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Abstract

Fractional differential equations
in b-metric spaces

The aim of this thesis is to introduce the concept of b-metric space which
is a natural and novel extension of the standard metric space. We also in-
troduce the notion of a generalized α-Geraghty contraction type mapping
in b-metric spaces which is one of the interesting generalizations of Banach
contraction principle.We state the existence and uniqueness of a fixed point
theorems for this mapping. Then we apply the obtained theorem to study
the existence of solutions to the fractional differential equations(in Caputo
sense) in the setting of b-metric space.

This work is illustrated with examples of applications. The results of
chapter 2 are found in the works [1].[2].[3].‘

Keywords : b-metric space,Geraghty contraction type mapping,fixed
point,fractional differential equations(in Caputo sense).
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Résumé

Équations différentielles fractionnaires .

dans les espaces b-métriques.
L’objectif de cette thèse est d’introduire le concept d’espace b-métrique qui
est une extension naturelle et nouvelle de l’espace métrique standard. Nous
introduisons également la notion d’application généralisée de type contrac-
tion α-Geraghty dans les espaces b-métriques qui est une des généralisations
intéressantes du principe de contraction de Banach. Nous énonçons des theo-
rémes d’existence et d’unicité d’un point fixe pour de telles applications.
Ensuite, nous appliquons le théorème obtenu pour étudier l’existence de so-
lutions aux équations différentielles fractionnaires (au sens de Caputo) dans
le contexte de l’espace b-métrique.
On illustre ce travail par des exemples d’applications. Les résultats de cha-
pitres 2 se trouvent dans les travaux [1].[2].[3].

Mots Clés : Espace b-métrique,l’applications de type contraction de Ge-
raghty, Point fixe,équations différentielles fractionnaires (au sens de Caputo).



 ملخص 
 

 المتريةb–الفضاءات  المعادلات التفاضلية الكسرية في 

 

 
والذي يعد امتدادًا طبيعيًا   المتريb–الفضاء الهدف من هذه الأطروحة هو تقديم مفهوم         
الفضاء في  جيرافتي  α من النـــوع   مفهوم التطبيق المعمم للتقلص  وتقديم  .للفضاء المتري وجديدًا 

–bبالإضافة ذكرنا . فضاء بناخ   فيالتطبيق المقلص هو أحد التعميمات المثيرة للاهتمام لمبدأ المتري و 
 .التطبيق  اثابتة لهذالنقطة ال  نظرية وجود وتفرد

 
في سياق  (كابتو  بمعنى)رية ـــــــدراسة وجود حلول للمعادلات التفاضلية الكس قمنا ببعد ذلك         

 . ثابتةالنقطة ال المتري بتطبيق نظرية b–الفضاء  

 
 [3].[2].[1] يمكن العثور على نتائج الفصل الثاني في الأعمال تطبيقية ، . هذا العمل بأمثلةأرفقنا 

 

 جيرافتي ،  α، التطبيق المعمم للتقلص من النـــوع    المتريb–الفضاء  :الكلمات المفتاحية 
 (بمعن ىكابتو)النقطة الثابتة ، المعادلات التفاضلية الكسرية 



Notations

* d(., .) : Distance on metric spaces .

* ds(., .) : Distance on b-metric spaces.

* s :Coefficient of b-metric spaces

* Lp([a, b]) : Lebesgue spaces.

* N :The set of natural numbers.

* R,R+ :The set of all real numbers, the set of non negative real numbers.

* ‖ f ‖Lp : Norm in Lp([a, b]).

* (xn) :Sequence of elements.

* ε :Designates a parameter that is > 0 and approaches zero.

* T, f : X → X :Self map on X.

* Fix(T ) : The set of all fixed points of T .

* κ(t, u, x(u)) :The kernel of the integral equation.

III



IV

* C([a, b]) :The set of all real valued continuous functions on [a, b].

* F , F∫ the set of Geraphty functions.

* C(J,R) : the Banach space of all continuous function from J into R.

* ‖ y ‖∞= sup{| y(t) |; t ∈ J} :Norm inC(J,R).

* cDα,c Dβ : The Caputo derivatives of order α, β.

* Dα :The Riemann-Lioville derivative of order α.

* Iα :The fractional integral of order α for an integrable function.
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Introduction

The Banach contraction principle is a useful tool in the study of many
branches of mathematics and mathematical sciences ( economics, computer
science and engineering). This principle was improved, generalized and ex-
tended in various ways and many fixed point results were obtained. One of
the interesting generalizations of this basic principle was given by Geraghty
[14]in 1973 by considering an auxiliary function. β : [0,∞) → [0, 1) which
satisfies the condition

lim
n→∞

β(tn) = 1 implies lim
n→∞

tn = 0

After that, Geraghty’s result was generalized and many fixed point results
were stated in many ways [17], [10],[16],[19]].

In 2004, Ran and Reurings stated a generalization of Banach contraction
principle by using a partial order on a metric space.

In 2008, Suzuki [31] proved a generalization of Banach contraction prin-
ciple by using a contraction condition depending on a non-increasing function
Φ

the class of the function φ : [0,∞)→ [0,∞)satisfying the following conditions

(a) φ is nondecreasing,

(b) φ is continuous,

(c) φ(t) = 0 if and only if t = 0,

(d) φ is subadditive, that is φ(c+ t) ≤ φ(c) + φ(t)

In 2012, Samet et al.[11] introduced the notion of α-admissible mappings.
Karapinar et al. [10] defined the concept of triangular α-admissible mappings.

VI
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In 2013, Cho introduced the notion of α-Geraghty contraction type map-
pings and assured the unique fixed point theorems for such mappings in
complete metric spaces.

Popescu [25] generalized the obtained results in [17] by using the concept
of triangular α-orbital admissible mappings and studied other conditions to
prove the existence and uniqueness of a fixed point of α-Geraghty contraction
type mappings in complete metric spaces.
In 2015, Kumam et al. [22] introduced a new generalized quasi-contraction
by adding four new values .

Another way to generalize Banach contraction principle, many authors
was replaced the given metric space by some generalized metric space and
stated analogues of fixed point theorem on metric spaces.

In 1989, Backhtin introduced the concept of b-metric space. In 1993,
Czerwik extended the results of b-metric spaces, which is a natural and novel
extension of the standard metric spaces.
The difference of b-metric from the standard metric is the triangle inequality.
In the b-metric notion, the following inequality is used

ds(x, z) ≤ s[ds(x, y) + ds(y, z)], for some s ≥ 1and all x, y, z ∈ X

Note that b-metric is a generalization of a metric. The first important dif-
ference between a metric and a b-metric is that the b-metric need not be a
continuous function in its two variables. This led to many fixed point theo-
rems on b-metric spaces being stated.

In 2011, Dukic and al. [12] generalized the class of Geraphty functions
F to the class of functions Fs for some s ≥ 1. By using the function β :

[0,∞)→ [0, 1
s
) which satisfies the condition

lim
n→∞

β(tn) =
1

s
implies lim

n→∞
tn = 0
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the authors stated the existence and uniqueness of a fixed point for Geraghty
contraction type mapping in b-metric spaces.

Recently, Samet et al. [27] introduced the notion of α-admissible map-
pings to combine some existing fixed point results in distinct setting. This
idea was extended by Karapinar and Samet in[27] by introducing the notion
of generalized α-contractive type mappings.

In the last few years, fractional calculus concepts were frequently applied
to other disciplines, especially dealing with physical phenomena. In most of
the available literature, fractional integral equations play an essential role in
the qualitative analysis of the solutions for fractional differential equations
[23]. Very recently, H. Afshari, S. Kalantari and E. Karapinar [1] investigated
the existence of solutions for some fractional differential equations in metric
and b-metric spaces.
Based on a fixed point theorem,the authors studied the following problem{

cDµx(t))−c Dνx(t)) = h(t, x(t)), t ∈ J, 0 < ν < µ < 1

x(0) = x0,

Where Dµ, Dν are the Caputo derivatives of order µ, ν, respectively, and
h : J × R→ R is continuous mapping.

The thesis contains two chapters organized as follows :

In Chapter 1, we throw light on basic definitions and introductory
concepts. This chapter also includes many interesting results related to the
b-metric spaces, some examples which satisfy the properties of above spaces,
convergence, Cauchy sequence, completeness. We also stated some of the
extended fixed point theorems for Geraphty contraction type mapping in b-
metric space. We recall some definitions,notations and lemmas of fractional
calculus.

in Chapter 2, we stated the existence and uniqueness of solutions for
nonlinear integral equations by using some of the extended fixed point re-
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sults for Geraghty contractions type mapping in b-metric spaces.At first,we
considered the following integral equations

x(t) = h(t) +

∫ 1

0

κ(t, u)f(s, x(u))du for all t ∈ [0, 1]

Where h : [0, 1] → R, κ : [0, 1] × [0, 1] → R,f : [0, 1] × R → R are given
functions satisfying some assumptions that will be specified later.

Secondly, by using some of the extended fixed point results for Geraghty
contractions in b-metric spaces we apply these results to the fractional diffe-
rential equations. We considered the following problem{

cDµx(t))−c Dνx(t)) = h(t, x(t)), t ∈ J, 0 < ν < µ < 1

x(0) = x0,

Where Dµ, Dν are the Caputo derivatives of order µ, ν, respectively, and
h : J × R→ R is continuous mapping.

