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Introduction

As is well-known, the classical Brownian motion is a stochastic process which is self-
similar of index 1/2 and has stationary increments. It is actually the only continuous
Gaussian process (up to a constant factor) to have these two properties that are often
observed in the "real life", for instance in the movement of particles suspended in a
fluid, or in the behavior of the logarithm of the price of a financial asset. More gen-
erally, it is natural to wonder whether there exists a stochastic process which would
be at the same time Gaussian, with stationary increments and selfsimilar, but not
necessarily with an index 1/2 as in the Brownian motion case. Such a process hap-
pens to exist, and was introduced by Kolmogorov [34] in the early 1940s for modeling
turbulence in liquids.
The name fractional Brownian motion, which is the terminology everyone uses nowa-
days, comes from the paper by Mandelbrot and Van Ness [42]. The law of fractional
Brownian motion relies on a single parameter H between 0 and 1, the so-called Hurst
parameter or selfsimilarity index. The fractional Brownian motion is interesting for
modeling purposes, as it allows the modeler to adjust the value of H to be as close
as possible to its observations. It is worthwhile noting at this stage, however, that
the picture is not as rosy as it seems. Indeed, except when its selfsimilarity index
is 1/2, fractional Brownian motion is neither a semimartingale, nor a Markov pro-
cess. As a consequence, its toolbox is limited, so that solving problems involving
fractional Brownian motion is often a non-trivial task. On the positive side, the frac-
tional Brownian motion offers new challenges for the specialists of stochastic calculus!
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If H 6= 1
2
, the fractional Brownian motion is not a semimartingale and we cannot

apply the stochastic calculus developed by Itô in order to define stochastic integrals
with respect to fractional Brownian motion. Different approaches have been used in
order to construct a stochastic calculus with respect to fractional Brownian motion
and we can mention the following contributions to this problem:

• Lin [41] and Dai and Heyde [16] defined stochastic integrals with respect to the

fractional Brownian motion with parameter H > 1
2
using a pathwise Riemann-

Stieltjes method. The integrator must have finite p−variation where 1
p

+H > 1.

• The stochastic calculus of variations (see [48]) with respect to the Gaussian
process B is a powerful technique that can be used to define stochastic integrals.
More precisely, as in the case of the Brownian motion, the divergence operator
with respect to B can be interpreted as a stochastic integral. This idea has

been developed by Decreusefond and Üstünel [18, 17], Carmona and Coutin
[11], Alòs, Mazet and Nualart [4, 3], Duncan, Hu and Pasik-Duncan [22] and
Hu and Øksendal [29]. The integral constructed by this method has zero mean,
and can be obtained as the limit of Riemann sums defined using Wick products.

• Using the notions of the fractional integral and the derivative, Zähle has in-
troduced in [43] a pathwise stochastic integral with respect to the fractional
Brownian motion B with parameter H ∈ (0, 1). If the integrator has λ−Hölder
continuous paths with λ > 1 − H, then this integral can be interpreted as
a Riemann-Stieltjes integral and coincides with the forward and Stratonovich
integrals studied in [4] and [1].

There are some representations of the fractional Brownian motion as a Wiener inte-
gral (i.e., with respect to Brownian motion). We would like to have such Lévy Hida
representation. We have that the natural filtration of the Brownian motion and of the
fractional Brownian motion that is generated, coincides comparing to the Mandelbrot
Van-Ness representation.

This thesis consists of four chapters. In the first chapter, we focus on the theory
of stochastic integration. We devote Chapter 2 to a brief summary of the theory of
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stochastic and fractional calculus. In this chapter we give definitions and properties
of the needed theory. We briefly recall some basic properties of the Brownian motion,
semimartingales and the fractional Brownian motion, then we discuss integration with
respect to Wiener processes.
In Chapter 3, we give a property of the instant independence and stochastic integra-
tion. The results presented in this chapter generalize those presented in Ayed and
al[6].
In Chapter 4, we work at a new paper submitted (this paper contains a new approach
for stochastic integration with respect to multifractional Brownian motion). The re-
sults presented in this chapter are based on the results obtained in the paper[25].



Chapter 1

Preliminary Background

In this chapter the basic concepts and results concerning the stochastic calculus
of continuous stochastic processes in Euclidean spaces are established. We take some
introductory facts from probability theory. For more details, we refer the reader to
[9, 24, 62, 32, 33]. We first start with the stochastic process, the Wiener process and
the fractional Brownian motion.

1.1 Basic Definitions

In this section the basic notations of the theory of stochastic calculus are consid-
ered.

1.1.1 Gaussian processes

Definition 1.1. A real-valued stochastic process (Xt)t≥0 is a Gaussian process if
every finite linear combination of (Xt)t≥0 is a Gaussian r.v, i.e.

∀n,∀t, 1 ≤ i ≤ n,∀a,
n∑
i=1

aiXti is a Gaussian r.v.

Definition 1.2. Let X = (Xt)t≥0 et Y = (Yt)t≥0 be two stochastic processes defined
on the same probability space. If P(Xt = Yt) = 1 for all t ≥ 0, we say that X and Y
are modifications of each other.
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Definition 1.3. Let X and X ′ be defined on (Ω,F ,P). Then X and X ′ are indis-
tinguishable if and only if

P({w ∈ Ω : Xt(w) = X ′t(w) ∀t ≥ 0}) = 1.

There is a chain of implications:

indistinguishable ⇒ modification.

Definition 1.4. let X = (Xt)t∈T and Y = (Yt)t∈T be two stochastic processes, possi-
bly defined on two different probability space. We say that X and Y have the same

law, and we write X law
= Y , to indicate that (Xt1 , ...., Xtd) and (Yt1 , ...., Ytd) have the

same law for all d ≥ 0 and all t1, ..., td ∈ T.

Proposition 1.1.1. Two Gaussian processes have the same law if and only if they
have the same mean and covariance functions.

Definition 1.5. A symmetric function Γ : T2 → R is of positive type if

d∑
k,l=1

akalΓ(tk, tl) ≥ 0

for all d ≥ 1, t1, ..., td ∈ T and a1, ..., ad ∈ R.

Theorem 1.1. (Kolmogrov)

Consider a symmetric function Γ : T2 → R. Then, there exists a centered Gaussian
process X = (Xt)t∈T having Γ for covariance function if and only if Γ is of a positive
type.

1.1.2 Continuity

Definition 1.6. A stochastic process (Xt)t≥0 is said to be continuous if P({w ∈ Ω :

t→ Xt(w) is continuous}) = 1, i.e. its sample paths are continuous a.s.

Definition 1.7. A stochastic process (Xt)t≥0 is said to be stochastically continuous

at t if Xt+h
P→ Xt as h→ 0.
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Definition 1.8. A stochastic process is said to be càdlàg (resp. càglàd) if all sample
paths are right-continuous with left-hand limits (resp. left-continuous with right-hand
limits.

Lemma 1.1.1. (Kolmogrov-Čentsov)

Fix a compact interval T = [0, T ] ⊂ R+, and let X = (Xt)t∈T be a centered Gaussian
process. Suppose that there exists C, η > 0 such that, for all s, t ∈ T,

E[(Xt −Xs)
2] ≤ C | t− s |η . (1.1)

Then, for all α ∈ (0, η/2), there exists a modification Y of X with α-Hölder continuous
paths. In particular, X admits a continuous modification.

Proof. Fix t > s. Since X is Gaussian and centered, we have that

Xt −Xs
law
=
√

E[(Xt −Xs)2]G

where G ∼ N (0, 1). We deduce from (1.1) that, for all p ≥ 1,

E[| Xt −Xs |p] ≤ Cp/2E[| G |p] | t− s |ηp/2 .

Therefore, the general version of the classical Kolmogrov-Čentsov lemma applies and
gives the desired result.

1.1.3 Filtration and measurability

Definition 1.9. A filtration on (Ω,F ,P) is an increasing family (Ft)t∈T of sub σ-field
of F .
A measurable space endowed with a filtration (Ft)t∈T is said to be a filtered space.

Definition 1.10. The filtration is said to be right continuous if Ft+ = Ft, ∀t ≥ 0,
where ∀t > 0 we set, Ft+ = ∩

s>t
Fs

Definition 1.11. A filtration is said to be complete if the P-negligible set of F∞ are
in F0 and if the probability space is complete.
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Definition 1.12. A filtration satisfies the usual condition if it is right continuous and
complete.

Remark 1.1. The interests to work with filtrations which are satisfying the usual con-
dition are that every kind of limit of the adapted processes is still adapted. Moreover,
every modification of a progressively measurable process stays progressively measur-
able.

Definition 1.13. (Measurable Process)

A stochastic process (Xt)t≥0 is measurable if the application X : R+ × Ω → R is
measurable w.r.t B(R+)⊗F i.e. if

∀A ∈ B(R), {(t, w) : Xt(w) ∈ A} ∈ B(R+)⊗F

The process (Xt)t≥0 is said to be (Ft)t≥0 adapted, if Xt is Ft measurable for each t ≥ 0.
The process (Xt)t≥0 is obviously adapted with respect to the natural filtration.

Proposition 1.1.2. A continuous stochastic process is measurable.

Proof. Let (Xt)t≥0 a continuous stochastic process. First, we show that for A ∈
B(R+), we have

{(t, w) ∈ [0, 1]× Ω, Xt(w) ∈ A} ∈ B(R+)⊗F . (1.2)

For n ∈ N, let
Xn
t = X [2nt]

2n
, t ∈ [0, 1],

since the paths of Xn are piecewise constant, we have that

{(t, w) ∈ [0, 1]× Ω, Xn
t (w) ∈ A} ∈ B(R+)⊗F .

Besides, ∀t ∈ [0, 1], w ∈ Ω, we have

lim
n→∞

Xn
t (w) = Xt(w).

Then we have (1.2). By the same argument, we can prove that ∀k ∈ N,

{(t, w) ∈ [k, k + 1]× Ω, Xt(w) ∈ A} ∈ B(R+)⊗F .
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Since⋃
k∈N

{(t, w) ∈ [k, k + 1]× Ω, Xt(w) ∈ A} = {(t, w) ∈ R× Ω, Xt(w) ∈ A},

we have the result.

Definition 1.14. (Progressively Measurable Process)

A process is progressively measurable if for each t its restriction to the time interval
[0, t], is measurable with respect to B[0,t] ⊗ Ft, where B[0,t] is the Borel σ-algebra of

subsets of [0, t].

Remark 1.2. Note that every progressively measurable process is adapted (and mea-
surable). Besides, as well as in the Proposition 1.1.2, a continuous process adapted
to (Ft) is progressively measurable. More precisely, any càdlàg or càglàd process is
progressively measurable.

Definition 1.15. Let (Ω,F , (Ft),P) a filtered space. A process (Xt)t∈T is said to be
predictable (resp. optional) if it is an càglàd (resp. càdlàg ) Ft-adapted process.
We note the σ-field generated by càglàd (resp. càdlàg ) Ft-adapted process by P
(resp. O).

In fact, there is this inclusion chain

P︸︷︷︸
predictable processes

⊂ O︸︷︷︸
optional processes

⊂ Prog︸ ︷︷ ︸
progressively measurable

⊂ B(R+)⊗F∞︸ ︷︷ ︸
measurable

Let (Ω,F ,P) be a complete probability space equipped with a normal filtration {Fs}
satisfying the usual conditions :

• Fs =
⋂
t>sFt for all s ≥ 0;

• All A ∈ F with P(A) = 0 are contained in Ft.

A family (X(t), t ≥ 0) of Rd-valued random variables on (Ω,F ,P) is called a stochas-
tic process ; this process is adapted if all X(t) are Ft-measurable. We denote B, the
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Borel σ-field on [0,∞). The process X is measurable if (t, ω) 7→ X(t, ω) is a B
⊗
F -

measurable mapping. We say that (X(t), t ≥ 0) is continuous if the trajectories
t 7→ X(t, ω) are continuous for all ω ∈ Ω.

One can show that a process is measurable if it is right-continuous ([32], Prop. 1.13).

1.2 Semimartingales

The continuous semimartingales are important in stochastic calculus, because they
are the most general class of integrators for which the classical stochastic integration is
defined. Besides, as we know, the fractional Brownian motion is not a semimartingale
forH 6= 1

2
. Therefore, its study is crucial for our project. Intuitively, a semimartingale

is the sum of a local martingale with a process of finite variation. Note there are
different types of semimartingales, but we only give a usual definition. For the deepest
study of semimartingales, the reader could study [65] or in [44] VII.2.

Definition 1.16. Let X = {Xt,Ft, t ≥ 0} be an integrable process, then X is a:

i) Martingale if and only if E(Xt|Fs) = Xs a.s. for 0 ≤ s ≤ t <∞

ii) Supermartingale if and only if E(Xt|Fs) ≤ Xs a.s. for 0 ≤ s ≤ t <∞

iii) Submartingale if and only if E(Xt|Fs) ≥ Xs a.s. for 0 ≤ s ≤ t <∞

Definition 1.17. M = {Mt,Ft, t ≥ 0} is a local-martingale if and only if there exists

a sequence of stopping times Tn tending to infinity such that MTnare martingales for
all n. The space of local martingales is denotedMloc, and the subspace of continuous
local martingales is denotedMc

loc.

Definition 1.2. A stochastic process is called a semimartingale if it can be written

in the form
Xt = X0 +Mt + At,

where (Mt)t∈R+ is a local martingale vanishing at 0 and (At)t∈R+ is a right-continuous
(Ft) -adapted process of finite variation vanishing at 0.
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Remark 1.3. Note that if we deal with the same filtration, this decomposition is
unique.

The next proposition will be on the basis of the integration with respect to semi-
martingales. Moreover, it is deeply linked with the non-semimartingale property of
the fractional Brownian motion. Therefore, the Itô calculus cannot be applied for the
fractional Brownian motion.

Proposition 1.2.1. A continuous semimartingale (Xt)t≥0 = (Mt+At)t≥0 has a finite
quadratic variation and 〈X,X〉t = 〈M,M〉t.

Proof. The proof is given in [55] p.128

1.3 Brownian Motion

In what follows, we will state a number of important facts regarding Brownian
motion. Most of the proofs are skipped. For more details about the proofs, we refer
the reader to ([32]).

1.3.1 Definition and properties

Definition 1.18. ([33]). A stochastic process (Wt)t∈R+ is called a standard Brownian
motion if it satisfies the following conditions:

1. P[Wt(ω) = 0] = 1, for all ω ∈ Ω,

2. Independent increments. For each 0 ≤ t1 < t2 < . . . < tm, the real valued

W (t1),W (t2)−W (t1), . . . ,W (tm)−W (tm−1),

are independent.
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3. Stationary increments. For each 0 ≤ s < t,W (t) − W (s) is a centered real

valued normally distributed with variance t− s, i.e.,

W (t)−W (s) ∼ N (0, t− s).

4. Almost all sample paths of Wt are continuous functions, i.e.,

P(ω ∈ Ω, t→ Wt(ω) is continuous) = 1.

Remark 1.3. 1. Notice that the natural filtration of the Brownian motion is
FWt = σ(Ws, s ≤ t).

2. We can define the Brownian motion without the last condition of continuous
paths, because with a stochastic process satisfying the second and the third
conditions, by applying the Kolmogorov’s continuity theorem, there exists a
modification of (Wt)t∈R+ which has continuous paths a.s.

3. A Brownian motion is also called a Wiener process since it is the canonical
process defined on the Wiener space.

Proposition 1.3.1. ([24]). The Brownian motion (Wt)t∈R+ is a Gaussian process

with mean 0 and covariance function Cov(Wt,Ws) = s ∧ t.

Proof. We have that Wt = Wt −W0. Thus, Wt ∼ N (0, t) by definition. Moreover,
without loss of generality, we assume s < t. Hence, we have

E(WsWt) = E(Ws(Wt−Ws)+W
2
s ) = 0+s = s. �

Note that since the Brownian motion is a continuous Gaussian process, the proposi-
tion 1.3.1 characterizes uniquely the Brownian motion.

We will give here some properties of the standard Brownian motion.

Properties 1.3.1.1. ([33]). Let W (t)t∈R+ be a standard Brownian motion
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1. Self-similarity. For any T > 0, {T−1/2W (Tt)} is a Brownian motion.

2. Symmetry. {−W (t), t ≥ 0} is also a Brownian motion.

3. {tW (1/t), t > 0} is also a Brownian motion.

