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Abstract:

In this thesis, we study some classes of stochastic differential equations and inclusions
with impulsion and delay, and we prove the existence and unicity of mild solution in
Hilbert space by using the fixed point theory and approximations methods with illustrative
applications.

The research circulated in this thesis loads with the problem of fractional stochastic
differential equations and inclusions in Hilbert space. We proved the existence results of a
mild solution of fractional stochastic evolution inclusion involving the Caputo derivative
in Hilbert space driven by a fBm, our desired results were obtained by using different tools
such as; fractional calculation, operator semigroups, and fixed point theory. Also, we have
studied the existence result of mild solution of Hilfer fractional stochastic differential
equation with impulses driven by sub-fBm, the results are obtained by using fixed point
theorem. Then, we have studied the time fractional stochastic heat equation dealing with
additive noise. we found explicit solution formula in the sense of distributions under
which the solution is a random field in L?>(PP). Finally, sufficient conditions are given
to prove the existence and unicity of integral solution of non-densely defined fractional

stochastic differential equation with non-instantaneous impulses driven by fBm.
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Introduction

The main purpose of this introduction is to give a general overview of the theory of
stochastic differential equations and inclusions, also to provide the history of the most
main results furnished by researchers; and to present the plan of our thesis.

Differential equations and inclusions with fractional derivatives have recently proved
to be strong tools in the modeling of many phenomenas in various fields of engineering
economics, physics, biology, ecology, aerodynamics, and fluid dynamic traffic models
(6, 92 [114, [122]. For some fundamental results in the theory of differential equations
involving Caputo and Riemann-Liouville fractional derivatives, please see [4, 15,82, [126,
128, 1129, [138]] and the references therein. Since Hilfer [S9] proposed the generalized
Riemann-Liouville fractional derivative, there has been shown some interest in studying
differential equations involving Hilfer fractional derivatives see [59]. The two-parameter
family of Hilfer fractional derivative DZ;B of order o and type B permits to combine be-
tween the Caputo and Riemann derivatives. the two parameters give an extra degree of
freedom on the initial conditions and produce more types of stationary states. Models
with Hilfer fractional derivatives are discussed in [52][1126].

Many systems in physics, mechanics, biology, and medicine use the concept of dif-
ferential inclusions to model there phenomena. Also the fractional differential inclusions
plays an important role in description of the memory and genetic properties see [31]], for
this reason, many kinds of research have been dedicated to the existence of mild solution
for fractional differential inclusions.

-Yuri et al. [54] introduced the theory of equations and inclusions with mean deriva-
tives and investigated a special type of such inclusions called inclusions of geometric
Brownian motion type.

-Hu et al. [61] provided the necessary backgrounds material study fractional evolution
equations and inclusions with Hille-Yosida operators, also he studied the existence of mild

solution.
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-Boudaoui et al. [[20] studied the existence of mild solutions to stochastic differential
equations with non-intantaneous impulses driven by fractional Brownian motion by using
Banach fixed point theorem. Also, they proved in [19] the existence of mild solutions for
the first-order impulsive semilinear stochastic functional differential inclusions driven by
a fractional Brownian motion.

This thesis is divided into seven chapters. Where in the first one we focus on stochastic
calculus and their precessus, at the end of this chapter we give the necessary definitions
of tempered distribution and properties of semigroup.

Secondly, we will provide an overview of derivatives and integrals that have been
studied in fractional calculus in more general settings, we start with some history of frac-
tional calculus, and we recall some definitions of how to define derivatives and integrals
of arbitrary order.

The third chapter is devoted to studying the different tools to understand the mean-
ing of differential inclusion, where we introduce some basic definitions and results of
multivalued maps and we give an example of the study of differential inclusion in the
deterministic case.

In chapter 4, we proved the existence results of a mild solution of fractional stochastic
evolution inclusion involving the Caputo derivative in Hilbert space driven by a fractional
Brownian motion, our desired results were obtained by using different tools such as; frac-
tional calculation, operator semigroups, and fixed point theory. The work is accepted and
published.

In chapter 5, we have studied the time fractional stochastic heat equation dealing with
additive noise and more special classes of fractional heat equations. we found explicit
solution formula in the sense of distributions under which the solution is a random field
in L?(P). The work is accepted and published.

Next, the chapter 6 we have studied the existence result of mild solution of Hilfer
fractional stochastic differential equation with impulses driven by sub-fractional Brown-
ian motion, the results are obtained by using fixed point theorem. We illustrated at the
end by giving an application. Our work is accepted and published.

Finally, sufficient conditions are given in chapter 7 to prove the existence and unicity
of integral solution of non-densely defined fractional stochastic differential equation with
non-instantaneous impulses driven by fractional Brownian motion. The work is submitted

and we wait for the positive reply.




Chapter

Preliminaries

In this chapter, we give important concepts that we will use in the sequel of our work.

Then we begin to cite the useful tools of stochastic calculus.

1.1 Brownian motion

Definition 1.1. [[/07] A Brownian process is a stochastic process (B;, t > 0), which sat-

isfies
1. The process starts at the origin, By = 0;
2. By has stationary, independent increments;

3. The process B; is continuous in t;

4. The increments B; — By are normally distributed with mean zero and variance
|t—s|, Bi—Bs~N(0,|t—5]).

The process X; = x+ By has all the properties of a Brownian motion that starts at x. Since

B; — By is stationary, its distribution function depends only on the time interval t — s, i.e.
P(Biys—By<a)=P(B,—By<a)=P(B <a);

from condition (4) we get that B is normally distributed with the mean E[B;] = 0 and
var|B;,] =t.
Bl ~ N(O, t) .

This implies also that the second moment is IE[B?] =t. Let 0 < s < t, since the increments
are independent, we write
IE[BsB;| = IE [(B; — Bo)(B: — Bs + B2| = IE[B; — By|IE[B; — By] + E[B] = s.

11
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As consequence, By and B; are not independent. Condition (4) has a physical expla-
nation; a pollen grain suspended in water is kicked by a very large numbers of water
molecules.

These effects are average out into a resultant increment of the grain coordinate.

Proposition 1.1. [|[/07] A Brownian motion process B, is a martingale with respect to the

information set F; = 6(By;s <t).

Now, we will give the most principal properties of the Brownian motion.

Simple invariance properties of Brownian motion

The simple scaling invariance property of Brownian motion play a crucial role to define a
transformation on the space of functions, which changes the individual Brownian random

functions but their distribution stays unchanged.

Lemma 1.1. [[[12](Scaling invariance) Suppose {B; : t > 0} is a standard Brownian mo-
tion and let a > 0. Then the process {X(t) :t > 0} defined by X(t) = 1B(a°t) is also a

standard Brownian motion.

Theorem 1.1. [[/12|](Time inversion) Suppose {B(t) : t < 0} is a standard Brownian mo-
tion. Then the process {X(t) : t <0} defined by

X(1) = 0 fort€[0,T]
B tB(%) fort > 0;

is also a standard Brownian motion.

Corollary 1.1. [/]12l]/(Law of large numbers)

Almost surely, lim % =0.
t—roo

Now, the question is; there is a nonrandom modulus of continuity for the Brownian

motion? We find the answer in the next theorems.

Theorem 1.2. [|/]2|] There exists a constant ¢ > 0 such that, almost surely, for every suf-
ficiently smallh > 0and all0 <t <1—h

| B(t+h)—B(t) |< C\/hlog(%).
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Definition 1.2. A function f : [0,00) — R is said to be locally a-Hdlder continuous at
x <0, if there exists € > 0, and ¢ > 0 such that;

[ f)=f) [€clx—y[®

forally <Owith |y—x|<E&.
We refer to o > 0 as the Héolder exponent and to ¢ > 0 as the Holder constant. o-Holder

continuity gets stronger as the exponent Q. gets larger.

Corollary 1.2. [44](Holder continuity)
If o< %, then, almost surely, Brownian motion is everywhere locally o-Holder continu-

ous.

Non differentiability of Brownian motion

Even if the Brownian motion is everywhere continuous, its randomness allows it to be not

differentiable.

Proposition 1.2. [[/]12|] Almost surely, for all 0 < a < b < o, Brownian motion is not

monotone on the interval [a,D).

Proposition 1.3. [l/12l]] Almost surely,
B o eBln)
hglj::p — = oo, and hgr_lgor.}f i .
Definition 1.3. [/ /2|] For a function f, we define the upper and lower right derivatives
t+h)—f(t
D*f (1) zlimsup—f( +h) =/ ),
110 h

and
Fl+h) -~ £le)

D, f(t) = liminf
f() imin Y

Theorem 1.3. [/]2l] Fixt < 0. Then, almost surely, Brownian motion is not differentiable
at t. Moreover, D* f(t) = 4o0 and D, f(t) = —eco.

Theorem 1.4. [108] Almost surely, Brownian motion is nowhere differentiable. Further-

more, almost surely for all t, either D* f(t) = 4o or D, f(t) = —oo or both.

Another important regularity property, which Brownian motion does not possess is to

be of bounded variation.
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Theorem 1.5. [81]] Suppose that the sequence of partitions

is nested, i.e. at each step one or more partition points are added, and the mesh

An) = supi< j<k(n) {tj('n) - 5@1}

converges to zero. Then almost surely,
k(n) 2
. () _ pr ) \*
,}2‘;; (B(tj ) B<fj,1) =1,

and therefore Brownian motion is of unbounded variation.

Definition 1.4. [81]] For a sequence of partitions as above, we define
D e 1 N (3l )\
v () := lim Z] (B(tj ) —B(tj_l)
j:
to be the quadratic variation of Brownian motion.

The strong Markov property and the reflection principle

The Markov property states that Brownian motion is started anew at each deterministic
time instance. It is a crucial property of Brownian motion that is hold also for an important
class of random times. These random times are called stopping times.

The strong Markov property for Brownian motion was established by [63] and [46]].

Theorem 1.6. [63]]Strong Markov property
For every almost surely finite stopping time T, the process {B(t+T)—B(T):t <0} isa

standard Brownian motion independent of F(T).

Proposition 1.4. [46]] A Brownian motion process B; is a martingale with respect to the

information set F; = 6(By; s <t).

1.2 Fractional Brownian motion

The theoretical study of fractional Brownian motion was motivated by new problems in

mathematical finance and telecommunication networks.
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We present theoretical results on the fractional Brownian motion including different useful

definitions for our work.

Definition 1.5. [/01|] Let H be a constant belonging to (0,1). A fractional Brownian mo-
tion (fBm) (BH (t)),>0 with Hurst index H is a continuous and centered Gaussian process

with covariance function,

E [B<H> (n)BH (s)] = (PP s P, (1.1)

N =

The fractional Brownian motion BY has the following properties:
(1)- B (0) = 0 and [EBW) (r)} — 0 forallt >0,

(2)- BH) has homogeneous increments, i.e., BH) (1t 4 s) — BH)(s) has the same law of
B (1) for s,t > 0.

2
(3)- BH) is a Gaussian process and E [B(H) (t)} =M >0, forall H € (0,1).

(4)- B™) has continuous trajectories.

2
Remark 1.1. Since E (B,(H) — BgH)> =|t—s > and BY is a Gaussian process, it has a

continuous modification, according to the Kolmogorov Theorem. Indeed for all n <1 it

holds that
n+1

H H
BB - B = ("

I'( Y| t—s "

| W

D=

Remark 1.2. [[[0]] For H = 1, we set Bl = B! =t&, where & is a standard normal random
11
variable. Moreover for H = % the covariance function is & |Bf B; | =t \s, Le. B =W

a standard Wiener process, or a Brownian motion. This justifies the name "fractional
Brownian motion ". B! is a generalization of Brownian motion obtained by allowing the

: 1
Hurst parameter to differ from 5.

Definition 1.6. [/0]]] A stochastic process X = {X;,t € R} is called b-self similar if
{X,, t R} =4 {abX,, te R} in the sense of finite-dimensional distributions.

1.2.1 Correlation between two increments

Proposition 1.1. [/2] For H = %, Bf is a standard Brownian motion, in this case, the

increments are independent.
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Now the question is, are the increments independent in the case where
1 1

He(0,5)U(5,1)?
From (1.1) we obtain easily the following representation for the covariance of increments
of fBm

H _pH\ (pH _ pH 2H 2H 2H 2H
E[<Btl_le) (Btz_BSQ)]: (|t1—S2| —|—|t2—s1| —|t2—t1| —|S2—S1| )
(1.2)

Suppose that s; < 7] < sp < fp so that the intervals [s1,#;] and [s,7;] do not intersect.
Moreover (|1.2))can be expressed as

| =

(f(a1) = flaa = (f(b1) — f(b2))),

| =

where a; =l —S81,ay=1n—1, by =52 —951, b2:S2—l‘1, f(x) :xZH.

Clearly, a; —ay = by — by =1t —s7.

Therefore,
E [(BIf —B) (B —B)] <0 for H € (0, }) in view of the concavité of f.

The increments are negatively correlated for H € (0, %) is useful to model sequences
with antipersistance.
E (81— BY) (B~ B1)] >0 forH € (3,1)

Therefore, the increments are positively correlated for H € (%, 1), here the process
presents an aggregation behavior, this property is used in order to describe systems with

memory and persistence, in other terms the property of long range memory.

1.2.2 Long range dependence

Definition 1.1. [[/2]] A stationary sequence (X,,)ncN exhibits long-range dependence if the
autocovariance functions p(n) = cov(Xy, Xy1n), satisfy
p(n)

lim —a = 1,

for some constant ¢ and o € (0,1). In this case, the dependence between X; and Xy p
decays slowly as n tends to infinity and Y., p(n) = co.

Hence, we obtain immediately that the increment to B (k) — B (k — 1) of B and
Xjin := BY (k+n) — B (k+n—1) of B have the long-range dependence property for

H > % since

[(n+ 1?7 4 (n— 1) —2n°1] ~ HQH — 1)n*H 2,

N =

pr(n) =
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as n goes to infinity. In particular

: pu(n) _
o H - D22

Summarizing, we obtain
1- For H > %, Yo PH(n) =oco.

2- ForH < 3, Y7, | pu(n) |< .

1.2.3 Self-similarity

Definition 1.2. [120] We say that an R%-valued random process X = (Xf>t20 is self-
similar or satisfies the property of self-similarity if for every a > 0 there exists b > 0 such
that

Law(Xy, t > 0) = Law(bX;, t > 0).

i.e., for every choice 1y, ...,t, € R,
P(Xalo S XO, ...,Xazn S xn) — ]P)(bX[O S .XO, "'7bX[n S xn)

for every xg, ...,x, € R.

Because the covariance function of the fBm is homogenous of order 2H, we obtain
that B is a self-similar process with Hurst index H, i.e., for any constant a > 0 the process

B (at) and a—" B (¢) have the same distribution law.

1.2.4 Holder continuity

Theorem 1.1. [[/2] Let H € (0,1). The fBm B™) admits a version whose sample paths

are almost surely Holder continuous of order strictly less than H.

1.2.5 Path differentiability

Now the question is; is the process B mean square differentiable?

Proposition 1.2. [9]] Let H € (0, 1). The fBm sample path B*)(.) is not differentiable.
In fact, for every tg € [0,)

(H)(4) _ g(H)
1imsup|B (1) — B (1)

t—1 r— Z‘O

|:0<)
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with probability 1.

1.2.6 Representation of the fBm on R

There exist some representations of fBm as a Wiener integral such

B — c/ Ku(t,u)dB, (1.3)
R

where c is a standardized constant.
Mandelbrot-Van Ness representation of fBm
Let W = {W;, t € R} be the two-sided Wienner process.

Denote

where

Theorem 1.2. [9]|] The process B = {Bﬁ , 1 E R} defined by

i 11
BY = cg)/RKH(z,u)dBu, He(0.5)U(51), (1.4)

where

1

W Y 1\ "2 (2Hsin(rH)C(2H))}
c,;_(/R+((1+s) s )%zwﬁ) SR

Has a continuous modification which is normalized two-sided fBm.

Definition 1.3. [[/0]|] Define the operator

2
il ::{ e forHe (0,5 U 1), 03

_ 1
f fO}"H—z,

where

1
cg) = CS)F(H+ E)

Corollary 1.1. [101]] It follows that for any H € (0, 1) the process

Bf{:/R(MHl(O?l))(s)dW”
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is a normalized fractional Brownian motion.
Proposition 1.3. [/01|] The domain D (Mfl ) of the operator M™ has the form
Ui<pet Lp(R) forHe (3,1) ,a=H-1,
(0,2),

D (M) = Ups11%_(Ly(R)) forH € (0,})

: _ 1
all measurable functions for H = 5.

(1.6)

1.3 Cylindrical fractional Brownian motion

The purpose of this section is a study of cylindrical fractional Brownian motion in Banach
spaces and, starting from this, to build up a related stochastic calculus in Banach spaces
with respect to cylindrical fBm. Here U is a Banach space.

If Q is a non-negative, definite symmetric trace class operator on X, then a X -valued

Q-fractional Brownian motion can be defined.

Definition 1.7. [42] Let K be a separable Hilbert space and Q be a non-negative, nu-
clear, self-adjoint operator on K. A continuous, zero mean, X-valued Gaussian pro-
cess (Bg (t),t € RY) is said to be Q-fractional Brownian motion with Hurst parameter

H € (0,1) and associated with the covariance operator Q if:
1. Ek,Bj(t))x =0, forall ke K andt € R

2. E<kaBg(S)>K<k/7Bg(t)>K = Nk K ) g (PH + 521 — |t — s|?1), for any 5,1 € R*
and k,k € K.

3. (Bg (t),t > 0) has K-valued continuous sample path P.a.s.

Definition 1.8. [42] Let Q be a non- negative definite symetric-class operator on a sepa-
rable Hilbert space X, {e,};_, be an ONB in K diagonalizing Q and the corresponding
eigenvalues {\,}>>_,. Let BH(t) be a sequence of real, independent standard fractional

Brownian motion on (Q, F,P) forn=1,2,... andt € R. The process
VVZ == Z V han(I)em
n=1

is called a Q-fractional Brownian motion in K.

Remark 1.3. [42] If Q is a nuclear operator, then a cylindrical fractional Brownian mo-

tion is a Q-fractional Brownian motion.




1.4 Cylindrical and Q-Sub-Fractional Brownian motion 20

1.4 Cylindrical and Q-Sub-Fractional Brownian motion

As an extension of Brownian motion, recently, Bojdecki et al. [16] introduced and
studied a rather special class of self-similar Gaussian process. This process arises from
occupation time fluctuations of branching particle systems with Poisson’s initial condi-

tion. This process is called Sub-fractional Brownian motion.

