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Introduction

All of as know the famous book(Guinness), the longest winning streak, the largest and
the most powerful earthquake in the world, the temperature of the hottest day ever,the
tallest skyscraper,the deepest dive without using an aqualung, the lowest stock market
figure, the two highest months for record reporting are January and October and the
highest rainfall level on the earth, these all are called records values, so we can’t resist
record in our daily life. The literature on records theory is insufficient and scanty for two
main reasons:

• When studying the basic record model involving i.i.d. observations that was intro-
duced by Chandler (1952) [9], in a sense is too easy to analyze and as soon as we
add bells and whistles to better model reality, it suddenly becomes too hard.

• The study of records deters anyone want to develop inferential techniques because
of the lack of records phenomena, So the obtained sample are small.

Record value theory has its own existence (see Arnold et all [5]).
The study of record values has been carried out by a relatively and highly talented group
of individuals. Chandler (1958) [9] was the founder of records. Stuart(1954) [13] was a
pioneer in discovering record counting statistics. Record statistics are defined as model
for successive extremes in a sequence of independently identically distributed random
variables. For instance, it may be helpful for modeling the successive largest insurance
claims studied by an insurance company, for highest water levels or highest temperatures.
For more details about records and their applications, one may refer to Nagaraja (1988)
[25], Arnold et al. (1998) [5] and Ahsanuallah (2004) [2].

In many aspects, the study of record values is adjacent to the study of order statis-
tics; indeed, the two are intrinsically linked. This means that, in general, things that are
doable for order statistics are also doable for records. Things that were challenging for
order statistics are now equally or even more complex for records. Specific distribution
findings for the nth record are usually only available for friendly distributions. Fortunately,
there are numerous interrelationships, boundaries, and approximations for distributions
and moments.
For its importance in modeling lifetimes in many practical fields, the Weibull distribution
has received the attention of several authors in the literature. Moreover, many modified
versions of the Weibull distribution were developed in the literature, one of the modified
versions of the Weibull distribution is known as Kies distribution that was firstly proposed
by Kies (1958) [17], Kies distribution has an increasing, decreasing and bathtub shape for

10
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hazard rate function like the other extended Weibull models. Due to its bathtub shaped
hazard rate function, Kies distribution becomes a better alternative to the Weibull dis-
tribution than the other extended versions including the generalized Weibull (GW), the
modified Weibull (MW), the beta Weibull (BW), the beta generalized Weibull (BGW)
distributions. The Kies distribution, indicated by K(λ, β), has a bounded range, mak-
ing it suitable model for fitting real-life data sets having a finite range. However, there
are many cases in which observations can only take values within a specific range, such
as proportions, percentages or fractions. Variables in many economic applications, such
as the fraction of total weekly hours spent working, the proportion of income spent on
non-durable consumption, industry market shares, and a fraction of land area allocated
to agriculture, are all bounded between zero and one, according to Papke and Wooldridge
(1996) [26]. Furthermore, Genc (2013) [16] stated that when measuring reliability as a
percentage or ratio, it is critical to employ models established on the unit interval.
Recently, several authors in the literature have paid attention to Kies distribution. The
reduced Kies (RK) distribution, a specific example of the one-parameter Kies distribu-
tion that Kumar and Dharmaja (2013) [18] investigated, is demonstrated to have several
distinctive characteristics that are similar to those of the Weibull distribution. The gener-
alized Weibull (GW), modified Weibull (MW), beta Weibull (BW), and beta generalized
Weibull (BGW) distributions are some versions of the extended Weibull distributions. In
another paper, Kumar and Dharmaja (2014) [19] studied some of the Kies distribution’s
statistically important aspects and demonstrated that it possesses increasing, decreasing,
and bathtub hazard rate functions. The prediction of future events based on past and
present data is a fundamental topic in statistics. Extensive work on prediction may be
found in the literature in the context of record statistics. Bayesian predictive distribution
of future records based on observed records for two parameters exponential distribution
was derived by Dunsmore (1983) [11]. Awad and Raqab (2000) [6] obtained prediction
intervals for the future records based on observed records from one parameter exponential
distribution. Basak and Balakrishnan (2003) [7] discussed the problem of predicting a
future record statistics using maximum likelihood prediction and the conditional median
predictor.

The main objective of this study is divided into two folds. Firstly, we consider the
estimation of the two unknown parameters (shape and scale) of the Kies distribution,
K(λ, β), based on upper record data using classical and Bayesian methods. Second, we
study the prediction problem of future records from K(λ, β) distribution using classical
and one-sample Bayesian prediction.
The rest of my dissertation work is organized as follows :
We set some of needed background, definitions, properties of record values from the Kies
K(λ, β) distribution. Also, some basic definitions of the considered estimation methods
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in Chapter 1.
In Chapter 2, the scale parameter λ and the shape parameter β of K(λ, β) are estimated
using classical and Bayesian techniques, such as the maximum likelihood and confidence
interval. The Bayesian approach takes into account both symmetric and asymmetric loss
functions of λ and β. Prediction based on record samples from K(λ, β) is considered
in Chapter 3, with different point predictors including maximum likelihood, conditional
median and one-sample Bayesian predictors are obtained. Further, to construct prediction
intervals of future records, the pivotal quantity and shortest length interval is investigated.
For comparison purposes we have considered some simulation results on the behavior of
the proposed estimation and prediction methods.



Chapter 1
Backgrounds

This chapter is divided into three important sections. The first one contains some defi-
nitions of maximum likelihood estimation. Then, some of definitions and properties on
bayesian estimation are also provided. Finally, record data from kies distribution with
distributional properties are defined .

1.1 Maximum Likelihood Estimation

Maximum likelihood estimation is a probabilistic method for addressing the density
estimation issue. It entails finding the probability distribution and parameters that best
describe the given data by maximising a likelihood function.

1.1.1 Likelihood and Log-Likelihood Functions

Let X = x represent the realisation of a random variable (rv) or vector X with probability
mass or density function (pmf or pdf) f (x; θ). The function f (x; θ) is considered to be
known but depends on the realisation x and often unknown parameter θ. It is usually the
result of the development of an appropriate statistical model.
Note that θ can be a scalar or a vector. The space Ω of all possible realisations of X is
called sample space, whereas the parameter θ can take values in the parameter space Θ.
Definition 1.1.1. The likelihood function L (θ) is the pmf or pdf of the observed data
x, viewed as a function of the unknown parameter θ. i.e:

L (θ;x) = f (x; θ)

The log-likelihood function can be rewritten as logL (θ).

13
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When X is a random simple (rs), as a generalization of previous definition, we assume
x1, ..., xn to be n observations of the random vector X = (X1, ...., Xn) such that
Xi

iid∼ f (x; θ) , i = 1....n.

The pdf of X is:

f (x; θ) =
n∏
i=1

f (xi; θ) .

So, the likelihood function based on a random sample (rs) can therefore be written
as the product of the individual likelihood contributions as

L (θ;x) =
n∏
i=1

L (θ;xi) =
n∏
i=1

f (xi; θ) .

The log-likelihood is hence the sum of the individual log-likelihood contributions as

logL (θ;X) = log

(
n∏
i=1

f (xi; θ)

)
=

n∑
i=1

logf (xi; θ) .

Remark. There are terms that are not related to the parameter, which are called multi-
plicative constants and the remaining terms are called the likelihood kernel.

1.1.2 Maximum Likelihood Estimate

Maximum likelihood provides a consistent approach to parameter estimation problem.
This means that maximum likelihood estimates can be developed for a large variety of
estimation situations. For example, they can be applied in reliability analysis to censored
data under various censoring models.
Definition 1.1.2. The likelihood function is maximised to produce the maximum likeli-
hood estimate (MLE) θ̂ML of a parameter θ:

θ̂ML = arg maxL (θ)
θ∈Θ

.

The log-likelihood function is frequently numerically suitable logL (θ) it can be used to
calculate the MLE, since the logarithm is a strictly monotone function, So:

θ̂ML = maxLogL (θ)
θ∈Θ

.
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Example 1.1.1. Let X be an rv, that represent the observed number of babies with
Klinefelter’s syndrome among n male newborns. The number of male newborns n is
hence known, while the true prevalence θ of Klinefelter’s syndrome among male newborns
is unknown. X ∼ Bin (n, θ) denote a binomially distributed rv

The corresponding likelihood function is

L (θ) = Cxnθx (1− θ)n−x .

with unknown parameter θ ∈ (0, 1) and sample space Ω = {0, 1, ..., n}. The multi-
plicative term Cxn does not depend on θ and can therefore be ignored, i.e. it is sufficient
to consider the log-likelihood θx (1− θ). The log-likelihood turns out to be

logL (θ) = log
(
Cxnθx (1− θ)n−x

)
logL (θ) = log (Cxn) + xlog (θ) + (n− x) log (1− θ)

with derivative
∂logL (θ)

∂θ
=
x

θ
− n− x

1− θ
Setting this derivative to zero:

∂logL (θ)

∂θ
=
x

θ
− n− x

1− θ
= 0

x (1− θ)− (n− x) θ

θ (1− θ)
= 0

gives
x− nθ = 0

so the MLE is:
θ̂ML =

x

n
.

Example 1.1.2. Let X denote a rs from an exponential distribution Exp (θ).Then:

L (θ) =
n∏
i=1

{θe(−θxi)}

= θne

(
−θ

n∑
i=1

xi

)
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is the likelihood function of θ ∈ R+. The log-likelihood function is therefore:

logL (θ) = nlog (θ)− θ
n∑
i=1

xi

with derivative:

∂logL (θ)

∂θ
=

n

θ
−

n∑
i=1

xi

Setting the derivative to zero, we easily obtain the MLE θ̂ML =
n
n∑
i=1

xi

is the mean

observed survival time.
Theorem 1.1.1. (Asymptotic Normality of MLE)[14]

Let θ̂ be the MLE for an unknown parameter θ. Then, we have

√
n(θ̂ − θ)→ N

(
0,

1

I(θ)

)

As we can see, the asymptotic variance dispersion of the estimate around true param-
eter will be smaller when Fisher information is larger.
Definition 1.1.3. (Delta Method)

The delta method is a result concerning the approximate probability distribution
for a function of an asymptotically normal statistical estimator from knowledge of the
limiting variance of that estimator. The delta method generalizes easily to a multivariate
setting, careful motivation of the technique is more easily demonstrated in univariate
terms. Roughly, if there is a sequence of random variables Xn satisfying

√
n [Xn − θ]

d→ N (0, σ2)

where θ and σ2 are finite valued constants and d→ denotes convergence in distribution,
then

√
n [g(Xn)− g(θ)]

d→ N
(

0, σ2. [g′(θ)]
2
)

for any function g satisfying the property that g′(θ) exists and is non-zero valued.
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1.1.3 Score Function and Fisher Information

Definition 1.1.4. The first derivative of the log-likelihood function

S (θ) =
∂logL (θ)

∂θ

is called the score function.
Remark. Computation of the MLE is typically done by solving the score equation
S (θ) = 0.
Definition 1.1.5. The negative second derivative of the log-likelihood function

I (θ) = −∂
2logL (θ)

∂θ2
(1.1)

is called the Fisher information. The value of the Fisher information at the MLE θ̂ML

I
(
θ̂ML

)
, is the observed Fisher information.