4. If W (t) is a Brownian motion on [0, 1], then (t + 1)W (1/t + 1) − W (1) is a
Brownian motion on [0,∞).

We have seen that each stochastic process is characterized by its finite-dimensional
distribution. Hence, let us give the finite-dimensional distribution of the Brownian
motion. In fact, as a Gaussian process, its finite-dimensional distributions are Gaus-
sian. The finite-dimensional distributions of the Brownian motion are given by:
for n ∈ N, t1 ≤ ... ≤ tn,

µBt1 ,...,Btn =
1√
2πt1

e
−x21
2t1

n−1∏
i=1

1√
2π(ti+1 − ti)

e
− (xi+1−xi)

2

2(ti+1−ti)

So every process which has (1.3.1) as finite-dimensional distributions is a Brownian
motion.

1.3.2 Quadratic variation and Brownian motion

Proposition 1.3.2. Let W (t)t∈R+ be a Brownian motion. For t ≥ 0, for all sequence
of subdivisions ∆n[0, t], such that limn→∞ |∆n[0, t]| = 0 we have

lim
n→∞

2n∑
i=1

(
W it

2n
−W (i−1)t

2n

)2

= t, p.s.

Proof. The proof can be found in ([62], p.46).
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1.3.3 Brownian paths

Proposition 1.3.3. ([32]). A Brownian motion has its paths a.s., locally γ-Hölder
continuous for γ ∈ [0, 1/2).

Proposition 1.3.4. ([32]). The Brownian motion’s sample paths are a.s., nowhere
differentiable.

1.3.4 Properties of Brownian motion paths

Continuity and differentiability

Almost surely, the sample paths of W (t), 0 ≤ t ≤ T

1. are continuous functions of t,

2. are not differentiable at any point.

Theorem 1.4. For every t0,

lim sup
t→t0

∣∣∣∣W (t)−W (t0)

t− t0

∣∣∣∣ =∞ a.s.,

which implies that for any t0, almost every sample W (t) is not differentiable at this
point.

Proof.We refer the reader to ([33]).

1.3.5 Brownian motion and martingales

As a stochastic process, we could ask, knowing well all properties of martingales,
if the Brownian motion is one.

Definition 1.19. A stochastic process {X(t); t ≥ 0} is a martingale if for any t it is
integrable, E|X(t)| <∞, and for any s > 0 E(X(t+s)|Ft) = X(t)a.s. where Ft is the
information about the process up to time t, that is, {Ft} is a collection of σ−algebras
such that
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1. Fu ⊂ Ft, if u ≤ t;

2. X(t) is Ft measurable.

Proposition 1.3.5. ([24]). Let (Wt)t∈R+ be a Brownian motion. Then the following

processes are (FWt )-martingales:
1. (W (t)t≥0,

2. (W 2(t)− t)t≥0,

3. For any u, (euW (t)−u
2

2
t)t≥0.

Proof. We refer the reader to ([33]):

Markov Property

Definition 1.20. Let X(t); t ≥ 0 be a stochastic process on the filtered probability
space (Ω,F , {Ft}t,P). The process is called a Markov process if for any t and s >
0, the conditional distribution of X(t + s) given Ft is the same as the conditional
distribution of X(t+ s) given X(t), that is,

P (X(t+ s) ≤ y|Ft) = P (X(t+ s) ≤ y|X(t))

or equivalently, if for any t and s > 0 and every non negative Borel-measurable
function f, there is another Borel-measurable function g such that

E[f(X(t+ s))|Ft] = g (X(t))

Theorem 1.5. The Brownian motion (W (t)) has the Markov property.

Example 1.6.

1. For any T > 0, {T−1/2W (Tt)} is a Brownian motion(the self-similarity prop-
erty).

2. The process

t√
π

+
2

π

∞∑
j=1

sin(jt)

j
ξj,

where ξj are independent standard normal random variables, is a Brownian
motion on [0; π] (the random series representation).
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3. {−W (t); t ≥ 0} is also a Brownian motion (the symmetry property).

4. {tW (1/t); t > 0} is also a Brownian motion (time reversal).

5. If W (t) is a Brownian motion on [0, 1], then (t + 1)W (1/t + 1) − W (1) is a
Brownian motion on [0,∞).(property of the existence).

1.4 Fractional Brownian Motion

The fractional Brownian motion (fbm for short) was originally defined and studied
by Kolmogorov [34] within a Hilbert space framework.

1.4.1 Existence of the fractional Brownian Motion

The next proposition shows us the existence of the fractional Brownian motion.

Proposition 1.4.1. Let H > 0 be a real parameter. Then, there exists a continuous
centered Gaussian process BH = (BH

t )t≥0 with a covariance function given by

ΓH(s, t) =
1

2
(s2H + t2H− | t− s |2H), s, t ≥ 0 (1.3)

if and only if H ≤ 1. In this case, the sample paths of BH are, for any α ∈ (0, H)

α-Hölder continuous on each compact set.

Proof. According to Kolmogrov’s theorem 1.1, to get our first claim, we must show
that ΓH is of a positive type if and only if H ≤ 1.
Assume first that H > 1. When t1 = 1, t2 = 2, a1 = −2 and a2 = 1, we have

a2
1ΓH(t1, t1) + 2a1a2ΓH(t1, t2) + a2

2ΓH(t2, t2) = 4− 22H < 0

As a consequence, ΓH is not of a positive type when H > 1.
The function Γ1 is of a positive type; indeed, Γ1(s, t) = st so that, for all d ≥
1,t1, ..., td ≥ 0 and a1, ..., ad ∈ R,

d∑
k,l=1

Γ1(tk, tl)akal = (
d∑

k=1

tkak)
2 ≥ 0.
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Consider now the case H ∈ (0, 1). For any x ∈ R, the change of variable v = u | x |
(whenever x 6= 0) leads to the representation

| x |2H=
1

CH

∫ ∞
0

1− e−u2x2

u1+2H
du,

where CH =
∫∞

0
(1− e−u2)u−1−2Hdu <∞. Therefore, for any s, t ≥ 0, we have

s2H + t2H− | t− s |2H =
1

CH

∫ ∞
0

(1− e−u2t2)(1− e−u2s2)
u1+2H

du

+
1

CH

∫ ∞
0

e−u
2t2(e2u2ts − 1)e−u

2s2

u1+2H
du

=
1

CH

∫ ∞
0

(1− e−u2t2)(1− e−u2s2)
u1+2H

du

+
1

CH

∞∑
n=1

2n

n!

∫ ∞
0

tne−u
2t2sne−u

2s2

u1−2n+2H
du

so that, for all d ≥ 1, t1, ..., td ≥ 0 and a1, ..., ad ∈ R,

d∑
k,l=1

1

2
(t2Hk + t2Hl − | tk − tl |2H)akal =

1

2CH

∫ ∞
0

(
∑d

k=1(1− e−u2t2k)ak)2

u1+2H
du

+
1

2CH

∞∑
n=1

2n

n!

∫ ∞
0

(
∑d

k=1 t
n
ke
−u2t2kak)

2

u1−2n+2H
du

that is ΓH is of a positive type when H ∈ (0, 1).
To conclude, in the second part of the proposition, we suppose that H ∈ (0, 1) and

consider a centered Gaussian process BH with a covariance function given by (1.3).
Then, we have

E[(BH
t −BH

t )2] =| t− s |2H , s, t ≥ 0,

so that Kolmogrov-Čentsov lemma 1.1.1 applies and shows that the sample paths of
BH are α-Hölder continuous.
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The Hurst parameter H accounts not only for the sign of the correlation of the in-
crements, but also for the regularity of the sample paths. Indeed, for H > 1

2
, the

increments are positively correlated, and for H < 1
2
they are negatively correlated.

furthermore, for every β ∈ (0, H), its sample paths are almost surely Hölder contin-

uous with index β. Finally, it is worthy of note that for H > 1
2
, according to Beran’s

definition , it is a long memory process: the covariance of increments at distance u
decreases as u2H−2.
These significant properties make the fractional Brownian motion a natural candidate
as a model of noise in mathematical finance (see Comte and Renault [14], Rogers [56]),
and in communication networks (see, for instance, Leland, Taqqu et al. [52].
Recently, there has been numerous attempts at defining a stochastic integral with

respect to fractional Brownian motion. Indeed, for H 6= 1
2
, B(H) is not a semi-

martingale, and the usual Itô’s stochastic calculus may not be applied. However, the
integral ∫ t

0

a(s)dB(H)(s) (1.4)

may be defined for suitable a. In one hand, since B(H) has almost its sample paths
Hölder continuous of index β, for any β < H, the integral (1.4) exists in the Riemann-
Stieljes sense (path by path) if almost every sample path of a has finite p−variation
with 1

p
+ β > 1 (see Young [66]): this is the approach used by Dai and Heyde [16]

when H > 1
2
. Let us recall that the p−variation of a function f over an inter-

val [0, t] is the least upper bound of sums
∑

k |f(xk − f(xk−1))|p over all partitions
0 = x0 < x1 < . . . < xn = T . A recent survey of the important properties of Riemann-
Stieljes integral is the concentrated advanced course of Dudley and Norvaisa [21]. An
extension of the Riemann-Stieljes integral has been defined by Zähle [52], by means
of composition formulas, integration by parts formula, Weyl derivative formula con-
cerning fractional integration/differentiation, and the generalized quadratic variation
of Russo and Vallois [57, 58].

On the other hand, B(H) is a Gaussian process, and (1.4) can be defined for deter-
ministic processes a by way of an L2 isometry: see, for example, Norros, Valkeila
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and Virtamo or Pipiras and Taqqu [52]. With the help of the stochastic calculus of
variations (see [52]) this integral may be extended to random processes a. In this
case, the stochastic integral (1.4) is a divergence operator, that is the adjoint of a
stochastic gradient operator (see the pioneering paper of Decreusefond and Ustunel
[18]). It must be noted that Duncan, Hu and Pasik-Duncan [23] have defined the
stochastic integral in a similar way by using Wick product. Ciesielski, Kerkyacharian

and Roynette [12] also used the Gaussian property of B(H) to prove that B(H) belongs
to suitable function spaces and construct a stochastic integral.
Eventually, Alos, Mazet and Nualart [4] have established the following ideas intro-
duced in a previous version of this paper, very sharp sufficient conditions that ensure
the existence of the stochastic integral (1.4).

In a similar way, given a Hilbert space V we denote by Dk,p(V) the corresponding
Sobolev space of V-valued random variables. The divergence operator δ is the adjoint
of the derivative operator, defined by means of the duality relationship.

E(Fδ(u)) = E(DF, u)H

where u is a random variable in L2(Ω;H). We say that u belongs to the domain of
the operator δ, denoted by Dom δ, if the above expression is continuous in the L2

norm of F . A basic result says that the space D1,2(H) is included in Dom δ.
The following are two basic properties of the divergence operator:

1. For any u ∈ D1,2(H):

Eδ(u)2 = E‖u‖2
H + E < Du, (Du)

∗ >H⊗
H (1.5)

where (Du)
∗ is the adjoint of (Du) in the Hilbert space H

⊗
H

2. For any F in D1,2 and any u in the domain of δ such that Fu and Fδ(u)+ <

DF, u >H are square integrable, then Fu is in the domain of δ and

δ(Fu) = Fδ(u)+ < DF, u >H (1.6)

We denote by |H|
⊗
|H| the space of measurable functions ϕ on [0, T ]2 such that

‖ϕ‖2
|H|

⊗
|H| = α2

H

∫
[0,T ]4

|ϕr,θ||ϕu,η||r − u|2H−2|θ − η|drdudθdη <∞
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As we mentioned before, |H|
⊗
|H| is a Banach space with respect to the norm

‖.‖|H|⊗ |H|. Furthermore, equipped with the inner product

< ϕ,ψ >H⊗
H= α2

H

∫
[0,T ]4

ϕr,θϕu,η|r − u|2H−2|θ − η|2H−2drdudθdη

The space |H|
⊗
|H| is isometric to a subspace of H

⊗
H and it will be identified

with this subspace.
We will recall briefly some of the basic results on fractional Brownian motion. For
more details about this process, we can refer the reader to [9, 18, 15].

Definition 1.7. ([9]). The (two-sided) fractional Brownian motion with Hurst in-

dex H ∈ (0, 1) is a Gaussian process BH = {BH
t , t ∈ R} on (Ω,F ,P), having the

properties:

1. BH
0 = 0.

2. E[BH
t ] = 0, t ∈ R.

3. E[BH
t B

H
s ] =

1

2

(
|t|2H + |s|2H − |t− s|2H

)
, s, t ∈ R.

Remark 1.8. Since E[BH
t − BH

s ]2 = |t − s|2H and BH is a Gaussian process, it has
a continuous modification, according to the Kolmogorov theorem.

1.4.2 Correlation between two increments

For H =
1

2
, BH is a standard Brownian motion. Hence, in this case the increments

of the process are independent.

For H 6= 1

2
the increments are not independent. More precisely, by Definition 1.7 the

covariance between BH(t + h) − BH(t) and BH(s + h) − BH(s) with s + h ≤ t and
t− s = nh is

ρH(n) =
1

2
h2H

[
(n+ 1)2H + (n− 1)2H − 2n2H

]
.
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In particular, we obtain that two increments of the form BH(t + h) − BH(t) and

BH(t+2h)−BH(t+h) are positively correlated for H >
1

2
, while they are negatively

correlated for H <
1

2
.

1.4.3 Hölder continuity

We have seen that a Brownian motion is locally Hölder continuous of order strictly
less than 1/2. Hence, we have the following proposition which generalizes this result
to the fBm.

Proposition 1.4.2. ([9]). Let H ∈ (0, 1). The fBm BH admits a version whose
sample paths are almost surely Hölder continuous of order strictly less than H.

Proof. It follows from the Kolmogorov’s continuity criterion and the fact that for
any α > 0, we have

E
(
|BH

t −BH
s |α
)

= E
(
|BH

1 |α
)
|t−s|αH . �

1.4.4 Basic properties

We will first define the self-similarity and long-range dependence in the framework of
general stationary stochastic processes.

Definition 1.21. [19]. A stochastic process {X(t) : t ≥ 0} is said to be self-similar

if there exists H ≥ 0 such that for any a > 0, {X(at)} and {aHX(t)} have identical
finite dimensional distributions.

Proposition 1.4.3. Let BH be a fractional Brownian motion of hurst parameter
H ∈ (0, 1). Then:

1. [Selfsimilarity] For all a > 0, (BH
at)

d
= (aHBH

t ).

2. [Stationarity of increments] For all h > 0, (BH
t+h −BH

h )
d
= BH

t .



1.4 Fractional Brownian Motion 28

3. [ Hölder continuity] For each 0 < ε < H and each T > 0 there exists a random
variable Kε,T such that

| BH(t)−BH(s) |≤ Kε,T | t− s |H−ε

4. [Differentiability] The sample paths of fBm are nowhere differentiable.

Proof. First, let us prove the selfsimilarity property. We have that

E(BH
atB

H
as) =

1

2
((at)2H + (as)2H − (a | t− s |)2H)

= a2HE(BH
t B

H
s )

= E((aHBH
t )(aHBH

s ))

Thus, since all processes are centered and Gaussian, it implies that

(BH
at)

d
= (aHBH

t ).

Second, we show that it has stationary increments. Note that for all h > 0, we have

E((BH
t+h −BH

h )(BH
s+h −BH

h )) = E(BH
t+hB

H
s+h)− E(BH

t+hB
H
h )− E(BH

s+hB
H
h ) + E((BH

h )2)

=
1

2

[
((t+ h)2H + (s+ h)2H− | t− s |2H)

−
(
(t+ h)2H + h2H − t2H

)
−
(
(s+ h)2H + h2H − s2H

)
+ 2h2H

]
=

1

2
(t2H + s2H− | t− s |2H) = E(BH

t B
H
s ).

Therefore, the fBm is a stationary increment.

For the Hölder continuity, it follows from Kolmogrov-Čentsov lemma 1.1.1 and the
fact that for any α > 0, we have

E(| BH
t −BH

s |α) = E(| BH
1 |α) | t− s |2H

Finally, let’s prove the differentiability, indeed for every t0 ∈ [0,∞],

P
(

lim sup
t→t0

|
BH
t −BH

t0

t− t0
|=∞

)
= 1.
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Let us denote by Bt,t0 =
BHt −BHt0
t−t0 , using the selfsimilarity property, we have

Bt,t0
d
= (t− t0)H−1BH

1

We define u(t, ω) = {sup0≤s≤t |
BHs
s
|> d}. Then, for any sequence (tn)n∈N decreasing

to 0,

we have u(tn, ω) ⊇ u(tn+1, ω). Thus,

P( lim
n→∞

u(tn)) = lim
n→∞

P(u(tn))

and

P(u(tn)) ≥ P(|
B

(H)
tn )

tn
|> d) = P(| B(H)

1 |> t1−Hn d)
n→∞→ 1.



