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Introduction

Stochastic partial differential equations (SPDEs) constitute a powerful mathematical

framework for modeling complex systems influenced by random fluctuations. The in-

corporation of stochastic terms into partial differential equations allows for the realistic

representation of uncertainties and variability inherent in a wide range of phenomena.

In recent years, considerable attention has been directed toward the analysis of SPDEs

driven by Lévy noise. The last refers to a class of stochastic processes characterized by

jumps of arbitrary magnitude and non-zero probability, enabling the modeling of extreme

events and heavy-tailed distributions in various real-world systems.

The study of SPDEs driven by Lévy noise aims to provide a deeper understanding of

the behavior and properties of these equations, as well as to develop analytical techniques

and numerical methods to study their solutions. This class of equations presents unique

challenges due to the complex nature of Lévy noise and its impact on the dynamics of

the system. This thesis aims to provide a solid foundation for analyzing and character-

izing SPDEs driven by Lévy noise and to explore their applications in different scientific

domains.

Specifically, extensive research has been conducted on parabolic stochastic partial

differential equations (SPDEs) driven by Gaussian white noise, mentioned in ([17], [6])

and for more recent work, see [5], [21] and references therein. The exploration of parabolic

stochastic partial differential equations (SPDEs) driven by Poisson white noise is relatively

less recognized, with initial investigations reported in reference [1]. Additionally, Mueller

conducted a study on a heat equation driven by α−stable Lévy noise in this context, as

in [14]. It is worth noting that the formulation of a parabolic SPDE driven by Poisson

random measure in [19] differs from the approach in [1].

Recently, the application of stochastic partial differential equations has expanded,

leading to the discovery of new uses and implications in [20]. Notably, [12] and [9] provide

further insights into this field.
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The objective of this master thesis is to conduct a comprehensive analysis of SPDEs

driven by Lévy noise. The research will encompass the investigation of the well-posedness,

regularity, and long-time behavior of solutions to these equations. Additionally, numerical

approximation methods will be explored to effectively compute and simulate the solutions.

The analysis will be based on the integration of mathematical tools such as stochastic

calculus and the theory of Lévy processes.

This work is presented in three chapters:

In chapter 1 we introduce the necessary mathematical foundations, including Lévy

processes, and stochastic calculus. These tools will be essential for the subsequent analysis

and understanding of SPDEs driven by Lévy noise.

In chapter 2 we focus on establishing the well-posedness and regularity properties of

solutions to SPDEs driven by Lévy noise in finite-dimensional spaces and some examples

of SPDE in infinite and finite dimensions. The existence, uniqueness, and regularity

of results will be investigated under different types of SPDEs with Lévy noise in both

dimensions. First, in the finite dimension, we will study the existence and uniqueness of

SPDE driven by Lévy noise with two examples of heat and wave equations. Second, in

the infinite dimension, we will discuss SPDEs with respect to a square-integrable Lévy

martingale with a typical example, also we will work on SPDEs with respect to Lévy

space-time white noise.

In chapter 3 we explore numerical analysis of SPDEs. First, we define the stochas-

tic optimal control and explain the dynamic programming and the stochastic Hamilton-

Jacobi-Bellman equation. After that, we will move to the derivation of the partial dif-

ferential equation (PDE) corresponding to the stochastic optimal control, we study then

numerical method for approximating solutions to SPDEs driven by Lévy noise in finite-

dimensional spaces. The finite difference will be considered.
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Chapter 1

Generalities on Lévy processes

In general, Lévy processes are defined as functions of the Wiener and the Poisson

processes.

1.1 Lévy processes

Definition 1.1. Let X = (X(t), t ≥ 0) be a stochastic process defined on a probability

space (Ω,F ,P). We say that it has independent increments if for each n ∈ N and each

0 ≤ t1 ≤ t2 ≤ ... < tn+1 < ∞ the random variables (X(tj+1) − X(tj), 1 ≤ j ≤ n) are

independent and that it has stationary increments, we have

(X(tj+1)−X(tj))
d
= (X(tj+1 − tj)−X(0)).

We say that X is a Lévy process if:

(L1) X(0)=0 (a.s);

(L2) X has independent and stationary increments;

(L3) X is stochastically continuous, i.e. for all a > 0 and for all s ≥ 0

lim
t→s

P (|X(t)−X(s)| > a) = 0.

Note that in the presence of (L1) and (L2), the third property (L3) is equivalent to the

condition

lim
t→0

P (|X(t) > a|) = 0 for all a > 0.

Remark 1.1. A stochastic process L = (L(t), t > 0) taking values in E has independent

increments if, for each 0 < t0 < t1 < ... < tn, the (E, ξ)-valued random variables

9



1.2 Poisson processes 10

L(t1)−L(t0), L(t2)−L(t1), ..., L(tn)−L(tn−1) are independent. If the law L(L(t)−L(s))

of L(t)− L(s) depends only on the difference t− s then we say that L has stationary, or

time-homogeneous, independent increments. if in addition, E is a Banach space, L(0) =

0, and the process L is stochastically continuous then L is called a Lévy process.

Lemma 1.1. Let L be a Lévy process on a Banach space E and let µt be the law of

the random variable L(t). Then, denoting by µ ∗ ν the convolution of the measures µ and

ν, we have

1. µ0 = δ0 and µt+s = µt ∗ µs for all t, s ≥ 0,

2. µ(x : ∥x∥ < r) → 1 as t → 0 for every r > 0,

3. µt converges weakly to σ0 as t → 0.

Theorem 1.1. Every Lévy process has a càdlàg modification.

Given a càdlàg process L we define the process of jumps of L by ∆L(t) := L(t) −

L(t−), t ≥ 0. The following result of De Acosta (1980) is a special case of a more general

theorem of Rosinski (1995).

Theorem 1.2. [22] (De Acosta) Assume that (L(t), t > 0) is a càdlàg Lévy process in

a Banach space B with jumps bounded by a fixed number c > 0; that is, |∆L(t)|B < c for

every t > 0. Then, for any β > 0 and t > 0,

Eeβ∥∆L(t)B∥ <∞. (1.1)

1.2 Poisson processes

The Poisson processes (Nt)t≥0 is a point process, which is defined as:

Nt =
∞∑
n=0

1(Tn≤t),

where (Tn)n is a sequence of random times such that the increments Tn+1 − Tn are inde-

pendent with an exponential distribution.

Proposition 1.1. [22] Assume that Z is a positive random variable such that, for

all t, s ≥ 0, P(Z > t+ s/Z > t) = P(Z > s). Then Z has an exponential distribution with

parameter a, that is, there exists a constant a > 0 such that P(Z > t) = e−at for t > 0.
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Lemma 1.2. Let α ≥ 0, and let Zn have a geometric distribution with parameter pn =

α/n. and Let λn be the distribution of Zn/n. Then (λn) converges weakly to an exponential

distribution with parameter α.

Lemma 1.3. Assume that (Xn) is a sequence of independent random variables with

Poisson distributions P (an). Then X =
∑∞

n=1Xn has Poisson distribution Pan, with

a =
∑∞

n=1 an. Moreover, the Laplace transform of P(a) is equal to

∞∑
k=0

e−rkP (a)(k) =
∞∑
k=0

e−rk
ak

k!
e−a = exp

{
a(e−r − 1)

}
, r > 0,

if a <∞ and 0 if a = ∞.

Definition 1.2. A Poisson process with intensity a is a Lévy process Π = (Π(t), t ≥ 0)

such that, for every t ≥ 0,Π(t) has the Poisson distribution P(at).

The Poisson process’s main characteristics and construction are given in the next

proposition.

Proposition 1.2.

(i) Let (Zn) be a sequence of independent exponentially distributed random variables

with parameter a. Then the formula

Π(t) =

0 if t < Z1

k if t ∈ [Z1 + ...+ Zk, Z1 + ...+ Zk+1],

(1.2)

defines a Poisson process with intensity a.

(ii) Conversely, given a Poisson process with intensity defined on a probability space

(Ω,F ,P), there exists a sequence (Zn) of independent random variables defined on

(Ω,F ,P) having an exponential distribution with parameter a such that formula (1.2)

holds.

(iii) If Π is a Poisson process with intensity a then, for all z ∈ C and t ≥ 0, we have

EezΠ(t) = exp {at(ez − 1)} .

(iv) if Π is a Poisson process then it has only jumps of size 1, that is,

P(∆Π(t) := Π(t)− Π(t−) ∈ {0, 1}) = 1, t ≥ 0. (1.3)

Conversely, any Z+-valued Lévy process Π satisfying (1.3) is a Poisson process.
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1.3 Wiener processes

Definition 1.3. Let q > 0. A real-valued mean-zero Gaussian process W = (W (t), t ≥ 0)

with continuous trajectories and covariance function

EW (t)W (s) = (t ∧ s)q,

is called a Wiener process with diffusion q. If the diffusion is equal to 1 then W is called

standard.

Definition 1.4. Assume that (Ω,F , (Ft),P) is a filtered probability space and that W is

a Wiener process in Rd adapted to (Ft) . Then W is a Wiener process with respect to (Ft)

or an (Ft)−Wiener process if, for all t, h ≥ 0,W (t+ h)−W (t) is independent of Ft.

1.4 Compound Poisson processes in a Hilbert space

Definition 1.5. Let ν be a finite measure on a Hilbert space U such that ν({0}) = 0. A

compound Poisson process with the Lévy measure (also called the jump intensity measure)

ν is a cádlág Lévy process L satisfying

P(L(t) ∈ Γ) = e−ν(U)t

∞∑
k=0

tk

k!
ν∗(Γ), ∀t ≥ 0,Γ ∈ B(U). (1.4)

In the formula above, we use the convention that ν0 is equal to the unit measure concen-

trated at 0, that is, ν0 = δ0.

