rules are valid :

@ WEDI0] = 170 - Sl

(B) LD = 1) = > W DI F a5

k=1
(t _ a)5—1

(c) DI f(t)] =a I[Df(1)] + (o)

f(a)

(d) JI2f(t) =, ITP[DP f(t) Dkf (t — a)’*+F

where Re(p) is positive.

F5+k+D ’
5 5 ~ D*f(a)(t — a)*h ' iti

(e) DI f(t)] = IP[DP (1) Z ST where Re(p) is positive.
Theorem 2.2.4. [16, 22]

1 W0 TP (1) = IO £(2)

2. o DLIF ()] = D} P F(2)

m @)+
3 LD 0] =0 15 - Y0 O - /Ol
where: m =[] +1 .
(t —a) ok

£ DILDLF(1)] =0 DI £ Z DI Oleor 5

Example 2.2.1. To solve the followmg FDFE with initial value:
D2y(t) = y(b),
D 2y(0) = —2v/7

We transforme it in first order differential equation.
Using theorem 2.2.4 (4), we obtain:

D3[D3y(t)] = y/(t) — D2y(0) 1 = D2y(t) = y(t)
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Theorem 2.2.5. [16, 22|
If the function f(t) possess continuous derivative, then for 6 > 0, n = [0] + 1:

n—1
f(k) (t _ a)kf(s 1 /t s
() = t— )"0 M (y)d
tf() ;F(k—l—l—é)—i_l“(n—é) a( y) f (y)y
Theorem 2.2.6. [16, 22] We denote (I? with I°, for p € N, § > 0. It can be proved that:

() Il f() ( )

DRLZUEDS (1) g0 a0

=0

M“@
i) O

Example 2.2.2. Let calculate the Riemann-Liouville fractional derivative of the function
f@)=t°fors>0,n—1<d<n, B>n—1.
For instance, we can write:

1 a [ b
I = Détﬁ = m%/o‘ uﬁ(t—u> b 1du

and we take :
u=uvt, du=tdv

It follows:
1 ar [t b
_[ = mﬁ/ﬂ (Ut)BK].—U)t] 0 lth
1 noot
T
n— ™ Jo
_ 1 /t(l_ )nélﬁd i 6+ﬂd
T Tmh-o ), " dtn !
but

dinm T(A—n+1)
Recall that:

1
B(p,q) = / P71 0)T
0

so that it results :

B 1 Th—=0+6+1) 5.4 ! _ o\n—é-1 8
=t TS +p+1) : /0(1 o)y

/0 (1— U)"_‘;_lvﬁdv =Bn—-60+1)= 1;((2:?5_(?——:-_ 11))

L(B+1) (B0
I'(=0+5+1)

DM =T =
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Example 2.2.3. We can also find the Riemann-Liouville fractional integral and fractional
derivative of

f(t) = (t —a)’

For the fractional integral we apply the Riemann-Liouville definition:

I =, I0f(t) = ﬁ/ (t —u)’ Hu — a)’du

The following change of variables
u—a

=
t—a

du = (t —a)dv
allows us to calculate:

_ (t—a)t? ! — 0By = (t —a)t?
I= D) /0(1 ) d _—F((S) B, +1)

I rpg+1)
ST+ B+1)

For the fractional derivative we apply the Riemann-Liouville definition:

(t i CL)(H_B

d’I’L

Df =, D(t —a)’ = %GJ"—% —a)®
and finally :
_ rg+1) d" . g DB+ _\B—6
Df_l“(ﬁ+n—5+1)dt”(t 2 _r(5—5+1)(t @)

2.3 Extended Riemann-Liouville type fractional deriva-
tive operator

We first recall that the classical Riemann-Liouville fractional derivative is defined by (see

161, p. 256) .
D) = / (= — ) f(t)dt

where R(v) < 0 and the integration path is a line from 0 to z in the complex t-plane. It
coincides with the fractional integral of order —v. In case m — 1 < R(v) < m, m € N, it
is customary to write

DL = D) = g s [ = 0 o

We present the following new extended Riemann-Liouville-type fractional derivative op-
erator.
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Definition 2.3.1. The extended Riemann-Liouville fractional derivative is defined as

Z2m
DYHPf () = I‘(iy) \/?intg(z — t)fy*lf(t)KM% (tm(],)z——t)m> dt (2.37)

where R(v) < 0, R(p) >0, R(m) >0 and R(u) > 0.
Forn —1< R(v) <n,n e N, we write

d” 2

(2.38)

If we take m = 0, 4 = 0, and p — 0, then the above extended Riemann-Liouville frac-
tional derivative operator reduces to the classical Riemann-Liouville fractional derivative
operator.

Now, we begin our investigation by calculating the extended fractional derivatives of
some elementary functions. For our purpose, we first establish two results involving the
extended Riemann-Liouville fractional derivative operator.

Lemma 2.3.1. Let R(r) < 0, then we have

3 1
BM()‘+_5_V+_7p;m) (239)

DVskspim A
S =g 5 5

proof

Using Definition 2.1.6 and 1, we have

. 1 2p [~ o pz2m
DVstpim A — “r / ¢ v 1t)\K L
z {Z } F<—V> ™ Jo (Z ) pt3 tm(z o t)m
/2p / WD 0t (P gy
pts um(l _ u)m

3 1
- B AL 2 s
r<—y) WAt g
Next, we apply the extended Riemann-Liouville fractional derivative to a function f(z)
analytic at the origin.

Lemma 2.3.2. Let R(v) < 0 and suppose that a function f(z) is analytic at the origin
with its Maclaurin expansion given by f(z Z a,z"(|z| < p) for some p € Ry. Then

we have

Dy,upm{f ZanDy,upm{Zn}

Proof. Using Definition 2.1.6 to the function f(z) with its series expansion, we have

2m o
'K, bz St
<tm(z _ t)m Z a

n=0

2
DL f(2) =

g )dt}
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Since the power series converges uniformly on any closed disk centered at the origin
with its radius smaller than p, so does the series on the line segment from 0 to a fixed z
for |z| < p. This fact guarantees term-by-term integration as follows:

prmwim g f(z)}:ni;an{ \/% / (z—t)"'K,, (tm(iz_ o )t”dt} :f:anpgwm{zn}

n=0
[

As a consequence we have the following result.

Theorem 2.3.1. Let R(v) < 0 and suppose that a function f(z) is analytic at the origin

with its Maclaurin expansion given by f(z) = a,z"(|]z] < p) for some p € R;. Then
n=0
we have
A—v—1 20 1 1
DVHpm A— 1 nDu,upm A4n—1 )\ i T n
Y {z 2)} = Z a {z } = Z o, —vEgip; m)z

n=0

We present two subsequent theorems which may be useful to nd certain generating func-
tion.