Chapter 2

Stochastic integration with respect to

fractional Brownian motion

Here we will study the simplest stochastic integral, where the integrand and the
integrator are random variables. The first who defined this integral was K. Itô in
1944 (see [37]). Therefore, we utilized this integral after Itô’s definition. In fact, the
integrand will be an adapted stochastic process with respect to the natural filtration
of the Brownian motion.

2.1 Fractional calculus

Another way to handle Young’s integrals is to use the so-called fractional calculus.
Let f ∈ L1(a, b) and α > 0. The left-sided and the right-sided fractional integrals of
f of order α are defined respectively by:

Iαa+f(x) =
1

Γ(α)

∫ x

a

(x− y)α−1f(y)dy

and

Iαb−f(x) =
(−1)−α

Γ(α)

∫ b

x

(y − x)α−1f(y)dy,

where (−1)α = eiπα and Γ(α) =
∫∞

0
uα−1e−udu is the Gamma function. Let us

denote by Iαa+(Lp) (respectively Iαb−(Lp)) the image of Lp(a, b) by the operator Iαa+
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(respectively Iαb−). If f ∈ Iαa+(Lp) (respectively f ∈ Iαb−(Lp)) and 0 < α < 1, we define

for x ∈ (a, b) the left and the right derivatives by:

Dα
a+f(x) =

1

Γ(1− α)

(
f(x)

(x− a)α
+ α

∫ x

a

f(x)− f(y)

(x− y)α+1
dy

)
1(a,b)(x)

and respectively,

Dα
b−f(x) =

(−1)α

Γ(1− α)

(
f(x)

(b− x)α
+ α

∫ b

x

f(x)− f(y)

(y − x)α+1
dy

)
1(a,b)(x)

We have the following property:

Dα
a+D

β
a+ = Dα+β

a+ , Dα
b−D

β
b− = Dα+β

b−

and for f ∈ Iαa+(Lp), g ∈ Iαb−(Lp)

∫ b

a

Dα
a+f(t)g(t)dt = (−1)−α

∫ b

a

f(t)Dα
b−g(t)dt

The key point that allows to use fractional calculus to study Young’s integrals is the
following proposition which is due to M. Zähle [43].

Proposition 2.1.1. [43]Let f ∈ Cλ([a, b]) and g ∈ Cβ([a; b]) with λ + β > 1: Let
1− β < α < λ. Then, the Young’s integral exists and it can be expressed as

∫ b

a

fdg = (−1)α
∫ b

a

Dα
a+f(t)D1−α

b− gb−(t)dt;

where gb−(t) = g(t)− g(b).

2.1.1 Bounded variation

As we could expect, the fBm is, as the Brownian motion, a process of unbounded
variation.
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Proposition 2.1.2. ([9]). The fBm is of unbounded variation, i.e.,

sup
ti

∑
i

|BH
ti+1
−BH

ti
| =∞.

Proof. It is clear by equation (2.1).
�

2.1.2 Stochastic integral representation

Here we discuss some of the integral representations for the fBm. In ([9]) it is proved
that the process

Z(t) =
1

Γ(H + 1
2
)

∫
R

(
(t− s)H−

1
2

+ − (−s)H−
1
2

+

)
dW (s)

=
1

Γ(H + 1
2
)

(∫ 0

−∞
((t− s)H−

1
2 − (−s)H−

1
2 )dW (s)

+

∫ t

0

(t− s)H−
1
2dW (s)

)
,

where W (t) is a standard Brownian motion and Γ represents the gamma function, is
a fBm with Hurst index H ∈ (0, 1).

We can also represent the fBm over a finite interval, i.e.,

BH
t =

∫ t

0

KH(t, s)dWs, t ≥ 0,

where:

1. For H > 1
2
,

KH(t, s) = cHs
1
2
−H
∫ t

s

(u− s)H−
3
2uH−

1
2du,

where cH =

[
H(2H − 1)

β(2− 2H,H − 1
2
)

] 1
2

and t > s.
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2. For H < 1
2
,

KH(t, s) = cH

[
(
t

s
)H−

1
2 (t− s)H−

1
2 − (H − 1

2
)s

1
2
−H
∫ t

s

uH−
3
2 (u− s)H−

1
2du

]
,

with cH =

[
2H

(1− 2H)β(1− 2H,H + 1
2
)

] 1
2

and t > s.

2.1.3 Differentiability

As in the Brownian case, the fBm is a.s., nowhere differentiable. Effectively, we have
the following proposition.

Proposition 2.1.3. Let H ∈ (0, 1). The fBm sample path BH(·) is not differentiable.
Indeed, for every t0 ∈ [0,∞)

lim
t→t0

sup

∣∣∣∣BH(t)−BH(t0)

t− t0

∣∣∣∣ =∞,

with probability one.

proof. We refer the reader to ([9]).

2.1.4 The fBm is not a semimartingale for H 6= 1
2

This is a crucial result of this section. Indeed, the fact that the fBm is not a semi-
martingale implies that we are not able to integrate with respect to it as we usually do
in the classical stochastic calculus. Effectively, the most general class of integrators
are semimartingales.
Let us now prove this result (fBm is not a semimartingale).

Proof. In fact, it is sufficient to compute p-variation of BH . More precisely, we assert
that the index of p−variation of a fBm is 1

H
. Indeed, let us consider for fixed p > 0,

Yn,p :=
n∑
i=1

|BH
i
n
−BH

i−1
n
|pnp(H−1).
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Now if we consider

Ỹn,p :=
n∑
i=1

|BH
i −BH

i−1|p
1

n

We have, by the self-similar property of the fBm, that Yn,p
d
= Ỹn,p. Besides, remark

that the sequence (BH
n − BH

n−1)n∈Z is stationary and ergodic. Therefore, we can use
the ergodic theorem and obtain that

Ỹn,p
L1

→ E
(
|BH(1)|p

)
a.s., as n→∞.

So that Yn,p
P→ E

(
|BH(1)|p

)
which implies Yn,p

D→ E
(
|BH(1)|p

)
. Therefore,

Vn,p :=
n∑
i=1

|BH
i
n
−BH

i−1
n
|p P→

{
0, if pH > 1

∞ if pH < 1
as n→∞. (2.1)

Then, we showed that the index of p−variation is 1
H
. However, for a semimartin-

gale, the index must be either in [0, 1] or equal to 2, i.e., 1
H
∈ [0, 1] ∪ {2}. But since

H ∈ (0, 1), H−1 6∈ [0, 1]. Therefore, the fBm is a semimartingale only for H = 1
2
.

�

Vn,p converges in probability to zero as n tends to infinity if pH > 1, and to infinity
if pH < 1. Consider the following two cases:

(i) If H < 1
2
, we can choose p > 2 such that pH < 1, and we obtain that the

p−variation of fBm (defined as the limit in probability limn→∞ Vn,p) is infinite.
Hence, the quadratic variation (p=2) is also infinite.

(ii) If H > 1
2
, we can choose p such that 1

H
< p < 2. Then, the p−variation is zero,

and as a consequence, the quadratic variation is also zero. On the other hand, if
we choose p such that 1 < p < 1

H
we deduce that the total variation is infinite.

Therefore, we have proved that for H 6= 1
2
fBm cannot be a semimartingale. In

the paper [13], Cheridito has introduced the notion of the weak semimartingale as a
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stochastic process {Xt, t ≥ 0} such that for each T > 0, the set of random variables{
n∑
j=1

fi(B
(H)
ti −B

(H)
ti−1

), n ≥ 1, 0 ≤ t0 < ... < tn ≤ T, |fi| ≤ 1, fi is FXti−1
−mesurable

}

is bounded in L0, where for each t ≥ 0, FXt is the σ-field generated by the random
variables {Xs, 0 ≤ s ≤ t}. It is important to remark that this σ-field is not completed
with the null sets. Then, in [13] it is proved that fBm is not a weak semimartingale

if H 6= 1
2
.

2.1.5 Generalized Stieltjes integral

Let α ∈ (0, 1
2
). For any measurable function f : [0, T ]→ R we introduce the following

notation

‖f‖α := |f(t)|+
∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds. (2.2)

Denote by Wα,∞ the space of measurable functions f : [0, T ]→ R such that

‖f‖α,∞ := sup
t∈[0,T ]

‖f(t)‖α <∞. (2.3)

An equivalent norm can be defined by

‖f‖α,µ := sup
t∈[0,T ]

e−µt
(
|f(t)|+

∫ t

0

|f(t)− f(s)|
(t− s)α+1

ds

)
, µ ≥ 0. (2.4)

Note that for any ε, (0 < ε < α), we have the inclusions

Cα+ε([0, T ];R) ⊂ Wα,∞([0, T ];R) ⊂ Cα−ε([0, T ];R).

In particular, both the fractional Brownian motion BH , with H > 1
2
, and the stan-

dard Brownian motion W , have their trajectories in Wα,∞. We refer the reader to

([27], [45]) for further details on this topics. We denote byW 1−α,∞
T ([0, T ];R) the space

of continuous functions g : [0, T ]→ R such that

‖g‖1−α,∞,T := sup
0<s<t<T

(
|g(t)− g(s)|
(t− s)1−α +

∫ t

s

|g(y)− g(s)|
(y − s)2−α dy

)
<∞.
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Clearly, for all ε > 0 we have

C1−α+ε([0, T ];R) ⊂ W 1−α,∞
T ([0, T ];R) ⊂ C1−α([0, T ];R).

Denote

Λα(g; [0, T ]) =
1

Γ(1− α)
sup

0<s<t<T
|(D1−α

t− gt−)(s)|,

where Γ(α) =
∫∞

0
rα−1e−rdr is the Euler function and

(D1−α
t− gt−)(s) =

eiπ(1−α)

Γ(α)

(
g(s)− g(t)

(t− s)1−α + (1− α)

∫ t

s

g(s)− g(y)

(y − s)2−α dy

)
1(0,t)(s).

We also define the space Wα,1([0, T ];R) of measurable functions f on [0, T ] such that

‖f‖α,1;[0,T ] =

∫ T

0

[
|f(t)|
tα

+

∫ t

0

|f(t)− f(y)|
(t− y)α+1

dy

]
dt <∞.

We have Wα,∞([0, T ];R) ⊂ Wα,1([0, T ];R) and ‖f‖α,1;[0,T ] ≤
(
T + T 1−α

1−α

)
‖f‖α,∞;[0,T ].

In [43], Zähle introduced the generalized Stieltjes integral as follows.

Definition 2.1. The generalized (fractional) Stieltjes integral
∫ T

0

f(x)dg(x) is de-

fined in terms of the fractional derivative operators

(Dα
0+f)(t) =

1

Γ(1− α)

(
f(t)

tα
+ α

∫ t

0

f(t)− f(y)

(t− y)α+1
dy

)
1(0,T )(t),

and

(D1−α
T−

gT−)(t) =
e−iπα

Γ(α)

(
gT−(t)

(T − t)1−α + (1− α)

∫ T

t

gT−(t)− gT−(y)

(y − t)2+α
dy

)
1(0,T )(t),

as ∫ T

0

f(x)dg(x) := (−1)α
∫ T

0

(Dα
0+
f)(t)(D1−α

T−
gT−)(t)dt. (2.5)
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The following proposition is the estimate of the generalized Stieltjes integral.

Proposition 2.1.4. ([45]). Fix 0 < α < 1
2
. There are two functions g ∈ W 1−α,∞

T (0, T )

and f ∈ Wα,1(0, T ); we set

Gt
s(f) =

∫ t

s

frdgr.

Then, for all r < t ≤ T we have

∣∣∣∣∫ t

s

frdgr

∣∣∣∣ ≤ sup
s≤r<τ≤t

|(D1−α
τ− gτ−)(r)|

∫ t

s

|(Dα
τ−gs+)(τ)|dτ

≤ Λα(g, [s, t])‖f‖α,1;[0,T ]

≤ cα,TΛα(g, [s, t])‖f‖α,∞,

(2.6)

cα,T =
(
T + T 1−α

1−α

)
.

As follows from [59], for any 1 − H < α < 1, we can define the integral w.r.t. the
fBm according to (2.5).

Definition 2.2. ([46]). The integral with respect to the fBm is defined as

∫ T

0

fdBH := (−1)α
∫ T

0

(Dα
0+
f)(t)(D1−α

T−
BH
T−)(t)dt. (2.7)

2.1.6 Lack of Markov property

Theorem 2.1. Let BH be a fractional Brownian motion of Hurst index H ∈ (0, 1)−
{1

2
}. Then, BH is not a Markov process.

Since the fBm is a Gaussian centered process, we need the next lemma to prove this
result.
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Lemma 2.1.1. If X is a Gaussian centered Markovian process, then for all s < t < u

E(XtXs)E(XtXu) = E(XtXt)E(XuXs)

Proof. Note that Rst = cov(Xs, Xt). Since X is a Markov process, then ∀ s < t < u

E(Xu/Xt, Xs) = E(Xu/Xt) = E(Xu) +
cov(Xt, Xu)

var(Xt)
(Xt − E(Xt))

Therefore,  E(Xu/Xt) =
Rut

Rtt

Xt,

E(Xu/Xt, Xs) = E(Xu) + θuvθ
−1
v (v − E(v))

where v =

(
Xt

Xs

)
and θuv = E[Xuv

t], θv = E(vtv)

We have that,

θuv = (RutRus) and θv =

(
Rtt Rts

Rst Rss

)

θ−1
v v =

1

RttRss −R2
ts

(
RssXt −RtsXs

RttXs −RstXt

)

We observe that,

E(Xu/Xt, Xs) = θuvθ
−1
v v

=
1

RttRss −R2
ts

(RutRssXt −RutRtsXs −RusRstXt +RusRttXs).

Hence, E(Xu/Xt, Xs) = E(Xu/Xt) we have

Rut

Rtt

Xt =
1

RttRss −R2
ts

(RutRssXt −RutRtsXs −RusRstXt +RusRttXs)

Moreover,

Xt(RttRutRss −RttRutRss −RutR
2
st +RttRusRst) +Xs(RttRutRst −R2

ttRus) = 0
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RstXt(RttRus −RutRst)−RttXs(RttRus −RutRst) = 0

or,
(RttRus −RutRst)(RstXt −RttXs) = 0,

then,
RttRus −RutRst = 0

which is the result.

Proof of theorem 2.1 We proceed by contradiction. Assume that BH is a Markov
process. Since it is a Gaussian process as well, by the previous lemma we have, for
s = 1 < t = 2 < u = 3

E(BH
1 B

H
2 )E(BH

2 B
H
3 ) = E(BH

2 B
H
2 )E(BH

1 B
H
3 )

so,
1

4
(1 + 22H − 1)(22H + 32H − 1) = 22H 1

2
(1 + 32H − 22H)

22H(22H + 32H − 1) = 22H [2(1 + 32H − 22H)]

by differentiating

3 + 32H + 3(22H) = 0

,

1 + 32H−1 + 22H = 0

we deduce that, 1 + 32H−1 + 22H = 0 only if H = 1
2
which leads to a contradiction.

2.1.7 Long and short-range dependence

The Process with long-range dependence has many applications, such as in telecom-
munication especially in the internet traffic problems. Basically, the notion of long-
range dependence is that the variance of the sum of a stationary sequence grows
non-linearly with respect to n.
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Definition 2.3. A stationary sequence (Xn)n∈N exhibits a long-range dependence if
ρ(n) = cov(Xk, Xk+n) satisfies

lim
n→∞

ρ(n)

cn−α
= 1

for α ∈ (0, 1) and some constant c.

Remark 2.1. If a stationary sequence (Xn)n∈N is long-range dependent, then the
dependence between Xk and Xk+1 decays slowly as n tends to infinity and

∑∞
n=1 ρ(n) =

∞.

Proposition 2.1.5. The fBm is one of the simplest processes which exhibit long-
range dependency.

Proof. Let us consider its increments

Xk = BH
k −BH

k−1, Xk+1 = BH
k+n −BH

k+n−1.

