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Abstract:
In this thesis, we study some classes of stochastic differential equations and inclusions

with impulsion and delay, and we prove the existence and unicity of mild solution in

Hilbert space by using the fixed point theory and approximations methods with illustrative

applications.

The research circulated in this thesis loads with the problem of fractional stochastic

differential equations and inclusions in Hilbert space. We proved the existence results of a

mild solution of fractional stochastic evolution inclusion involving the Caputo derivative

in Hilbert space driven by a fBm, our desired results were obtained by using different tools

such as; fractional calculation, operator semigroups, and fixed point theory. Also, we have

studied the existence result of mild solution of Hilfer fractional stochastic differential

equation with impulses driven by sub-fBm, the results are obtained by using fixed point

theorem. Then, we have studied the time fractional stochastic heat equation dealing with

additive noise. we found explicit solution formula in the sense of distributions under

which the solution is a random field in L2(IP). Finally, sufficient conditions are given

to prove the existence and unicity of integral solution of non-densely defined fractional

stochastic differential equation with non-instantaneous impulses driven by fBm.
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Introduction

The main purpose of this introduction is to give a general overview of the theory of

stochastic differential equations and inclusions, also to provide the history of the most

main results furnished by researchers; and to present the plan of our thesis.

Differential equations and inclusions with fractional derivatives have recently proved

to be strong tools in the modeling of many phenomenas in various fields of engineering

economics, physics, biology, ecology, aerodynamics, and fluid dynamic traffic models

[6, 92, 114, 122]. For some fundamental results in the theory of differential equations

involving Caputo and Riemann-Liouville fractional derivatives, please see [4, 5, 82, 126,

128, 129, 138] and the references therein. Since Hilfer [59] proposed the generalized

Riemann-Liouville fractional derivative, there has been shown some interest in studying

differential equations involving Hilfer fractional derivatives see [59]. The two-parameter

family of Hilfer fractional derivative Dα,β
a+ of order α and type β permits to combine be-

tween the Caputo and Riemann derivatives. the two parameters give an extra degree of

freedom on the initial conditions and produce more types of stationary states. Models

with Hilfer fractional derivatives are discussed in [52][126].

Many systems in physics, mechanics, biology, and medicine use the concept of dif-

ferential inclusions to model there phenomena. Also the fractional differential inclusions

plays an important role in description of the memory and genetic properties see [31], for

this reason, many kinds of research have been dedicated to the existence of mild solution

for fractional differential inclusions.

-Yuri et al. [54] introduced the theory of equations and inclusions with mean deriva-

tives and investigated a special type of such inclusions called inclusions of geometric

Brownian motion type.

-Hu et al. [61] provided the necessary backgrounds material study fractional evolution

equations and inclusions with Hille-Yosida operators, also he studied the existence of mild

solution.
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-Boudaoui et al. [20] studied the existence of mild solutions to stochastic differential

equations with non-intantaneous impulses driven by fractional Brownian motion by using

Banach fixed point theorem. Also, they proved in [19] the existence of mild solutions for

the first-order impulsive semilinear stochastic functional differential inclusions driven by

a fractional Brownian motion.

This thesis is divided into seven chapters. Where in the first one we focus on stochastic

calculus and their precessus, at the end of this chapter we give the necessary definitions

of tempered distribution and properties of semigroup.

Secondly, we will provide an overview of derivatives and integrals that have been

studied in fractional calculus in more general settings, we start with some history of frac-

tional calculus, and we recall some definitions of how to define derivatives and integrals

of arbitrary order.

The third chapter is devoted to studying the different tools to understand the mean-

ing of differential inclusion, where we introduce some basic definitions and results of

multivalued maps and we give an example of the study of differential inclusion in the

deterministic case.

In chapter 4, we proved the existence results of a mild solution of fractional stochastic

evolution inclusion involving the Caputo derivative in Hilbert space driven by a fractional

Brownian motion, our desired results were obtained by using different tools such as; frac-

tional calculation, operator semigroups, and fixed point theory. The work is accepted and

published.