The thesis concludes with a useful general conclusion.



Chapter 1

Preliminaries

1.1 Definition and examples of b-metric space

1.1.1 Metric space

First, we are going to recall the notion of metric space.

Definition 1.1.1. [15] (Metric space)
Let X be a nonempty set and let d : X × X → R+

0 be a function satisfying
the conditions

(d1) d(x, y) = 0 if and only if x = y ;

(d2) d(x, y) = d(y, x) ;

(d3) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X.

Then d is called metric on X and the pair (X, d) is called metric space.

Definition 1.1.2. (Lipschitzian mapping)
Let (X, d) be a metric space and T is a mapping from X to X. The mapping
T is called a Lipschitz mapping if there exists a constant k ≥ 0 such that

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X. k is called the Lipschitz constant.

Example 1.1.1.
Let (X, d) a metric space such that X = [1, 2] and d(x, y) =| x − y | for all

2
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x, y ∈ X. The mapping T : X ×X → R+ defined by T (x) = x2 is a lipschitz
mapping. Indeed, since x2 − y2 = (x+ y)(x− y), we have

d(T (x), T (y)) = | x2 − y2 |
≤ | x+ y || x− y |
≤ (| x | + | y |) | x− y |
≤ (2 + 2) | x− y |
≤ 4d(x, y).

for all x, y ∈ X. This shows that T is a Lipschitz mapping, with Lipschitz
constant k = 4 ≥ 0.

Definition 1.1.3. (Contraction mapping)
Let (X, d) be a metric space and T : X → X a self mapping. T is called
contraction mapping if there exists a constant k < 1 such that for all x, y ∈ X

d(Tx, Ty) ≤ kd(x, y)

This contraction is also known as Banach 1 contraction.

Example 1.1.2.
Let (X, d) a metric space such that X = [0, 1] and d(x, y) =| x − y | for
all x, y ∈ X. The function T : X → X defined by T (x) = ln

(
1 + x

4

)
is a

contraction.

1.1.2 b-metric space

In the following definition we will recall the concept of b-metric space
(introduced by Backhtin in 1989).

Definition 1.1.4. [5] (b-Metric space) Let X be a nonempty set and s ≥ 1

be a given real number. A mapping ds : X × X → R+ is said a b-metric if
for all x, y, z ∈ X the following conditions are satisfied :

1. Stefan Banach (30 March 1892 – 31 August 1945) was a Polish mathematician who
is generally considered one of the world’s most important and influential 20th-century
mathematicians.
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(b1) ds(x, y) = 0 if and only if x = y ;

(b2) ds(x, y) = ds(y, x) ;

(b3) ds(x, z) ≤ s[ds(x, y)+ds(y, z)], for all x, y, z ∈ X. (b-triangular inequa-
lity).

In this case, ds is called b-metric on X, and the pair (X, ds) is called a
b-metric space (with constant s).

Next, we give some examples of b-metric spaces.

Example 1.1.3.
Let X = {−3

2
, 0, 1

2
} and let ds : X ×X → [0,∞) defined by :

ds(
−3

2
, 0) = ds(0,

−3

2
) = 2,

ds(
−3

2
,
1

2
) = ds(

1

2
,
−3

2
) = 7,

ds(0,
1

2
) = ds(

1

2
, 0) = 3,

ds(0, 0) = ds(
1

2
,
1

2
) = ds(

−3

2
,
−3

2
) = 0

It is clear that all the conditions (b1); (b2) and (b3) of Definition 1.1.4 are
satisfied ,

(b1) ds(x, y) = 0⇒ x = y ;

(b2) ds(x, y) = ds(y, x) ;

(b3) For all x, y, z ∈ X, we have

7 = ds(
−3

2
,
1

2
) ≥ ds(

−3

2
, 0) + d(0,

1

2
) = 2 + 3 = 5

so s = 7
5
Then :

ds(x, z) ≤
7

5
[ds(x, y) + ds(y, z)]

Then (X, ds) is a b-metric space with s = 7
5
.
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Example 1.1.4. [29]
Let (X, d) be a metric space and ρ(x, y) = [d(x, y)]p, with p > 1 is a real
number. We show that ρ is a b-metric with s = 2p−1.

ρ(x, y) = 0 ⇔ [d(x, y)]p = 0

⇔ d(x, y) = 0

⇔ x = y

ρ(x, y) = [d(x, y)]p

= [d(y, x)]p

= ρ(x, y)

If 1 < p <∞, then the convexity of the function f(x) = xp(x > 0) implies(a+ b

2

)p
≤ 1

2
(ap + bp),

and hence, (a + b)p ≤ 2p−1(ap + bp) holds. Thus, for each x, y, z ∈ X we
obtain

ρ(x, y) = (d(x, y))p ≤ (d(x, z) + d(z, y))p

≤ 2p−1(d(x, z)p + d(z, y)p)

= 2p−1(ρ(x, z) + ρ(z, y)).

So conditions (b1); (b2) and (b3) of Definition 1.1.4 are satisfied and ρ is a
b-metric.

However, if (X, d) is a metric space, then (X, ρ) is not necessarily a metric
space.
For example, if X = R is the set of real numbers and d(x, y) =| x − y | is
the usual Euclidean metric, then ρ(x, y) = (x − y)2 is a b-metric on R with
s = 2, but is not a metric on R. We can see that on others examples.

Example 1.1.5.
Let d : C(I)× C(I) −→ R+ be defined by

d(u, v) =‖ (u− v)2 ‖∞= sup ‖ u(θ)− v(θ) ‖2, for all u, v ∈ C(I).

It is Clear that d is a b-metric with s = 2.
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Example 1.1.6. [20]
Let X be the set of Lebesgue measurable functions on [0, 1] such that∫ 1

0

| f(x) |2 dx <∞.

Define D : X ×X → [0,∞) by

D(f, g) =

∫ 1

0

| f(x)− g(x) |2 dx.

Then D satisfies the following properties

(b1) D(f,g)=0 if and only if f=g,

(b2) D(f,g)=D(g,f), for any f, g ∈ X,
(b3) D(f, g) ≤ 2(D(f, h) +D(h, g)), for any points f, g, h ∈ X.

Remark 1.1.1.
Every metric space is a b-metric space with s=1, But in general,every b-
metric space is not a metric space.

The following examples show that there exists a b-metric which is not a
metric.

Example 1.1.7. [1]
Let X = {0, 1, 2} and let d : X ×X → [0,∞) defined by :

d(0, 1) = 1, d(0, 2) =
1

2
, d(1, 2) = 2,

d(x, x) = 0, d(x, y) = d(y, x), for all x, y ∈ X.

Notice that d is not a metric, since we have

d(1, 2) > d(1, 0) + d(0, 2)

However, it is easy to see that d is a b-metric with s ≥ 4
3
.

Example 1.1.8. [4]
Let X = [0,∞), d : x×X → [0,∞) defined by

d(x, y) =


0 if x = y,

4 if x, y ∈ [0, 1],
9
2

+ 1
x+y

if x, y ∈ [1,∞),
12
5

otherwise.
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(X, d) is b-metric space with s = 25
24

but not a metric space. When x = 10
9
, z =

1 ∈ [1,∞) and y ∈ (0, 1), We have

d(x, z) =
9

2
+

1

x+ z
=

9

2
+

9

19
=

189

38
,

and
d(x, y) + d(y, z) =

12

5
+

12

5
=

24

5
.

So that
d(x, z) ≥ d(x, y) + d(y, z).

Hence d is a b-metric with s = 25
24

but not a metric.

1.1.3 Properties of b-metric space

We need the following definitions and propositions in b-metric space. We
recall the notion of b-convergence, b-Cauchy sequence and b-completeness in
b-metric space. Let (xn) a sequence in X.

Definition 1.1.5. [7] ,[8](b-convergent, b-Cauchy)
Let (X, ds), s ≥ 1 be a b-metric space . A sequence (xn) in X is called :

(i) b-convergent if there exists x∗ ∈ X such that d(xn, x∗) → 0 as n → ∞.
In this case, we write lim

n→∞
xn = x∗.

(ii) b-cauchy if d(xm, xn)→ 0 as n,m→∞.

Proposition 1.1.1. [9]
In a b-metric space (X, ds) the following assertions hold :

(P1) A convergent sequence has a unique limit.

(P2) Each convergent sequence is Cauchy sequence.

Proof. (P1) By contradiction
We hope to prove "For all convergent sequences the limit is unique".
The negation of this is "There exists at least one convergent sequence
which does not have a unique limit".
This is what we assume. On the basis of this assumption let (xn) denote
a sequence with more than one limit, two of which are labelled as u1
andu2 with u1 6= u2. Choose ε = 1

3s
which is greater than zero since
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u1 6= u2.
Since u1 is a limit of (xn) we can apply the definition of limit with our
choice of ε to find N1 ∈ N such that

ds(xn,u1) < ε for all n 6= N1

Similarly, as u2 is a limit of (xn)n∈N we can apply the definition of limit
with our choice of ε to find N2 ∈ N such that

ds(xn,u2) < ε for all n 6= N2

here is no reason to assume that in the two uses of the definition of
limit we should find the same N ∈ N for the different u1 and u2. Choose
any m0 > max(N1, N2), then ds(xm0 , u1) < ε and ds(xm0 , u1) < ε.
Using the b-triangle inequality, we have :

ds(u1, u2) ≤ s[ds(u1, xm0) + ds(xm0 , u2)] (b-triangle inequality)

< s[ε+ ε] ( by the choice of m0)

= 2sε

=
2s

3s
ds(u1, u2) (by the definition of ε)

=
2

3
ds(u1, u2)

So we find that ds(xn, u2), which is not zero, satisfies ds(xn, u2) <
2
3
ds(u1, u2), which is a contradiction.