The theorem that follows demonstrates how to build a compound Poisson process with

given ν.

Theorem 1.3. [22] Let ν be a finite measure supported on U \ {0}, and let a = ν(U).

(i) Let Z1,Z2, ... be independent random variables with identical distributions equal to

a−1ν. In addition, let (Π(t), t ≥ 0) be a Poisson process with intensity a, independent

of Z1,Z2, ... Then

L(t) =

Π(t)∑
j=1

Zj (1.5)

is a compound Poisson process with jump intensity measure ν.
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(ii) Given a compound Poisson process L with jump intensity measure ν, one can find

a sequence of independent random variables Z1,Z2, ... with identical laws equal to

a−1ν. and a Poisson process (Π(t), t ≥ 0) with intensity a, independent of Z1,Z2, ...,

such that (1.5) holds.

(iii) For z ∈ C, t ≥ 0 and x ∈ U,

Eez⟨x,L(t)⟩U = exp

{
−t

∫
U

(1− e⟨x,y⟩U)ν(dy)

}
.

Proposition 1.3. [22]

(i) For each Γ ∈ B(U \ {0}), the process (π([0, t],Γ), t ≥ 0) is a Poisson process with

intensity ν(Γ).

(ii) if the sets Γ1, ...,ΓM are disjoint then the random variables π([0, t],Γj), j = 1, ...,M,

are independent.

(iii) For each Γ ∈ B(U \ {0}), the process (π̂([0, t],Γ), t ≥ 0) is a martingale with respect

to the filtration (F̄π
t+) where

Fπ
t+ := σ {π([0, s],Γ) : s ≤ t,Γ ∈ B(U)} .

Remark 1.2. The proposition is true for the jump intensity measure of an ar-

bitrary Lévy process and sets Γ that are separated from the origin, that is, satisfying

Γ ∩ {y : |y|U ≤ r} =Ø for r sufficiently small.

Proposition 1.4. Let L be the compound Poisson process with jump intensity measure

ν.

(i) The process L is integrable if and only if∫
U

|y|U ν(dy) <∞ (1.6)

Moreover, if (1.6) holds then

EL(t) = t

∫
U

yν(dy) (1.7)

and the compensated compound process L̂(t) = L(t)− EL(t), t ≥ 0, is a martingale

with respect to (F̄L
t+)



1.5 Lévy-Khinchin decomposition 14

(ii) For all z ∈ C, t ≥ 0 and x ∈ U,

Eez⟨x,L̂(t)⟩)U = exp

{
−t

∫
U

(1− ez⟨x,y⟩U + z ⟨x, y⟩U)ν(dy)
}
.

(iii) The process L, and hence L̂ is square integrable if and only if∫
U

|y|2U ν(dy) <∞ (1.8)

Moreover E
∣∣∣L̂t∣∣∣2

U
= t

∫
U
|y|2U ν(dy) and, for all x, x̃ ∈ U and t ≥ 0,

E
〈
L̂(t), x

〉
U

〈
L̂(t), x̃

〉
U
= t

∫
U

⟨x, y⟩U ⟨x̃, y⟩U ν(dy).

1.5 Lévy-Khinchin decomposition

Assume that L is a càdlàg Lévy process on a Hilbert space U. Given a Borel set A sepa-

rated from 0 (see Remark 1.2), write

πA(t) :=
∑
s≤t

1A(∆L(s)), t ≥ 0.

Note that the càdlàg property of L implies that πA is Z+-valued. Clearly, it is a Lévy

process with jumps of size 1. Thus, by the assertion (iv) of the proposition 1.2, πA is a

Poisson process. Note that EπA(t) = tEπA(1) = tν(A), where ν is a measure that is finite

on sets separated from 0. Write

LA(t) :=
∑
s≤t

1A(∆L(s))∆L(s).

Then LA is a well-defined Lévy process. In the sequel, we need the following Lévy-

Khinchin decomposition.

Theorem 1.4. (Lévy-Khinchin decomposition)[22]

(i) If ν is a jump intensity measure corresponding to a Lévy process then∫
U

(|y|)2U ∧ 1)ν(dy) <∞ (1.9)
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(ii) Every Lévy process has the following representation:

L(t) = at+W (t) +
∞∑
k=1

(LAk
(t)− t

∫
Ak

yν(dy)) + LA0(t),

where A0 := {x : |x|U > r0} , Ak := {x : rk ≤ |x|U < rk−1} , is an arbitrary sequence

decreasing to 0, W is a Wiener process, all members of the representation are inde-

pendent processes and the series converge P-a.s. uniformly on each bounded subin-

terval of [0,∞).

Remark 1.3. It follows from the proof, that the processes

Ln(t) := LAn(t)− t

∫
An

yν(dy), (1.10)

are independent compensated compound Poisson processes.

Hence we have the decomposition

L(t) = at+W (t) +
∞∑
n=1

Ln(t) + L0(t), (1.11)

of the Lévy process L, where the processes W,Ln, n ≥ 0, and L0 are independent, W

is a Wiener process, L0 is a compound Poisson process with jump intensity measure

1{|y|U≥r0}(y)ν(dy) and each Ln is a compensated compound Poisson process with

jump intensity measure

1{rn+1≤|y|U<rn}(y)ν(dy).

Remark 1.4. A similar representation theorem holds not only for Hilbert spaces but also

for Banach spaces (see [22])

Lemma 1.4. For any disjoint Borel sets A1..., Ant separated from zero, the processes

LA1 , ..., LAm , L− LAl
, ..., L− LAm are independent Lévy.

Lemma 1.5. For every Borel set A separated from 0 and for all u ∈ U ,

Eexp {i ⟨u, LA(t)⟩U} = exp

{
−t

∫
A

(1− ei⟨u,x⟩U )ν(dx)

}
.

Lemma 1.6. If assumption (1.9) is satisfied then the series in (1.11) converge P-a.s.

uniformly on each bounded interval [0, T ].
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The following result is a direct consequence of the Lévy-Khinchin decomposition.

Definition 1.6. (Convolution semigroup of measures)

Let M1(Rd) denote the set of all Borel probability measures on Rd. We define the

convolution of two probability measures as follows:

(µ1 ∗ µ2)(A) =

∫
Rd

1A(x+ y)µ1(dx)µ2(dy) (1.12)

for each µi ∈ M1(Rd), i = 1, 2, and each A ∈ B(Rd).

By Fubini’s theorem, we have

(µ1 ∗ µ2)(A) =

∫
Rd

µ1(A− x)µ2(dx) =

∫
Rd

µ2(A− x)µ2(dx),

where A− x = {y − x, y ∈ A} and we have used the fact that 1A(x+ y) = 1A−x(y).

Theorem 1.5. (Lévy-Khinchin formula)[22] Let denote L+
1 (U) space of nuclear symmet-

ric positive-definite operators

(i) Given a ∈ U , Q ∈ L+
1 (U) and a non-negative measure ν concentrated on U \ {0}

satisfying (1.9), there is a convolution semigroup (µt) of measures such that∫
U

ei⟨x,y⟩Uµt(dy) = e−tψ(x), (1.13)

where

ψ(x) = −i ⟨a, x⟩U+
1

2
⟨Qx, x⟩U+

∫
U

(1−ei⟨x,y⟩U +1{|y|U<1}(y)i ⟨x, y⟩U)ν(dy). (1.14)

(ii) Conversely, for each convolution semigroup (µt) of measures, there exist a ∈ U,Q ∈

L+
1 (t) and a non-negative measure ν concentrated on U \{0} satisfying (1.9) in such

a way that (1.13) holds with ψ defined by (1.14).

Definition 1.7. Let L be a Lévy process and let (µt) be the family of its distributions. We

call the measure ν appearing in (1.14) the Lévy measure or the jump intensity measure of

L or (µt). We call the triple (a,Q, ν) the characteristics of L.

The Lévy-Khinchin formula gives the characteristic function of a Lévy process. It turns

out that it is also useful for computing characteristic functionals of stochastic integrals.

As an example of a simple application, we present the following result.

Corollary 1.1. Let L be a real-valued Lévy process with exponent ψ, and let f : R 7→ R.

Assume that the Riemann-Stieltjes integrals
∫ t
0
f(s)dL(s) and

∫ t
0
ψ(xf(s))ds exist. Then

E
[
exp

{
ix

∫ t

0

f(s)dL(s)

}]
= exp

{
−
∫ t

0

ψ(xf(s))ds

}
, x ∈ R.
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1.5.1 Laplace transforms of convolution semigroups

In some situations, it is more convenient to determine convolution semigroups of measures

in terms of Laplace rather than Fourier transforms.

Theorem 1.6. Let (µt) be a convolution semigroup of measures on a Hilbert space U,

with exponent given by (1.13) and (1.14).

(i) Let x ∈ U Then the Laplace transform
∫
U
e−⟨x,y⟩Uµt(dy) is finite for some t > 0

(equivalently for all t > 0) if and only if∫
{|y|U≥1}

e−⟨x,y⟩Uν(dy) <∞ (1.15)

(ii) If (1.15) holds then ∫
U

e−⟨x,y⟩Uµt(dy) = e−tψ(x), ∀t > 0

where

ψ̃(x) = ⟨a, x⟩U − 1

2
⟨Qx, x⟩U + ψ̃0(x),

ψ̃0(x) =

∫
U

(1− e−⟨x,y⟩U − ⟨x, y⟩U χ{|y|U≤1})ν(dy).

Theorem 1.7. [22] A family (λt) of measures on [0,+∞) is a convolution semigroup of

measures if and only if their Laplace transforms λ̃t are of the form

λ̃t(r) = e−tψ̃(r), ψ̃(r) = γr +

∫ +∞

0

(1− e−rξ)ν(dξ), r > 0,

where γ is a positive constant and ν is a non-negative measure on (0,+∞) satisfying

∫ 1

0

ξν(dξ) <∞,

∫ +∞

1

ν(dξ) <∞.