In chapter 5, we have studied the time fractional stochastic heat equation dealing with

additive noise and more special classes of fractional heat equations. we found explicit

solution formula in the sense of distributions under which the solution is a random field

in L2(IP). The work is accepted and published.

Next, the chapter 6 we have studied the existence result of mild solution of Hilfer

fractional stochastic differential equation with impulses driven by sub-fractional Brown-

ian motion, the results are obtained by using fixed point theorem. We illustrated at the

end by giving an application. Our work is accepted and published.

Finally, sufficient conditions are given in chapter 7 to prove the existence and unicity

of integral solution of non-densely defined fractional stochastic differential equation with

non-instantaneous impulses driven by fractional Brownian motion. The work is submitted

and we wait for the positive reply.



Chapter 1
Preliminaries

In this chapter, we give important concepts that we will use in the sequel of our work.

Then we begin to cite the useful tools of stochastic calculus.

1.1 Brownian motion

Definition 1.1. [107] A Brownian process is a stochastic process (Bt , t ≥ 0), which sat-

isfies

1. The process starts at the origin, B0 = 0;

2. Bt has stationary, independent increments;

3. The process Bt is continuous in t;

4. The increments Bt −Bs are normally distributed with mean zero and variance

| t − s |, Bt −Bs ∼ N(0, | t − s |).

The process Xt = x+Bt has all the properties of a Brownian motion that starts at x. Since

Bt −Bs is stationary, its distribution function depends only on the time interval t − s, i.e.

P(Bt+s −Bs ≤ a) = P(Bt −B0 ≤ a) = P(Bt ≤ a) ;

from condition (4) we get that Bt is normally distributed with the mean IE[Bt ] = 0 and

var[Bt ] = t.

Bt ∼ N(0, t).

This implies also that the second moment is IE[B2
t ] = t. Let 0 < s < t, since the increments

are independent, we write

IE[BsBt ] = IE
[
(Bs −B0)(Bt −Bs +B2

s
]
= IE[Bs −B0]IE[Bt −Bs]+ IE[B2

s ] = s.

11



1.1 Brownian motion 12

As consequence, Bs and Bt are not independent. Condition (4) has a physical expla-

nation; a pollen grain suspended in water is kicked by a very large numbers of water

molecules.

These effects are average out into a resultant increment of the grain coordinate.

Proposition 1.1. [107] A Brownian motion process Bt is a martingale with respect to the

information set Ft = σ(Bs;s ≤ t).

Now, we will give the most principal properties of the Brownian motion.

Simple invariance properties of Brownian motion

The simple scaling invariance property of Brownian motion play a crucial role to define a

transformation on the space of functions, which changes the individual Brownian random

functions but their distribution stays unchanged.

Lemma 1.1. [112](Scaling invariance) Suppose {Bt : t ≥ 0} is a standard Brownian mo-

tion and let a > 0. Then the process {X(t) : t ≥ 0} defined by X(t) = 1
aB(a2t) is also a

standard Brownian motion.

Theorem 1.1. [112](Time inversion) Suppose {B(t) : t ≤ 0} is a standard Brownian mo-

tion. Then the process {X(t) : t ≤ 0} defined by

X(t) =

{
0 for t ∈ [0,T ]

tB(1
t ) for t > 0;

is also a standard Brownian motion.

Corollary 1.1. [112](Law of large numbers)

Almost surely, lim
t→∞

Bt
t = 0.

Now, the question is; there is a nonrandom modulus of continuity for the Brownian

motion? We find the answer in the next theorems.

Theorem 1.2. [112] There exists a constant c > 0 such that, almost surely, for every suf-

ficiently small h > 0 and all 0 ≤ t ≤ 1−h

| B(t +h)−B(t) |≤ c

√
h log(

1
h
).



1.1 Brownian motion 13

Definition 1.2. A function f : [0,∞) → R is said to be locally α-Hôlder continuous at

x ≤ 0, if there exists ε > 0, and c > 0 such that;

| f (x)− f (y) |≤ c | x− y |α

for all y ≤ 0 with | y− x |< ε.