1.4.1 Cylindrical sub fractional Brownian motion

Definition 1.4. [|/6] Let X be a separable Hilbert space. A continuous, zero mean, K-
valued Gaussian process (57 (1),t > 0) is said to be cylindrical sub-fractional Brownian

motion with Hurst parameter H € (0, 1) if his covariance is given by
/ 1 /
E (k,SH (s)) (K, S (1)) = <k,k > [sZH + -2 [(s+z)2H+ I —syZHH forall s,t € R*and k,k € K.

Definition 1.5. [/6l] Let Q be a non-negative, self-adjoint bounded linear operator that
is not nuclear, then a cylindrical sub-fractional Brownian motion is defined by the formal

series

S7) =Y St (t)e, t=>0,
n=1

o)

where {SH (1) n1 is a sequence of independent, real-valued standard sub fractional
Brownian motion with Hurst parameter H € (0,1) and {e,};>_, be a complete orthonor-

mal basis in the Hilbert space K.

1.4.2 Q-sub fractional Brownian motion

Let (U, |.[lu,{.)y) and (K, ||l %, <>7(> be two separable Hilbert space. Let L(X,U)
denote the space of all bounded linear operator from X to U and Q € L(%,U) be a non-

negative self-adjoint operator.

Definition 1.6. [/6|] Let K be a separable Hilbert space and Q be a non- negative self-
adjoint operator on K. A continuous, zero mean X -valued Gaussian process (Sg (t),t > 0)
is said to be Q-sub fractional Brownian motion with Hurst parameter H € (0, 1) associ-

ated with the covariance operator Q if:
/ 1
H rOGH [\ oH | 2H 1 2H | 1, J2H T
E<k,SQ(s)><k,SQ(t)>—<Qk,k> {s +1t 5 [(s+t) +t—s] H forall s,t e R™.

Definition 1.7. [16] Let Q € L(K,U) be a non-negative, self- adjoint trace class operator
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on a separable Hilbert space K, {e,}_, be a complete orthonormal basis in the Hilbert
space K diagonalizing Q and the corresponding eigenvalues {A, }:>_,. Let {S(t)}>_, be

a sequence of real independent standard sub fractional Brownian motion, the process
(o) l (o)
Sg(t) = Z SnH(t)Qzen = Z SnH(t) V Anen,
n=1 n=1

is called a K-valued Q sub fractional Brownian motion.

1.5 Time-space white noise

Let n be a fixed natural number. Later we will set n = 1+d. Define Q = §'(R"), equipped
with the weak-star topology.

As events we will use the family F = B(S’(R")) of Borel subsets of §'(R?), and our
probability measure PP is defined by the following result:

Theorem 1.7. [53/(The Bochner—Minlos theorem)
There exists a unique probability measure P on B(S'(R")) with the following property:

. . 1
E[eit9)] .— / OOy = e 2l0F, = T
S/

for all ¢ € S(R™), where ||0]]> = ||¢\|§2(Rn), (,0) = 0(0) is the action of ® € §'(R")
on ¢ € S(R") and IE = IEp denotes the expectation with respect to P.

We will call the triplet (S'(R"), B(S'(R")),P) the white noise probability space, and
P is called the white noise probability measure.

The measure P is also often called the (normalised) Gaussian measure on S'(R"). Tt
is not difficult to prove that if ¢ € L?>(R") and we choose ¢; € S(R") such that ¢; — ¢ in
L?>(R"), then

(®,0) := /}EI,}O((D’ Or)  existsin  L*(PP)

and is independent of the choice of {¢y}. In particular, if we define

B(x) :=B(x1, - ,Xp, 0) = <0)7X[0,x1]><~~><[0,xn]>; x = (X1, ,x) €RY,

where [0,x,] is interpreted as [x;,0] if x; < 0, then B(x,®) has an x-continuous version

B(x,®), which becomes an n-parameter Brownian motion, in the following sense:
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By an n-parameter Brownian motion we mean a family {B(x,-) }yern of random vari-

ables on a probability space (Q, ¥, P) such that
* B(0,-) =0 almost surely with respect to P,
* {B(x,m)} is a continuous and Gaussian stochastic process.

e For all x = (x1, -+ ,x4), y = (y1,---,yn) € R, B(x,-), B(y,-) have the covariance
[T, xi Ay;. For general x,y € R" the covariance is [T g 6x;(5)0,,(s)ds, where
0x(t1,.-,1n) = Oy, (t1) -+ Oy, (1), with

I if0<s<x
Oy;(s)=q -1 ifx;<s<0

0 otherwise.

It can be proved that the process B(x,®) defined above has a modification B(x,®)
which satisfies all these properties. This process B(x,®) then becomes an n-parameter

Brownian motion.

We remark that for n = 1 we get the classical (1-parameter) Brownian motion B(¢) if

we restrict ourselves to ¢ > 0. For n > 2 we get what is often called the Brownian sheet.

With this definition of Brownian motion, it is natural to define the n-parameter Wiener—
It6 integral of ¢ € L?>(R") by

/ O(N)dB(x,0) = (®,0); ©c S5 (RY),
s

We see that by using the Bochner—-Minlos theorem we have obtained an easy construction
of n-parameter Brownian motion that works for any parameter dimension n. Moreover, we
get a representation of the space Q as the Fréchet space §’ (IRd). This is an advantage in
many situations, for example in the construction of the Hida-Malliavin derivative, which

can be regarded as a stochastic gradient on Q.

1.6 Stochastic integration

In this section, we recall to the stochastic integration with respect to fractional Brown-
ian motion, to cylindrical fractional Brownian motion and to Q-sub fractional Brownian

motion.
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1.6.1 Wiener integration with respect to fractional Brownian motion

Let (Q, ¥, P) be an arbitrary complete probability space.
Consider the space
LY (R):={f: M.f € L*(R)} equipped with the norm || f HLéi(R):H Muf 2 (r)-

Definition 1.8. /9] Let f € Lg (R). Then the Wiener integral with respect to f.B.m is
defined as

In(f):= [ F9)aBE = [ (M7 f)(5)aW.

As a particular case, consider the step function f : R — R given by
f(t) =X0 1 ady,  4)(t), whereto <t; < ... <ty € Rand ay € R, 1 <k < n. Then from
the linearity of the operator M we have that

() = Y o [ MLy (s)dw = Y o (B~ B )
k=1 k=1

which coincides with the usual Riemann-Stieltjes sum.

Note, that for a step function, it holds that

| Tr (f) H[%z(g) = Z aiag /RMI_{I[,I(_M]()(X)MI_{I[Qlm(x)dx
ik=1

= M2 £ 117, x)
:2%H/fﬂ@f@ﬂu—vﬁ“lmmm
R
where the last equality holds for H € (%, 1) but not for H € (0, %) Forany 0 < H < 1

we have the following.

Lemma 1.1. /9] For 0 < H < 1, it holds that the linear span of the set {lel(ujv), u,v e R}
is dense in L*(R).

Theorem 1.3. [72|] The space Lg is incomplete for H € (%, 1), due to lemma , we
can approximate any f € LY (R) by step functions f, in LY (R). Then MY f, — M™ f in
Ly (R), and we have that

In(f):= [ f(x)aB!
= [0 p))aw,
= lim /R fu(s)dBH,

n—oo
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where the convergence is in Ly(Q). Furthermore for H € ( %, 1), we have that

B0 P= [ |50 P dx

for f € LE(R); however in general it does not holds.

1.6.2 Stochastic Integral with respect to the cylindrical fractional

Brownian motion

In this section we introduce the stochastic integral

[ os)as(s)

as a V-valued random variable for deterministic, operator-valued functions
¢:[0,T] — L(U,V), where V is a separable Banach space.
To define the cylindrical integral, we recall the representation of a cylindrical f.B.m

(BH(t) : t > 0) with Hurst parameter H € (0,1) in the Banach space U, according to

theorem (1.2))

B (1)u* = Z <liep,u” > bi(t) forallu* € U*, t > 0. (1.7)

k=1
Here, X is a Hilbert space with an orthonormal basis (ex )kcn, i : X — U is a linear, contin-
uous mapping and (by)ren is a sequence of independent, real valued standard f.B.m. If we
assume momentarily that we have already introduced a stochastic integral [; ¥(r)dB(r)

as a V-valued random variable, then the representation 1.7/ of B naturally results in
o T
Z/ < W(1)iey,v* > dby(t) forall v € V*.
k=170
The integrals can be considered as the Fourier coefficients of the X-valued integral

T
/0 PP () dby(1).

The function ¢ — *W*(7)v* must be integrable with respect to the real valued standard
f.B.m, by for every v* € V* and k € N, that is the function ¥ must be in the linear space

[:={®:[0,T] = L(U,V):i*®*(.)v* € M forallv* € V*}. Here, M = My denotes the
Banach space of functions f: [0,7] — X. For this class of integrands we have the follow-

ing property.
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Proposition 1.5. /48] For each Y € I the mapping
Ly:V* =M, Ly, =i¥*()W

is linear and continuous.

Lemma 1.2. [48] For every ¥ € I we define
T
<Tyf,v* >:/ K (7 ()W) (1), £(0)]de forall f € L2([0,T);X), v* € V.
0

In this way, one obtains a linear, bounded operator T'y : L*([0,T];X) — V**.

Proposition 1.6. /48] let the f B.m BM be represented in the form Then for each\¥ € 1
the mapping

b T
Zy: V" — Lf,(Q,R), Ly = Z/O < W(t)ieg,v" > dbi(t), (1.8)
k=1

defines a Gaussian cylindrical random variable in V with covariance operator
QO :V* = V™, factorized by Qg = I'gI'y. Furthermore, the cylindrical random variable
Zy is independent of the representation|[l.7]

Definition 1.9. A function Y € I is called stochastically integrable is there exists a random
variable Iy - Q — 'V such that
Zyv* =< Iy, v* > for all v¥ € V* where Zy denotes the cylindrical integral of Y. We use

the notation

Iy = /0 "w(ndB (1),
Theorem 1.8. [48] For ¥ € I the following are equivalent:
(a) ¥ is stochastically integrable,
(b) the operator I'y is V-valued and y-radonifying.

Let Ky (t,s) be the kernel function, for0 <s <¢ < T,

K1) = et =" an(5 ~H) [[=9" 3 (1= ()F");

2HT(H+%)T(3—H)
T(2—2H)

1
where ¢y = | ]>andH € (0,1).
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If H € (1,1), then Ky has a simple form as
1 1 g H-3 H—1
Ky (t,s) =cy(H — E)s2 /(u—s) 2u’ " 2du.

A definition of stochastic integral of deterministic X -valued function with respect to
a scalar fractional Brownian motion (B(z),t > 0) is described.

Let K}, : € — L%([0,T], K) be the linear operator given by

Kirole) = 9K (T.0) + [ (o) 00) K4 19)

for @ € €, where € is the linear space of % -valued step function on [0, T].

For ¢ ¢,
n—1
(p(t) = Z xi]:[[li,li+1] (t)u
i=1

wherex; € K, i€ {l,..,.n—1}and 0=t <t <..<t,=T.
We define

T n—1
/O ©dB =) xi(B., —By). (1.10)
i=1

It follows directly that

T
| ) 9481 =1 K o0 (L11)

Let (H,|| . ||4,(.,.)s) be the Hilbert space obtained by the completion of the pre-
Hilbert space € with the inner product (@, V) s = (K;0,KjW);2 (0.1, %): for @,y € €.
The stochastic integralis extended to ¢ € # by the isometry.

Thus H is the space of integrable functions. If H € (%, 1) then it is easily verified that
HCH , where 7{ is the Banach space of Borel measurable functions with the norm || . || %

given by .
lo1Z= [ [ lewllow)iotu—vidud,

where ¢(u) = H(2H — 1)|u|* =2 and it is elementary to verify that L”([0,], ) C  for
p> % then,

B[ ganl= [ [ totu) 0000 vidud

If H € (0, 1), then the space of integral functions is smaller than for H € (%,1).
Associated with (B(r),t > 0) is a standard cylindrical Wiener process (W (z),r > 0) in K
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such that formally B(t) = Ky (W (1)).
For x € K~ {0}, let By(¢) = (B(t),x), it is elementary to verify from that there is a

scalar Wiener process (wy(z),¢ > 0) such that
t
Bilt) = (B(1).x) = | Ku(r.5)dwi(s):

for r € RT. Furthermore, wy(t) = By ((K}fl)*ll[o’,]) , Where Kj; is given by
Now we define the stochastic integral fOT GdB for an operator-valued function
G:[0,T] — L(X) is a K-valued random variable.

Definition 1.9. [/09] Let G : [0,T] — L(X), (en,n € N) be a complete orthonormal
basis in K, Ge,(t) = G(t)en, Ge, € H forn € N and B is a standard cylindrical fractional

Brownian motion. Define

T T

/Gd Z/ GendBy; (1.12)
0 =19
(Q).

Proposition 1.4. [109] Let G : [0,T] — L(X) and G(.)x € H for each x € V. Let
I'r: K — L*([0,T], K) be given as

provided the infinite series converges in L*(Q

(Cr(x)) (1) = (KxGx)(1),

fort €[0,T) and x € K. If T1 € Ly(K,L*([0,T), X)) is a Hilbert Schmidt operator
then the stochastic integral is a well-defined centered Gaussian K-valued random

variable with covariance operator Qr given by
T (o]
= / Y ((Tren)(s),x) (Tren)(s)ds. (1.13)
0 n=1

This integral does not depend on the choice of the complete orthonormal basis

(en,n € N).

Remark 1.1. Since I't € £,(K,L*([0,T], X)), it follows that the map x — (TU'rx)(t) is
the Hilbert -Schmidt on K for almost allt € [0,T]. Let I}, be the adjoint of I'r. Then T’}

is also Hilbert-Schmidt and Qr can be expressed as

T
Orx — / (T (T50)) (1)dl, (1.14)
0
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forx e K.

If H € (3,1) and G satisfies

1G12,= [ [16) 101Gy 90— V)l <
00

then

T T
// u)G*(v)0(u —v)dudv;
00

where ¢(u—v) = H2H —1) |u—v |12,

Proposition 1.5. [109] If A : Dom(A) — K is closed linear operator, G : [0,T] — X
satisfies G([0,T]) C Dom(A) and both G and AG satisfy the conditions for G in property
then

/GdB C Dom(A) P.a.s,

and
T T
A~/ :/ GdB P.a.s.
0 0

1.6.3 Stochastic integral with respect to Q-sub fractional Brownian
motion
Let € the linear space of R-valued step functions on [0,7]. For ¢ € €, we define its

wiener integral with respect to one-dimensional sub fractional Brownian motion {S7 (¢)},>¢

as follows

T <]
, 0S5 = s =50
0

Let #Hgu be the canonical Hilbert space associated to the sub-fBm S¥. That is H is

the cloture of the linear span € with respect to the scalar product,

<1[07,], 1[O’S}>}[SH = cov (SH(t),SH(s)) .

We know that the covariance of sub-fBm can be written as

E [$7(1)s"(s)] = /0[ /OSQ)H(u,v)dudv =Cpl(t,s), (1.15)
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where
O (u,v) =HQH—1) (Jlu—v P72 —(u+v)*72).
Equation (I.15) implies that
t t
:/ / QY0 (u,v)dudv. (1.16)
0 JO
Now we consider the kernel
1
21w
Ky(t,s) = ———s /2-H /xz—s2 H=3020x 11 s). 1.17

N

By Dzhaparidze and Van Zanten [47], we have

NS

Cul(t,s) = c%{/KH(t,u)KH(s,u)du, (1.18)
where
»  T'(1+2H)sin(nH)
Cyg = T .

Let K}; be the linear operator from € to L2[0, 7] defined by

. r oK,
(K@) (5) = n [ 0,52 (rs)dr

By using the equalities (I.16) (I.18), we obtain

T

(K9, K5r) 2 (j0,1) =€ / /(praKH (r,s)d /\Vu (u,s)du | ds
0
rr raK B
=cy // H 8:1 (u,s)ds | Oy, drdu
00
fja — (1.19)
=c (uys rdu
a a ryu
J J orou

T T
:H(ZH—I)//(M—;’]ZHZ —(u—i—r)zH*z)(pr\pudrdu
00
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As a consequence, the operator K, provides an isometry between the Hilbert space
Hen and L*([0,T1).
Hence, the process W defined by W (t) := S ((K}fl)_ll[()’,]) is a Wiener process, and S*

has the following Wiener integral representation:

t
(1) = cu [ Kialt,5)dW (s),
0
because (K7;)(1j0,1)(s) = cuKu(t,s).
By Dzhapridze and Van Zanten [47], we have

t

W) = [ wialt,)ds" (s),
0

where

t
R ) P (01 =32) [ =) P x| 1)

N

gH—1/2
0= 572 |

In addition, for any ¢ € Hn,

t

[ o)) = [(Kie)@)aw ),
0

0

if and only if K};¢ € L*([0,T)).
Also, denoting L;@H (10, 7)) = {9 € Heu K} € L*([0,T]) }.
Since H > %, we have by || and lemma of [94],

L2(0,T])  L# ([0,T)) c Ly, (10.7)). (1.20)
Lemma 1.2. ([03]) For ¢ € L# ([0, T)),

T T
B _ L 2H-2
H(2H 1)/0/0 O [ Qullu—r [T drdu< Cull@ll y 0 7

1/2
where Cy = <B(§I—(2+7HI—)§)) , with B denoting the beta function.

To define the stochastic integral with respect to Q-sub-fractional Brownian motion we
proceed as follows: Let Lg(?(,U ) be the space of all & € L(X,U) such that QQ% is a
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Hilbert-Schmidt operator. The norm is given by

€170 (xc.) = 1602 s = r(6QE").