Since the fBm is centered, then

ρ(n) = E(Xk, Xk+n) = E
[
(BH

k −BH
k−1)(BH

k+n −BH
k+n−1)

]
= E

[
(BH

n+1 −BH
n )BH

1

]
= E(BH

n+1B
H
1 )− E(BH

n B
H
1 )

=
1

2

[
(n+ 1)2H − 2n2H + (n− 1)2H

]
=

1

2
n2H

[
(1 +

1

n
)2H − 2 + (1− 1

n
)2H

]

=
n2H

2

[
1 +

2H

n
+
H(2H − 1)

n2
− 2 + 1− 2H

n
+
H(2H − 1)

n2
+ o(

1

n2
)

]
= H(2H − 1)n2H−2 + o(n2H−2)

It follows that for H > 1
2
, we have

ρ(n) > 0 and
∑
n

ρ(n) =∞.
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and for H < 1
2
, we have

ρ(n) < 0 and
∑
n

ρ(n) <∞.

Therefore, we say that the fBm has a long-range dependence property if and only if
H > 1

2
and for the other case, it has a short-range dependence.

2.2 General construction of the space of integrands

using integral representation

In this section, we will explain the reasoning we adopt to construct suitable spaces
of integrands in order to have a well-defined integral. Note that it is a heuristic
approach; recall that we can represent an fBm by an integral over T of a kernel with
respect to the Brownian motion. Since the fBm is a particular case of the so-called
Volterra process, we say that Xt is a Volterra process, if we can write

Xt =

∫ t

0

K(t, s)dBs,

where K is the Volterra kernel and B is a Brownian motion.(see [7] and [31]). Now
let us focus on the fBm, which can be represented by

(B
(H)
t )t∈T ≡ (

∫
T

kH(t, s)dBs)t∈T,

with kH(t, s) = kH1[0,t)(s) where the kernel is in fact the image of the indicator
function through the operator kH . Without going deeply in the theory of operator,
it is in fact the Hilbert-Schmidt operator. Thus, heuristically,

IH(f) ≡
∫
T

kHf(s)dBs.

So, to get it well defined, we must have as a space of integrands

SH = {f :

∫
T

(kHf(s))2ds <∞},
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with a satisfying inner product ,

〈f, g〉SH = E(IH(f)IH(f))

This is the general construction in [52] for the case T = R and [51] for the case
T = [0, T ]. Besides, as we shall see, for example in subsection 10.5.4 in [40], even if
the approach is different, we will use this idea to construct the integral.

Riemann-Stieltjes integral

Riemann-Stieltjes integral is an important notion to understand the stochastic inte-
gration. But first, let us recall the basic Riemann integral.

Definition 2.4. Let f : R→ R be continuous. We define the Riemann integral over
[a, b] ⊂ R by ∫ b

a

f(t)dt = lim
‖∆n‖→0

n∑
i=1

f(τi)(ti − ti−1),

if the limit exists, where ∆n = {t0, t1, ..., tn} is a partition of [a, b] such that a = t0 <

t1 < ... < tn−1 < tn = b, ‖∆n‖ = max
1≤i≤n

(ti − ti−1) and τi is an evaluation point in the

interval [ti−1, ti].

Definition 2.5. The p-variation of a function f : [a, b]→ R is defined as

n∑
i=1

(f(tnk)− f(tnk−1))p,

if the limit exists, where ∆n = {t0, t1, ..., tn} is a partition of [a, b] and the mesh goes
to 0 as n→∞.

Definition 2.6. A function of a bounded variation is a function g : [a, b] → R such
that ∀t > 0,

sup
π∈P

nP∑
i=1

|g(ti)− g(ti−1)| <∞,
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where the supremum is taken over the set P = {π = {t0, ..., tnP}, π is a partition of
[a, b]}.
We denote by BV the set of functions of the bounded variations.

Definition 2.7. Let f : [a, b]→ R be continuous and g : [a, b]→ R be a function of
a bounded variation. We define the Riemann-Stieltjes integral as follows:∫ b

a

f(t)dg(t) = lim
‖∆n‖→0

n∑
i=1

f(τi)(g(ti)− g(ti−1)),

if the limit exists, where ∆n = {t0, t1, ..., tn} is a partition of [a, b] and the mesh goes
to 0 as n→∞.

Remark 2.2. Note that if g(t) = t, then the Riemann-Stieltjes integral is the Rie-
mann integral.

Proposition 2.2.1. [62] If f is continuous and g ∈ C1, then∫ b

a

f(t)dg(t) =

∫ b

a

f(t)g′(t)dt

and if f, g ∈ BV then∫ b

a

f(t)dg(t) = f(b)g(b)− f(a)g(a)−
∫ b

a

g(t)df(t). (2.8)

Wiener integral

The Wiener integral is an integral where we have deterministic integrands and a
Gaussian process as an integrator. It generalizes the theory of Riemann-Stieltjes
integral. Let us define the integral:

I(f) =

∫ b

a

f(t)dBH
t (2.9)

In fact, we could think of applying the integration by parts of the formula of the
Riemann-Stieltjes integral (2.8), and obtain∫ b

a

f(t)dBH
t = f(b)BH

b − f(a)BH
a −

∫ b

a

BH
t df(t), (2.10)
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where the integrals are Riemann-Stieltjes integrals. But the problem is, as we saw,
that BH

t /∈ BV . Hence, the equation (2.10) is not well defined as a Riemann-Stieltjes
integral in this case. Therefore, we need a new approach to define the integral (2.9):
the so-called Wiener integral.

2.2.1 Construction of the Wiener integral w.r.t FBm

The basic idea is to extend the isometry map from the set of step functions E into
the space L2(Ω) generated by the integrator, to an isometry defined on a larger

space of integrands, usually noted H̃ and such that Ē = H̃. Let us recall that
the Wiener integral (w.r.t. a Gaussian process) of a function f ∈ H is a random
variable. More explicitly, it is a centered Gaussian random variable. With variance∫
T
f(t)2dt in the case of a standard Brownian motion. Therefore, the Wiener integral

generates a Gaussian space. Let us denote this subspace of L2(Ω,F (Z), (F (Z)
t )t∈T ,PZ)

by SP (Z) (Note that if f ∈ E ,
∫
T
f(t)dZt generates SP (Z).) In our case, we take

the Gaussian process Z = B(H), as an fBm, so we obtain SP (Z) = SPT (B(H)) ⊂

L2(Ω,F (H), (F (H)
t )t∈T ,PH).

2.3 Russo-Vallois integral

Definition 2.8. Let X, Y be two real continuous processes defined on [0, T ]. The
symmetric integral (in the sense of Russo-Vallois) is defined by

∫ T

0

Yud
◦Xu = P- lim

ε→0

∫ T

0

Yu+ε + Yu
2

Xu+ε −Xu

ε
du, (2.11)

provided that the limit exists and with the convention that Yt = YT and Xt = XT

when t > T .

Theorem 2.2. ([26], page793) The symmetric integral
∫ T

0
f(BH

u )d◦BH
u exists for any

f : R → R of class C5 if and only if H ∈ (1
6
, 1). In this case, we have, for any
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primitive F of f :

F (B
H

T ) = F (0) +

∫ T

0

f(BH
u )d◦BH

u .

When H ≤ 1/6, one can consider the so-called m-order Newton-Côtes integral:

Definition 2.9. Let f : R→ R be a continuous function, let X, Y be two continuous
processes on [0, T ] and let m ≥ 1 be an integer. The m-order Newton-Côtes integral
(in the sense of Russo-Vallois) of f(Y ) with respect to X is defined by

∫ T

0

f(Yu)d
NC,mXu = P- lim

ε→0
−
∫ T

0

(∫ 1

0

f(Ys + β(Ys+ε − Ys))µm(dβ)

)
Xu+ε −Xu

ε
du,

provided that the limit exists and with the same convention above with µ1 = 1
2
(δ0+δ1)

and, for m ≥ 2,

µm =

2(m−1)∑
j=0

(∫ 1

0

∏
j 6=k

2(m− 1)u− k
j − k

du

)
δ j

(2m−2)
,

δ being the Dirac measure.

Theorem 2.3. ([26], page793) Let m ≥ 1 be an integer. The m-order Newton-Côtes

integral
∫ T

0
f(BH

u )dNC,mBH
u exists for any f : R → R of class C4m+1 if and only if

H ∈ ( 1
4m+2

, 1). In this case, we have for any primitive F of f :

F (BH
T ) = F (0) +

∫ T

0

f(BH
u )dNC,mBH

u .

2.4 Skorohod integral

In this section, we focus on the Skorohod integral. This stochastic integral, intro-
duced for the first time by A. Skorohod in 1975, may be regarded as an extension
of the Itô’s integral to integrands that are not necessarily F-adapted. The Skorohod
integral is also connected to the Malliavin derivative, which is introduced with full
details in [49, Chap. 3].
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Let u = u(t, ω), t ∈ [0, T ], ω ∈ Ω, be a measurable stochastic process such that,
for all t ∈ [0, T ], u(t) is a FT -measurable random variable and

E[u2(t)] <∞.

Then, for each t ∈ [0, T ], we can apply the Wiener-Itô’s chaos expansion to the
random variable u(t) = u(t, ω), ω ∈ Ω, and thus there exist symmetric functions

fn,t = fn,t(t1, ..., tn), (t1, ..., tn) ∈ [0, T ]n, in L̃2([0, T ]n), n = 1, 2, ..., such that

u(t) =
∞∑
n=0

In(fn,t),

where

In(f) =

∫
[0,T ]n

f(t1, ..., tn)dW (t1)...dW (t(n),

(Wt)t∈[0,T ] is a Wiener process and f ∈ L̃2([0, T ]n), and the convergence takes place

in L2(P). Moreover, we have the isometry

‖ u ‖2
L2(P)=

∞∑
n=0

n! ‖ fn ‖2
L2([0,T ]n) . (2.12)

For more details see [49]. Note that the functions fn,t, n = 1, 2, ..., depend on the
parameter t ∈ [0, T ], and so we can write

fn(t1, ..., tn, tn+1) = fn(t1, ..., tn, t) := fn,t(t1, ..., tn)

and we may regard fn as a function of n+1 variables. Since this function is symmetric

with respect to its first n variables, its symmetrization f̃n is given by

f̃n(t1, ..., tn+1) =
1

n+ 1
[fn(t1, ..., tn+1) + fn(t2, ..., tn+1, t1) + ...+ fn(t1, ...., tn−1, tn+1, tn)]

(2.13)
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Definition 2.10. Let u(t), t ∈ [0, T ], be a measurable stochastic process such that
for all t ∈ [0, T ] the random variable u(t) is FT -measurable and E[u2(t)] < ∞. Let
its Wiener-Itô’s chaos expansion be

u(t) =
∞∑
n=0

In(fn,t) =
∞∑
n=0

In(fn(., t)).

Then, we define the Skorohod integral of u by

δ(u) =

∫ T

0

u(t)δW (t) =
∞∑
n=0

In+1(f̃n)

when the sum is convergent in L2(P). Here f̃n, n = 1, 2, ..., are the symmetric
functions (2.13) derived from fn(., t), n = 1, 2, .... We say that u is a Skorohod
integrable, and we write u ∈ Dom(δ) if the series δ(u) converges in L2(P).

Remark 2.3. By (2.12) a stochastic process u belongs to Dom(δ) if and only if

E[δ(u)2] =
∞∑
n=0

(n+ 1)! ‖ fn ‖2
L2([0,T ]n+1)<∞.

2.4.1 The Skorohod integral for fBm

The stochastic Integrals with respect to fBm were defined mostly for deterministic or
linear integrands, but in other cases it was much more complicated to establish such
integral, since the path regularity of the fBM varies with the Hurst parameter H. In
particular, if H > 1

2
, then the paths of BH are essentially α-Hölder continuous for

all α < H, hence a pathwise stochastic integral approach is quite effective likewise
Young (see [54]). In the general case, especially when H < 1

2
, the path of fBm

becomes rather "rough" and the pathwise approach for stochastic integrals; therefore
other definitions of stochastic integrals have been introduced. The most notable is
the divergence-type integration (or Skorohod integral), which is based on the idea of
Malliavin calculus (see for example [49, 30, 64]). For this case we briefly introduce
Malliavin derivative with respect to certain Gaussian processes; in particular, for
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fractional Brownian motion.
Let W be a standard Brownian motion and assume G = (Gt)t∈[0,T ] is a continuous
centred Gaussian process of the form

Gt =

∫ t

0

K(t, s)dWs (2.14)

where the kernel K satisfies sup
t∈[0,T ]

∫ t
0
K(t, s)2ds < ∞. In particular, the fractional

Brownian motion is of this form by representation (3.14). First we recall some defi-
nitions.

Definition 2.11. We denote by EG the set of simple random variables of the form

F =
n∑
k=1

akGtk

where n ∈ N, ak ∈ R and tk ∈ [0, T ] for k = 1, ..., n.

Definition 2.12. The Gaussian space H1 associated to G is the closure of EG in
L2(Ω).

Definition 2.13. The reproducing Hilbert space HG of G is the closure of EG with
respect to the inner product

〈1[0,t],1[0,s]〉H = RG(t, s).

In what follows, we will drop G in the notation.

The mapping 1[0,t] → Gt can be extended to an isometry between the Hilbert space
H and the Gaussian space H1. The image of ϕ ∈ H in this isometry is denoted by
G(ϕ). In particular, we have G(1[0,t]) = Gt.

Definition 2.14. Denote by S the space of all smooth random variables of the form

F = f(G(ϕ1), ..., G(ϕn)), ϕ1, ..., ϕn ∈ H,
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where f ∈ C∞b (Rn) i.e. f and all its derivatives are bounded. TheMalliavin derivative

D = D(G) of F is an element of L2(Ω,H) defined by

DF =
n∑
i=1

∂if(G(ϕ1), ..., G(ϕn))ϕi.

In particular, DGt = 1[0,t].

Definition 2.15. We denote D1,2
G = D1,2 be the Hilbert space of all square integrable

Malliavin derivative random variables defined as the closure of S with respect to the
norm

‖ F ‖2
1,2= E|F |2 + E(‖ DF ‖2

H).

Now we are ready to define the divergence operator δ as the adjoint operator of the
Malliavin derivative D.

Definition 2.16. The domain Dom δ of the operator δ is the set of random variables
u ∈ L2(Ω,H) satisfying

|E(〈DF, u〉H)| ≤ cu ‖ F ‖L2

for any F ∈ D1,2 and some constant cu depending only on u. For u ∈ Dom δ the
divergence operator δ(u) is a square integrable random variable defined by the duality
relation

E(Fδ(u)) = E(〈DF, u〉H), ∀F ∈ D1,2

for any F ∈ D1,2.

We use the notation

δ(u) =

∫ T

0

usδGs.

Recall now the special form of G given by (2.14) which is clearly the fractional Brow-
nian motion, and define a linear operator K∗ from E to L2[0, T ] by

(K∗ϕ)(s) = ϕ(s)K(T, s) +

∫ T

s

[ϕ(t)− ϕ(s)]K(dt, s).
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With the help of this operator according to [64], the Hilbert space H generated by G

can be represented asH = (K∗)−1(L2[0, T ]). Furthermore, D1,2
G (H) = (K∗)−1(D1,2

W (L2[0, T ])).

Moreover, we can represent δ(G) with δ(W ) by the relation

∫ t

0

usδGs =

∫ t

0

(Ku)sδWs

provided that Ku ∈ Dom δ(W ).



Chapter 3

Stochastic integration for

non-adapted processes with respect

to fractional Brownian motion

This chapter is the subject of a publication in the thesis
Let B(t) be a Brownian motion and let {Ft} be a filtration such that

• B(t) is adapted to {Ft}.

• B(t)−B(s) and {Ft} are independent for s ≤ t.

Suppose f(t) is a stochastic process satisfying the following conditions:

1. f(t) is adapted to {Ft},

2. E
∫ b
a
|f(t)|2dt <∞

Then, the Itô integral I =
∫ b
a
f(t)dB(t) is defined (see, e.g., Chapter 4 of the book

[28]) and we have the equalities:

E(I) = 0, E(|I|2) = E

∫ b

a

|f(t)|2dt

Moreover, we have the next theorem (see, e.g., Theorems 4.6.1 and 4.6.2 in the book
[28].)
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Theorem 3.1. Let f(t) be a stochastic process satisfying the above conditions (1)
and (2). Then, the stochastic process

Xt =

∫ t

a

f(s)dB(s), a ≤ t ≤ b,

is a continuous martingale.