We refer to α > 0 as the Hölder exponent and to c > 0 as the Hölder constant. α-Hölder

continuity gets stronger as the exponent α gets larger.

Corollary 1.2. [44](Hölder continuity)

If α < 1
2 , then, almost surely, Brownian motion is everywhere locally α-Hölder continu-

ous.

Non differentiability of Brownian motion

Even if the Brownian motion is everywhere continuous, its randomness allows it to be not

differentiable.

Proposition 1.2. [112] Almost surely, for all 0 < a < b < ∞, Brownian motion is not

monotone on the interval [a,b].

Proposition 1.3. [112] Almost surely,

limsup
n→∞

B(n)√
n = ∞, and liminf

n→∞

B(n)√
n = ∞.

Definition 1.3. [112] For a function f, we define the upper and lower right derivatives

D∗ f (t) = limsup
h↓0

f (t +h)− f (t)
h

,

and

D∗ f (t) = liminf
h↓0

f (t +h)− f (t)
h

.

Theorem 1.3. [112] Fix t ≤ 0. Then, almost surely, Brownian motion is not differentiable

at t. Moreover, D∗ f (t) = +∞ and D∗ f (t) =−∞.

Theorem 1.4. [108] Almost surely, Brownian motion is nowhere differentiable. Further-

more, almost surely for all t, either D∗ f (t) = +∞ or D∗ f (t) =−∞ or both.

Another important regularity property, which Brownian motion does not possess is to

be of bounded variation.
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Theorem 1.5. [81] Suppose that the sequence of partitions

0 = t(n)0 ≤ t(n)1 ≤ ...≤ t(n)k(n)−1 ≤ t(n)k(n) = t

is nested, i.e. at each step one or more partition points are added, and the mesh

∆(n) := sup1≤ j≤k(n)

{
t(n)j − t(n)j−1

}
converges to zero. Then almost surely,

lim
n→∞

k(n)

∑
j=1

(
B(t(n)j )−B(t(n)j−1

)2
= t,

and therefore Brownian motion is of unbounded variation.

Definition 1.4. [81] For a sequence of partitions as above, we define

V (2)(t) := lim
n→∞

k(n)

∑
j=1

(
B(t(n)j )−B(t(n)j−1

)2

to be the quadratic variation of Brownian motion.

The strong Markov property and the reflection principle

The Markov property states that Brownian motion is started anew at each deterministic

time instance. It is a crucial property of Brownian motion that is hold also for an important

class of random times. These random times are called stopping times.

The strong Markov property for Brownian motion was established by [63] and [46].

Theorem 1.6. [63]Strong Markov property
For every almost surely finite stopping time T, the process {B(t +T )−B(T ) : t ≤ 0} is a

standard Brownian motion independent of F +(T ).

Proposition 1.4. [46] A Brownian motion process Bt is a martingale with respect to the

information set Ft = σ(Bs; s ≤ t).

1.2 Fractional Brownian motion

The theoretical study of fractional Brownian motion was motivated by new problems in

mathematical finance and telecommunication networks.



1.2 Fractional Brownian motion 15

We present theoretical results on the fractional Brownian motion including different useful

definitions for our work.

Definition 1.5. [101] Let H be a constant belonging to (0,1). A fractional Brownian mo-

tion (fBm) (BH(t))t≥0 with Hurst index H is a continuous and centered Gaussian process

with covariance function,

E
[
B(H)(t)B(H)(s)

]
=

1
2
(
t2H + s2H− | t − s |2H) . (1.1)

The fractional Brownian motion BH has the following properties:

(1)- B(H)(0) = 0 and
[
EB(H)(t)

]
= 0 for all t ≥ 0.

(2)- B(H) has homogeneous increments, i.e., B(H)(t + s)−B(H)(s) has the same law of

B(H)(t) for s, t ≥ 0.

(3)- B(H) is a Gaussian process and E
[
B(H)(t)

]2
= t2H , t ≥ 0, for all H ∈ (0,1).

(4)- B(H) has continuous trajectories.

