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NotationsNotations
N Set of natural numbers.

R+ Set of nonnegative real numbers.

Rn Real space of dimension n.

(Ω, Ft, P) Probability space.

L1(U, H) Space of all nuclear operators from U to H.

N 2
W (0, T ; k) Set of all stochastic processes.

∥.∥ Standard of norm .

∥∥L2
Hilbert–Schmidt norm.

Lp Lebesgue spaces of integrable functions.

Us The set of admissible controls.

1 Indicator function.

H, U Separable Hilbert spaces.

W Wiener processes.

trQ Trace of Q.

Q
1
2 Square root of Q ∈ L(U).

A∗ Adjoint operator of A ∈ L(U, H).

Q Set of rational numbers.

P.a.s Almost surely.

≡ Equivalence.
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CONTENTS

i.i.d. Independent and identically distributed.

(ONB) Orthonormal basis.

(PDEs) Partial differential equations.

(HJBE) Hamilton-Jacobi-Bellman equation.

(BSDEs) Backward stochastic differential equations.

(FBSDEs) Forward-backward stochastic differential equations.
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IntroductionIntroduction
Backward stochastic differential equation (BSDE, in short) is a stochastic differ-

ential equation with a terminal condition in which the solution is required to be adapted

with respect to an underlying filtration. BSDEs naturally arise in various applications

such as stochastic control, mathematical finance, and nonlinear Feynman-Kac formula.

For the earliest version of the linear BSDE’s in finite dimensions has been introduced

in 1973 by Bismut [1], in 1983 Bensoussan [2] used the martingale representation theorem

to prove the wellposed-ness result of general linear BSDE’s. Pardoux and Peng [19] gen-

eralized the notion in 1990 and were the first to consider general BSDE’s and to solve the

question of existence and uniqueness.

The first extension to the infinite dimensional case is due to Hu and Peng [10], who

used the concept of mild solution to BSDE, give an existence and uniqueness result for the

equation with an operator A, infinitesimal generator of a strongly continuous semigroup

and the coefficient f Lipschitz in y and z. Further results can be found in Tessitore [32],

Confortola [3], Pardou and Rascanu [28], the authors Fuhrman and Hu [6] proved the

existence and uniqueness of the solution to BSDE assuming that the driver is uniformly

Lipschitz with respect to (y, z). BSDEs have important applications in stochastic control,

financial markets (see El Karoui, Peng and Quenez [27]) and partial differential equations

PDEs. The equation for the adjoint process in infinite dimensional optimal stochastic

control is a linear version. S. Peng [29] studied the existence and uniqueness of the following

kind of BSDE. There are many people who studied the finite dimensions BSDEs. After that

many authors deals with the infinite dimensional case. Here, we are interested in optimal

control of SDEs in infinite dimensions which produces a BSDE in infinite dimension.
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0. PRELIMINARIES

Our thesis is divided into three chapters:

In chapter 1, After an introductory part including the bibliographical context and

the motivation section, we state the definitions and probabilistic tools that we have used

throughout this thesis. We also give some background and some basic concepts. We have

given a definition of the Q-wiener process and some of its properties, and we have defined

the stochastic integral.

In chapter 2, We present two fundamental equations for the linear model. Equations

with linear noise in both the additive and multiplicative directions We first define strong,

weak, and mild solutions and establish their basic properties. Then we prove the existence

of weak solutions, and we prove the existence and uniqueness of mild solutions. At the

end, we derive the existence of strong solutions.

In chapter 3, We discuss our study on the infinite-dimensional backward stochastic

differential equation, and an important motivation for BDEs is a connection with stochastic

control and how to get it, with the use of stochastic Hamilton-Jacobi-Bellman (HJB)

equations. We focus here on the reformulation of the underlying dynamic programming

equation as a system of forward-backward stochastic differential equations that is solved

by least squares Monte Carlo. We give examples of BSDE in infinite dimensions. In the

end, we discuss the numerical simulation of the uncoupled FBSDE.
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Chapter 1
Generalities on stochastic integral

via Q-Wienner processes

In this chapter, we introduce some basic concepts, we gather some definitions and some

tools which will be necessary for the definition of stochastic integral with respect to Wi-

enner processes.

Let H and U be two separable Hilbert spaces.This chapter is devoted to the con-

struction of the stochastic Itô integral ∫ t

0
ΦsdWs,

where W is a Wiener process on a Hilbert space U and Φ is a process with values that are

linear but not necessarily bounded operators from U into a Hilbert space H.

We will begin by collecting basic facts on Hilbert space valued Wiener processes, including

cylindrical Wiener processes. Next, we define the stochastic integral in stages based on el-

ementary processes. We also establish basic properties of the stochastic integral, including

the Itô formula.

Definitions 1.1. (Bochner integrable)[4] Let (X, Σ, µ) be a measure space, and B a Ba-

nach space. The Bochner integral of a function f : X → B is defined in much the same

way as the Lebesgue integral. First, define a simple function to be any finite sum of the

11



1. GENERALITIES ON STOCHASTIC INTEGRAL VIA Q-WIENNER PROCESSES

form:

s(x) =
n∑

i=1
1Ei(x)bi,

where the Ei are disjoint sets of the σ-algebra Σ, bi are distinct elements of B and 1E

is characteristic function of E.

If µ (Ei) is finite whenever bi ̸= 0, then the simple function is integrable, and the integral

is then defined by: ∫
X

[
n∑

i=1
1Ei(x)bi

]
dµ =

n∑
i=1

µ(Ei)bi,

exactly as it is for the ordinary Lebesgue integral.

Definitions 1.2. (Trace class operator) Assume that H is a Hilbert space and that

A : H → H is a non-negative, self adjoint bounded linear operator on H. The sum of

the series is the trace of A, represented by Tr A.

Tr A =
∑

k

⟨Aek, ek⟩,

where (ek)k is an orthonormal basis (ONB) in H.

The operator A : H → H is said to be of trace class if Tr(|A|) < ∞, (|A| :=
√

A∗A).

Definitions 1.3. [24](Hilbert–Schmidt operators) Let (en)n∈N a Hilbert basis in U. We

call operator of Hilbert-Schmidt, a linear operator ϕ : U → H as the sum
∑
n∈N

∥ϕ(en)∥2

converge. This sum is then independent of the choice of the orthonormal basis, and we

note L2(U, H) the space of the Hilbert-Schmidt operators, equipped with the standard

norm

∥ϕ∥L2
=
√∑

n∈N

∥ϕ(en)∥2.

are independent of the choice of the basis. Moreover, the space L2(U, H) of all Hilbert–Schmidt

operators from U to U equipped with the inner product

〈
ϕ, ϕ′〉

L2
:=
∑
k∈N

〈
ϕek, ϕ′ek

〉
, for ϕ, ϕ′ ∈ L2(U, H),

is a separable Hilbert space. As it is shown in [[24], Rem. B.0.6] Hilbert–Schmidt operators

enjoy the following properties.
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1. GENERALITIES ON STOCHASTIC INTEGRAL VIA Q-WIENNER PROCESSES

Definitions 1.4. (Eigenvalues) We consider H and U be two Hilbert spaces over the field

K. We say that a number λ ∈ K is an eigenvalue of the operator T : H → U if there is a

vector

x ∈ H, x ̸= 0 : Tx = λx,

so the vector x is then called an eigenvector associated with the eigenvalue λ.

Definitions 1.5. (Gaussian Measure) According to the general definition a probability

measure µ on (H, B(H)) is called Gaussian if for arbitrary h ∈ H there exist m ∈ R, q ≥ 0

such that,

µ({x ∈ H; ⟨ h, x⟩ ∈ A}) = N (m, q)(A), ∀A ∈ B(R)

In particular, if µ is Gaussian, the following functional is

H → R, h →
∫

H
⟨ h, x⟩µ(dx)

H × H → R, (h1, h2) →
∫

H
⟨ h1, x⟩⟨ h2, x⟩µ(dx)

are well defined and continuous.

Definitions 1.6. (Covariance operator) For a probability measure P on a Hilbert space

H with inner product ⟨·, ·⟩, the covariance of P is the bilinear form Cov : H × H → R given

by:

Cov(x, y) =
∫

H
⟨ x, z⟩⟨ y, z⟩dP(z),

for all x and y.

The covariance operator C is then defined by: Cov(x, y) = ⟨ Cx, y⟩.

1.1 Hilbert-Space-Valued Process

In order to define the integrator part, we first introduce Wiener process and then define

Q-Wiener processes and we give an example about cylindrical Wiener processes, and

Hilbert space-valued Wiener process in a natural way. Let (Ω, F , F = (Ft)t≥0, P) be a

probability space, and k be a real separable Hilbert space with the scalar product denoted

13



1. GENERALITIES ON STOCHASTIC INTEGRAL VIA Q-WIENNER PROCESSES

by t⟨., .⟩K. We will always assume that (Ω, F , F = (Ft)t≥0, P) is complete.

We consider a separable Hilbert space U with the inner product ⟨., .⟩ and {Wt, t ≥ 0} is

a U-valued Wiener process. Then, for each u ∈ U, the process ⟨Wt, u⟩t≥0. is a real valued

Wiener process. This means that L (Wt) is a Gaussian measure with mean vector 0. We

also have that for arbitrary u, v ∈ U, t ≥ 0, s ≥ 0

E[⟨Wt, u⟩⟨Ws, u⟩] = (t ∧ s)E[⟨W1, u⟩2]

and

E[⟨Wt, u⟩⟨Ws, v⟩] = E[⟨W1, u⟩⟨W1, v⟩] = (t ∧ s)⟨Qu, v⟩,

where Q is the covariance operator of the Gaussian measure (W1), The operator Q is

of trace class and it completely characterizes the distribution of {Wt, t ≥ 0}.

Let Q be a trace class non-negative operator on a Hilbert space U.

1.1.1 Wiener processes

Definitions 1.7. A real valued stochastic process W = {Wt, t ≥ 0} is called a wiener

process if :

• C1: W has continuous trajectories and W0 = 0,

• C2: W has independent increments and

L (Wt − Ws) = L (Wt−s), t ≥ s ≥ 0,

• C3: L (Wt) = L (−Wt), t ≥ 0.

1.1.2 Q-Wiener processes

Definitions 1.8. A U-valued stochastic process W = {Wt, t ≥ 0} is called a Q-Wiener

process if:

• C1: W0 = 0,

• C2: W has continuous trajectories,

• C3: W has independent increments,

14



1. GENERALITIES ON STOCHASTIC INTEGRAL VIA Q-WIENNER PROCESSES

• C4: L (Wt − Ws) = N (0, (t − s)Q), t ≥ s ≥ 0.

Note that there exists a complete orthonormal system (ek) in U and a bounded sequence of

non-negative real number (λk) such that Qek = λkek ( according to the orthonormalization

Process of Gramme Schmidt).