Remark 1.5. This theorem describes the family (λt) a subordinator. It is concerned with

measures on the half line [0,+∞); however, it is possible to find Laplace transforms of

some important families on R.

Theorem 1.8. Assume that ν is a measure on (0,+∞) satisfying the following conditions:∫ 1

0

ξ2ν(dξ) <∞ and

∫ +∞

1

ξν(dξ) <∞.
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Then there exists a convolution semigroup (µt) of measures on R such that∫
R
eirξµt(dξ) = e−tψ(r), r ∈ R,

where the Lévy exponent is given by

ψ(r) =

∫ +∞

0

(1− eirξ + irξ)ν(dξ), r ∈ R.

Moreover, for all r > 0 and t > 0,
∫
R e

−rξµt(dξ) <∞ and

∫
R
e−irξµt(dξ) = e−tψ̃(r),

where

ψ̃(r) =

∫ +∞

0

(1− e−rξ − rξ)ν(dξ).

Remark 1.6. Obviously, every Lévy process L associated with a convolution semigroup

of measures (λt) whose support lies in the interval [0,+∞) exhibits upward trajectories.

The process L, which corresponds to the semigroup constructed in Theorem 1.8, solely

possesses positive jumps. However, due to a certain drift, it can attain strictly negative

values with a non-zero probability.

1.6 Square integrable Lévy processes

Consider L as a Lévy process in U , defined on a filtered probability space that meets

the standard conditions. We make the assumption that for any t > s, the difference

L(t)− L(s) is independent of the Fs.

Remark 1.7. It is evident that for any t > s, the difference L(t) − L(s) is independent

of FL

s . If L is a right-continuous process, then the increment L(t)− L(s) is independent

of the augmented sigma-algebra FL

s+. Moreover, if L is both integrable and has a mean of

zero, then L qualifies as a martingale with respect to the filtration (Ft).

Definition 1.8. Let’s assume that L is a square-integrable process. Our initial finding

presents precise expressions for the mean and covariance of L. We use the notation L+
1 (U)

to refer to the set of all symmetric non-negative-definite nuclear operators on U .
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Theorem 1.9. [22] There exist m ∈ U and a linear operator Q ∈ L+
1 (U) such that, for

all t, s ≥ 0 and x, y ∈ U .

E ⟨L(t), x⟩U = ⟨m,x⟩U t,

E ⟨L(t)−mt, x⟩U ⟨L(s)−ms, y⟩U = t ∧ s ⟨Qx, y⟩U ,

E |L(t)−mt|2U = tT rQ

Definition 1.9. The theorem mentioned above introduces the vector m and the operator

Q as the mean and covariance operator of the process L, correspondingly.

Remark 1.8. It should be noted that the covariance operator of the process L is identical

to the covariance operator of L(1).

Theorem 1.10.

(i) A Lévy process L on a Hilbert space U is square integrable if and only if its Lévy

measure satisfies ∫
U

|y|2U ν(dy) <∞ (1.16)

(ii) Assume (1.16). Let L have the representation (1.11), let Q0 be the covariance

operator of the Wiener part of L, and let Q1 be the covariance operator of the jump

part. Then

⟨Q1x, z⟩U =

∫
U

⟨x, y⟩U ⟨z, y⟩u ν(dy), x, z ∈ U

EL(t) = (a+

∫
(|y|U≥r0)

yν(dy))t,

and the covariance Q of L is equal to Q0 +Q1.

1.7 Lévy semigroups

This section focuses on transition semigroups of Lévy processes and their generators.

A collection S = (S(t), t ≥ 0) of bounded linear operators on a Banach space (B, |.|B) is

referred to as a C0-semigroup if

(i) S(0) is the identity operator I,

(ii) S(t)S(s) = S(t+ s) for all t, s ≥ 0,

(iii) t ∈ [0,∞) 7→ S(t)z ∈ B is continuous for each z ∈ B.
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Let’s suppose that S is a C0-semigroup on B. We define an element z ∈ B to be in the

domain of the generator of S if the limit lim
t→0

t−1(S(t)z − z) =: Az exists. The set of all

such z is represented by D(A), and Az, for z ∈ D(A), is a linear operator known as the

generator of S.

1.7.1 Basic properties of Lévy processes

Consider L as a Lévy process in a Hilbert space U, and let µt denote the distribution of

L(t). In this case, (µt) forms a convolution semigroup of measures, and L can be regarded

as a Markov process with a transition function Pt(x,Γ) = µt(Γ − x). The associated

semigroup can be expressed as follows:

Ptφ(x) =

∫
U

φ(x+ y)µt(dy) (1.17)

The spaces Cb(U) and UCb(U) represent the sets of all bounded continuous functions on U

and bounded uniformly continuous functions on U, respectively. They are equipped with

the supremum norm. The result mentioned here is attributed to Tessitore and Zabczyk

in 2001 (Tessitore and Zabczyk, 2001b).

Theorem 1.11. Let (Pt) be defined on Cb(U) by (1.17). Then (Pt) is a C0-semigroup on

Cb(U) if and only if either (µt) is the convolution semigroup of measures of a compound

Poisson process or µt = δ0, t > 0.

Definition 1.10. A semigroup P consisting of continuous linear operators on UCb(U) is

considered translation invariant or spatially homogeneous if, for any a ∈ U and t ≥ 0, the

following equality holds:

φ ∈ UCb(U), Pt(τaφ) = τa(Ptφ).

The space UCb(U) proves to be more advantageous when dealing with the transition

semigroups of Lévy processes, as indicated by the following theorem.

Theorem 1.12. [22]

(i) if (Pt) is defined on UCb(U) by (1.17) then (Pt) is a C0-semigroup on UCb(U).

(ii) A Markov semigroup (Pt) on UCb(U) is an invariant translation if and only if it is

given by (1.17) for some convolution semigroup of measures.
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1.7.2 Generators for Lévy processes

Within this section, we establish the expression of the generator (for regular func-

tions) of an arbitrary Lévy process in a Hilbert space U. However, before delving into the

general case, we first examine certain special processes.

1. Compound Poisson Process

We demonstrate that the generator of a compound Poisson process L can be ex-

pressed as follows:

φ(x) =

∫
U

(φ(x+ y)− φ(x))ν(dy), φ ∈ UCb(U), (1.18)

Where ν represents the Lévy measure of L. It should be noted that A is a bounded

linear operator on UCb(U). Recall that the corresponding distributions µt are given

by (1.4). In order to demonstrate that the operator A defined in (1.18) is indeed

the generator of the process L, we need to establish that, for every φ ∈ UCb(U),

the following condition holds:

∥∥∥∥Ptφ− φ

t
− Aφ

∥∥∥∥
∞

= sup

∣∣∣∣∫
U

(φ(x+ y)− φ(x))(
1

t
µt(dy)− ν(dy))

∣∣∣∣ =: J(t) → 0

as t→ 0.

Since
1

t
µt − ν =

e−at

t
δ0 + (e−at − 1)ν + e−at

∞∑
k=2

tn−1

n!
ν∗n,

we have

J(t) ≤ 2 ∥φ∥∞ (
∣∣e−at − 1

∣∣ ν(U) + e−at
∞∑
n=2

tn−1

n!
ν∗n(U)),

which gives the desired conclusion.

2. Uniform motion

Let’s consider the deterministic process L(t) = at, where a ∈ U is a fixed parameter.

This process is evidently a Lévy process, and its corresponding distributions are

given by µt = δta for t ≥ 0. The generator A, which operates on functions φ ∈

UC1
b (U), satisfies the following equation:

Aφ(x) = lim
t→0

1

t
(φ(x+ ta)− φ(x)) = ⟨a,Dφ(x)⟩U .
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3. Arbitrary Lévy semigroup

Let UC1
b (U) and UC2

b (U) denote the spaces of uniformly continuous bounded func-

tions along with all their derivatives up to order 1 and up to order 2, respectively.

We present the following result.

Theorem 1.13. Assume that (Pt) is the transition semigroup of a Lévy process L on a

Hilbert space U with Lévy exponent (1.14). If φ ∈ UC2
b (U), then for each x ∈ U we have

lim
t→0

1

t
(Ptφ(x)− φ(x)) = Aφ(x)

= ⟨a,Dφ(x)⟩U +
1

2
TrQD2φ(x)

+

∫
U

(φ(x+ y)− φ(x)− χ{|y|U<1}(y) ⟨Dφ(x), y⟩U)ν(dy)

where the convergence is uniform in x.

1.8 Stochastic integrals based on Lévy processes

The objective of this section is to investigate different forms of stochastic integration

where the integrator is a Lévy process.

1.8.1 Poisson stochastic integrals

Consider the set E, which is obtained by removing the element 0 from the set B̂. Here,

B̂ represents the set of all elements x in Rd such that the absolute value of x is less than

one. We define a stochastic process Y = (Y (t), t ≥ 0) as a Lévy-type stochastic integral

if it can be expressed in the following manner for every 1 ≤ i ≤ d and t ≥ 0:

Y i(t) = Y i(0) +

∫ t

0

Gi(s)ds+

∫ t

0

F i
j (s)dB

j(s)

+

∫ t

0

∫
|x|<1

H i(s, x)Ñ(ds, dx)

+

∫ t

0

∫
|x|≥1

Ki(s, x)N(ds, dx), (1.19)

For each combination of 1 ≤ i ≤ d, 1 ≤ j ≤ m, and t ≥ 0, we have certain conditions:

|Gi|1/2, F i
j ∈ P2(T ), H i ∈ P2(T,E), and K is predictable. Here, B represents an m-

dimensional standard Brownian motion, andN is an independent Poisson random measure

on R+ × (Rd − {0}) with a compensator Ñ and intensity measure ν, which we assume to

be a Lévy measure.
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Definition 1.11. Consider a Lévy process L with characteristics (b, a, ν), where b belongs

to Rd. Let Ba be a Brownian motion with covariance matrix a, and let ν be an independent

Poisson random measure on R+ × (Rd − {0}). The Lévy-Itô decomposition of L is given

by the equation:

L(t) = bt+Ba(t) +

∫
|x|<1

xÑ(t, dx) +

∫
|x|≥1

xN(t, dx), (1.20)

for each t ≥ 0.