Remark 1.1. Since E
(

B(H)
t −B(H)

s

)2
=| t − s |2H and BH is a Gaussian process, it has a

continuous modification, according to the Kolmogorov Theorem. Indeed for all n ≤ 1 it

holds that

E | BH
t −BH

s |n= 2
n
2

π
1
2

Γ(
n+1

2
) | t − s |n+1 .

Remark 1.2. [101] For H = 1, we set BH
t =B1

t = tξ, where ξ is a standard normal random

variable. Moreover for H = 1
2 , the covariance function is E

[
B

1
2
t B

1
2
s

]
= t ∧ s, i.e. B

1
2 =W

a standard Wiener process, or a Brownian motion. This justifies the name "fractional

Brownian motion ". BH is a generalization of Brownian motion obtained by allowing the

Hurst parameter to differ from 1
2 .

Definition 1.6. [101] A stochastic process X = {Xt , t ∈ R} is called b-self similar if

{Xat , t ∈ R}=d {abXt , t ∈ R
}

in the sense of finite-dimensional distributions.

1.2.1 Correlation between two increments

Proposition 1.1. [12] For H = 1
2 , BH is a standard Brownian motion, in this case, the

increments are independent.
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Now the question is, are the increments independent in the case where

H ∈ (0, 1
2)∪ (1

2 ,1)?

From (1.1) we obtain easily the following representation for the covariance of increments

of fBm

E
[(

BH
t1 −BH

s1

)(
BH

t2 −BH
s2

)]
=

1
2
(
| t1 − s2 |2H + | t2 − s1 |2H − | t2 − t1 |2H − | s2 − s1 |2H) .

(1.2)

Suppose that s1 < t1 < s2 < t2 so that the intervals [s1, t1] and [s2, t2] do not intersect.

Moreover (1.2)can be expressed as

1
2
( f (a1)− f (a2 − ( f (b1)− f (b2))) ,

where a1 = t2 − s1, a2 = t2 − t1, b1 = s2 − s1, b2 = s2 − t1, f (x) = x2H .

Clearly, a1 −a2 = b2 −b1 = t1 − s1.

Therefore,

E
[(

BH
t1 −BH

s1

)(
BH

t2 −BH
s2

)]
< 0 f or H ∈ (0, 1

2) in view of the concavité of f.

The increments are negatively correlated for H ∈ (0, 1
2), is useful to model sequences

with antipersistance.

E
[(

BH
t1 −BH

s1

)(
BH

t2 −BH
s2

)]
> 0 f or H ∈ (1

2 ,1).

Therefore, the increments are positively correlated for H ∈ (1
2 ,1), here the process

presents an aggregation behavior, this property is used in order to describe systems with

memory and persistence, in other terms the property of long range memory.

1.2.2 Long range dependence

Definition 1.1. [12] A stationary sequence (Xn)n∈N exhibits long-range dependence if the

autocovariance functions ρ(n) = cov(Xk,Xk+n), satisfy

lim
n→∞

ρ(n)
cn−α

= 1,

for some constant c and α ∈ (0,1). In this case, the dependence between Xk and Xk+n

decays slowly as n tends to infinity and ∑
∞
n=1 ρ(n) = ∞.

Hence, we obtain immediately that the increment to BH(k)−BH(k − 1) of BH and

Xk+n := BH(k+ n)−BH(k+ n− 1) of BH have the long-range dependence property for

H > 1
2 since

ρH(n) =
1
2
[
(n+1)2H +(n−1)2H −2n2H]∼ H(2H −1)n2H−2,
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as n goes to infinity. In particular

lim
n→∞

ρH(n)
H(2H −1)n2H−2 = 1.

Summarizing, we obtain

1- For H > 1
2 , ∑

∞
n=1 ρH(n) = ∞.

2- For H < 1
2 , ∑

∞
n=1 | ρH(n) |< ∞.