1
Theorem 2.3.2. For R(v) > R(\) > —g we have

zy—l

1
D L A1) pye) = mB(M— V=M= ) (o, )\—l— v+l zpym)  (]2] < L€ €)
(2.40)

Proof. Using 2.16 and applying Lemmas 2.1.2 and 2.1.3 we obtain

—V,p,p;m - — —V,p,p;m - - Zl
Di‘ #hi3 {z’\ 1(1-2) }:Di‘ i3 {z’\ IZ(a)lﬁ}

=0

= Z %D;\l@u,p;m{zAHl}
Zo

_ Z (a>l BM()\ +1+ %7 v—A+ %apv m)Zerlfl
— ]! ['(v—\)

=0

By using 2.10, we can get
—U,[L,p;m — —« 1
Dyt LA — )} = T )\)Fu(oz,/\—i— §,V+ 1; z;p;m)
|
1
Theorem 2.3.3. Let R(v) > R(\) > —3 R(a) > 0, R(beta) > 0; |az] < 1 and |bz| <

1. Then we have
Dy pm LA — az) (1 —bz) P}

v—1 1 1 1
= z—B()\ + 5’ v — )\ + é)Fl,u()\ + §aavﬁ; v+ 17az7bz;p; m) (241)
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proof

Use the binomial theorem for (1 —az)™® and (1 — bz)™?. Apply Lemmas 2.1.2 and 2.1.3
to obtain

Iy — {ZA—l Zz(a)l(ﬁ)k(aﬁ) (b;!) }

- Z(a)l(ﬁ)kDi—”a“vp?m {ZHHk_l(l_!)%}

Lk=0
> B.A+1+k+Lv—X+1pm)(az) (b2)

_ u—1 H 2 PRE S

—c l;(a)l(ﬁ)k T(v—\) T

By using 2.11, we get

D;\_”’“’pm {z)‘_l(l —az) (1 - bz)_ﬁ}

1 1 1
T(v—\) <)‘+2>V )‘+2) 1,u()\+2,oz,ﬁ,l/+ ,az,bz;p,m)

1
Theorem 2.3.4. Let R(v) > R(\) > —g5 R(a) > 0,R(S) > 0,R(a) > 0,R(7y) >
0,Jaz| < 1,|bz| < 1 and |cz| < 1.Then we have

v—1
DAVPm LAY ) (1 —b2) P (1 —c2) 0} = ﬁ
1 1. 5 1
X B(A+ gV A+ §)FD7M()\ + 5 B,v;v+ 1;az; bz, cz;p;m) (2.42)

proof

As in the proof of Theorem 2.1.11 taking the binomial theorem for (1 —az)™®, (1 — bz) ™"
and (1—cz)™” and applying Lemmas 2.1.2 and 2.1.3 and taking Definition 5 into account,
one can easily prove Theorem 2.1.12.

1
Theorem 2.3.5. Let R(v) > R(\) > ~3 R(a) > 0,R(B) > 0,R(a) > 0,R(y) > 0,

and |z| + |z| < 1. . Then we have

DYl pm AN (1 — 2)7F (a, B li;p; m)}
—Z

BA+Lv—X+1 1
_ B FEV—A) 2)Fz,u(a,5,k+5;%V+1,90,Z;p;m) (2.43)
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proof

By using 2.17 and applying the Definition 2.1.2 for F),, we get

D (1 = 2)  Fles By = ipm)}
—Z

D)\*V,H,p;m 1_ —a = QHBN ﬁ—i_na/}/_ﬂ;p;m)( x )n
) { Z Z n‘ (67’7_6) l—Z

n=0
Bu(B+n,y— B;p;m)
2= )

Using Theorem 2.1.10 for D,{z*"*(1 — 2)"* "} and interpreting the extended hypergeo-
metric function F), as its series representation, we get

o
xn

DZ{Z/\fl(l o Z)fafn <~

n!

DYk pm LA (L — )7 F (a, B %;p; m)}
—Z

2! 1 1« B.(B+n,v— Bip;m)
r(y—A)B(“i’”_“i)Z{(O‘)"*’“ B(3,v - B)

n,k=0
XBM(/\+I€+%,V—>\+%;p;m)x”zk
BA+3,v—XA+3) n! k!

vt 1 1
B\t -v—At-
NSy A+ -,v +

1
27 2)F27“(Oé,5,)\+—
This completes the proof.

2;%V+1;x;z,p;m)

2.3.1 Mellin transforms and further results

In this section, we first obtain the Mellin transform of the extended Riemann-Liouville
fractional derivative operator.

Definition 2.3.2. Let f(¢) be a function defined on the positive real axis 0 < ¢ < oo.
The Mellin transformation M is the operation mapping the function f into the function
F' defined on the complex plane by the relation:

M(f;s] = / feyetdt (2.44)

The function F(s) is called the Mellin transform of f. In general, the integral does exist
only for complex values of s = a + jb such that a; < a < as, where a; and ay depend
on the function f(¢) to transform. This introduces what is called the strip of definition
of the Mellin transform that will be denoted by S(ai,a2). . In some cases, this strip
may extend to a half-plane (a; = —00 or as = +00) or to the whole complex s-plane
(a = —00 or as=400).

Theorem 2.3.6. Let R(v) < 0,m >0, R() > 0 and

1 1 RN 1 R

2 m m 2  m

R(v) > max{R(u), — }
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Then we have the following relation

MDv (Y 5] = A Ps+ )G +5TAN+ms+ 5 + D (—p+ms + 5)

2T (—v) L+ 5N\ —v+2ms+m+1)

2 Ts+plE - 5) o p

- B(\ AT K
QMF(—V) F(%+;§L) ( +m5+2+ y v+ ms—+ 2)

proof
Taking the Mellin transform and using Lemma 2.1.2, we have

A—v

> 2
M Dlzau;p;m Al :/ psleZ,u;p;m A dp =
(D2 2Y ) = | p =55

Applying Theorem 2.1.3 to the last integral yields the desired result.

> 3 1
/ p ' By (A=, —v+=;p;m)dp
0 2 2

Theorem 2.3.7. Let R(v) <0,m > 0,R(u) > 0,|z| <1 and

Then we have the following relation

T o z7v F(S + ,u)P(ﬁ — ﬁ) m m
MDA =2 sl = gy T Ty Dty Ly amst )
ngl(a,msng—i—l;—l/—l—Qms—I—m—l—1;2) (2.45)

where o F} is a well known Gauss hypergeometric function given by 2.14

proof

Using the binomial series for (1 — z)™ and Theorem 2.1.16 A = n yields

M[DZ’“;p;m{(l _ z)fa} . 3] =M [Dlz«u;p;m {Z (Oé)nzn} : S]

n!

n=0

- Z (@)”M [Drmpm Loy )

B i": (@), 2" D(s+plE+5TAN+ms+ 2+ D0 (—p+ms+%2)
B — nl 2¢T(-v) L(3+5)CAN—v+2ms+m+1)

Then the last expression is easily seen to be equal to the desired one.