Let L ∈ P2(t) for all t ≥ 0 and in (1.19) we choose each F i
j = σijL,H

i = Ki = xiL,

where σσT = a. Then we can construct processes with the stochastic differential presenta-

tion

dY (t) = H(t)dL(t). (1.21)

We call Y a Lévy stochastic integral.

Remark 1.9. The Lebesgue-Stieltjes integral of the Lévy stochastic integral Y can also be

constructed when X has finite variation. This construction is equivalent (except for a set

of measure zero) to the recommendation (1.21); see [13].

1.8.2 Square integrable integrators

To facilitate our analysis, we find it useful to introduce a particular class of martingales

that adhere to the following condition:

∃Q ∈ L+
1 (U) : 0 ≤ s ≤ t, ⟨⟨M,M⟩⟩T − ⟨⟨M,M⟩⟩s ≤ (t− s)Q. (1.22)

⟨⟨M,M⟩⟩s , s ≥ 0 is absolutely continuous and

Qs =
d

ds
⟨⟨M,M⟩⟩s ; ∀s ≥ 0,P− a.s. (1.23)

The following lemma offers a justification for the assumption made in (1.23).

Lemma 1.7. Assume that Q and R are non-negative operators on a Hilbert space V and

that R ≤ Q. If Φ is a linear operator from V into a Hilbert space H then∥∥∥ΦR 1
2

∥∥∥
L(HS)(V,H)

≤
∥∥∥ΦQ 1

2

∥∥∥
L(HS)(V,H)

.

Proposition 1.5. Assume (1.22), Then L2
H,T (H) ⊆ L2

M,T and for every X ∈ L2
H,T (H),

E
∣∣∣∣∫ t

0

X(s)dM(s)

∣∣∣∣ ≤ E
∫ t

0

∥X(s)∥2L(HS)(H,H) ds.

In the most important case, where M is a Lévy process.
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1.8.3 Itô’s formula

Once we have a process Y with a stochastic differential, we can proceed to demon-

strate Itô’s formula for general Lévy-type stochastic integrals.

dY (t) = G(t)dt+ F (t)dB(t) +

∫
|x|<1

H(t, x)Ñ(dt, dx) +

∫
|x|≥1

K(t, x)N(dt, dx), (1.24)

For every combination of 1 ≤ i ≤ d, 1 ≤ j ≤ m, and t ≥ 0, considering |Gi|1/2 , F i
j ∈

P2(T,E) and H i ∈ P2(T,E)., along with K as predictable and E = B̂ − {0}, we will

maintain the notation introduced earlier,

dYc(t) = G(t)dt+ F (t)dB(t),

Later on, we will require the discontinuous component of Y , denoted as Yd, which can be

expressed as follows:

dYd(t) =

∫
|x|<1

H(t, x)Ñ(dt, dx) +

∫
|x|≥1

K(t, x)N(dt, dx)

such that for every t ≥ 0

Y (t) = Y (0) + Yc(t) + Yd((t).

From this point forward, we will find it convenient to introduce the following local

boundedness restriction on the small jumps.

Assumption. For all t > 0,

sup
0≤s≤t

sup
0<|x|<1

|H(s, x)| <∞ a.s. (1.25)

Theorem 1.14. [2](Itô’s theorem 1) If Y is a Lévy-type stochastic integral of the form

(1.24), then, for each f ∈ C2(Rd), t ≥ 0, with probability 1 we have

f(Y (t))− f(Y (0))

=

∫ t

0

∂if(Y (s−))dY i
c (s) +

1

2

∫ t

0

∂i∂jf(Y (s−))d
[
dY i

c dY
j
c

]
(s)

+

∫ t

0

∫
|x|≥1

[f(Y (s−)) +K(s, x)− f(Y (s−))]N(ds, dx)

+

∫ t

0

∫
|x|<1

[f(Y (s−)) +H(s, x)− f(Y (s−))] Ñ(ds, dx)

+

∫ t

0

∫
|x|<1

[
f(Y (s−)) +H(s, x)− f(Y (s−))−H i(s, x)∂if(Y (s−))

]
ν(dx)ds.
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Proposition 1.6. [2] If H i ∈ P2(t, E) for each 1 ≤ i ≤ d then

∫ t

0

∫
|x|<1

∣∣H i(s, x)Hj(s, x)
∣∣N(ds, dx) <∞ a.s.

for each 1 ≤ i, j ≤ d, t ≥ 0.

Corollary 1.2. If Y is a Lévy-type stochastic integral then for 1 ≤ i ≤ d, t ≥ 0,

∑
0≤s≤t

∆Y i(s)2 <∞ a.s.

In order to convert Itô’s formula stated in Theorem 1.14 into a more comprehensive

form, we will utilize Proposition 1.6.

Theorem 1.15. [2](Itô theorem 2) If Y is a Lévy-type stochastic integral of the form 1.24

then, for each f ∈ C2(Rd), t ≥ 0, with probability 1

we have

f(Y (t))− f(Y (0)) =

∫ t

0

∂if(Y (s−))dY i(s) +
1

2

∫ t

0

∂i∂jf(Y (s−))d[Y i
c , Y

j
c ](s)

+
∑
0≤s≤t

[
f(Y (s))− f(Y (s−))−∆Y i(s)∂if(Y (s−))

]
.



Chapter 2

Stochastic analysis of SPDE driven by

Lévy noise

2.1 Study of SPDE driven by Lévy process

In this section, we will examine the stochastic partial differential equation:

Lu(t, x) = γ(u(t, x))L̇(t, x) + b(u(t, x)), t ≥ 0, x ∈ R (2.1)

with prescribed deterministic initial conditions, we will focus on the following equation:

L is a second-order pseudo-differential operator with constant coefficients, b and γ are

real functions defined on R, and L represents the Lévy white noise.

We’ll prove that the equation (2.1) has a unique solution u = {u(t, x); t ≥ 0, x ∈ R}

which is continuous in L2(Ω).

Definition 2.1. Consider the solution ω = {ω(t, x); t ≥ 0, x ∈ R} of the equation Lu(t, x) =

0, with the same initial conditions as (2.1). Additionally, let Gt be the fundamental solu-

tion of the same problem. We assume that Gt is a positive function in the intersection of

L1(R) and L2(R). We denote the Fourier transform of Gt as FGt.

Suppose that the applications b and γ are globally Lipschitzians of constant Cb and Cγ i.e:

|γ(x)− γ(y))| ≤ Cγ |x− y| for all x, y ∈ R,

|b(x)− b(y)| ≤ Cb |x− y| for all x, y ∈ R,

26
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So, |γ(x)| ≤ |γ(x)− γ(0)|+ |γ(0)| ≤ Cγ |x|+ |γ(0)| , it follows that:

|γ(x)| ≤ Dγ(1 + |x|) for all x ∈ R,

where Dγ = max(Cγ, |γ(0)|). In the same way, if we note Db = max(Cb, |d(0)|), then:

|b(x)| ≤ Db(1 + |x|) for all x ∈ R

We note that there is a constant L0 = max(Cγ, Cb) such that:

max {|γ(x)− γ(y)| , |b(x)− b(y)|} ≤ L0 |x− y| for all x, y ∈ R

By choosing L0 > max {Dγ, Db} , we have:

max {|γ(x)| , |b(x)|} ≤ L0(1 + |x|) for all x ∈ R

Now, we introduce the definition of the solution of (2.1).

Definition 2.2. The process u = {u(t, x); t ≥ 0, x ∈ R} is solution of (2.1). if u is

predictable and for each t ≥ 0 and x ∈ R we have:

u(t, x) = ω(t, x) +

∫ t

0

∫
R
Gt−s(x− y)γ(u(s, y))L(ds, dy)

+

∫ t

0

∫
R
Gt−s(x− y)b(u(s, y))dyds a.s. (2.2)

The main result of this section is the following theorem.

Theorem 2.1. [15] We assume that ω(t, x) is continuous relative to (t, x) and k :=

sup
(t,x)∈[0,T ]×R

|ω(t, x)|2 <∞ and G satisfies hypothesis (H), where

(H)



a)ΓT :=
∫ T
0

∫
RGt(x)dxdt <∞ and νT :=

∫ T
0

∫
RG

2
t (x)dxdt <∞,

b)t 7→ FGt(ξ) is continuous for all ξ ∈ R,

c)∃ε > 0 and a positive function kt(.), such as for all t ≥ 0 and h ∈ [0, ε]

|FGt+h(ξ)−FGt(ξ)| ≤ kt(ξ),

and ∫ T
0

∫
R k

2
t dξdt <∞

The equation (2.1) admit an unique solution u = {u(t, x); t ≥ 0, x ∈ R} which is con-

tinuous on L2(Ω) and satisfies the next condition: for each T > 0 we have :

sup
(t,x)∈[0,T ]×R

E |u(t, x)|2 <∞.
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Proof. We will demonstrate that u is a solution. It is important to note that the mapping

(t, x) → un(t, x) ∈ L2(Ω) is continuous. By employing

sup
(t,x)∈[0,T ]×R

∥un(t, x)− u(t, x)∥L2(Ω) →
n→∞

0,

we can extend Proposition 3.21 of [22] to random fields, which establishes that u undergoes

a predictable change. Subsequently, we proceed with this modified version. Now, we

establish that u satisfies (2.2) by taking the L2(Ω) limit in relation to

un+1(t, x) = w(t, x) +

∫ t

0

∫
R
Gt−s(x− y)γ(un(s, y))L(ds, dy)

+

∫ t

0

∫
R
Gs(y)b(un(s, y))dyds, n ≥ 0. (2.3)

After performing the calculation in [15], we determine that u satisfies (2.2).