1.2.3 Self-similarity

Definition 1.2. [120] We say that an Rd-valued random process X = (Xt)t≥0 is self-

similar or satisfies the property of self-similarity if for every a > 0 there exists b > 0 such

that

Law(Xat , t ≥ 0) = Law(bXt , t ≥ 0).

i.e., for every choice t0, ..., tn ∈ R,

P(Xat0 ≤ x0, ...,Xatn ≤ xn) = P(bXt0 ≤ x0, ...,bXtn ≤ xn)

for every x0, ...,xn ∈ R.

Because the covariance function of the fBm is homogenous of order 2H, we obtain

that BH is a self-similar process with Hurst index H, i.e., for any constant a> 0 the process

BH(at) and a−HBH(t) have the same distribution law.

1.2.4 Hölder continuity

Theorem 1.1. [12] Let H ∈ (0,1). The fBm B(H) admits a version whose sample paths

are almost surely Hölder continuous of order strictly less than H.

1.2.5 Path differentiability

Now the question is; is the process BH mean square differentiable?

Proposition 1.2. [91] Let H ∈ (0,1). The fBm sample path B(H)(.) is not differentiable.

In fact, for every t0 ∈ [0,∞)

limsup
t→t0

| B(H)(t)−B(H)(t0)
t − t0

|= ∞
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with probability 1.

1.2.6 Representation of the fBm on R

There exist some representations of fBm as a Wiener integral such

B(H)
t = c

∫
R

KH(t,u)dBu, (1.3)

where c is a standardized constant.

Mandelbrot-Van Ness representation of fBm
Let W = {Wt , t ∈ R} be the two-sided Wienner process.

Denote

KH(t,u) := (t −u)α
+− (−u)α

+,

where

α = H − 1
2

.

Theorem 1.2. [91] The process B̄H =
{

B̄H
t , t ∈ R

}
defined by

B̄H
t := c(1)H

∫
R

KH(t,u)dBu, H ∈ (0,
1
2
)∪ (

1
2
,1), (1.4)

where

c(1)H =

(∫
R+

((1+ s)α − sα)2ds+
1

2H

)− 1
2

=
(2H sin(πH)Γ(2H))

1
2

Γ(H + 1
2)

.

Has a continuous modification which is normalized two-sided fBm.

Definition 1.3. [101] Define the operator

MH
+,− :=

{
c(2)H Iα

+,− f for H ∈ (0, 1
2)∪ (1

2 ,1),

f for H = 1
2 ,

(1.5)

where

c(2)H = c(1)H Γ(H +
1
2
).

Corollary 1.1. [101] It follows that for any H ∈ (0,1) the process

BH
t =

∫
R

(
MH

−1(0,t)
)
(s)dWs,
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is a normalized fractional Brownian motion.

Proposition 1.3. [101] The domain D
(
MH

−
)

of the operator MH
− has the form

D
(
MH

−
)
=


⋃

1≤p≤ 1
α

Lp(R) for H ∈ (1
2 ,1) , α = H − 1

2 ,⋃
p≥1 Iα

+,−(Lp(R)) for H ∈ (0, 1
2),

all measurable functions for H = 1
2 .

(1.6)

1.3 Cylindrical fractional Brownian motion

The purpose of this section is a study of cylindrical fractional Brownian motion in Banach

spaces and, starting from this, to build up a related stochastic calculus in Banach spaces

with respect to cylindrical fBm. Here U is a Banach space.

If Q is a non-negative, definite symmetric trace class operator on K , then a K -valued

Q-fractional Brownian motion can be defined.

Definition 1.7. [42] Let K be a separable Hilbert space and Q be a non-negative, nu-

clear, self-adjoint operator on K . A continuous, zero mean, K -valued Gaussian pro-

cess (BH
Q(t), t ∈ R+) is said to be Q-fractional Brownian motion with Hurst parameter

H ∈ (0,1) and associated with the covariance operator Q if:

1. E⟨k,BH
Q(t)⟩K = 0, for all k ∈ K and t ∈ R+.

2. E⟨k,BH
Q(s)⟩K ⟨k′

,BH
Q(t)⟩K = 1

2⟨Qk,k
′⟩K (t2H + s2H − |t − s|2H), for any s, t ∈ R+

and k,k
′ ∈ K .