Chapter 3

Generalized Extended
Riemann-Liouville type fractional
derivative operator

Introduction

In recent years, incomplete gamma functions have been used in many problems in
applied mathematics, statistics, engineering and many other fields including physics and
biology. Most generally, special functions became powerful tools to treat all these areas.
Classical gamma and Euler?s beta functions are defined by

(e, ) :/ t*te7tdt, (R(a)>0) (3.1)
0

INa,z) = / tte~tdt (3.2)

1
Blz,y) = / 1 — ) \dt, (R(z) > 0, R(y) > 0) (3.3)

0
Using an exponential regulazing term, Chaudhry et al.|l || extended the incomplete gamma

function as follows

v(a, x5 p) = / t* et "%dt  (R(p) > 0;p =0, R(er) > 0) (3.4)

0
Do, z;p) = / o e dt (3.5)

They proved the following recurrence formula

v(a, z;p) + (o, z;p) = 20 Ko (2y/p)  (R(p) > 0)

where K,(z) is the Macdonald function, known also as modified bessel function of the

third kind, defined for any Re(z) > 0 by

2)* [ 2
Ka(Z) _ (Z/2 ) /0 tfozfleftfz /4t

35
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A first extension of Euler?s beta function is given by Chaudhry et al. [9] as follows:
1 —P
B(z,y,p) = / t*H (1 —t)v"lett=ndt, (R(p) > 0;p = 0, R(z) > 0,R(y) >0)  (3.6)
0

These extensions are useful and provide new connections with error and Whittaker
functions. For p = 0 ,3.4, 3.5 and 3.6 will be reduced to known incomplete gamma and
beta functions 3.1, 3.2 and 3.3 respectively.

Instead of using the exponential function, Chaudhry and Zubair |1 1] proposed a general-
ized extension of 3.4, 3.5 in the following form

[2p [ 8 _ p
Yula, z;p) = ?/ t* " 2e tKH+%(¥)dt (3.7)
0

2 (o)
Ty, p) = ,/?p/ 1t Ky (D)t (R@) > 0,R(p) > 0,~00 < a < o0) (38)

Nowadays, many authors are developing new extensions of Euler’s gamma, beta and
hypergeometric functions based on the paper of Chaudhry and Zubair [10] by considering
exponential and certain modified special functions (see for more details [|26], [27], [19],
[20],16], [7]]). Very recently, Agarwal et al. [3| developed an extension of the Euler’s beta
function as follows

B, (z,y;p;m \/7/ t“?_f 1—t)Y K (t (1p_ t)m)dt (3.9)

where z,y € C, m >0 and R(p)

From now, we present a new generalized incomplete gamma and Euler?s beta functions
developped by Abbas et al. [I| by substituting in 3.7, 3.8 and 3.9 the Macdonald function
K,(z) by it?s extended one developed by Boudjelkha [3], namely

2)> [
RK(Z7 a, q, /\) = (Z/2 ) / t_a_l ‘
0

—qt—22 /4t

(3.10)

where |arg 2°| < 7/2,0< ¢<1and-1< A < 1.

Clearly,whenA = 0 and ¢ = 1, Rg(z,a,q,\) is reduced to K,(z). Moreover, Boud-
jelkha proved that the Rg(z, —a, g, A) function can be expanded in terms of K,(z) as
follows

2Ka(zv/@+n)
Ri(z, —a, g, \ Z)\ q+na/2, R(z*) >0, 0<q<1, —1<A<1 (311
n=0

and showed that the behavior of the function Rk (z, —a, ¢, \) for small values of z is
described by the asymptotic formulas:

2 1-XN)"12—=0,-1<A<1,R)<0
RK(Z7_a7Q7 )\) ~ 11‘*/

DN\ a,q),z—0,-1<A<1,R(a) >
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(3.12)

where ®(\, a, q) stands for the Lerch function. As for the asymptotic behavior of this
function, when z — o0, it is given by

T e AV s
Ry (z,—a,q,\) ~ 27 oA as z— o00,|argz| < n —1< A< 1. (3.13)

In particular, when ¢ = 1, we have

Ry (z,—a,q, ) ~ 4 /;Ze_z, asz — 00, |arg z| < % (3.14)

which is the same asymptotic formula as that of K.

Further, by using the generalized extended beta function we get other extensions of Gauss
hypergeometric, confluent hypergeometric, Appell and Lauricella hypergeometric func-
tions and we investigate some of their properties.

3.1 The generalized extended incomplete Gamma and
Euler’s beta functions

3.1.1 The generalized extended incomplete Gamma function

Definition 3.1.1. The generalized extended incomplete gamma functions are given by

2 r : 1

Vula, T5¢; A p) = —p/ 12 Re(Y, —p — g N dt (3.15)
T Jo t 2
1 N S P 1

Lo, @q; A p) = — " 2e RK(z, —p— E,q,)\)dt (3.16)

where R(x) >0,0<¢<1,—1<A<1, and R(p) >0. When A =0 and ¢ =1, 3.15
and 3.16 are respectively reduced to the extended incomplete gamma

Proposition 3.1.1. (Decomposition theorem)

vy Ple+p) po, 1 p?
Fu(&7x7 q; /\7p) + 7}1(0[7 x;dq, Avp) - ﬁ (5) @17%&7%7%()‘)” + 57 q, E)
(=%%) p p—a+1l p?
—a — \4 a¢ QTpTs A7—7 7_
s () el > g
D=2y poo p—a  p
B B TR SN S W gy 3.17
o @) Ppenm( e ) (3.17)

with R(p) > 0, —0o < a < oo and

(I) )\ 0o 2fs—le—qt F _ g d
bl,bg( 7S7q7£) /(; 1 _)\e—to 2 ( b1762 ’ t)

oots—le—qt _ 6
= F: i—= | dt
/0 1—— 2(b1,b2 ’ t)
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Proof. We have