By utilizing Lemma 15 from [8], we obtain the result stated in

sup
n≥1

sup
(t,x)∈[0,T ]×R

E |un(t, x)| <∞.

To establish uniqueness, consider two solutions u and u′ of (2.1). Let d(t, x) = u(t, x) −

u′(t, x) :

E |d(t, x)|2 ≤ 2E
∣∣∣∣∫ t

0

∫
R
Gt−s(x− y) [γ(u(s, y))− γ(u′(s, y))]L(ds, dy)

∣∣∣∣2
+ 2E

∣∣∣∣∫ t

0

∫
R
Gt−s(x− y) [b(u(s, y))− b(u′(s, y))] dy, ds

∣∣∣∣2
= 2ν

∫ t

0

∫
R
G2
t−s(x− y)E |γ(u(s, y))− γ(u′(s, y))|2 dy, ds

+ 2ΓT

∫ t

0

∫
R
Gt−s(x− y)E |b(u(s, y))− b(u′(s, y))|2 dy, ds

≤ CT

∫ t

0

∫
R

[
G2
t−s(x− y) +Gt−s(x− y)

]
E |d(s, y)|2 dyds,

where CT = max(ν,ΓT ). Suppose then H(t) = sup
x∈R

E |d(t, x)|2, we have :

E |d(t, x)|2 ≤ CT

∫ t

0

H(s)

∫
R

[
G2
t−s(x− y) +Gt−s(x− y)

]
dyds,

= CT

∫ t

0

H(s)g(t− s)ds.

As a result

H(t) ≤ CT

∫ t

0

H(s)g(t− s)ds.

By applying Lemma 15 from [8] with k1 = k2 = 0. We conclude that H(t) = 0. So

u(t, x) = u′(t, x) almost surely for each t ∈ [0, T ] , x ∈ R.
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2.2 Examples

We will present two examples of the application of the previous result.

2.2.1 Heat equation

Let’s consider the stochastic heat equation from [7]:
∂u
∂t
(t, x) = ∆u(t, x) + γ(u(t, x))L̇(t, x), (t, x) ∈ (0, T )×D,

u(t, x) = 0, for all (t, x) ∈ (0, T )× ∂D,

u(0, x) = u0(x) for all x ∈ D

(2.4)

we consider D to be the entire space Rd or a bounded domain in Rd. The function

γ : R → R is a Lipschitz function, u0 : D → R is a bounded continuous initial condition

that vanishes on the boundary ∂D, and L̇ represents a space-time white noise in the Lévy

sense. If D = Rd, the boundary conditions on u and u0 are considered to be non-existent.

A predictable random field u = (u(t, x) : (t, x) ∈ [0, T ]×D) is called a mild solution to

(2.4) if for all (t, x) ∈ [0, T ]×D,

u(t, x) = V (t, x) +

∫ t

0

∫
D

GD(t− s;x, y)γ(u(s, y))L(ds, dy) (2.5)

Where the homogeneous solution of (2.4) is

V (t, x) =

∫
D

GD(t;x, y)u0(y)dy, (t, x) ∈ [0, T ]×D. (2.6)

Remark 2.1. In (2.5) and (2.6), GD is the Green’s function of the heat operator on D,

for D = Rd equals the Gaussian density

g(t, x) = (4πt)
d
2 e−

|x|2
4t 1t≥0

while on a bounded domain D with a smooth boundary, it has the spectral representation

GD(t, x, y) =
∑
j≥1

Φj(x)Φj(y)e
−λjt1t≥0, for all x, y ∈ D,

where (λj)j≥1 are the eigenvalues of −∆ with vanishing Dirichlet boundary conditions,

and (Φj)j≥1 are the corresponding eigenfunctions forming a complete orthonormal basis

of L2(D).
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2.2.2 The wave equation

Let us now consider the stochastic wave equation:
∂2u
∂t2

(t, x) = ∂2u
∂x2

(t, x) + γ(u(t, x))L̇(t, x) + b(u(t, x)) t ≥ 0, x ∈ R

u(0, x) = g(x), x ∈ R

∂u
∂t
(0, x) = h(x), x ∈ R,

(2.7)

γ and b are assumed to be globally Lipschitz continuous with a Lipschitz constant denoted

as L0. Additionally, the function g is continuous, bounded, and h belongs to the space

L1(R).

We note that the fundamental solution is given by:

Gt(x) =
1

2
1{|x|<t}

and its Fourier transformation by

FGt(ξ) =
sin(t |ξ|)

|ξ|
.

The solution of the homogeneous equation is given by:

w(t, x) =

∫
R
Gt(x− y)h(y)dy +

∂

∂t

∫
R
Gt(x− y)g(y)dy

=
1

2

∫ x+t

x−t
h(y)dy +

1

2
[g(x+ t) + g(x− t)] .
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2.3 Some examples of SPDEs in infinite dimension

Over time there was a diversity of research for the study of the SPDE, in this chapter we

study some different types of these equations while illustrating by numerical applications.

2.3.1 SPDE with respect to a square-integrable Lévy martingale

Within this particular section, we consider the real separable Hilbert spaces U,H, and

V. We use the notation L(U,H) to represent the space encompassing all bounded linear

operators from U to H. Additionally, we denote the subspace of Hilbert-Schmidt operators

within L(U,H) as L(HS)(U,H).

Suppose L is a square-integrable Lévy process, where we have removed the large jumps,

and it takes values in U , then

M(t) = L(t)− tEL(1), t ≥ 0.

where M is square integrable martingale.

Let’s consider the assumption that a Hilbert space H is continuously embedded within

a Hilbert space V. Now, let us examine a (SPDE):

du = (Au+ F (u))dt+B(u)dM, u(0) = u0 ∈ H, (2.8)

where (A,D(A)) acts as a generator from a C0-semigroup S on the Hilbert space H. The

mapping F is defined from H to V, and for any x ∈ H,B(x) represents a linear operator

(which may not be bounded) from H to H. Here is a clear result of its existence.

Theorem 2.3.1. [18] Let’s assume that for any positive t, the semigroup S(t) can be

extended uniquely to a bounded linear mapping from V to H. Additionally, we assume

that

|S(t)(F (x)− F (y))|H ≤ b(t) |x− y|H ,

∥S(t)(B(x)−B(y))∥L(H,S)(H,H) ≤ a(t) |x− y|H

and

|S(t)F (x)|H ≤ b(t)(1 + |x|H),

∥S(t)B(x)∥L(H,S)(H,H) ≤ a(t)(1 + |x|H),
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where ∫ T

0

(b(t) + a2(t))dt <∞, ∀T > 0.

In that case, there exists only one adapted process u such that

sup
0≤t≤T

E |u(t)|2H <∞, ∀T > 0

and for all t ≥ 0,

u(t) = S(t)u0 +

∫ t

0

S(t− s)F (u(s))ds+

∫ t

0

S(t− s)F (u(s))dM(s), P− a.s.

Proof. Let’s set a specific finite time limit where T > 0. XT represents the set of all

adapted processes that are square-integrable X : Ω× [0, T ] 7→ H such

t ∈ [0, T ] → E |X(t)|2H ∈ R

is continuous. Consider the family of equivalent norms on XT

∥X∥β := sup
0≤t≤T

e−βt
√
E |X(t)|2H , β > 0.

Therefore, when XT is equipped with the norm ∥.∥β it forms a Banach space. Let’s

examine the mapping

Ψ(t) = S(t)u0 +

∫ t

0

S(t− s)F (X(s))ds+

∫ t

0

S(t− s)B(X(s))dM(s).

Hence Ψ : XT 7→ XT . Furthermore, when β is sufficiently large it can be observed that

Ψ is a contraction. Consequently, the desired conclusion can be derived from the Banach

fixed point theorem.
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2.3.2 Example

Let’s look at the stochastic heat equation

du = (∆u+ f(u))dt+ b(u)dM, u(0) = u0,

considered on a bounded region O ⊂ Rd with zero-Dirichlet boundary conditions. Under

the assumption that the reproducing kernel Hilbert space (RKHS) H of M is a subset

of H = L2(O), and the functions f and b are mappings from R to R, we can frame the

equation (2.8) in the context where A represents the Laplace operator on H = L2(O)

with Dirichlet boundary conditions. Additionally, the operators F and B correspond to

Nemytskii type operators

F (ψ)(x) = f(ψ(x)), B(ψ) [ϕ] (x) = b(ψ(x))ϕ(x)

for ψ ∈ L2(O), ϕ ∈ H, x ∈ O.

Note that if f : R → R is Lipschitz then the corresponding F : L2(O) 7→ L2(O) is

Lipschitz as well. As far as concerned, then B(u) is a bounded linear operator from

L2(O) to L2(O) if and only if b(u) ∈ L∞(O). Therefore B is an L(L2(O), L2(O))−valued

if and only if b is bounded. Suppose that b is bounded. It is important to note that

B : L2(O) 7→ L(L2(O), L2(O))

is continuous if and only if b is constant. For

∥B(u)−B(ν)∥2L(L2(O),L2(O)) = sup
|ψ|L2(O)≤1

∫
O
(b(u(x))− b(ν(x)))2ψ2(x)dx

= ∥b(u)− b(ν)∥2∞ .

Consider a1 ̸= a2 ∈ R and let Oε be a subset of O with Lebesgue measure ε. Define

uε(x) = a1χOε(x) and νε(x) = a2χOε(x) for x ∈ O. Then |b(uε)−b(νε)|∞ = |b(a1)−b(a2)|.