Then & is called a Q-Hilbert Schmidt operator from X to U.
Let @ : [0,T] — L(%,U) such that

Z 1K ( Q2en l22(j0,17.0) < °°- (1.21)

Theorem 1.4. [I6] Let ¢ : [0,T] — L%(?(, U) satisfy Then its stochastic integral
with respect to the sub-fBm Sg is defined, fort > 0, as follows

Notice that if
> 1
Y llo(s)Q%en]| 1 < oo, (1.22)

then in particular ((I.21)) holds, which follows immediately form (I.20).
The following lemma is obtained as a simple application of lemma|I.2]

Lemma 1.3. ([/03]) For any ¢ : [0,T] — L%(?(, U) such that holds, and for any
u,v € [0,T] withu > v,

Bl [ owasg [} < ntu—v™ ' L ["losietelfas
If, in addition,
Z Q26n||U is uniformly convergent for t € [0,T], (1.23)

then
u 2 _ u
|| [ o(s)asyo)|[5 < Culu=)*" [0y ds

Proof. Let {e,};,_, be the complete orthonormal basis of X introduced above. Applying
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lemma[I.2] we obtain
I o0asholiy =1 L. [ ot10%ends" )1}
=Y I owelas 0}

=y uer- [ [Clewetalulowotelol -5 s

<cﬂz(/ fosotenli)
<enw—n ¥ [ lowodelas
n=17v

]

Remark 1.2. If {)A,}>_, is bounded sequence of non-negative real numbers such that the
nuclear operator Q satisfies Qe, = Aye,, assuming that there exists a positive constant
Ko such that

190)] 3 1) < Ko wniformly in [0, T,

then[I.23| holds automatically.
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1.7 The space of tempered distributions

For the convenience of the reader we recall some of the basic properties of the Schwartz
space S of rapidly decreasing smooth functions and its dual, the space S’ of tempered

distributions.

1.7.1 The space of tempered distributions

Let n be a given natural number. Let § = S(R") be the space of rapidly decreasing smooth

real functions f on R” equipped with the family of seminorms:

1fllea = sup {(1+ )%} <o,

yeRn

where k =0,1,..., 0 = (0,...,0,) is a multi-index with «; = 0,1,... (j=1,...,n) and

for |ot| = o) + ... + O

Then § = S(R") is a Fréchet space.

Let S = S'(R") be its dual, called the space of tempered distributions. Let B denote
the family of all Borel subsets of §'(R") equipped with the weak* topology. If ® € §'
and f € S we let

D(f) or (@, f) (1.24)

denote the action of ® on f.

Example 1.1. * (Evaluations) For'y € R define the function 8, on S(IR) by 8,(¢) =
O(y). Then b, is a tempered distribution.

* (Derivatives) Consider the function D, defined for ¢ € S(R) by D[0] = ¢/ (y). Then

D is a tempered distribution.

e (Distributional derivative)
Let T be a tempered distribution, i.e. T € S (R). We define the distributional
derivative T' of T by

T[] =-Tlo} o€s.
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Then T is again a tempered distribution.

1.8 Theory of semigroup

In this part, we give some definitions and preliminaries results of semigroup theory that

will be needed in the sequel.

Definition 1.10. Let X be a Banach space. A family (T (t));>0 of bounded linear operators
from X to X is called a strongly continuous semigroup of bounded linear operators if the

following three conditions are satisfied
(i) T(0)=1,
(ii) T(t+s)=T@)T(s),

(iii) Vx € X, the map R >t — T (t)x € X defined from [0, +co = into X is continuous at
the right of 0.

A strongly continuous semigroup of bounded linear operators on X will be called a Cy-

semigroup.

Remark 1.4. A semigroup of bounded linear operators (T (t));>0 is uniformly continuous
if

lim || T(r)—1 ||=0.

t—0

Examples of semigroups

Infinitesimal generator of a C-semigroup

Definition 1.11. The linear operator A defined by

D(A) = lim,_p+ T(t)tx’x = d+§l(t)x li—o0 for x € D(A) is the infinitesimal generator of the

semigroup (T (t));>0;, D(A) is the domain of A.

Theorem 1.9. [[70] Let (T (t));>0 be a Co-semigroup then there exist constants w € R and
M > 1, such that
| T(t) |< Me"™ for 0 <t < +oo.

Theorem 1.10. [70] If (T (t));>0 is a Co-semigroup then ¥x € X, t — T (t)x is continuous
from R" into X.

Theorem 1.11. [51]] Let (T (¢)):>0 be a Co-semigroup and A be its infinitesimal generator.
Then
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(a). ForxeX,
t+h
lim T (s)xds = T (t)x.
h—0J¢

(b). ForxeX,
t t
/ T(s)xds € D(A) andA(/ T(s)xds) =T(t)x—x.
0 0
(c). Forxe D(A),
d
T(t)x € D(A), and ET(I)X = AT (t)x=T(t)Ax.
(b). Forx € D(A),
t t
T(t)x—T(s)x = / T (1) Axdt = / AT (1)xdx.
Corollary 1.3. [[70] If A is the infinitesimal generator of a Cy-semigroup (T (t));>0 then

D(A) the domain of A, is dense in X and A is closed linear operator.

Theorem 1.12. [[70] A linear operator A is the infinitesimal generator of a uniformly

continuous semigroup if and only if A is a bounded linear operator.

Theorem 1.13. [[70] Let (T (t));>0 and (S(t))i>0 be two Cy-semigroup on X, generated
respectively by A and B. If A=B then T (t) = S(t), t > 0.

Definition 1.12. (7'(¢));>0 is a Co semigroup of contraction if and only if
| T(z) ||I<1,Ve>0.

Integrated semigroups

Definition 1.13. [68] Let U be a Banach space. An integrated semigroup is a family of
operators (S(t);>0) of bounded linear operators S(t) on U with the following properties:

(i) $(0) =0;
(ii) t — S(t) is strongly continuous;
(iii) S(s)S(t) = [ (S(t+r)—S(r))dr, Vs,t > 0.

Definition 1.14. [68] An operator is called a generator of an integrated semigroup if
there exists | € R such that (1,+e) C p(A) (the resolvent set of A), and there exists a
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strongly continuous exponentially bounded family (S(t));>0 of bounded linear operators
such that N
S(0)=0, (M—A)""= A/ e MS(t)dt, YA > .
0

Definition 1.15. [68] An integrated semigroup S(t));>0 is called exponentially bounded
if there exists constants M > 0 and B € R such that

| 8%(r) | < MeP, v > o.

Definition 1.16. [|/34] We say that the linear operator A satisfies the Hill-Yosida condi-
tion if there exists constant M > 0 and M € R such that (1, +o0) C p(A) and

sup{(A—m)"| (M —A)™"|:neN, A>n} < VM.

Definition 1.17. [68] An integrated semigroup (S(t)):>0 is called locally Lipschitz con-
tinuous if, for all & > 0, there exist a constant A > 0 such that;

1S@)—Ss) |[<A|t—s], t,5€[0,)].
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Fractional Calculus

2.1 Some historical facts on fractional calculus

We begin to call for the history of the fractional calculus given by [79], so the Fractional
Calculus (FC) is a generalization of classical calculus concerned with operations of in-
tegration and differentiation of non-integer (fractional) order. The concept of fractional
operators has been introduced almost simultaneously with the development of the classi-
cal ones. The first known reference can be found in the correspondence of G. W. Leibniz
and Marquis de I’Hospital in 1695 where the question of meaning of the semi-derivative
has been raised. This question consequently attracted the interest of many well- known
mathematicians, including Euler, Liouville, Laplace, Riemann, Griinwald, Letnikov and
many others. Since the 19th century, the theory of fractional calculus developed rapidly,
mostly as a foundation for a number of applied disciplines, including fractional geometry,
fractional differential equations (FDE) and fractional dynamics. The applications of FC
are very wide nowadays. It is safe to say that almost no discipline of modern engineering
and science in general, remains untouched by the tools and techniques of fractional calcu-
lus. For example, wide and fruitful applications can be found in rheology, viscoelasticity,
acoustics, optics, chemical and statistical physics, robotics, control theory, electrical and
mechanical engineering, bio-engineering, etc...In fact, one could argue that real world
processes are fractional order systems in general. The main reason for the success of
FC applications is that these new fractional-order models are often more accurate than
integer-order ones, i.e. there are more degrees of freedom in the fractional order model
than in the corresponding classical one. One of the intriguing beauties of the subject is
that fractional derivatives (and integrals) are not a local (or point) quantities. All frac-

tional operators consider the entire history of the process being considered, thus being

37
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able to model the non-local and distributed effects often encountered in natural and tech-
nical phenomena. Fractional calculus is therefore an excellent set of tools for describing

the memory and hereditary properties of various materials and processes.

2.2 Special functions of fractional calculus

We will recall in this section some results of the special functions of fractional calculus

which are important for other parts of this work.

2.2.1 Gamma function

Definition 2.1. [73] The gamma function I (z) is defined by the integral:
I'(z)= / e ',
0

where t° 1 = &= DI08() This integral is convergent for all complex z € C.

Properties 2.1. /73] The gamma function satisfies the following functional equation:
I'(z+1)=2(2). (2.1)

Another important property can be represented also by the following limit:

I'(z) = li nin 2.2
= lim , .
(2) n—ez(z4+1)...(z+n) 2.2)

where we initially suppose that Re(z) > 0.
2.2.2 Beta function
Definition 2.2. [/3|] The Beta function is defined by the following integral:
! 1
B(z,w) :/ 1 (1—1)""dt, (Re(z) >0,Re(w) > 0). (2.3)
0
Properties 2.2. [[73|] The principal property of the function Beta is:
'z’
B(eaw) = 2T, (2.4)

I'(z+w)
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from which it follows that:
B(z,w) =B (w,7).

2.2.3 Wright function

Definition 2.3. The Wright function is defined by the following some by [49]

The series representation, valid in the whole complex plane

oo k

. _ Z - —
W(z,oc,B)_I;)k!r(ak+B),oc> 1, BeC, (2.5)

1
14+o’

cited by Podlubny [\I11|] and Kiryakova [75]].

it is an entire function of order which has known also as generalized Bessel functions

Properties 2.3. The Wright function can be represented by the following integral given

by [49]
1 —a
W(zo,B) = 2—m/H T BT g,

a

where H, denotes Hankel’s contour. It follows from (2.5)) that

W (z,0,1) = €.

2.2.4 The Mittag-Leffler functions

Definition 2.4. [[102|] The Mittag-Leffler function of two parameters o, B is denoted by

Eq p(z) and defined by:

Zk

Eqp2) =Y s, (2.6)
o k;) ['(ok +B)
where z, ., B € C, Re(a) > 0 and Re(B) > 0, and T is the Gamma function.

For B = 1 we obtain the Mittag-Leffler function of one parameter o. denoted by Eq(z)

and defined as:

oo k
z
Ex(2) =) —i—, 2.7)
* ,;O [(ok+1)
where z, o € C, Re(at) > 0.
Remark 2.1. Note that Eq(z) = Eq,1(z) and that
Ei(z) =), =) 5=¢ (2.8)

Now, we need to introduce the following space.
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The space AC

Definition 2.1. [73)] Let [a,b] (—o0 < a < b < =) be a finite interval and let AC[a,b| be
the space of functions of which are absolutely continuous on [a,b]. AC|a,b] coincides with

the space of primitives of Lebesgue summable function [see Kolmogorov and Fomin[l7/7]]

F(x) € ACla,b] = f(x) =+ / “o)ar,

with (¢(t) € L(a,b)), and therefore an absolutely continuous function has a summable

derivative f (x) = @(x) almost everywhere on |a, b).

Definition 2.2. /73] Forn € N={1,2,3,...} we denote by AC"|a, b] the space of complex-
valued functions f(x) which have continuous derivatives up to order n— 1 on [a,b] such
that "~ (x) € ACla, b]:

AC"a,b] = {f :]a,b] = Cand (D""'f) (x) € ACla,b] (D= %)}. C being the set of
complex numbers. In particular, AC'[a,b] = AC[a,b].

Let us define now the space Cy.

Definition 2.3. [73] Letn € Ng={0,1,...} andye C (0 < R(y) < 1).
The space Cy [a,D] consists of those and only those functions of which are represented in

the form
1

U T

X n—1
/ (=" o(t)di + Y cplx—a), (2.9)
a k=0

where @(t) € Cyla,b] and ¢ (k=0,1,...,n— 1) are arbitrary constants. Moreover,

% (a)

o) = f0), ="

(k=0,1,...n—1). (2.10)

In particular, when y = 0, the space C"[a,b] consists of those functions f which are repre-
sented in the form[2.9, where ¢(t) € Cla,b] and ¢ (k =0,1,...) are arbitrary constants.
Moreover, the relations in holds.

2.3 Fractional derivatives and integrals

A fractional differential equation is an equation which contains fractional derivatives; a
fractional integral equation is an integral equation containing fractional integrals.
In this section we need to recall the definitions and the usefuls theorems and lemmas for

fractional derivatives and integrals.
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2.3.1 The Riemann-Liouville left-and right-sided fractional integrals

We first define the fractional integral operator according to Riemann-Liouville, which

is the most widely used definition in fractional calculus.

Definition 2.5. [[/0l|]Riemann-Liouville fractional integral on the real line

The Riemann-Liouville fractional integral on R are defined as

(I1%1) (x) := ﬁ/x (x—0)* L f(t)dr = ﬁ/x (x =) f(t)dt, (2.11)

— oo —o0
and

1 1

(I%f) (x) := W/xm(t—x)°°—1f(r)dt = m/xm(z—x)%—lf(r)dt. (2.12)

Remark 2.2. The function f € D (Ij‘fﬁ) if the corresponding integrals converge for a.a
xeR

Proposition 2.1. /101)]

i. Fractional integration admits the following composition formulas for fractional in-

tegrals:

1P _f=1""Pr (2.13)
for f e LP(R), o, >0and o+ p < %.

ii. We consider f€LP(R), g€ Li(R), p>1,¢g>1, and % +% = 1, then we obtain the

following integration by parts formula
/Rg(x) (I¢f) (x)dx = /Rf(x) (I%g) (x)dx. (2.14)

iti. (Inclusion property)
Let CM(T) be the set of Holder continuous functions f : T — R of order A i.e,

cMT) = {f T RIS lh=sup | £(0) |+ sup | £(5) = (1) (t—s)< oo} -

s,teT

If o> 0, and ap > 1, then,

1 (I(R)) C CMab)
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forany—oo<a<b<ooand0<7»<oc—l%.

2.3.2 The Riemann-Liouville left-and right-sided fractional deriva-

tives

In this part we present the definitions and some properties of the Liouville fractional

derivatives on the whole axis R = (—oo, o0).

Definition 2.6. [73|/Liouville fractional derivatives on the real axis.

The Liouville fractional derivatives on R are defined by the following formulas:

(D%y) (x) = (%)n (1) (x) = ﬁ (%)n / xw(x_y%%, 2.15)

and

(D) (x) = (—%)n (1"%) () = ﬁ (-%)7}(“%, (2.16)

where n = [Re(a)] + 1, Re(a) > 0 and x € R, respectively.

Lemma 2.1. [[73] If o > O, then, for "sufficiently good" functions f(x) the relations
(DL ILf) (x) = f(x), 2.17)

(D 1%f) (x) = f(x), (2.18)
are true. In particular, these formulas holds for f(x) € Li(R).
Properties 2.4. [73] Let 00> 0, m € N.and D = L.

i. If the fractional derivatives (D%y) (x) and (DS™"y) (x) exists, then
(D"D%y) (x) = (DE™y) (x). (2.19)
ii. If the fractional derivatives (D%y) (x) and (D*™™y) (x) exist, then
(D"D%y) (x) = (—=1)" (D**™y) (x). (2.20)

2.3.3 Caputo fractional derivative

In this section we present the definitions and some properties of the Caputo derivatives.
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Definition 2.7. [10]] The fractional derivatives (‘D% f) (x) and (“DY_f) (x) of order
o € C, Re(a) > 0 on [a,b] are defined via the above Riemann-Liouville fractional deriva-

tives by

I n=1 (k) (, 1
(D2, 1) () = (Dgu f(t)—kZOf D (¢ gt ><x>, Qa1)

i n—1 p(k) T
(DY 1) (x) = (D%_ £ —k_zof Oy ) (x). 2.22)

Respectively, where
n=[R(a)]+1 fora¢ Ny, n=a forocNy. (2.23)

These derivatives are called left-sided and right-sided Caputo fractional derivatives of
order Q.
In particular, when 0 < Re(®) < 1, the relations and take the following

forms:

f(a)
Il —o)

(“Dgy f) (x) = (DG [f (1) = f(a)]) (x) = (DG f)(x) — (x—a)™®, (224

(D) () = (D LF0) — F6)) () = (0F 1))~ s o=% 229

The Caputo fractional derivatives are defined for functions f(x) belonging to the space
AC" [a,b] of absolutely continuous functions.

Now we discuss the following cases of O.

(1)- If o # Ny, then the Caputo fractional derivatives (2.21)) and (2.22)) coincide with the
Riemann-Liouville fractional derivatives ([2.15)), (2.16)) in the following statements:

(‘DEf) (x) = (DELf) (), (2.26)
if fla)=f(a)=...=f""(a) =0 (n=[R(e)]+1); and
(Dy_f) (x) = (DY_f) (x), 2.27)

1) = f (B) = = 17 (1) =0 (n=[R(@)] +1)

In particular, when 0 < R(o) < 1, we have

(D, f) (x) = (DY, f) (x), when f(a) =0, (2.28)
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(“DY_f) (x) = (Dy_f) (x), when f(b) = 0. (2.29)

(2)- if o =n € Ny and the usual derivative f"(x) exists, then

(°Dp, f) (x) = f(x), (2.30)

and

(‘Dp_f) (x) = (=1)"f"(x) (nEN). (2.31)

Theorem 2.1. [[73)] Let R(ot) > 0 and let n be given by .
If f(x) € AC"[a,b), then the Caputo fractional derivatives (°D$, f) (x) and (“DY_f) (x)

exist almost every where on [a, D).

(a-) If o ¢ No, (‘DY f) (x) and (“D$-_f) (x) are represented by

x  f(n)

(=) Ju (x—r)@nil (L D"f) (x), (2.32)

and

—_1yr b fn)
(DE )=t [ e e

respectively, where D = <L and n = [R(at)] + 1.
In particular, when 0 < R(a) < 1 and f(x) € ACla,b].

(DN O = 5 | LOd (o). e

I'l—o (x—1)*
and )
(DY) ) =y | e = (o0 0. @39)

(b)- If oo = n € Ny, then (CDZ+f) (x) and (Cszf) (x) are represented by (2.30) and

(2:31). In particular
(“Darf) () = (“Dh_f) () = f(x). (2.36)

Theorem 2.2. [[73] Let R(ct) > 0 and let n be given by (2.23), also let

f(x) € C"[a,b). Then the Caputo fractional derivatives (‘D% f) (x)and (“DY_f) (x) are
continuous on [a,b]:

(°DY, f) (x) € Cla,b] and (°D}_f) (x) € Cla, b].
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(a) If o ¢ No, then (°DE,f) (x) and(°D}_f) (x) are represented by and

respectively. Moreover
(‘DS f) (a) = (“‘Dyy_f) (b) = 0. (2.37)

In particular, they have respectively the forms (2.34) and (2.33))
for0 < Re(a) < 1.