Definitions 1.9. (Brownian motion) An U-valued process W = {Wt, t ∈ [0, T ]} is called

an U-valued Brownian motion if it enjoys the following properties:

• W0 = 0 almost surely,

• Wt −Ws is a normal random variable with mean 0 and variance t−s whenever s < t,

• Wt − Ws is independent of Fs, s < t,

• Wt has continuous paths.

Propositions 1.1. Assume that {Wt, t ≥ 0} is a Q-Wiener process. Then the following

statements hold:

• C1: W is a Gaussian process on U and

E(Wt) = 0, Cov(Wt) = tQ, t ≥ 0.

• C2: For arbitrary t ≥ 0, W has the expansion

Wt =
∞∑

i=1

√
λiβiei (1.1)

where

βi(t) = 1√
λi

⟨Wt, ei⟩, i ∈ N,

are real valued Brownian motions mutually independent on (Ω, F , F = (Ft)t≥0, P) and

the series in C2 are convergent in L2(Ω, F , F = (Ft)t≥0, P).

15



1. GENERALITIES ON STOCHASTIC INTEGRAL VIA Q-WIENNER PROCESSES

1.1.3 Generalized Wiener processes

Let {Wt, t ≥ 0} be a Wiener process on a Hilbert space U and let Q be its covariance

operator. For each a ∈ U, we define a real valued Wiener process {Wa(t), t ≥ 0} by the

formula:

Wa(t) = ⟨a, Wt⟩ , t ≥ 0.

The transformation a → Wa is linear from U to the space of stochastic processes.

Additionally, it is continuous in the sense that:

t ≥ 0, {an} ⊂ U, lim
n→∞

an = a ⇒ lim
n→∞

E |Wa(t) − Wan(t)|2 = 0. (1.2)

Any linear transformation a → Wa whose values are real valued Wiener processes on

[a, +∞) satisfying (1.2) is called a generalized Wiener processes.

Now we consider the following cylindrical Wiener processes.

1.1.4 Cylindrical Wiener processes

The generalized Wiener process is called a cylindrical Wiener process in U, If the co-

variance Q is the identity operator I.

Definitions 1.10. We call a family {W̃t,t ≥ 0} defined on a filtered probability space

(Ω, F , F = (Ft)t≥0, P) a cylindrical Wiener process in a Hilbert space K if:

• For an arbitrary t ≥ 0, the mapping W̃t : K −→ L2(Ω, (Ft)t≥0, P) is linear,

• For an arbitrary k ∈ K, {W̃t,t ≥ 0} is an F-Brownian motion,

• For an arbitrary k, k′ ∈ K and t ≥ 0, E(W̃t(k)W̃t(k′)) = t⟨k, k′⟩K.

For every t ≥ 0, W̃t/
√

t is a standard cylindrical Gaussian random variable, so that

for any k ∈ K, W̃t(k) can be represented as a P-a.s. convergent series

W̃t(k) =
∞∑

j=1
⟨k, k′⟩KW̃t(fj),

where {fj}∞
j=1 is an ONB in K.
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1. GENERALITIES ON STOCHASTIC INTEGRAL VIA Q-WIENNER PROCESSES

1.2 Stochastic Integral with Respect to a Wiener Process

We are given here a Q-Wiener process (Ω, F , P) having values in U. Wt is given by

(1.1). For the sake of simplicity of fact, we require that λk > 0 for all k ∈ N. Let a normal

filtration {Ft}t≥0 in F and we assume that

• (i) Wt is Ft- measurable,

• (ii) Wt+h − Wt is independent of Ft, h ≥ 0, t ≥ 0.

If a Q-Wiener process W satisfies (i) and (ii), we say that W is a Q-Wiener process

with respect to {Ft}t≥0. However, to shorten the formulation we usually avoid stressing

the dependence on the filtration.

Definitions 1.11. Let us fix T < ∞. An L = L(U, H)-valued process Φt, t ∈ [0, T ] taking

only a finite number of values is said to be elementary if there exists a sequence

0 = t0 < t1 < ... < tk = T and a sequence ϕ0, ϕ1....ϕk−1 of L-valued random variables

taking on only a finite number of values such that ϕm are Ftm-measurable and

ϕt = ϕm, for t ∈ (tm, tm+1], m = 0, 1.....k − 1.

1.2.1 Stochastic integral with respect to n elementary Processes

Definitions 1.12. (Elementary Processes) For elementary processes ϕ one defines the

stochastic integral by the formula:

∫ t

0
ΦsdWs =

k−1∑
m=1

ϕm
(
Wtm+1∧t − Wtm∧t

)
,

and denote it by ϕ.Wt, t ∈ [0, T ].

1. It is useful, at this moment, to introduce the subspace U0 = Q1/2(U) of U which,

endowed with the inner product,

⟨u, v⟩0 =
∞∑

k=1

1
λk

⟨u, ek⟩ ⟨v, ek⟩ =
〈
Q−1/2u, Q−1/2v

〉
, u, v ∈ U0,

is a Hilbert space.

17



1. GENERALITIES ON STOCHASTIC INTEGRAL VIA Q-WIENNER PROCESSES

2. In the construction of the stochastic integral for more general processes, an important

role will be played by the space of all Hilbert–Schmidt operators L0
2 = L2(U, H) from

U into H. The space L0
2 is also a separable Hilbert space, equipped with the norm

∥x∥2
L0

2
=

∞∑
h,k=1

| ⟨xgh, fk⟩ |2 =
∞∑

h,k=1
λh| ⟨xeh, fk⟩ |2 =

∥∥∥xQ1/2
∥∥∥2

L2(U,H)
= Tr

((
xQ1/2

) (
xQ1/2

)∗)
,

Where gj =
√

λjej , {ej} and {fj , j ∈ N} are complete orthonormal bases in U0, U

and H respectively.

Let ϕt, t ∈ [0, T ], be a measurable L0
2 valued process, we define the norms

∥ϕ∥t =
[
E
∫ t

0
∥ϕs∥2

L0
2

ds

]1/2
=
[
E
∫ t

0
Tr
((

ϕsQ1/2
) (

ϕsQ1/2
)∗)

ds

]1/2
, t ∈ [0, T ].

Propositions 1.2. If a process ϕ is elementary and ∥ϕ∥t < ∞ then the process ϕ· W is

a continuous, square integrable H-valued martingale on [0, T ] and

E|ϕ.Wt|2 = ∥ϕ∥2
t , 0 ≤ t ≤ T.

Propositions 1.3. The following statements hold:

1. If a mapping ϕ from ΩT , into L is L-predictable then ϕ is also L0
2 -predictable.In

particular, elementary processes are L0
2-predictable.

2. If ϕ is an L0
2-predictable process such that ∥ϕ∥T < ∞ then there exists a sequence

{ϕn} of elementary processes such that ∥ϕ − ϕn∥T → 0 as n → ∞.

As a final step we extend the definition of the stochastic integral to L0
2-predictable processes

satisfying,

P

(∫ T

0
∥Φs∥L0

2
ds < ∞

)
= 1.

All such processes are called stochastically integrable on [0, T ]. They form a linear space

denoted by NW (0, T, L0
2), more simply NW (0, T ) or even NW . The extension can be

accomplished by the so called localization procedure. To do so we need the following.

Lemma 1.4. [34] Assume that ϕ ∈ NW (0, T, L0
2) and that τ is an {Ft}-stopping time

such that P(τ ≤ T ) = 1 Then

∫ T

0
I[0,τ ](s)ϕsdWs = Φ.W (τ ∧ t), t ∈ (0, T ], P − a.s.
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1. GENERALITIES ON STOCHASTIC INTEGRAL VIA Q-WIENNER PROCESSES

1.2.2 Properties of the stochastic integral

Theorem 1.5. [34] Assume that ϕ ∈ N 2
W (0, T, L0

2), then the stochastic integral Φ· W is

a continuous square integrable martingale, and its quadratic variation is of the form:

≪ Φ.Wt ≫=
∫ t

0
Qϕ(s)ds,

where

Qϕ(s) =
(
ΦsQ1/2

) (
ΦsQ1/2

)∗
, s, t ∈ [0, T ].

Propositions 1.6. Assume that Φ1,Φ2 ∈ N 2
W (0, T, L0

2). then

E(ϕi.Wt) = 0, E(∥ϕi.Wt∥2) < ∞, t ∈ [0, T ], i = 1, 2.

Moreover, the correlation operators

V (t, s) = Cor(ϕ1.Wt, ϕ2.Ws), s, t ∈ [0, T ]

based on the formula

V (t, s) = E
∫ t∧s

0

(
Φ2(r)Q1/2

) (
Φ1(r)Q1/2

)∗
dr. (1.3)

Proof.

Note that Φ2(r)Q1/2 and
(
Φ1(r)Q1/2

)∗
, r ∈ [0, T ], are respectively L2(H, U) and L2(H, U)-

valued processes. Therefore the process

Φ2(r)Q1/2
(
ΦrQ1/2

)∗
, r ∈ [0, T ],

is an L1(H, H)-valued process and we have∥∥∥(Φ2(r)Q1/2
) (

Φ1(r)Q1/2
)∗∥∥∥

1
≤
∥∥∥(Φ2(r)Q1/2

)∥∥∥
L2(H,U)

∥∥∥(Φ1(r)Q1/2
)∥∥∥

L2(H,U)
, r ∈ [0, T ].

Consequently

E
∫ T

0

∥∥∥(Φ2(r)Q1/2
) (

Φ1(r)Q1/2
)∗∥∥∥

1
dr ≤ E

∫ T

0

∥∥∥(Φ2(r)Q1/2
)∥∥∥

L2(H,U)

∥∥∥(Φ1(r)Q1/2
)∥∥∥

L2(H,U)
dr

≤ E

[∫ T

0

∥∥∥(Φ1(r)Q1/2
)∥∥∥

L2(H,U)
dr

]
[∫ T

0

∥∥∥(Φ2(r)Q1/2
)∥∥∥

L2(H,U)

]
≤ ∥Φ1∥ . ∥Φ2∥T < ∞,
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1. GENERALITIES ON STOCHASTIC INTEGRAL VIA Q-WIENNER PROCESSES

and therefore the integral (1.3) exists as an L1(H, H)-valued Bochner integral, the operator

V (t, s) is defined by

E ⟨ϕ1.Wt, a⟩ ⟨ϕ2.Ws, b⟩ = ⟨V (t, s)a, b⟩ , a, b ∈ H.

One can easily see that if, in addition, Φ1 and Φ2 are simple processes then

E ⟨ϕ1.Wt, a⟩ ⟨ϕ2.Ws, b⟩ = E
∫ t∧s

0
⟨ϕ1(r).dWr, a⟩

∫ t∧s

0
⟨ϕ2(r).dWr, b⟩

=
〈
Q1/2ϕ∗

1(r)a, Q1/2ϕ∗
2(r)b

〉
dr.