2p [ s _ D 1
Fu(a,x;q;k;p)+w(a,w;q;/\;p)=\/?/ t*"2e tRK(;,—u—?q,A)dt
0

_ >

I p * > e U
= =) [ e T ———d7 | dt
VT2 B B 1—Xe 7

— L(I—))—“ /°° T“_%—eiqT /‘X’ potn—lo—te= 2 gt | dr (3.18)
VT2 0 1—=2Xe ™ \ Uy ‘

Using the integral [[28], pp. 31, formula 6], we obtain

(o) pg - 2
/ tothtetem a2 dt = T(a + p)o Fy ( L@ +u 1l a+p p_)
0 - T

B "1
2 "2 2 6
atp
(- ot 2\ 2 — 2
+%(Z—T) F2<1 o+ i+ 2 ;1%)
0 9’ 9 5
D(_otptly 72\ 5 - 2
B i wd N Bl 3arp+s 2 (3.19)
2 ir ), e L

Proposition 3.1.2. (Recurrence relation)

2 1
Lu(at1l,25q; A p) = (atp) (e, 3¢ A p)+plu—i(a—1, 2545 A p)+4/ ?px“‘%e‘xRK(g, —H=5: 4 A)

(3.20)
R(p) >0,—00 < a < 00
Proof.
1 d (L) [ e
— |R -\ =— | Z& s
dt[ K<t’ ot H at |~ 2 /0 T T e
g p 1 p p 1
= R |=,—p—=,q, A R | =, —p+ =,q,\— 3.21
1 K(ta 1% 27Q7 +t2 K t? ,U+ 27Qa ( )

1
Differentiating t“’%e’tRK(i—?, —H= 50 A) with respect to t and by using 3.21, we get

d 1y P 1 _3 4 P 1
—_— «a 2 —_ — —_ A —= ta 2 —_ — —_ )\
dt|: € RK(t’ 1% 27q7 ):| (oz+,u) € RK (t7 M+ 2aQ7

1 . 1
+pt* e Ry (%9 —HF 504 A) - t“*?e*tRK(% =5 A) (3.22)
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2
Multiplying both sides of 3.22 by “_p and integrating from z to oo and using 3.16, we
™
find
2p 1, P 1
0—/—2""2e RK(E» —1=5:4,A) = (atp)ly(a, 2;q: A p)+plu—i(a—1 24 A p)—Tu(at1, 2:4: A p)

which can be also written as

2 1
Lu(atl,25q; A p) = (a+p) (e, 3¢ A p)+pLlu—i(a—1 2545 A p)+4/ ?px"“%e zRx(g, —u—§,q,A)

[ |
Proposition 3.1.3. The following formula holds
2n+1

0
Cpr(a, 2, ;A p) = Tpga (o, 2, 15 A p) + Lla+1,2,1;\p) = Aﬁmﬂ(a,x? L; A p)
(3.23)
(R(p) > 0,—00 < a < 00)

Proof. By using 3.16, for ¢ = 1 and the following relation [[3],(22)], we get

2
Rk(z,—a+1,1,\) — Rg(z,—a—1,1,\) + —aRK(z, —a,1,\) = )\%RK(Z, —a—1,1,))
z
(3.24)
|

Proposition 3.1.4. (Laplace transform)Let

1 7>0
H(T){O T <0

be the Heaviside unit step function and Lbe the Laplace transform operator. Then

1
c {t“‘iRK(% = 5. VH(E —); S} Y 2%8_“%0« ) (3.25)

1
c {t"“gRK(% —p = 5y, VH(E = 2) H (1) s} - ZEpS_a%(a, sziq; Aysp)  (3.26)
(x> 0,R(p) >0,—00 < a < )

Proof. We have

1 > 1
L {tagRK(% =5 MNH(t — z); 5} = / tangK(% —H 5 Ne " H(t — s)dt
0

o 1
= / ta_%RK<I_)7 —H—= 54 )\)e_Stdt
i / 2

-
Substituting ¢t = —, dt, we get
s

/ ta_%RK(Zt_)v K= 5’ 4, A)e_Stdt - S_Oé—% / Ta_%e_TRK(¥7 e f?"CLCl2, & /\)dt

\/ gps_afu(a, ST; q; A; 5p)

The proof of 3.26 is omitted since it is quite similar as that of 3.25. W



3.1 The generalized extended incomplete Gamma and FEuler’s beta functions 40

Proposition 3.1.5. (Parametric differentiation)

0 1
a—p(Fu(a, T \ip)) = - (L (o, 3¢5 X5 p) + pLyca (o — 1, 2543 A p)] (3.27)
Proof.
8 2p a—— —t 1
8])( plo, 53 A5 p)) 2p\/ / t RK -, —p = 2,q,)\)dt
2p 3y p
— t* — — = ——.q,\))dt 2
+\/7T/x 2e ap<RK(t’ [ 2,617 ) (3.28)
We have
2 2
o o 0 1 R Y T S U/ ) Ras T Vi
_ L =g \))=— 2 a2 gp_-M/=7 L P |
ap(RK(t, e 2,(17 )) D 9 /0 21_)\6—7 T t 2 /0 T 21—/\6_T
p+i_op 1 1 p 1
- == g\ — = — ===, q,\ .2
D RK(ta H 2,(], ) tRK(t7 H 27(]7 ) (3 9)

Finally, by Substituting 3.29 into 3.28 we get the desired result. B

3.1.2 The generalized extended beta function

Definition 3.1.2. The generalized extended beta function is given by

P y—32 D 1
Bu(%,y;¢; A\ p;m) = P t72(1 - 1)V 2 Ry m;—ﬂ—gaq,A dt  (3.30)
0

where 2,y € C,0< ¢ < 1;-1 <A <1,m>0and R(p) >0

Taking A = 0 and ¢ = 1 3.30 is reduced to the extended Euler’s beta function 3.9
defined by Agarwal et al [?]

Proposition 3.1.6. (Functional relations)

1. The following formula holds
B(z,y;q¢; \;p;m) = Bu(z + 1,y;¢; \;p;m) + Bu(z,y + 1, ¢; A\ p;m) (3.31)

2. Let n € N. Then, the following summation formula holds

Bu(z,y;q; \spsm) = > Bu(x + K,y +n— K;q; \;p;m) (3.32)
K=0

Proof. 1. The right-hand side of 3.31 yields to

2 1 1

which, after simplification, implies

2p bos _3 p 1
VE [ (=) —  u—ZqA
7?/0 2(1-1)"" 2Rk (tm(l_t)m, n= 5 )

which is equal to the left-hand side of 3.31.
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2. The case n = 0 of 3.32 holds easily. The case n = 1 of 3.32 is just 3.31. For the
other cases we can easily proceed by induction on n.