(b) If & =n € Ny, then the fractional derivatives (D, f) (x) and (°D}}_f) (x) have
representations given in (2.30) and (2.31). In particular, the relations in (2.36)).

Lemma 2.2. [[[17] Let R(a) > 0 and let f(x) € Lu(a,b) or f(x) € Cla,b]

(a) IfR(a) ¢ Noro €N, then
(“Da e f) (x) = f (%),

and

(“Dy_tpf) (x) = f(x).
(b) IfR(a) € N and Im(a) # 0, then

(1% ) ()

Tn—a) (x—a)"*, (2.38)

(“Dge I ) (x) = f(x) =

L")

(DY) = ) = e = (o= (239)
2.3.4 Laplace transform of Caputo derivatives
Recall that the Laplace transform L is defined by
Lf(s) = / e f(1)dt =: F(s) (2.40)
0

for all f such that the integral converges.

Some of the properties of the Laplace transform that we will need are:
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aOL
L[5 g f0)](s) = s*(L)(s) =%~ 1(0), (2.41)
o—1
o s
L[Eq(bx™M)](s) = o} (2.42)
o—1 7,0 _ 1
Lx*  Eqa(—bx%)](s) = b (2.43)
Recall that the convolution f x g of two functions f,g : [0,e) — R is defined by
(f*g)(t /ft—r t>0. (2.44)
The convolution rule for Laplace transform states that
t
L(f o= rear) () = Lro)Lg(s).
or
/ Flt—w)g(w)dw = L~ (Lf(s)Lg(s)) (1). (2.45)

2.3.5 Hilfer fractional derivative

Hilfer [59] proposed a general operator for fractional derivative, called “Hilfer frac-

tional derivative”, which combines Caputo and Riemann-Liouville fractional derivatives.

Definition 2.8. [59] The Hilfer fractional derivative of order 0 <o < 1and 0 < < 1 for
a function f'is defined by

d
0P =P P ).

Remark 2.3. When oo =0, 0 < B < 1, the Hilfer fractional derivative coincides with

classical Riemann-Liouville farctional derivative

0P sy = S0 Prw) =+ Db ()

when o = 1, 0 < B < 1, the Hilfer fractional derivative coincides with classical Caputo

fractional derivative

D f(r) = 11784 TS0 =° DL (1).
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Now, we introduce the next spaces:
CYPla,b) = {f € Ci_yla,b] : DXP f € C1_yfa,b]},

and
Cl_,la,b] = {f € Ci_yla,b] : D}, f € C1_4[a,b]}.

Since C} 4a.b] C Gy o 4@, b]. The following lemmas follows directly from the semigroup
property.

Lemma 2.3. [50] Let0 << 1,0 <B < landy=o+B—of. If f € C|_,[a,b], then
.o} f =105y,

and
DY+ f DB (1-a) f

Lemma 2.4. [50] Let f € L'[a,b)]. If Dgilfa) f exists and in L'[a, b] then
OLBIO&f IB (1— oc)DL[;(_lfoc)f'

Lemma 2.5. [50] Let 0 < a <1, 0<B<land y=0+B—af. If f € Ci_y[a,b] and
17 P (XfGCI 4@, D] thenDaBI“fexzstln (a,b] and

DUPI% £(x) = f(x) x € (a,b].
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Differential inclusions

Differential inclusion plays an important role as a tool in the study of various dynamical
processes such a study of dynamics of economical, social and biological, macrosystems,
they also are very useful in proving existence theorems in control theory. A differential
inclusion is a relation of the form

X € F(x),

where F is a multivalued map associating any point x € R"” with a set F(x) C R". The
notion of a differential inclusion generalizes the notion of an ordinary differential equation

of the form

The key question is how to define the solution of such systems.

First of all it is important to introduce the basic definitions of a multivalued maps which
will be used in the sequel of this chapter.

Differential equations or inclusions have recentely proved to be strong tools in modeling
of many phenomena in various fields of engineering, physics and economics, see [139],
[69]], [3], and [121], As well as other researchers have shown important results on differ-
ential inclusion problems and their applications with mechanical modeling [35], [28] and
a serie of books of Bressan [24],[25]] and [23].

3.1 Multi-valued mapps

Multivalued maps play a significant role in the description of processes in control theory,
in this section we introduce some basic definitions and results of multivalued maps. For

more details on multivalued maps, see the books of Deimling [40], Hu and Papageorgiou

48
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[61].
Let X be a Banach space and P (X) denote the class of all subsets of X

Pr(H) = {A C H /A is non — empty and has a property f} .

Thus Pyg (H) , Pey (H) ,Pev (H) ,Pep (H) , Per pa (H ) , Pep.cv (H ) denote the classes of bounded,
closed, convex,compact,closed-bounded and compact-convex subsets of X respectively.
Similary Py cypq () and Pep e (H) denote the classes of closed convex bounded and
compact,convex subsets of # respectively.

T : H — Pr(#H) is called a multivalued operator or a multivalued mapping on .

A point u € #H is called a fixed point of T if u € T,,.

Definition 3.1. /83)] A multivalued map G : H — 271\ 0 is convex(closed) valued if G(x)
is convex (closed) for all x € H. G is bounded on bounded sets if G(B) = |J G(x) is

xXEB
bounded in H for any bounded set B of H, i.e.,
sup {sup || y[|: y € G(x)} < oo.
XEB

Definition 3.2. [83]] A multivalued map G is called upper semi-continuous (u.s.c) on H
if for each xo € H the set G(xp) is non empty closed subset of H, and if for each open set
N of H containing G(xy), there exists an open neighborhood V of xo such that G(V) C N.

Definition 3.3. [83]] The multi-valued map G is called lower semi continuous (L.w.c) if U

is an open subset of H, then
G '(U)={xeH/G(x)nU #0}

is an open subset of H.

Definition 3.4. [83] The multivalued operator G is called compact if G(H) is a compact
subset of H. G is said to be completely continuous if G(B) is relatively compact for every
bounded subset B of H.

If the multivalued map G is completely continuous with nonempty values, then G is u.s.c,

if and only if G has a closed graph, i.e.,

Xn = Xe s Yn = Vi, Yn € G(x,) imply y, € G(xy).

Let us denote by BCC(#) the set of all nonempty bounded, closed and convex subset of
H.
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Definition 3.5. [83]] A multi-valued map G :— BCC(H) is said to be measurable if for
each x € H, the function U : J — R, defined by

U(t)=d(x,G(t)) =inf{||x—z|:z€ G(1)}

belongs to L' (J,R).
Definition 3.6. [83] A multi-valued function G : J x R — P.,(R) is called carathéodory
if

(i). t — G(t,x) is measurable for each x € R and

(ii). x — G(t,x) is an upper semi-continuous almost everywhere fort € J.

Definition 3.7. [83] A carathéodory multi-valued map G(t,x) is called L'-carathéodory
if there exists a function h € L' (J,R) such that || G(t,x) ||< h(t) a.e. t € J for all x € R,
and the function h is called a growth function of G on J X R.

Definition 3.8. [83] The multi-valued map G : J x H — BCC(H) is said to be L*-
carathéodory if

(i). t — G(t,x) is measurable for each x € H
(ii). x — G(t,x) is u.s.c. for almost all't € J

(iii). for each r > 0, there exists I, € L'(J,R) such that

IG(t,x) |= sup E|o|’<i()
6eG(t,x)

forall || x ||2< r and for a.e. t € J.
Lasota and Opial gives the following results

Lemma 3.1. [78] Let J be a compact real interval , BCC(H) be the set of all non-empty,
bounded, closed and convex subset of H and G be a L*-carathéodory multi-valued map,
S.x # 0 and let T be a linear continuous mapping from L*(J, H) to C(J,H). Then the
operator

ToSg:C(J,H) — BCC(C(J,H) , x— (ToSg) :=T(S¢)

is a closed graph operator in C(J,#), where S » is known as the selections set from G,

is given by

6 €Sy ={ceL*(L(K,H)):0(t) € Gt,x), fora.e.t €J}
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Definition 3.9. [/35]

i. A subset A of a normed space X is said to be weakly (relatively) compact if (the

weak closure of) A is compact in the weak topology of X.

ii. A subset A of a Banach space X is weakly sequentially compact if any sequence in

A has a subsequence which converges weakly to an element of X.

Definition 3.10. [/35/]

Suppose that X and Y are Banach spaces. A linear operator T from X into Y is weakly
compact if T (B) is a relatively weakly compact subset of Y whenever B is a bounded
subset of X.

Theorem 3.1. [67)] Let Q be a subset of a Banach space X. The following statements are

equivalent:
i. Qs relatively weakly compact.
ii. Q is relatively weakly sequentially compact.

Theorem 3.2. [67)] Let Q be a subset of a Banach space X. The following statements are

equivalent:
i. Qisweakly compact.
ii. Q is weakly sequentially compact.

Definition 3.11. [/35] Let D be a nonempty subset of Banach space Y and @ : D — P(Y)

be a multivalued map:

1. @ is said to have weakly sequentially closed graph if for every sequence {x,} C D
with x, — x in D and for every sequence {y,} withy, € @ (x,) Y/n e Ny, ~ye€Y
implies y € @ (x).

2. @ is called weakly upper semi continuous if 9~' (A) is closed for all weakly closed
ACY.

3. B is € — O upper semi continuous if for every wy € Y and € > 0 there exists & > 0
such that B (y) C B(wo) + B (0) for all y € Bg(wo) (N D.

Now we define the set of selections of £ by: Given x € C, ([—r,T],L*(Q, H))

Sely () = {ceC ([-nT] L? (QH)):o(t—r)€X(t—rx(t—r))}.




3.2 Differential inclusion 52

Lemma 3.2. [[[7] Let ¢ : D CY — P(Z) be a multivalued map with weakly compact

values, then
1. @ is weakly u.s.c if ¢ is € — 0 u.s.c.

2. suppose further that @ has convex values and Z is reflexive then ¢ is weakly u.s.c if
and only if {x,} C D with x,, — xo € D and y, € ¢ (x,) implies y, — yo € ¢ (xo) up

to a subsequence.

Lemma 3.3. [[/30] Let X be reflexive and 1 < p < eo. A subset K C LP([a,b],X) is
relatively weakly sequentially compact in L” ([a,b],X) if and only if K is bounded in
L? ([a,D],X).

Theorem 3.3. [43] The convex hull of a weakly compact set in a Banach space X is

weakly compact.

Theorem 3.4. [/05]] Let X be a metrisable locally convex linear topological space and
let D be a weakly compact convex subset of X.

Suppose, ¢ : D — Py, (D) has weakly sequentially closed graph then @ has a fixed point.

3.2 Differential inclusion

In this section, we give an example of differential inclusion in deterministic case, for more

details see [37]. We consider the following differential inclusion

(f(f,%))) €G(t,x) aetel

x(0) =xp € R,

(3.1

where f:J x R — R\ {0} is continuous and G : J x R — P, .,(R). Find a solution of
B.1]is to find a function x € AC(J,R) that satisfies:

(1). the function t — % is differentiable, and

(ii). (%) =v(t), t € J for some v € L' (J,R), satisfying v(t) € G(t,x(t)) aet € J

defined in 2.1).

If f(¢,x) = 1, then the DI reduces to

(3.2)

x(t) €G(t,x) aeteld
x(0) =xp €R,
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in the case when G(¢,x) = g(t,x), we obtain the differential equation

(%) =gltx) acrel (3.3)
x(0) =xp € R,

in this section we shall prove the existence of solution of (3.1)) under Lipschitz and
carathéodory conditions.

Define a norm || . || in C(J,R) by || x ||= sup | x(¢) |-
teJ

Remark 3.1. It is known that if G : J — P.,(R) is an integrably bounded multivalued

operator, then the set S}; of all Lebesgue integrable selections of G is closed and non-

empty,

where
SG(x)={ve L' (J,E) /v(t) € G(t,x(t)) a.e.t € J },

then we have the following lemmas by Lasota and Opial.

Lemma 3.4. [[78] Let E be a Banach space, If dim(E) < o and G :J X E — P.p(E) is
L'-carathéodory, then S5(x) # 0 for each x € E.

Lemma 3.5. [78] Let E be a Banach space, G a carathéodory multi-valued operator with
St # 0 and let
LOSlG :C(J,E) = Ppaci(C(J,E)) be a closed graph operator on C(J,E) x C(J,E).

We need to suppose some hypotheses in the sequel.
(Hy)— The function f is bounded on J x R — R with bound k.
(Hy)— The function f:J x R — R\ 0 is continuous and there exists a bounded function

[:J — R with bound || / || satisfying

| f(t,x)— f(t,y) |<I(t) | x—y| a.et € Jfor allx,y € R

(H3)— The multivalued operator G : J x R — P, (R) is Ly — carathéodory with growth

function h.

Theorem 3.5. [37] Assume that the hypotheses (Hy) — (Hz) hold. Further if

X0
[ —_— h 1
1 (1 s T ) <1

the DI (3.1)) has a solution on J.




[exp(=x) p (1), p(1)] Six<0.
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Example 3.1. Ler J = [0, 1] and define a function f : J x R — R by
1 if —o<x<0
fltx)=¢ 1+x if 0<x<1 (3.4)
2 if x>1,
forallt € J.
Now we consider the DI
() Y
<f([7x(t)) € G(t,x(t)) aetel (3.5)
x(0) =3 €R,
where p 1 J — R is Lebesgue integrable, and G : J x R — P¢(R) is given by
t Six<0
G(t,x):{ p(1) ' (3.6)

The function f(t,x) is continuous and bounded on J x R with bound with Lipshitz constant

1. also it follows that G is L}, —carathéodory with h(t) = p(t), t € J. Therefore if

|l plln< %, then the DI has a solution on J.




Chapter I

Stochastic fractional differential inclusion

driven by fractional Brownian motion

Many systems in physics, mechanic, biology and medecine use the concept of differen-
tial inclusions to modelise there phenomenas. Also the fractional differential inclusions
plays an important role in description of the memory and genetic properties, for this rea-
son many researches have been dedicated to the existence of mild solution for fractional
differential equations, please see Zhou [139]; Boudaoui and Caraballo[20], Kilbas[73],
Oksendal[53]], Boudaoui and Ouahab [19]].
In this part we aim to study the existence of the mild solution for the stochastic frac-
tional differential inclusion driven by cylindrical fractional Brownian motion with Hurst
parameter H € (%, 1) with finite delay of the form
“Dix(r) € Ax(r) + F(x(t — 1)+ 2(t — rix(t — ) 22D fors € [0,7]
x(r) = o() fort € [—r,0],

(4.1)

where D] is the Caputo fractional derivative of order ¢ € (%, 1) takes a values in a Hilbert
space #, x(.) which takes its values in #, A is the infinitesimal generator of a strongly
continuous semigroup {7'(¢) :# >0} in a Hilbert space, f : H — # is an appropriate
function.

Y:[-nT])x H — % is a non empty bounded closed and convex multivalued map,
r > 0 represent a finite delay.
{Bg (t),t> 0} is a cylindrical fractional Brownian motion on space X with Hurst pa-
rameter H € (%,1).

@ is a contionuous function such that ¢ € C, ([—r,T],L*(Q, H)).

Let (A, . |l4) and (X, || . || x) denote two real separable Hilbert spaces, where || . ||
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denote the norms in #, K, and (.,.) denote the inner product.

Suppose that Bg (t) is a cylindrical % -valued fractional Brownian motion with Hurst
parameter H € (%, 1), T is a fixed real number.

Let (Q,F,P) be a complete probability space furnished with a family of right con-
tinuous and increasing c-algebras {F;,t € [0,T]} satisfying F; C F and for r > 0 F; is
generated by {Bg(s),s € [(),t]} and the P-null sets.

L?(Q, H) stands of the space of all # valued random variables x such that

ElxlP= [ 1xIPaP <,
Q

forx € L?(Q,H),

1
2
lxlo=| [ 1xPap
Q

L?(Q,H) is a Hilbert space equipped with the norm || . [|5.

Let L(%,#) denote the space of all bounded linear operators from X to A and
0 € L(X, %) represents a non negative self-adjoint operator.

Let C, ([—r,T],L?* (Q,#)) denote the Banach space of the continuous functions {x(t —r) ,¢ € [0,T]}
from [—r,T] to L* (Q, ) such that

sup B | x(r) ||P< eo.
te[—nT]

Let #,, denote the space #H endowed with the weak topology, for D € H; D" de-
notes the weak closure of D. Let %p be an arbitrary separable Hilbert space and let
L?> = L% (%p, ) be a separable Hilbert space with respect to Hilbert Schmidt norm || . || 1
let LZQ (K, H) be a space of all y € L (K, H) such that \|IQ% is a Hilbert -Schmidt opera-

tor. The norm is given by
1 *
1" Hi%:H vO? |P=tr (yQy").

Then  is called a Q Hilbert Schmidt operator from X to #. L) (Q, %) denotes the
space of Fp-measurable # valued and square integrable stochastic process.

Consider a time interval J = [0, T'] with arbitrary fixed horizon T and let { B () ,t € J }
be a one dimensional f.B.m with Hurst parameter H € (%, 1). We need to cite the Mazur’s

lemma.

Lemma 4.1. [95] Let (X, || . ||) be a Banach space and let (uy,), € N be a sequence in X
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that converges weakly to some ug in X, u,, — ug as n — .
That is for every continuous linear function f in X* the continuous dual space of X,

f(uyn) = f(uo) as n — oo then there exist a function N : N — N and a sequence of sets of

N(n)
real numbers {o.(n), /k =n,...,N (n)} such that & (n), > 0 and Y, o(n), =1 such that
k=n
N(n)
the sequence (vy,) defined by the convex combination v, = Y, . (n), ux converges strongly
k=n

inXtougi.e

| v —uo || — 0 asn — oo.

4.1 Existence of mild solution

In this section we study the existence of mild solution for the system (@.1).