Example 1.1.3. The score function of a binomial observation X = x with x ∼ Bin (n, θ)

is:
S (θ) =

∂logL (θ)

∂θ
=
x

θ
− n− x

1− θ
(1.2)

and has been derived already in Example(1.1.1). Taking the derivative of S (θ) gives the
Fisher information

I (θ) = −∂
2logL (θ)

∂θ2
= −∂S (θ)

∂θ

=
x

θ2
− n− x

(1− θ)2

= n

{
x/n

θ2
− (n− x) /n

(1− θ)2

}

Plugging in the MLE θ̂ML =
x

n
we finally obtain the observed Fisher information

I
(
θ̂ML

)
=

n

θ̂ML

(
1− θ̂ML

) (1.3)

This result is plausible if we take a frequentist point of view and consider the MLE
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as a random variable. Then

V ar
(
θ̂ML

)
= V ar

(x
n

)
=

1

n2
.V ar (x)

=
1

n2
nθ (1− θ)

=
θ (1− θ)

n

Remark. • Note that the MLE θ̂ML is a function of the observed data, which explains
the terminology ”observed” Fisher information for I

(
θ̂ML

)
.

• the variance of θ̂ML has the same form as the inverse observed Fisher information;
the only difference is that the MLE θ̂ML is replaced by the true (and unknown)
parameter θ. The inverse observed Fisher information is hence an estimate of the
variance of the MLE.

1.1.4 Existence and Uniqueness of MLE

In this section we will illustrates un example that treats both cases of existence and
uniqueness of MLE. The uniqueness of the MLE is not guaranteed, and in certain ex-
amples there may exist at least two parameter values θ̂1 6= θ̂2 with
L
(
θ̂1

)
= L

(
θ̂2

)
= arg max

θ∈Θ
L (θ). In other situations, the MLE may not exist at all.

To acheive this goels we consider the capture-recapture method. This approach at-
tempts to estimate the size of an individual population, such as the number N of fish in
a lake.
To do this, a sample of M fishes is collected from the lake, all of which are marked, and
then put back into the lake.After a suitable amount of time has passed, a second sample
of size n is collected, and the number x of marked fish in that sample is recorded.
The target now is to estimate N from M , n and x.
By correlating the proportion of marked fish in the lake with the equivalent proportion
in the sample, an ad hoc estimate can be obtained:

M

N
≈ x

n

As a result, the number N of fish in the lake is approximated to be N̂ ≈M
n

x
.

When we putX = x, The suitable statistical model for X is therefore a hypergeometric
distribution:
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X ∼ HypGeo (n,N,M)

with pdf

P (X = x) = f (x; θ = N) =
CxMCn−xN−M

CnN

for x ∈ τ = {max{0, n− (N −M)}, ...,min (n,M)}. The likelihood function for N is
therefore

L (N) =
CxMCn−xN−M

CnN

for N ∈ Θ = {max (n,M + n− x) ,max (n,M + n− x) + 1, ...}, where we could have

ignored the multiplicative constant CxM
n!

(n− x)!
.

The likelihood function is maximised at N̂ML = bM · n
x
c,where bycdenotes the largest

integer not greater than y. For example, for M = 26, n = 63 and x = 5 we obtain
N̂ML = b26 · 63/5c = b327.6c = 327.
Sometimes the MLE is not unique, and the likelihood function attains the same value at

N̂ML − 1. Like when we put M = 13, n = 10 and x = 5, we have N̂ML = b13 · 10

5
c = 26,

but N̂ML = 25 also attains exactly the same value of L (N).

For existence if we take x = 0, the MLE does not exist because the likelihood func-
tion L (N) is then monotonically increasing.

The next theorem provide the existence and uniqueness of MLE, was introduced by
Mkelinen.T et al. (1981)[24]
Theorem 1.1.2. [24] Let L(θ) ∈ C2 with θ varying in a connected open subset Θ ⊂ Rp.
Suppose that

lim
θ→Θ

L(θ) = 0 (1.4)

and that the Hessian matrix :

H(θ) =

{
∂2L

∂θi∂θj
(θ)

}
(1.5)

of second partial derivatives is negative definite at every point θi ∈ Θ for which the
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gradient vector

∇L =

{
∂L

∂θi

}
(1.6)

vanishes. Then, there is a unique maximum likelihood estimate θ̂ ∈ Θ.

1.2 Confidence Interval

When you make an estimate in statistics, whether it is a summary statistic or a test
statistic, there is always uncertainty around that estimate because the number is based
on a sample of the population you are studying. The confidence interval is the range
of values that you expect your estimate to fall between a certain percentage of the time
if you run your experiment again or re-sample the population in the same way with a
confidence level which is the percentage of times you expect to reproduce an estimate
between the upper and lower bounds of the confidence interval.
Definition 1.2.1. For fixed γ ∈ (0, 1), a γ.100% confidence interval for θ is defined by
two statistics Tl = hl (X) and Tu = hu (X) based on a rs X, which fulfill

P (Tl ≤ θ ≤ Tu) = γ (1.7)

for all θ ∈ Θ. The statistics Tl and Tu are the limits of the confidence interval, and
we assume Tl ≤ Tu throughout. The confidence level γ is also called coverage probability.

1.3 Bayesian Estimation

Frequentist inference considers the dataX to be random. To get frequentist characteristics
of the estimates, point estimate of the parameter θ are seen as functions of the data X.
The parameter θ is unknown, but it is viewed as fixed rather than random.
In the Bayesian method to statistical reasoning, named after Thomas Bayes, things are
simply the other way around. The unknown parameter θ is now a random variable with the
proper prior distribution f (θ). The posterior distribution f (θ|x), determined by Bayes’
theorem, summarises the information to θ after observing the data X = x. In contrast to
frequentist inference, Bayesian inference is conditional on the observation X = x.
Theorem 1.3.1. [14] Let A and B denote two events A,B with 0 < P (A) < 1 and
P (B) > 0.then

P (A|B) =
P (B|A)P (A)

P (B)
(1.8)
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P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac) ∆P (Ac)
(1.9)

For a general partition A1, A2, ..., An with P (Ai) > 0 for all i = 1, ..., n we have that

P (Aj|B) =
P (B|Aj)P (Aj)
n∑
i=1

P (B|Ai)P (Ai)
(1.10)

for each j = 1, ..., n.

1.3.1 Posterior Distribution

The posterior distribution is the most important quantity in Bayesian inference. It con-
tains all the information available about the unknown parameter θ after having observed
the data X = x. Certain characteristics of the posterior distribution can be used to derive
Bayesian point estimate.
Definition 1.3.1. Let X = x denote the observed realization of a (possibly multivariate)
rv X with density function f (x|θ). Specifying a prior distribution with density function
f (θ) allows us to compute the density function f (θ|x) of the posterior distribution using
Bayes theorem.

f (θ|x) =
f (x|θ) f (θ)∫
f (x|θ) f (θ) dθ

(1.11)

For discrete parameter θ the integral in the denominator has to be replaced with a
sum.
Remark. • The term f (x|θ) in (1.11) is simply the likelihood function L (θ) denoted
previously.
• Since θ is now random, we explicitly condition on a specific value θ and write L (θ) =
f (x|θ).
• The denominator in (1.11) can be written as∫

f (x|θ) f (θ) dθ =

∫
f (x, θ) dθ = f (x) .

• The density function of the posterior distribution can be obtained through multiplication
of the likelihood function and the density function of the prior distribution with subsequent
normalisation.
Example 1.3.1. Inference for a proportion is based on a rs of size n and determines the
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number X = x of individuals in this sample with a certain event of interest. It is often
reasonable to assume that X ∼ Bin (n, θ) where θ ∈ (0, 1) is the unknown probability of
the event. It is tempting to select a beta distribution as a prior distribution for θ because
the support of a beta distribution equals the parameter space (0, 1). So let the prior be
θ ∼ B (α, β) with suitably chosen parameters α, β > 0. Then

f (x|θ) = Cxnθx (1− θ)n−x . x = 0, 1, ..., n

f (θ) =
1

B (α, β)
θα−1 (1− θ)β−1 . 0 < θ < 1

where B (α, β) =
Γ(α)Γ(β)

Γ(α + β)
. So, the posterior distribution is

f (θ|x) ∝ f (x|θ) · f (θ)

∝ θx (1− θ)n−x · θα−1 (1− θ)β−1

= θα+x−1 (1− θ)β+n−x−1

This can be easily identified as yet another B distribution with parameters α+ x and
β + n− x:

θ|x ∼ B (α + x, β + n− x) (1.12)

1.3.2 Choice of the Prior Distribution

Through a prior distribution, Bayesian inference enables the probabilistic specification
of prior beliefs. It is usually helpful and reasonable to limit the set of potential prior
distributions to a certain family with, say, one or two parameters .
The choice of this family can be based on the type of likelihood function encountered. We
will now discuss such a choice.

Conjugate prior distributions

A pragmatic method to selecting a prior distribution is to choose a member of a given
family of distributions so that the posterior distribution also belongs to that family. This
is referred to as a conjugate prior distribution.
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Definition 1.3.2. Let L (θ) = f (x|θ) denote a likelihood function based on the obser-
vation X = x.A class G of distributions is called conjugate with respect to L (θ) if the
posterior distribution f (θ|x) is in G for all x whenever the prior distribution f (θ) is in G.
Remark. The family G = {all distributions} is trivially conjugate with respect to any
likelihood function. In practice one tries to find smaller sets G that are specific to the
likelihood Lx (θ).

Table 1.1: Summary of conjugate prior distributions for different likelihood functions
Likelihood Conjugate prior Posterior distribution

distribution
X|π ∼ Bin(n, π) π ∼ β(α, β) π|x ∼ β(α+ x, β + n− x)

X|π ∼ Geom(π) π ∼ β(α, β) π|x ∼ β(α+ 1, β + x− 1)

X|λ ∼ P(e.λ) λ ∼ G(α, β) λ|x ∼ G(α+ x, β + e)

X|λ ∼ Exp(λ) λ ∼ G(α, β) λ|x ∼ G(α+ 1, β + x)

X|µ ∼ N (µ, σ2) µ ∼ N (ν, ς2) µ|x ∼ N

((
1

σ2
+

1

ς2

)−1

.

(
x

σ2
+
ν

ς2

)
,

(
1

σ2
+

1

ς2

)−1
)

X|σ2 ∼ N (µ, σ2) σ2 ∼ IG(α, β) σ2|x ∼ IG
(
α+

1

2
, β +

1

2
(x− µ)2

)

Improper Prior Distributions

The prior distribution has an intended influence on the posterior distribution. If one wants
to minimize the influence of the prior distribution, then it is common to specify a vague
prior, for example one with very large variance. In the limit this may lead to an improper
prior distribution, with a "density" function that does not integrate to unity. Due to
the missing normalizing constant, such density functions are usually specified using the
proportionality sign "∝". If one uses improper priors, then it is necessary to check that
at least the posterior distribution is proper. If this is the case, then improper priors can
be used in a Bayesian analysis. We now add a formal definition of an improper prior
distribution.
Definition 1.3.3. A prior distribution with density function f (θ) ≥ 0 is called improper
if ∫

Θ

f (θ) dθ =∞ or
∑
θ∈Θ

f (θ) =∞ (1.13)

for continuous or discrete parameters θ, respectively.
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Jeffreys Prior Distributions

It turns out that a particular choice of prior distribution is invariant under reparametri-
sation. This is Jeffreys prior (after Sir Harold Jeffreys, 1891-1989).
Definition 1.3.4. Let X be a rv with likelihood function f (x|θ) where θ is an unknown
scalar parameter. Jeffreys prior is defined as

f (θ) ∝
√
J (θ) (1.14)

where J (θ) is the expected Fisher information of θ. Equation (1.14) is also known as
Jeffreys rule.