Proposition 3.1.7. The following formula holds

~ (Y)n
Bu(x,1—y;q; \;p;m) = ZO oy B,(xz +n,1;¢;\;p;m) (3.33)
By substituting the formula
I t"
(1—t)"= Z(y)nﬁ, (|t| <1,y € C) (3.34)
n=0 '

in the right-hand of 3.33 and after interchanging the order of integral and summation, we
get

Proposition 3.1.8. The following formula holds

[e.e]

Bu(,y;q; \ipim) = > Bu(w +n,y+ 15¢; \; p;m) (3.35)

n=0

Proof. By substituting again the formula

L=t t ==t Y " (|t < 1)

in the right-hand of 3.30 and similarly as in the proof of Proposition 2.2.2 we get the
desired result. W

Lemma 3.1.1. Let M be the Mellin transform operator. Then

MBRic(z~a,q N2 s =2 TCSOICTNe0 %) (330
where 0 < ¢ < 1,0or =1 < XA < 1,R(s) > |R(a)] or A = 1, R(s) > max(R(a),2 — R(«))

and (A, HTQ,Q)

stands for the Lerch function(see [?],[?]).

Proof.

M{Rk(z,—a,q,\), 2 — s} —/ Z R (2, —a, ¢, \)dz = 2“1/ zso‘l(/ ot
0 0 0

o0 7qt o0 5
_ 2&1/ ta—l € — (/ Zs—aflefz /4tdz)dt
0 1— e 0
- o0 S [e] _qt
e (e / T i S
2 0 1 - )\G_t
S —« S+« S+«
= 25721 r D (A
(57 (57 (v 5)

g2
6qtz/4t

1—)det

dt)dz
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Proposition 3.1.9. (Mellin transform) The following expression holds true

251 m—1 m—1 s — s+u+1
MAB,(x,y;¢; \;p,m),p — s} = B(z+ms+—— y+ms+ )T < ,u) r (L

NZS s s 2

1
q>(A,,fil§ii—,q> (3.37)

where z,y € C,m >0and 0 < ¢<1,or —1 < A <1,

R(s) > max{R(,u), —1- R(M)7_% n % _ Rgc),_ % B %
or)\—l,R(s)>maX{R(u),1—R(M),—%+%_ (‘r)’_%_kﬁ_%}

Proof. MA{B,(x,y;q; \;p;m),p — s} = / P ' Bu(z,y; ¢; \; p;m)dp
0

s p L
W et tre (P L ar)a
[ i (Gt ) a)
3 y—3 1_ p !
tm 1—t s+ 1R Y A d dt
Vr/i r (e (g e )
\/>/« term(SJr 7% 1 t>y+m(s+é)gdt/ uer%*lRK(u, _Iu_%’q, )\)du
0

1 1 ° 1
= \/73(x+ms+—,y+ms+—)/ u8+%_1RK(U’7 _M__7Qa)‘>du
T

2 2 0 2
Finally, by using Lemma 2.0.1 we get the desired result. B

3.2 Extended Gauss hypergeometric and confluent hy-
pergeometric functions

We use the generalized extended beta function 3.30 to extend hypergeometric and con-
fluent hypergeometric functions, respectively, as follows:

Definition 3.2.1. The extended Gauss hypergeometric function F,(a,b;c;z;q; A;p;m)
and the confluent hypergeometric function ®,(b;¢; z; g; A; p; m) are respectively defined
by

> B,(b+n,c—b;q:\;p;m) 2"
Fu(a,b;c;zq; 5 pm) = Z(a)n il Blbc—b) )m (3.38)
n=0 ? :

(2| <1,R(c) > R(b) >0,0<¢<1,-1<X<1,m>0,R(p)>0).

o Bu(b+n,c—big; Apym) 2"
B(b,c —b) n!

D, (b; c; 2;5¢; A pym) = (3.39)

n=0
(z € C,R(c) > R(b) >0,-1 <A< 1,m>0,R(p) >0). Taking A =0 and ¢ = 1,
3.38 reduces to the extended Gauss hypergeometric function defined by Agarwal et al.
(|?],Definition 2.8).
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Proposition 3.2.1. Integral representation

1. The following integral representation for the extended Gauss hypergeometric func-
tion F), is valid

F.(a,b Npim) = 2L /ltb_3(1 £)e3 (1—2t) Ry (— LN

a cCl “Dm) = 2 — 2 —2Z —_)— —

p\a, 05 C5 2545 AL D; TI'B(b,C—b) o K tm(l—t)m, 1% 27Q7
(3.40)

arg(l—z) <m R(c) > R(b) >0,0<¢<1,-1<A<1,m>0,R(p) >0).

2. The following integral representation for the extended confluent hypergeometric
function & is valid

) (b -2 ar \: D )_ /% 1 /1tb_g(1—t)c_b_g R (—p — —1 )\)dt
1% G2 g A pIM) = WB(b,C—b) 0 € Ktm(l_t)ma % 2)%

(3.41)
R(c) > R(b) >0,0<¢<1,-1<X<1,m>0,R(p) >0).
Proof. 1. By using 3.30 and the generalized binomial expansion
Sy "
(1=t =S @, E (et < 1) (3.42)

n:
n=0

we get the required result.

2. Similarly as in the proof of 1.
[ |

Proposition 3.2.2. Differentiation formula (a) Forn € N

j—; {Fu(a,bic;ziq; A pym)} = (azz)(:)"

(Jz] < 1), R(c) > R(b) > 0,0 < ¢ < 1,-1 <A < 1,m >0, R(p) > 0)
(b) FornelN

F.(a+n,b+n;c+mn;2;¢;\;p;m) (3.43)

" b),,
o Qulbsezg Aipim)} = %‘Pu(b +n5c4n; 24, A p;m) (3.44)

z€C,R(c)>R(b) >0,0<¢<1,-1<A<1,m>0,R(p) >0)

Proof. (a) For n =1, we have

d (b +n,c—b;q; \;pym) 21
dZ{ M(aa 7C)Zaq? ?p7 } (b’c_b) (n_l)l
> Wb+ n+1,¢—byg; X\;p;m) 2"
:E - 4
- n+1 B(b,c —b) n! (3.45)

Using identities B(b,c —b) = I;B(b +1,¢c—0b) and (a)p+1 = ala + 1), in 3.45, we get

d W(O+n+1,¢c—b;q; N p;m) 2"
dZ{ /L(aa 1 G253 A DT } E : + B(b,C-b) n!
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b
= CF(a+1,b+ Lie+ 1524 A p;m) (3.46)
C

and hence
d ab
%{Fu(a, b;c;zq; A\ pym)} = ;Fu(a + 1,0+ 1;¢+1;2;¢; A p;m) (3.47)

Then, by using 3.47 repeatedly, we get3.43.
The proof of part (b) is similar as that of part (a) B

Proposition 3.2.3. (Transformation formulas)