More generally, suppose f(t) is a stochastic process satisfying the following conditions:

(a) f(t) is adapted to {Ft},

(b)
∫ b
a
|f(t)|2dt <∞ almost surely.

Then, the Itô integral
∫ b
a
f(t)dB(t) is defined (see, e.g., Chapter 5 of the book [28])

and we have the next theorem (see, e.g., Theorems 5.5.2 and 5.5.5 in the book [28].)

Theorem 3.2. Let f(t) be a stochastic process satisfying the above conditions (a)
and (b). Then, the stochastic process

Xt =

∫ t

a

f(s)dB(s), a ≤ t ≤ b,

is a continuous local martingale.

3.1 Itô’s formula for fBm

In this section, we will show the Itô’s formula for the indefinite Skorohod integral.

Theorem 3.3. [60] Let f be a function of class C2(R). For each t ∈ [0, T ] the
following formula holds

f(BH(t)) = f(0) +

∫ t

0

f ′(BH(s))δBH(s) +H

∫ t

0

f ′′(BH(s))s2H−1ds
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3.2 Itô integral

Let us start with the simplest case of random integrands. For convenience, we will use
L2
ad([a, b]×Ω) to denote the space of all stochastic processes f(t, ω), a ≤ t ≤ b, ω ∈ Ω,

satisfying the following conditions:
(1) f(t, ω) is adapted to the filtration {Ft}

(2)
∫ b
a
E|f(t)|2dt <∞. We will use Itô’s original ideas to define the stochastic integral

∫ b

a

f(t)dW (t) (3.1)

for f ∈ L2
ad([a, b]× Ω). For clarity, we divide the discussion into three steps.

Step 1. f is a step stochastic process in L2
ad([a, b]× Ω).

Suppose f is a step stochastic process given by

f(t, ω) =
n∑
i=1

ξi−1(ω)1(ti−1,ti](t), (3.2)

where ξi−1 is Fti−1
-measurable and E(ξ2

i−1) <∞. In this case we define

I(f) =
n∑
i=1

ξi−1(W (ti)−W (ti−1)). (3.3)

Obviously, I(af + bg) = aI(f) + bI(g) for any a, b ∈ R and any such step stochastic
processes f and g. Moreover, we have the next lemma.

Lemma 3.2.1. Let I(f) be defined by equation (3.3). Then, EI(f) = 0 and

E(|I(f)|2) =

∫ b

a

E(|f(t)|2)dt. (3.4)

Proof. The proof can be found in ([28]).
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Step 2. An approximation lemma.

We need to prove an approximation lemma in this step in order to be able to define

the stochastic integral
∫ b
a
f(t)dW (t) for general stochastic processes f ∈ L2

ad([a, b]×Ω).

Lemma 3.2.2. Suppose f ∈ L2
ad([a, b]×Ω). Then, there exists a sequence {fn(t);n ≥

1} of step stochastic processes in f ∈ L2
ad([a, b]× Ω) such that

lim
n→∞

∫ b

a

E{|f(t)− f(tn)|2}dt = 0. (3.5)

Proof. We refer the reader to [28]

Step 3. Stochastic integral
∫ b
a
f(t)dW (t) for f ∈ L2

ad([a, b]× Ω).
We use Steps 1 and 2 to define the stochastic integral

∫ b

a

f(t)dW (t), f ∈ L2
ad([a, b]× Ω).

Apply Lemma 3.2.2 to get a sequence {fn(t, ω);n ≥ 1} of adapted step stochastic
processes such that equation (3.5) holds. For each n, I(fn) is defined by Step 1. By
Lemma 3.2.1 we have

E(|fn(t)− fm(t)|2) =

∫ b

a

E(|fn(t)− fm(t)|2)dt → 0, as n,m→∞.

Hence, the sequence {I(fn)} is a Cauchy sequence in L2(Ω). Define

I(f) = lim
n→∞

I(fn), in L2(Ω). (3.6)

We can use arguments similar to those in [28] for the Wiener integral to show that
the above I(f) is well-defined.

Definition 3.1. ([28]). The limit I(f) defined in equation (3.6) is called the Itô

integral of f and is denoted by
∫ b
a
f(t)dW (t).
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Thus, the Itô integral I(f) is defined for f ∈ L2
ad([a, b] × Ω) and the mapping I is

linear, namely, for any a, b ∈ R and f, g ∈ L2
ad([a, b]× Ω),

I(af + bg) = aI(f) + bI(g).

We clearly see that Lemma 3.2.1 remains valid for f ∈ L2
ad([a, b]× Ω). We state this

fact as the next theorem.

Theorem 3.2.1. ([28]). Suppose f ∈ L2
ad([a, b] × Ω). Then, the Itô integral I(f) =∫ b

a
f(t)dW (t) is a random variable with E{I(f)} = 0 and

E(|I(f)|2) =

∫ b

a

E(|f(t)|2)dt.

By this theorem, the Itô integral I : L2
ad([a, b]× Ω)→ L2(Ω), is an isometry. Since I

is also linear, we have the following corollary.

Corollary 3.2.0.1. ([28]). For any f, g ∈ L2
ad([a, b]×Ω), the following equality holds:

E(

∫ b

a

f(t)dW (t)

∫ b

a

g(t)dW (t)) =

∫ b

a

f(t)g(t)dW (t).

To construct the integral with respect to the fractional Brownian motion, we use the
generalized (fractional) Stieltjes integral (see [54]-[43]).

3.3 K. Itô’s idea

Suppose a stochastic process f(t) is not adapted to this filtration. Then
∫ b
a
f(t)dB(t)

cannot be defined as an Itô integral.

1. Stochastic integral:
∫ 1

0
B(1)dB(t) =? (See equations (3.7) and (3.10).)

We first describe K. Itô’s ideas to define the stochastic integral
∫ 1

0
B(1)dB(t) in his

lecture at the 1976 Kyoto Symposium on SDE’s [35]. Enlarge the filtration in order
for the integrand B(1) to be adapted, namely, let

Gt = σ{Ft, B(1)}.
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Although B(t) is not a Brownian motion with respect to the larger filtration {Gt}, it
can be decomposed as

B(t) =

(
B(t)−

∫ t

0

B(1)−B(u)

1− u
du

)
+

∫ t

0

B(1)−B(u)

1− u
du,

which shows that B(t) is a quasimartingale with respect to the filtration {Gt}. Then

the stochastic integral
∫ 1

0
B(1)dB(t) can be defined as a stochastic integral with re-

spect to a quasimartingale and

∫ 1

0

B(1)dB(t) = B(1)2. (3.7)

Our new viewpoint in [5] comes from the simple observation that the anticipating
integrand B(1) has the following obvious decomposition

B(1) = (B(1)−B(t)) +B(t). (3.8)

Note that the integral for the second term B(t) is within the Itô theory. Thus,

we only need to define the stochastic integral
∫ 1

0
(B(1) − B(t))dB(t). This leads to

the question: "What is so special about the integrand B(1) − B(t)?" To find out
the answer, consider another anticipating integrand B(1)2. This integrand can be
decomposed as

B(1)2 = [B(1)−B(t)]2 + 2B(t)[B(1)−B(t)] +B(t)2.

Observe that the last term B(t)2 and the factor B(t) in the second term are adapted
stochastic processes, while the first term [B(1)−B(t)]2 and the factor B(1)−B(t) in
the second term have the same property (which is to be defined below) as that of the
first term in Equation (3.8). We can also try to decompose integrands such as B(1)n

and eB(1) to discover the common property stated in the next definition.

Definition 3.2. A stochastic process ϕ(t) is said to be instantly independent with
respect to a filtration {Ft} if ϕ(t) and Ft are independent for each t.
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Clearly, [B(1)−B(t)]n, eB(1)−B(t), and
∫ 1

t
h(s)dB(s) are all instantly independent for

0 ≤ t ≤ 1, where h(s) is a deterministic function in L2([0; 1]).

Lemma 3.4. If a stochastic process ϕ(t) is both adapted and instantly independent
with respect to a filtration {Ft} , then ϕ(t) is a deterministic function.

Proof. Since ϕ(t) is adapted, we have E(ϕ(t)|Ft) = ϕ(t). On the other hand,
since ϕ(t) is instantly independent, we also have E(ϕ(t)|Ft) = E(ϕ(t)). Hence,
ϕ(t) = E(ϕ(t)), which shows that ϕ(t) is a deterministic function. 2

In view of lemma (3.4), we can regard the collection of instantly independent stochas-
tic processes as a counterpart of the Itô theory. Namely, the Itô part consists of
adapted stochastic processes and the counterpart consists of instantly independent
stochastic processes. Moreover, we observe from the above discussion that many an-
ticipating stochastic processes can be decomposed into sums of the products of an Itô
part and a counterpart.

Remark 3.5. Note that the Brownian motion (Wt)t∈[0,T ] and the FBM (BH
t )t∈[0,T ]

generate the same filtration. More precisely, the natural filtration of the Brownian
motion and of the FBM that generates through the Levy-Hida representation coincide.

Thus, our viewpoint in fact stems from Itô’s ideas. We simply reverse the roles of the
integrand and the integrator, i.e.,

• Keep the filtration {Ft} and the Brownian motion B(t).

• Decompose an integrand as a sum of terms, each being the product of an adapted
stochastic process and an instantly independent stochastic processes.

This leads to the question : ” How do we define a stochastic integral
∫ b
a
f(t)dB(t)

for an adapted stochastic process f(t) (in the Itô part) and an instantly independent
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stochastic process ϕ(t) (in the counterpart)? ” The answer is in the next section.

3.4 Stochastic integration with respect to Brownian

motion

H. Kuo and W. Ayed [6] are going to propose a new approach for stochastic integra-
tion with respect to Brownian motion. The key idea in our approach to anticipating
stochastic integration is the evaluation points for the integrand. Consider the in-
stantly independent stochastic process B(1)−B(t) in the right-hand side of equation

(3.8). How do we ” define” the stochastic integral
∫ 1

0
(B(1)−B(t))dB(t) ?

Let 4 = {0 = t0, t1, t2, · · · , tn = 1} be a partition of the interval [0, 1]. On the
subinterval [ti−1, ti], we take the ” right endpoint ” ti as the evaluation point for the
integrand B(1)−B(t) to form a Riemann like sum.

Then, we define the integral

∫ 1

0
(B(1)−B(t))dB(t) = lim

‖4‖→0

n∑
i=1

(B(1)−B(ti))(Bti −Bti−1
)

= B(1)2 − lim
‖4‖→0

n∑
i=1

B(ti)(Bti −Bti−1
)

= B(1)2 − lim
‖4‖→0

n∑
i=1

{[B(ti)−B(ti−1)] +B(ti−1)}(B(ti)−B(ti−1))

= B(1)2 − 1−
∫ 1

0

B(t)dB(t) (3.9)

where the last integral is an Itô integral. It follows from equations (3.8) and (3.9)
that we have a new stochastic integral

∫ 1

0

B(1)dB(t) = B(1)2 − 1 , (3.10)
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which is different from the one in Equation (3.7) defined by K.Itô [35].

Note that our new stochastic integral has expectation 0, a property that we want
to keep for our new stochastic integral. The above discussion leads to the following
definition of a new stochastic integral of a stochastic process which is the product of an
adapted stochastic process (in the Itô part) and an instantly independent stochastic
process (in the counterpart).

Definition 3.3. For an adapted stochastic process f(t) and an instantly independent
stochastic process ϕ(t), we define the stochastic integral of f(t)ϕ(t) to be the limit

∫ b

a

f(t)ϕ(t)dB(t) = lim
‖4‖→0

n∑
i=1

f(ti−1)ϕ(ti)(B(ti)−B(ti−1))

provided that the limit in probability exists.

In general, for a stochastic process F (t) =
∑N

n=1 fn(t)ϕn(t) with fn(t)’s being adapted
and ϕn(t) instantly independent, we define

∫ b

a

F (t)dB(t) =
N∑
n=1

∫ b

a

fn(t)ϕn(t)

This stochastic integral is in fact well-defined. Obviously, there is a natural question:
"What is the class of stochastic processes for which the new stochastic integral is
defined?" Unfortunately, we do not have the answer yet.

Example 3.6. We mention to two stochastic integrals from [5]

∫ t

0

B(1)B(s)dB(s) =

{
1
2
B(1)(B(t)2 − t)−

∫ t
0
B(s)ds, 0 ≤ t ≤ 1;

1
2
B(1)(B(t)2 − t)−

∫ t
0
B(s)ds, t > 1.

In general, for a continuous function f(x), we have

∫ t

0

B(1)f(B(s))dB(s) =

{
B(1)

∫ t
0
f(B(s))dB(s)−

∫ t
0
f(B(s))ds, 0 ≤ t ≤ 1;

B(1)
∫ t

0
f(B(s))dB(s)−

∫ t
0
f(B(s))ds, t > 1.
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Example 3.7. Let f(t) and g(t) be two deterministic functions in L2([0, 1]). Then,

∫ 1

0

g(t)

(∫ 1

0

f(s)dB(s)

)
dB(t) =

∫
[0,1]2

f(s)g(t)dB(s)dB(t),

where the right-hand side is a double Wiener-Itô integral (see Chapter 9 in [28]). To
prove this equality, note that the Wiener integral of f(s) in the left-hand side has the
decomposition ∫ 1

0

f(s)dB(s) =

∫ t

0

f(s)dB(s) +

∫ 1

t

f(s)dB(s)

where the first integral is in the Itô part and the second integral is in the counterpart.
For convenience, let 4Bi = B(ti)−B(ti−1). By definition (3.3), we have

∫ 1

0

g(t)

(∫ 1

0

f(s)dB(s)

)
dB(t) = lim

‖4‖−→0

n∑
i=1

g(ti−1)

(∫ ti−1

0

f(s)dB(s) +

∫ 1

ti

f(s)dB(s)

)
4Bi

= lim
‖4‖−→0

n∑
i=1

g(ti−1)

(∫ 1

0

f(s)dB(s)−
∫ ti−1

ti

f(s)dB(s)

)
4Bi

=

∫ 1

0

f(s)dB(s)

∫ 1

0

g(t)dB(t)− lim
‖4‖−→0

n∑
i=1

f(ti−1)g(ti−1)(4Bi)
2

=

∫ 1

0

f(s)dB(s)

∫ 1

0

g(t)dB(t)−
∫ 1

0

f(t)g(t)d(t)

which is exactly the Wiener-Itô double integral in the right-hand side of equation
(3.7). In [36] K. Itô proved the following well-known theorem on multiple Wiener-Itô
integral (see also theorem 9.6.7 in the book [28].)

Theorem 3.8. (K. Itô 1951) Let f ∈ L2([a; b]n) and f̂ its symmetrization. Then,∫
[a;b]n

f(t1, t2, ..., tn)dB(t1)dB(t2)...dB(tn)

= n!

∫ b

a

...

∫ tn−2

a

[∫ tn−1

a

f̂(t1, ..., tn−1, tn)dB(tn)

]
dB(tn−1)...dB(t1)
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Note that the restriction to the region a ≤ tn ≤ tn−1 ≤ ... ≤ t2 ≤ t1 ≤ b for
the iterated integrals is to ensure that in each step of the iteration the integrand
is adapted so that the integral is defined as an Itô integral. However, as seen from
example (3.7), there is no need to impose this restriction since in each step the integral
is defined as a stochastic integral in definition (3.3). By using the similar arguments
as those in example (3.7), we can prove the next theorem.

Theorem 3.9. Let f ∈ L2([a; b]n). Then,∫
[a;b]n

f(t1, t2, ..., tn)dB(t1)dB(t2)...dB(tn) (3.11)

=

∫ b

a

...

∫ b

a

[∫ b

a

f(t1, ..., tn−1, tn)dB(tn)

]
dB(tn−1)...dB(t1)

Observe that we do not have to use the symmetrization f̂ in the right-hand side of
equation (3.11). In fact, it is obvious that the iterated new stochastic integrals for

f and f̂ are equal. In view of this theorem, a multiple Wiener-Itô integral can be
evaluated as an iterated stochastic integral, just like multiple integrals and iterated
integrals in ordinary calculus.

3.5 Representation of the FBm

The fractional Brownian motion can be expressed as a Wiener integral with respect
to the Wiener process in several ways. Let us recall two of them.