However,

|uε − νε|L2(O) = |a1 − a2|
√
ε.

Note that B(u) is Hilbert-Schmidt if and only if b ≡ 0.
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Let G be the Green kernel. Then

∥S(t)(B(u)−B(ν))∥L(L2(O),L2(O)) = sup
|ψ|L2(O)≤1

∫
O
ψ(x)S(t)(B(u)−B(ν))(x)dx

= |S(t)(B(u)−B(v))|L∞(O)

= sup
x∈O

∫
O
G(t, x, y) |b(u(y))− b(ν(y))| dy

≤ |b(u)− b(ν)|L2(O) sup
x∈O

(∫
O
G2(t, x, y)dy

)1/2

.

Let’s remember that d represents the dimension of the domain O. By considering the

Arronson estimates for the Green kernel, see [4]

G(t, x, y) ≤ C1t
1/2exp

{
−C2

|x− y|2

t

}
.

We can deduce the estimation

sup
x∈O

(∫
O
G2(t, x, y)dy

)1/2

≤ C3t
−d/4.

Alternatively,

∥S(t)(B(u)−B(ν))∥2L(L2(O),L2(O)) =

∫
O

∫
O

∣∣G2(t, x, y)b(u(y))− b(ν(y))
∣∣2 dydx

≤ |b(u)− b(ν)|2L2(O) sup
y∈O

∫
O
G2(t, x, y)dx

≤ C3t
−d/2 |b(u)− b(ν)|2L2(O) .

Therefore, if d = 1, then the existence of the solution follows from Theorem 2.3.1.
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2.3.3 SPDEs with respect to Lévy space-time white noise

The proposed method, combines the techniques used for solving SPDEs driven by Gaus-

sian noise in [6] with the method employed for solving ordinary SDEs driven by Lévy

processes in [11].

Let’s consider the following SPDEs of parabolic type with initial and Dirichlet boundary

conditions

( ∂
∂t
− ∂2

∂x2
)u(t, x, w) = a(t, x, u(t, x, w)) + b(t, x, u(t, x, w))Ft,x(w),

(t, x, w) ∈ (0,∞)× [0, L]× Ω

u(t, 0, w) = u(t, L, w) = 0, (t, w) ∈ [0,∞)× Ω

u(0, x, w) = u0(t, w), (x,w) ∈ [0, L]× Ω.

(2.9)

We have an arbitrarily fixed positive value L. The process F represents a white noise,

while a, b : [0,∞) × [0, L] × R 7→ R are measurable functions. The initial condition

u0 is F0−measurable and satisfies u0(0, w) = u0(L,w) = 0. Our aim here is to extend

the conventional framework, where F is assumed to be Gaussian, to incorporate terms

controlled by a "space-time Poisson white noise." As a result, the noise we consider

exhibits a formal structure akin to that of a Lévy process. We refer to this noise as "the

Lévy space-time white noise".

Expanding on the discussion in [3], we can simplify the analysis by considering the

equations in the following form, without compromising generality

u(t, x, w) =

∫ L

0

Gt(x, z)u0(z, w)dz +

∫ t

0

∫ L

0

Gt−s(x, z)f(s, z, u(s, z, w))dzds

+

∫ t

0

∫ L

0

Gt−s(x, z)g(s, z, u(s, z, w))W (ds, dz)

+

∫ t+

0

∫ L

0

∫
U

Gt−s(x, z)h(s, z, u(s−, z, w); y)M(ds, dz, dy, w), (2.10)

where f, g : [0,∞)× [0, L]×R → R, h : [0,∞)× [0, L]×R×U → R are measurable, W is

a Gaussian white noise, N is Poisson white noise and M is the associated (compensating)

martingale measure.

We have the following main result

Theorem 2.3.2. [3] Suppose that for every positive T, there exists a positive real function

KT : [0,∞]× [0, L] → [0,∞) such that∫ L

0

[Gt−s(x, z)]
2KT (s, z)dz ≤ const.(t− s)−α (2.11)



2.3.3 SPDEs with respect to Lévy space-time white noise 36

with α ∈
[
1
2
, 1
)

such that we have

|f(t, x, z)|2 + |g(t, x, z)|2 +
∫
U

|h(t, x, z; y)|2 ν(dy) ≤ KT (t, x)(1 + |z|2) (2.12)

and

|f(t, x, z1)− f(t, x, z2)|2 + |g(t, x, z1)− g(t, x, z2)|2

+

∫
U

|h(t, x, z1; y)− h(t, x, z2; y)|2 ν(dy) ≤ KT (t, x)(|z1 − z2|2 (2.13)

for all (t, x) ∈ [0, T ] × [0, L] and z, z1, z2 ∈ R. Hence for every F0−measurable u0 :

[0, L] × Ω → R with
∫ L
0
E(|u0(x, .)|2)dx < ∞, there is a unique solution u to equation

(2.10), characterized by the following property

sup
x∈[0,L]

E(|u(t, x, .)|2) <∞, ∀t ∈ [0, T ] .

Proof. First, we will establish the existence by initiating the following iterative scheme:

u1(t, x, w) :=

∫ L

0

Gt(x, z)u0(z, w)dz

un+1(t, x, w) := u1(t, x, w) +

∫ t

0

∫ L

0

Gt−s(x, z)f(s, z, un(s, z, w))dzds

+

∫ t

0

∫ L

0

Gt−s(x, z)g(s, z, un(s, z, w))W (ds, dz)

+

∫ t+

0

∫ L

0

∫
U

Gt−s(x, z)h(s, z, un(s−, z, w); y)×M(ds, dz, dy, w)

For every n ∈ N, the function u1 is continuous in (t, x) ∈ (0, T ]× [0, L] almost surely. As

a result, given our assumptions, the three integrals in u2 are well-defined. There exists

a cádlág modification of u2 for t ∈ (0, T ] for all x ∈ [0, L] and for almost all w ∈ Ω. By

induction, the same holds for un for each n > 2.

From now on, we can assume that un is cádlág in t ∈ (0, T ] for all x ∈ [0, L] and for

almost all w ∈ Ω. Therefore, un is a cádlág process with un(0, x, w) = u0(x,w) for each

n ∈ N. It is worth noting that for any fixed t > 0, we can apply the Schwarz inequality,

we have:

E(|u1(t, x, .)|2) ≤
∫ L

0

[Gt(x, z)]
2 dzE

∫ L

0

[u0(z, .)]
2 dz

≤ C.t−
1
2

∫ L

0

E([u0(z, .)]2)dz

This implication signifies that

sup
x∈[0,L]

E([u1(t, x, .)]2) <∞, ∀t ∈ [0, T ] (2.14)
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Furthermore, ∫ t

0

sup
x∈[0,L]

E([u1(s, x, .)]2)ds ≤ cont.t
1
2 <∞, ∀t ∈ [0, T ]

Moreover, by (2.11) we have

sup
x∈[0,L]

E([u1(t, x, .)]2) ≤ cont.t−
1
2 (t

1
2 + t

3
2
−α) <∞, ∀t ∈ [0, T ] . (2.15)

Now we have

Hn(t) := sup
x∈[0,L]

E
{
|un+1(t, x, .)− un(t, x, .)|2

}
, n ∈ N.

Then by (2.13) and (2.14) we conclude that

H1(t) <∞.

Since {un(t, x, .)}n∈N converges to u(t, x, .) uniformly in L2(Ω,F , P ) for (t, x) ∈ [0, T ] ×

[0, L], we can take the L2(Ω,F , P )-limit as n → ∞ by integrating over the variable s

in the interval [0, T ] and taking the supremum over the variable z in the interval [0, L].

Consequently, we obtain the following result:

u(t, x, w) = u1(t, x, w) +

∫ t

0

∫ L

0

Gt−s(x, z)f(s, z, u(s, z, w))dzds

+

∫ t

0

∫ L

0

Gt−s(x, z)g(s, z, u(s, z, w))W (ds, dz)

+

∫ t+

0

∫ L

0

∫
U

Gt−s(x, z)h(s, z, u(s−, z, w); y)

× M(ds, dz, dy, w).

Which completes the proof of existence.

The uniqueness is proved as follows. Suppose u and u′ are two solution of (2.10), let us

set

H(t) := sup
x∈[0,L]

E
[
|u(t, x, .)− u′(t, x, .)|2

]
, t ∈ [0, T ] ,

then clearly H(t) <∞,∀t ∈ [0, T ] . Furthermore, we have

H(t) ≤ Cn

(n− 1)!

∫ t

0

H(s)(t− s)ds, t ∈ [0, T ] ,

which implies that H ≡ 0 and from which we obtain the uniqueness.



Chapter 3

Numerical analysis of SPDEs

Stochastic optimal control is a field of study that deals with decision-making in dynamic

systems under uncertainty. It combines principles from control theory and stochastic

processes to determine the optimal control actions in situations where both the system

dynamics and external influences are subject to random variations.

The goal of stochastic optimal control is to determine a control policy that optimizes

a certain objective function, often represented as an expected value or a utility function.

The control policy specifies the optimal actions to be taken at each point in time, based on

available information and the underlying stochastic dynamics. The policy may be time-

or history-dependent, meaning it can consider the entire history of observations.

To solve stochastic optimal control problems, various mathematical and computational

techniques are employed. These include dynamic programming, stochastic calculus, opti-

mization methods, and numerical approximation schemes. The optimal control problem

is typically formulated as a mathematical optimization problem, and the solution can be

obtained through analytical or numerical methods.

One of the cases that give us a SPDE is the study of stochastic optimal control (SOC)

in which the coefficient depend on w. This will produce a Hamilton-Jacobi-Bellman equa-

tion (HJB) with random coefficients means we will have SPDE.