3. (BH
Q(t), t ≥ 0) has K -valued continuous sample path P.a.s.

Definition 1.8. [42] Let Q be a non- negative definite symetric-class operator on a sepa-

rable Hilbert space K , {en}∞
n=1 be an ONB in K diagonalizing Q and the corresponding

eigenvalues {λn}∞
n=1. Let βH

n (t) be a sequence of real, independent standard fractional

Brownian motion on (Ω,F ,P) for n = 1,2, ... and t ∈ R. The process

Wt =
∞

∑
n=1

√
λnβn(t)en,

is called a Q-fractional Brownian motion in K .

Remark 1.3. [42] If Q is a nuclear operator, then a cylindrical fractional Brownian mo-

tion is a Q-fractional Brownian motion.
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1.4 Cylindrical and Q-Sub-Fractional Brownian motion

As an extension of Brownian motion, recently, Bojdecki et al. [16] introduced and

studied a rather special class of self-similar Gaussian process. This process arises from

occupation time fluctuations of branching particle systems with Poisson’s initial condi-

tion. This process is called Sub-fractional Brownian motion.

1.4.1 Cylindrical sub fractional Brownian motion

Definition 1.4. [16] Let K be a separable Hilbert space. A continuous, zero mean, K -

valued Gaussian process
(
SH

I (t), t ≥ 0
)

is said to be cylindrical sub-fractional Brownian

motion with Hurst parameter H ∈ (0,1) if his covariance is given by

E
〈
k,SH

I (s)
〉〈

k′,SH
I (t)

〉
=
〈

k,k
′
〉[

s2H + t2H − 1
2

[
(s+ t)2H + |t − s|2H

]]
for all s, t ∈R+and k,k

′
∈K .

Definition 1.5. [16] Let Q be a non-negative, self-adjoint bounded linear operator that

is not nuclear, then a cylindrical sub-fractional Brownian motion is defined by the formal

series

SH
I (t) =

∞

∑
n=1

SH
n (t)en t ≥ 0,

where {SH
n (t)}∞

n=1 is a sequence of independent, real-valued standard sub fractional

Brownian motion with Hurst parameter H ∈ (0,1) and {en}∞
n=1 be a complete orthonor-

mal basis in the Hilbert space K .

1.4.2 Q-sub fractional Brownian motion

Let (U,∥.∥U ,⟨.⟩U) and
(
K ,∥.∥K ,⟨.⟩K

)
be two separable Hilbert space. Let L(K ,U)

denote the space of all bounded linear operator from K to U and Q ∈ L(K ,U) be a non-

negative self-adjoint operator.

Definition 1.6. [16] Let K be a separable Hilbert space and Q be a non- negative self-

adjoint operator on K . A continuous, zero mean K -valued Gaussian process
(

SH
Q(t), t ≥ 0

)
is said to be Q-sub fractional Brownian motion with Hurst parameter H ∈ (0,1) associ-

ated with the covariance operator Q if:

E
〈
k,SH

Q(s)
〉〈

k′,SH
Q(t)

〉
=
〈

Qk,k
′
〉[

s2H + t2H − 1
2

[
(s+ t)2H + |t − s|2H

]]
for all s, t ∈R+.

Definition 1.7. [16] Let Q∈L(K ,U) be a non-negative, self- adjoint trace class operator
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on a separable Hilbert space K , {en}∞
n=1 be a complete orthonormal basis in the Hilbert

space K diagonalizing Q and the corresponding eigenvalues {λn}∞
n=1. Let {SH

n (t)}∞
n=1 be

a sequence of real independent standard sub fractional Brownian motion, the process

SH
Q(t) =

∞

∑
n=1

SH
n (t)Q

1
2 en =

∞

∑
n=1

SH
n (t)

√
λnen,

is called a K -valued Q sub fractional Brownian motion.

1.5 Time-space white noise

Let n be a fixed natural number. Later we will set n = 1+d. Define Ω = S ′(Rn), equipped

with the weak-star topology.