Definition 4.1. A stochastic process x € C, ([—r,T],L*(Q, #)) is mild solution of inclu-

sion if:
i. x(t) is measurable and F; adapted for each t > — r and for each fixed r > 0.

ii. x(t) € L?(Q,H) has cadlag paths on [—r,T] and there exist 6 (t —r) € Sels (x(t—r))
foreacht € [0,T]| and r > 0 satisfying the following integral equation:
x(1) = Sq ()@ (t) + Jo (t = )T Ky (=) f (x (s = 7)) ds
, 1 - 4.2)
+Jo(t—5)T Ky (t—s)o(s—r)dBj(s) fort €]0,T],
x(1) =o(t) fort € [—r,0].

We introduce two families of operators on H

S, (1) = /0 Ty, (8)T (10)d8 fort >0,

K, (1) = / ¢*v, (8) T (198)d® fort >0,
0
where , is the Wright function.

Lemma 4.2. [/39]
The operators S (t) ,K, (t) have the following properties :
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1. For each fixedt > 0, S, (t) and K, (t) are bounded operators, i.e. for any
x€Cr([-nT),L*(Q,H))
Sq(t) <My | x|,
M; | x|
L(q)

Ky (1) <

2. {S4(t)},., are strongly continuous .

3. {Sq(t)},-, is compact, if {T (1)}, is compact.

Conditions and assumptions

We need to impose the following assumptions:

(H1): The operator A : D(A) C H — # is the infinitesimal generator of a strongly con-
tinuous semigroup of bounded linear operator {S(¢),# > 0} in A such that
| S(2) ||>< M for some M > 0 and for each ¢ € [0, T].

(H2): The function f : H — H is weakly sequentially continuous.
For every fixed r > 0 we suppose that:
The multivalued map X : [—r, T] x H — % has a closed bounded and convex values

and satisfies the following conditions.
(H3): X(.,x) : [-r,T] — H has a measurable selection.

(H4): X(t—r,.) : H — H is weakly sequentially closed for each 7 € [0,T] and for any
each fixed r > 0 i.e it has a weakly sequentially closed graph.

(H5): X(t—r,.): H — H is weakly u.s.c.

(H6): For every s > 0 there exists a function u; € L' ([—r, T],R") such that

1Z(t —r,x) ||§g:sup{\| o (1) g0 S(r— r,x)} <us(t); ¥|x|P<s,Vre[-nT].

HT): 9 € C ([-1T],L*(Q,H)).

Now we need to prove that the set of selections of X is non empty.

Lemma 4.3. Assume that ¥ satisfies conditions (H3-H6) then the Selyy) is non empty.
Proof. Let x € C, ([—r,T],L* (Q,#)) we have that x is uniformly continuous, so there

exists a sequence {x,} of step functions

Xo: =1 T] = L2 (Q,H),
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such that

sup || xn (2) —x(¢) ||2—> 0, as n— o, 4.3)
te[—nT]

by (H3) there exists a sequence of measurable functions {G, } such that

Cn(t —r) €X(t —r,x,(t —r)) for any ¢ € [0,T] and for each fixed r > 0, by equation 4.3|
there exists a bounded set E C L? (Q, ) such that :

X (t —7)x(t —r) € Eforanyt € [0,T] and n € N, by (H6) there exists u; € L' ([—r,T],R")
such that:

16a (6 —r) [20<I| 2t —r) |3< s (1) Vn €N forae. 1 € [0,T].
2 2

Therefore {c,} C L*([—r,T],L)) is bounded and uniformly integrable and {c, ()} is
bounded in Lg for any t € [—r, T, there exist a subsequence denoted as the sequence such
that

o, ~o¢€Ll*([-nT],Lj),

i=0 i=0
such that &, — o in L? ([, T],L)) and

kn kn
by lemma 1| we obtain a sequence & = Y. Ay iGptis AMni >0, ¥ Api=1,

6,(t) — o),

by (H4) the multivalued map X (¢ —r,.) is locally weakly compact for a.e. r € [0,T] and
r > 0. Therefore by (H4) and the locally weak compactness, we get that

YX(t—r.): H— H,

isus.cforaer € [0,7] and r > 0.
Now we need to prove that 6 (t —r) € Z(t —r,x(t —r)) for a.e. t € [0,T] and r > 0 we

consider the lebesgue measure of Ny be zero such that:
YX(t—r.): H— H, isus.c.

We denote by 7 =t — r for any ¢ € [0, 7] and for each fixed r > 0.
6, (f) € X(7,x, (7)) and G, (f) — o (7) forall 7 € [—r,T]\ No and n € N.
Now we fix fy ¢ Ny and we suppose by contradiction that 6 (7)) ¢ X (fo,x (7)) but £ (79, x (fp))
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is closed and convex, by Hahn Banach theorem there is a weakly open convex set
V D X(f,x(fp))

satisfying 6 (fy) € V since, X (f,.) : H — H, is u.s.c, there exist a neighborhood U of
x(fo) such that, X (fp,x) C V for all x € U, the convergence x, (fy) — x(tp), as n —» o
implies the existence of ny € N such that x, (f)) € U for all n > ng therefore o, (f)) €
X (fo,xn (fo)) C V forall n > ng and by the convergence we obtain contradiction conclusion

about 6 (fy) € V. We arrive to the desired result; 6 (f) € £(7,x(7)) foraef e [-r,T]. O

Lemma 4.4. Let conditions (H3),(H5) and (H6) be satisfied, the Selz(x) is weakly u.s.c

with non empty convex and weakly compact values.

Proof. Let x € C, ([—r,T],L* (Q,#)), by the uniform continuity of x there exists a se-
quence {x,} of step functions.
Xy o [—1,T] — L*(Q, ) such that:

sup || xp(t—r)—x(t—7r) ||>= 0, asn — oo.

1€[0,T]

By (H3) there exists a sequence of functions {G,} such that
o, (f) € X(7,x, (7)),

where 7 =t —r for a.e. ¢ € [0,T] and for each fixed r > 0, note that 6, : [-r,T] — L3 is
measurable for any n € N.
By (H6) we have that {c,} C L? ([—r,T],L) is bounded and uniformly integrable and
{o, (7)} is bounded in LI for a.e 7 € [—r, T] by using the same method as lemma {4.3| we
obtain a sequence &, € co{oy ; k > n} such that &, — ¢ in L? ([—r,T],L9) and up to
subsequence G, (f) — o (7) fora.e7 € [—r,T] and 6, (7) € X (7,x, (7)) for all n > 1.

Let N be the setof all 7 € [—r, T| such that 6,, (f) — o (7) in L) and 6, (F) € Z,, (7,x, (7))
foralln > 1, let £ € LY, € > 0 by (H5) it follows that;
<x%X(f,.)>: H — P(R) is u.s.c with compact convex values so € — J u.s.c with com-

pact convex values and we have that:

<X,6,(f) > € co{<x,0p(f)>; k>n} C<X,X(T,x,(F)) > 4.4)
C<X,X2(f,x,(1)) >+(—€,¢€). (4.5)

Seeing that ¥ has a convex and closed values we obtain that 6 (7) € X(7, x (7)) for each




4.1 Existence of mild solution 61

7 € N, by consequence, 6 € Selyy).
Finally by using lemma@ we obtain that Selyy) is weakly u.s.c with convex and weakly

compact values, completing the proof. 0

For abreviation we will denote by C, the space C, ([—r,T],L* (Q,#)). For any x € C,,
we define the solution multioperator : § : C, — P (C,)

§ = SoSely,

where

$©) =S, 0090+ [ (=57 Ky (1-9)f x5 ))ds

e aT———

We verify that the fixed points of the multioperator § are mild solutions of our inclu-

sion, we fix n € N and we consider the space Q, such that Q,, = {x €C | x ||%r§ n}
Letbe §n =5 |o,: On — P(C}).

Lemma 4.5. The multi-operator §y has a weakly sequentially closed graph.

Proof. Let {x,} C Q, and y,;, € Fn (xn) Vm € N and x,,, — x in Qy, y, —> y in C;, we
need to prove that y € §y (x), but x,, € O, Vm € N and x,,, (1) — x(t) V¢ € [-n,T], So
| x(t —7r) ||< liminfy, oo || X (£ — 1) [|< ni, Vit € [0,T] therefore y,, € § (xm) so there
exists a sequence Gy,; O € sely(y,,) such that for every ¢ € [0, 7] and for each fixed r > 0

t
1) =S, 09(0)+ [ (1=K, (1=5) (5= 1)) ds (4.6)

t
+ / (t— )9 Ky (t — ) O (s — 1) dBEL (5). @.7)

0

By (H6) we obtain that :

| Om(t—r) ||i0§ us(t) VYt € [—r,T] and Y m > 0,
2

i.e. 6, is bounded and uniformly integrable and {G,, (¢)} is bounded in Lg for a.e
t € [-r,T] by using the reflexivity of L9 and the lemma we get the existence of a subse-

quence denoted as a sequence such that 6,, — ¢ in L? ([—r,T],L9).
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Moreover, we have :
! -1 H ! -1 H
/O(t—s)q Kq(t—s)cm(s)dBQé/O (t—5)" K, (t— 5) 5 (s) dBL),

Let ¥ : L? (Q,H) — R be a linear continuous operator. We must prove that the operator

R— [t (t—s)"" K,(t—s)R(s—r) ng (s) is linear and continuous from L* ([—r, T]L9) to L* (9, H)
for any Ry, R € L? ([—r,T]L}) and R,, — R(m — o) by (H6), we get that for each

t €10,T] and for each fixed r > 0;

E| fi (6 =) Kyt =) [Ru (s — r) — R (s — r)] dB (5) P< CaN ()

REN (=5 (Ru(s—r)—=R(s—r)) I7 ds

<N (g) (Jy (1 ="V ds) S ([GE | Ru(s=r) =R (s—r) | ds) }

<ON(Q)b™ [LE| Ru(s—r)—R(s—r) |*ds — 0 when m — 0,
2
where N (¢) = (%) , it follows that the operator

R—>/0t(t—s)qqu(t—s)R(s—r)ng(s),

is continuous, consequentially we have that the operator.
R— %o [ (t— 5)4! K,(t—s)R(s—r) ng (s) is linear and continuous from
L*([-rT|LY) — RVt € [-r,T]. By the weak convergence of G,, we get that for every
t € [0,T] and for each fixed r > 0,

fo/ot(t—S)q_qu(t—S)Gm(s—r)ng(s)—>)Zo/ot(t_s)q—1Kq(t_s)c(s_r)ng(s)

in the other part due to the hypothesis f (x,, (s —r)) — f (x(s—r)), by the same method

we prove that the operator
! 1
g—>/ (t— ) K, (t —5) g (s — r)ds
0
is linear and continuous operator from L? ([—r,T],L* (Q, #))to L? (Q, #) thus

[ =9 Ky =) G 5= s = [ (=97 Ky (1= (5= 1)) ds.

Finally we get that
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(0= 5,090+ [ (1=K, (1-9) 1 (x(5- ) ds @)

+/0t (1 =) Ky (1 —5) 0 (s — r)dBE (s) = 5(1) Vr € [0.T]. (4.9)

By the uniqueness of the weak limit in L? (Q, #), we obtain that,

for all 7 € [0, 7] and for each fixed r > 0.

Lemma 4.6. The multi-operator §, is weakly compact.

Proof. We prove as first that §,, (Q,) is relatively weakly sequentially compact.
Let x,, C Q, and y,, C C, satisfy y,, € §, (x,,) for all m > 0. There exist a sequence {G, },
Om € Selyy,) such that for all # € [0, 7] and for each fixed r > 0.

ym (1) =8 (t)(p(t)—i—/ot (t—s)qfqu (t—s5)f(xm(s—r))ds

+/0t (t—5)7 'Ky (t —s) O (s — 1) dBY (s).

By lemma (4.3) we have that there exists a subsequence denoted as the sequence, and a
function o such that 6,, — & in L? ([—r, T] ,Lg), since the operator f maps bounded and

f(xm(s—r)) — f(x(s—r)) € H up to subsequence, in addition
ym (1) = 1(1) :Sq(t)(p(t)—i—/ot (t—s)q_qu(t—s)f(x(s—r))ds
+/0t (t—s)q_qu(t—s)G(s—r)ng (s), Vte|0,T]

by (H1),(H2),(H6) we have :
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E |y (1) P<3E | Sq (1) (1) | +3E | fi (1 =)7Ky (t =) £ (¥ (s— 1)) s
+3E | fi (6 =) Ky (t =) O (s =) B (5)
<3MIE | @(r) P +3N (@) E | 5 (1—5)* " Ky (1 =5) f (o (s — 1)) ds |
+CoN (9)3 [ (1 =5 VE | 6 (s =) |17y ds
<3MIE[ Q1) 23N (Q)E | 5 (r—5)* " Kyt —5) f (n (s— 7)) ds |
+CoN (@)3 Ji (6 =)Dy (s — 1) ds
<3M7 || @(1) | +3N (q) 7 T?91* +3CoN (q)

<N,
forallmeN fora.e.t€[0,T].
By the weak convergence of C, we have that y,, — [ in C, so §, (Q,) is relatively weakly
sequentially compact, by theorem (3.1)) is weakly compact.
O]

Lemma 4.7. The multi-operator §,, has convex and weakly compact values.

Proof. for x € Q,; By the convexity of the multivalued map X and the linearity of the
integral; it follows that the set §, (x) is convex, The weak compactness follows by the

previous lemmas. [

Theorem 4.1. Assume that (H1) (H2) and (H6) hold, Moreover

1 t
lim inf—/ Un (s—r)ds =0,
nJjo

n—yoo
then the inclusion has at least a mild solution.

Proof. We indicate that there exists n € N such that the operator §, maps the ball Q,, into
itself.

Suppose on the contrary that there exist sequences {z,}, {y,} such that z, € Q,,
Yn € Tn(z0) and y, ¢ Qn, Vn € N. Then there exist a sequence {6,} C L? ([-r,T],L9)
On(s—r)€X(s—rz,(s—r)) VneNanda.et € [0,T] for each fixed r > 0 such that,

3 (0) = Sg ()@ (0) 4 i 1 )T Ky 1 =5) £ (xa(5— )+ [ (1 =)7Ky 1 —5) 05 (s — 1) dBE (s)
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Vt € [0,T] and r > 0, as reason of the lemma (4.4), we get that

Iyllc 1. > 2 N(q) ,»
1< ——=L < -3M t 33—~~~ p7] N
<= 1||‘P()||c,+2q_1 neNl,

we get a contradiction with lemma (#.3).

Now, we fix n € N such that §, (Q,) C Q,, by lemma Sn (Qn) is weakly compact.
LetU, =3, , we consider U, = co (Uy), where co (U,) is the closed convex hull of U, by
theorem U, is a weakly compact set. Additionally, we have that §, (Q,) C Q, and

QO 1s a convex closed set; we get that U, C Q, for this reason

- 0

Sn (Un) = Fn (CO (Sn (Qn))) C $n (Qn) C $n (Qn)

=U, CU,.

By lemma (4.4) §, has a weakly sequentially closed graph, thus from theorem (3.4} in-
clusion (@.1)) has a solution. O

4.2 Numerical application

We consider

1 2 aBl
Diy(1,E) € T 4 f(y(t—2,8) + Gt 2,3 (1~ 2,8) 75" forr € [0,1]

y(1,8) = 0(1)& fort € [-2,0],
(4.10)

where

°D7 is the Caputo derivative of order g = 5 we pose H# = L?([0,7],R), f: H — H is a
continuous function and satisfy a condition (H), G (.) : [-2,1] x H — H is a multivalued
map, @ is a continuous function such that ¢ € C, ([-2,1],L? ([0, 7], H))..

The operator A : D (A) C H — # is defined by

D(A) = {y € }[/y,y, are absolutely continious,y € H /y(0) =y (n)= 0} :

{Bg (t),t> 0} is a cylindrical fractional Brownian motion on space X with Hurst pa-
rameter H € (%,1).
such that : N

Ay=y' then Ay="Y n*(y,yn)¥n,

n=1
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where y, (1) = \/%sin (nt), n=1,2,... we see that A generates a compact analytic semi-

group {7 (t)},5¢ in H.
Now we assume that g; : [—2,1] x H — H i=1,2 such that :

i. g1 and g, are u.s.c.
. g1 < .

iii. For every s > 0 there exists a function y; € L' ([~2,1],R™) such that
I 00(6) .0 p6) |y P< sV € [-2,1] fori—1,2.

We take G(r—2,y(t—2,8)) = [g1 (t—2,8) , g2(t —2,&)], so we obtain the following

form:

°Dix(t) € Ax(t) + f(x(t —r)) + Z(t — r,x(t — r))@ fort € [0,T]

x(t) = @() fort € [—r,0],

4.11)

where x(1)& = y(¢,§), 2(t,x(¢)) (§) = G (t,y(¢,§)), from our assumptions (i)-(iii) it fol-
lows that the multivalued map X (.) : [—2, 1] x H — H satisfies the conditions (H3)-(Hg).
So all the assumptions in theorem [{.1] are verified thus this inclusion 4.10] has a mild

solution.




Chapter

The fractional stochastic heat equation

driven by time-space white noise

The fractional derivative of a function was first introduced by Niels Henrik Abel in 1823

[1], in connection with his solution of the tautochrone (isochrone) problem in mechanics.

The Mittag-Leffler function Ey(z) was introduced by Gosta Magnus Mittag-Leffler in
1903 [102]. He showed that this function has a connection to the fractional derivative

introduced by Abel.

The fractional derivative turns out to be useful in many situations, e.g. in the study of
waves, including ocean waves around an oil platform in the North Sea, and ultrasound in
bodies. In particular, the fractional heat equation may be used to describe anomalous heat
diffusion, and it is related to power law attenuation. This and many other applications of
fractional derivatives can be found in the book by S. Holm [60].

In this chapter, we study the following fractional stochastic heat equation

o

;t—aY(t,x) = AAY (£,x) +0W (1,x); (1,x) € (0,00) x RY (5.1

where d € N = {1,2,...} and % is the Caputo derivative of order o € (0,2), and A > 0

and ¢ € R are given constants,

d aZY

AY =) —(t,x) (5.2)
Las
is the Laplacian operator and
W (t x)—W(rx(n)—EM (5.3)
e T Ot Oy ...0xy '
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is time-space white noise,
B(t,x) = B(t,x,0);t > 0,xc R o € Q
is time-space Brownian sheet with probability law P. The boundary conditions are:

Y (0,x) = 8p(x) (the point mass at 0), (5.4)
lim Y(¢,x) =0. (5.5)
X—+/— oo
In the classical case, when o0 = 1, this equation models the normal diffusion of heat

in a random or noisy medium, the noise being represented by the time-space white noise
W (t,x).