38
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3.1 Stochastic optimal control

To initiate our discussion, we examine an ordinary differential equation (ODE) of the

following form: ẋ(t) = f(x(t)) (t > 0)

x(0) = x0

(3.1)

We are given an initial point x0 ∈ Rn and a function f : Rn → Rn. The objective is to

find a curve x : [0,∞) → Rn, which represents the dynamic evolution of the state of a

"system".

To generalize the scenario, we introduce additional "control" parameters belonging to

a set A ⊂ Rm. This means that f : Rn × A → Rn. Thus, if we choose a specific value

a ∈ A and consider the corresponding dynamics, we have:ẋ(t) = f(x(t), a) (t > 0)

x(0) = x0,

This gives us the system’s evolution when the parameter is fixed at the value a throughout

the process.

Another possibility is to vary the parameter value as the system evolves. For example,

let us consider the function α : [0,∞) → A defined as follows:

α(t) =


a1 0 ≤ t ≤ t1

a2 t1 < t ≤ t2

a2 t2 < t ≤ t3 etc.

In general, we refer to a function α : [0,∞) → A as a control. For each control, we analyze

the ODE given by: ẋ(t) = f(x(t), α(t)) (t > 0)

x(0) = x0,

(3.2)

3.1.1 Cost function

The cost function is defined by:

J(x, t;u) :=

∫ T

0

r(x(t), α)dt+ g(x(T )), (3.3)
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In the given problem, we consider the control α() and the corresponding solution x(.) to

the ordinary differential equation (ODE). The functions r : Rn ×A→ R and g : Rn → R

represent the running cost and the terminal cost, respectively. The time horizon is denoted

by T > 0.

Definition 3.1. [10] Suppose for given α∗(.), sup
α∈A

J(α(.)) = J(α∗(.)).

We want

J [α∗(.)] ≥ J [α(.)]

where, α∗ called the optimal control of the problem (3.3).

3.1.2 Dynamic programming

Let consider the following SDE

(SDE)

dX(s) = f(X(s), A(s))ds+ σdW (s) (t ≤ s ≤ T )

X(t) = x.

(3.4)

Then

X(τ) = x+

∫ τ

t

f(X(s), A(s))ds+ σ [W (τ)−W (t)]

for all t ≤ τ ≤ T. Additionally, we introduce the expected cost function functional as

follows:

Jx,t [A(.)] := E
{∫ T

t

r(X(s), A(s))ds+ g(X(T ))

}
.

The value function is

v(x, t) := sup
A(.)∈A

Jx,t [A(.)] .

Remark 3.1. To use the dynamic programming method, we need to

• derive a partial differential equation (PDE) that is satisfied by the function v.

• use this PDE to construct an optimal control A∗(.).
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3.1.3 A PDE for the value function

Consider any control A(.), and assume that we use it for times t ≤ s ≤ t+h for some

h > 0. After that, we switch to the optimal control. In this case, we have the following :

v(x, t) ≥ E
{∫ t+h

t

r(X(s), A(s))ds+ v(X(t+ h), t+ h)

}
. (3.5)

Furthermore, the inequality in (3.5) becomes an equality if we choose A(.) = A∗(.), which

corresponds to an optimal control. From equation (3.5), it is evident that for any control

A(.), we have the following relationship:

0 ≥ E
{∫ t+h

t

r(X(s), A(s))ds+ v(X(t+ h), t+ h)− v(x, t)

}
= E

{∫ t+h

t

r(X(s), A(s))ds

}
+ E {v(X(t+ h), t+ h)− v(x, t)}

By Itô’s formula:

dv(X(s), s) = vt(X(s), s)ds+
n∑
i=1

vxi(X(s), s)dX i(s) +
1

2

n∑
i,j=1

vxixj(X(s), s)dX i(s)dXj(s)

= vtds+ ▽xv.(f(X(s), A(s))ds+ σdW (s))
σ2

2
∆vds.

It follows that

v(X(t+ h), t+ h)− v(X(t), t) =

∫ t+h

t

(vt + ▽xv.f(X(s), A(s)) +
σ2

2
∆v)ds

+

∫ t+h

t

σ▽xvdW (s);

and therefore, we can take expected values to deduce that

E [v(X(t+ h), t+ h)− v(x, t)] = E
[∫ t+h

t

(vt + ▽xv.f(X(s), A(s)) +
σ2

2
∆v)ds

]
.

We can then derive the formula

E
[∫ t+h

t

(r(X(s), A(s)) + vt + ▽xvf(X(s), A(s)) +
σ2

2
∆v)ds

]
≤ 0.

Divide by h:

E
[
1

h

∫ t+h

t

r(X(s), A(s)) + vt(X(s), s) + f(X(s), A(s)).▽xv(X(s), s) +
σ2

2
∆v(X(s), s))ds

]
≤ 0.
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If h→ 0, recall that X(t) = x and set A(t) := a ∈ A, we see that

r(x, a) + vt(x, t) + f(x, a).▽xv(x, t) +
σ2

2
∆v(x, t) ≤ 0.

The identity presented above holds for all x, t, and a, and it is indeed an equality when

considering the optimal control. Consequently,

sup
a∈A

{
vt(x, a) + f(x, a).▽xv(x, t) +

σ2

2
∆v(x, t) + r(x, a)

}
= 0.

3.1.4 Stochastic Hamilton-Jacobi-Bellman equation

Theorem 3.1.1. [10] The value function v for the stochastic control issue solves the

following PDE.:

(HJB)


vt(x, t) +

σ2

2
∆v(x, t) + sup

a∈A
{f(x, a).▽xv(x, t) + r(x, a)} = 0,

v(x, T ) = g(x) (x ∈ Rn),

where x ∈ Rn, 0 ≤ t ≤ T, the stochastic Hamilton-Jacobi-Bellman equation corresponds

to the above semilinear parabolic PDE.

Remark 3.2. If the coefficients of the equation are random (depending on w) the PDE

that we will get will be a SPDE.

3.1.5 SDE driven by a Lévy process

Let’s consider the stochastic differential equation (SDE):dY (t) = dYu(t) = b(Y (t), u(t))dt+ σ(Y (t), u(t))dB(t) +
∫
R γ(Y (t), u(t), ζ)Ñ(dt, dζ),

Y (0) = y ∈ Rk.

(3.6)

with b : [0, T ] × Rn → Rn; σ : [0, T ] × Rn → Rn×m and γ [0, T ] × Rn × Rl
0 → Rn×l are

given functions, and let denote Ñ(dt, dζ) the compensated jump measure of η defined:

Ñ(dt, dζ) ≡ N(dt, dζ)− ν(dζ)dt

where N(dt, dζ) is the differential notation of the random measure N([0; t];U), and ζ can

be considered as generic jump size.

The cost functional is :

Ju(y) = Ey
[∫ τs

0

f(Y (s), u(s))ds+ g(Y (τs))1{τs<∞}

]
,
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where f(Y (s), u(s)) is profit rate, g(Y (τs)) is bequest function and τs = inf {t ≥ 0 : Y (t) /∈ S}

with S is a given financial stability zone.

The problem is to find u∗ ∈ A and Φ(y) such that

Φ(y) = sup
u∈A

Ju(y) = Ju∗(y).

Theorem 3.1.2. [16]

1. Assume that we can find a function φ ∈ C2(Rn) such that

(i) Avφ(y) + f(y, v) ≤ 0, for all v ∈ V , where V is the set of possible control values,

and

Avφ(y) =
k∑
i=1

bi(y, v)
∂φ

∂yi
+

1

2

k∑
i,j=1

(σσT )ij(y, v)
∂2φ

∂yi∂yj

+
∑
m

∫
R

{
φ(y + γ(k)(y, v, ζ))− φ(y)− ▽φ(y)γ(k)(y, v, ζ)

}
νk(dζ)

(ii) lim
t→τs

φ(Y (t)) = g(Y (τs))1{τs<∞}

(iii) "Growth conditions:"

Ey
[
|φ(Y (τ))|+

∫ τs

0

{
|Aφ(Y (t))|+

∣∣σT (Y (t))▽φ(Y (t))
∣∣2} dt]

+ Ey
[∫ τs

0

{
l∑

j=1

∫
R

∣∣φ(Y (t) + γ(j)(Y (t), u(t), ζj))− φ(Y (t))
∣∣2 νj(dζj)} dt

]
<∞

for all u ∈ A and all stopping time τ .

(iv) {φ−(Y (τ))}τ≤τs is uniformly integrable for all u ∈ A and y ∈ S, where, in

general, x− = max {−x, 0} for x ∈ R.

Therefore

φ(y) ≥ Φ(y).

2. Suppose that for all y ∈ S we can find v = û(y) such that

Aû(y)φ(y) + f(y, û(y)) = 0

and û(y) is an admissible feedback control (Markov control), i.e. û(y) means û(Y (t)).

Then û(y) is an optimal control and

φ(y) = Φ(y).
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Remark 3.3. This result is useful because, in a certain sense, it fundamentally re-

duces the highly complicated theoretical stochastic control problem to a classical problem

of maximizing a function of (perhaps several) actual variable(s), namely the function

v 7→ Avφ(y) + f(y, v); v ∈ V .

3.2 Derivation of the SPDE corresponding to the stochas-

tic optimal control

Let’s consider the stochastic optimal controldXs = (AXs +Bus)ds+BdWs,

Xt = x x ∈ R
(3.7)

A,B are two random variable in R, and W is a R−Brownian Motion. u(.) is a stochastic

process representing the control,

We consider the problem of minimizing, the cost functional

J(t, x;u) = E[
∫ T

t

(Xs +
1

2
u2s)ds+X2

T ], (3.8)

such that u is a stochastic process.

The value function for this problem is defined as follows:

v(t, x) = inf
u∈A

J(t, x, u).

As usual, we say that the control u(.) ∈ Us is optimal at (t, x) if u(.) minimizes (3.8) one

of the controls in Us.