1. For arg(l — z) < m, we have

Fu(a,bc;z;q; \pym) = (1 — 2) " Fj(a, ¢ — b; ¢ Ll;q; A; p;m)
Z —_—

R(c)>R(b)>0,0<q< 1,—-1 <A <1,m > 0,R(p) > 0 (3.48)

Q. (b;c;zq; \ipym) = e*®,(c — bye; =233 A pym) (3.49)
z€C,R(c)>R(b) >0,0<¢g<1,-1<A<1,m>0R(p)>0)

Proof. Replacing t by 1 — t in the integral representations 3.40 and 3.41. W

3.3 Extended Appell and Lauricella hypergeometric func-
tions

Definition 3.3.1. Extended Appell hypergeometric functions F3 ,, F5 , and the Lauricella
hypergeometric function F 3 . are, respectively, defined by

= Bula+n+k,d—a;q: \;p;m)az™y*
Fiu(a,b,c;ds iy g Apim) = Y (D)n(e)p— Blo.d—a) —q (8:50)
n,k=0 ’ s

] < 1, |yl < 1, R(d) > R(a) >0,0<¢<1,-1<A<1,m>0,R(p) >0

[e.e]

Bu(b+n,d—big;\;p;m) Bu(c+k e —c;q; A pym) 2" y*
Fyy(ab,cidse;ziyig Aspim) = ) (a)nn—" Blbo.d—1b) . Blee—o) Lkl
k=0 ’ ’ o

(3.51)

(|z|+|y| < 1,R(d) > R(b) > 0,R(e) > R(c) >0,0<¢<1,—-1<A<1,m>0,R(p) >0)

N Bu(a+n+k+re—agXpm)a"y"z
F} (abc;die;zsy, zig dipym) = > (0)n(c)i(d), =~ Blae —a) T
n,k,r=0 ) cofve b

(3.52)
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lz] < 1|yl < L,]z] < 1,R(e) > R(c) > 0,0 < ¢<1,-1 < X<1,m>0,R(p) > 0)
Taking A = 0 and ¢ = 1, 3.50,3.3 and 3.52 are reduced to extended Appell hypergeometric
functions F3 ,, F5,, and the Lauricella hypergeometric function Fl?i .. » defined by Agarwal
et al[|?],Definitions 2.9, 2.10,2.11].

Proposition 3.3.1. (Integral representation) The following integral representations
for the extended Appell hypergeometric functions Fi ,,F5, and the Lauricella hypergeo-
metric function F ,%y ., are, respectively, valid

2 1 1 . .
Fiu(a,b,cidyz;y; ¢ Apym) = 4/ fﬁ/ 173 (1 = )2 (1 — wt) (1 —yt)°
0

a,d—a

P 1
Rk (tm(l — i 2,q,/\) dt (3.53)

2 1 1 1
Fa,u(a,b,C;d;e;w;y;q;k;p;m)=;pB(bd_b)B(c e_c)/o /0 23 (1—t) 2 (1—w) 2

(. p 1 w0 ]
(I-xt-yw) (tm(l T H= 5o )\) Rg (tm(l —a)m p= 50 )\) dtdw (3.54)

2p 1 ! 3 3
F3 R S R — . a5 (1—4)¢ %2 (1 — —b 1— —<(1— —d
D,M(aa b7 G da e XY, % 4; Aapv m) T B(a, e — CL) / t 2( t) 2( iL't) ( yt) ( Zt)

0
P 1
= 2\ ) (3.55
K(tm(l_t)m p 2,q,)( )

3.4 The generalized extended Riemann-Liouville frac-
tional derivative operator

The classical Riemann-Liouville fractional derivative operator is defined by

Dif(:) = ﬁ / (2 -ty f () (3.56)

where R(J) < 0. It coincides with the fractional integral of order —d. In the case
n—1< R(0) <n,ne N, we write

DA f(z) = % {ﬁ /0 (o= gy f(t)dt} (3.57)

n —

Definition 3.4.1. The generalized extended Riemann-Liouville fractional derivative is
defined as follows

DA M 1 2p 7 _5— pz2m 1
DA f(Z)—m\/?/o (z =) f() R (m,—u—?q,A) dt
(3.58)



3.4 The generalized extended Riemann-Liouville fractional derivative operator 46

where R(0) > 0,R(p) > 0,R(m) > 0,R() > 0 and n — 1 < R(J) < n,n € N we have

D3 Am d" =T, DA M — d” 1 2_]? Zz— n—o—1
DEPINT f(2) = T D f<z>—dzn{r(n_5>\/;/o< 0 )

2m
pz 1
— —u— —,q, X\ | dt(3.59
K(tm(z_t)mv 1% 27Q7 ) ( )

1. Taking A = 0 and ¢ = 1 the generalized extended Riemann-Liouville fractional
derivative operator 3.58 is reduced to the extended Riemann-Liouville fractional
derivative operator given by Agarwal et al.|?]

m,p;m 2p 1 pZQm
ponem f( \/7 / (1) (tm—(z_t)m)dt (3.60)

where R(0) < 0,R(p) > 0,R(m) > 0,R(u) >0

2.tA=0,9g=1,m=0, p=0 and p — 0, then the generalized extended Riemann-
Liouville fractional derivative operator 3.58 reduces to the classical Riemann-Liouville
fractional derivative operator 3.56.
In order to calculate generalized extended fractional derivatives for some functions,
we give two results concerning the generalized extended Riemann-Liouville frac-
tional derivative operator of some elementary functions which will be useful in the
sequel.

Lemma 3.4.1. Let R(0) < 0. Then, we have

GG S S S . (3.61)
F(—é) 7 27 2apaQ7 ym .

Proof. Using Definition 2.4.1 and a local setting t = zu, we obtain

. 1 2p (7 o pz2m 1
z {Z } F(—(S) T J (’Z ) K tm(z _t)ma K 2>q7
280 2p ! 1y_3 3y_3 p2’2m 1
S 4 1 — )5t sp, [ —2  _ —Z g \)d
T(—5) w/()( v) " K\gm(z —gm> H 7))

289 /2p 1

More generally, we give the generalized extended Riemann-Liouville fractional derivative
of an analytic function f(z) at the origin.

Lemma 3.4.2. Let R(0) < 0. If a function f(z) is analytic at the origin, then

ngu,p;q;k;m{zﬁ} —

D(Suqum{f ZanD5upq)\m{Zn}
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Proof Since f is analytic at the origin, its Maclaurin expansion is given by f(z) =
Zan (for |z| < p with p € R* is the convergence radius). By substituting entire

power series in Definition 2.4.1, we obtain

m /210 _ pz*" n
D5/qu)\ {f / - 1RK (tm(z_t>m7 - 7q7 >Zant dt

By virtue of the uniform continuity on the convergence disk, we can do integration term
by term in the equation above. Thus

. - 2 1
DIHPINTLf(2)} = ) an { o) V p/ 2= R (tm(z —pym M0 A> tndt}
n=0

oo
— Z aan,u,p;q;A;m{Zn}
n=0

[ |
Corollary 3.4.1.