1.2.3 The Itô Formula

Theorem 1.7. [34] Assume that Φ is an L0
2-valued process stochastically integrable in

[0, T ], φ a H-valued predictable process Bochner integrable on [0, T ], P-a.s, and X0 a F0-

measurable H-valued random variable. Then the following process

Xt = X0 +
∫ t

0
φsds +

∫ t

0
ΦsdWs, t ∈ [0, T ],

is well defined. Assume that a function F :[0, T ] × H → R1 and its partial derivatives Ft,

Fx, Fxx, are uniformly continuous on bounded subsets of [0, T ] × H. We have

F (t, Xt) =F (0, X0) +
∫ t

0
⟨Fx(s, Xs), ΦsdWs⟩H

+
∫ t

0
(Ft(s, Xs) + ⟨Fx(s, Xs, Ψ(s)⟩H

+ 1
2 Tr

[
Fxx(s, Xs)

(
Φ(s)Q1/2

) (
ΦsQ1/2

)∗]
])ds.
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Chapter 2
Analysis of linear SDEs driven by

Q-Wiener processes

We first introduce some preliminary notation and concepts necessary for the chapter.

Then we pass to linear equations with additive noise and multiplication noise. Then we

can provide weak solutions to these equations. In the end, we provide sufficient conditions

for the existence of strong solutions.

For studying stochastic differential equations, one has to differentiate between strong

and weak solution. A strong solution is usually defined as a measurable functional of

given Wiener process (on some path space) that satisfies equation in a classical or gen-

eralized sense [13]. Strong solution exists for many classes such as: Itô equations with

Lipschitz coefficients [30][16], stochastic evolution equations with monotone coefficients

[23][18], Kushner’s and Zakai’s of nonlinear equations.

In what follows, we group some tools that will be necessary:

We are given a probability space (Ω, F = (Ft)t≥0, P) together with a normal filtration

(Ft)t≥0. We consider two Hilbert spaces H and U, and a Q-Wiener process Wt on (Ω, F =

(Ft)t≥0, P), with the covariance operator Q ∈ L(U). If TrQ < +∞, then W is a genuine

Wiener process, whereas if Q = I, W is a cylindrical process and in this case it has

continuous paths in another Hilbert space U1 larger than U, see Chapter 1. We assume

that there exists a complete orthonormal system ek in U, a bounded sequence {λk} of
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2. ANALYSIS OF LINEAR SDES DRIVEN BY Q-WIENER PROCESSES

nonnegative real numbers such that {Qek = λkek, k ∈ N}, and a sequence {βk} of real

independent Brownian motions such that

⟨Wt, u⟩ =
∞∑

k=1

√
λk ⟨u, ek⟩ βk(t), u ∈ U, t ≥ 0.

Definitions 2.1. (semi group)

A semi-group with one parameter of linear operators on a Banach X space is a family of

bounded linear operators T : [0, +∞[→ B(X), verifying:

• Tt+s = TtTs, ∀t, s > 0,

• T0 = I.

We have the fundamental properties of a C0-semi-group. Whether (Tt)t≥0 a C-semi-group

on X of an infinitesimal generator A, then:

• The D(A) domain is dense in X, i.e D(A) = X.

• A is a closed linear operator, i.e. its graph is closed.

• For all t ≥ 0 and all x ∈ D(A), Ttx ∈ D(A), and dTtx

dt
= ATtx = TtAx.

• For all t ≥ 0 and all x ∈ X,
∫ t

0
Tsxds ∈ D(A) and we’ve Ttx = x + A

(∫ t

0
Tsxds

)
.

Definitions 2.2. (Cauchy problems)

Linear evolution equations, as parabolic, hyperbolic or delay equations, can often be

formulated as an evolution equation in a Banach space E:
u′

t = A0ut,

u0 = x ∈ E.

(2.1)

with A0 is a linear operator, in general unbounded, defined on a dense linear subspace

D(A0) of E. In (2.1), u′(t) stands for the strong derivative of ut

u′
t = lim

h→0

ut+h − ut

h
, (2.2)

The limit is taken from the topology of E.

Problem (2.1) is the initial value problem or the Cauchy problem relative to the operator

A0.
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2. ANALYSIS OF LINEAR SDES DRIVEN BY Q-WIENER PROCESSES

Definitions 2.3. We say that the Cauchy problem (2.1) is well posed if:

• for arbitrary x ∈ D(A0) there exists exactly one strongly differentiable function

u(t, x), t ∈ [0, +∞), satisfying (2.1) for all t ∈ [0, +∞).

• if xn ∈ D(A0) and lim
n→0

xn = 0, then for all t ∈ [0, +∞) we have

lim
n→0

u(t, xn) = 0. (2.3)

If the limit in (2.3) is uniform in t on compact subsets of [0, +∞) we say that the Cauchy

problem (2.1) is uniformly well posed.

We will now suppose that the Cauchy problem (2.3) is uniformly well posed and define

operators St : D(A0) → E by the formula:

Stx = u(t, x), ∀x ∈ D(A0), ∀t ≥ 0.

For all t ≥ 0 the linear operator St can be uniquely extended to a linear bounded operator

on the entire E, which we still denote by St. We have clearly

S0 = I, (2.4)

moreover, by the uniqueness

St+s = StSs, ∀t, s ≥ 0. (2.5)

Finally, by the uniform boundedness theorem [34], it follows that:

S(.)x is continuous in [0, +∞), ∀x ∈ E. (2.6)

In this way, we are led directly from the study of the uniformly well posed problem to the

family. St, t ≥ 0, of linear bounded operators in E satisfying (2.3), (2.4) and (2.5).

Any family S(.) of bounded linear operators on E satisfying (2.3), (2.4) and (2.5). is called

a C0-semigroup of linear operators. So the concept of C0-semigroup is in a sense equivalent

to that of uniformly well posed Cauchy problem.

The infinitesimal generator A of S(.) is a linear operator defined as follows
D(A) =

{
x ∈ H : lim

h→0+

Stx − x

h

}
exists,

Ax = lim
h→0+

Stx − x

h
, ∀x ∈ D(A).
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It is easy to see that A is an extension of A0, and moreover that the problem
u′

t = Aut, t ≥ 0.

u0 = x ∈ E.

(2.7)

is also uniformly well posed with the same associated semigroup S(.). This is why in our

following considerations we will consider the Cauchy problem (2.29) with the operator A

being the infinitesimal generator of a C0-semigroup.

2.1 Linear equations with additive noise

In this part, we want to deal with the problem linear equations with additive noise.

We are going to examine the general properties of the equation of this type in a general

framework. We’ll look into the next linear affine equation:
dXt = (AXt + ft)dt + BdWt,

X0 = ξ.

(2.8)

where A : D(A) ⊂ H −→ H and B : U −→ H are linear operators and f is an H-valued

stochastic process. We will assume that the deterministic Cauchy problem
u′

t = Aut,

u0 = x ∈ H.

(2.9)

is uniformly well posed.

Definitions 2.4. (Strong solutions) Given B = (Bt) a Ft-Brownian motion, Z a random

vector on (Ω, Ft) independent of B, b and σ are locally bounded measurable functions.

We call strong solution of homogeneous SDEs

Xt = Z +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs)dBs, (2.10)

or non-homogeneous SDEs

Xt = Z +
∫ t

0
b(s, Xs)ds +

∫ t

0
σ(s, Xs)dBs, (2.11)

the (X, B, (Ft)) verifying
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2. ANALYSIS OF LINEAR SDES DRIVEN BY Q-WIENER PROCESSES

• X is F Z,B
t -adapted; where F Z,B

t is Brownian filtration augmented from the sigma

algebra generated by Z.

• (X, B) verify (2.10) or (2.11).

Definitions 2.5. (weak solution) Given b and σ locally bounded measurable functions.

We call a weak solution SDE (2.10) or (2.11) a triplet (X̃, B̃, (Ht)) on a space (Ω̃, H, P)

where

• B̃ is an Ht-Brownian motion.

• X̃, B̃ verify (2.10) or (2.11).

2.1.1 Concept of solutions

An H-valued predictable process Xt, t ∈ [0, T ], is said to be a strong solution to (2.8) if

Xt takes values in D(A), ∫ T

0
|AXs|ds < +∞, P − a.s.

and for t ∈ [0, T ]

Xt = ξ +
∫ T

0
[AXs + fs]ds + BWt, P − a.s.

This definition is meaningful only if W is a U-valued process and therefore requires

that Tr[Q] < +∞. Note that a strong solution should necessarily have a continuous

modification. An H-valued predictable process Xt, t ∈ [0, T ], is said to be a weak solution

of (2.8) if the trajectories of X(.) are P − a.s. Bochner integrable and if for all z ∈ D(A∗)

and all t ∈ [0, T ] we have

⟨Xt, z⟩ = ⟨ξ, z⟩ +
∫ t

0
[⟨Xs, A∗z⟩ + ⟨fs, z⟩]ds + ⟨BWt, z⟩, P − a.s.

This definition is appropriate for a cylindrical Wiener process because the scalar

processes ⟨BWt, z⟩, t ∈ [0, T ], are well defined random processes. It is clear that a strong

solution is also a weak one.

Definitions 2.6. It is of great importance in our study of linear to establish first the

basic properties of the process

WA(t) =
∫ t

0
St−sBdWs, t ≥ 0.
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Theorem 2.1. [34]

1. If the operator A generates a C0-semigroup S(.) in H and B ∈ L(U; H). It is also

natural to require the following.

Assume that Hypothesis (1) and∫ T

0
∥SrB∥2

L0
2

dr =
∫ T

0
Tr[SrBQB∗S∗

r ]dr < +∞. (2.12)

Then

• the process WA(.) is Gaussian, continuous in mean square and has a predictable

version.

• we have

Cov(WA(t)) =
∫ t

0
SrBQB∗S∗

r dr, t ∈ [0, T ],

• the trajectories of WA(.) are P-a.s. square integrable and the law L (WA(.)) is a

symmetric Gaussian measure on H = L2(0, T ; H) with the covariance operators

φt =
∫ T

0
G(t, s)φsds, t ∈ [0, T ],

where

G(t, s) =
∫ t∧s

0
St−rBQB∗S∗

s−rdr, t, s ∈ [0, T ]

and t ∧ s = min {t, s}.