1.3.3 Bayesian Point Estimate

Definition 1.3.5. 1. The posterior mean E (θ|x) is the expectation of the posterior
distribution:

E (θ|x) =

∫
θf (θ|x) dθ

2. The posterior mode Mod(θ|x) is the mode of the posterior distribution:

Mod (θ|x) = arg max f (θ|x)
θ

3. The posterior median Med(θ|x) is the median of the posterior distribution, i.e. any
number a that satisfies∫ a

−∞
f (θ|x) dθ = 0.5 and

∫ ∞
a

f (θ|x) dθ = 0.5 (1.15)

Properties of Bayesian Point Estimation

To estimate an unknown parameter θ , there are at least three possible Bayesian point
estimates available, the posterior mean, mode and median. Which one should we choose
in a specific application ? To answer this question, we take a decision−theoretic view and
first introduce the notion of a loss function.
Definition 1.3.6. Loss function

A loss function l (a, θ) ∈ R quantifies the loss encountered when estimating the true
parameter θ by a.
Remark. • If a = θ, the associated loss is typically set to zero: l (θ, θ) = 0.

• The quadratic loss function l (a, θ) = (a− θ)2 is a frequently employed loss function.
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• As an alternative, one may use the zero-one loss function or the linear loss function
l (a, θ) = |a− θ|

lε (a, θ) =

{
0, |a− θ| ≤ ε;
1, |a− θ| > ε.

where we have to suitably choose the additional parameter ε > 0

We now choose the point estimate a, such that it minimizes the a posteriori expected
loss with respect to f (θ|x). Such a point estimate is called a Bayes estimate.
Definition 1.3.7. (Bayes estimate)

A Bayes estimate of θ with respect to a loss function l (a, θ) minimizes the expected
loss with respect to the posterior distribution f (θ|x) i.e. it minimizes

E{l (a, θ) |x} =

∫
Θ

l (a, θ) f (θ|x) dθ

Theorem 1.3.2. [14]

1. The Bayes estimate with regard to quadratic loss is the posterior mean.

2. The posterior median is the Bayes estimate with respect to linear loss.

3. The posterior mode is the Bayes estimate with respect to zero−one loss, as ε→ 0.

To prove theorem (1.3.2) we need the next integral rule.
Definition 1.3.8. (Leibniz Integral Rule)

Let a, b and f be real-valued functions that are continuously differentiable in t .Then
the Leibniz integral rule is

∂

∂t

∫ b(t)

a(t)

f (x, t) dx =

∫ b(t)

a(t)

∂

∂t
f (x, t) dx− f{a (t) , t}. ∂

∂t
b (t) (1.16)

This rule is also known as differentiation under the integral sign.

Proof. We first derive the posterior mean E (θ|x) as the Bayes estimate with respect to
quadratic loss. The expected quadratic loss is

E{l (a, θ) |x} =

∫
l (a, θ) f (θ|x) dθ

=

∫
(a− θ)2 f (θ|x) dθ

Setting the derivative with respect to a to zero leads to
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2

∫
(a− θ) f (θ|x) dθ = 0⇔ a−

∫
θf (θ|x) dθ = 0 (1.17)

It immediately follows that a =

∫
θf (θ|x) dθ = E (θ|x) . Consider now the expected

linear loss

E{l (a, θ) |x} =

∫
l (a, θ) f (θ|x) dθ =

∫
|a− θ|f (θ|x) dθ

=

∫
θ≤a

(a− θ) f (θ|x) dθ +

∫
θ>a

(θ − a) f (θ|x) dθ

The derivative with respect to a can be calculated using Leibniz′s integral rule (1.3.8):

∂

∂a
E{l (a, θ) |x} =

∂

∂a

∫ a

−∞
(a− θ) f (θ|x) dθ +

∂

∂a

∫ ∞
a

(θ − a) f (θ|x) dθ

=

∫ a

−∞
f (θ|x) dθ − (a− (−∞)) f (−∞|x) .0 + (a− a) f (a|x) .1

−
∫ ∞
a

f (θ|x) dθ − (a− a) f (a|x) .1 + (∞− a) f (∞|x) .0

=

∫ a

−∞
f (θ|x) dθ −

∫ ∞
a

f (θ|x) dθ

Setting this equal to zero yields the posterior median a = Med (θ|x) as the solution for
the estimate. Finally, the expected zero-one loss is

E{l (a, θ) |x} =

∫
lε (a, θ) f (θ|x) dθ

=

∫ a−ε

−∞
f (θ|x) dθ +

∫ +∞

a+ε

f (θ|x) dθ

= 1−
∫ a+ε

a−ε
f (θ|x) dθ

This will be minimised if the integral
∫ a+ε

a−ε
f (θ|x) dθ is maximised. For small ε the

integral is approximately 2εf (a|x), which is maximised through the posterior mode
a = Mod (θ|x).
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1.4 Record Data

Chandler (1952)[9] pioneered the study of record values and outlined many of their funda-
mental characteristics. Record values are used in many statistical applications, including
statistical modeling and inference with data from studies on the weather, sports, eco-
nomics, and other topics. The fastest period to recite the periodic table of the elements,
the shortest tennis matches in terms of the number of games and time, or the fastest in-
door marathon are a few examples from Guinness World Records. There are many efforts
attempted to break records, but records are only broken when an attempt is successful.
The vast majority of efforts to break the record go unreported. The main findings in this
section were discovered between 1952 and 1983.

1.4.1 Standard Record Value Processes

There are two types of records, upper and lower records. Let X1, X2, ... be a sequence of
identical and independent rv from a continuous distribution.
An observation Xj is called an upper record (or simply a record) if Xj > Xi for all j > i

i.e an upper record value is a value that is larger than all the previous observations and
a lower record value is a value that is smaller than all the previous observations i.e if
Xj < Xi for all j > i, Xj an observation is called a lower record. The times at which
records appear are of interest. For convenience, let us assume that Xj is observed at time
j. Then the record time sequence {Tn, n ≥ 0} is defined in the following manner:

T0 = 1 with probability 1

and, for n ≥ 1,

Tn = min{j : Xj > XTn−1}. (1.18)

The record value sequence {Rn} is then defined by

Rn = XTn , n = 0, 1, 2, ... (1.19)

Here R0 is referred to as the reference value or the trivial record. The rest are treated
as nontrivial records. The record sequence described above implicitly presupposes that
the cdf F won’t result in any unbreakable records. That is, if the Xj can obtain the largest
real value with a high degree of probability. For example, By rolling a dice repeatedly,
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the result of Xj = 6 is an unbreakable record. Xj stands for the number received on the
j-th throw.

1.4.2 Basic Distributional Results

The distributions of the record values Rn are predictably affected by F . These observa-
tions suggest the desirability of carefully selecting a common distribution for the Xj’s,
to make derivations as simple as possible. Thus, therefore Arnold et al. (1998)[5] have
considered the classical model, as a strong argument that can be made in favor of studying
i.i.d. exponentially distributed Xj’s.
The exponential distribution has the lack of memory property and consequently
{J∗} =

{
R∗n −R∗n−1;n ≥ 1

}
are i.i.d. Exp(1) random variables. It follows that for the nth

record, R∗n corresponding to an i.i.d. Exp(1) sequence, we have

R∗n ∼ G(n+ 1, 1) n = 0, 1, 2, ... (1.20)

We may use this result to obtain the distribution of the nth record corresponding to
an i.i.d. sequence of random variables {Xj} with common continuous cdf F for more
information see Arnold and all(1998)[5]. If X has a continuous cdf F , then

H(X) = −log (1− F (X)) (1.21)

has a standard exponential distribution. Consequently, X d
= F−1(1−e−X) where, as usual,

X∗ is Exp(1). Since X is a monotone function of X∗, the nth record of the {Xj} sequence
is expressible as a simple function of the nth record of an {X∗} (standard exponential)
sequence. Specifically we have

Rn
d
= F−1(1− e−R∗

n), n = 0, 1, 2, ... (1.22)

Then using the relation (1.22), we derive the survival function of the nth record cor-
responding to an i.i.d. F sequence.

P(Rn > r) = [1− F (r)]
n∑
k=0

[−log (1− F (r))]k

k!
(1.23)

and the joint pdf is obtained as follows :

fR∗
0 ,R

∗
1 ,...,R

∗
n
(r∗0, r

∗
1, ..., r

∗
n) = e−r

∗
n , 0 < r∗0 < r∗1 < ... < r∗n (1.24)
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Definition 1.4.1. The pdf of the nth record Rn is given by :

fRn(r) = f(r)
[−log (1− F (r))]n

n!
(1.25)

the joint pdf of the set of records R0, R1, ..., Rn it is given by:

fR0,R1,...,Rn(r0, r1, ..., rn) = f(rn)
n−1∏
i=0

h(ri) (1.26)

−∞ < r0 < r1 < ... < rn < ∞, where h(r) =
∂H(r)

∂r
=

f(r)

[1− F (r)]
represents the failure

rate function.

Record Values from Specific Distributions

The record value sequence admits a clear and concise description for specific cdf F
choices. We have already remarked on the simplicity encountered when
F (x) = 1 − e−x. In this case the nth record has a G (n+ 1, 1) distribution. This is
included as a special case of the Weibull distribution. The list of parent distributions for
which the record sequence may be represented simply is not too long. We will now go to
defined some specific distributions.

Weibull Records

Suppose that the distribution of the population random variable X is Weibull with cdf

F (x) =

{
0, x ≤ 0;

1− e−( xσ )
k

, x > 0.
(1.27)

where the parameters are σ, k > 0, Such a random variable admits the representation

X
d
= σX∗

1
k (1.28)

where X∗, as usual, is an Exp(1) random variable. Consequently, for n = 0, 1, 2, .........

Rn
d
= σ

(
n∑
i=0

X∗i

) 1
k

(1.29)
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Power Function Distribution Records

If the population cdf is of the form

F (x) =


0, x ≤ 0;
xα, 0 < x < 1;
1, x ≥ 1.

(1.30)

where α > 0, a simple description of the record value sequence is possible, for n = 0, 1, 2, ...

we have

Rn
d
=

[
1−

n∏
j=0

(1− Uj)

] 1
α

(1.31)

where {Uj, j ≥ 0} is a sequence of i.i.d. Uniform(0, 1) random variables. The lower
record sequence, R̃n, admits a slightly simpler representation

R̃n =

[
n∏
j=0

Uj

] 1
α

(1.32)

Pareto Records

Suppose that the observations are taken from a cdf

F (x) =

 0, x < σ;

1−
(x
σ

)−
α, x ≥ σ.

(1.33)

where α > 0 and σ > 0. If (1.33) holds, we say the population rv, X, is Pareto(σ, α).
Observe that for such a random variable we have

X
d
= σU−

1
α (1.34)

where U is Uniform(0, 1). Consequently for n = 0, 1, 2, ...

Rn
d
= σ

(
n∏
j=0

Uj

)− 1
α

(1.35)

where the Uj’s are i.i.d. Uniform(0, 1) random variables.
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1.4.3 Record from Kies Distribution

This section introduces the Kies distribution K (λ, β) records as well as some of its distri-
butional characteristics. In this section, the lower and upper incomplete gamma functions
are required: ∫ z

0

tα−1e−µtdt = µ−αγ (α, µz) , (1.36)

∫ ∞
z

tα−1e−µtdt = µ−αΓ (α, µz) , (1.37)

respectively.
Additionally, ∫ ∞

z

t−αe−tdt = z
−α
2 e(

−α
2 )W−α

2
,( 1−α

2 ) (z) (1.38)

where Wc1,c2 (q) is the Whittaker function which is defined, for | arg (−q) | < 3π

2
, as

Wc1,c2 (q) =
Γ (−2c2)

Γ
(

1
2
− c2 − c1

)Mc2,c2 (q) +
Γ (2c2)

Γ
(

1
2

+ c2 − c1

)Mc2,−c2 (q) , (1.39)

in which

Mc1,c2 (q) = e−
α
2 qc2+ 1

2

∞∑
k=0

{(
1
2
− c1 + c2

)
k

(1 + 2c2)k

qk

k!