279 3 1

3
DOBPGAML (] ey B(Z. — \F <2 2 2 q: \: D

where R(a) > 0 and R(J) < 0.

Proof. Using binomial Theorem for (1 — z)™® and Lemma 2.4.1, we obtain:

DI (L 2)7) = DI {an%} = > B g ey

n!
n=0 n=0

& 3 1 2"
+_ _5+ 7p;Q7)\ m)_‘

n:()

Hence the result. W

Combining previous Lemmas, we obtain the generalized extended derivative of the
product of analytic function with a power function.

Theorem 3.4.1. Let R(§) < 0. Suppose that a function f(z) is analytic at the origin
with its Maclaurin expansion given by f(z Z a,z", (|z| < p) for some p € R*. Then

we have
o
,B—0-1

0(=5) 2~

o 1 1
Dg,p,p,q,)\,m{zﬁ 1 } Z D(Supq)\m{zﬁ-f-n 1} anﬁu(ﬁ—f—n—'_ —0+— ,p,q,)\ m) "

(3.62)
A subsequent result can be given as follows

1
Theorem 3.4.2. For R(0) > R(f) > —g we have

2671

DB—dmwpigAmy Bl _ ey — _~
: -2 =

1 1 1
B(6+§,5—5+§)Fu(0z,5+§;5+1; zq; A pym)(|z] < L a € C)
(3.63)
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Proof. The result is easily established by taking f(z) = (1 — 2)™%, so we have

o k
Df—&u;p;q;)\;m{zﬁ—l(l o Z)—Oé} — D§—57M§p§Q§>\§m{Zﬁ_1 Z(a)k‘z_

o0
Z (a) DB- 5,u;p;q;/\;m{z6+k71}

' Z

o0

Z +k+276 6+27p7Qa)‘m) 5+k; 1
(6 —p)

k=
By the expression 3.38, we get

2,5—1

DB-dmpiaAmy Bl _ y—ay —

1 1 1
B(ﬁ+§,5—ﬂ+§)FM(a,ﬁ+§;5+1;Z;q;A;p;m)

|
1
Theorem 3.4.3. ForR(5) > R(B) > ~3 R(a) > 0,R(y) > 0,|az| < 1 and |bz| < 1.

Then, the following generating relation holds true

2671

DB—dmpaxim =11 _ ) =(1_pay) ) —
: (27 (1ma) (102) 7 = s

1 1 1
B(6+§, 5—5+§)F1,u(ﬂ+§, a,7,0+1;az,bz; q; X p;
(3.64)

Proof. By applying the binomial Theorem to (1 —az)™® and (1 — bz)~” and making use
of Lemmas 2.4.1and 2.4.2 we obtain

k T
Df—du;p;q;/\;m{zﬁ—l(1_az> *(1=bz)™"} = D’B 5upq>\m{zﬂ 12}2 (;') }(bj) }
k=0 r=0 ’ ’
_ S B—6, 5050 Am § B+k+r— la by
- krz()(a)t(’)/)TDz Kb {Z k" 7’"}
> B(B+Ek+r+L0—84Lpqg im)azkbzr
_ 01 1 27 o Uy 7Ny az<-
7 krzo(o‘)t(”’" T —f) K7

By using 3.50 we can get
Df—&u;p;q;/\;m{zﬁ—lﬂ _ az)_a(l _ bz)_W} _
Laz;bz;q; A p;m) W

26—1

1 1 1
—B —,0—0+=)F = )
F((S—ﬁ) (/6+2a /B—I—Q) l,u(5+2’a7’7a +

1
Theorem 3.4.4. For R(§) > R(p) > —g5 R(a) > 0, R(y) > 0, R(7) > 0, |az| < 1,
|bz| < 1 and |cz| < 1 then we have

Dﬁf&u;p;q;/\;m{zﬁfl(l —az) (1 —=0b2)""(1—c2)"}

2571

L6 —p)
Proof. The proof is similar to that of Theorem 2.4.3 it is sufficient to use the binomial
Theorem for (1 —az)™®, (1 —bz)"7, (1 —cz)™" then applying Lemmas 2.4.1 and 2.4.2. &

1
B(B + =B+ )Ff),u(ﬁ + 5@y T+ Lazbzg Apim) - (3.65)
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1
Theorem 3.4.5. For R(d) > R(() > ~3 R(a) >0, R(1) > R(vy) > 0, , and
|z| + |z] < 1, we have
DI PN — az) = Fy(a, 7w i g5 Aipsm) )
—z
+ 1,0 + 5 1
_ B0 (25 ﬁ)ﬁ >F2u( @7, B+ 5,750+ Lz A pim) (3.66)

Proof. By the binomial formula and according to Definition 2.2.1, we expand z°~(1 —
2) “Fu(a, 7y, T %; q; A;p;m) to get
-z

D~owmaim {2’3_1(1 —2) ey, T g m)}
—Z

_ pB-bupaim ) - Z B(y+n1t—yigApm) ([ x \"
z > By, 7 —7) 1—=z

n

= Z B(y+n,7—7y¢;Apim) Dﬁ—&u;p;q;k;m{zb’—l(l — ) T
(777'_'7> : n!

In order to exhibit F,, we apply Theorem 2.4.2 for DE=ompaAm =1 _ )=e=m) and

substitute the extended hypergeometric function F), by its series representation, we obtain

D~bwmam {2’3_1(1 —2) ey, T g m)}
—Z

2 1 LS Bu(y+n,7—7y ¢ pm) BuB+k+3,0-8+35¢Npm
= = B(B+5,0-p+2 )k ’ P I H 2’ 2 Db
g e 2>n;o( et By, 7 =) B(B+1.0-F+1)
26—1

1 1
T T(0-B) (6+ =B+ ) By, B+ 5,10+ L2524, A m)

This completes the proof. I

Proposition 3.4.1. (Mellin transform)
The following expression holds true

1 1 1
M{DIHPENm B s} = QS’lzB’JﬁB(ﬁ +m(s+ 5) +1,—0 +m(s + 5))
WD (Slp) (At g () s et (3.67)
2 2 2
1 1 R RO 1
for R(p1) > 0 0 and R R(p),—= — — — 220 20 2y
or R(1) > 0, m > 0 and R(s) > max{R(u), —5 — — — ) S0 2y

Proof. We can prove this result by applying Mellin transform and using Lemma 2.4.1.