- When a > 1 the equation models superdiffusion or enhanced diffusion, where the
particles spread faster than in regular diffusion. This occurs for example in some biologi-

cal systems.

- When o < 1 the equation models subdiffusion, in which travel times of the particles

are longer than in the standard case. Such situation may occur in transport systems.

For more information about super- and subdiffusions, see Cherstvy et al. [34].
We consider the equation (5.1) in the sense of distribution, and in theorem (5.1]) we
find an explicit expression for the $§’-valued solution Y (7,x), where S is the space of

tempered distributions.

Following the terminology of Y. Hu [62]], we say that the solution is mild if Y (¢,x) €
L?(P) for all ¢,x. Tt is well-known that in the classical case with o = 1, the solution is
mild if and only if the space dimension d = 1. See e.g.Y. Hu [62].

We show that if o € (1,2) the solution is mild if d = 1 or d = 2.

Then we show that if o < 1 then the solution is not mild for any space dimension d.

There are many papers dealing with various forms of stochastic fractional differential
equations. Some papers which are related to ours are:

- In the paper by Kochubel et al. [[76] the fractional heat equation corresponding to
random time change in Brownian motion is studied.

-The papers by Bock et al. [11], [14] are considering stochastic equations driven by
grey Brownian motion.

-The paper by Rockner et al. [88] proves the existence and uniqueness of general
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time-fractional linear evolution equations in the Gelfand triple setting.

-The paper which is closest to our work is Chen et al. [33], where a comprehensive
discussion is given of a general fractional stochastic heat equations with multiplicative
noise, and with fractional derivatives in both time and space, is given. In that paper, the
authors prove the existence and uniqueness results as well as the regularity results of the
solution, and they give sufficient conditions on the coefficients and the space dimension
d, for the solution to be a random field.

Our work, however, is dealing with additive noise and a more special class of frac-
tional heat equations. As in [33]] we find explicit solution formulae in the sense of distri-
butions and give conditions under which the solution is a random field in L?(PP).

We refer to Holm [|60], Ibe [64], Kilbas et al. [[/3] and Samko et al. [[117]] for more

information about fractional calculus and their applications.

5.1 The solution of the fractional stochastic heat equation

We now state and prove the first main result of this work:

Theorem 5.1. The unique solution Y (t,x) € S’ of the fractional stochastic heat equation

@) - (5.5) is given by

Y(t,x) =1+, (5.6)
where
_ —d 1x7 o _ i t(x|y|)

h=00 [ B~ Py =0 [ e ﬂkzo e 5.7)
and

~ o(2m) i (/R E x(r—r)“\yP)dy)Bwr,dz)

_ —a [ A —r)*y[»)*

— o(2n) /0 /(/Rde Y ek ra) ) Bldnd, 59

where [y = y* = ¥4_, 7.

Proof. a) First assume that Y (7,x) is a solution of (5.1)). We apply the Laplace transform
L to both sides of (5.1)) and obtain (see (2.41))):
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S%Y (5,%) — %Y (0,x) = AAY (5,x) + oW (s,x). (5.9)

Applying the Fourier transform F, defined by

Fe(y) = [ e gx)dx =:80): g € L' (RY), (510

we get, since ?(O,y) =1,

N d  ~ N
$*Y (s,y) —s* ! = kzlyﬁY(s,y) +oW(s,y), (5.11)
j:
or,
(s* +Aly?) Y (5,5) = %Y (07, ) + oW (s,). (5.12)
Hence
=~ o—1 ‘:\/f/
Y(s,y) = — oW(s.y) (5.13)

SN2 s+ Aly|?

Since the Laplace transform and the Fourier transform commute, this can be written

@ oW(s,y)

Y(s,y) = . 5.14
3= e T Abe o1
Applying the inverse Laplace operator L~ to this equation we get
~ B sO1 _ Gﬁ/(s y)
P =1 (Y2 (V)
(t,y) ST AP (t,y)+ 1 AP (t,y)
1 SW(s,y)
= Eq1 (—Ay[**) 4L 1(—’) t 5.15
0571( |y| )+ s°‘+My\2 (7y)7 ( )
where we recall that
@9=% =t
Eop(z) =) ——F¢ (5.16)
BT & Dok + B)

is the Mittag-Leffler function.

It remains to find L~! (;ngyﬁl) :
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Recall that the convolution f * g of two functions f,g : [0,00) — R is defined by

(fxg)(t /ft—r t>0.

The convolution rule for Laplace transform states that

L( [ o= relar) ) = Lro)Le(s).

[ ra=wigtnraw =1 (s L) 0
By (2.43)) we have

or

_ 1 _
- 1 gy
I'ok+a)
2 (M)t
= T(a(k+1))
= (M)t

:kzo T(a(k+1))

In other words,

————— =OLA
Sa—f—;\.|y|2 (Say)a

combining with (5.18) we get

L (a5 6) 0 =17 (LA W) 0

s*+Aly[?
[ AN
= G/ At —r,y)W(r,y)dr.
0
Substituting this into (3.13]) we get

~ t ~
Y(t,y) = Eq1 (—M%y)?) + 0/0 At —r,y)W(r,y)dr.

Taking inverse Fourier transform we end up with

¥0.0) = (B (-2 P) )+ ([ A=k ()ar) )

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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F(éf@—@ﬂ@&)bﬂzFﬂwFﬂw,

/ flx—2)g(z)dz=F" (F fO)F g(y)> (x)- (5.25)
R

Now we use that
or

This gives

P (/(:A(t—ry) (ry)dr)() /tF_l (A(t—r,y)W(r,y))(x)dr
= [P (F (A=) OFW 000 ) Wdr
_//Rd F7'A(t —1y)(x—2)) W(r,z)dzdr

:/0 /]Rd ((275) /]Rd ei(xz)yA(t—r,y)dy) W (r,z)dzdr
= (2m)~¢ /Ot /]Rd </Rd TN —r,y)dy) B(dr,dz).

Combining this with (5.24)), (5.16) and (5.19) we get

e (M)t
Y(t,x) =F 1(kgbm)

t .
o(2n) ¢ / /R d < /]R d e’("z)yA(t—r,y)dy> B(dr,dz)
(=M*[y[)"

- 7/ lxy,;;, T(ok+1)
+o(2m)™ /Ot(t—r)"“1

oz g (A=) P
/R" </Rd6( )}I;) T(o(k+1)) dy>3(drad2)-

This proves uniqueness and also that the unique solution (if it exists) is given by the above formula.

b) Next, define Y (¢,x) by the above formula. Then we can prove that Y (,x) satisfies (5.1]) by

reversing the argument above. We skip the details. O
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5.2 The classical case (o0 =1)

It is interesting to compare the above result with the classical case when o=1:

If o =1, we get Y (¢,x) = I + I, where

0 [ e Z xr|y|

I

and

k
a [ iy o (=M —=1)[y]?)
— 5(2n) /O /R d /R o Z>yk§6 - dyB(dr,dz),

where we have used that I'(k+ 1) = k!

By the Taylor expansion of the exponential function, we get

I = (2n)™ /R ) e M gy

where we used the general formula

/ e*(“‘y‘2+2by)dy = <E> % a>0;beC
R4

Similarly,

o(2m)” //Rd/Rd i(x— Zyi _Mt;!r)|y|2)kdy3(dr,dz)

k=0
d
2

t \xfz\z
_ ~d T pEnE
o(27) /0 /R d ( o) ¢ Blnds)

d rt d _ |x-
_ o(4mh) 2 / / (t — )" 2¢ 900 B(dr,dz).
0 JRY

Summarising the above, we get, for o =1,

_d b2
Y(t,x) = (4nht) " 2e 4n

| 2

Jr—?
o(4mh)~ // (t—r) R PREC): B(dr,dz).
R4

(5.26)

(5.27)

This is in agreement with a well-known classical result. See e.g. Section 4.1 in Y.Hu [62].
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5.3 Whenis Y(¢,x) a mild solution?

It was pointed out already in 1984 by John Walsh [131]] that (classical) SPDEs driven
by time-space white noise W (z,x); (¢,x) € [0,00) x IRY may have only distribution valued
solutions if d > 2. Indeed, the solution Y (z,x) that we found in the previous section is
in general distribution valued. But in some cases the solution can be represented as an

element of L?(PP). Following Y. Hu [62] we make the following definition:

Definition 5.1. The solution Y (t,x) is called mild if Y (t,x) € L>(PP)
forallt > 0,x € R,

The second main issue of this chapter is the following:

Problem For what values of a € (0,2) and what dimensions d = 1,2, ... is Y (¢,x) mild?

Before we discuss this problem, we prove some auxiliary results:

Lemma 5.1. (Abel’s test)

Suppose Y ~_, by, is convergent and put M = sup |bn|. Let {pn} be a bounded monotone

sequence, and put R = sup |p,|. Then Y, bnpn is convergent, and | Y. | bypn| < MR+
n

R| Y51 bnl.

Proof. By summation by parts we have with

By=YY b N=1.2,..,

N N
Z = 2 Pi(Bx—Bi-1) (5.28)
k=1 k:O
N-1
=Y Bi(px — Pr+1) + puBy- (5.29)
k=1
Note that
N-1 N—1
| Y Belpx—Prs1)| S M| Y, pr—Prs1| = M(p1 —pn) (5.30)
k=0 k=0
< MR. (5.31)
Hence
N
|Zbkpk\ < MR+ R|By|. (5.32)
k=1
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Lemma 5.2. Suppose o > 1. Define

Ik+1)

= k=1,2,... 533

P~ Flok 1 1) (5-33)
Then {py }« is a decreasing sequence.

Proof. Consider
Pr+1 F(k+2)F(ak+1) . (k+1)F(k+1)F(0ck+ 1)
pr  D(ak+1)+1DI(k+1)  o(k+ 1) (o(k+1))T(k+1)
INok+1)

=——+=L<I1 5.34

I'(ok + o) <h (5:34)

since o0 > 1. ]
Lemma 5.3. Suppose o > 1. Define

['k+1)

=——"=; k=12,.. 5.35

"= Tlok+ o)) (5.35)
Then {ry} is a decreasing sequence.

Proof. Consider
M1 Dk+2)T(o(k+1)) (k+1DI'(k+ DIN(o(k+1))
e D(ak+2)C(k+1)  (ok+20—1)I(0tk+ 20— 1)T(k+ 1)
o k+1 I'ak+ o)
Cok+200—1 C(ok+200—1)
]

We now return to the question about mildness:

A partial answer is given in the following:

Theorem 5.2. Let Y (t,x) be the solution of the o-fractional stochastic heat equation.
Then the following holds:

e a)lfo=1, then Y (t,x) is mild if and only if d = 1.
* b)Ifo>1thenY(t,x) ismildifd =1ord=2.

e c)Ifau< 1 thenY(t,x) is not mild for any d.
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Proof. Recall that Y (¢,x) = I + I, with

Il

(=Aepy?)*
ixy
/ ; INok+1) T(ok+1) ¥

— - ! o— i(x—z S (_}“(t_r)a|y|2)k
L =o(2n) d/o (r—7) I/Rd (/Rde( )yl;) I'(a(k+1))

a) The case oo = 1:

(5.36)

dy) B(dr,dz).

(5.37)

This case is well-known, but for the sake of completeness we prove this by our

method:
By (5.27) and the Ito isometry we get

E[Yz(t,x)] =J1+Jo,
where

llx]12

J1—12 (4757\1) e 2

and, by using (5.26),

Jr = c*(4mh) ¢ Ot(z — )@ — 1) %dr

t
“emy (-0 tar

which is finite if and only if d = 1.

b) The case o > 1
By the It6 isometry we have E [Y? (,x)] = J) +J>, where

2
Ji = (2m) = (/ ”‘yk;) oik’i'l) y)
2
= m ([ e E(-meyPay)

(5.38)

(5.39)

(5.40)

(5.41)
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and

275 2d/ / 20( 2 / i(x—z)y i (_}\'<t _ r)a‘ylz)kd 2d d
e r
e "y £ T(ok+a) ) “
2
2(2m) 2 / /R (=22 ( /]R ) ¢ Eg o (— Mt — r)“|y]2)dy> dzdr. (5.42)

By Abel’s test and Lemma([5.2]and (5.26) we get

B B © Xy (—kt“|y!2)k [(k+1) 2
S =(2n) Zd(/w (; T(k+1) F(ock+1)>dy>

0
- k
C (/ eixyz (_Xtab)’z) dy>2
R [(k+1)
Cl(/ eixye—kt‘x|y|2dy>2
R4

T\ _aw? d
C (W) ¢ < ooforall 1> 0,x € R and for all d.

IN

By the Plancherel theorem, Lemma[5.3]and (5.26) we get

I =c*(2m) > / (= /]R ) (;(_M;O:]zﬂxa;dz)k)zdzdr
—n [ [ omnpe

5 (;0 (_Mt;(?jjlc)_d ! rr(gckilgc) ) i

e [a-rp2 [ (,i t_1?+|)1€) Z’))zdz"’

!
_ \20-2 M—r)®fx—g]?
—C2/0 (t—r) /]Rd (e ) dzdr
t
_ o N20-2 —2A(t—r)%*x—z|?
7C2/0 (t—r) /Rd (e >dzdr

—G /0 (o e <2x (t”_ r)a> f

t
=G [ e=n22e—r) Yar
0
1
=C; / (1= %ar
0

This is finite if and only if 200—2— % > —1,ie.d <4—2
Ifoc—l—i—s‘[hen4—f—2—i—1 > 2 forall e > 0.
Therefore J, < oo ford =1 or d = 2, as claimed. O
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¢) The case a0 < 1
Proof. By (5.377) we see that
J, =c*(2m) 2 / r)2e-2 , (Eaa(— t—r)“]x—z\z))zdzdr
R
2
=) M [ [ (Baa( M=)y dvdr
Choose Bsuchthat 0 < o < B < 1.
A result of Pollard [[113]], as extended by Schneider [118]], states that the map
x> h(x) := Eqp(—x); x € R4 (5.43)
is completely monotone, i.e,
n d" d
(-1) y ~h(x) >0 foralln=0,1,2,...; x € R". (5.44)
X
Therefore by Bernstein’s theorem there exists a positive, o-finite measure u on R™ such that
Eqp(—x) = / e u(ds). (5.45)
0
In fact, it is known that u is absolutely continuous with respect to Lebesgue measure and
B Eg g (—1%) = / ¢ Ky p(s)ds (5.46)
bl 0 Kl
e B [sin((B — o)1) +sCsin(Br)
sY P [sin((Pp — o) ®) 4+ sYsin(Pr
Ko p(s) = [ 5ol ” ] (5.47)
T [s2% 4 25%cos (o) + 1]
See Capelas de Oliveira et al. [29], Section 2.3.
Putting t* = x this can be written
1
Eqp(—x) = AT / e " Ky p(s)ds; x> 0. (5.48)
0
This gives
B 20 [T odyE
Eap(—plyP) =p | e K s)ds. (5.49)
It follows that
2 1=, 20
(Eap(—=ply[*)"~ (p @ | Ny
_B, 4B
=p (5.50)
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Hence, by using polar coordinates we see that

(e} _ﬂ B
2 (Eap(—ply?)’dy~ | R <RIAR = o, (5.51)
0

for all 4.
Therefore J, = oo for all d. ]

Remark 5.1. » See Y. Hu [62)], Proposition 4.1 for a generalization of the above

result in the case o = 1.

* In the cases o.> 1, d > 3 we do not know if the solution Y (t,x) is mild or not. This

is a topic for future research.

5.4 Numerical examples

Example 1

Let us consider the following heat equation where o < 1. In this case our equation models
subdiffusion, in which travel times of the particles are longer than in the standard case.

Such situation may occur in transport systems. For o = % and d = 2 we get

1

E?t—zlY(t,x) = MY (t,x) + oW (t,x); (t,x) € (0,00) X R? (5.52)
2
The solution is given by:

Y(t,x) =1 +1, (5.53)
where

I =(m)~? /R E (<2 ?)dy = (2m) 2 /R Merfe(~Mi)dy,  (5.54)

(with erfe(z) = 2 [fexp(—t?)dt) and

T

h=o(2n)2 /0 (= )it /R 2 ( /]R IE (M) |y|2)dy) Bldrdz)  (5.55)

By the Theorem [5.2]this solution is not mild.




5.4 Numerical examples

80

Example 2

Next, let us consider the heat equation for o0 = % In this case the equation models superdiffusion

or enhanced diffusion, where the particles spread faster than in regular diffusion. This occurs for

example in some biological systems. Now the equation gets the form

3

a";y(z,@ — MAY (£,%) + OW (1,5); (£,%) € (0,00) x R
t2

By Theorem [5.1] the solution is
Y(tax> =L +Db,

where

MZIyI
k+1)

7

11:(27:)*2/]1@&”153( w3 [y2)dy = (2m)~ / DW):

and

[SI[o%]

<—x<r—r>%\y12>dy) B(dr.dz)

t .
—6(275)72/0 (t—r) 71‘/]1%2 </Rz el(fo)YE%7

t ' ' © (01 —7r)3lvI2)k
26(27'5)72/0 (t—r)i/Rz (/Rd el(xz)ykg( };((tgk—k);)y)’ ) dy) B(dr,dz)

By Theorem [5.2]this solution is mild.

[S1[9%

(5.56)

(5.57)

(5.58)

(5.59)




Chapter

Impulsive stochastic differential equations

involving Hilfer fractional derivatives

Differential equations and inclusions with fractional derivatives have recently proved to be strong
tools in the modeling of many phenomena in various fields of engineering, economics, physics,
biology, ecology, aerodynamics and fluid dynamic traffic models [6, (92} 114, [122]. For some fun-
damental results in the theory of differential equations involving Caputo and Riemann-Liouville
fractional derivatives, please see [4, |5, 182,126,128 129} [138]] and the references therein.

Since Hilfer [59] proposed the generalized Riemann-Liouville fractional derivative, there has
been shown some interest in studying differential equations involving Hilfer fractional derivatives
(see [59] and the references therein).

The two-parameter family of Hilfer fractional derivative DZ;B of order o and type B permits
to combine between the Caputo and Riemann derivatives and give an extra degree of freedom on
the initial conditions and produce more types of stationary states. Models with Hilfer fractional
derivatives are discussed in [52][[126]. We prove the existence of integral solutions for stochastic

differential equation with impulses driven by sub-fractional Brownian motion with Hilfer frac-

tional derivative of the form

H
DEEX (t,3) = A(0)X (1,3) + (t.3) + 6 (6,) 22 for 1 € [syt41], k=0,...m

x(t) = hi(t,%) , fort € (tr,s¢), k=1,2,..m  (6.1)
(Iy ") (1) =0 = 6 € Dy ((—,0],U].