}
(1.40)

The series given in Eq.(1.40) converges for all finite values of q. Also the Pochhammer
symbol is defined as follows:

(a)k = a (a+ 1) (a+ 2) ... (a+ k − 1) =
Γ (a+ k)

Γ (a)
=

k∏
i=1

(a+ i− 1) , (1.41)

where (a)0 = 1 and (1)k = k!.

Kies Distribution

One of the modified versions of the Weibull distribution is known as Kies Distribution
and was firstly proposed by Kies (1958). The Kies probability model was proposed as
an alternative to the extended Weibull models as it provides a more efficient fit to some
real-life data sets in comparison to the aforementioned model.
A random variable X is said to follow a two-parameter Kies distribution with shape and
scale parameters, β and λ, respectively.
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• if its cumulative distribution function cdf is given by:

F (x;λ, β) = 1− e−λ(
x

1−x)
β

(1.42)

• if its probability density function pdf is given by:

f (x;λ, β) =
βλxβ−1

(1− x)β+1
e−λ(

x
1−x)

β

(1.43)

• if its hazard rate function is given by:

h (x;λ, β) =
βλxβ−1

(1− x)β+1
(1.44)

• if its cumulative hazard rate functions is given by:

H (x;λ, β) = λ

(
x

1− x

)β
(1.45)

1.4.4 Distributional Properties of Records from Kies Distribution

Many properties of records can be obtained in terms of the cumulative hazard function,
H (x) = −log (1− F (x)). The pdf of the mth record value is given by:

fm (y) =
[H (y)]m−1

Γ (m)
f (y) (1.46)

The joint pdf of the mth and sth records is given by:

fm,s (y, z) =
[H (y)]m−1

Γ (m)

f (y)

1− F (y)

[H (z)−H (y)]s−m−1

Γ (s−m)
f (z) (1.47)

which is equivalent to

fm,s (y, z) =
[H (y)]m−1

Γ (m)
h (y)

[H (z)−H (y)]s−m−1

Γ (s−m)
f (z) , (1.48)

where −∞ < y < z < ∞, h (.) is the hazard rate function. The conditional density
of ys given ym, where ym < ys, is given by

f (ys|ym;λ, β) =
[H (ys)−H (ym)]s−m−1

Γ (s−m)

f (ys|λ, β)

1− F (ym|λ, β)
(1.49)

• Using Eq’s (1.43), (1.44) and (1.45), the pdf of the mth record and the joint pdf of
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the mth and sth records from K(λ, β) given in Eq’s.(1.46) and (1.48), respectively,
become:

fm(y) =
βλm

Γm

(
y

1− y

)mβ
1

y(1− y)
e−λ(

y
1−y )

β

(1.50)

fm,s(y, z) =
λβ2

Γ(m)

ymβ−1

(1− y)mβ+1

[(
z

1−z

)β − ( y
1−y

)β]s−m−1

Γ(s−m)

(
zβ−1

(1− z)β+1

)
e−λ(

z
1−z )

β

(1.51)

where 0 < y < z < 1 and λ, β > 0.

• Using Eq’s. (1.51) and (1.36) the cdf Fm of the mth record value from Kies distri-
bution is given by:

Fm (y) =

γ

(
m,λ

(
y

1−y

)β)
Γ (m)

, m ≥ 1 (1.52)

where 0 < y < 1 and λ, β ≥ 0

Proposition 1.4.1. [4]

Suppose that the random variable X follows a Kies distribution. Then, one can prove
that

X
d
=

(
1
λ
X∗
) 1
β

1 +
(

1
λ
X∗
) 1
β

(1.53)

whereDmeans converges in distribution andX∗ = −log(1−U) where U is Uniform(0, 1).
It is obvious that X∗ follows a standard exponential distribution. Consequently, using
the result, (A.4.10), Page(174) of Houchens (1984)[?],
the corresponding sequence of records can be described by

Ym
d
=

(
1
λ

m∑
i=1

X∗i

) 1
β

1 +

(
1
λ

m∑
i=1

X∗i

) 1
β

(1.54)

where {X∗i }
m
i=1 is a sequence of i.i.d. Exp(1) random variables.

Proposition 1.4.2. [4] If the random variableX has a Kies distribution, then kth moment
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µ(k)
m = E(Y (k)

m ) for the mth record from the Kies distribution is given by

µ(k)
m =

1

Γ(m)

∞∑
j=0

(−1)j
(k)j
j!

λ−( k+jβ )γ

(
m+

k + j

β
, λ

)
(1.55)

+
1

Γ(m)

β(m−1)∑
j=0

(−1)j
(k)j
j!

λ
j
βΓ

(
m− j

β
, λ

)

+
1

Γ(m)

 ∞∑
j=β(m−1)+1

(−1)j
(k)j
j!

λ
m
2

+ j
2β
− 1

2 e
m
2
− j

2β
− 1

2 ∗wm
2
− j

2β
− 1

2
,(m2 −

j
2β )(λ)


Proof. By using Eq (1.50), the kth moment for the mth record from the Kies distribution
is given by:

E(Y k
m) =

∫ 1

0

βλm

Γ(m)

(
ym

1− ym

)mβ
ykm

ym (1− ym)
e−λ(

ym
1−ym )

β

dym (1.56)

On substituting
(

ym
1− ym

)β
= t in Eq (1.56), we get

E(Y k
m) =

λm

Γ(m)

∫ ∞
0

(
t
1
β

1 + t
1
β

)k

tm−1e−λtdt (1.57)

On splitting the integral and expanding
(

1 + t
1
β

)−k
using Newton’s generalization of

the binomial theorem, we get the following:

E(Y k
m) =

λm

Γ(m)

∫ 1

0

tm+ k
β
−1(

1 + t
1
β

)k e−λtdt+
λm

Γ(m)

∫ ∞
0

tm+ k
β
−1

t
k
β

(
t−

1
β + 1

)k e−λtdt
=

λm

Γ(m)

∞∑
j=0

(−1)j(k)j
j!

∫ 1

0

(
t
k+j+mβ

β
−1
)
e−λtdt

+
λm

Γ(m)

∞∑
j=0

(−1)j(k)j
j!

∫ ∞
0

(
t
mβ−j
β
−1
)
e−λtdt

where (.)j is the Pochhammer symbol given by (1.41). If we put µ = λt, we get

E(Y k
m) =

1

Γ(m)

∞∑
j=0

(−1)j(k)j
j!

λ−
k+j
β

∫ λ

0

(
µ
k+j+mβ

β
−1
)
e−µdµ

+
1

Γ(m)

∞∑
j=0

(−1)j(k)j
j!

λ
j
β

∫ ∞
λ

(
µ
mβ−j
β
−1
)
e−µdµ
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since the exponent
(
m− j

β

)
in the second integral carries positive and negative

values.
Therefore, on splitting the second summation we get the following:

E(Y k
m) =

1

Γ(m)

∞∑
j=0

(−1)j(k)j
j!

λ−
k+j
β

∫ λ

0

(
µ
k+j+mβ

β
−1
)
e−µdµ

+
1

Γ(m)

β(m−1)∑
j=0

(−1)j(k)j
j!

λ
j
β

∫ ∞
λ

µm−
j
β
−1e−µdµ

+
1

Γ(m)

∞∑
j=β(m−1)+1

(−1)j(k)j
j!

λ
j
β

∫ ∞
λ

µ−(1+ j
β
−m)e−µdµ

which leads to (1.55) in the light of (1.36) (1.37) (1.38).

The expected value of the mth record [E(Ym)] is the first moment which is denote µ(1)
m

In addition, the variance of the mth record is

var(ym) = µ(2)
m − [µ(1)

m ]2

For illustrative purposes, E(Y m) and variance of some records of Kies distribution, namely
3rd, 5th, 7th and 10th, are computed and summarized in the next table assuming different
values of λ and β.

Table 1.2: Expected values and variances of records from K(λ, β) with λ = 1, 2 and
β = 0.75, 2

m
λ = 1 λ = 2

β = 0.75 β = 2 β = 0.75 β = 2
E(ym) Variance E(ym) Variance E(ym) Variance E(ym) Variance

3 0.74800 0.02350 0.61100 0.00549 0.57000 0.03240 0.52800 0.00585
5 0.86600 0.00625 0.67800 0.00267 0.73200 0.01470 0.59900 0.00317
7 0.95500 0.00201 0.71700 0.00161 0.81600 0.00659 0.64200 0.00203
10 0.97800 0.00021 0.75400 0.00092 0.88200 0.00228 0.68500 0.00124
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Figure 1.1: pdf of the mth record plots with λ = 1 and β = {1, 2, 3, 5} for Ym , m = 3

Figure 1.2: pdf of the mth record plots with λ = {1, 2, 3, 5} and β = 1 for Ym , m = 3
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Figure 1.3: pdf of the mth record plots with λ = 1 and β = {1, 2, 3, 5} for Ym , m = 7

Figure 1.4: pdf of the mth record plots with λ = {1, 2, 3, 5} and β = 1 for Ym , m = 7
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Figure 1.5: pdf of the mth record plots with λ = {1, 2, 3, 5} and β = 1 for Ym , m = 10

Figure 1.6: pdf of the mth record plots with λ = 1 and β = {1, 2, 3, 5} for Ym , m = 10
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Figure 1.7: pdf of the mth record plots with λ = {0.5, 0.7, 0.8, 0.9} and β = 0.7 for Ym ,
m = 3

Figure 1.8: pdf of the mth record plots with λ = {0.5, 0.7, 0.8, 0.8} and β = 0.7 for Ym ,
m = 7
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Figure 1.9: pdf of the mth record plots with λ = {0.5, 0.7, 0.8, 0.8} and β = 0.7 for Ym ,
m = 10

Figure 1.10: pdf of the mth record plots with λ = {8, 10, 15, 20} and β = 0.5 for Ym ,
m = 3
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Figure 1.11: pdf of the mth record plots with λ = {8, 10, 15, 20} and β = 0.5 for Ym ,
m = 7

Figure 1.12: pdf of the mth record plots with λ = {8, 10, 15, 20} and β = 0.5 for Ym ,
m = 10

Figures from Figure 1.1 to Figure 1.12 show the distribution curves of the mth record
from K(λ, β) distribution for different values of λ, β at different values of m. From these
graphs, one can notice the effects of the parameters λ, β on the distribution curves. For
instance, it is also obvious that the distributions of the random variable ym are unimodal.
One also can notice that the distribution is almost symmetric, skewed to the left or to
the right under specific values of the parameters.



Chapter 2
Classical and Bayesian Estimation
Based on Records from Kies
Distribution

The Kies distribution, indicated by K (λ, β), has a restricted range, making it an ideal
model for modeling actual data sets. Recently, it has received the attention of different
authors in the literature. In this chapter we will address the attention to the estimation
problem of the two unknown parameters of the Kies distribution, K(λ, β), based on upper
record data. Classical and Bayesian approaches are considered. The maximum likelihood
estimation along with the associated asymptotic and bootstrap-p confidence intervals
are obtained. Furthermore, Bayes estimates based on the square error and the linear
exponential loss functions are computed using gamma priors for the unknown parameters.