Hence our assumption must be false, that is, there does not exists a
sequence with more than one limit. Hence for all convergent sequences
the limit is unique.

(P2) Suppose (xn) is a convergent sequence with limit u. For ε > 0 there is
N ∈ N such that ds(xn, u2) < ε

2
. We introduce xm by ds(xm, xn). and

use the b-triangle inequality

ds(xn, xm) ≤ s[ds(xn, u) + ds(u, xm)] (b-triangle inequality)

< s[
ε

2
+
ε

2
]

= sε

= ε
′

whenever n,m ≥ N . Thus the convergent (xn) is Cauchy.
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Definition 1.1.6. [9](Complete b-metric space)
A b-metric space is called a complete b-metric space if every b-Cauchy se-
quence in X is b-convergent in X.

Definition 1.1.7. (b-closed)
A set B ⊂ X is said to be b-closed if for any sequence (xn) in B such that
(xn) is b-convergent to z ∈ X then z ∈ B .

Remark 1.1.2.
We observe that the notions of convergent sequence, Cauchy sequence, and
complete space are defined as in metric spaces.

Now, we consider the continuity of a mapping with respect to a b-metric
defined as follows.

Definition 1.1.8. [28](Continuity)
Let (X, dX) and (Y, dY ) be two b-metric spaces with coefficient s and s

′,
respectively. A mapping T : X → Y is a b-continuous at a point x ∈ X, if
it is b-sequentially continuous at x. i.e, whenever (xn)is b-convergent to x,
T (xn) is b-convergent to T (x).

Remark 1.1.3.
In the general case, a b-metric is not necessarily continuous.

The following example shows that a b-metric need not be continuous (see
Boriceanu [8]).

Example 1.1.9. [8]
Let X = N ∪ {∞}. We define a mapping d : X ×X → [0,∞) as follows.

ds(m,n) =


0 if m = n

| 1
m
− 1

n
| if one ofm,n is even and the other is even or ∞

5 if one of m,n is odd and the other is odd (andm 6= n) or ∞
2 otherwise

Then (X, ds) is a b-metric space with s = 5
2
. However, let xn = 2n for each

n ∈ N, then

lim
n→∞

d(xn,∞) = lim
n→∞

d(2n,∞) = lim
n→∞

1

2n
= 0,
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but

lim
n→∞

d(xn, 1) = lim
n→∞

d(2n, 1) = 2 6= d( lim
n→∞

xn, 1) = d(∞, 1) = 5

.

1.2 Geraphty Contraction

1.2.1 Introduction

It is known that the Banach principle is considered as a one of the most
important theorems in the classical function analysis. There are many gene-
ralization of this theorem. The following generalizations is due to Geraphty.
Geraphty generalized the Banach contraction mapping in metric spaces by
using an auxiliary function instead of constant. In this section, we introduce
first the notion of :

— Geraphty function.

— Generalized Geraphty contraction mapping.

— Generalized almost Geraphty contraction mapping,

— Generalized α Geraphty contraction mapping,

— Generalized α − φ Geraphty contraction mapping in the setting of b-
metric spaces.

After then, we give some definitions and examples.

1.2.2 Geraphty function

In 1973, Geraghty [14] introduced a class of functions to generalize the
Banach contraction principle.

Definition 1.2.1. [14]
A function β : [0,∞)→ [0, 1) which satisfies the condition :

lim
n→∞

β(tn) = 1⇒ lim
n→∞

tn = 0 (1.1)

is called the Geraphty function.
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We denote by F the set of Geraphty functions. In 2011,Dukic al used
another set which they denoted by Fs.

Definition 1.2.2. [14] Let (X, d) be a complete b-metric space with s > 1.

Fs denote the set of all functions β : [0,∞) → [0, 1
s
) which satisfies the

condition :
lim
n→∞

β(tn) =
1

s
⇒ lim

n→∞
tn = 0 (1.2)

Some examples of Geraphty functions are given in the following.

Example 1.2.1.
β : [0,∞)→ [0, 1),

β(x) =

{
sinx
x

if x > 0,

0 if x = 0.

satisfies the condition of Geraphty (1.1)

Example 1.2.2.
β : [0,∞)→ [0, 1),

β(x) =

{
0 if x = 0,
ln(1+x)

x
if x > 0.

is a Geraphty operator.

Example 1.2.3.
The same conclusion is for β : [0,∞)→ [0, 1),

β(x) =

{
0 if x = 0,
x

ex−1 if x > 0.

Example 1.2.4.
The function β : [0,∞)→ [0, 1),

β(x) =

{
0 if x = 0,
1

1+x
if x > 0.

is a Geraphty operator.

Example 1.2.5.
The function β : [0,∞)→ [0, 1),

β(x) =

{
e−2x if x > 0,

β(0) ∈ [0, 1].

Then β ∈ F
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1.2.3 Geraphty contraction

Definition 1.2.3. [14]
Let (X, d) be a metric space. An opeartor T : X → X is called a Geraphty
contraction if there exist a function β ∈ F which satisfies for all x, y ∈ X,
the condition :

d(Tx, Ty) ≤ β(d(x, y)).d(x, y)

1.2.4 Generalized almost Geraphty contraction mapping

In the following, we introduce the notion of almost Geraphty contraction
mapping in b-metric space as follows :

Definition 1.2.4. [4]
Let (X, ds) be a b-metric space with coefficient s ≥ 1 and let T be a self
mapping of X. If there exists β ∈ F and L ≥ 0 such that :

d(Tx, Ty) ≤ β(M(x, y))M(x, y) + LN(x, y) (1.3)

for all x, y ∈ X where

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
and

N(x, y) = min{d(x, Tx), d(x, Ty), d(y, Tx)}

Then we say that T is an almost Geraphty contraction mapping.

The importance of the class of almost Geraphty contraction type maps
is that this class is properly includes the class of Geraphty contraction type
maps studied by Faraji, Savic and Radenovic so that the class of almost Ge-
raphty contraction type maps is larger than the class of Geraphty contraction
type maps, which is illustrated in the following example.

Example 1.2.6. [4]
Let X = [0,∞) and let d : X ×X → [0,∞) defined by

d(x, y) =

{
0 if x = y

(x+ y)2 if x 6= y.
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Then clearly (X, d) is a complete b-metric space with coefficient s = 2.
Let f : X → X a mapping defined by

f(x) =

{
1, if x ∈ [0, 1)

2x− 1, if x ∈ [1,∞).

We defined β : [0,∞)→ [0, 1
s
) by

β(t) =
1

3 + t
for all t > 0.

It’s easy to see that β ∈ F∫ . Without loss of generality, we assume that
x ≥ y.We have three cases.

Case 1 Let x, y ∈ [0, 1).
d(fx, fy) = d(1, 1) = 0

and the inequality (1.3) holds.

Case 2 Let x, y ∈ [1,∞).

d(fx, fy) = d(2x−1, 2y−1) = (2x−1+2y−1)2 = 4(x+y−1)2,

d(x, y) = (x+ y)2,
d(x, fx) = d(x, 2x− 1) = (3x− 1)2,
d(y, fy) = d(y, 2y − 1) = (3y − 1)2,

d(x, fy) = (x, 2y − 1) = (x+ 2y − 1)2,
d(y, fx) = (y, 2x− 1) = (y + 2x− 1)2.

M(x, y) = max
{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2s

}
= max

{
(x+ y)2, (3x− 1)2, (3y − 1)2,

(x+ 2y − 1)2 + (y + 2x− 1)2

4

}
= (3x− 1)2

and

N(x, y) = min{d(x, fx), d(x, fy), d(y, fx)}
= min{(3x− 1)2, (x+ 2y − 1)2, (y + 2x− 1)2}
= (x+ 2y − 1)2.
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We consider

d(fx, fy) = 4(x+ y − 1)2

≤ 1

3 + (3x− 1)2
(3x− 1)2 +

11

3
(x+ 2y − 1)2

≤ β(M(x, y))M(x, y) + LN(x, y)

Case 3 Let x ∈ [1,∞) and y ∈ [0, 1).

d(fx, fy) = d(2x− 1, 1) = (2x− 1 + 1)2 = 4x2,

d(x, y) = (x+ y)2,
d(x, fx) = d(x, 2x− 1)2 = (3x− 1)2,
d(y, fy) = d(y, 1) = (y + 1)2,

d(x, fy) = d(x, 1) = (x+ 1)2,
d(y, fx) = d(y, 2x− 1) = (y + 2x− 1)2.

M(x, y) = max
{
d(x, y), d(x, fx), d(y, fy),

d(x, fy) + d(y, fx)

2s

}
= max

{
(x+ y)2, (3x− 1)2, (y + 1)2,

(x+ 1)2 + (y + 2x− 1)2

4

}
= (3x− 1)2

and

N(x, y) = min{d(x, fx), d(x, fy), d(y, fx)}
= min{(3x− 1)2, (x+ 1)2, (y + 2x− 1)2}
= min{(x+ 1)2, (y + 2x− 1)2}.