Dg;B is the generalized Hilfer fractional derivative of orders o € (0,1) and type B € [0,1]. x(.)

takes value in a real separable Hilbert space U, with inner product (.,.) and norm || . ||, and A is the
infinitesimal generator of strongly continuous semigroup of bounded linear operator {7 (¢)};>o.

Sg is an Q-sub-fBm with Hurst parameter H € (%, 1), Ié “Vis the fractional integral of orders 1 —y
(y=0o+p—ap).
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The impulses times satisfy:

O=ty=s0<t1 <51 <t <..<ty <spu<tyy1 =T, fort > 0.
X; mean a segment solution which is defined by
x(.y.) i (o0, T xQ = U,

then for any 1 > 0, x,(.,.) : (—e0,0) x Q — U is given by
x%(8,0) = x(t +8,), for B € (—oo,0], ® € Q with is valued in D,

where
Q);T ={x: (=0, T] x Q= U; x|5,€ C(J;U), (1) € Dy, bk=1,...,m.
With the norm

i
Il =19 Ly, + ( sop E 1150 )
and ¢ € Dy, where, Jy = (si,tkv1], k=1,...,m.

The space Dy, is the space formed by all F-adapted measurable square integrable # -valued
stochastic process {x(z) : r € [0,T]} with norm ||x||%ft = t:[l(l)pT]EHx(t)Hz, then (Dg,,|[.[|p, ) is a
Banach space. ’

Dy, denote the family of all almost surely bounded Fy-measurable, and D-valued random vari-
ables. D = D((—,0],U) denotes the family of all right piecewise continuous functions with

left-hand limit ¢ from (—eo,0] to U, with the norm

[0 fli= sup [[o(6)].

—ooO<t

We assume in the sequel that X (¢,x;) : J x U — U, such that X (¢,x,) = ¢(0) — g(¢,x,),
g:Jx Dy —Uand f:JxDy —U, k€ (ti,58] x Dy — U forallk=1,...,m.
6:Jx Dy — LY(K,H).

T

In the next we mention an axiomatic definition of the phase space Dy, introduced by Hale and
Kato [58]].

Definition 6.1. Dy, is a linear space of family of Fo-measurable functions from (—oo,0] into U

endowed with a norm || . H@TO, which satisfies the following axioms:

(A-1) If x : (—oo,T] — U, T > 0 is such that yo € Dy, then for every t € [0,T) the following

conditions hold

(i) yi € Dy,
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(ii) | y() 1< L ]| ye [y,

(iii) || ye oy, < K(@)sup{[[ y(s) [|: 0 < s <13 +N(t) || (0) [|.p
where L > 0 is a constant; K, N : [0,00) —> [0,00), K is continuous, N is locally
bounded and K, N are independent of y(.).

(A-2) : For the function y(.) in (A-1), y; is a Dg,-valued function fort € [0,T).
(A-3) : The space Dy, is complete.

Denote

K=sup{K(t): t€J} and N=sup{N(t): t€J}.

Theorem 6.1. [37]/(Banach’s Fixed Point Theorem)
Let (X,d) be a complete metric space and let T : X — X be a contraction on X. Then T has a

unique fixed point x € X (such that T (x) = x).
Let us define the operators {Sq g(¢) : # > 0} and {P(t) : 1 > 0} by
1—
Sap(t) =1 PR n),
P(t) =P T(1),

Ty(r) = /O : BOW,(8)T (1P0)a6;

where
o0 _Aa\n—1

is a function of wright type which satisfies

o _ (1+¢) e
/Oe\yﬁ(e)de_r(“rﬁé), Ec(—1,00).

Lemma 6.1. [56] The operator Sy g and Py have the following properties

i) For any fixedt >0, Sy g(t) and Pg(t) are bounded linear operators, and

2(B—1)
|Bs(1)x|® < M x| and
P (T(B))?
2a-1)(1-p)
|Se.p(e)x|? < M 2.

(F(a(1=PB)+P))

i) {Pg(t) :t >0} is compact if {T(t) :t > 0} is compact.

Remark 6.1. Dg£l_B)S(x7[5(t) = Py(1).
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6.1 Existence of mild solution

In this section, we first establish the existence of mild solutions to stochastic differential equations
with non-instantaneous impulses driven by a Q-sub-fractional Brownian motions. More precisely
we will formulate and prove sufficient conditions for the existence of solutions to[6.1} In order to

establish the results, we will need to impose some of the following conditions.

(H1) The operator A is the infinitesimal generator of a strongly continuous of bounded linear
operators {S(¢)};>o which is compact for # > 0 in  such that || S(¢) ||>< M for each ¢ € J,
where J = [0,7T].

(H2) The operators Sy g, Pg € D(A).

(H3) The function f:J X Q)}T — U satisfies that:
E || f(t,01) = f(t,02) [IP< Ly || 01— 2 H%; ,
T
forall 01,02 € DY, 1 € (sp,te1] and k=1,...,m.

(H4) The function The function g : J X @;{% — U and there exist a positive number K,. Forr € J,

we have
E |l g(t,01) —g(t,02) [IP< Kg || 01— 2 ||2@} , forall §1,02 € Dy, t€J.
T

(H5) The function 6 : J X @;{% — L% satisfies that there exists a positive constant L such that
E| o 01)—o(t¢2) ||ig§ Lo || 01— 2 H%} , forall 1,02 € Dy, t € (s, lk11]
T

and k=1,...m.

(H6) There exist constants L, > 0, for all ¢1, ¢, € Q)YT, t € (tx,s¢] and k = 1,...,m such that
E || hi(t,01) = hit,02) 1< L, || 01— 02 H%;
T
and hy, € C((t,sx] ¥ Q)}T,U), forallk=1,...,m.

Now, we give the definition of mild solutions to our problem.

Definition 6.2. An F;-adapted stochastic process x : (—oo,T| — U is said to be an mild solution
of (1)ifxo = ¢ € Dy, and

(i) {x,1€J} € DY .
(ii) [§[xs+g(s,x)]ds € D(A) ,t €[0,T].

(iii) foreacht >0




6.1 Existence of mild solution 85

;

Sap(t) [0(0) —g(0,0)] + g(t,x:) + fé Pyt —s)f(s,x(s))ds + fé Py(t — s)G(s,xs)ng(s)
fort €10,1]
he(t,x;),
fort € (txysi]; k=1,...,m.
Soup(t = sk) i (sx,x5,) + 8 (5w, x5,) + fstk Pyt —s)f(s,x5)ds + fstk Py (t — S)G(s,xs)ng(s)
fort € [sg,tri1]s k=1,..m.
(6.2)

To establish the existence and uniqueness theorem of the mild solution for system [6.1]
We use a Banach fixed point to investigate the existence and uniqueness of solution for impul-

sive stochastic differential equations.

Theorem 6.2. Let (HI)-(H6) hold with $(0) — g(0,¢) € D(A). and

Ly = max(yl, M2, nu3) <1,

where
—o H—o
20p+1) ((-opp 0 LM MLty )
up =3t <t K, +
: : £re)? (@)
Mo = max 2LhkT2(1*),
k=1,...m
and
_ 4MLy, 2(1-y) 420 IM (5 —si)®P VL | CuMLH 0 (4 —sy) 2B Y)

o= me [F(oc(l—oc)+l3)2+4t e+ TE? + )’

Then for every initial function ¢ € Dy, there exists a unique associated mild solution x € Q)}T of
the problem ({6.1).

Proof. The proof is given in several steps. Consider the problem (6.1)

dsy
DEPX (11x) = A ()X (t,3) + £(t.5) +0 (1,x) D50, fort € [se,tnn], k=0,..m
x(t) = h (t,%), fort € (tg,s1), k=1,2,...m
1—
(Iy"x)(1)]i=0 = ¢ € Dy ((—e0,0],U].
We transform our problem into a fixed point one. Consider the operator & : @;{fr — D}T defined
by
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[ 0(0): 1€ (—e0,0]
Sap(t) [0(0) —g(0,0)] +g(t,x) + fo Pt — ) f(s,x5)ds + Jo Py (r — 5)5(5,%5)dSg (s)
ift€(0,n].
Dx)(t) =94 h(t,x),
ift € (te,Spv1], k=1,..m,
Saup(t = 51 (sk,%5,) + 8 (s, x5, ) + [y, Pa(t —5)f (s,x)ds + [ Pa(t —5)0(s,x,)dSp (s)
ift € (sp,teq1], k=1,...m.

For ¢ € Dyg,, we define o by

(t) _ { ¢(t)7 re (_°°70]
Sap(t) [0(0) —g(0,0)], 7€ (0,n].

It is clear that § € Q)}T. Letx(t) = z(t) +&(t); t € (—oo,T], z(t) satisfy that

0, fort € (—eo,0]

8(t, 2+ )+ [0 Sap(t — ) f(s,25+ §s)ds + [3 Pa(t — 5)0(s, 2 —i-q;s)ng(s)
fort e (0,1]

hy(t,2 + G;)

z(t) =
fort € (tx, s
S(x,B(t - sk)hk(sk>ZSk +(T)S1<) +g(sk7ZSk +(T)Sk) + fst,‘ PB(I —5)f(s,2s —|—(ﬁs)ds
+ fs'k Py(t —s)o(s, 2+ (ﬁs)ng(s)
fort € (sg,tys1], k=1,...,m.
So

Dy, = {z € Q)YT, such that z(0) = 0}, and for any z € D, _» we have then (Q)/}'T, Il - ||ng> is a
Banach space.

Let the operator ®: D'y — D'y defined by

( 0, fort € (—,0],
§(t,2 -+ G7)+ J2 Po(t =) £ 5,2+ Gy)ds + i Pyt — 5)0(s, 2+ 6,)dSE ()

fort € (0,1],
D) (1) =14 itz + ),

fort € (tx, s
Sap(t — si)hi(sk, 25, + Bs) + 8 (5,2 + Bs,) + ffk Py(r —5)0 (5,25 + (I;S)ng(s),

fort € (sk,tgy1], k=1,...,m.
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From the assumptions, it is clear that ® is well defined. Now we need only to show that ® is a

contraction mapping.
Case 1:
For u,v € Q)’fr, and for ¢ € [0,#,], by using Lemmawe have

E [ [(u(r)) ~ S((1)] I < 320 E || glo,1+8) gt +8) |1
+3PUVE | [Pyl —9) [F(s0+8) — S+ 8] P ds
+3217VE | /OtP 5(1 = 5) [0(s,u5+85) = (s,v(s) + )| dST' (s) |I°

<h+L+15,
(6.3)

where

I := 320-YE Il g(t,u +(T)t) —g(t,v +(T)t) H2

<3P0VK Ju—v2,
JT

I:=320-"E | /OZPB(I—S) [f (5,15 +05) = f (5,7 + )] || ds

2(177)M t ~ ~

= 3[F2(B)E/o (6 =527V | f(s,us+8s) = f(s,v5+0s) |1 ds,
24B-p M >

<3———— T lu—v]|* ,and

=gy v,

L:=320"YER | /o ’PB(t —5) [0(s,us+5) — (s,(s) +&5)] dSh (5) |1

< 3t2(H—Y)+1CH /0’ I PB(Z‘ ) [G(S,Ms _|_(T)S) —o(s,v(s) +(T)s)] ds Hi%

3[2(H7’Y)+1CHM

< W/Of(t_s)z(ﬁ—l) | o (s, us + ) — (s, v(s) + ) Iz,
ML t2H-0o+aB) )
N0 LA

By taking the supremum over t, we obtain

I @) (1) = 2)(1) Iz, = sup E||e'7 [ (u(r)) — d(v(r))] ||

Tr t€]0,4]

e t7*LM MLgt™
< 32FH (r} P, 4L il ) lu—v 2

(r®)>  [T)?

Case 2:
For u,v € Q)'T,te (teysi], k=1,...,m
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B @000 = S0)0] 1P < L llu—vy

o201 2
<2RAPIL u = |2,
Fr
By taking the supremum over t, we obtain

I @) ~@M)) I, = sup  E[ 7V [D(u(r)) = D(v(t))] |

Tr o tete,si) k=1,....m

< 2L, T fu—v |2,
Fr

Case 3:

For u,v € Q)'% and for t € (s, tfx+1], k= 1,...,m. we have
E || t' (D(u)(t) — D)) |* < 42T VE || Soup(t — i) [Als, s, +bs) — Alsi, vy, +0s)] |
+4t2(1_¥)E I (g(taut‘HT)t) _g(tavt‘HT)t)) ||2
20y [ ; 57 (12
+4t EH/ PB(t_S) [f(s)us+¢s)_f(savs+¢s)] H ds
Sk
Ti+1 ~ ~
44200 | /Sk Py(t —5) [0(s, s + 6) — (s, v, +6,)] dSH (s) |2

<h+hLh+hL+1,
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where

I = 4t2(17Y)E ” SOL,B(t _sk) [h(skvusk +(T)Sk) _h(sk7vsk +(T)Sk)] H2
M2 1(B-1)
[(o(1 — o) +B)?

< 4MLy,
~ (o1 —a)+p)?
L=4217VE | (g(r,ur +0r) —g(t, v+ 1)) 12

<4 K u—v 2,
Fr

< 4t2(liy) E H h(skvusk +d‘)‘¥k) —h(Sk,Vsk +(T)Sk) H2

2
u—v
lu=viy

B=4 TR [ Ry [fls+ 60— Sl +60] ds P
<40V [ Py 0) [+ 60— v+ 6] ds P

4t2(1_7)M(tk+1 _ sk)Z(B—l) lt1 - -
= E/ S, us+05) — f(s,vs + 05 zds
T2 ; A )= f( )|l
4200 (41 — 5.) 2B,
! (tit1 =) L u—v 2, . and

7

= (C(B)? T
L= 0VE | [ Ry —9) [o(s,+6) — ols. v+ 6] dSE(o) I

1y ~ g
< 3t2(H—Y)+1CHE/ . | Pg(t —s) [O(s,us+ 5) — (5, v(s) + bs)] ||%% ds
Sk

3 Cum
- (e st
CuMLot™ ™0 (g — 5)* P!

B ('(B))?

By taking the supremum over t, we obtain

2
u—v .
” H@}T

E [ =520 | ols,us+8) ~ ols.v()+ ) Iy

41‘2(1_Y)M(tk+1 — Sk)Z(B_I)Lf

5 (1) — Bl 4MLy, (1-y)
| 2wWO=SM)O 15y < (Fom—oyrpr T4 Ket BOE
CrMLot> V41 (| — )21 2
T®)? Nl

Which implies that ® is a contraction and there exist a unique fixed point z(¢) € Q)’TT SO X; € Q)}T

of ® so is a mild solution of (6.1]). The proof is completed.

O
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6.2 Numerical application

Dot 1(8) = Glt.v (L8] = & (&) — Glew ()] dr + F (1., (,E) + (1w, (.§) 5

for0 <& <m, 1€ [sp,tgt1], k=0,...m,

v(t,8) = Hi(t,v(.,§))

fort € (t,s1), k=1,2,...m,

forz € [0,2],
(Igvi(,€))]i=0 = 0(2,)

fort € (—eo,0],
6.4)

where

11
Dg:* denotes the Hilfer fractional derivative. Sg (t) is an Q-sub-f.B.m with Hurst parameter
H € (%,1), defined on a complete probability space (Q, F,P).

The impulses times satisfy:
O=t=s0<t1 <51 <H <. <ty <8y <typ1 =T, fort>0.
v; mean a segment solution which is defined by
V(o) (=00, T| x Q= U,

then for any 1 > 0, v(.,.) : (—e,0) x Q — U is given by:

vi(0,0) =x(t+0,m), for 6 € (—e,0], ® € Q which is valued in @5%, and U = L*[0, 7).
F,G:[0,2] x Q)i — R are continuous functions. IO% is the fractional integral of order % =1- %,
where Y = % = %—1—%—%.

Now let

)’(f)(é) = M(t’a)v re [072}7 éG [O,ﬂ?],

Hi(1,0(8,8)) = hn(t,0)(€), 8 € (~,0), & € [0,7] k = 1,...m, and §(8) (&) = §(6,E). We need
now to define the operator Q : K — K, fot this we choose a sequence {G,.},~; € R such that
Qe, = G,e,, and suppose that 17(Q) = Y| /O, < oo

The process SZ (s) will be defined by Sg (t) =X, SH(t)\/Cpen, where H € (1,1) and {SH (¢) }oen
is a sequence of one dimensional standard sub-fractional Brownian motions mutually independats
over (@, F,P).

Finally we assume that:

5
* Forall k=0,...,m, the function f : [sk,tk11] X Dy — U defined by f(z,v)(.) = F(t,v(.))
is continuous and we impose conditions on F to verify assumption (H3). For example we

take
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2 5
F(t,0) =1+ ﬁ; tesitp1]s € @}T.
Dy
5
 For all k =0,...,m, the function G[sy, ;1] X Dy — L%(K ,U) is continuous, we impose
conditions on 6 to make assuptions (Hs) hold. We put: 6(¢,0) = > +sind; t € [sg,t11]; 0 €
5
3
Dy

5
* Forall k=0,...,m, the function A : [t,sx] X Dy — U defined by i (t,v)(.) = Hy(t,v(.))
is continuous and we impose conditions on Hj, to make assumption (He) hold. For example

we take:
5
Hk(t,¢) = R0, &G Q te [Sk,lk+1], (XS Q);T.

Thus the problem [6.4] can be written in the abstract form

H
DS‘;BX (t,x) =A(t)X (t,x) + f(t,x) +0(t,x) d%@, fort € [sk,tyt1], k=0,...m,
x(t) = h(t,x), fort € (tg,s¢), k=1,2,...m,

1—
(Iy ")(1)l—0 = ¢ € Dy (—,0],U].
(6.5)
Thanks to these assumptions, it is easy to check that (H1)-(H6) hold and thus assumptions in

Theorem are fulfilled, ensuring that system (6.4) possesses a mild solution on (—oo, T').