2.1 Classical Estimation

2.1.1 Maximum Likelihood Estimation

Let y = {y1, y2, ..., ym} be the first m upper record values arising from a sequence of iid
random variables from a Kies distribution K (λ, β) with cdf , pdf and hazard rate given
in Eq’s.(1.42), (1.43) and (1.44), respectively.
The likelihood function of the y is given by, (1.26)

42
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L
(
y;λ, β

)
= f (ym;λ, β)

m−1∏
i=1

h (yi;λ, β) (2.1)

= βmλme−λ(
ym

1−ym )
β

m∏
i=1

yβ−1
i

(1− yi)β+1

The log-likelihood function is:

logL
(
y;λ, β

)
= log

(
βmλme−λ(

ym
1−ym )

β
m∏
i=1

yβ−1
i

(1− yi)β+1

)

= log (βm) + log (λm) + log

(
e−λ(

ym
1−ym )

β
)

+
m∑
i=1

log

(
yβ−1
i

(1− yi)β+1

)

= mlogβ +mlogλ− λ
(

ym
1− ym

)β
+

m∑
i=1

(
log
(
yβ−1
i

)
− log

(
(1− yi)β+1

))
= mlogλβ − λ

(
ym

1− ym

)β
+ (β − 1)

m∑
i=1

log (yi)− (β + 1)
m∑
i=1

log (1− yi)

= mlogβ +mlogλ− λ
(

ym
1− ym

)β
+ β

m∑
i=1

log (yi)−
m∑
i=1

log (yi)

− β
m∑
i=1

log (1− yi)−
m∑
i=1

log (1− yi)

= mlogβ +mlogλ− λ
(

ym
1− ym

)β
+ β

m∑
i=1

log

(
yi

1− yi

)
−

m∑
i=1

log
(
yi − y2

i

)

where 0 < y1 < y2 < ... < ym < 1, β > 0 and λ > 0.

∂logL
(
y;λ, β

)
∂λ

=
m

λ
−
(

ym
1− ym

)β
(2.2)

∂logL
(
y;λ, β

)
∂β

=
m

β
− λ

(
ym

1− ym

)β
log

(
ym

1− ym

)
+

m∑
i=1

log

(
yi

1− yi

)
(2.3)

We set the partial derivatives to zero we obtian the MLEs :

λ̂ =
m(
ym

1−ym

)β̂ (2.4)
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β̂ =
m

m−1∑
i=1

log
(
ym(1−yi)
(1−ym)yi

) (2.5)

The following proposition shows existence and uniqueness of the MLEs of λ and β see,
Xia et al.(2009)[31].
Proposition 2.1.1. [4] The log-likelihood function logL(y|λ, β) is unimodal function of
λ and β.

Proof. Note that logL(y|λ, β) is continuous in λ and β , and the Hessian matrix of the
log-likelihood function is negative definite, which is given by:

H =


∂2logL(y|λ, β)

∂λ2

∂2logL(y|λ, β)

∂λ∂β
∂2logL(y|λ, β)

∂β∂λ

∂2logL(y|λ, β)

∂β2


where

∂2logL(y|λ, β)

∂λ2
= −m

λ2
(2.6)

∂2logL(y|λ, β)

∂λ∂β
=
∂2logL(y|λ, β)

∂β∂λ
= −

(
ym

1− ym

)β
log

(
ym

1− ym

)
(2.7)

∂2logL(y|λ, β)

∂β2
= −

m+ λβ2
(

ym
1−ym

)β
log2

(
ym

1−ym

)
β2

 (2.8)

Thus, logL(y|λ, β) is unimodal of λ and β. This immediately proves existence and
uniqueness of the MLEs of the unknown parameters λ and β of the Kies distribution. In
order to prove that the Hessian matrix is negative definite for λ and β, sufficient conditions
are:

1. Determine of the upper left 1 -by- 1 corner
∂2logL(y|λ, β)

∂λ2
of H need to be negative;

2. Determinant of H, det(H), needs to be positive for λ and β.

Based on (2.11), condition one is satisfied. In order to prove the second condition,

det(H) =
m

λ2

(
m

β2
+ λ

(
ym

1− ym

)β
log2

(
ym

1− ym

))
−

(
λβ2

(
ym

1− ym

)β
log

(
ym

1− ym

))2

(2.9)
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if we replace λ in (2.9) by its corresponding MLE, λ̂, we get


(

ym
1−ym

)β
β


2

> 0.

2.1.2 Asymptotic Confidence Interval

Since it is not easy to derive the exact distribution of the MLEs in Eq’s (2.4) and
(2.5), we cannot obtain the exact confidence intervals (CIs) for the parameters λ and β
Consequently, asymptotic CIs (ACIs) of the parameters are derived using the asymptotic
distribution of MLEs. To this end, we need to find the variance-covariance matrix of the
MLEs. The observed information matrix of θ = (λ, β) is given by:

I(θ) = −


∂2logL(y|λ, β)

∂λ2

∂2logL(y|λ, β)

∂λ∂β
∂2logL(y|λ, β)

∂β∂λ

∂2logL(y|λ, β)

∂β2

 (2.10)

where

∂2logL(y|λ, β)

∂λ2
= −m

λ2
(2.11)

∂2logL(y|λ, β)

∂λ∂β
=
∂2logL(y|λ, β)

∂β∂λ
= −

(
ym

1− ym

)β
log

(
ym

1− ym

)
(2.12)

∂2logL(y|λ, β)

∂β2
= −

m+ λβ2
(

ym
1−ym

)β
log2

(
ym

1−ym

)
β2

 (2.13)

Hence, the inverse of the observed information matrix is given by:

I−1(θ) = −


∂2logL(y|λ, β)

∂λ2

∂2logL(y|λ, β)

∂λ∂β
∂2logL(y|λ, β)

∂β∂λ

∂2logL(y|λ, β)

∂β2


−1

=

(
V11 V12

V21 V22

)
(2.14)

where
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V11 =
m+ λβ2

(
ym

1−ym

)β
log2

(
ym

1−ym

)
m
λ2

(
m+ λβ2

(
ym

1−ym

)β
log2

(
ym

1−ym

))
− β2

((
ym

1−ym

)β
log
(

ym
1−ym

))2

V12 = V21 =
−
(

ym
1−ym

)β
log
(

ym
1−ym

)
m
λ2β2

(
m+ λβ2

(
ym

1−ym

)β
log2

(
ym

1−ym

))
−
((

ym
1−ym

)β
log
(

ym
1−ym

))2

V22 =
1

m
β2 + λ

(
ym

1−ym

)β
log2

(
ym

1−ym

)
−
(
λ( ym

1−ym )
β
log( ym

1−ym )
)2

m

The asymptotic joint distribution of theMLEs λ̂ and β̂ is approximated by a bivariate
normal distribution, and is given by:

(
λ̂

β̂

)
D∼ N

[(
λ

β

)
,

(
V11 V12

V21 V22

)]
(2.15)

Hence, by replacing λ and β by their MLEs, we get an estimate of I−1(θ), which is
called the approximate variance-covariance matrix for the MLEs θ̂ = (λ̂, β̂) as follows:

I−1(θ̂) =


m(

(Am)β̂
)2

(
1 + β̂2log2 (Am)

) −β̂2log (Am)

(Am)β̂

−β̂2log (Am)

(Am)β̂
β̂2

m

 =

(
var(λ̂) cov(λ̂, β̂)

cov(β̂, λ̂) var(β̂)

)

(2.16)

Where Am =
ym

1− ym
Consequently, asymptotic 100(1−α) % (CIs) for the parameters

λ and β are, respectively, given by:

(Lλ, Uλ) =

(
λ̂− z1−α

2

√
var(λ̂), λ̂+ z1−α

2

√
var(λ̂)

)
(2.17)

and

(Lβ, Uβ) =

(
β̂ − z1−α

2

√
var(β̂), β̂ + z1−α

2

√
var(β̂)

)
(2.18)

where zα is 100αth percentile of the standard normal distribution. However, some
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cases provide negative lower bounds of the asymptotic CI while the parameters λ and β
are positive. In order to avoid this, we propose using delta method and log-transformation
for the parameters in order to construct a modified asymptotic confidence intervals for
λ and β, following the lines of Ren and Gui (2020)[29]. The asymptotic distribution of
log(θ̂j), j = 1, 2, is given by:

(
log(θ̂j)− log(θj)

)
D∼ N

(
0, var(log(θ̂j))

)
(2.19)

where var
(
log(θ̂j)

)
=
var(θ̂j)

θ̂2
j

=
I−1(θ̂j)

θ̂2
j

, hence

θ̂j√
I−1(θ̂j)

(
log(θ̂j)− log(θj)

)
D∼ N(0, 1) (2.20)

Therefore, modified asymptotic (1 − α)100%(0 < α < 1) CIs for λ and β can be easily
obtained, respectively, as follows:

(
λ̂

e
z1−α

2
λ̂

√
var(λ̂)

, λ̂e
z1−α

2

√
var(λ̂)

)
and

(
β̂

e
z1−α

2
β̂

√
var(β̂)

, β̂e
z1−α

2

√
var(β̂)

)
(2.21)

2.1.3 Bootstrap Method

In this section, the percentile Bootstrap method, also known as Boot-p, is introduced to
create estimated confidence intervals (CIs) for λ and β using the following methodology
because asymptotic CIs results do not perform well for a small sample size. For an
illustration, see [1, 12].

step (1) From the records y1, y2, ..., ym, compute the MLEs .λ̂ML and β̂ML.

step (2) Using λ̂ML and β̂ML that are obtained in Step(1), generate a randomsample of
records from K(λ, β), called a bootstrap sample.

step (3) Based on the Bootstrap sample that is obtained in Step(2), compute the corre-
sponding MLEs λ̂∗ and β̂∗ of λ and β, respectively

step (4) Repeat Steps(2) and (3) B-times to obtain
{
λ̂∗1, λ̂

∗
2, ..., λ̂

∗
B

}
and

{
β̂∗1 , β̂

∗
2 , ..., β̂

∗
B

}
.

step (5) Arrange
{
λ̂∗1, λ̂

∗
2, ..., λ̂

∗
B

}
and

{
β̂∗1 , β̂

∗
2 , ..., β̂

∗
B

}
in ascending order and obtain{

λ̂∗(1), λ̂
∗
(2), ..., λ̂

∗
(B)

}
and

{
β̂∗(1), β̂

∗
(2), ..., β̂

∗
(B)

}
.
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step (6) The approximate 100(1−α)%Boot-p CIs for λ and β are given by
(
λ̂∗(Bα

2
), λ̂
∗
(B(1−α

2 ))

)
and

(
β̂∗(Bα

2
), β̂
∗
(B(1−α

2 ))

)
, respectively.

2.2 Bayesian Estimation

Bayesian approach is one of the most popular techniques for making inferences about
unknown parameters of a probability distribution. In Bayesian approach, the unknown
parameters are assumed to be random variables with distributions called prior distribu-
tion. The second factor affecting Bayesian estimation is the loss function, which represents
the losses associated with errors committed while estimating the parameters. We confine
our interest to two kinds of loss functions, the symmetric square error (SE) and asym-
metric linear exponential (LINEX) loss functions of the parameter θi and an estimate θ̂i
which are given, respectively, by:

LSE

(
θ̂, θ
)

=
(
θ̂ − θ

)2

(2.22)

and
LLINEX

(
θ̂, θ
)

= b
[
eν(θ̂−θ) − ν

(
θ̂ − θ

)
− 1
]

(2.23)

where b > 0 is the scale of the loss function. In our study, we assume b = 1. The param-
eter v 6= 0 indicates the shape parameter of the loss function. The LINEX loss function
is affected by ν, the sign of ν indicates the direction of the asymmetry, and the magnitude
of ν indicates the degree of the asymmetry. It is known that if ν > 0 then overestimation
is considered to be more serious than underestimation, while if ν < 0 then the reverse
situation, while when ν is close to zero, the LINEX loss function is almost symmetric
and is approximately equal to the SE loss function. Thus for small values of ν, estimation
results obtained by both LINEX and SE are close. For more details about the LINEX
loss function, readers may refer to Zellner, A. (1986) [32].