3.5.1 Levy-Hida representation

Note that the FBM is a particular case of Volterra processes. Following Decreusfond

and Üstünel, we have this kernel :

KH(t, s) =
(t− s)H−1/2

+

Γ(H + 1/2)
F (1/2−H,H − 1/2, H + 1/2, 1− t

s
), 0 < s < t <∞,
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where F is the Gauss hypergeometric function.

For the case H ∈ (1/2, 1), we have that the kernel is

KH(t, s) = cHs
1/2−H

∫ t

s

|u− s|H−3/2uH−1/2du, t > s,

where

cH = (
H(2H − 1)

B(2− 2H,H − 1/2)
)1/2

with B the Beta function, i.e. B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt.

We have
∂KH(t, s)

∂t
= cH(

t

s
)H−1/2(t− s)H−3/2.

Now, we introduce a linear operator K∗H : E → L2([0, T ]), defined by

(K∗Hφ)(s) =

∫ T

s

φ(t)
∂KH(t, s)

∂t
dt, (3.12)

where φ ∈ E .

For the case H ∈ (0, 1/2), we have that the kernel is given by

KH(t, s) = bH(( t
s
)H−1/2(t− s)H−1/2 − (H − 1/2)s1/2−H ∫ t

s
(u− s)H−1/2uH−3/2du),

where

bH = (
2H

(1− 2H)B(1− 2H,H + 1/2)
)1/2.

We have
∂KH(t, s)

∂t
= cH(H − 1/2

t

s
)H−1/2(t− s)H−3/2.
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Now, we introduce a linear operator K∗H : E → L2([0, T ]), defined by

(K∗Hφ)(s) := KH(T, s)φ(s) +

∫ T

s

(φ(t)− φ(s))
∂KH(t, s)

∂t
dt. (3.13)

Case H = 1/2 It is obvious that K1/2(t, s) = 1[0,t](s). Indeed, we obtain

B
1/2
t =

∫ t

0

K1/2(t, s)dWs =

∫ t

0

1[0,t](s)dWs = Wt

We have
(K∗H1[0,t])(s) = KH(t, s)1[0,t](s).

Thus, the operator K∗H is an isometry between E and L2([0, T ]) that can be extended

to an isometry between the closure of E , namely the Hilbert space S(H) and L2([0, T ]).

Indeed, we have

〈1[0,t], 1[0,s]〉S(H) = RH(t, s)

=
∫ t∧s

0
KH(t, u)KH(s, u)du

= 〈KH(t, .)1[0,t], KH(s, .)1[0,s]〉L2([0,T ])

= 〈K∗H1[0,t], K
∗
H1[0,s]〉L2([0,T ])

3.5.2 Moving average representation

The fBm can be represented as an integral with respect to a standard Brownian
motion on the whole real line. Let (Bs)s∈R be a standard Brownian motion. Then,

BH
t =

1

C(H)

∫
R

[
(t− s)H−

1
2

+ − (−s)H−
1
2

+

]
dBs, (3.14)

with C(H) > 0 an explicit normalizing constant, is a fractional Brownian motion.
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3.5.3 Harmonizable representation

There is another representation which uses the complex-valued Brownian motion (but

the fBm is real-valued). In fact, for a fBm (BH
t )t∈R, we obtain

BH
t =

1

C2(H)

∫
R

eitx − 1

ix
|x|−(H− 1

2
)dB̃x, t ∈ R,

where (B̃t)t∈R is a complex Brownian measure and

C2(H) =

(
π

HΓ(2H)sin(Hπ)

)1/2

.

Let us note that the complex Brownian measure on R can be splitted as B̃ = B1 +iB2

and is such that B1(A) = B1(−A), B2(A) = −B2(−A) and E(B1(A))2 = |A|
2
, ∀A ∈

B(R).
We also call this representation, the spectral representation.

3.6 Stochastic integration for non-adapted processes

with respect to fBm

In this section, we have introduced a new approach on stochastic integration for non-
adapted processes with respect to processes having irregular trajectories, based on the
Levy -Hida representation. Our approach is used to solve stochastic differential equa-
tions driven by a fractional Brownian motion for integrants not necessarily adapted.
Hoping that these results will serve to other processes such as sub fractional Brownian
motion, mixed fractional Brownian motion or Gaussian processes in general. Using
the previous theory, we could define the Wiener integration using the operator K∗H as

∫ T

0

φ(s)dBH
s =

∫ T

0

(K∗Hφ)(s)dBs,

for φ ∈ S(H). But, for the right-hand side of equation to be well-defined, we must
have that K∗Hφ ∈ L2([0, T ]).
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Theorem 3.10 (Definition). Let 4 = {0 = t0, t1, t2, · · · , tn = T} be a partition of
the interval [0, T ]. On the subinterval [ti−1, ti], we take the ” right endpoint ”ti as
the evaluation point for the integrand. For an adapted stochastic process f(t) and
an instantly independent stochastic process g(t), we define the stochastic integral of
f(t)g(t) to be the limit

∫ T

0

f(t)g(t)dBH(t) = lim
‖4‖→0

n∑
i=1

ψH1 (f)(ti−1)ψH2 (g)(ti)(B(ti)−B(ti−1))

Proof.

Write K∗H(f.g) like in (3.12) and in (3.13) then develop a sequence of calculus (based
on the results obtained by Joachim [39] ) applied to the kernel in two cases H < 1/2

and H > 1/2.

Namely, when one wants to compute
∫ 1

0
wvdx with v(x) =

∫ x
0
v′(y)dy, we obtain by a

classical integration by parts (including the trace terms in the integral) or by Fubini’s
theorem, ∫ 1

0

wvdx =

∫
v′(x)

∫ 1

x

w(y)dydx,

For H > 1
2

:
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∫ T
0
f(t)g(t)dBH

t =
∫ T

0
(K∗H(f.g)(t))dBt

=

∫ T

0

∫ T

t

(f.g)(u)
∂KH(u, t)

∂t
dudBt

= CH

∫ T

0

∫ T

t

(f.g)(u)(
u

t
)H−

1
2 (u− t)H−

3
2dudBt

= CH

∫ T

0

t
1
2
−H
∫ T

t

f(u).g(u)uH−
1
2 (u− t)H−

3
2dudBt

= CH

∫ T

0

t
1
2
−H
[∫ T

t

(
g(u)uH−

1
2

)′ ∫ T

u

f(y)(y − t)H−
3
2dydu

]
dBt

= CH

∫ T

0

t
1
2
−H [Γ(H − 1

2
)

∫ T

t

(
g(u)uH−

1
2

)′
[− 1

Γ(H − 1
2
)

∫ u

t

f(y)(y − t)H−
3
2dy

+ 1
Γ(H− 1

2
)

∫ T
t
f(y)(y − t)H− 3

2dy]du]dBt

= CH

∫ T

0

t
1
2
−H
[
Γ(H − 1

2
)

∫ T

t

(
g(u)uH−

1
2

)′
(−(I

H− 1
2

u− f)(t) + (I
H− 1

2

T− f)(t))du

]
dBt.

Let

J = Γ(H−1

2
)

∫ T

t

(
g(u)uH−

1
2

)′
(−(I

H− 1
2

u− f)(t)+(I
H− 1

2

T− f)(t))du =

∫ T

t

f(u).g(u)uH−
1
2 (u−t)H−

3
2du.

Then,

J = −Γ(H − 1

2
)
[
g(t)tH−

1
2 (I

H− 1
2

T− f)(t))
]
− Γ(H − 1

2
)

∫ T

t

g(u)uH−
1
2 .f(u)(u− t)H−

3
2du

=

∫ T

t

f(u).g(u)uH−
1
2 (u− t)H−

3
2du.
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It means that J =
−Γ(H− 1

2
)

1+Γ(H− 1
2

)

[
g(t)tH−

1
2 (I

H− 1
2

T− f)(t)
]
. Then,

∫ T
0
f(t)g(t)dBH

t =
−Γ(H− 1

2
)

1+Γ(H− 1
2

)
CH
∫ T

0
g(t)(I

H− 1
2

T− f)(t)dBt

=
−Γ(H − 1

2
)

1 + Γ(H − 1
2
)
CH lim

‖4‖→0

n∑
i=1

(I
H− 1

2

T− f)(ti−1)g(ti)(B(ti)−B(ti−1))

= lim
‖4‖→0

n∑
i=1

(I
H− 1

2

T− f)(ti−1)
−Γ(H − 1

2
)

1 + Γ(H − 1
2
)
CHg(ti)(B(ti)−B(ti−1))

= lim
‖4‖→0

n∑
i=1

ψH1 (f)(ti−1)ψH2 (g)(ti)(B(ti)−B(ti−1)),

where ψH1 (f)(ti−1) = (I
H− 1

2

T− f)(ti−1) and ψH2 (g)(ti) =
−Γ(H− 1

2
)

1+Γ(H− 1
2

)
CHg(ti)
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For H < 1
2

:

∫ T
0
f(t)g(t)dBH

t =
∫ T

0
(K∗H(f.g)(t))dBt

=

∫ T

0

∫ T

t

(f.g)(u)
∂KH(u, t)

∂t
dudBt

=

∫ T

0

∫ T

t

(f.g)(u)
∂KH(u, t)

∂t
dudBt

= CH(H − 1

2
)

∫ T

0

∫ T

t

(f.g)(u)(
u

t
)H−

1
2 (u− t)H−

3
2dudBt

= CH(H − 1

2
)

∫ T

0

t
1
2
−H
∫ T

t

f(u).g(u)uH−
1
2 (u− t)H−

3
2dudBt

= CH(H − 1

2
)

∫ T

0

t
1
2
−H −Γ(H − 1

2
)

1 + Γ(H − 1
2
)

[
g(t)tH−

1
2 (I

H− 1
2

T− f)(t)
]
dBt

= CH(H − 1

2
)

∫ T

0

−Γ(H − 1
2
)

1 + Γ(H − 1
2
)

[
g(t)(I

H− 1
2

T− f)(t)
]
dBt

= CH(H − 1

2
)
−Γ(H − 1

2
)

1 + Γ(H − 1
2
)

∫ T

0

g(t)(I
H− 1

2

T− f)(t)dBt

=
−Γ(H − 1

2
)

1 + Γ(H − 1
2
)
CH(H − 1

2
) lim
‖4‖→0

n∑
i=1

(I
H− 1

2

T− f)(ti−1)g(ti)(B(ti)−B(ti−1))

= lim
‖4‖→0

n∑
i=1

(I
H− 1

2

T− f)(ti−1)
−Γ(H − 1

2
)

1 + Γ(H − 1
2
)
CH(H − 1

2
)g(ti)(B(ti)−B(ti−1))

= lim
‖4‖→0

n∑
i=1

ψH1 (f)(ti−1)ψH2 (g)(ti)(B(ti)−B(ti−1)),

where
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ψH1 (f)(ti−1) = (I
H− 1

2

T− f)(ti−1) and ψH2 (g)(ti) =
−Γ(H − 1

2
)

1 + Γ(H − 1
2
)
CH(H − 1

2
)g(ti).



Chapter 4

New approach for stochastic

integration w.r.t multifractional

Brownian motion

This chapter is the subject of a paper submitted for publication.

4.1 Motivation and background

Multifractional Brownian motion was introduced to overcome the following limita-
tions. The basic idea is to replace the real H by a function t 7→ h(t) ranging in (0, 1).
Several definitions of the multifractional Brownian motion exist. The first ones were
proposed in [50] and in [8]. A more general approach was introduced in [61]. We first
need to define a fractional Brownian field:

Definition 4.1. (Fractional Brownian field). Let (Ω,F , P ) be a probability space. A
fractional Brownian field on R×(0, 1) is a Gaussian field, noted (B(t,H))(t,H)∈R×(0,1),

such that, for every H in (0, 1), the process (BH
t )t∈R defined by BH

t := B(t,H) is a
fractional Brownian motion with Hurst parameter H1

1Alternatively, one might start from a family of fBms (BH)H∈(0,1) (i.e. BH := (BH
t )t∈R is an fBm

for every H in (0, 1)) and define from it the field (B(t,H))(t,H)∈R×(0,1) by B(t,H) := BH
t . However

it is not true, in general, that the field (B(t,H))(t,H)∈R×(0,1) obtained in this way is Gaussian.
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Amultifractional Brownian motion is simply a "path" traced on a fractional Brownian
field. More precisely, it is defined as follows:

Definition 4.2. (Multifractional Brownian motion). Let h : R → (0, 1) be a deter-
ministic continuous function and B be a fractional Brownian field. A multifractional
Brownian motion (mBm in short) on B with functional parameter h is the Gaussian

process Bh := (Bh
t )t∈R defined by Bh

t := B(t, h(t)) for all t in R.

(H1) : ∀[a, b] ⊂ R,∀[c, d] ⊂ (0, 1),∃(Λ, δ) ∈ (R∗+)2, such that E[(B(t,H)−B(t,H ′))2] ≤

Λ|H −H ′|δ, for all (t,H,H ′) in [a, b]× [c, d]2.

Using the equality E[(B(t,H)−B(s,H))2] = |t− s|2H and the triangular inequality
for the L2-norm, Assumption (H1) is seen to be equivalent to the following one:
(H) : ∀[a, b] × [c, d] ∈ R × (0, 1),∃(Λ, δ) ∈ (R∗+)2, s.t.E[(B(t,H) − B(s,H ′))2] ≤

Λ|t− s|2c + |H −H ′|δ, for all (t, s,H,H ′) ∈ [a, b]2 × [c, d]2.
Thus, we will refer either to assumption (H1) or (H) in the sequel.

Remark 4.1. Assumption (H) entails that the map (t, s,H,H ′) 7→ E[B(t,H)B(s,H ′)]

is continuous on R2 × (0, 1)2.

4.2 Approximation of multifractional Brownian mo-

tion

Since an mBm is just a continuous path traced on a fractional Brownian field, a
natural question is to enquire whether it may be approximated by patching adequately
chosen fBms, and in which sense.
Heuristically, for a < b, we divide [a, b) into "small" intervals [ti, ti+1), and replace

on each of these Bh by the fBm BHi where Hi := h(ti). It seems reasonable to

expect that the resulting process
∑

iB
Hi
t 1[ti,ti+1)(t) will converge, in a sense to be

made precise, to Bh when the sizes of the intervals [ti, ti+1) go to 0.
Our aim in this section is to make this line of thought rigorous.
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4.2.1 Approximation of mBm by piecewise fBms

In the sequel, we fix a fractional Brownian field B and a continuous function h,
thus an mBm, noted Bh. We aim to prove that this mBm can be approximated
on every compact interval [a, b] by patching together fractional Brownian motions
defined on a sequence of partitions of [a, b]. In that view, we choose an increasing
sequence (qn)n∈N of integers such that q0 := 1. For a compact interval [a, b] of R and

n ∈ N, let x(n) := {x(n)
k ; k ∈ [[0, qn]]} where x(n)

k := a + k (b−a)
qn

(for integers p and q

with p < q, [[p, q]] denotes the set {p, p + 1, ..., q}). Define, for n ∈ N, the partition

An := {[x(n)
k , x

(n)
k+1); k ∈ [[0, qn − 1]]} ∪ {x(n)

qn }. Thus, A := (An)n∈N is a sequence of

partitions of [a, b] with mesh size that tends to 0 as n tends to +∞. For t in [a, b]

and n ∈ N, there exists a unique integer p in [[0, qn − 1]] such that x(n)
p ≤ t < x

(n)
p+1.

We will note x(n)
t the real x(n)

p in the sequel. The sequence (x
(n)
t )n∈N converges to t as

n tends to +∞. Besides, define for n ∈ N, the function hn : [a, b]→ (0, 1) by setting

hn(b) = h(b) and, for any t in [a, b), hn(t) := h(x
(n)
t ). The sequence of step functions

(hn)n∈N converges pointwise to h on [a, b]. Define, for t in [a, b] and n ∈ N, the process

Bhn
t := B(t, hn(t)) =

qn−1∑
k=0

1
[x

(n)
k ,x

(n)
k+1)

(t)B(t, h(x
(n)
k ) + 1{b}(t)B(b, h(b)). (4.1)

Note that, despite the notation, the process Bhn is not an mBm, as hn is not contin-
uous. We believe however there is no risk of confusion in using this notation. Bhn is

almost surely càdlàg and discontinuous at times x(n)
k , k ∈ [[0, qn]].