2.1.2 Existence and uniqueness of weak solutions

We have the theorem (2.4) which is the main result of this section. For this proof, we

need the following lemmas:

Propositions 2.2. Let A be the infinitesimal generator of a C0-semigroup S(.) in E and

f ∈ L1(0, T ; E). Then there exists a unique weak solution u of the equation following
u′(t) = Au(t) + f(t), t ∈ [0, T ].

u(0) = x ∈ E,

(2.13)

where A is the infinitesimal generator of a C0-semigroup S(.) in E and f in Lp(0, T ; E),

p ≥ 1.
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and it is given by the variation of constants formula

ut = Stx +
∫ t

0
St−sfsds, t ∈ [0, T ]. (2.14)

The function u(.) defined by (2.14) is called the mild solution of problem (2.13). Be-

fore proving a sufficient condition for the existence of strict solutions, it is convenient to

introduce the approximating problem
u′

n(t) = Anun(t) + ft, t ∈ [0, T ].

un(0) = x ∈ X,

(2.15)

where An are the Yosida approximations of A. Clearly problem (2.15) has a unique solution

un ∈ W 1,1(0, T ; E), given by the variation of constants formula

un(t) = Sn(t)x +
∫ t

0
Sn(t − s)fsds, t ∈ [0, T ], (2.16)

where Sn(t) = etAn , t > 0, and moreover

lim
n→0

un = u in C([0, T ]; E).

Lemma 2.3. Let X be a weak solution of problem (2.8) with ξ = 0, f ≡ 0. Then, for

arbitrary function ξ(.) ∈ C1([0, T ]; D(A∗)) and t ∈ [0, T ], we have

⟨Xt, ζt⟩ =
∫ t

0
[⟨Xs, ζ ′

s + A∗ζs⟩]ds +
∫ t

0
[⟨ζs, BdWs⟩].

Theorem 2.4.

1. If the operator A generates a C0-semigroup S(.) in H and B ∈ L(H; U) It is also

natural to require the following.

2. (a) f is a predictable process with Bochner integrable trajectories on an arbitrary

finite interval [0, T ].

(b) ξ is F0-measurable.

Assume (2.12) and Hypotheses (1), (2). So equation (2.8) has precisely a weak solution

that is given by the formula.

Xt = Stξ +
∫ t

0
St−sfsds +

∫ t

0
St−sBdWs, t ∈ [0, T ]. (2.17)

Formula (2.17) is a stochastic generalization of the classical variation of constants formula.
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Proof.

It easily follows from Proposition (2.2) that a process X is a weak solution to (2.8) if and

only if the process X̃ given by the formula:

X̃t = Xt −
(

Stξ +
∫ t

0
St−sfsds

)
, t ∈ [0, T ],

is a weak solution to

dX̃t = AX̃tdt + BdWt, X̃0 = 0.

So, we can assume, without any loss of generality, that ξ = 0 and f ≡ 0

To prove the existence, we show that equation (2.8) with ξ = 0 and f ≡ 0 is satisfied by

the process WA(.). We fix t ∈ [0, T ] and let ζ ∈ D(A∗). We have

∫ t

0
⟨A∗ζ, WA(s)⟩ds =

∫ t

0

〈
A∗ζ,

∫ t

0
1[0,s](r)S(s − r)BdWr

〉
ds

and consequently,∫ t

0
⟨A∗ζ, WA(s)⟩ds =

∫ t

0

〈∫ t

0
1[0,s](r)B∗S∗

s−rA∗ζds, dWr

〉
=

∫ t

0

〈∫ t

0
B∗S∗

s−rA∗ζds, dWr

〉
=

∫ t

0

〈∫ t

0

(
d

ds
B∗S∗

s−rζ

)
ds, dWr

〉
=

∫ t

0
⟨B∗S∗

s−rζ, dWr⟩ −
∫ t

0
⟨B∗ζ, dWr⟩

= ⟨ζ, WA(t)⟩ − ⟨ζ, RWt⟩.

As a result, WA(.) is a weak solution.

To prove uniqueness, we need the lemma (2.3).

Consider first the functions of the form ζ = ζ0φs, s ∈ [0, T ] where ϕ ∈ C1([0, T ]) and

ζ0 ∈ D(A∗). Let

Fζ0(t) =
∫ t

0
⟨Xs, A∗ζ0⟩ds + ⟨BWt, ζ0⟩.

Applying Itô’s formula to the process Fζ0(t)φs we get

d[Fζ0(s)φs] = φsdFζ0(s) + φ′
sFζ0(s)ds.

Specifically

Fζ0(t)φt =
∫ t

0
⟨ζs, BdWs⟩ +

∫ t

0
[φs⟨Xs, A∗ζ0⟩ + φ′

s⟨Xs, ζ0⟩]ds.
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Since Fζ0(.) = ⟨X(.), ζ0⟩, P-a.s, the lemma is proved for the special function ζt = ζ0φt

Since these functions are linearly dense in C1([0, T ]; D(A∗)) the lemma is true in general.

Let X be a weak solution and let ζ0 ∈ D(A∗). Applying Lemma (2.3) to the function

ζs = S∗
t−sζ0, s ∈ [0, T ], we have

⟨Xt, ζ0⟩ =
∫ t

0
⟨St−sBdWs, ζ0⟩

and, since D(A∗) is dense in H we have X = WA. □

To illustrate, let us give an example.

Exemple 2.1. (Heat equation). Let U = H = L2(ϕ), where ϕ is a bounded open set in

RN with a regular boundary ∂ϕ. Consider the problem
dtX(t, ξ) = ∆ξX(t, ξ)dt + dW (t, ξ), t ≥ 0, ξ ∈ ϕ,

X(t, ξ) = 0, t ≥ 0, ξ ∈ ∂ϕ

X(0, ξ) = 0, ξ ∈ ϕ,

and let A be the realization of the Laplace operator in L2(ϕ) with Dirichlet boundary

conditions. If TrQ < ∞, t ≥ 0 we have TrQt < ∞ and we have∫ t

0
∥SrB∥2

L0
2

dr =
∫ t

0
Tr[SrBQB∗S∗

r ]dr < ∞, (2.18)

is fulfilled

Assume now that Q = I and that, Aek = −µkek, where {µk > 0, k ∈ N}. In this case,

(2.18) is fulfilled if and only if
∞∑

k=1

1
µk

< ∞. As easily seen, this conditions holds only for

N = 1.

2.1.3 Existence of strong solutions

A strong solution is not easy and some additional conditions must be met. We are con-

cerned now with the existence of strong solutions to (2.8). Thus we are concerned with

the equation

Xt = x +
∫ t

0
(AXs + fs)ds + Wt, t ∈ [0, T ].

Since strong solutions are also weak solutions, we know that they should be in the form

Xt = Stx +
∫ t

0
St−sfsds +

∫ t

0
St−sdWs, t ∈ [0, T ].
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To prove the next theorem 2.8, we need the following lemmas.

Lemma 2.5. Let S(.) be a C0-semigroup in E and let A be its infinitesimal generator.

Then A is closed and the domain D(A) is dense in E. Moreover, if x ∈ D(A), then

S(.)x ∈ C1([0, +∞); E) ∩ C([0, +∞), D(A)),

and
d

dt
Stx = AStx = StAx, t ≥ 0.

Lemma 2.6. Let A be the infinitesimal generator of a C0-semigroup S(.) in E.

1. If x ∈ D(A) and f ∈ W 1,p(0, T ; E) with p ≥ 1, then problem (2.13) has a unique

solution u in C([0, T ]; E).

2. If x ∈ D(A) and f ∈ Lp(0, T ; D(A)), then problem (2.13) has a unique solution u in

Lp(0, T ; E).

Lemma 2.7. If ϕt(L0
2(H)) ⊂ D(A), P − a.s. for all t ∈ [0, T ] and

P

(∫ T

0
||ϕs||2L2

0D(A)ds < ∞
)

= 1,

P

(∫ T

0
||Aϕs||2L2

0D(A)ds < ∞
)

= 1,

then P

(∫ T

0
ϕsdWs ∈ D(A)

)
= 1 and

A

∫ T

0
ϕsdWs =

∫ T

0
AϕsdWs, P − a.s.

Theorem 2.8. Assume that

• Q
1
2 (H) ⊂ D(A) and AQ

1
2 is a Hilbert–Schmidt operator,

• x ∈ D(A), f ∈ C1([0, T ]; H) ∩ C([0, T ]; D(A)).

Then problem (2.8) has a strong solution.
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Proof :
The result is true if f = 0, W = 0, by lemma (2.5).Assume now that x = 0, W = 0.
For every t ∈ [0, T ] we have∫ t

0
|ASt−σfσ| dσ ≤

∫ t

0
∥St−σ∥ |Afσ| dσ < +∞.

and therefore, by lemma (2.6) Xt ∈
∫ t

0
St−σfσdσ ∈ D(A) and

AXt =
∫ t

0
ASt−σfσdσ, t ∈ [0, T ].

As well ∫ t

0
AXsds =

∫ t

0

(∫ t

0
ASt−σfσdσ

)
ds

=
∫ t

0

(∫ t−σ

0

d

ds
Ssfσds

)
dσ

=
∫ t

0
ASt−σfσdσ −

∫ t

0
fσdσ

= Xt −
∫ t

0
fσdσ, t ∈ [0, T ].

Assume finally that x = 0, f = 0. Note that∫ t

0

∥∥∥ASsQ
1
2
∥∥∥2

L2
ds =

∫ t

0

∥∥∥ASsQ
1
2
∥∥∥2

L2
ds ≤

∥∥∥AQ 1
2
∥∥∥2 ∫ t

0
∥Ss∥2

L2
ds < ∞.

Therefore, by lemma (2.7)

WA(t) =
∫ t

0
St−σdWσ ∈ D(A), P − a.s.

and for t ∈ [0, T ], P − a.s.

AWA(t) =
∫ t

0
ASt−σdWσ.

Since WA(.) is a weak solution of (2.8), for t ∈ [0, T ] and ζ ∈ D(A∗), P − a.s.

⟨WA(t), ζ⟩ =
∫ t

0
⟨WA(s), A∗ζ⟩ ds+ ⟨Wt, ζ⟩

=
∫ t

0
⟨AWA(s), ζ⟩ ds+ ⟨Wt, ζ⟩

=
〈
A
∫ t

0
WA(s)ds, ζ

〉
+ ⟨Wt, ζ⟩.

as a result
WA(t) =

∫ t

0
AWA(s)ds+Wt.
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2.2 Linear equations with multiplicative noise

We will consider the following linear affine equation:
dXt = (AXt + ft)dt+B(Xt)dWt,

X0 = ξ.
(2.19)

on a time interval [0, T ], where A : D(A) ⊂ H −→ H is the infinitesimal generator
of a strongly continuous semigroup S(.), ξ is an F0-measurable H-valued random
variable, f is a predictable process with local integrable trajectories and
B :D(B) ⊂ H −→ L0

2 = L2(H,U) is a linear operator.

Just like with additive noise, we define a strong solution of problem (2.19) as
an H-valued predictable process Xt, t ∈ [0, T ], which takes values in D(A) ∩ D(B),
P-a.s. such that 

P

(∫ T

0
[|Xs| + |AXs|] ds < +∞

)
= 1,

P

(∫ T

0
∥BXs∥2

L0
2
ds < +∞

)
= 1,

and, for arbitrary t ∈ [0, T ] and P-a.s.