A natural choice of priors for λ and β would be to assume that the two quantities
are independent with gamma distributions; namely G(a1, b1) and G(a2, b2), respectively,
where hyper-parameters a1, a2, b1 and b2 are nonnegative numbers chosen to reflect prior
knowledge about the parameters λ and β.

The joint prior distribution of λ and β is obtained as follows:

g(λ, β) ∝ λa1−1e−b1λβa2−1e−b2β (2.24)

Using the upper record y = y1, y2, ..., ym, the joint posterior distribution of λ and β is
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obtained as follows:

π(λ, β|y) ∝ L(y|λ, β)g(λ, β) (2.25)

where L(y|λ, β) is the likelihood function given in Eq (2.1) and g(λ, β) is the joint
prior density given in Eq (2.24) By substituting Eq’s (2.24) and (2.1) in Eq (2.25), the
joint posterior density of λ and β is given by:

π(λ, β|y) ∝ λm+a1−1βm+a2−1e−βb2e−λ(b−1+Aβm)
m∏
i=1

(
yi

1− yi

)β
(2.26)

It can be seen that the joint posterior distribution in Eq (2.26) can be represented as
follows:

π(λ, β|y) ∝ π1(β|y)π2(λ|β, y) (2.27)

where

π1(β|y) ∝
βm+a2−1e−βb2

m∏
i=1

(
yi

1−yi

)β
(
b1 + Aβm

)m+a1
(2.28)

and π2(λ|β, y) is a gamma density with shape and scale parameters m + a1 and[
b1 + Aβm

]−1, respectively.
Lemma 2.2.1. [4] The conditional distribution of β given the observed records, π1(β|y),
is log concave.

Proof. The log likelihood of conditional distribution of β given the observed records, Eq
(2.28), is given by:

logπ1(β|y) ∝ −(m+ a1)log
(
b1 + Aβm

)
+ (m+ a2 − 1)log(β)− β

(
b2 −

m∑
i=1

log

(
yi

1− yi

))
(2.29)

By differentiating logπ1(β|y) twice with respect to β, we get:

∂π1(β|y)

∂β
= −(m+ a1)

AβmlogAm

b1 + Aβm
+
m+ a2 − 1

β
− b2 +

m∑
i=1

log

(
yi

1− yi

)
(2.30)
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∂2π1(β|y)

∂β2
= −(m+ a1)

Aβm (logAm)2 (b1 + Aβm
)
−
(
AβmlogAm

)2(
b1 + Aβm

)2

− m+ a2 − 1

β2

(2.31)

Since
∂2π1(β|y)

∂β2
< 0, this follows that π1(β|y) is log-concave density.

Subsequently, the Bayes estimate of any function of λ and β, say η(λ, β), under
LINEX and LINEX loss functions separately are given by:

θ̂BS =

∫∞
0

∫∞
0
η(λ, β)π1(β|y)π2(λ|β, y)dβdλ∫∞

0

∫∞
0
π1(β|y)π2(λ|β, y)dβdλ

(2.32)

θ̂BL = −1

ν
log

(∫∞
0

∫∞
0
e−νη(λ,β)π1(β|y)π2(λ|β, y)dβdλ∫∞

0

∫∞
0
π1(β|y)π2(λ|β, y)dβdλ

)
(2.33)

respectively.
Unfortunately, Bayes estimates in Eq’s (2.32) and (2.33) cannot be derived in explicit
forms. Therefore, the importance sampling technique was proposed by Chen and Shao
(1999)[10] to approximate the Bayes estimates. Similar methods were employed, for in-
stance, by Pradhan and Kundu (2009)[21], and Bayoud (2016)[8].

It can be easily seen that the marginal posterior of β in Eq (2.28) can be rewritten as
follows:

π1(β|y) ∝ g1(β|y)g2(β) (2.34)

where g1(β|y) is a gamma density with shape and scale parameters (m+ a2) and
1

b2

,

respectively, and

g2(β) =

m∏
i=1

(
yi

1−yi

)β
(
b1 + Aβm

)m+a1
(2.35)

In order to compute the approximate Bayes estimates for the parameters β and λ,
we now suggest the following approach, which is similar to that proposed by Kundu and
Pradhan (2009)[21]. Let y = y1, y2, ..., ym be a set of m upper records and let ai and bi,
(i = 1, 2) be pre-assumed hyper-parameters chosen based on prior information about the
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underlying parameters β and λ.

Step (1) Generate a random sample of size M from a gamma prior distribution with pdf
g1(β|y), say β1, β2, ..., βM ;

Step (2) For each βj , generate λj from the gamma density function π2(λ|βj, y), say
λ1, λ2, ..., λM ;

Step (3) Compute g2(βi), for j = 1, 2, ...,M ;

Step (4) Under the SE loss function, the approximate Bayes estimate of η(λ, β) can be
obtained using the importance sampling technique as:

η̂BS(λ, β) =

M∑
j=1

η(λj, βj)g2(βj)

M∑
j=1

g2(βj)

(2.36)

Hence, β̂BS =

M∑
j=1

βjg2(βj)

M∑
j=1

g2(βj)

and λ̂BS =

M∑
j=1

λjg2(βj)

M∑
j=1

g2(βj)

.

Step (5) Under the LINEX function, the approximate Bayes estimate of η(λ, β) can be
obtained using the importance sampling technique as:

θ̂BL = η̂(λ, β)− 1

ν
log

M∑
j=1

e−νη(λj ,βj)g2(βj)

M∑
j=1

g2(βj)

(2.37)

Hence, β̂BL = −1

ν
log

M∑
j=1

e−νβjg2(βj)

M∑
j=1

g2(βj)

and λ̂BL = −1

ν
log

M∑
j=1

e−νλjg2(βj)

M∑
j=1

g2(βj)

.

2.3 Comparison between obtained estimators

In this section we will illustrate the performance of the so obtained estimators, to end this
Al-Olaimat et al. (2021) [4] have conducted a simulation study to compare between the
classical, bayesian and confidence interval estimation methods of the unknown parame-
ters λ and β. Simulation is performed under the assumption of two sets of parameter
values (λ = 1,β = 2), (λ = 2,β = 1) a given number m of upper records are generated
from K(λ, β). The MLEs and the approximate Bayes estimates are computed using the
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importance sampling procedure. Bayes estimates are computed under the SE and LINEX
loss functions assuming the following priors which are assumed based on the values of the
true parameters under study: Prior 0: a1 = 0, b1 = 0, a2 = 0, b2 = 0.
For λ = 1, β = 2:
Prior 1: a1 = 2, b1 = 2, a2 = 16, b2 = 8 and prior 2: a1 = 4, b1 = 4, a2 = 8, b2 = 4.
For λ = 2, β = 1:
Prior 3: a1 = 4, b1 = 2, a2 = 8, b2 = 8 and prior 4: a1 = 8, b1 = 4, a2 = 16, b2 = 16.
These priors are assumed so as λ has the same mean but with different variances, and β
has the same mean but different variances. The main purpose of this is to reflect the sen-
sitivity of this inferences to the choice of the hyper-parameters as they said in this study.
The shape parameter of LINEX loss function ν is assumed to equal {−0.01, 0.5, 2}, sepa-
rately.
Simulations are performed with M = 1000 iterations used Mathematica 9. The mean
squared errors (MSEs) of the proposed MLEs and Bayes estimates are computed. The
point estimation results are reported in tables Tables 2.1 and 2.2 and for the performance
of the proposed classical CIs it was carried out in terms of the AL and the CP. The ALs
and CPs of the 95% ACIs and Boot-p CIs for λ and β assuming m = {5, 6, 7, 8}. are
resumed in tables Tables 2.3 and 2.4.
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Table 2.3: ALs and CPs of 95% CIs of λ = 1 and β = 2

Cases ACI Boot-p
m β λ β λ

m=5 CP 0.80 0.93 0.70 0.81
AL 3.8612 6.0170 7.5359 12.7930

m=6 CP 0.88 0.94 0.76 0.85
AL 2.6151 5.8688 4.3292 7.0043

m=7 CP 0.88 0.95 0.82 0.87
AL 2.2432 5.6800 2.9700 4.9216

m=8 CP 0.88 0.95 0.83 0.94
AL 2.0205 5.4132 2.5839 4.9142

Table 2.4: ALs and CPs of 95% CIs of λ = 2 and β = 1

Cases ACI Boot-p
m β λ β λ

m=5 CP 0.84 0.93 0.71 0.77
AL 3.3471 6.4309 6.2641 28.2670

m=6 CP 0.86 0.93 0.73 0.83
AL 2.6966 5.8499 4.7969 7.5577

m=7 CP 0.86 0.95 0.75 0.83
AL 2.3408 5.6125 4.0902 6.7176

m=8 CP 0.90 0.97 0.79 0.86
AL 1.9024 5.5002 2.7860 4.6248

Table Tables 2.1 and 2.2 show that the performances of the Bayes estimates are better
than MLE for both parameters in terms of MSE. It can be also seen that the informative
Bayes estimates under LINEX loss function with positive ν outperform the other estimates
in most considered cases. some prior assumptions produce better Bayes estimates than
other priors. For example, the MSEs of the Bayes estimates under Prior 4 are getting
smaller than their counterparts under Prior 3. Clearly, the MSE of the proposed estimates
decreases as m increases for both λ and β.
In view of interval estimation, Table Tables 2.3 and 2.4 summarize the ALs and CPs of
ACIs and Boot-p CIs of λ and β when (λ, β) = (1, 2). ACIs are superior to the Boot-p
CIs as they produce higher CPs with less ALs.



Chapter 3
Prediction of Records from Kies
Distribution

Prediction of future events on the basis of past and present information is a fundamental
topic in statistics. Many real applications can be found. For example, in industrial pro-
duction, a manufacturer would use the known previous imperfection and faults to predict
an idealistic quality of the product. In economics, one would like to predict the next
highest closing price of a particular stock.
The prediction problem is different from estimation. In prediction, the predictor uses
a given data to guess about random value that is not a part of the data set, while an
estimator uses the sample data to guess the value of the parameter.
In this chapter, we deal with the prediction problem of future records based on ob-
served records from two-parameter Kies distribution. We derive different point predictors;
namely: Maximum Likelihood, the modified maximum likelihood, conditional median and
one-sample Bayesian predictors. Procedures of prediction intervals are also discussed such
as pivotal method, shortest length prediction interval.

3.1 Classical Point Prediction

We deal with a variety of predictor types while discussing non-Bayesian point predictors,
including maximum likelihood predictor, modified maximum likelihood predictor and con-
ditional median predictor, which will be covered in the sections that follows.
let y1 < y2 < ... < ym be the first m upper records, let ys be the sth future record
where s > m. Prediction of ys based on the first m observed records, y = {y1, y2, ..., ym},
depends mainly on the conditional predictive density function of ys given the observed
records y = {y1, y2, ..., ym}. Using the Markovian property of records, the conditional
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distribution of ys given y is just the conditional distribution of ys given ym, see Arnold et
al. (1998)[5], with a pdf given by:

f (ys|ym;λ, β) =
[H (ys)−H (ym)]s−m−1

Γ (s−m)

f (ys|λ, β)

1− F (ym|λ, β)
(3.1)

Hence, using Eq’s (1.42) and (1.43), Eq (3.1) reduces to

f(ys|ym) = λs−mβ

(
ys

1−ys

)β
ys(1− ys)

[(
ys

1−ys

)β
−
(

ym
1−ym

)β](s−m−1)

Γ(s−m)
e
−λ
[
( ys
1−ys )

β
−( ym

1−ym )
β
]

(3.2)

where 0 < ym < ys < 1.