We can write the (HJB) equation
∂tv(t, x) + inf

α∈A

{
1
2
B2∂2xxv(t, x) + (Ax2 +Bα)∂xv(t, x) +

1
2
α2 + x

}
= 0,

v(x, T ) = g(x).

(3.9)

We take the following equation:{
1

2
B2∂2xxv(t, x) + (Ax2 +Bα)∂xv(t, x) +

1

2
α2 + x

}
,

and we derive it with respect to α. After derivation we found B∂xv(t, x)+α = 0, then we

take out α and substitute it into the equation (3.9), Then we get the following (PDE) :

∂tv(t, x) +
1

2
B2∂2xxv(t, x) + Ax2∂xv(t, x)−

1

2
(B∂xv(t, x))

2 + x = 0. (3.10)
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3.3 Numerical result

3.3.1 Finite difference method

Finite difference methods are widely used for the numerical analysis of partial differen-

tial equations (PDEs). These methods approximate derivatives by using finite difference

approximations, which convert the continuous PDE problem into a discrete problem that

can be solved numerically on a grid.

To illustrate the process, let’s consider a simple example of the one-dimensional heat

equation:
∂v

∂t
= α

∂2v

∂x2
(3.11)

where v(t, x) is the unknown function to be solved, α is a constant diffusion coefficient,

and x and t represent spatial and temporal variables, respectively.

To apply the finite difference method, we discretize the domain of the problem. Let’s

assume that we have a spatial domain x ∈ [0, L] divided into N equally spaced grid points

with a spacing ∆x = L/N. Similarly, the time domain t ∈ [0, T ] is divided into M equally

spaced time steps with a time increment ∆t = T
M
.

We approximate the derivatives using finite difference approximations. We can use

forward, backward, or central difference schemes for the time derivative. Let’s use the

forward difference scheme:
∂v

∂t
≈ vi+1,j − vi,j

∆t

where vi,j represents the value of v at the spatial grid point j and the time step i. For the

spatial second derivative, we can use the central difference scheme:

∂2v

∂x2
≈ vi,j+1 − 2vi,j + vi,j−1

∆x2

By substituting these approximations into the original PDE, we obtain a finite difference

equation at each grid point:

vi+1,j − vi,j
∆t

= α
vi,j+1 − 2vi,j + vi,j−1

∆x2

This equation relates the values of v at the current time step i + 1 to the values at the

previous time step i.
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To solve the PDE numerically, we start from an initial condition v(0, x) and itera-

tively compute the values of v at each time step using the finite difference equation. We

can use methods like the explicit Euler method or the implicit Euler method to perform

the time-stepping.

Once the time-stepping process is complete, we obtain the numerical solution of the

PDE at different grid points over the spatial and temporal domains.

It’s important to note that the choice of finite difference scheme (forward, backward,

central), the grid spacing, and the time step size can affect the accuracy and stability of

the numerical solution. Different PDEs may require different types of finite difference

approximations and numerical methods to ensure accurate and stable solutions. Addi-

tionally, more complex PDEs, such as nonlinear or higher-dimensional equations, may

require advanced techniques beyond simple finite difference methods.

3.3.2 Examples

Example 1. Let’s consider the partial differential equation (3.10) then we got from the

SOC:

∂tv(t, x) +
1

2
B2∂2xxv(t, x) + Ax2∂xv(t, x)−

1

2
(B∂xv(t, x))

2 + x = 0.

after using the previous numerical method 3.3.1 we obtain:

vi+1,j − vi,j
∆t

+
1

2
B2(

vi,j+1 − 2vi,j + vi,j−1

∆x2
)− 1

2
(B

vi,j+1 − vi,j
∆x

)2 +Ax2(
vi,j+1 − vi,j

∆x
)+ x = 0

Therefore

vi+1,j = vi,j +
∆t

2∆x2
[
−B2(vi,j+1 − 2vi,j + vi,j−1) + (B(vi,j+1 − vi,j))

2
]

− ∆t

∆x
Ax2(vi,j+1 − vi,j)−∆tx = 0

where the initial condition of PDE (3.10) is v(0, x) = g(x), for all x ∈ R.

Assume that A is a random variable follows the normal distribution and B is a ran-

dom variable follows the uniform distribution. for all x ∈ [−10, 10], ∆x = 0.1 and for all

t ∈ [0, 1], ∆t = 10−3, with the initial condition g(x) = x3 − 100 and for five realizations

we have:
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Simulation of v for different realisations

Figure 3.1: Plot of the solution of

equation (3.10) for the first realisation

of A and B.

Figure 3.2: Plot of the solution of

equation (3.10) for the second realisation

of A and B.

Figure 3.3: Plot of the solution of

equation (3.10) for the third realisation

of A and B.

Figure 3.4: Plot of the solution of

equation (3.10) for the forth realisation

of A and B.

Figure 3.5: Plot of the solution ofequation (3.10) for the fifth realisationof A and B.

We remark that the five figures (3.1, 3.2, 3.3, 3.4 and 3.5) have the same form some-

thing almost linear then makes jump around x = 1 then decreasing then something almost
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linear.

Example 2. Let’s consider the following (SPDE):∂tv(t, x) = ∂2xxv(t, x) + adLt + bdBt

v(0, x) = v0,

(3.12)

where L is the Poisson process, B is the Brownian motion, a and b are constant coefficients.

To numerically analyze the stochastic partial differential equation (3.12) using finite

difference methods (3.3.1), we will discretize the equation in both the spatial and temporal

domains. Here’s an overview of the numerical analysis using the finite difference method:

1. Discretize the spatial domain:

• Divide the spatial domain Ω into a grid with N equally spaced points, resulting

in a spatial grid spacing of ∆x.

• Denote the spatial grid points as xj = j ·∆x for j = 0, 1, 2, . . . , N .

2. Discretize the temporal domain:

• Divide the time domain [0, T ] into M equally spaced time steps, with a time

step size of ∆t.

• Denote the time steps as ti = i ·∆t for i = 0, 1, 2, . . . ,M .

3. Approximate the stochastic terms:

• For the Poisson process term dP , generate random numbers. The increments

∆Pi can be approximated using appropriate methods based on the properties

of the Poisson process.

• For the Brownian motion term dB, generate random numbers. The increments

∆Bi are N (0,∆t).

4. Construct the finite difference equation:

• Substituting the spatial and stochastic approximations into the original SPDE,

we obtain the following finite difference equation at each grid point:

vi+1,j − vi,j
∆t

=
vi,j+1 − 2vi,j + vi,j−1

∆x2
+ a∆Pi + b∆Bi
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This equation relates the values of v at the current time step ti+1 to the values

at the previous time step ti.

5. Solve the finite difference equation:

• Start with an initial condition v(0, x) and apply the finite difference equation

iteratively in time.

• For each time step ti, solve the resulting system of algebraic equations to obtain

the values of v at each grid point.

Here is the result of the simulation of v for different realizations with different initial

conditions, where for all x ∈ [−10, 10], ∆x = 0.1 and for all t ∈ [0, 1], ∆t = 10−2,

Simulation of v for different realisations with a = 0

Figure 3.6: Simulation of v in (3.12) with

a = 0, b = 1 and initial condition is

v(0, x) = 0.05.

Figure 3.7: Simulation of v in (3.12) with

a = 0, b = 1 and the initial condition is

v(0, x) = 0.1.

The figures (3.6) and (3.7) are the plot of v(T, x, wi) where i = 1 : 5 with respect to

x ∈ R.
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Simulation of v for different realisations with b = 0

Figure 3.8: Simulation of v in (3.12) with

a = 1, b = 0 and the initial condition is

v(0, x) = 0.05.

Figure 3.9: Simulation of v in (3.12) with

a = 1, b = 0 and the initial condition is

v(0, x) = 0.1.

The figures (3.8) and (3.9) are the plot of v(T, x, wi) where i = 1 : 5 with respect to

x ∈ R.

Simulation of v for different realisations with a = 1 and b = 1

Figure 3.10: Simulation of v in (3.12) with

a = 1, b = 1 and the initial condition is

v(0, x) = 0.05.

Figure 3.11: Simulation of v in (3.12) with

a = 1, b = 1 and the initial condition is

v(0, x) = 0.1.

The figures (3.10) and (3.11) are the plot of v(T, x, wi) where i = 1 : 5 with respect to

x ∈ R.

The behavior of the heat equation, namely equation (3.12) when a = b = 0. with the

given initial condition, is that the temperature in the border changes a lot and became
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almost stable in the middle like in the case of the thermostat. Now when we added noise

like the Poisson process or Brownian Motion, the temperature even in the middle will

change. This is explained by: for example, the case where we added another liquid in the

thermostat with different temperatures.



Conclusion

In this master thesis, we have embarked on a comprehensive analysis of stochastic

partial differential equations (SPDEs) driven by Lévy noise. Our work has aimed to

deepen our understanding of the behavior and properties of these equations, we finished

our study with stochastic optimal control and a numerical simulation, and we presented

two examples of SPDEs one that came from stochastic optimal control and another one

with additive noises, Poisson process and Brownian Motion.

Furthermore, after a synthesis of most researchers carried out on SPDEs driven by

Lévy, we deduce that it is really necessary to generalize these results with other non-

Gaussian processes since there are currently more phenomena that are modeled by non-

Gaussian processes.

We investigated the well-posedness, regularity, and numerical approximation methods

of SPDEs, we have advanced our understanding of these equations and their practical

applications. Our research contributes to the existing body of knowledge in this field and

opens up avenues for further exploration, including the extension of these analyses to more

complex systems and the development of new numerical methods. Overall, this research

provides a solid foundation for future advancements in the analysis of SPDEs driven by

Lévy noise in finite-dimensional spaces, facilitating the understanding of complex systems

affected by random fluctuations and uncertainties.
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