1 * 3 1
DoHspiaihim B — / s=1,8-6 S5+ pra- Am)d
M{ z < 7p_>8} F<—5) o p z ,u(ﬂ"‘ 27 +27pJQ7 7m> p
I Sl 3 1
= 1B 2, =0+ =ipig; Ay m)d
F(_5)/0 P Bu(B A+ 5, =0+ Gipigs Avm)dp

3 1
As the last integral is the Mellin transform of B, (8 + 2 —0 + P34 A;m) the result

immediately follows via Proposition 2.4.1. l
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Proposition 3.4.2. The following expression holds true

N 1 1 1 — 1
M{DIPEN(1—2)"F p — s} = 2871275ﬁ3(+m(s+§)+1, —04m(s+3))T (S 5 MF) <—S + g + )

1 1
X O ()\, %q) F}(B,m(s +5) + 1,0+ m(2s +1) + L;2) (3.68)

1 1 4 1
where R(u) > 0,R(0) < 0,m > 0,]z| < 1, R(s) > max{R(u), 5t —} and Fy is
the well-known Gauss hypergeometric function.

Proof. The result can be proved using the binomial Theorem for (1 —2)~* and the Mellin
transform of the general term. Indeed,

D(S,upq)\m n’p_> S

M{Dg,u;p;q;k;m(l_z) P — S} M{D5Mpq>\m Z ' , D — S} Z

nl

I
NE
NS

1 1 1 - 1 1
O‘)”z"*‘s B(n+m(s+2)+1 —5+m(s+2))F (3 2“F) (S+g+ ><I> (A,#,q)

) (S i g il 1> 0 (A, M,q) i (a)”B(n+m(s+%)+1, —5—|—m(8+%))z"

2 n!
n=0

1 1 — 1 1
= 25! _5TB(n+m s+ )+ 1, —(5—|—m(s+2))F(82“F) <S+g+ )@(A,%&)

XoFy (B, m(s + 2)—1—1 —d+m(s+1)+1;2) A

3.5 Generating function involving the extended gener-
alized Gauss hypergeometric function

In this section, we establish some generating functions for the generalized Gauss hyper-
geometric functions.

1
Theorem 3.5.1. Let R(3) > 0 and R(y) > R(a) > —3 Then we have

1
v+ 1

5 ——q¢;p; A\ym),  where|z| < min{l, |1 —t|} (3.69)

ZF (B+n,a+ =

— 1—t

Proof. By considering the following elementary identity

(1—2)" (1— 1iz>_ﬁ:(1—t)ﬁ (1— 1it)_ﬂ

and expanding its left-hand side to give

(1-2) ﬂz > (1_t):(1_t)ﬁ(1—1it)_6 forlt| <|1—2  (3.70)
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Multiplying both sides of 3.70 by 2*~! and applying the extended Riemann-Liouville
fractional derivative operator D VH4PA™ we find

o e (B)nt™ z \7"?
Da—'y,,u,q,p,)\,m Z Za—l(l . Z)—B—n _ Da—%,u,q,p,)\,m{(1_t)—ﬁza—1 <1 _ ) }

n! 1—1¢

n=0

Uniform convergence of the involved series allows us to permute the summation and
fractional derivative operator to get

R R B A B
n=0 ’

(3.71)
The result easily follows using Theorem 2.4.2. W

1
Theorem 3.5.2. Let R(3) > 0, R(7) > 0 and R(y) > R(a) > —5 then we have

> n 1 1 —zt
> <i), Fu(B=n, ot 557+ Lz qip s m)t" = (1=8) "R (ot 5, 75 B9+ 1 25 7= 459 Aim)
n=0 ’ N

where |z| < 1,]t| < |1 — 2| and |z||t|<|1-t]

Proof. By considering the following identity
zt

MI—(1—-2)]P=01-t"1+ -

)*/5

and expanding its left-hand side as power series, we get

S Geiy oy~ 1=y forl <1 -+
n=0 ’

Multiplying both sides by z* (1 — 2)™" and applying the definition of the extended
Riemann-Liouville fractional derivative operator D% #4PXm on hoth sides, we find
—2zt
.
1—t )

n!

DO VHGPAM {Z (ﬁ)nza—1<1 (1 - Z)ntn} — DOVGpAm {(1 — )P 1= 2) (1 -
n=0
Interchanging the order of the summation and fractional derivative under the given
conditions, we obtain
Z DYV BEPAM {za_l(l _ Z)—T+n} " = (1_t)—ﬁDa—v;u;q;p;/\;m {za_l(l _ z)_7+(1 _ )—ﬁ}

n=0

Finally, the desired result follows by Theorems 2.4.2 and 2.4.3. H

1 1
Theorem 3.5.3. Let R(§) > R(v) > ~3 R(v) > R(a) > ~3 and R(3) > 0 then we

have

- 1 1
Y FuB4n,at s+ Lz Ap;m)Fu(—n,v + 3 & T Lug Aprm)t”

2
n=0
1 1 z —ut
—(1-t)°F i VNI VE Il I NI A
( ) 2,,u<ﬁ705+27v+277+ 7§+ 71_t71_t7q” 7p7m)
h H<1\1_utl<1 N i L
ere |z o a— an .
v T 1t 1=t
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Proof. By replacing t by (1 — u)t in 3.69 and multiplying both sides of the resulting
identity by u’~!, we get

o0 " 1
> ) Fu(B4na+ 55y + 1200 pm)u” (1 —w)"t"

n!
n=0

-1 =2))PF(Ba+ 1;7 +1;

z
5 Tt ;pim) (3.72)

where R(f) > 0 and R(y) > R(«a) > —%.

Next, applying the fractional derivative DV=#%2P™ t6 hoth sides of 3.72 and changing the

—u
order of the summation and the fractional derivative under conditions |z| < 1, |1—t| <1
—z

and | |—|— | | < 1, , yields

—t

o " 1

Z (6)' F.(B+n,a+ 5; v+ 12,0, ) p; m)D“’g’“’q”\’p’m{u“’I(l —u)"H1"
n!

n=0

1 z
— DvEmaApm v=lr (1 — Wt P F .. 1: A\ p:
{U [ ( U)] M(B7a+ 277—*— al_(l_u)taQ7 7p7m)

The last identity can be written as follows:

1
57 152 @ A pm) DY ST T (1 — )

Z (i)'nFM(,B +n,a+
n=0 ’

1 L
=(1- t)*ﬁvaﬁ,M:(I,A,p,m {uvl[l —(1- u)t]*ﬁFH (ﬁ,oz + 2,7 +1, — __ut,q, Ap;m ) }

1-t

Thus, by using Theorems 2.4.2 and 2.4.5 in the resulting identity, we obtain the desired

result.
[ |
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