The following theorem shows that the mBm appears as a limit of sums of fBms:

Theorem 4.1. (Approximation theorem). Let B be a fractional Brownian field, h :

R → (0, 1) be a continuous deterministic function and Bh be the associated mBm.
Let [a, b] be a compact interval of R, A be a sequence of partitions as defined above,
and consider the sequence of processes defined in (4.1). Then,

1. If B is such that the map C : (t, s,H,H ′) 7→ E[B(t,H)B(s,H ′)] is continuous

on [a, b]2×h([a, b])2 then the sequence of processes (Bhn)n∈N converges in L2(Ω)
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to Bh,i.e.,

∀t ∈ [a, b], lim
n→+∞

E
[
(Bhn

t −Bh
t )2
]

= 0.

2. If B satisfies the assumption (H) and if h is β-Hölder continuous for some

positive real β, then the sequence of processes (Bhn)n∈N converges

(i) in law to Bh, i.e., {Bhn
t ; t ∈ [a, b]} −→law

n→+∞ {Bh
t ; t ∈ [a, b]}.

(ii) almost surely to Bh, i.e., P
(
{∀t ∈ [a, b], lim

n→+∞
Bhn
t = Bh

t }
)

= 1.

Before we proceed to the proof, we note that point 2(i) is a statement different from
the well-known localisability of mBm, i.e., the fact that the moving average (see[50]),
harmonizable (see [8]) and Volterra mBms (see [10]) are all "tangents" to fBms in the
following sense: for every real u,{

Bh
u+rt −Bh

u

rh(u)
; t ∈ [a, b]

}
−→law

r→0+ {B
h(u)
t ; t ∈ [a, b]}

Proof :

1. Let t ∈ [a, b]. For any n ∈ N, one computes

E
[
(Bhn

t −Bh
t )2
]

= C(t, t, h(x
(n)
t ), h(x

(n)
t ))−2C(t, t, h(x

(n)
t ), h(t))+C(t, t, h(t), h(t)).

The continuity of the maps h, (t,H,H ′) 7→ C(t, t,H,H ′) and the fact that

lim
n→+∞

x
(n)
t = t entails that lim

n→∞
E
[
(Bhn

t −Bh
t )2
]

= 0

2. By assumption, there exists (η, β) in R+
∗ × R+

∗ such that for all (s, t) in [a, b],

|h(s)− h(t)| = η|s− t|β. (4.2)

(i) We proceed as usual in two steps (see for example [20, 55]), a):finite-
dimensional convergence and b):tightness of the sequence of probability

measures (PoBhn)n∈N.
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a) Finite dimensional convergence

Since the processes Bh and Bhn defined by (4.1) are centred and Gaus-

sian, it is sufficient to prove that lim
n→∞

E
[
Bhn
t Bhn

s

]
= E

[
Bh
t B

h
s

]
for

every (s, t) in [a, b]2.
The cases where t = b or s = t are consequences of point 1. above.
We now assume that a ≤ s < t < b. One computes

E
[
Bhn
t Bhn

s

]
=

∑
(k,j)∈[[0,qn−1]]2

1
[x

(n)
k ,x

(n)
k+1)

(t)1
[x

(n)
j ,x

(n)
j+1)

(s)E [B(t, hn(t))B(s, hn(s))] .

Hence, E
[
Bhn
t Bhn

s

]
= E

[
B(t, h(x

(n)
t ))B(s, h(x

(n)
s ))

]
for all large enough

integers n (i.e., such that x(n)
s ≤ s < x

(n)
t ≤ t). The continuity of h,

and the fact that lim
n→∞

(x
(n)
t , x(n)

s ) = (t, s) entail that lim
n→∞

E
[
Bhn
t Bhn

s

]
=

E
[
Bh
t B

h
s

]
.

b) Tightness of the sequence of probability measures (PoBhn)n∈N.
We are in the particular case where a sequence of càdlàg processes
converges to a continuous one. The theorem on page 92 of [53] applies
to this situation: it is sufficient to show that, for every positive reals
ε and τ , there exists an integer m and a grid {ti}i∈[[0,m]], such that
a = t0 < t1 < ... < tm = b,

lim supn→+∞P

({
max

0≤i≤m
sup

t∈[ti;ti+1)

|Bhn
t −Bhn

ti
| > τ

})
< ε. (4.3)

Denote c : R∗+ → R the modulus of continuity of the map (t, u) 7→
B(t, h(u)), defined on [a, b]× [a, b], that is:

c(δ) := sup
|t1−t2|<δ,|u1−u2|<δ

|B(t1, h(u1))−B(t2, h(u2))|

Since the map (t, u) 7→ B(t, h(u) is almost surely uniformly continuous
on [a, b]2, c(δ) tends almost surely to 0 when δ tends to 0.
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Let us now fix (ε, τ) in (R∗+)2 Choose δ > 0 such that P (c(δ) > τ) <

ε,m := m(τ, ε) and ∆′m := {ti; i ∈ [[0,m]]}, with a = t0 < t1 < ... <

tm = b, such that |∆′m| < δ
2
, where |∆′m| := maxi=0,...,m−1 |ti+1 − ti|.

Finally, denote N the smallest positive integer n such that |∆n| :=

(b−a)
qn

< δ
4
.

Define A(m,n) := max
0≤i≤m

sup
t∈[ti;ti+1)

|Bhn
t −Bhn

ti
|.

Since |t − x(n)
t | ≤ |∆n| for every t in [a, b], the following inequalities

hold almost surely:

A(m,n) := max
0≤i≤m

sup
t∈[ti;ti+1)

|B(t, h(x
(n)
t ))−B(ti, h(x

(n)
ti ))|

≤ max
0≤i≤m

sup
t∈[ti;ti+1)

sup
(u,u′):|t−u|<|∆n|,|ti−u′|<|∆n|

|B(t, h(u))−B(ti, h(u′))|

≤ sup
|s1−s2|<|∆′m|,|u1−u2|<2|∆n|+|∆′m|

|B(s1, h(u1))−B(s2, h(u2))|

≤ c(2|∆n|+ |∆′m|)

≤ c(δ)

We have proved that P (A(m,n) > τ) ≤ P (c(δ) > τ). This establishes

(4.3)

(ii) Almost sure convergence

Denote Ω̃ the measurable subset of Ω, verifying P (Ω̃) = 1, such that for

every ω ∈ Ω̃, (t,H) 7→ B(t,H)(ω) is continuous on [a, b]× [H1, H2]. Then,
for every ω in Ω, we get:

|Bhn
t (ω′)−Bh

t (ω′)| = |B(t, hn(t)))(ω′)−B(t, h(t))(ω′)| = |B(t, h(xt
(n)))(ω′)−

B(t, h(t))(ω′)| →n→+∞ 0

This ends the proof.

Remark 4.2. With some additional work, one may establish the almost sure conver-
gence of (Bhn)n ∈ N under the sole condition of the continuity of h.
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4.3 Stochastic integration w.r.t. mBm as limits of

integral w.r.t fBm

The results of the previous section, especially 2 (i) of theorem 4.1, suggest that one
may define stochastic integrals with respect to mBm as limits of integrals with respect
to approximating fBms. We formalize this intuition in the present section.
We consider as above a fractional field (B(t,H))(t,H)∈R×(0,1), but assume in addition

that the field is C1 in H on (0, 1) in the L2(Ω) sense, i.e., we assume that the map

H 7→ B(t,H), from (0, 1) to L2(Ω), is C1 for every real t. We will denote ∂B
∂H

(t,H ′) the

L2(Ω)-derivative at point H ′ of the map H 7→ B(t,H). The field
(
∂B(t,H)
∂H

)
(t,H)∈R×(0,1)

is of course Gaussian. We will need that the derivative field satisfies the same as-
sumption (H1) as B(t,H). More precisely, from now on, we assume that B(t,H)

satisfies (H2):
(H2) : For all [a, b] × [c, d] ⊂ R × (0, 1), H 7→ B(t,H) is C1 in the L2(Ω) sense from
(0, 1) to L2(Ω) for every t in [a, b], and there exists (∆, α, λ) ∈ (R∗+)3 such that, for

all (t, s,H,H ′) in [a, b]2 × [c, d]2,

E

[
(
∂B

∂H
(t,H)− ∂B

∂H
(s,H ′))2

]
≤ ∆

(
|t− s|α + |H −H ′|λ

)
Proposition 4.3.1. The fractional Brownian fields Bi := (Bi(t,H))(t,H)∈R×(0,1), i ∈
[[1, 4]], verify Assumption (H2).

Proof 4.3.1. : The proof of this proposition in the case of B1 and B2 may be found
in Appendix B in [38]. The ones for B3 and B4 are easily obtained using results from
[50] and [10] and are left to the reader.

In the remaining of the paper (except in theorem 4.2), we consider a C1 deterministic
function h : R → (0, 1), a fractional field B which fulfills the assumptions (H1) and

(H2), and the associated mBm Bh
t := B(t, h(t)).

We now explain in a heuristic way how to define an integral with respect to mBm
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using approximating fBms. Write the "differential" of B(t,H):

dB(t,H) =
∂B

∂t
(t,H)dt+

∂B

∂H
(t,H)dH

Of course, this is only formal as t 7→ B(t,H) is not differentiable in the L2-sense nor
almost surely with respect to t. It is, however, in the sense of Hida distributions, but
we are not interested in this fact at this stage. With a differentiable function h in
place of H, this (again formally) yields

dB(t, h(t)) =
∂B

∂t
(t, h(t))dt+ h′(t)

∂B

∂H
(t, h(t))dt (4.4)

The second term on the right-hand side of (4.4) is defined for almost every ω and
every real t by assumption. Moreover, it is almost surely continuous as a function of
t and thus Riemann integrable on compact intervals.
On the other hand, the first term of (4.4) has no meaning a priori since mBm is
not differentiable with respect to t. However, since stochastic integrals with respect

to fBm do exist, we are able to give a sense to t 7→ ∂B
∂t

(t,H) for every fixed H in

(0, 1). Continuing with our heuristic reasoning, we then approximate ∂B
∂t

(t, h(t)) by

lim
n→+∞

qn−1∑
k=0

1
[x

(n)
k ,x

(n)
k+1)

(t)
∂B

∂t
(t, hn(t)). This formally yields:

dB(t, h(t) ≈ lim
n→+∞

qn−1∑
k=0

1
[x

(n)
k ,x

(n)
k+1)

(t)
∂B

∂t
(t, hn(t))dt+ h′(t)

∂B

∂H
(t, h(t))dt (4.5)

Assuming we may exchange integrals and limits, we would thus like to define, for
suitable processes Y ,

∫ 1

0

YtdB(t, h(t)) = lim
n→+∞

qn−1∑
k=0

∫ x
(n)
k+1

x
(n)
k

YtdB
h(x

(n)
k )

t +

∫ 1

0

Yth
′(t)

∂B

∂H
(t, h(t))dt (4.6)

where the first term of the right-hand side of (4.6) is a limit, in a sense to be made
precise depending on the method of integration, of a sum of integrals with respect to
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fBms and the second term is a Riemann integral or an integral in a weaker sense (see
section 4 in the paper[38]).
In order to make the above ideas more precise, let us fix some notations. (M) will
denote a given method of integration with respect to fBm (e.g Skorohod, white noise,
pathwise,... ). For the sake of notational simplicity, we will consider integrals over

the interval [0, 1]. For H in (0, 1), denote
∫ 1

0
Ytd

(M)BH
t the integral of Y := (Yt)t∈[0,1]

on [0, 1] with respect to the fBm BH , in the sense of method (M), assuming it exists.
The following notation will be useful:
Notation (integral with respect to lumped fBms) Let Y := (Yt)t∈[0,1] be a

real-valued process on [0, 1] which is integrable with respect to all fBms of index H in
h([0, 1]) in the sense of method (M). We denote the integral with respect to lumped
fBms in the sense of method (M) by:

∫ 1

0

Ytd
(M)Bhn

t :=

qn−1∑
k=0

∫ 1

0

1
[x

(n)
k ,x

(n)
k+1)

(t)Ytd
(M)B

h(x
(n)
k )

t , n ∈ N (4.7)

(we use the same notations as in section 2: (qn)n∈N is an increasing sequence of

integers with q0 = 1 and the family x(n) := {x(n)
k ; k ∈ [[0, qn]]} is defined by x(n) := k

qn

for k in [[0, qn]]). With this notation, our tentative definition of an integral w.r.t. to
mBm (4.7) reads:

∫ 1

0

YtdB(t, h(t)) := lim
n→+∞

∫ 1

0

Ytd
(M)Bhn

t +

∫ 1

0

Yth
′(t)

∂B

∂H
(t, h(t))dt, (4.8)

The interest of (4.6) is that it allows to use any of the numerous definitions of stochas-
tic integrals with respect to fBm, and automatically obtain a corresponding integral
with respect to the mBm. It is worthwhile to note that, with this approach, an inte-
gral with respect to the mBm is a sum of two terms: the first one seems to depend
only on the chosen method for integrating with respect to fBm (for instance, a white
noise or pathwise Riemann integral), while the second is an integral which appears
to depend only on the field used to define the chosen mBm, i.e., essentially on its
correlation structure. This second term will imply that the integral with respect to
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the moving average mBm, for instance, is different from the one with respect to the
harmonisable mBm. As the example of simple processes in the next subsection will
show, the second term does however also depend on the integration method with
respect to fBm.

Note that the nature of
∫ 1

0
Ytd

(M)Bhn
t depends on (M). For example,

∫ 1

0
Ytd

(M)BH
t

and hence
∫ 1

0
Ytd

(M)Bhn
t will belong to L2(Ω) if (M) denotes the Skorohod integral,

whereas
∫ 1

0
Ytd(M)BH

t and hence
∫ 1

0
Ytd

(M)Bhn
t belong to the space (S)∗ of stochastic

distributions when (M) denotes the integral in the sense of white noise theory.

We will write
∫ 1

0
Ytd(M)Bh

t for the integral of Y on [0, 1] with respect to mBm in

the sense of (M) (which is yet to be defined). When we do not want to specify a
particular method but instead wish to refer to all methods at the same time, we will

write
∫ 1

0
YtdB

hn
t and

∫ 1

0
YtdB

h
t instead of

∫ 1

0
Ytd

(M)Bhn
t and

∫ 1

0
Ytd

(M)Bh
t . In order to

gain a better understanding of our approach, we explore in the following subsection
the particular cases of simple deterministic and then random integrands.

4.3.1 Integral with respect to mBm through approximating

fBms

We now define in a precise way our integral with respect to the mBm. Let (E, ‖‖E)

and (F, ‖‖F ) be two normed linear spaces, endowed with their Borel σ-field B(E) and
B(F ). Let Y := (Yt)t∈[0,1] be an E-valued process (i.e., Yt belongs to E for every real

t in [0, 1] and t 7→ Yt is measurable from (0, 1) to (E,B(E)) ). Fix an integration
method (M). As explained in the previous subsection, we wish to define the integral

w.r.t. an mBm Bh in the sense of (M) by a formula of the kind:

∫ 1

0

Ytd
(M)Bh

t := lim
n→+∞

∫ 1

0

Ytd
(M)Bhn

t +

∫ 1

0

h′(t)Yt ∗
∂B

∂H
(t, h(t))dt, (4.9)

where the meaning of the limit depends on (M) and where ∗ denotes the ordinary
product (in the case of pathwise integrals) or Wick product (in other cases) depending
on (M). For this formula to make sense, it is certainly necessary that Y be (M)-
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integrable w.r.t. fBm of all exponents α in h([0, 1]). We thus define, for α ∈ (0, 1),

Hα
E := {Y ∈ E[0,1] :

∫
[0,1]

Ytd
(M)Bα

t exists and belongs to F},

and
HE = ∩α∈h([0,1])Hα

E

We will always assume that there exist a subset ΛE of HE (maybe equal to HE)
which may be endowed with a norm ‖‖ΛE such that (ΛE, ‖‖E) is complete and which
satisfies the following property: there exist M > 0 and a real χ such that for all
partitions of [0, 1] in intervals A1, ..., An of equal size 1

n
,

‖Y.1A1‖ΛE + ...+ ‖Y.1An‖ΛE ≤Mnχ‖Y ‖ΛE . (4.10)

When Y belongs to ΛE, definition (4.10) will be a valid one as soon as the limit
and the last term on the right hand side exist. It turns out that a simple sufficient
condition guarantees the existence of the limit of the integral w.r.t. lumped fBms.
Define, for n ∈ N, the map

Ln : ΛE → F

Y 7→
∫

[0,1]

Ytd
(M)Bhn

t . (4.11)

Before giving the main result of this section, namely theorem (4.2), we indicate that
the spaces E and F are E(ω) := R and F (ω) := R for a pathwise integral. The
following theorem provides a sufficient condition under which (Ln(Y ))n∈N converges
in F . We use again the notations of section 2.