Xt = ξ +
∫ t

0
(AXs + fs)ds+

∫ t

0
B(Xs)dWs. (2.20)

An H-valued predictable process (Xt, t ∈ [0, T ]), is said to be a weak solution to
(2.19) if X takes values in D(B), P-a.s.

P

(∫ T

0
|Xs| ds < +∞

)
= 1 (2.21)

P

(∫ T

0
∥BXs∥2

L0
2
ds < +∞

)
= 1 (2.22)

and for arbitrary t ∈ [0, T ] and ς ∈ D(A∗),

⟨Xt, ς⟩ = ⟨ξ, ς⟩ +
∫ t

0
(⟨Xs, A

∗ς⟩ + ⟨fs, ς⟩) ds+
∫ t

0
⟨ς, B(XsdWs⟩ , P − a.s.

We also need the concept of the so called mild solution of (2.19). An H-valued
predictable process Xt, t ∈ [0, T ], is said to be a mild solution to (2.19) if X takes

32



2. ANALYSIS OF LINEAR SDES DRIVEN BY Q-WIENER PROCESSES

values in D(B), P-a.s., (2.21) and (2.22) hold and for arbitrary t ∈ [0, T ],

Xt = Stξ +
∫ t

0
St−sfsds+

∫ t

0
St−sB(Xs)dWs.

It is clear that a strong solution is also a weak solution.

Theorem 2.9. Assume that A : D(A) ⊂ H −→ H is the infinitesimal generator of a

C0-semigroup S(.) in H and that ϕ ⊂ N 2
w .Then a strong solution is a weak solution

and a weak solution is always a mild solution of problem (2.19). Conversely, if X is

a mild solution of (2.19) and E
∫ t

0
∥BXs∥2

L0
2
ds < +∞, then X is also a weak solution

of (2.19).

In the case when B is bounded we discuss it here briefly by way of illustration.
We first consider mild solutions.

Theorem 2.10. Assume that A is the infinitesimal generator of a C0-semigroup

S(.) in H,E|ξ|2 < +∞ and B ∈ L(H;L0
2). Then equation (2.19) has a unique mild

solution X ∈ N 2
W (0, T ; H), identical with a weak solution.

Proof :
Denote by H the space of all H-valued predictable processes Y such that |Y |H =
sup

t∈[0,T ]
E|Yt|2 < +∞ and for any Y define

H(Y )t = Stξ +
∫ t

0
St−sfsds+

∫ t

0
St−sB(Ys)dWs, t ∈ [0, T ],

and
H1(Y )t =

∫ t

0
St−sB(Ys)dWs, t ∈ [0, T ].

We might suppose that, ∥St∥ ≤ M, t ≥ 0, and we have

|H1(Y )|H ≤ sup E
(∫ t

0
∥St−sB(Y )s∥2

L0
2
ds
) 1

2

≤ M ∥B∥L(H;L0
2)

√
T |Y |H , t ∈ [0, T ].

So, if T is sufficiently small, H is a contraction and it is easy to see that its unique
fixed point can be identified as the solution to (2.19). The case of general T can
be handled in a standard way. We are now providing an existence result for strong
solutions.
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Propositions 2.11. Assume that the hypotheses of Theorem 2.10 hold,

ξ = x ∈ D(A) and f ≡ 0. Let moreover 0 ∈ ρ(A) and assume that BA, given by

BA(x)u = AB(A−1x)u, x ∈ H, u ∈ U,

belongs to L(H;L0
2). Then the equation (2.19) has a unique strong solution.

Proof :
Let x ∈ D(A), and let X and Y be the mild solutions of (2.19) and

dYt = AYtdt+ AB(A−1)YtdWt,

Y0 = Ax,

which exist by Theorem (2.10). Consider the approximating problems
dXn(t) = AnXn(t)dt+B(Xn(t))dWt,

Xn(0) = x,

and 
dYn(t) = AnYn(t)dt+ AnB(A−1

n Yn(t))dWt,

Yn(0) = Ax,

where An are the Yosida approximations of A. We have clearly

Yn(t) = AnXn(t), t ≥ 0, n ∈ N

and so
Xn(t) = x+

∫ t

0
Yn(s)ds+

∫ t

0
B(Xs(t))dWs, t ≥ 0, n ∈ N. (2.23)

Additionally, it is simple to verify that Xn → X and Yn → Y , as n → ∞, in
N 2

W (0, T ; H). But the operator A is closed and this implies Xt ∈ D(A), a.s. and
Yt = AXt. Now, letting n tend to infinity in (2.23). There is no other way to get
the solution than the mild solution.
We recall some background on analysis and necessary to the definition of the mild
solution.
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2.2.1 Existence of mild solutions in the analytic case

We will give results for a mild solution to the problem
dXt = AXtdt+B(Xt)dWt,

X0 = x ∈ H,
(2.24)

that is for the integral equation

Xt = Stx+
∫ t

0
St−sB(Xs)dWs.

Let us introduce some notations. We set vt = Stx, t ≥ 0, and for any process y we
denote by τ(y) the following process

τ(y)(t) =
∫ t

0
S(t− s)B(ys)dWs, t ∈ [0, T ],

so that, solving equation (2.24) is equivalent to finding a fixed point for the problem
Xt = vt + τ(X)t, t ∈ [0, T ].

2.2.2 Existence of solutions in the analytic case

We are here concerned with problem (2.24) under the hypothesis that A is the
infinitesimal generator of an analytic semigroup S(.) in H. For x ∈ D(B) and
θ ∈ (0, 1) we denote by ∥B(x)∥θ the Hilbert-Schmidt norm of the operator B(x)
considered as operator from U0 into DA(θ, 2).

Lemma 2.12. [34] The following statements hold.

• If x ∈ DA(θ, 2)) with θ ∈ (0, 1/2), then u1 ∈ L2([0,∞); DA(θ + 1/2, 2)).

• If x ∈ DA(1/2, 2)) then u1 ∈ L2[0,∞).

Theorem 2.13. Assume that there exists θ ∈ (0, 1
2), η ∈ (0, 1 − 2θ) and K > 0

such that

B ∈ L(DA(θ + 1
2 , 2), L2(U0;DA(θ, 2))) and

∥B(x)∥2
θ ≤ η |x|2θ+ 1

2
+K |x|2θ , x ∈ DA(θ + 1

2 , 2).
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Then for any x ∈ DA(θ, 2), equation (2.24) has a mild solution

X ∈ N 2
W (0, T ;DA(θ + 1

2 , 2)),

identical with a weak solution. Moreover the solution has a continuous modification

as a process with values in DA(θ, 2)) .

Proof :
We introduce the space ZT = N 2

W (0, T ;DA(θ + 1
2 , 2)) endowed with the norm

∥Y ∥2
Z = E

∫ T

0
|Y |2θ+ 1

2
dt+ LE

∫ T

0
|Yt|2θ dt,

where L is a positive number to be chosen later. The mapping Γ, defined by

Γ(Y )t = Stx+
∫ t

0
St−sB(Ys)dWs,

is a well defined transformation from ZT into ZT and moreover

E
∫ T

0
|ΓYt|2θ+ 1

2
dt ≤ 1

1 − 2θE
∫ T

0
|B(Yt)|2θdt ≤ η

1 − 2θE
∫ T

0
|Yt|2θ+ 1

2
dt+k η

1 − 2θE
∫ T

0
|Yt|2θdt.

(2.25)
However, we also have

E
∫ t

0
|ΓYs|2θds ≤ E

∫ t

0
|B(Ys)|2θds ≤ ηE

∫ t

0
|Ys|2θ+ 1

2
dt+ kE

∫ t

0
|Ys|2θds. (2.26)

Combining (2.25) and (2.26) we find

|ΓY |2Z ≤
[

η

1 − 2θ + LTη
]

E
∫ T

0
|Ys|2θ+ 1

2
dt+ k

[ 1
1 − 2θ + LT

]
E
∫ T

0
|Ys|2θds. (2.27)

Now choose L >
k

1 − 2θ and T <
1 − 2θ − η

Lη(1 − 2θ) Then by (2.26) it follows that Γ is a
contraction.
Moreover v ∈ ZT in virtue of Lemma (2.12); therefore by the contraction princi-
ple, equation (2.24) has a unique solution X in ZT . By standard arguments, the
restriction on T can be removed. Since the process ϕt = B(Xt), t ∈ [0, T ], belongs
to N 2

w (0, T ; H) therefore by Theorem (2.9) the process X is also a weak solution to
(2.24).
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Hypothesis 2.14. [34]

The operator A generates an analytic semigroup of negative type. We indicate

by DA(θ, 2) the real interpolation space between D(A) and X. Let {ek} be an

orthonormal basis in U0 and set

k(s) = ϕsek, s ∈ [0, T ], k ∈ N.

For any Hilbert space K let N 2
W (0, T ;K) denote the space of all k-valued predictable

processes X such that

∥X∥2
N 2

W (0,T ;k) =
∫ T

0
E ∥Xs∥2

K ds < +∞.

IfK = DA(θ, 2) and T = +∞ then we write shortly ∥.∥θ instead of ∥.∥N 2
W ((0,+∞;DA(θ,2))

In a similar way ∥π∥θ stands for ∥π∥(0,+∞;L0,θ
θ

). We notice that ∥.∥θ is given by the

formula

∥ϕ∥θ =
∞∑

k=1

∫ ∞

0
E|φk(s)|2θds.

Important information is provided by the following theorem.

Theorem 2.15. Assume Hypothesis 2.14 and that ϕ ∈ (0,+∞;L0,θ
2 )

• θ ∈ (0, 1
2) then W ϕ

A ∈ N 2
W (0,+∞;DA(θ + 1

2 , 2)) and

∥∥∥W ϕ
A

∥∥∥2

θ+ 1
2

= 1
1 − 2θ ∥ϕ∥2

θ .

• If θ = 1
2 then W ϕ

A ∈ N 2
W (0,+∞;D(A)), and

∥∥∥AW ϕ
A

∥∥∥2
= ∥ϕ∥2

1
2
.

• ϕ ∈ (1
2 , 1) then AW ϕ

A ∈ N 2
W (0,+∞;DA(θ − 1

2 , 2))

∥∥∥AW ϕ
A

∥∥∥2

θ− 1
2

= 1
3 − 2θ ∥ϕ∥2

θ .

In particular, for t ≥ 0,W ϕ
A ∈ D(A) , P-a.s.
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Propositions 2.16. [34]

Assume that A is a variational operator and let ϕ ∈ N 2
W (0, T ;L0

2). Then W ϕ
A ∈

N 2
W (0, T ;V ) and ∥∥∥W ϕ

A

∥∥∥2

N 2
W (0,T ;V )

≤ 1
2 ∥ϕ∥2

N 2
W (0,T ;L0

2) .

Theorem 2.17. We assume that A is a variational operator and that there exists

θ ∈ (0, 1) and K > 0 such that

1
2 ∥Bz∥2

L0
2

+ θa(z, z) ≤ K|z|2,∀z ∈ V.