As events we will use the family F = B(S ′(Rn)) of Borel subsets of S ′(Rd), and our

probability measure IP is defined by the following result:

Theorem 1.7. [53](The Bochner–Minlos theorem)
There exists a unique probability measure IP on B(S ′(Rn)) with the following property:

IE[ei⟨·,φ⟩] :=
∫
S ′

ei⟨ω,φ⟩dµ(ω) = e−
1
2∥φ∥2

; i =
√
−1

for all φ ∈ S(Rn), where ∥φ∥2 = ∥φ∥2
L2(Rn)

, ⟨ω,φ⟩ = ω(φ) is the action of ω ∈ S ′(Rn)

on φ ∈ S(Rn) and IE = IEIP denotes the expectation with respect to IP.

We will call the triplet (S ′(Rn),B(S ′(Rn)), IP) the white noise probability space, and

IP is called the white noise probability measure.

The measure IP is also often called the (normalised) Gaussian measure on S ′(Rn). It

is not difficult to prove that if φ ∈ L2(Rn) and we choose φk ∈ S(Rn) such that φk → φ in

L2(Rn), then

⟨ω,φ⟩ := lim
k→∞

⟨ω,φk⟩ exists in L2(IP)

and is independent of the choice of {φk}. In particular, if we define

B̃(x) := B̃(x1, · · · ,xn,ω) = ⟨ω,χ[0,x1]×···×[0,xn]⟩; x = (x1, · · · ,xn) ∈ Rn,

where [0,xi] is interpreted as [xi,0] if xi < 0, then B̃(x,ω) has an x-continuous version

B(x,ω), which becomes an n-parameter Brownian motion, in the following sense:
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By an n-parameter Brownian motion we mean a family {B(x, ·)}x∈Rn of random vari-

ables on a probability space (Ω,F , IP) such that

• B(0, ·) = 0 almost surely with respect to IP,

• {B(x,ω)} is a continuous and Gaussian stochastic process.

• For all x = (x1, · · · ,xn), y = (y1, · · · ,yn) ∈ Rn
+, B(x, ·), B(y, ·) have the covariance

∏
n
i=1 xi ∧ yi. For general x,y ∈ Rn the covariance is ∏

n
i=1

∫
Rθxi(s)θyi(s)ds, where

θx(t1, . . . , tn) = θx1(t1) · · ·θxn(tn), with

θx j(s) =


1 if 0 < s ≤ x j

−1 if x j < s ≤ 0

0 otherwise.

It can be proved that the process B̃(x,ω) defined above has a modification B(x,ω)

which satisfies all these properties. This process B(x,ω) then becomes an n-parameter

Brownian motion.

We remark that for n = 1 we get the classical (1-parameter) Brownian motion B(t) if

we restrict ourselves to t ≥ 0. For n ≥ 2 we get what is often called the Brownian sheet.

With this definition of Brownian motion, it is natural to define the n-parameter Wiener–

Itô integral of φ ∈ L2(Rn) by∫
Rn

φ(x)dB(x,ω) := ⟨ω,φ⟩; ω ∈ S ′(Rd).

We see that by using the Bochner–Minlos theorem we have obtained an easy construction

of n-parameter Brownian motion that works for any parameter dimension n. Moreover, we

get a representation of the space Ω as the Fréchet space S ′(IRd). This is an advantage in

many situations, for example in the construction of the Hida-Malliavin derivative, which

can be regarded as a stochastic gradient on Ω.

1.6 Stochastic integration

In this section, we recall to the stochastic integration with respect to fractional Brown-

ian motion, to cylindrical fractional Brownian motion and to Q-sub fractional Brownian

motion.
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1.6.1 Wiener integration with respect to fractional Brownian motion

Let (Ω,F ,P) be an arbitrary complete probability space.

Consider the space

LH
2 (R) :=

{
f : MH . f ∈ L2(R)

}
equipped with the norm ∥ f ∥LH

2 (R)=∥ MH
− f ∥L2(R).