Chapter

Non-densely defined fractional stochastic
evolution equations driven by fractional

Brownian motion

The study of impulsive fractional differential and integro-differential systems is applicable to their
efficacity in simulating processes and phenomena to short-time perturbations during their evolu-
tion. The non instanteneous and neutral impulsive stochastic functional differential equations have
become an important object of investigation in recent years stimulated by their numerous appli-
cations in characterising many problems in physics, biology, mechanics, electrical engineering,
medecine, we refer reader to [2] [27]]. Stochastic differential equations play an important role in
modeling many physical, biological, and engineering problems, see the monographs of Da-Prato
and Zabczyk[36] and Sobczyk [122]]. The notions of basic theory concerning differential equa-
tions are given in the monographs of Bharucha-Reid [7], Da Prato and Zabczyk [36]] and tsokos
and Padgett [124]. For more details, we give the reader to Liu [87] Mc Kibben[71] and [72].
Which, was very interesting to study a class of this type of equation by drawing inspiration from
the work of [136] and that of [L8] with the fractional derivation of Caputo, so this work is con-
cerned with the existence of integral solutions for initial value problem with non-instantaneous
impulses driven by a fractional Brownian motion of the form:

DIX (1,x) = A ()X (1.2) + F(t,3) + (1) 22 for 1 € [sp,t1] k=0,1,..m

x(t) =y (t,x;) fort € (tr,se] k=1,2,..m (7.1)

x(1) = (1) € D (—o0,0],U],

where
D} is the Caputo fractional derivative of order g € (%, 1) takes a values in a Hilbert space

U, x(.)takes value in a real separable Hilbert space U, with inner product (.,.) and norm || . ||,

92
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and A : D(A) C U — U is a family of closed operators of integral solutions for a class of first-
order non-densely defined semilinear stochastic equations with non local initial conditions. The
impulses times satisfy: 0 =tg =50 <t; <51 <t < ... <ty <8 <tpgp1 =T, fort > 0;

the delay function x; : (—e0,0) — 0, x;(0) = x(z 4 6) with is valued in Dy, where

Dy, ={x: (=0, T| x Q= U; x|;,€ C((s,tx41];U) Yw € Q fork=0,...,m.},

with the norm 1

2
I, = ( sup E1112)

and xo € D}, where DF denote the family of all almost surely bounded Fo-measurable, and D-
valued random variables.
D = D((—o0,0],U) denotes the family of all right piecewise continuous functions with left-hand

limit @ from (—eo,0] to U, with the norm

leli= sup )],

—o0 <t

{Bg (t),t> 0} is a cylindrical fractional Brownian motion on space K with Hurst parameter

H € (,1). We assume in the sequel that X (#,x;) : J x U — U, such that

X(t,x) = ¢(0) — g(t,x),

g:IJx Dy — U, and
[ XDy = U, Iy € C((tx, 5] X Dy, U) forallk =1,...,m, 6 : J — LY (K, H).

Theorem 7.1. [\[3] Bihari inequality
Let T >0, up > 0, and let u(t), v(t) be continuous functions on [0,T].
letk :RT — R™ be a concave continuous and non-decreasing function such that:
k(r) >0 forr>0.If t
u(t) < u(0)+ /O v(s)k(u(s))ds Vi € [0,T),

then

u(t) < G- (Glug) + /O " v(s)ds)

forallt € [0,T] such that

where
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and G~ is the inverse function of G. In particular, if. moreover, ug = 0 and Jo+ % = +oo, then

u(t) =0forallt €0,T].

7.1 Main result

An F-adapted stochastic process x : (—eo, T] — U is said to be an integral solution of (7.1)) if
x=0¢€ @% and

(i) {x:, 1 €J} € Dy,.
(i) [y [xs +g(s,x5)]ds € D(A), t €[0,T).

(iii) foreacht >0

S (1) [9(0) — £(0,0)] + (1, %)
+ 1 Jot = )77 S(t = 5)f (5, x,)ds

i Jo 1 = 9)77 1St~ s)o(s)dBY (s). fort € [0,n]

= e, fort € (tsds k=1,..,m. (12)
S'(t = s)hi(s, %5, ) + 8 (5, %5,)

+ﬁ Js (6 —5)771S(t —5) f(5,x,)ds

+ﬁ f;k (t—s)118(t —s)G(s)ng(s). fort € [si,trr1] k=1,..m.

7.2 Conditions and assumptions

We will work under the following assumptions.

(H1) The operator A satisfies the Hille- Yosida condition, S'(t) is compact for ¢ > 0, and there
exist constant M > 0 and B > 0 such that || §'(¢) ||2< MeP', vt > 0.

(H2) The function f :J x D¢, — U satisfies the following conditions:

@ [ f@x) = fley) IP<H([x=y 7).
x,y € Dy, t €J, where: H(0) =0, H(s) >0 fors>0and ;. % = oo
(i) || £(z,0) ||>< My Vt € J, where My is a positive constant.
(H3) The function g : J X Dy, — U and there exist a positive number K, such that for r € [0, 7]

we have

I8t x) —g(t.y) IP< Kg | x=y 7 x,y € Dy 1 €,
and || g(t,0) ||>*< Ma, where M, is a positive constant.

(H4) The functionc:J — L% satisfies that there exists a positive constant L such that

| o(s) < L.
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(H5) The functions h; € C((t;,si] x U,U) and there exist a positive constant L, such that ||
hi(t,x:) — hi(t, ) [P< Ly || x—y ||, for all x,y € De, ,t € (t;,51]; i = 1,2,...m.
In addition || 4;(z,0) ||>< M3 Vt € J, and Vi > 1, where Mj is a positive constant.

7.3 Existence and uniqueness of integral solution

In this section we establish the existence and uniqueness theorem of the integral solution for sys-

tem[7.1] We construct the sequence of successive approximations defined as follows:

X(t) = 5 (1)9(0)

X'(t) = S (1) [0(0) — g(0,0)] + g (1, %) + ot ot =) 1S(t =) f (s, x5~ 1)ds

+rgry Jo(t = )77 'St —5)0(s)dBg (s), 1 € [0.11]; n > 1.

Xt) = he(t,x), 1 € (ti,si); k=1,...,m. (7.3)
X(1) = S (t — si)hy (s, x5, ) + 8(58, %, ) + ﬁfs;(t—S)q”S(t —8)f (5,27 Vds

iy S (1= )78 (= )0 (5)dBY (s), 1 € (sioti], k=1,

1) =0(t), —eo<t<0,n>1.

Theorem 7.2. Let (H1)-(HS5) hold and $(0) — g(0,0) € D(A). Then there exist a unique integral
solution of [7.1]in the space Dy, if

K = max{8K,,2L;,3K, + 3Ly} < 1.

Proof. The proof is composed by several steps.
for all # € (—oo, T, the sequence x"'(¢) (n > 1) € Dy, is bounded.
Case 1: for 7 € (0,#] we have

E || () [[*< 4ME || §(0) +(0,0) [I* +8E[|| g(r.47) = (1, 0) |I* + [ 8(r,0) |I°]

8 - _ t
M E [0 - £5.0) P+ | £.0) ] ds

WEA eB H G(S) HLZQ ds.
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Thus
B[ [2< S SMMT e 8MH T e
* ST-8K, ' (1-8K)[2(q—1)  (1-8K)[2(g—1)
81\7It12‘1_1 ‘B -1 2
SE n _
TSR Ty IS .0 ds
82! '
<G+ 1 /eBSEH 4 P)ds,
2T (1=8K )2 (g—1) Jo (I 1)
where,
Ci =4ME || 6(0) +g(0,0) || +8M>,
and

G 8MM 179 P 8MHE T T L

G =
2TTo8K, (18K (g—1) | (1-8KI2(g—1)

also we have that H(.) is concave and H(0) = 0; where there exist a positive constants a and b

such that H(t) < a+bt, t > 0, in the sequel we get that for n > 1
t
E || X(1) < Cs + aeP +b/ SE || 1|2 ds.
0

Since;
E || x°() [|>< ME || 6(0) ||?:= C; < oo, we get that:

B x"|}< oo, V> 1,1€[0,1].

Case 2:
Fort € (t,s¢), k=1,....m

E (| x"(6) > =E || he(t,) |I?
=E || [he(t,2") — he(,0)] + he(£,0) ||

<2E[Ly || & 2] +2E || i (2,0) |2

1
< oo, 0<Lh<§.

< 3
—1-2L,

Case 3:
Fort € (Sk,l‘k_H] k=1,...m

E || 2" () [P=E || St — i), %5,) + & (s5,%5,)

gy 9 Sl 970 s
g L S0l P
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Then
E || x"(t) [|°< SMLhIE || X" (sk) ||* +8MM3 +8K,E || X" (s¢) ||* +8M>
2
gt B ) 0 P ds
8 1 8 20—1 Rek+!
—t 29— Btk+lM 7t q— ﬁl‘ L.
*ﬂwlw g
We obtain
t
E || x"(¢) *< GE || 2" (si) ||> +Cs +C6/ PR |2 (s) | ds,
Sk
where
B Sbl‘k_,_]eﬁt"“
RN
: 8Pt 124 (M + 1M 2LH + a)
Cs = 8(MM; + M 2
5 (MM + 2)+k£ri?§m,{ 2(g—1) )
and B
8bl‘k+1e k1
Co = ST
o O T2 (g — 1)
We have that
(D) E[[+"(si) P sup B 2"(si) [[7:=C7 < oo,
k=1,....m
(2) by case 2 we get that E || x"~1(s) ||*:= Cg < 0.
We conclude that the sequence x"(r) (n > 1) is bounded on the space Dy, .
Step 2:
We show that the sequence x"(¢) (n > 1) is a Cauchy sequence.
Case 1:
Fort € [0,1]
1 2 1 ) 2 e I
B2 [P 2 | gle.n ™) = 0.) P+ [HE =0 s 0

Let
®,(t)= sup E || P th .

1€[0,11]

Then for 7 € [0,1;] we have

(1) <G [ H(®,1(5))ds,
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where
2t 12q7 Lo

= Tk g 1)

In the sequel we choose t such that

%@S@Abnﬂﬂa

Moereover,

! = [P =S (0200.0)+80.5) + s [ =978 =0 0.2)
0

M)
+F(ql_1)/ot(t—s)q_lS(t —s)G(s)ng(s) H2

we obtain that

E | x'=x0|7< Cro,

where _
CAM|o 3 4K,Cy 4Ry

Cio = .
VT T4k, T 14K, T (1-4K)T2(g—1)

Taking the supremum over t, and using ®,,, we have

(bo(l) = sup E ” xl —XO thg Cio.
t€[0,11]

For n =1, we have

@@g@ﬂ%@m

< CoCjpt.
Forn=2
t
%@@AQ@&
<Cic e
>~ 49 102-

By induction we obtain
n

w1
D,(1) < @Cloa.
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So for any m > n > 0 we have
sup B || x"—x"[7 <Y sup E|x*'—x"|} (7.5)
t€[0,] r=nt€[0,n]
,
< r;lcgcwﬁ —0, n— oo. (7.6)
Case 2:
Fort € (tx,s¢), k=1,....m
E || x| =E | (e, 2" ) = it x") |7 (7.7)
< Ly || =7, (7.8)

O<E|[ 2" —x"||? —L,E || "' —x" |?< 0, L, > 0, this implies that;
E || x*! —x" ||>— 0.

For any m > n > 0 we have

sup || 2" —x"|I>< Y sup E| XX P2 0n—oe
1€ (tx,5k) r=nt€[0,1]

Case 3:
Fort € (Sk,tk+1], k=1,...m

Using the same method we obtain that

q)n(t) <(Cyq /[H(qD,l_](S))dS
gc”/(:H(q>n_1(s))ds

we choose 1 € (s, +1] such that

t
1)< Cit [ @ur(5)ds,
Sk

where
Cn= tﬁ?leﬁml
(1-3L,— 3Kg)F2(q -1)
and
Dy(1) < Cpo,
where

Cn= tﬁfleﬁt"“Q
(1-3L,—3K,)I?(g—1)

Forn=1
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D, (1) < C11Ciat.

Forn=2
2

t
@,(1) < C%lcu?

by applying the mathematical induction we have,

n

t
q)n(l) < C?lclzﬁ.
So for any m > n > 0 we have

sup Efx"—x" 7<) sup E[x a7
1€ (Skstk+1) r=ntE€(Sk,tk+1]
< ZC“C]Q— — 0, n— oo,
r=n

Step 3:
The existence and uniqueness of the solution for[7.1]
The lemma of Borel Cantelli give that x"(¢) — x(¢) uniformly on each interval. Now we prove the
uniqueness on each interval of solution.
Case 1:

For ¢ € [0,11], let x1,x2 € Dy, be two solution on [0,#]. We have,

2t2q LB

E || x1—x2 |} <2KE | x1 —x2 |7 + rzi

/HIEH)q xz||sds

2g—1 Bl‘|
267 e
S(1—21<g)r2 ) /HEHXI % [[5)ds

Thus the Bihari inequality affirm that

sup B || x; —x [?=0 <= x; = xo.

te(0,n]
Case 2:
Let x1,x; € Dy, be two solution on t € (fy,5¢|, k=1,...,m
We have
E | xi—x |f =B | h(t,x1) = hult,2) |17 (7.9)

<LiE || xp—x || (7.10)

0<E| xi—x||? —LyE || x; —x2 ||?< 0, L, > 0, this implies that;

sup IEHxl—xg ||, 0 <= x; =x.
1€ (te,sk), k=1,.
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Case 3:

Let x1,x2 € Dy, be two solution on [sk,%1]. We have,

2 ~ 2 313[171lﬁtk+l
E 1 =2 [P < GWLy+3K)E |13 =2 |+ [T HEE |52 P

By taking the supremum on the both side we obtain that

) 3[2q leBtk-H 5
sup Bl x; —x [y < /H sup E || x; —x2 || ds),
1E(Skty 1] ' (1- 3K _3MLh

E(Skotky1]

the Bihari inequality affirm that E || x; — x; [|?— 0 <= x1 = x».

The proof is completed. 0

7.4 Numerical application

;

DPu(t,&) = Glt,v(t = h,8))] = 3 [V(1,8) — G(t,v(t — h,&))dr] + o (1)dBE (1)
for0<&E<m, h>0,t€ [sg,trr1] k=1,..m
0<B<1
(7.11)
v(t,0) =v(t,m) =0
v(t,&) = [t hi(s —tx)v(s,E)ds fort € (tx, ) k=1,2,..m
L v(t,8) =0(t,9) for € (—e°,0],

where Bg (t) is an f.B.m with Hurst parameter H € (%, 1), defined on a complete probability space
(Q,F,P).

U = C[0,n] is a Banach space.

Az = &,z with domain D(A) = {z €U, 2(0) = 2(m) = 0; Lz e C([O,n])}.

D(A) = Co([0,m)) = {z € C([0,]) : 2(0) = z(m) =0}

A generates an integrated semigroup (S(¢)),>0 and
IS (0) |P< P

and satisfy the Hille- Yosida condition.
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and

he(,0)(.) = /_ ibk(s)v(s, )ds.

We suppose that

1 G II*< M.

So under this definitions and assumptions, our system can be written as the form of the problem
moreover, all the conditions of Theorem [7.2] are hold, so we conclude that system (7.11) has

a unique integral solution.




Chapter

Conclusion

The principal goal of my thesis is to develop the subject of fractional stochastic differential equa-

tions and inclusions in Hilbert space.

We studied some classes of stochastic differential equations and inclusions, when we proved
the existence results of a mild solution of fractional stochastic evolution inclusion involving Ca-

puto derivative in Hilbert space driven by the fractional Brownian motion.

Also we studied a class of non densely defined fractional stochastic differential equation with
non-instantaneous impulses driven by fractional Brownian motion under some conditions to prove

existence and unicity of integral solutions by using Bihary inequality.

Moreover, we have studied the time fractional stochastic heat equation dealing with additive

noise and more special classes of fractional heat equations.

Finally, we studied the existence of mild solution of Hilfer fractional stochastic differential
equation with impulses driven by sub-fractional Brownian motion, by using Banach’s fixed point

theorem.
Our future work will concentrate on Malliaivin calculus and how to join fractional stochastic

differential inclusion with Mallaivin calculus and how to apply these important tools in finance

theory with Lévy process.
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« Contribution a I’étude théorique de certaines équations d’évolutions stochastiques »
Résumé :

Dans cette thése nous considérons certaines classes d'équations et d'inclusions différentielles fractionnaires
stochastiques et nous prouvons I'existence et I'unicité de solutions mild dans les espaces de Hilbert.

Nous avons prouvé I'existence des résultats d’une solution mild d’inclusion d’évolution stochastique
fractionnaire dans I'espace de Hilbert dirigée par un mBf, les résultats ont été obtenus en utilisant le calcul fractionnaire
ainsi que la théorie du point fixe.

D’autre part, nous avons étudié le résultat de I'existence d’une solution mild de I'équation différentielle
stochastique fractionnaire de Hilfer avec des impulsions entrainées par sub-mBf, les résultats sont obtenus en utilisant
le théoreme du point fixe.

Ensuite, nous avons étudié I'’équation stochastique fractionnaire de chaleur muni d’'un bruit additif, nous avons
trouvé une formule de solution explicite dans le sens de distributions sous laquelle la solution est un corps aléatoire dans
L2(P).

Enfin, des conditions suffisantes sont données pour prouver I'existence et I'unicité de la solution intégrale

d’'une équation différentielle stochastique fractionnaire avec des impulsions non instantanées entrainées par mBf.

Mots clés : Equations différentielles stochastiques, Inclusions différentielles stochastiques, Effet impulsif, Théorie

du point fixe, Mouvement Borownien fractionnaire (mBf) .

« Contribution to the theoretical study of certain stochastic evolution equations »

Abstract :

The research circulated in this thesis loads with the problem of fractional stochastic differential equations and
inclusions in  Hilbert space.

We proved the existence results of a mild solution of fractional stochastic evolution inclusion involving the
Caputo derivative in Hilbert space driven by a fBm, our desired results were obtained by using different tools such as;
fractional calculation, operator semigroups, and fixed point theory.

Also, we have studied the existence result of mild solution of Hilfer fractional stochastic differential equation with
impulses driven by sub-fBm, the results are obtained by using fixed point theorem.

Then, we have studied the time fractional stochastic heat equation dealing with additive noise. we found explicit
solution formula in the sense of distributions under which the solution is a random field in L3(P).

Finally, sufficient conditions are given to prove the existence and unicity of integral solution of non-

densely defined fractional stochastic differential equation with non-instantaneous impulses driven by fBm.

Key words :Stochastic functional differential equations, Stochastic functional differential inclusions, Impulsive effect,

fixed point theory, fractional Brownian motion (fBm).
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