Then, for any x ∈ H there exists a unique weak (and mild) solution X ∈ N 2
W (0, T ;V )

of (2.24) .Moreover the solution has a continuous modification as a process with val-

ues in H.

Proof:

The proof is similar to the previous one but instead of Theorem (2.14) one has to

use Proposition 2.16. Take as Z the space N 2
W (0, T ;V ) and note that

−
∫ T

0
a(ys, ys)ds = θ

∫ T

0
∥ys∥2

V ds.

2.2.3 Existence of strong solutions

Strong solutions exist very rarely. Here, we study a class of equations (2.24) for which
this is the case. Their special feature is that they can be reduced to deterministic
problems.
We are concerned with the problem

dXt = AXtdt+
N∑

k=1
BkXtdβk,

X0 = x ∈ H,

(2.28)

where A : D(A) ⊂ H → H, Bk : D(Bk) ⊂ H → H, k = 1, 2, ..., N
are generators of semigroups St = exptA and S(t)k = exptBk respectively. We
concentrate on a finite number of independent, real Wiener processes β1(.), ..., βN(.)
to simplify presentation, but generalizations to the case of infinitely many Wiener
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processes are possible. For the same reason we assume that ξ = 0 and f ≡ 0.
We will need the following conditions.

Hypothesis 2.18.

1. Operators B1,..., BN generate mutually commuting C0-groups eB1 ,..., eBN

respectively.

2. For k = 1, ..., N,D(B2
k) ⊃ D(A) and

N⋂
k=1

D((B∗
k)2) is dense in H

3. The operator

C = A− 1
2

N∑
k=1

B2
K , D(C) = D(A),

is the infinitesimal generator of a C0-semigroup S0(t) = expCt, t ≥ 0.

In order to solve (2.24), we define

Ut =
N∏

k=1
Sk(βk(t)), vt) = U−1

t Xt, t ∈ [0, T ],

and introduce the equation 
v′

t = U−1
t CUtvt,

v0 = x,
(2.29)

Propositions 2.19. Assume Hypothesis (2.18). If X is a strong solution to (2.24),

then the process v satisfies (2.29). Conversely, if v is a predictable process whose

trajectories are of class C1 and satisfies (2.29), then the process X(.) = U(.)v(.)
takes values in D(C), P-a.s. and it is a strong solution of (2.24).

Proof. For fixed ζ ∈ H, we define

zζ(t) =
N∏

i=1
S∗

i (−βi(t))ζ = (U−1)∗
t ζ, t ∈ [0, T ].

We will show that if ζ ∈
N⋂

k=1
D(B∗

k)2, then

dzζ = 1
2

N∑
i=1

(B∗
i )2zζdt−

N∑
i=1

B∗
i zζdβi. (2.30)
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To do so let us fix η ∈ H and apply Itô′s formula to the process

⟨zζ(t), η⟩ = ψ (β1(t).....βN(t)) , t ∈ [0, T ],

where
ψ (x1.....xN) =

〈
ζ,

N∏
i=1

Si(−xi)η
〉
, (x1.....xN) ∈ RN ,

Let ζ ∈
N⋂

k=1
D(B∗

k)2 . Since

∂ψ

∂xj

= −
〈
B∗

j

N∏
i=1

S∗
i (−xi)ζ, η

〉
,

and
∂2ψ

∂x2
j

= −
〈

(B∗
j )2

N∏
i=1

S∗
i (−xi)ζ, η

〉
,

therefore
d ⟨zζ , η⟩ = −

N∑
i=1

〈
B2

i zζ , η
〉
dβi + 1

2

〈
N∑

i=1
(B2

i )zζ , η

〉
dt,

and consequently (2.30) holds. Taking into account 1 and 2 of the hypothesis (2.24)
and that

⟨vt, ζ⟩ = ⟨Xt, zζ(t)⟩ , t ∈ [0, T ].

one obtains (applying again Itô′s formula)

d ⟨vt, ζ⟩ = ⟨dXt, dzζ(t)⟩ + ⟨Xt, dzζ(t)⟩ −
N∑

i=1
⟨BiX,B

∗
i zζ(t)⟩ dt

=
〈(

A− 1
2

N∑
i=1

B2
i

)
X, zζ

〉
dt

=
〈
U−1

t CUtvt, ζ
〉
.

Now, we’re assuming that Hypothesis (2.18) holds and formulate some condition
implying solvability of the equation (2.29). We set

D(Ct) = x ∈ H;Utx ∈ D(C),

Ctx = U−tCUtx,∀x ∈ D(Ct).
(2.31)
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Chapter 3
Backward stochastic differential

equations in infinite dimension

This Chapter, we present the research work on stochastic optimal control for
SDEs in infinite dimensions. We study BSDEs and Forward-backward stochastic
differential equations (FBSDEs, in short).

3.1 Backward stochastic differential equations

A backward stochastic differential equation on a bounded interval [0, T ] is an equa-
tion of the form 

dYt = ZtdWt −BYtdt− f(t, Yt, Zt)dt,

YT = ξ.
(3.1)

Here W is a cylindrical Wiener process in a Hilbert space U, with completed
natural filtration denoted (Ft)t≥0. The unknown process is an Ft-progressive pair
(Y, Z), where Y takes values in another Hilbert space U and Z in the space L2(U,H)
of Hilbert-Schmidt operators from U to H. An FT -measurable terminal condition ξ
is given for the process Y and the equation is solved backwards in time.
The coefficient f is called the generator, and for given y ∈ U, z ∈ L2(U,H), the
process t → f(t, y, z) is assumed to be (Ft)-progressive. B denotes the infinitesimal
generator of a strongly continuous semi group in H. The occurrence of the stochastic
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differential ZtdWt and the addition of another unknown process Z makes the problem
well posed in the class of progressive processes, under appropriate conditions. Let
(Ω,F ,P) be a probability space with the natural filtration of the Brownian motion
(Ft)t≥0, and ξ is a FT -measurable random variable. We aim to solve the following
equation:

−dYt

dt
= g(Yt), t ∈ [0, T ],with YT = ξ

To solve a BSDE with a given terminal condition, it is necessary to find a couple
(Yt, Zt) of processes adapted with respect to the filtration of the Brownian motion.
For more details, see the work of E. Pardoux and S. Peng [25], [19]. The backward
stochastic differential equations have the following form:

− dYt = g(t, Yt, Zt)dt− ZtdBt, YT = ξ, (3.2)

equivalently

Yt = ξ +
∫ T

t
g(s, Ys, Zs)ds+

∫ T

t
ZsdBs, 0 ≤ t ≤ T. (3.3)

The process {g(t, y, z)}0≤t≤T progressively measurable. Where the terminal con-
dition ξ is FT -measurable, square integrable random variable and (Bt)t≥0 are d-
dimensional Brownian motion process.

We consider the following notations:

1. S2(RK) is the space of progressively measurable processes Y such that

∥Y ∥2
S2 = E( sup

0≤t≤T
|Yt|2) < ∞,

and S2
c (RK) denotes the subspace of the continuous process. Two indistin-

guishable processes will always be identified, and we will keep the same ratings
for the quotient spaces.

2. M2(RK×d) is the space of progressively measurable processes Z such that

∥Z∥2
M2 = E

(∫ T

0
∥Zt∥2 dt

)
< ∞,

where, for z ∈ RK×d, ∥z∥2 = Tr(zz∗), and M2(RK×d) denotes the M2(RK×d)
equivalent classes.
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Definitions 3.1. A solution of the equation (3.3) is the couple process {(Yt, Zt)}0≤t≤T

that verify

• Y and Z are progressively measurable processes with values in RK and RK×d

respectively,

• P.a.s
∫ T

0

{
|g(r, Yr, Zr)| + ∥Zr∥2

}
dr < ∞,

• P.a.s we have Yt = ξ +
∫ T

t
|g(r, Yr, Zr)| dr −

∫ T

t
ZrdBr, 0 ≤ t ≤ T .

ξ is a random variable, FT -measurable with values in Rk.
Consider the following assumptions:

1. Lipschitz condition: There exist λ > 0 such that, for any t, y1, z1, y2, z2 we
have:

|f(t, y1, z1) − f(t, y2, z2)| ≤ λ (|y1 − y2| + ∥z1 − z2∥) .

2. Integrability condition:

E

[
|ξ|2 +

∫ T

0
|f(r, 0, 0)|2 dr

]
< ∞.

The role of Z: The role of the process Z is to make the trajectories of the process
Y adapted.

Theorem 3.1. [25] According to assumptions (1) and (2), the BSDE (3.3) has a

unique solution (Y, Z), with Z ∈ M2.

3.2 The optimal control problem

The idea here is to connect stochastic optimal control with BSDE by applying
the non-linear Fymen-Kac formula. First, we write the Hamilton Jacobie Belmann
equation corresponding to our stochastic optimal control, then we remove the infi-
mum by applying the convexity propriety of the running cost with respect to the
control variable, and then we end up with a PDE, which is a semi-linear second-
order PDEs that has a link to a BSDEs using the non-linear Fymen-Kac formula
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(see [33]).
Given a filtered probability space (Ω,F , (Ft)t>0,P) satisfying the usual conditions
on which an m-dimensional standard Brownian motion W is defined, consider the
following controlled stochastic differential equation in finite dimensions

dXs = b(s,Xs, us)ds+ σ(s,Xs, us)dWs,

X0 = x ∈ Rn,
(3.4)

with, b : [0, T ] × Rn × U → Rn, σ : [0, T ] × Rn × U → Rn×m, U a given separate
metric space and fix T ∈ (0,∞). The function u(.) is called the control representing
the action, decision, or policy of decision makers. This non-participative restriction
in mathematical terms can be represented by u(.) which must be {Ft}t≥0-adapted.
That is, u(.) control is taken as

U [0, T ] =
{
u : [0, T ] × Ω → U |u(.) and {Ft}t≥0 − adapted.

}
The following introduces cost function :

J(t, x;u) = E

[∫ T

t
f(s,Xs, us)ds+ g(XT )

]
, (3.5)

such that f(., X(.), u(.)) ∈ L1
F(0, T ; R) and g(XT ) ∈ L1

F(Ω,R), X(.) is the unique
solution of the equation (3.4).
All admissible controls are listed U ∈ [0, T ]. Therefore our strong formulation of
stochastic optimal control problem is the strong formulation problem Minimize the
formula (3.5) on U ∈ [0, T ]. The value function for this problem is defined as usual
as follows:

v(t, x) = inf
u∈U [0,T ]

J(t, x;u). (3.6)

v verify partial differential equation with stop Hamilton, Jacobi Bellman which we
will define in the next

44



3. BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS IN INFINITE DIMENSION

3.2.1 Hamilton-Jacobi-Bellman equation

To sum up, we have the value function v for our stochastic control problem, which
solves this partial differential equation, (PDE in short).
∂v

∂t
(t, x) + inf

β∈Rn
{b(t, x, β).∇v(t, x) + f(t, x, β)} + 1

2
[
σσT (t, x, β).∆v(t, x)

]
= 0,

v(T, x) = g(x), x ∈ Rn.