We consider

d(fx, fy) = 4x2

≤ 1

3 + (3x− 1)2
(3x− 1)2 +

11

3
min{(x+ 1)2, (y + 2x− 1)2}

≤ β(M(x, y))M(x, y) + LN(x, y)

From all above cases f is an almost Geraphty contraction mapping with
L = 11

3
.
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Here, we observe that if L = 0 then the inequality (1.3) fails to hold. Indeed,
if we choose x = 3 and y = 2, we have

d(fx, fy) = 64, d(x, y) = 25, d(x, fx) = 64,

d(y, fy) = 25, d(x, fy) = 36, d(y, fx) = 49.

Thus
M(x, y) = max

{
25, 64, 25,

36 + 49

4

}
= 64.

Here we note that d(fx, fy) = 64 
 β(64)64 = β(M(x, y))M(x, y) for any
β ∈ F∫

In 2012, Samet introduced the notion of α admissible mapping

Definition 1.2.5. [27](α-admissible) Let X be a nonempty set and let α :

X × X → [0,∞) is given function. A mapping T : X → X is called α

admissible mapping if

∀x, y ∈ X,α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

Example 1.2.7.
Let X = [0,∞] and d(x, y) =| x− y | for all x, y ∈ X. We define a mapping
f : X → X by :

f(x) =

{
1
8
x2 if x ∈ [0, 1]

lnx if x ∈ (1,∞)

and we define also α : X ×X → [0,∞),

α(x, y) =

{
1 if x, y ∈ [0, 1]

0, otherwise.

Then f is α-admissible. Indeed, for x, y ∈ X, we notice that if d(x, y) ≥ 1

then x, y ∈ [0, 1]. So,

f(x) =
1

8
x2 ≤ 1

8
and

f(y) =
1

8
y2 ≤ 1

8
then fx, fy ∈ [0, 1]. It follows that

α(fx, fy) ≥ 1⇒ f is α− admissible.
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Example 1.2.8.
Let X = R, define f : X → X and α : X ×X → [0,∞),

fx =

{
ln(x), if x 6= 0

3, otherwise.
and α(x, y) =

{
3, if x > y

0, otherwise.

Let x, y ∈ R
1. if x = y = 0

x = y = 0, ⇒ α(fx, fy) = α(3, 3) = 3 ≥ 1

⇒ f is α − admissible.

2. if x, y 6= 0,

α(x, y) = 3, ⇒ x > y

⇒ ln | x |> ln | y |
⇒ fx > fy

⇒ α(fx, fy) = 3 ≥ 1

⇒ f is α-admissible.

Karapinar and all[18] defined the concept of triangular α−admissible mapping

Definition 1.2.6. [18](triangular α-admissible)
A mapping T : X → X is said to be triangular α-admissible if for x, y, z ∈ X

1. T is α-admissible,

2. α(x, z) ≥ 1 and α(z, y) ≥ 1 implies that α(x, y) ≥ 1..

Example 1.2.9.
Let X = R and α : X ×X → [0,∞), such that

α(x, y) = ex−y for all x, y, z ∈ R.

If α(x, z) ≥ 1 and α(z, y) ≥ 1 then

α(x, y) = ex−y

= ex−z.ez−y

= α(x, z).α(z, y) ≥ 1

Hence α is triangular
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Example 1.2.10.
Let X = (0,∞) and α : X → [0,∞),

α(x, y) =
x

y
for all x, y, z ∈ (0,∞)

if α(x, z) ≥ 1 and α(z, y) ≥ 1

α(x, y) =
x

y

=
x

z
.
z

y

= α(x, y).α(z, y) ≥ 1

Hence α is triangular

The definitions of α− orbital admissible mapping and triangular α− or-
bital admissible mapping are defined by Popescu in 2014.

Definition 1.2.7. [25](α−orbital admissible)
Let T : X → X and α : X × X → [0,∞) mappings. T is said to be α−
orbital admissible if :

α(x, Tx) ≥ 1 implies α(Tx, T 2x) ≥ 1

Definition 1.2.8. [25](triangularα-orbital admissible)
Let T : X → X and α : X × X → [0,∞). T is said to be triangular α−
orbital admissible if

1. T is α-orbital admissible,

2. α(x, y) ≥ 1 and α(y, Ty) ≥ 1 implies that α(x, Ty) ≥ 1.

Remark 1.2.1. As mentioned in [25],

* Every α− admissible mapping is a α− orbital admissible mapping.

* Every triangular α− admissible mapping is a triangular α− orbital admis-
sible mapping.

* But there exists a triangular α− orbital admissible mapping which is not
a triangular α− admissible mapping

The following example shows that there exists a triagular α orbital ad-
missible mapping which is not triagular α-admissible.
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Example 1.2.11.
Let X = {0, 1, 2, 3} a subset of R and d : X ×X → R defined by d(x, y) =|
x− y | . A mapping T : X → X is an operator defined by

T0 = 0, T1 = 2, T2 = 1, T3 = 3.

Let α : X ×X → R, is a mapping such that

α(x, y) =

{
1 if (x, y) ∈ {(0, 1), (0, 2), (1, 1), (2, 2), (1, 2), (2, 1), (1, 3), (2, 3)},
0 otherwise

1. Since
α(1, T1) = α(1, 2) = 1, α(2, T1) = α(2, 2) = 1

α(1, T2) = α(1, 1) = 1, α(2, T2) = α(2, 1) = 1,

then T is α orbital admissible.

2. Since
α(0, 1) = α(1, 2) = α(0, 2) = 1

α(0, 2) = α(2, 1) = α(0, 1) = 1

then T is triangular α orbital admissible.

3. But
α(0, 1) = α(1, 3) = 1

and
α(0, 3) = 0

So T is not triangular α-admissible.

Definition 1.2.9. [25](α-Regular)
Let (X, ds) be a b-metric space and α : X ×X → [0,∞). We say that X is
an α-regular if for each sequence (xn)n∈N in X with α(xn, xn+1) ≥ 1 for all
n ∈ N and xn → x as n→∞, there exists a subsequence (Xn(k))k∈N of (xn)n

with α(xn(k), x) ≥ 1, for all k.
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1.2.5 Generalized α- Geraphty contraction mapping

Popescu gave the definition of generalized α Geraphty contraction type
mapping and proved the fixed theorems for such mapping in complete metric
spaces.
We start with some definitions which we use in the subsequent development.

Definition 1.2.10. [25]
Let (X, d) be a metric space and α : X×X → [0,∞). A mapping T : X → X

is said to be a Generalized α Geraphty contraction type mapping if there exists
β ∈ F such that for all x, y ∈ X.

α(x, y).d(Tx, Ty) ≤ β(MT (x, y)MT (x, y)

Where

MT (x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
Example 1.2.12. [25]
Let X = [−2,−1] ∪ {0} ∪ [1, 2] and let d : X ×X → R defined by

d(x, y) =| x− y |

We defined T : X → X

Tx =

{
−x if x ∈ [−2,−1) ∪ (1, 2]

0 if x ∈ {−1, 0, 1}.

We defined β : [0,∞)→ [0, 1) by β(t) = 1
2
and α : X ×X → R by

α(x, y) =

{
1 if xy ≥ 0

0 otherwise.

Case 1 Let x, y ∈ [−2,−1), then xy ≥ 0 and by definition of α, α(x, y) = 1.

d(Tx, Ty) = d(−x,−y) =| −(x− y) |=| x− y |≤ 1,

d(x, y) =| x− y |≤ 1,

d(x, Tx) = d(x,−x) = 2 | x |= −2x ≥ 2
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d(y, Ty) = d(y,−y) = 2 | y |,

d(x, Ty) = d(x,−y) =| x+ y |

d(y, Tx) = (y,−x) =| x+ y | .

MT (x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
= 2 | x |≥ −2x

≥ 2.

we consider

d(Tx, Ty) = | x− y |

≤ 1

2
× 2 | x |

≤ β(MT (x, y))MT (x, y)

Thus
α(x, y).d(Tx, Ty) ≤ β(MT (x, y)MT (x, y).

Case 2 Let x, y ∈ (1, 2].

d(Tx, Ty) = d(−x,−y) =| −(x− y) |=| x− y |≤ 1,

d(x, y) =| x− y |≤ 1,

d(x, Tx) = d(x,−x) = 2 | x |= 2x ≥ 2,

d(y, Ty) = d(y,−y) = 2 | y |,

d(x, Ty) = d(x,−y) =| x+ y |,

d(y, Tx) = (y,−x) =| x+ y | .

this case is similar as the first one.

MT (x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
= 2 | x |≥ 2x

≥ 2.
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Case 3 Let x ∈ [−2,−1) ∪ (1, 2] and y ∈ {−1, 0, 1}.

d(Tx, Ty) = d(−x, 0) =| −x |=| x |= −x ≤ 1,

d(x, y) =| x− y |≤ 1,

d(x, Tx) = d(x,−x) =| 2x |= 2 | x |≥ 2,

d(y, Ty) = d(y, 0) =| y |,

d(x, Ty) = d(x, 0) =| x |,

d(y, Tx) = (y, 0) =| x | .

MT (x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2

}
≥ 2 | x | .