3.1.1 Maximum Likelihood Predictor

Predicting the unobserved value of Y based on an observed random Simple X with joint
pdf f(x, y|θ) is the main challenge in non-Bayesian prediction. Hence, let

L(y, θ|x) = f(y|x, θ)f(x; θ),

be the predictive likelihood function (PLF) of y and θ given x, where f(y|x, θ) is the
conditional density of y given the observed value of x and f(x; θ) is the joint pdf of the
sample data x.
Now, Assume Y ? = u(x) and θ? = w(x) are statistics. Then, Y ? is called a maximum
likelihood predictor (MLP) of Y , and θ? is the predictive maximum likelihood estimates
(PMLEs) of θ, if

L(y?, θ?|x) = sup
y,θ
L(y, θ|x)

Now for our case y = {y1, y2, ..., ym} is a sequence of observed records from kies
distribution where (λ,β) are the two unknown parameters of kies distribution. The PLF
of ys, λ and β is

L
(
ys, θ|y

)
=

m∏
i=1

h(yi, θ)

(
[H(ys, θ)−H(ym, θ)]

s−m−1

Γ(s−m)
f(ys, θ)

)
(3.3)

in general, if ŷMLP = u(y), λ̂ = v(y) and β̂ = w(y) are statistics for which

L(ŷMLP , λ̂, β̂|y) = sup
ys,λ,β

L(ys, λ, β|y) (3.4)
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then u(y) is said to be the MLP of ys, 1 < m < s, and v(y) and w(y) are the predictive
maximum likelihood estimates (PMLEs) of λ and β, respectively.
Using Eq’s (1.43), (1.44) and (1.45). Eq(3.3) is simplified to:

L(ys, λ, β|y) = λsβm+1

m∏
i=1

Aβi
yi(1− yi)

[(
Aβs − Aβm

)s−m−1

Γ(s−m)

Aβs
ys (1− ys)

e−λA
β
s

]
(3.5)

where Ai =
yi

1− yi
, so the predictive log-likelihood function is given by:

log
(
L(ys, λ, β, |y)

)
∝ slog(λ) + (m+ 1)log(β) + β

m∑
i=1

log(Ai)

+ (s−m− 1)log
(
Aβs − Aβm

)
(3.6)

+ (β − 1)log

(
As

1 + As

)
− (β + 1)log

(
1

1 + As

)
− λAβs

By using Eq (3.6) the predictive likelihood equations (PLEs) for ys, λ and β are derived
and presented, respectively, as follows:

∂log(L(ys, λ, β|y))

∂λ
=
s

λ
− Aβs = 0, (3.7)

∂log(L(ys, λ, β))

∂β
=

m+ 1

β
+

m∑
i=1

logAi + (s−m− 1)
Aβs logAs − AβmlogAm

Aβs − Aβm
(3.8)

+ (1− λAβs )logAs = 0

∂log(L(ys, λ, β))

∂ys
= (s−m− 1)β

Aβs

ys(1− ys)(Aβs − Aβm)
+
β + 2ys − 1

ys(1− ys)
(3.9)

− λβ
yβ−1
s

(1− ys)β+1
= 0

The PMLE of λ is obtained from Eq (3.7) and it is given by:

λ̂ =
s

Aβs
(3.10)

The PMLE of β, say β̂, and MLP of ys, say ŷMLP , can be obtained by substituting Eq
(3.10) in Eq (3.8) and Eq (3.9),respectively. Then, the obtained equations need to be
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solved with respect to β and ys using numerical methods(Newton Raphson)

3.1.2 Modified Maximum Likelihood Predictor

In practical situations, experimenters are often interested in obtaining a simple and quick
predictor. Al-olaimat et al. (2021) [4] proposed a modified maximum likelihood predictor
(MMLP) by substituting the parameters λ and β in Eq (3.9) by their MLEs λ̂ and β̂

which are stated in Chapter 2. MMLP of ys is obtained as the solution of the following
equation:

1

ys(1− ys)

[
(s−m− 1)β̂

Aβ̂s

Aβ̂s − Aβ̂m
+ 2ys − λ̂β̂Aβ̂s + β̂ − 1

]
= 0 (3.11)

where ys > ym.
The MMLP of ys, ŷMMLP must be computed using a numerical method because Eq (3.11)
cannot be solved analytically.

3.1.3 Conditional Median Predictor

Another potential predictor is the conditional median predictor (CMP), it was suggested
by Raqab (1992) [28]. Ŷs is the conditional median predictor of ys given the observed
data y, if it is the median of its the conditional distribution. That is,

Pθ(ys < Ŷs|y) = Pθ(ys > Ŷs|y) =
1

2
.

Let ŶCMP is the conditional median predictor of ys. Put ŶCMP = k(ym;λ, β) which is a
function of ym, so

P ((ys|ym;λ, β) ≤ k(ym, λ, β)) =
1

2
= P ((ys|ym;λ, β) ≥ k(ym, λ, β)),

Consequently from Eq (3.2), we have:∫ k(ym,λ,β)

ym

λs−mβ
Aβs

ys(1− ys)
(Aβs − Aβm)s−m−1

Γ(s−m)
e−λ(Aβs−Aβm)dys =

1

2
(3.12)

Setting b = Aβs − Aβm, we get :

∫ [
(k(Am,λ,β))

β

1−(k(Am,λ,β))β
−Aβm

]
0

λs−m

Γ(s−m)
bs−m−1e−λbdb =

1

2
(3.13)
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Thus

ŶCMP =

(
Med(W ) + Aβm

) 1
β

1 +
(
Med(W ) + Aβm

) 1
β

(3.14)

where W ∼ G

(
s−m, 1

λ

)
.

Assume that we want to predict the first future record, hence we’ll use the formula

s = m+ 1 and W ∼ Exp(λ) with Med(W ) =
1

λ
log2, therefore

ŶCMP =

(
log2

1
λ + Aβm

) 1
β

1 +
(
log2

1
λ + Aβm

) 1
β

(3.15)

3.2 Bayesian Point Prediction

The posterior prediction density of unobserved data based on observed ones is the main
focus of Bayesian prediction. The posterior predictive distribution, fPs (ys|y), is defined
as the distribution of the unobserved values y conditional on the observed data x. It is
given by:

fPs (ys|y) = Eposterior
(
f(Ys|y, λ, β)

)
(3.16)

=

∫
θ

f(y|θ, y)π(θ|y)dθ

where π(θ|x) is the posterior distribution of θ given observed data.

3.2.1 One-Sample Prediction Problem

The objective of this section is to determine the Bayes predictive estimate of the sth record
ys, s > m based on observed record sample y = {y1, y2, ..., ym} from kies distribution under
the assumption of SE and LINEX loss functions.
Given the values of y = {y1, y2, ..., ym} the posterior predictive density of ys is given by:

fPs (ys|y) =

∫ ∞
0

∫ ∞
0

f(ys|y, λ, β)π(λ, β|y)dλdβ (3.17)
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where f(ys|y, λ, β) and π(λ, β|y) are given in Eq’s (3.2) and (2.26) respectively. Substi-
tuting these equations in Eq(3.17), then the posterior predictive density function fPs (ys|y)

becomes

fPs (ys|y) =
1

C

∫ ∞
0

∫ ∞
0

λs−mβ

Γ(s−m)

Aβs
ys(1− ys)

(Aβs − Aβm)s−m−1e−λ(Aβs−Aβm) (3.18)

× λm+a1−1 e−λ(b1+Aβm)βm+a2−1 e
−β
(
b2−

m∑
i=1

log(Ai)

)
dλdβ

Since ∫ ∞
0

λs+a1−1e−λ(b1+Aβs )dλ =
Γ(s+ a1)

(b1 + Aβs )s+a1
(3.19)

and

C =

∫ ∞
0

∫ ∞
0

λm+a1−1e−λ(b1+Aβm)βm+a2−1e
−β
(
b2−

m∑
i=1

log(Ai)

)
dλdβ (3.20)

=
Γ(m+ a1)Γ(m+ a2)(
b2 −

m∑
i=1

log(Ai)

)m+a2
× Eπ∗

β
[J(β)]

then Eq (3.18) reduces to the form

fPs (ys|y) =

(
b2 −

m∑
i=1

log(Ai)

)m+a2

Γ(m+ a1)Γ(m+ a2)

Γ(s+ a2)Γ(m+ a2 + 1)

Γ(s−m)

(
b2 −

m∑
i=1

log(Ai)

)m+a2+1 (3.21)

× 1

ys(1− ys)
Eπ∗

1
[I(ys, β)]

Eπ∗
2

[J(β)]

where

I(ys, β) =
(Aβs − Aβm)s−m−1Aβs

(Aβs + b1)s+a1
, J(β) =

1

(b1 + Aβm)m+a1

π∗1 ∝ Gamma

m+ a2 + 1,
1

b2 −
m∑
i=1

log(Ai)



π∗2 ∝ Gamma

m+ a2,
1

b2 −
m∑
i=1

log(Ai)


One can notice that Eq (3.21) cannot be computed explicitly. Therefore, an approximate
can be proposed for fPs (ys|y) which is denoted by f̂ ∗s (ys|y), by replacing the parameter
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β by its Bayes estimate obtained in Chapter 2, using two Bayes estimates under SE and
LINEX.

f̂ ∗s (ys|y) =
1

Q(ym)

Γ(s+ a2)(m+ a2)

Γ(m+ a1)Γ(s−m)

(
b2 −

m∑
i=1

log(Ai)

) (3.22)

× 1

ys(1− ys)
I(ys, β̂)

J(β̂)

where Q(ym) =

∫ 1

ym

f̂ ∗s (ys|y)dys. If Ŷ is a predictor of ys, 0 < ym < ys < 1, then the Bayes

predictive estimates of ys under SE loss function given by:

ŶSEP = Ef̂∗s
(
Ys|y

)
=

∫ 1

ym

ysf̂
∗
s (ys|y)dys

=
1

Q(ym)

Γ(s+ a2)(m+ a2)

J(β̂)Γ(m+ a1)Γ(s−m)

(
b2 −

m∑
i=1

log(Ai)

) (3.23)

×
∫ 1

ym

I(ys, β̂)

(1− ys)
dys

and here for the LINEX loss function:

ŶLEP =
−1

ν
logEf̂∗s

(
e−νYs|y

)
=
−1

ν
log

∫ 1

ym

e−νys f̂ ∗s (ys|y)dys

=
−1

ν
log

 1

Q(ym)

Γ(s+ a2)(m+ a2)

J(β̂)Γ(m+ a1)Γ(s−m)

(
b2 −

m∑
i=1

log(Ai)

)
 (3.24)

+
−1

ν
log

[∫ 1

ym

e−νys
I(ys, β̂)

ys(1− ys)
dys

]

Additionally, since it is a common goal of mine to predict the initial value of the unob-
served record, ym+1. In Eq’s (3.23) and (3.24), we substitute s = m + 1. Therefore, by
applying the binomial expansion to (Aβ̂s −Aβ̂m)s−m+1, we immediately obtain the following
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predictors:

Ŷ SEP
m+1 =

1

Q(ym)

(b1 + Aβ̂s )m+a1Γ(s+ a2)(m+ a2)

Γ(m+ a1)

(
b1 −

m∑
i=1

log(Ai)

) (3.25)

×
∫ 1

ym

1

1− ys
Aβ̂s

(b1 + Aβ̂s )s+a1
dys

and

Ŷ LEP
m+1 =

−1

ν
log

 1

Q(ym)

(b1 + Aβ̂s )m+a1Γ(s+ a2)(m+ a2)

Γ(m+ a1)

(
b1 −

m∑
i=1

log(Ai)

)
 (3.26)

+
−1

ν
log

[∫ 1

ym

e−νys
1

ys(1− ys)
Aβ̂s

(b1 + Aβ̂s )s+a1
dys

]

3.3 Prediction Intervals

One would want to forecast a future observation in many practical situations using his-
torical data from the same population. Making a prediction interval, which is an interval
that will contain the unobserved value with a given probability, is one technique to achieve
this. We consider the prediction interval problem using two classical methods: the shortest
length and pivotal quantity methods.