(3.7)
with, b : [0, T ]×Rn×U → Rn, σ : [0, T ]×Rn×U → Rn×m, and f(., x, β) ∈ L1

F(0, T ; R)
This semi-linear parabolic PDE is the HJB equation.

Remark 3.1. We can derive from the HJB a PDE without infrimum if we have
convexity with respect to β.

3.2.2 Optimal control in infinite dimension

We present a class of infinite dimensional optimal control problems. Let H and U

be two separable Hilbert spaces, Q ∈ L(U),U0 := Q1/2(U). Assume that WQ =
WQ(t), s ≤ t ≤ T is an U-valued F t

s -Q-Wiener process, as well as indicate by
L2(U0,H) the Hilbert space of the Hilbert-Schmidt operators from U0 to H.
We denote by A : D(A) ⊆ H → H the generator of the C0-semigroup etA. The
operator A∗ denotes the adjoint of A. Recall that D(A) and D(A∗) are Banach
spaces when endowed with the graph norm. Let Λ be a Polish space (see [5]).
Given an adapted process β : [s, T ] × Ω → Λ. We consider the state equation


dXt = (AXt + b(t,Xt, βt)) dt+ σ(t,Xt)dWQ(t)

Xs = x,
(3.8)

in which b : [0, T ]×H×Λ → H is a continuous function, and σ : [0, T ]×H → L2(U0,H)
is continuous, and for C > 0, we have

∥b(s, x, β) − b(s, y, β)∥ ≤ C ∥x− y∥ ,

∥b(s, x, β)∥ ≤ C(1 + ∥x∥),
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and

∥σ(s, x) − σ(s, y)∥L2(U0,H) ≤ C ∥x− y∥ ,

∥σ(s, x)∥L2(U0,H) ≤ C(1 + ∥x∥),

for all x, y ∈ H, s ∈ [0, T ], and β ∈ Λ. The solution of (3.8) is understood in the
mild sense: an H-valued adapted process X(.) is a solution if

P

{∫ T

s

(
∥Xr∥ + ∥b(r,Xr, βr)∥ + ∥σ(r,Xr)∥2

L2(U0,H)

)
dr < +∞

}
= 1

and
Xt = e(t−s)A +

∫ t

s
e(t−s)Ab(r, xr, ar)dr +

∫ t

s
e(t−s)Aσ(r, xr)dWQ(r).

Let l : [0, T ] × H × Λ → R be a measurable function and g : H → R is a continuous
function.
We consider the class Us of admissible controls constituted by the adapted processes
β : [s, T ] × Ω → Λ such that (r, ω) → l(r,X(r, s, x, β(.)), βr) + g(X(T, s, x, β(.))) is
dr ⊗ dP-is quasi-integrable. This means that, either its positive or negative part are
integrable.
We consider the problem of minimizing, for β(.) ∈ Us, the cost functional

J(s, x; β(.)) = E

[∫ T

s
l(r,X(r; s, x, β(.)), β(r))dr + g(X(T ; s, x, β(.)))

]
. (3.9)

The value function of this problem is defined, as usual, as

v(s, x) = inf
β(.)∈Us

J(s, x; β(.)).

As usual we say that the control β∗(.) ∈ Us is optimal at (s, x) if β∗(.) minimizes
(3.9) among the controls in Us. if J(s, x; β∗(.)) = v(s, x).

The HJB equation associated with the minimization problem above is
∂sv + ⟨A∗∂xv, x⟩ + 1

2Tr[σ(s, x)σ∗(s, x)∂2
xxv] + inf

β∈Λ
{⟨∂xv, b(s, x, β)⟩ + l(s, x, β)} = 0,

v(T, x) = g(x).
(3.10)
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In the above equation ∂xv (respectively ∂2
xxv) in the first derivatives of v with re-

spect to the variable x. Let (s, x) ∈ [0, T ]×H, ∂xv(s, x) is identified with elements of
H. ∂2

xxv(s, x) which is element of (H⊗π H)∗ is naturally associated with a symmetric
bounded operator on H.

Remark 3.2. The interest of such formula is to be able to give a solution of PDE
in the form of expectation. Using Monte Carlo method to approximate the expec-
tations, one can simulate the PDE solution.

3.3 Forward-backward stochastic differential equations

We use FBSDEs to provide a probabilistic formula for a quasi-linear PDE of the
parabolic type. We need the definition of viscosity solutions.

Definitions 3.2. (viscosity solutions) [20]
Let d ∈ N, T ∈ (0,∞), let M ⊆ Rd be a non-empty open set, and let G :

(0, T ) ×M × R × Rd × Sd → R be degenerate elliptic, (see Definitions 2.3 and 2.4 in
[20]). We say that u is a viscosity solution of

∂u

∂t
(t, x) +G(t, x, u(t, x),∇xu(t, x), (Hessxu)(t, x)) = 0 (3.11)

for (t, x) × (0, T ) ×M if and only if

• We have that u is a viscosity subsolution of (3.11) for (t, x) × (0, T ) ×M and

• We have that u is a viscosity supersolution of 3.11 for (t, x) × (0, T ) ×M

(For the definitions of viscosity subsolution and viscosity supersolution, see
[20] ).

Definitions 3.3. (Viscosity subsolutions) [20]
Let d ∈ N, T ∈ (0,∞), let M ⊆ Rd be a non-empty open set, and let G : (0, T ) ×

M × R × Rd × Sd → R be degenerate elliptic, and G is linear in the Hess. We say
that u is a viscosity solution of

∂u

∂t
(t, x) +G(t, x, u(t, x),∇xu(t, x), (Hessxu)(t, x)) ≥ 0 (3.12)
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for (t, x)× (0, T )×M (we say that u is a viscosity subsolution of the equation (3.11)
if and only if there exists a set A such that

• we have that (0, T ) ×M ⊆ A,

• we have that u : A → R is an upper semi-continuous function from A to R,
and

• t ∈ (0, T ), x ∈ M,ϕ ∈ C1,2((0, T ) ×M,R) with ϕ(t, x) = u(t, x) and ϕ ≥ u that
the equation (3.12).

Definitions 3.4. (Viscosity supersolutions) [20]
Let d ∈ N, T ∈ (0,∞), let M ⊆ Rd be a non-empty open set, and let G : (0, T ) ×

M × R × Rd × Sd → R be degenerate elliptic, and G is linear in the Hess. We say
that u is a viscosity solution of

∂u

∂t
(t, x) +G(t, x, u(t, x),∇xu(t, x), (Hessxu)(t, x)) ≤ 0 (3.13)

for (t, x)× (0, T )×M (we say that u is a viscosity subsolution of the equation (3.11)
if and only if there exists a set A such that

• we have that (0, T ) ×M ⊆ A,

• we have that u : A → R is a lower semi-continuous function from A to R, and

• t ∈ (0, T ), x ∈ M,ϕ ∈ C1,2((0, T ) ×M,R) with ϕ(t, x) = u(t, x) and ϕ ≥ u that
the equation (3.13).

Hypothesis 3.2. [26] Let the following conditions:

1. There exist λ1, λ2 ∈ R such that for all t, x, x1, x2, y, y1, y2, z and

⟨f(t, x1, y, z) − f(t, x2, y, z), x1 − x2⟩ ≤ λ1 |x1 − x2|2 ,

⟨g(t, x, y1, z) − g(t, x, y2, z), y1 − y2⟩ ≤ λ2 |y1 − y2|2 .
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2. The processes f(., x, y, z), g(., x, y, z) and σ(., x, y, z) are Ft-adapted, and the

random variable g(x) is Ft-measurable, (x, y, z). Moreover, the following holds:

E
∫ T

0
|f(s, 0, 0, 0)|2 ds+ E

∫ T

0
|g(s, 0, 0, 0)|2 ds

+E
∫ T

0
∥σ(s, 0, 0, 0)∥2 ds+ E |h(0)|2 < ∞

For every (t, x) ∈ [0, T ] × Rn, let
{
(X t,x(s), Y t,x(s), Zt,x(s)), t ≤ s ≤ T

}
indicate

the unique solution.

X t,x(s) = x+
∫ s

t
f(r,X t,x(r))dr +

∫ s

t
σ(r,X t,x(r))dBr,

Y t,x(s) = h(X t,x(T )) +
∫ T

s
g(r,X t,x(r), Y t,x(r), Zt,x(r))dr −

∫ T

s
Zt,x(r)dBr.

(3.14)
We assume that the functions f, g, σ, h are deterministic. We will see in this

section that the function u(t, x) := Y t,x(t), (t, x) ∈ [0, T ] × Rn, is a viscosity solution
of the following backward quasilinear second-order parabolic (PDE):

1
2Tr(σ(t, x) × σT (t, x))∆u(t, x) + ⟨f(t, x),∇u(t, x)⟩

+g(t, x, u(t, x), σ(t, x)∇u(t, x)) = 0,

u(T, x) = h(x), x ∈ Rn.

(3.15)

Theorem 3.3. [26] Assume that the functions f, σ, g, h are deterministic, globally

continuous, and that they satisfy the following conditions (1) in 3.2 and The func-

tion h is uniformly Lipschitz continuous in x. That is, there exists k such that for

all x1, x2, we have |h(x1) − h(x2)| ≤ k |x1 − x2| .

Then, the function u defined by u(t, x) := Y t,x
t , (t, x) ∈ [0, T ] × Rn, is continuous

and it is a viscosity solution of the PDE (3.15).
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3.3.1 Least-squares Monte Carlo

In this section we study numerical analysis of FBSDE, (see [22], [31]) that is solved
by a least squares Monte Carlo algorithm.

The least-squares Monte Carlo technique is based on the Euler approximation,
a method studied in [17], especially

X̂n+1 = X̂n + ∆tb(X̂n, tn) +
√

∆tσ(X̂n)ξn+1, X0 = x,

Ŷn+1 = Ŷn + ∆th(X̂n, Ŷn, Ẑn) +
√

∆t(Ẑn)ξn+1, YT = g(XT ),
(3.16)

where (X̂n, Ŷn, Ẑn) represents the joint process’s numerical discretization (Xs, Ys, Zs),

and (ξi)i≥1 is an i.i.d. sequence of normalised Gaussian random variables.
By definition, the continuous-time process (Xs, Ys, Zs) is adapted to the filtration
generated by (Bt)0≤t≤s. For the discretised process, this implies

Ŷn = E
[
Ŷn|Fn

]
= E

[
Ŷn+1 + ∆th(X̂n, Ŷn, Ẑn)|Fn

]
,

using that Ẑn is independent of ξn+1, and Fn = σ
({
B̂k : 0 ≤ k ≤ n

})
be the

σ-algebra generated by the discrete Brownian motion B̂k :=
√

∆t
∑
i≤n

ξi.