Case 4 Let x, y ∈ {−1, 0, 1}.

d(Tx, Ty) = d(0, 0) = 0,

d(Tx, Ty) = 0

≤ MT (x, y)

2
≤ β(MT (x, y))MT (x, y)

We obtain that T is a generalized α- Geraphty contraction type mapping.
However, since α(−2, 0) = α(0, 2) = 1, α(−2, 2) = 0, T is not a triangular α
admissible mapping.

1.2.6 Generalized α− φ Geraphty contraction mapping

Recently, Karapinar introduced the concept of α−φ Geraphty contraction
type mapping in complete metric spaces.
Let denote Φ the class of the function φ : [0,∞) → [0,∞) satisfying the
following conditions :

(a) φ is nondecreasing,

(b) φ is continuous,
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(c) φ(t) = 0 if and only if t = 0,

(d) φ is subadditive, that is φ(c+ t) ≤ φ(c) + φ(t)

Definition 1.2.11.
Let (X, d) be a metric space and α : X×X → [0,∞). A mapping T : X → X

is said to be a Generalized α− φ Geraphty contraction type mapping if there
exists β ∈ F such that for all x, y ∈ X.

α(x, y).φ(d(Tx, Ty)) ≤ β(φ(M(x, y))φ(M(x, y))

Where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)}

and φ ∈ Φ.

Definition 1.2.12. [1]
Let (X, ds) be a b-metric space with coefficient s ≥ 1 and a self mapping on
X, T : X → X. T is a generalizedα − φ Geraphty contraction type mapping
whenever there exists α : X ×X → [0,∞) such that for

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
We have

α(x, y)φ(s3d(Tx, Ty)) ≤ β(φ(M(x, y)))φ(M(x, y)),

for all x, y ∈ X, where β ∈ F and φ ∈ Φ.

On paper[1], the authors defined the generalized α−φ Geraphty contraction
type mapping in (X, ds) b-metric space.

Definition 1.2.13. [1]
Let (X, ds) be a b-metric space with coefficient s ≥ 1 and let T be a self-
mapping of X. We say that T is a generalized Geraphty contraction type
mapping whenever there exists α : X × X → [0,∞) and some L ≥ 0 such
that for

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
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and N(x, y) = min{d(x, Ty), d(y, Tx)}

We have

α(x, y)φ(s3d(Tx, Ty)) ≤ β(φ(M(x, y)))φ(M(x, y)) + Lψ(N(x, y)),

for all x, y ∈ X, where β ∈ F and φ, ψ ∈ Φ.

1.3 Fixed point theorems for Geraphty contrac-
tion type mapping

Definition 1.3.1. [6](fixed point)
Let X be a nonempty set and T : X → X a self-mapping. x ∈ X is a fixed
point of T if Tx = x.

We denote by Fix(T ) the set of all fixed points of T .

In [14], Geraghty presents the following theorem of existence and unique-
ness in 1973 by considering an auxiliary function. .

Theorem 1.1. [14] Let (X, d) be a complete metric space . Let T : X → X

be a given mapping that satisfies the following condition :

d(Tx, Ty) ≤ β(d(x, y).d(x, y)), x, y ∈ X

where β ∈ F .Then T has a unique fixed point in X.

In 1989, Bakhtin introduced b-metric spaces as generalization of metric
spaces. Since then, several papers have been published on the fixed point
theory in such spaces. In 2011, Dukic and all [12] reconsidered Theorem 1.1
in the framework of b-metric spaces.
Let (X, d) be a complete b-metric space with s > 1, and Fs denote the set
of all functions β : [0,∞)→ [0, 1

s
) which satisfies the condition :

lim
n→∞

β(tn) =
1

s
implies lim

n→∞
tn = 0
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Theorem 1.2. [12]
Let (X, d) be a complete b-metric space with coefficient s > 1. Let T : X → X

be a self-mapping. Suppose that there exists β ∈ Fs such that the following
condition is satisfied :

d(Tx, Ty) ≤ β(d(x, y)).d(x, y), x, y ∈ X.

Then T has a unique fixed point x∗ ∈ X.

The results of Geraghty in the context of various metric spaces have been
extended by many researchers (see [13],[12],[26]-[30]). In 2019, Hamid Faraji
and. all.[13] obtained and published two fixed point theorems for Geraghty
contraction in b-metric spaces and their application, which we present below.

Theorem 1.3. [13].
Let (X, d) be a complete b-metric space with coefficient s > 1 . Let T : X → X

be a self-mapping satisfying :

d(Tx, Ty) ≤ β(M(x, y).M(x, y)), x, y ∈ X

where :

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
and β ∈ Fs. Then T has a unique fixed point in X.

Proof.
see the Proof of Theorem 3 in ([13]).

Example 1.3.1. [13]
Let x = 1, 2, 3and d : X ×X → [0,∞) be defined as follows

d(1, 2) = d(2, 1) = 1

d(1, 3) = d(3, 1) = 1
9

d(2, 3) = d(3, 2) = 6
9

d(1, 1) = d(2, 2) = d(3, 3) = 0

It is easy to check that (X, d) is a b-metric space with constants = 3
2
.

Let T1 = T3 = 1, T2 = 3
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And β(t) = 2
3

exp(−t), t > 0, β(0) ∈ [0, 2
3
).

Then we have :

d(T1, T2) = d(1, 3)

=
1

9

≤ 2

3
exp(−1)

= β(M(1, 2))(M(1, 2))

So d(T1, T2) ≤ β(M(1, 2))(M(1, 2))

d(T1, T3) = d(1, 1)

= 0

≤ β(M(1, 3))(M(1, 3))

So d(T1, T3) ≤ β(M(1, 3))(M(1, 3))

d(T2, T3) = d(3, 1)

=
1

9

≤ 2

3
exp(−6

9
)(

6

9
)

= β(M(2, 3))(M(2, 3))

So d(T2, T3) ≤ β(M(2, 3))(M(2, 3))

Therefore,the conditions of Theorem 1.3 are satisfied.

Theorem 1.4. [13].
Let (X, d) be a complete b-metric space with coefficient s > 1 . Let T, S :

X → X be self-mappings which satisfy :

sd(Tx, Sy) ≤ β(M(x, y).M(x, y)), x, y ∈ X

where :
M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy)},

and β ∈ Fs. If T or S are continuous, then T and S have a unique common
fixed point.
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Proof.
See the Proof of Theorem 4 in ([13]).

In Theorem 1.4, if T = S, an interesting result is obtained that we present
below in corollary 1.3.1 [12].

Corollary 1.3.1.
Let (X, d) be a complete b-metric space with coefficient s > 1. Let T : X → X

be self-mapping which satisfy :

sd(Tx, Ty) ≤ β(M(x, y)).M(x, y), x, y ∈ X

where
M(x, y) = max{d(x, y), d(x, Tx), d(y, Ty)},

and T is continuous. Then T has a unique fixed point in X.

Example 1.3.2.
Let X = [0, 1] and d : X ×X → [0,∞) be defined as follows

d(x, y) =| x− y |2 for all x, y ∈ [0, 1].

It is easy to check that (X, d) is a b-metric space with parameter s = 2. Set

Tx =
x

4
, for all x ∈ X

and
β(t) =

1

4
for all t > 0

then,

2d(Tx, Ty) = 2
∣∣∣x
4
− y

4

∣∣∣2
≤ 1

4
|x− y|2

≤ β(M(x, y)).M(x, y)

Then, the conditions of Corollary 1.3.1 are satisfied.

Theorem 1.5.
Let (X, d) be a complete b-metric space with s > 1 and T : X → X be
a generalized α − φ Geraghty contraction type mapping with the following
properties
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(i) T is triangular α-orbital admissible,

(ii) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1,

(iii) either T is continuous or X is α− regular.

Then T has a fixed point in X.

Proof.
See Proof of Theorem 2.3 in [1]

If we put α(x, y) = 1 for all x, y ∈ X ,L = 0 and φ(t) = t in the previous
Theorem we obtain the following corollary

Corollary 1.3.2. Let (X, ds) be a b-metric space with coefficient s ≥ 1 and
let T : X → X. a mapping on X, such that for all x, y ∈ X,

s3d(Tx, Ty) ≤ β(M(x, y))M(x, y),

where β ∈ F and

M(x, y) = max
{
d(x, y), d(x, Tx), d(y, Ty),

d(x, Ty) + d(y, Tx)

2s

}
Then T has a unique fixed point.

For the uniqueness of the fixed point of a generalized α − φ−Geraghty
contractive mapping, we will consider the following hypothesis

(H) for all x, y ∈ Fix(T ), either α(x, y) ≥ 1 or α(y, x) ≥ 1.

Here, Fix(T ) denotes the set of fixed points of T.

Theorem 1.6.
Adding condition (H) to the hypotheses of Theorem 1.5, we obtain the uni-
queness of the fixed point of T.

Example 1.3.3. [1] Let X be a set of Lebesgue measurable functions on [0, 1]

such that ∫ 1

0

| x(t) | dt < 1.

Define d : X ×X → [0,∞) by

d(x, y) =
(∫ 1

0

| x(t)− y(t) | d(t)
)2
.
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Then d is a b-metric on X with s = 2. T : X → X is an operator defined by

Tx(t) =
1

4
ln(1+ | x(t) |).

Consider the mapping α : X ×X → [0,∞), defined by

α(x, y) =

{
1 if x(t) ≥ y(t) for all t ∈ [0, 1],

0 otherwise.