3.3.1 Pivotal Method

Define the random variable T as
T = Aβs − Aβm

it can be easily seen that T |ym ∼ G

(
s−m, 1

λ

)
by using transformation of T |ym in Eq

(3.2).
Therefore, when the parameters β and λ are known and ym is given then the pivotal
quantity 2λT |ym ∼ X 2

(2(s−m)). The exact (1−α)100% PI of ys is therefore (L1(ym), U1(ym)),
where L1(ym) is given by :

L1(ym) =

(
X 2

(2(s−m))(
α
2 )

2λ
+ Aβm

) 1
β

1 +

(
X 2

(2(s−m))(
α
2 )

2λ
+ Aβm

) 1
β

(3.27)
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and U1(ym) is given by:

U1(ym) =

(
X 2

(2(s−m))(1−α
2 )

2λ
+ Aβm

) 1
β

1 +

(
X 2

(2(s−m))(1−α
2 )

2λ
+ Aβm

) 1
β

(3.28)

When λ and β are unknown, the parameters in Eq’s (3.27) and (3.28) must be calcu-
lated, meaning by their MLEs. Consequently, the following is how a rough (1− α)100%

PI is obtained:

L̂1(ym) =

(
1 +

X 2
(2(s−m))(

α
2 )

2m

) 1

β̂

Am

1 +

(
1 +

X 2
(2(s−m))(

α
2 )

2m

) 1

β̂

Am

(3.29)

and

Û1(ym) =

(
1 +

X 2
(2(s−m))(1−α

2 )
2m

) 1

β̂

Am

1 +

(
1 +

X 2
(2(s−m))(1−α

2 )
2m

) 1

β̂

Am

(3.30)

respectively.

Since we are usually interested in the first prediction, s = m+ 1. Then, by using the
pivotal quantity λT |ym ∼ Exp(1), the (1− α)100% exact PI of ym+1 are given by:

L2(ym) =

(
Aβm − 1

λ
log
(
1− α

2

)) 1
β

1 +
(
Aβm − 1

λ
log
(
1− α

2

)) 1
β

(3.31)

U2(ym) =

(
Aβm − 1

λ
log
(
α
2

)) 1
β

1 +
(
Aβm − 1

λ
log
(
α
2

)) 1
β

(3.32)

and approximate PI of ym+1 are obtained by:

L̂2(ym) =
Am
(
1− 1

m
log
(
1− α

2

)) 1

β̂

1 + Am
(
1− 1

m
log
(
1− α

2

)) 1

β̂

(3.33)

Û2(ym) =
Am
(
1− 1

m
log
(
α
2

)) 1

β̂

1 + Am
(
1− 1

m
log
(
α
2

)) 1

β̂

(3.34)
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3.3.2 The Shortest Length Prediction Intervals

The shortest length prediction interval (SLPI) is an other methods related PI. Using the
realization that

V =
2m
(
Aβ̂s − Aβ̂m

)
Aβ̂m

∼ X 2
(2(s−m)).

We select the variables c1 and c2 where c1 < c2 matching the criteria listed below:

P
(
c1 < X 2

(2(s−m)) < c2

)
= 1− α (3.35)

it is equal to

P

c1 <
2m
(
Aβ̂s − Aβ̂m

)
Aβ̂m

< c2

 = 1− α (3.36)

or equivalently

P

 Am
(
1 + c1

2m

) 1

β̂

1 + Am
(
1 + c1

2m

) 1

β̂

< ys <
Am
(
1 + c2

2m

) 1

β̂

1 + Am
(
1 + c2

2m

) 1

β̂

 = 1− α (3.37)

Thus, a (1− α)100% PI for ys can be obtained as (L3(ym), U3(ym)), where:

L3(ym) =
Am
(
1 + c1

2m

) 1

β̂

1 + Am
(
1 + c1

2m

) 1

β̂

(3.38)

and

U3(ym) =
Am
(
1 + c2

2m

) 1

β̂

1 + Am
(
1 + c2

2m

) 1

β̂

(3.39)

The best possibilities for c1 and c2 are the ones that minimise U3(ym) − L3(ym) the
width of PI. By imposing (3.35) on the Lagrangian multipliers function, it is possible to
derive the (1− α)100% SL PI as follows:

L(c1, c2, ω) = U3(ym)− L3(ym)− ω
[∫ c2

c1

g(v)d(v)− (1− α)

]
(3.40)

it’s equal to
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L(c1, c2, ω) =
Am
(
1 + c2

2m

) 1

β̂

1 + Am
(
1 + c2

2m

) 1

β̂

−
Am
(
1 + c1

2m

) 1

β̂

1 + Am
(
1 + c1

2m

) 1

β̂

− ω
[∫ c2

c1

g(v)d(v)− (1− α)

]
(3.41)

where g is the pdf of X 2
(2(s−m)) distribution and ω is a Lagrangian multiplier. The constants

c1 and c2 can be derived by equating the partial derivative of L(c1, c2, ω), with respect to
c1, c2 and ω, to zero as follows:

∂L

∂c1

=

−Am
2mβ̂

(
1 + c1

2m

) 1

β̂
−1(

1 + Am
(
1 + c1

2m

) 1

β̂

)2 + ωg(c1) = 0 (3.42)

∂L

∂c2

=

Am
2mβ̂

(
1 + c2

2m

) 1

β̂
−1(

1 + Am
(
1 + c2

2m

) 1

β̂

)2 − ωg(c2) = 0 (3.43)

∂L

∂ω
= −

[∫ c2

c1

g(v)d(v)− (1− α)

]
= 0 (3.44)

After some algebraic computations on Eq’s (3.42) and (3.43) We get to

(
c2

c1

)s−m−1

e−
1
2

(c2−c1) =

(
2m+ c2

2m+ c1

) 1
β
−1

×

1 + Am
(
1 + c1

2m

) 1

β̂

1 + Am
(
1 + c2

2m

) 1

β̂

2

(3.45)

also from Eq (3.44), we reach∫ c2

c1

g(v)d(v) = (1− α) (3.46)

Now, c1 and c2 of the shortest PI can be computed simultaneously by solving Eq’s
(3.45) and (3.46) numerically.
We now consider the case where s = m + 1. In this case g is decreasing function with

g(0) =
1

2
and g(∞) = 0. Consequently, the lower endpoint of the shortest PI can be

chosen simply as L3(ym) = ym, this leads that the (1 − α)100% PI is (ym, U3(ym)) as a
modified SL PI for ym+1.
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3.4 Comparison between Proposed Prediction Methods

We present a simulation analysis in this section to evaluate the efficiency of the suggested
prediction techniques that were covered in this chapter. Mean square prediction errors
(MSPEs) and average biases of predictor are used to quantify their performance. We
contrast the PIs in terms of their estimated CPs and ALs from the previous sections as
well.
According to Al-Olaimat et al. (2021) [4], the following priors are assumed on the instances
being evaluated while computing Bayes predictors under the SE and LINEX loss functions:
Prior 0:a1 = 0, b1 = 0, a2 = 0, b2 = 0.
For λ = 1, β = 2:
Prior 1:a1 = 20, b1 = 20, a2 = 16, b2 = 8.
For λ = 2, β = 1:
Prior 1:a1 = 1, b1 = 0.5, a2 = 20, b2 = 20.
Depending to the values of λ and β that are set in the last section , simulation is conducted
using a variety of records from the Kies distribution. they calculate the point predictor’s
value in each case using both classical and Bayesian methods. Additionally, 95% PIs
using the pivotal quantity and SL methods are simulated. MSPEs and prediction biases
of the predictors are reported. Moreover, the CPs and ALs of the PIs are computed,
the obtained results are summarized in Tables 3.1 and 3.2 and in Tables 3.3 and 3.4,
respectively.
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Table 3.3: CPs and ALs from simulations of λ = 1 and β = 2

m Ys Criterion Pivot SL

m=5
Y7

CP 0.94 0.68
AL 0.081834 0.054774

Y8
CP 0.95 0.63
AL 0.08628 0.068958

m=6
Y8

CP 0.96 0.76
AL 0.067859 0.046175

Y9
CP 0.98 0.64
AL 0.072816 0.058322

m=7
Y9

CP 0.93 0.67
AL 0.060137 0.037941

Y10
CP 0.97 0.67
AL 0.065109 0.045184

m=8
Y10

CP 0.99 0.84
AL 0.049566 0.038217

Y11
CP 0.99 0.76
AL 0.054562 0.045384

Table 3.4: CPs and ALs from simulations of λ = 2 and β = 1

m Ys Criterion Pivot SL

m=5
Y7

CP 0.95 0.69
AL 0.138920 0.093530

Y8
CP 0.95 0.65
AL 0.141140 0.116990

m=6
Y8

CP 0.95 0.68
AL 0.108720 0.076062

Y9
CP 0.96 0.72
AL 0.112680 0.107510

m=7
Y9

CP 0.95 0.76
AL 0.092416 0.066912

Y10
CP 0.95 0.754
AL 0.096927 0.091193

m=8
Y10

CP 0.95 0.79
AL 0.078396 0.058354

Y11
CP 0.95 0.77
AL 0.083206 0.080934

From Tables 3.1 and 3.2, and by considering the prediction average biases as an
optimality criterion, there is a clear evident that the CMP are the most preferred classical
point predictors. When comparing among the classical methods, one can see that the
prediction average biases of the CMP are less than those of the MLP and MMLP for all
the considered cases. Further, we note the prediction average biases of the MMLP are less
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than those of MLP for all the considered cases. When comparing between Bayesian and
frequentist methods, we can observe that Bayes predictors perform well under different
error loss functions and priors in the sense of bias compared with MLPs and MMLPs.
By considering MSPEs as an optimality criterion, it is observed that the Bayes predictors
perform better than MLPs and MMLPs. Further, it can be observed that Bayes predictors
under the informative priors Prior 1, Prior 2 are more efficient than the corresponding
Bayes predictors under Prior 0.
From Tables 3.3 and 3.4 , and by considering the AL as an optimality criterion, we can
see the SL method is more efficient than the other method for obtaining PIs.



Conclusion

In this dissertation, classical and Bayesian inferences (estimation and prediction) for the
two-parameter Kies distribution based on upper records were proposed. Based on records,
some distributional features of the Kies distribution were investigated. The existence and
uniqueness of MLEs are discussed. Asymptotic and bootstrap confidence intervals are
computed. Bayesian estimates based on the SE and LINEX loss functions are proposed.
Exact Bayes estimations of the parameters are not possible. In general, the suggested
informative Bayes estimates outperform the classical estimates in all scenarios evaluated.
However, for small ν, non-informative Bayesian and classical estimate approaches perform
approximately equivalent under SE and LINEX, while Bayesian methods perform better
under LINEX for other positive values ν. For the considered confidence intervals. The
ACIs outperform Boot-p CIs in all cases. We also investigated future record prediction
for the two-parameter Kies distribution. To construct point and interval predictors of
future records, both classical and Bayesian techniques were established. The MLP and
the MMLP are close to each other. It has been noticed that Bayes predictors perform
better than the MLP and MMLP in terms of bias and MSPEs, under SE and LINEX loss
functions. In the context of prediction intervals, it was observed that the SL method is
the most appropriate technique for obtaining PIs of the unobserved future records when
adopting ALs as the optimality criterion. When adopting the CPs as the optimality
criterion, it was noticed that the pivotal quantity method is an efficient technique for
obtaining PIs in most the considered cases.
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