In order to compute Ŷn from Ŷn+1, It is simple to swap out Ŷn, Ẑn on the right hand
side by Ŷn+1, Ẑn+1, so that we end up with the fully explicit time stepping scheme

Ŷn = E
[
Ŷn+1 + ∆th(X̂n, Ŷn+1, Ẑn+1)|Fn

]
. (3.17)

The next section deals with how to calculate conditional expectations with regard
to Fn. Recall that the conditional expectation is the best estimate in the L2 space:

E [S|Fn] = argmin
Y ∈L2,Fn−measurable

E
[
|Y − S|2

∣∣∣ ,
Here measurability with respect to Fn means that (Ŷn, Ẑn) can be represented

as functions of X̂n. In view of the equation (3.17) and VK(x, t) =
K∑

k=1
αk(t)ϕk(x), in

which αk ∈ R, and continuously differentiable basis functions ϕk, this suggests the
approximation scheme

Ŷn ≈ argmin
Y =Y (X̂n)

M∑
m=1

∣∣∣Y − Ŷ
(m)

n+1 − ∆th(X̂n, Ŷ
(m)

n+1 , Ẑ
(m)
n+1)|Fn

∣∣∣2 ,
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where the data at time tn+1 is delivered in the form of M independent realisations
of the forward process, X̂(m)

n n,m = 1, ...,M , the resulting values for Ŷn+1,

Ŷ
(m)

n+1 =
K∑

k=1
αk(tn+1)ϕk(X̂(m)

n+1),

and
Ẑ

(m)
n+1 = σ(X̂(m)

n+1)T
K∑

k=1
αk(tn+1)∇ϕk(X̂(m)

n+1).

At time T := N∆t, the data are determined by the terminal cost:

Y
(m)

N = g(X(m)
N ), Z

(m)
N = σ(X(m)

N )T ∇(X(m)
N )

We call α̂ = (α̂1, ..., α̂k) the vector of the unknowns,

α̂(tn) = argmin
α∈Rk

∥Anα− bn∥2 , (3.18)

with coefficients
An = (ϕk(X̂(m)

n )), (3.19)

and
bn = (Ŷ (m)

n+1 + ∆th(X̂(m)
n , Ŷ

(m)
n+1 , Ẑ

(m)
n+1))m=1,...,M . (3.20)

By considering the coefficient matrix An ∈ RM×K , K ≤ M defined by (3.19) has
maximum rank K, then the solution to (3.18) is given by

α̂(tn) =
(
AT

nAn

)−1
AT

nbn.

We may create the numerical simulations component using the Least-squares
Monte Carlo technique.
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Algorithm 1 Least-squares Monte Carlo
• Give M the number of realisations, N the number of subdivision of t, and K is the

number basis.

• Set ∆t = T/N .

• Set the initial condition x ∈ Rd.

• Generate M independent realisations X̂(1), ..., X̂(M) for the SDE with the initial

condition X0 = x, here we simulate three additional realisations.

• Selecting radial basis as Gaussian {ϕk ∈ C1(Rd, R)}k=1,...K .

• Set the terminal condition of the BSDE by: Ŷ
(m)

N = g(X̂(m)
N ), Ẑ

(m)
N =

σ(X̂(m)
N )T ∇g(X̂(m)

N ).

• Assemble linear system Anα̂(tn) = bn according to (3.18)-(3.20). Calculate Ŷ (m)
n

and Ẑ(m)
n based on

Ŷ (m)
n =

K∑
k=1

αk(tn)ϕk(X̂(m)
n ), Ẑ(m)

n = σ(X̂(m)
n )T

K∑
k=1

αk(tn)∇ϕk(X̂(k)
n ).

Exemple 3.1. Let stochastic optimal control in infinite dimensions.
dXs = (AXs +Bus)ds+BdWs,

Xt = x ∈ H.
(3.21)

A and B are linear operators, where (−A) is specifically a Laplace operator. u(.) is
a stochastic process that represents the control.
The problem of minimising, the cost functional following

J(t, x;u) = E[
∫ T

t
(XT

s AXs + 1
2 ∥u∥2

s)ds+ g(XT )], (3.22)

such that u is a stochastic process and g(XT ) = XT
T XT in Hilbert spaces.

We make the projection in Hilbert space, with the finite dimension defined by
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its biases function (ϕj)K
j=1 can be defined as follows:

ϕj(X) = 1√
2σ2π

× exp(− 1
2σ (X −Xj)T × (X −Xj)),

in which Xj is an additional realisation of the forward.
B̂n is a vector, and we define a matrix Ân following

Ân = 1
h



2 −1 0

−1 2 . . .
. . . . . . −1

0 −1 2


than the stochastic optimal control became

dX̂s = (ÂnX̂s + B̂nûs)ds+ B̂ndWs,

X̂t = x̂ ∈ Rn.
(3.23)

We consider the problem of minimising, the cost functional

Ĵn(t, x̂; û) = E[
∫ T

t
(X̂T

s ÂnX̂s + 1
2 ∥û∥2

s)ds+ g(X̂T )], (3.24)

such that û is a stochastic process and g(X̂T ) = X̂T
T X̂T in R.

The value function for this problem is defined as usual as follows:

v̂(t, x̂) = inf
û(.)∈Us

Ĵn(t, x̂; û),

we say that the control û(.) ∈ Us is optimal at (t, x) if û(.) minimizes (3.24) one of
the controls in Us.
We can write the HJB equation.
∂v̂

∂t
(t, x̂) + inf

α∈A

{
(Ânx̂+ B̂nα)∇v̂(t, x̂) + 1

2Tr(B̂nB̂
T
n ∆v̂(t, x̂)) + 1

2α
2 + x̂T x̂

}
= 0,

v̂(T, x̂) = g(x̂).
(3.25)

The first derivative of v̂ with respect to the x variable in the aforementioned equation
is denoted by the symbol ∂v. We take the following equation:
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{
(Ânx̂+ B̂nα)∇v̂(t, x̂) + 1

2Tr(B̂nB̂
T
n ∆v̂(t, x̂)) + 1

2α
2 + x̂T x̂

}
,

and we derive this equation with respect to α. After derivation we find B̂n∇v̂(t, x̂)+
α and we write B̂n∇v̂(t, x̂) + α = 0, Then we take out α and substitute it into the
equation (3.25), then we get the following PDE

∂v̂

∂t
(t, x̂) + [Ânx̂∇v̂(t, x̂) + 1

2B̂
2
n∇2v̂(t, x̂) + 1

2Tr(B̂nB̂
T
n ∆v̂(t, x̂)) + x̂T x̂].

Finally, we write the following FBSDE
dYt = −(1

2Z
2
s +XT

s ÂnXs)dt+ ZsdWs, XT = g(XT ),

dXt = ÂnXtdt+ B̂ndWt, Xt = X0.
(3.26)

We got a nonlinear BSDE, we transform it to linear one using the following
transformation. Assume that, Kt = eαYt , and we write the following equation using
the Itô Formula

dKt = αeαYtdYt + 1
2α

2eαYtZ̃2
t dt, (3.27)

We substitute dYt into the equation (3.27), we obtain

dKt = αeαYt [−(1
2Z

2
t +XT

t ÂnXt)dt+ ZtdWt] + 1
2α

2Z̃2
t e

αYtdt, (3.28)

Let’s take α = 1. It becomes (3.28) as follows:

dKt = Kt(−XT
t AXtdt+ ZtdWt). (3.29)

3.3.2 Numerical simulations

We solve this example using the algorithm 1 by taking the time step equals 10−2,
and the number of realisations M = 1000. We put the number of basis equal to
three in both examples.

We consider the following SDE:

dXt = a(Xt, t)dt+ b(Xt, t)dWt.
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We consider the forward equation by Euler Maruyama of the above SDE

Yn+1 = Yn + a(Yn, tn) ∆t+ b(Yn, tn) ∆Wn,

Solve the backward equation

0 0.2 0.4 0.6 0.8 1

t

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

X

Figure 3.1: Trajectories of the SDE (3.26).

• Define the terminal condition YT = g(XT ).

• Define the basis field as Gaussian density centred in extra trajectories.

• Find Yti
and Zti

until ti for i = 2.

• We put Y1 = mean(Y2(:)) and Z1 = mean(Z2(:)).

The following are the trajectories of BSDE (3.29)
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0.4

Y

Figure 3.2: Trajectories of the BSDE (3.29).

Remark 3.3. In figure (3.3.2) we plot seven realisations. We compute a gradient.
of the terminal condition manual.

Exemple 3.2. We consider now the following the FBSDE in infinite dimension,
and we solve the backward equation through simulation.


dYt = (Yt

〈
X2

t , X
4
t

〉
+ a× Zt)dt+ ZtdWt, XT = g(XT )

dXt = AXtdt+BWt, X0 = x.
(3.30)

In this example, we have no linearity in the backward equation for the variable X,

but this doesn’t change the linearity of the backward equation, which is that the
backward equation in 3.31 is linear in Y and Z. We put a is a constant and Bn is
a vector. From [14] we get the projection of the operator A on the finite subspace
with dimension n as follows:
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An = 1
h



7 −0.5 0

−0.5 7 . . .
. . . . . . −0.5

0 −0.5 7


We make the projection on a subspace of the Hilbert space with the finite dimension,
and we get FBSDE in the finite dimension following

dŶt = (Ŷt

〈
X̂2

t , X̂
4
t

〉
+ a× Ẑt)dt+ ẐtdWt, X̂T = g(X̂T )

dX̂t = AnX̂tdt+BnWt , X̂0 = x̂.
(3.31)

In this example, we put that the time step equals 10−3, and the number of realisations
M = 1500, and we solve the equation (3.31) using the algorithm 1.

0 0.2 0.4 0.6 0.8 1

t

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Y

Figure 3.3: Trajectories of Y the solution of the BSDE (3.31).
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0 0.2 0.4 0.6 0.8 1
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0

500

Z

Figure 3.4: Trajectories of Z the solution of the BSDE (3.31).

For Z, we plot 7 realisations of the equation (3.31).

Remark 3.4. Z controls the trajectories of the backward to be adapted.
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ConclusionConclusion
In this thesis, we have studied stochastic differential equations in infinite dimen-
sions. We took as example the optimal control linear in infinite dimension and
applied Hamilton-Jacobi-Bellman equations to get the forward-backward stochastic
differential equation, which can be solved quite efficiently using the least squares
Monte Carlo method. We have taken two examples of this, and we discussed the
numerical simulation of the decoupled FBSDE.

In the end, we hope and predict that research on this subject will be active and
promising since there are still different questions without any accurate answers. For
example, take the nonlinear case, also study the convergence of the space-time dis-
cretization.
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