Set the mapping β : [0,∞)→ [0, 1
2
) defined by

β(t) =
(ln(1 +

√
t))2

2t

And φ : [0,∞)→ [0,∞) defined by

φ(t) = t

Notice that φ ∈ Φ and β ∈ Fs. Moreover,

1. T is triangular α-orbital admissible. indeed, We have

(a) T is α− orbital admissible i.e.

α(x, Tx) ≥ 1 =⇒ α(Tx, T 2x) ≥ 1

In fact,

If α(x, Tx) ≥ 1, thenx(t) ≥ Tx(t) =⇒ Tx(t) ≥ T (Tx(t)).

=⇒ Tx(t) ≥ T 2x(t).

=⇒ α(Tx, T 2x) ≥ 1.

(b) T is triangular i.e.{
α(x, y) ≥ 1,

α(y, Ty) ≥ 1,
=⇒ α(x, Ty) ≥ 1.

indeed, If α(x, y) ≥ 1 and α(y, Ty) ≥ 1 then

x(t) ≥ y(t) and y(t) ≥ Ty(t),

it follows that

x(t) ≥ Ty(t)⇒ α(x, Ty) ≥ 1.
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Hence T is triangular α-orbital admissible.

2. There exists x0 ∈ X such that α(x0, Tx0) ≥ 1 :

x0 = 1 =⇒ Tx0 = T1 =
1

4
ln 2 ≈ 0.173.

=⇒ 1 ≥ T1

=⇒ α(1, T1) ≥ 1

3. Now we prove that T a generalized α−φ Geraphty contraction mapping.
We have for all t ∈ [0.1], x(t) ≥ y(t)√

α(x(t), y(t))φ(s3d(Tx(t), T y(t)))

=
√
s3d(Tx(t), T y(t))

=

√
23

∫ 1

0

| Tx(t)− Ty(t) |2 dt)

= 2
√

2

∫ 1

0

| 1

4
ln(1+ | x(t) |)− 1

4
ln(1+ | y(t) |) | dt

=
2
√

2

4

∫ 1

0

| ln(
1+ | x(t)

1+ | y(t)
| dt

=
1√
2

∫ 1

0

| ln(1 +
| x(t)− | y(t) |

1+ | y(t)
) | dt

≤ 1√
2

∫ 1

0

| ln(1+ | x(t)− | y(t) |) | dt

By lemma 1.4.5 that we present below we get :∫ 1

0

| ln(1+ | x(t)− | y(t) |) | dt

≤ ln(

∫ 1

0

(1+ | x(t)− y(t) | dt)

≤ ln(

∫ 1

0

1dt+

∫ 1

0

| x(t)− y(t) | dt)

≤ ln(1 +

∫ 1

0

| x(t)− y(t) | dt)

≤ ln(1 +
√
d(x(t), y(t))
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Therefore, √
α(x(t), y(t))φ(s3d(Tx(t), T y(t)))

≤ ln
(

1 +

∫ 1

0

| x(t)− y(t) | dt
)

≤ 1√
2

ln(1 +
√
d(x(t), y(t))

So we obtain,

α(x(t), y(t))φ(s3d(Tx(t), T y(t)))

≤ 1

2

(
ln(1 +

√
d(x(t), y(t))

)2
≤ 1

2

(
ln(1 +

√
M(x(t), y(t)))

)2
=

(
ln(1 +

√
M(x(t), y(t)))

)2
2M(x(t), y(t))

×M(x(t), y(t))

Since α(x(t), y(t))φ(s3d(Tx(t), T y(t))) = β(φ(M(x(t), y(t)))φ(M(x(t), y(t))).
Then T is a generalized α− φ Geraphty contraction type mapping.

4. EitherT is continuous : by definition

Then by Theorem 1.6, we see that T has a fixed point.

1.4 Fractional Calculus

In this section,we recall some definitions,notations and lemmas of the
fractional calculus. By J we denote the closed unit interval,ie [0, 1].And by
C(J,R) we denote the Banach space of all continuous function from J into
R with the norm :

‖ y ‖∞= sup{| y(t) |; t ∈ J},

Where | . | denotes a suitable complete norm on R.

Definition 1.4.1. ([21] ;[24])( fractional integral) The fractional order inte-
gral of the function h ∈ L1([a, b]) of order α ∈ IR+ is defined by

Iαa h(t) =
1

Γ(α)

∫ t

a

(t− s)α−1h(s)ds
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where Γ is the gamma function. When a = 0, we write Iαh(t) = [h ∗ ϕα](t),

where
ϕα(t) =

tα−1

Γ(α)
for t > 0,

ϕα(t) = 0 for t ≤ 0, and ϕα → δ(t) as α→ 0.
Here δ is the delta function.

Definition 1.4.2. ([21] ;[24])(Caputo Fractional Derivative) For a function
h given on the interval [a, b], the Caputo fractional-order derivative of h, of
order α > 0 is defined by

cDα
a+h(t) =

1

Γ(n− α)

∫ t

a

h(n)(s)ds

(t− s)1−n+α
, n− 1α ≤ n,

Here n = [α] + 1 and [α] denotes the integer part of α..

For example for 0 < α ≤ 1 and h : [a, b] → E an absolutely continuous
function, then the fractional derivative of order α of h exists.

From the definition of Caputo derivative, we can obtain the following
auxiliary results ([21],[24]).

Lemme 1.4.1. ([21] ;[24])
Let α > 0, then the differential equation

cDαh(t) = 0

has solutions
h(t) = c0 + c1t+ c2t

2 + · · ·+ cn−1t
n−1,

ci ∈ E, i = 0, 1, . . . , n− 1, n = [α] + 1.

Lemme 1.4.2. ([21] ;[24])
Let α > 0, then

IαcDrh(t) = h(t) + c0 + c1t+ c2t
2 + · · ·+ cn−1t

n−1

for some ci ∈ R, i = 0, 1, ..., n− 1, n = [α] + 1.

Definition 1.4.3. ([21] ;[24])( Caputo derivative) the Caputo derivative of
order α for a Cn function h : [0,∞)→ R is defined by :

cDαh(t) = In−αh(n)(t) =
1

Γ(n− α)

∫ 1

0

(t− s)n−α−1h(n)(s)ds

Where n = [α] + 1
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Definition 1.4.4. ([21] ;[24])( Riemann-Lioville derivative) the Riemann-
Lioville derivative of order α for a continuous function h : [0,∞) → R is
defined by :

Dαh(t) =
1

Γ(n− α)

( d
dt

)n ∫ 1

0

h(t)

(t− s)n−α−1
ds, n− 1 < α < n, n ∈ N

The following lemmas give some properties of fractional integral :

Lemme 1.4.3.
Let α, β > 0 for h(t) = tβ, we the following relation hold :

cDαtβ =
Γ(β + 1)

Γ(β + 1− α)
tβ−α, β ≥ n

Lemme 1.4.4.
For a function h ∈ cn([0, 1]) and α > 0 then the following relation hold :

Iα(cDαh(t)) = h(t) + c0 + c1t+ ...cn−1t
n−1, ci ∈ R.
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A Appendix

Lemme 1.4.5.
Let (X,µ) be a measure space such that µ(X) = 1.Let f ∈ L1(X,µ) with
f(x) > 0 for all x ∈ X. Then ln(f) ∈ L1(X,µ) and∫

ln(f)dµ ≤ ln(

∫
fdµ)

Proof.
Put g(t) = t− 1− ln(t) and h(t) = 1− 1

t
− ln(t) for all t > 0.

Then g′(t) = 1− 1
t
and h′(t) = 1

t2
− 1

t

We have g(t) ≥ g(1) = 0 and h(t) ≤ h(1) = 0 for all t > 0.
We deduce t− 1 ≥ ln(t) ≥ 1− 1

t
for all t > 0.

Since f is measurable and ln is continous,ln(f) is measurable.Now for all
x ∈ X,
Let t = f(x)

‖f‖1 . So,we have

1− ‖ f ‖1
f(x)

≤ ln(f(x))− ln(‖ f ‖1) ≤
f(x)

‖ f ‖1
− 1.

Since the right-hand and the left-hand expression in the above estimations
are both integrable,we have that :∫

(ln(f(x))− ln(‖ f ‖1))dµ ≤
∫

(
f(x)

‖ f ‖1
− 1)dµ = 0

There for : ∫
ln(f)dµ ≤ ln(

∫
fdµ)



Chapter 2

Existence and Results

2.1 Application to nonlinear integral equations

In this chapter, H, Afshari and all in [1] , studied the existence of solu-
tions for nonlinear integral equations, as an application to the fixed point
theorems proved in the previous section.

First, the authors considered the following integral equation

x(t) = h(t) +

∫ 1

0

κ(t, u)f(u, x(u))du for all t ∈ [0, 1]. (2.1)

And they established the result of existence and uniqueness presented below.

Let X = C([0, 1]) be the set of real continuous functions defined on [0, 1],
with the standard metric given by

ρ(x, y) = sup
t∈[0,1]

| x(t)− y(t) | for all x, y ∈ C([0, 1]).

Now, for p ≥ 1 let d : X ×X → [0,∞) defined by

d(x, y) = (ρ(x, y))p

=
(

sup
t∈[0,1]

| x(t)− y(t) |
)p

= sup
t∈[0,1]

| x(t)− y(t) |p, for x, y ∈ C([0, 1])

34
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It easy to prove that (X, d) is a complete b-metric space with s = 2p−1 . Let
Ω denote the class of non-decreasing functions ω : [0,∞)→ [0,∞) satisfying
this inequality

(ω(t))p ≤ tpω(tp) for all p ≥ 1 and t ≥ 0.