Theorem 4.2. Let h be a β-Hölder function. Assume that the function I : ΛE ×
(0, 1)→ F defined by:

I(Y, α) :=

∫
[0,1]

YtdB
α
t ,

is θ-Hölder continuous with respect to α uniformly in Y for a real number θ > 0, i.e.,
there exists K > 0 such that:

∀Y ∈ ΛE,∀(α, α′) ∈ (0, 1)2, ‖I(Y, α)− I(Y, α′)‖F ≤ K|α− α′|θ‖Y ‖ΛE (4.12)
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Choose an increasing sequence (qn)n∈N of positive integers such that
+∞∑
n=0

qχn+1

qβθn
< +∞.

Then, the sequence of functions (Ln)n∈N defined in (4.11) converges pointwise to a
function L : ΛE → F.

Proof 4.3.2. For the sake of simplicity, we will establish the result only in the case
where the sequence A = (An)n∈N of partitions of [0, 1] is nested. Thus, for any point

x
(n)
i there exists a unique integer, denoted ki, such that x(n)

i = x
(n+1)
ki

. For n in N and

Y in ΛE, Ln(Y ) may be written as

Ln(Y ) =

qn−1∑
p=0

kp+1−1∑
l=kp

∫
[x

(n+1)
l ,x

(n+1)
l+1 )

YtdB
h(x

(n+1)
kp

)

t

while Ln+1(Y ) may be decomposed as:

Ln+1(Y ) =

qn−1∑
p=0

kp+1−1∑
l=kp

∫
[x

(n+1)
l ,x

(n+1)
l+1 )

YtdB
h(x

(n+1)
l )

t

Setting Φn := ‖Ln(Y ) − Ln+1(Y )‖F , and using (4.12), (4.2) and then (4.10), one
gets:

Φn = ‖
qn−1∑
p=0

kp+1−1∑
l=kp

(I(Y.1
[x

(n+1)
l ,x

(n+1)
l+1 )

, h(x
(n+1)
l ))− I(Y.1

[x
(n+1)
l ,x

(n+1)
l+1 )

, h(x
(n+1)
kp

)))‖F

≤
qn−1∑
p=0

kp+1−1∑
l=kp

‖(I(Y.1
[x

(n+1)
l ,x

(n+1)
l+1 )

, h(x
(n+1)
l ))− I(Y.1

[x
(n+1)
l ,x

(n+1)
l+1 )

, h(x
(n+1)
kp

)))‖F

≤ K

qn−1∑
p=0

kp+1−1∑
l=kp

|h(x
(n+1)
l )− h(x

(n+1)
kp

)|θ‖Y.1
[x

(n+1)
l ,x

(n+1)
l+1 )
‖ΛE

≤ Kηθq−βθn

qn−1∑
p=0

kp+1−1∑
l=kp

‖Y.1
[x

(n+1)
l ,x

(n+1)
l+1 )
‖ΛE ≤ KMηθ‖Y ‖ΛEq

−βθ
n qχn+1.
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Since by assumption
+∞∑
n=0

qχn+1

qβθn
< +∞, the series

∑
n∈N(Ln+1(Y ) − Ln(Y )) converges

absolutely and consequently (Ln(Y ))n∈N converges to a limit L(Y ) as n goes to infinity.

Remark 4.3. 1. When the sequence of partitions (An)n∈N is nested and in the

typical case qn := 2n, the condition θ > χ
β
entails the convergence of

+∞∑
n=0

qχn+1

qβθn
.

If, for instance, qn := 22n, one needs that θ > 2χ
β

2. In our applications below, we will always assume that h is a C1 function, and
thus β = 1.

For a process Y in ΛE, we will say that t 7→ h′(t)Yt
∂B
∂H

(t, h(t)) is integrable

on [0, 1] if
∫

[0,1]
h′(t)Yt

∂B
∂H

(t, h(t))dt exists for almost every ω in the case of a

pathwise integral.
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Definition 4.3. [38] Let B be a fractional field fulfilling the assumptions (H1) and

(H2). Let Bh := B(., h(.)) be an mBm traced on B with h a C1 function. Assume
moreover that the pathwise integral fulfills the condition (4.12) and let Y := (Yt)t∈[0,1]

be an element of ΛE such that the map t 7→ h′(t)Yt
∂B
∂H

(t, h(t)) is integrable. The inte-

gral of Y with respect to Bh is defined as:

∫ 1

0

YtdB
h
t := lim

n→∞

∫ 1

0

YtdB
hn
t +

∫ 1

0

h′(t)Yt
∂B

∂H
(t, h(t))dt,

where the limit and equality both hold in F .

4.4 New approach for stochastic integration w.r.t

multifractional Brownian motion

Theorem 4.3 (Definition). Let 4 = {x(n)
k , x

(n)
k+1; k = 0, qn − 1} be a partition of the

subinterval [xi, xi+1]. We take the ” right endpoint ”x
(n)
i as the evaluation point for

the integrand. For an adapted stochastic process f(t) and an instantly independent
stochastic process g(t), we define the stochastic integral of f(t)g(t) to be the limit

∫ x
(n)
k+1

x
(n)
k

f(t)g(t)dBh(x
(n)
k )(t) = lim

‖4‖→0

k+1∑
i=k

ψ
h(x

(n)
k )

1 (f)(x
(n)
i )ψ

h(x
(n)
k )

2 (g)(x
(n)
i+1)(B(x

(n)
i+1)−B(x

(n)
i ))
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For h(x
(n)
k ) > 1

2
: for each k = 0, qn − 1

∫ x(n)k+1

x
(n)
k

f(t)g(t)dB
h(x

(n)
k )

t =
∫ x(n)k+1

x
(n)
k

(K∗
h(x

(n)
k )

(f.g)(t))dBt,

=
∫ x(n)k+1

x
(n)
k

∫ x(n)k+1

t
(f.g)(u)

∂K
h(x

(n)
k

)

∂t
(u, t)dudBt,

= C
h(x

(n)
k )

∫ x(n)k+1

x
(n)
k

∫ x(n)k+1

t
(f.g)(u)(u

t
)h(x

(n)
k )− 1

2 (u− t)h(x
(n)
k )− 3

2dudBt,

= C
h(x

(n)
k )

∫ x(n)k+1

x
(n)
k

t
1
2
−h(x

(n)
k )
∫ x(n)k+1

t
f(u).g(u)uh(x

(n)
k )− 1

2 (u− t)h(x
(n)
k )− 3

2dudBt,

= C
h(x

(n)
k )

∫ x(n)k+1

x
(n)
k

t
1
2
−h(x

(n)
k )

[∫ x(n)k+1

t

(
g(u)uh(x

(n)
k )− 1

2

)′ ∫ x(n)k+1

u
f(y)(y − t)h(x

(n)
k )− 3

2dydu

]
dBt,

= C
h(x

(n)
k )
×∫ x(n)k+1

x
(n)
k

t
1
2
−h(x

(n)
k )[Γ(h(x

(n)
k )− 1

2
)
∫ x(n)k+1

t

(
g(u)uh(x

(n)
k )− 1

2

)′
[− 1

Γ(h(x
(n)
k )− 1

2
)

∫ u
t
f(y)(y − t)h(x

(n)
k )− 3

2dy

+ 1

Γ(h(x
(n)
k )− 1

2
)

∫ x(n)k+1

t
f(y)(y − t)h(x

(n)
k )− 3

2dy]du]dBt,

= C
h(x

(n)
k )
×∫ x(n)k+1

x
(n)
k

t
1
2
−h(x

(n)
k )

[
Γ(h(x

(n)
k )− 1

2
)
∫ x(n)k+1

t

(
g(u)uh(x

(n)
k )− 1

2

)′
(−(I

h(x
(n)
k )− 1

2

u− f)(t) + (I
h(x

(n)
k )− 1

2

[x
(n)
k+1]−

f)(t))du

]
dBt.

Let

J = Γ(h(x
(n)
k )− 1

2
)

∫ x
(n)
k+1

t

(
g(u)uh(x

(n)
k )− 1

2

)′
(−(I

h(x
(n)
k )− 1

2

u− f)(t) + (I
h(x

(n)
k )− 1

2

[x
(n)
k+1]−

f)(t))du

=

∫ x
(n)
k+1

t

f(u).g(u)uh(x
(n)
k )− 1

2 (u− t)h(x
(n)
k )− 3

2du.
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Then ,

J = −Γ(h(x
(n)
k )− 1

2
)

[
g(t)th(x

(n)
k )− 1

2 (I
h(x

(n)
k )− 1

2

[x
(n)
k+1]−

f)(t)

]
− Γ(h(x

(n)
k )− 1

2
)×∫ x(n)k+1

t
g(u)uh(x

(n)
k )− 1

2 .f(u)(u− t)h(x
(n)
k )− 3

2du

=
∫ x(n)k+1

t
f(u).g(u)uh(x

(n)
k )− 1

2 (u− t)h(x
(n)
k )− 3

2du.

It means that J =
−Γ(h(x

(n)
k )− 1

2
)

1+Γ(h(x
(n)
k )− 1

2
)

[
g(t)th(x

(n)
k )− 1

2 (I
h(x

(n)
k )− 1

2

[x
(n)
k+1]−

f)(t)

]
. Then,

∫ x(n)k+1

x
(n)
k

f(t)g(t)dB
h(x

(n)
k )

t =
−Γ(h(x

(n)
k )− 1

2
)

1+Γ(h(x
(n)
k )− 1

2
)
C
h(x

(n)
k )

∫ x(n)k+1

x
(n)
k

g(t)(I
h(x

(n)
k )− 1

2

[x
(n)
k+1]−

f)(t)dBt,

=
−Γ(h(x

(n)
k )− 1

2
)

1+Γ(h(x
(n)
k )− 1

2
)
C
h(x

(n)
k )

lim‖4‖→0

∑k+1
i=k (I

h(x
(n)
k )− 1

2

[x
(n)
k+1]−

f)(x
(n)
i )g(x

(n)
i+1)(B(x

(n)
i+1)−B(x

(n)
i )),

= lim‖4‖→0

k+1∑
i=k

(I
h(x

(n)
k )− 1

2

[x
(n)
k+1]−

f)(x
(n)
i )
−Γ(h(x

(n)
k )− 1

2
)

1 + Γ(h(x
(n)
k )− 1

2
)
C
h(x

(n)
k )
g(x

(n)
i+1)(B(x

(n)
i+1)−B(x

(n)
i )),

= lim
‖4‖→0

k+1∑
i=k

ψ
h(x

(n)
k )

1 (f)(x
(n)
i )ψ

h(x
(n)
k )

2 (g)(x
(n)
i+1)(B(x

(n)
i+1)−B(x

(n)
i )), (4.13)

where

ψ
h(x

(n)
k )

1 (f)(x
(n)
i ) = (I

h(x
(n)
k )− 1

2

[x
(n)
k+1]−

f)(x
(n)
i ) and ψh(x

(n)
k )

2 (g)(x
(n)
i+1) =

−Γ(h(x
(n)
k )− 1

2
)

1+Γ(h(x
(n)
k )− 1

2
)
C
h(x

(n)
k )
g(x

(n)
i+1)
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For h(x
(n)
k ) < 1

2
: for each k = 0, qn − 1

∫ x(n)k+1

x
(n)
k

f(t)g(t)dB
x
(n)
k
t =

∫ x(n)k+1

x
(n)
k

(K∗
h(x

(n)
k )

(f.g)(t))dBt

=
∫ x(n)k+1

x
(n)
k

∫ x(n)k+1

t
(f.g)(u)

∂K
h(x

(n)
k

)

∂t
(u, t)dudBt

=
∫ x(n)k+1

x
(n)
k

∫ x(n)k+1

t
(f.g)(u)

∂K
h(x

(n)
k

)

∂t
(u, t)dudBt

= C
h(x

(n)
k )

(h(x
(n)
k )− 1

2
)
∫ x(n)k+1

x
(n)
k

∫ x(n)k+1

t
(f.g)(u)(u

t
)h(x

(n)
k )− 1

2 (u− t)h(x
(n)
k )− 3

2dudBt

= C
h(x

(n)
k )

(h(x
(n)
k )− 1

2
)
∫ x(n)k+1

x
(n)
k

t
1
2
−h(x

(n)
k )
∫ x(n)k+1

t
f(u).g(u)uh(x

(n)
k )− 1

2 (u− t)h(x
(n)
k )− 3

2dudBt

= C
h(x

(n)
k )

(h(x
(n)
k )− 1

2
)
∫ x(n)k+1

x
(n)
k

t
1
2
−h(x

(n)
k ) −Γ(h(x

(n)
k )− 1

2
)

1+Γ(h(x
(n)
k )− 1

2
)

[
g(t)th(x

(n)
k )− 1

2 (I
h(x

(n)
k )− 1

2

[x
(n)
k+1]−

f)(t)

]
dBt

= C
h(x

(n)
k )

(h(x
(n)
k )− 1

2
)
∫ x(n)k+1

x
(n)
k

−Γ(h(x
(n)
k )− 1

2
)

1+Γ(h(x
(n)
k )− 1

2
)

[
g(t)(I

h(x
(n)
k )− 1

2

[x
(n)
k+1]−

f)(t)

]
dBt

= C
h(x

(n)
k )

(h(x
(n)
k )− 1

2
)
−Γ(h(x

(n)
k )− 1

2
)

1 + Γ(h(x
(n)
k )− 1

2
)

∫ x
(n)
k+1

x
(n)
k

g(t)(I
h(x

(n)
k )− 1

2

[x
(n)
k+1]−

f)(t)dBt

=
−Γ(h(x

(n)
k )− 1

2
)

1 + Γ(h(x
(n)
k )− 1

2
)
C
h(x

(n)
k )

(h(x
(n)
k )− 1
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where
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2
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4.4.1 Stochastic integraion with respect to mBm

We are finally able to define our integral:

Theorem 4.4 (Definition). Let B be a fractional field fulfilling the assumptions

(H1) and (H2). Let Bh := B(., h(.)) be an mBm traced on B with h a C1 func-
tion. Assume moreover that the pathwise integral fulfills the condition (4.12) and let
f × g := ((f × g)(t))t∈[0,1] be an element of ΛE such that

∫ t
0
f(s)g(s)dB

h(s)
s = lim

n→+∞

qn−1∑
k=0

∫ x
(n)
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x
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h(x

(n)
k )

s +

∫ t

0

f(s)g(s)h′(s)
∂B

∂H
(s, h(s))ds,

Proof 4.4.1. Write
∫ x(n)k+1

x
(n)
k

f(s)g(s)dB
x
(n)
k
s like in (4.13) and in (4.14) (based on the

results obtained by the paper [25] ) applied to the kernel in two cases h(x
(n)
k ) > 1/2

and h(x
(n)
k ) < 1/2, for each k = 0, qn − 1, then develop a sequence of calculus (based

on the results obtained by [38] )

For h(x
(n)
k ) > 1

2
: for each k = 0, qn − 1

∫ t
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where
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since the second integral on the right-hand side of the above equality exists.

For h(x
(n)
k ) < 1

2
: for each k = 0, qn − 1
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since the second integral on the right-hand side of the above equality exists.
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Conclusion

In this thesis, we present the property of instant independence and we give a new
approach on stochastic integration with respect to the fractional Brownian motion for
processes not necessarily adapted based on Levy -Hida representation. Moreover, we
have introduced a new approach on stochastic integration for non-adapted processes
with respect to the multifractional Brownian motion, based on the results obtained
by the paper [25]). Our approach is used to solve stochastic differential equations
driven by a fractional and multifractional Brownian motion for integrants not nec-
essarily adapted, hoping that these results will serve to other processes such as sub
fractional and sub multifractional Brownian motions, mixed fractional and mixed
multifractional Brownian motions or Gaussian processes in general.

Perspectives

For further work, there are many interesting issues to address such as :

• Using our approach to solve stochastic differential equations driven by a frac-
tional and multifractional Brownian motion for integrants not necessarily adapted.

• Hoping that these results will serve to other processes such as sub multifractional
Brownian motions and mixed multifractional Brownian motions.

• Extending the study deal with more general Gaussian processes.

• The fulfilment of numerical simulations related to the results of our research.

• Contribute to resolve accurate problems, in Finance and hydraulics particularly.
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