Let analyze the equation(2.1) under the following assumptions :

(A1) h : I → R is a continuous function.

(A2) f : I × R → R is a continuous function,f(t, x) ≥ 0 and there exists
ω ∈ Ω such for x, y ∈ R,

| f(t, x)− f(t, y) |≤ ω(| x− y |),

with ω(tn)→ 1
2p−1 as n→∞ implying lim

n→∞
tn = 0.

(A3) κ : [0, 1] × [0, 1] → R is a continuous in t ∈ [0, 1] for every u ∈ [0, 1]

and is measurable in u ∈ [0, 1] for all t ∈ [0, 1] such that κ ≥ 0 and∫ 1

0

κ(t, u)du ≤ 1

23− 3
p

.

Theorem 2.1.
Under assumptions (A1) − (A3) the nonlinear integral equation (2.1) has a
unique solution in C([0, 1]).

Proof.
We shall reduce the existence of solutions of (2.1) to a fixed point problem.
To this end, we consider the operator T : X → X defined by

Tx(t) = h(t) +

∫ 1

0

κ(t, u)f(s, x(u))du for all t ∈ [0, 1]

Clearly, the fixed point of the operator T are solutions of the problem (2.1).
By virtue of our assumptions, T is well defined (this means that if x ∈ X,
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then Tx ∈ X.) Also, for x, y ∈ X, we have

| T (x)(t)− T (y)(t) |

=| h(t) +

∫ 1

0

κ(t, u)f(s, x(u))du− h(t)−
∫ 1

0

κ(t, u)f(s, y(u))du |

≤
∫ 1

0

κ(t, u) | f(s, x(u))− f(s, y(u)) | du

≤
∫ 1

0

κ(t, u)ω(| x(u)− y(u) |)du.

Since the function ω is non-decreasing, we get

ω(| x(u)− y(u) |) ≤ ω( sup
t∈[0,1]

| x(u)− y(u) |) = ω(ρ(x, y)).

Therefore
| T (x)(t)− T (y)(t) |≤ 1

23− 3
p

ω(ρ(x, y)).

Now, we have

d(Tx, Ty) = sup
t∈[0,1]

| T (x)(t)− T (y)(t) |p

≤
[ 1

23− 3
p

ω(ρ(x, y))
]p

≤ 1

23p−3 [ω(ρ(x, y))]p

≤ 1

23p−3 (ρ(x, y))pω(ρ(x, y)p)

≤ 1

23p−3d(x, y)ω(d(x, y))

≤ 1

23p−3M(x, y)ω(M(x, y))

That is
s3d(Tx, Ty) ≤ β(M(x, y))M(x, y),

Where s = 2p−1 and β(t) = ω(t). Notice that if ω ∈ Fs, then β ∈ Fs. By
Corollary 1.3.2, equation (2.1) has unique solution in C([0, 1]).
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An other results of the existence of solutions for nonlinear integral equa-
tions in [2]. Let X = C([0, 1],R) be the set of real continuous functions
defined on [0, 1], and let d : X ×X → [0,∞) defined by

d(x, y) = ‖ (x− y)2 ‖∞
= sup

t∈[0,1]
(x(t)− y(t))2, for x, y ∈ C([0, 1])

we consider the following integral equation

x(t) = P (t) +

∫ 1

0

S(t, u)f(u, x(u))du for all t ∈ [0, 1]. (2.2)

where f : [0, 1] × R → R and P : [0, 1] → R are two continuous function
andS : [0, 1]× [0, 1] → [0,∞) is a function such that S(t, .) ∈ L1[0, 1] for all
t ∈ [0, 1].
Consider the operator T : X → X defined by

T (x)(t) = P (t) +

∫ 1

0

S(t, u)f(u, x(u))du for all t ∈ [0, 1]. (2.3)

Theorem 2.2.
Let X = C([0, 1],R).Suppose there exist η : X ×X → [0,∞),α : X ×X →
[0,∞), and β : [0,∞)→ [0, 1

4
)such that the following conditions are satisfied

(H1) for all u ∈ [0, 1] and for all x, y ∈ X ;

0 ≤| f(u, x(u))− f(u, y(u)) |≤ η(x, y) | x(u)− y(u) |,

and

‖
∫ 1

0

S(t, u)η(x, y) ‖2∞≤
β
(
‖ (x− y)2 ‖∞

)
α(x, y)

;

(H2) there exists x0 ∈ X such that α(x0, Tx0) ≥ 1 ;

(H3) α(x, Tx) ≥ 1⇒ α(Tx, T 2x) ≥ 1

(H4) if (xn) is a sequence in X such that α(xn, xn+1) ≥ 1for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence (xn(k)) of (xn) such
that α(xn(k), x) ≥ 1 for all k.

Then,the integral equation (2.2) has a solution in X.
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Proof.
Cleary,any fixed point of (2.3)is a solution of (2.2).
By condition (H1), we obtain

α(x, y) | T (x)(t)− T (y)(t) |2

= α(x, y)[|
∫ 1

0

S(t, u)[f(u, x(u))− f(u, y(u))du] |]2

≤ α(x, y)[

∫ 1

0

S(t, u) | f(u, x(u))− f(u, y(u)) | du]2

≤ α(x, y)[

∫ 1

0

S(t, u)η(x, y)
√
| x(u)− y(u) |2du]2

≤ α(x, y)[

∫ 1

0

S(t, u)η(x, y)
√
‖ (x− y)2 ‖∞

2
du]2

= α(x, y) ‖ (x− y)2 ‖∞ [

∫ 1

0

S(t, u)η(x, y)du]2.

Then, we have

α(x, y) ‖ T (x)(t)− T (y)(t) ‖2

≤ α(x, y) ‖ (x− y)2 ‖∞‖
∫ 1

0

S(t, u)η(x, y)du ‖2∞ .

≤ β(‖ (x− y)2 ‖∞) ‖ (x− y)2 ‖∞

Thus,for all x, y ∈ X,we obtain

α(x, y)d(T (x), T (y)) ≤ β(d(x, y))d(x, y)

This implies that corollary 1.5 holds with φ(t) = t and L = 0.
Hence,the operator T has a fixed point,that is,the integral equation (2.2) has
a solution in X.

The following example illustrates Theorem 2.2.

Example 2.1.1.
Take X = C([0, 1],R).Consider the following functional integral equation we
consider the following integral equation

x(t) =
t2

1 + t2
+

1

27

∫ 1

0

u cos t

54(1 + t)

| x(u) |
1+ | x(u) |

du, for all t ∈ [0, 1]. (2.4)
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Observe that the equation (2.4)is a special case of (2.2)with

P (t) =
t2

1 + t2

S(t, u) =
u

3(1 + t)

f(t, x) =
cos t | x |

18(1+ | x |)
Consider the operator T : X → X defined by

T (x)(t) =
t2

1 + t2
+

1

27

∫ 1

0

u cos t

54(1 + t)

| x(u) |
1+ | x(u) |

du, for all t ∈ [0, 1]. (2.5)

Define the mapping α : X ×X → [0,∞) as

α(x, y) =

{
1 ifx(t) ≥ y(t)

0 otherwise.

Take β : [0,∞)→ [0, 1
4
) as

β =
t2 + 1

4t2 + 8
Let η(x, y) = 1.For arbitrary fixed x, y ∈ R such that x ≥ y.
we obtain

| f(t, x)− f(t, y) | = | cos t | x |
18(1+ | x |)

− cos t | y |
18(1+ | y |)

|

≤ 1

18
| x− y |

≤ η(x, y) | x− y |

and

‖
∫ 1

0

S(t, u)η(x, y)du ‖2∞ =
1

36

≤ (‖ (x− y)2 ‖∞)2 + 1

4(‖ (x− y)2 ‖∞)2 + 8
= β(‖ (x− y)2 ‖∞).

Again,by definition of α(x, y),it follows that

(H2) α(1, T1) ≥ 1 ;

(H3) α(x, Tx) ≥ 1 implies that α(Tx, T 2x) ≥ 1

(H4) if (xn) is a sequence in X such that α(xn, xn+1) ≥ 1for all n and xn →
x ∈ X as n → ∞, then there exists a subsequence (xn(k)) of (xn) such
that α(xn(k), x) ≥ 1 for all k.

Hence,by using Theorem 2.2. the integral equation (2.4) has a solution in X.
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2.2 Application to fractional differential equa-
tion

In this section, we consider the problem{
cDµx(t)− cDνx(t) = h(t, x(t)), t ∈ J, 0 < ν < µ < 1

x(0) = x0,
(2.6)

Where cDµ, cDν are the Caputo derivatives of order µ, ν, respectively and
h : J × R→ R is continuous mapping.

First of all, we define what we mean by a solution of (2.6)

Definition 2.2.1. A function x ∈ C(J,R) is said to be a solution of (2.6) if
x satisfies the equation

cDµx(t)− cDνx(t) = h(t, x(t)), t ∈ J, 0 < ν < µ < 1,

and the condition x(0) = x0.

Lemme 2.2.1. ([32]) Let h : R+ × R → R be a continuous function. If
x(.) ∈ C(J) is a solution of the following integral equation

x(t) = x0 +
1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1(x(s)− x0)ds

+
1

Γ(µ)

∫ 1

0

(t− s)µ−1h(t, x(s))ds,

then x(t) is a solution of the fractional equation (2.6).

Proof. Let x(t) is a solution of the fractional equation (2.6). Applying the
integral operator Iµ on the first equation of (2.6), we get

Iµ(cDµx(t)) = Iµ(cDνx(t)) + Iµh(t, x(t)). (2.7)

As we know that the Caputo fractioanl derivative can be defined via the
Riemann Liouville derivative, for 0 < β ≤ 1, by

cDνx(t) = Dν(x(s)− x0)(t).
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Then, by using Lemma 1.4.2, we obtain

x(t) = c0 + IµDν(x(s)− x0)(t) + Iµh(t, x(t)).

Using the boundary condition, we have c0 = x0, thus

x(t) = x0 +
1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1(x(s)− x0)ds

+
1

Γ(µ)

∫ 1

0

(t− s)µ−1h(t− x(s))ds,

We recall the existence theorem 1.5 seen in Chapter 1.

Theorem 2.3. Let (X, d) be a complete b-metric space and f : X → X be a
generalized α-φ- Geraghty contraction such that :

(i) f is α-admissible,

(ii) There exists u0 ∈ X with α(u0, fu0) ≥ 1,

(iii) If un ⊆ X, and α(un, un+1) ≥ 1, then α(un, u) ≥ 1, for all n.

Then f has a fixed point.

Let denote by J = [0, 1] the closed unit interval and by X = C(J,R) the
set of all continuous functions. d : X ×X → [0,∞) a mapping given by

d(x, y) =‖ (x− y)2 ‖∞= sup
t∈[0,1]

(x(t)− y(t))2.

It can be checked that the pair (X, d) is b-metric space with s = 2.

We shall reduce the existence of solutions of the boundary value problem
(2.6) to fixed point problem. To this end we consider the operator

T : C[I,R]→ C[I,R]

defined by

Tx(t) = x0 +
1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1(x(s)− x0)ds

+
1

Γ(µ)

∫ 1

0

(t− s)µ−1h(t− x(s))ds, (2.8)

Let us list some conditions on the functions involved in the problem (2.6).
Assume that
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(A1) There exists λ : [0,∞)→ [0, 1/s2) a nondecreasing function such that

|h(t, x(t))− h(t, y(t))| ≤ |x− y|
((µ− ν)Γ(µ− ν)

2
√

2

√
λ(‖x− y‖2∞)− 1

)
for any t ∈ J,

(A2) The exists φ : R2 → R, such that, for all t ∈ J, and x, y ∈ C(J),

φ(x(t), y(t)) ≥ 0 implies φ(Tx(t), T y(t)) ≥ 0,

(A3) there exists x0 ∈ C(J) such that φ(x0(t), Tx0(t)) ≥ 0 for all t ∈ J,

where the operator T is defined by (2.8).

(A4) If (xn) ⊂ C(J), such that (xn)→ x in C(J), and φ(xn, xn+1) ≥ 0, then
φ(xn, x) ≥ 0, for all n.

Theorem 2.4. Assume that assumptions (A1) − (A4) hold. Then, the pro-
blem (2.6) has at least one solution.

Proof. By lemma (2.2.1), x ∈ C(J) is a solution of (2.6) if it is solution of
the following integral equation

x(t) = x0 +
1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1(x(s)− x0)ds

+
1

Γ(µ)

∫ 1

0

(t− s)µ−1h(t− x(s))ds,

Then,the problem (2.6) is equivalent to finding a fixed point of the operator
T.

Let x, y ∈ C(J), be with φ(x(t), y(t)) ≥ 0 for all t ∈ J

Step 1 T is a generalized α-ψ- Geraghty contraction type mapping.
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By condition, we get

|Tx(t)− Ty(t)|2 =
∣∣∣x0 +

1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1(x(s)− x0)ds

+
1

Γ(µ)

∫ 1

0

(t− s)µ−1h(t, x(s))ds

− x0 −
1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1(y(s)− y0)ds

− 1

Γ(µ)

∫ 1

0

(t− s)µ−1h(t, y(s))ds
∣∣∣2

=
∣∣∣ 1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1(x(s)− y(s))ds

+
1

Γ(µ)

∫ 1

0

(t− s)µ−1
(
h(t, x(s))− h(t, y(s))

)
ds
∣∣∣2

So,

|Tx(t)− Ty(t)|2 ≤
∣∣∣ 1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1|x(s)− y(s)|ds

+
1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1|h(t, x(s))− h(t, y(s))|ds
∣∣∣2

From the properties of the integral, and using (A1) we have

|Tx(t)− Ty(t)|2

≤ | 1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1
(
|(x(s)− y(s))|

+ |x(t)− y(t)|
((µ− ν)Γ(µ− ν)

2
√

2

√
λ(‖x− y‖2∞)− 1

))
ds|2

≤
∣∣∣ 1

Γ(µ− ν)

∫ 1

0

(t− s)µ−ν−1|x(t)− y(t)|(µ− ν)Γ(µ− ν)

2
√

2

√
λ‖x− y‖2∞ds

∣∣∣2
≤
( 1

Γ(µ− ν)

)2
|x(t)− y(t)|2

(µ− ν)2
(

Γ(µ− ν)
)2

8
λ‖x− y‖2∞(∫ 1

0

(t− s)µ−ν−1ds
)2
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Then,we obtain

|Tx(t)− Ty(t)|2

≤ (µ− ν)2

8
|x(t)− y(t)|2

([−sµ−ν
µ− ν

]1
0

)2
λ(‖x− y‖2∞)

≤ (µ− ν)2

8
| x(t)− y(t) |2 1

(µ− ν)2
λ(‖x− y ‖2∞)

≤ 1

8
‖x(t)− y(t)‖2.λ(‖x− y‖2∞)

≤ 1

s3
d(x, y)λ(d(x, y))

Therefore for x, y ∈ C(J), t ∈ J with φ(x(t), y(t)) ≥ 0, we have

‖(Tx− Ty)2‖∞ ≤
1

8
‖x(t)− y(t)‖2∞λ(‖x− y‖2∞).

Define α : C(J)× C(J)→ [0,+∞) by

α(x, y) =

{
1, φ(x(t), y(t)) ≥ 0, for all t ∈ J,
0, otherwise.

And ψ(t) = t for all t ∈ J. So,

α(x, y)8d(Tx, Ty) ≤ 8d(Tx, Ty) ≤ λ(d(x, y))d(x, y).

Thus, by Definition 1.2.12, T is α−ψ−Geraphty contraction type map-
ping.

Step 2 T is α-admissible.
From (A2) and by the definition of α,

α(x, y) ≥ 1 =⇒ φ(x(t), y(t)) ≥ 0

=⇒ φ(Tx(t), T y(t)) ≥ 0

=⇒ α(Tx(t), T y(t)) ≥ 1

Thus, T is α-admissible for all x, y ∈ C(J).

step 3 There exists x0 ∈ C(J) with α(x0, Tu0) ≥ 1,
From (A3), it follows that there exists x0 ∈ C(J) such that

α(x0, Tx0) ≥ 1.
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Step 4 If (xn ⊂ X, and α(xn, xn+1) ≥ 1, then α(xn, x) ≥ 1, for all n.
This last condition is fulfilled from the assumption (A4).

Hence, we deduce that the operator T has a fixed point which is solution of
the problem (2.6)

By taking λ(t) = t
4t+1

(it is clear thatλ ∈ F) in theorem ??, we obtain the
following result.

Corollary 2.2.1.
Suppose that

(i) There exists λ : [0,∞) → [0, 1/s2) a nondecreasing function such that
| h(t, x(t))− h(t, y(t)) |≤ µ−ν

2
√
2
| x− y | (Γ(µ− ν)

√
‖x−y‖2∞

4‖x−y‖2∞+1
− 1)

for any t ∈ J,and x, y ∈ R

(ii) There exists φ : R2 → R, such that, for all t ∈ J, and x, y ∈ C(J),

φ(x(t), y(t)) ≥ 0 implies φ(Tx(t), T y(t)) ≥ 0,

(iii) there exists x0 ∈ C(J) such that φ(x0(t), Tx0(t)) ≥ 0 for all t ∈ J, where
the operator T is defined by (2.8).

(iv) If (xn) ⊆ C(J), xn → x in C(J), and ω(xn, xn+1) ≥ 0, then ω(xn, x) ≥ 0,

for all n.

Then the problem (2.6) has at least one solution.



Conclusion

This thesis is devoted to the study of the existence and uniqueness of
solutions to the differential equations which are generated by the Caputo
fractional derivatives by using some of the generalized fixed point results for
Geraghty contractions in b-metric spaces

1. The idea of b-metric was initiated from the works Bakhtin [2]. Czerwik
[3] generalized the concept of a distance. He gave an axiom which was
the triangular inequality and defined a b-metric space with a view of
generalizing the Banach contraction mapping theorem.

2. The important difference between a metric and a b-metric is that the
b-metric need not be a continuous function in its two variables. This led
to many fixed point theorems on b-metric spaces being stated .So the
results obtained for such rich spaces become more viable in different
applications

3. This work allowed us to know the importance of the fractional calcu-
lus in mathematics. Since the differential equations of fractional order
(fractional differential equations) take the great interest of the resear-
chers due to wide application potential in various disciplines.
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