Definition 1.8. [9] Let f ∈ LH
2 (R). Then the Wiener integral with respect to f.B.m is

defined as

IH( f ) :=
∫

R
f (s)dBH

s :=
∫
R
(MH

− f )(s)dWs.

As a particular case, consider the step function f : R→ R given by

f (t) = ∑
n
k=1 ak1[tk−1,tk)(t), where t0 < t1 < ... < tn ∈ R and ak ∈ R, 1 ≤ k ≤ n. Then from

the linearity of the operator MH
− we have that

IH( f ) =
n

∑
k=1

ak

∫
R

MH
−I[tk−1,tk)(s)dws =

n

∑
k=1

ak

(
BH

tk −BH
tk−1

)
which coincides with the usual Riemann-Stieltjes sum.

Note, that for a step function, it holds that

∥ IH( f ) ∥2
L2(Ω) =

n

∑
i,k=1

aiak

∫
R

MH
−I[tk−1,tk)(x)M

H
−I[ti−1,ti)(x)dx

=∥ MH
− f ∥2

L2(R)

= 2αH
∫
R2

f (u) f (v) | u− v |2α−1 dudv,

where the last equality holds for H ∈ (1
2 ,1) but not for H ∈ (0, 1

2). For any 0 < H < 1

we have the following.

Lemma 1.1. [9] For 0<H < 1, it holds that the linear span of the set
{

MH
−1(u,v), u,v ∈ R

}
is dense in L2(R).

Theorem 1.3. [72] The space LH
2 is incomplete for H ∈ (1

2 ,1), due to lemma (1.1), we

can approximate any f ∈ LH
2 (R) by step functions fn in LH

2 (R). Then MH
− fn → MH

− f in

L2(R), and we have that

IH( f ) :=
∫
R

f (x)dBH
s

=
∫
R
(MH

− f )(s)dWs

= lim
n→∞

∫
R

fn(s)dBH
s ,
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where the convergence is in L2(Ω). Furthermore for H ∈ (1
2 ,1), we have that

E | I( f ) |2=
∫
R
| (MH

− f )(x) |2 dx

for f ∈ LH
2 (R); however in general it does not holds.

1.6.2 Stochastic Integral with respect to the cylindrical fractional
Brownian motion

In this section we introduce the stochastic integral∫
ϕ(s)dB(s),

as a V-valued random variable for deterministic, operator-valued functions

ϕ : [0,T ]→ L(U,V ), where V is a separable Banach space.

To define the cylindrical integral, we recall the representation of a cylindrical f.B.m

(BH(t) : t ≥ 0) with Hurst parameter H ∈ (0,1) in the Banach space U, according to

theorem (1.2)

BH(t)u∗ =
∞

∑
k=1

< iek,u∗ > bk(t) f or all u∗ ∈U∗, t ≥ 0. (1.7)

Here, X is a Hilbert space with an orthonormal basis (ek)k∈N, i : X →U is a linear, contin-

uous mapping and (bk)k∈N is a sequence of independent, real valued standard f.B.m. If we

assume momentarily that we have already introduced a stochastic integral
∫ T

0 Ψ(t)dB(t)

as a V-valued random variable, then the representation 1.7 of BH naturally results in

∞

∑
k=1

∫ T

0
< Ψ(t)iek,v∗ > dbk(t) f or all v∗ ∈V ∗.

The integrals can be considered as the Fourier coefficients of the X-valued integral

∫ T

0
i∗Ψ

∗(t)v∗dbk(t).

The function t 7→ i∗Ψ∗(t)v∗ must be integrable with respect to the real valued standard

f.B.m, bk for every v∗ ∈V ∗ and k ∈ N, that is the function Ψ must be in the linear space

I :=
{

Φ : [0,T ]→ L(U,V ) : i∗Φ∗(.)v∗ ∈ M̂ for all v∗ ∈V ∗}. Here, M̂ = M̂X denotes the

Banach space of functions f : [0,T ]→ X . For this class of integrands we have the follow-

ing property.
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Proposition 1.5. [48] For each Ψ ∈ I the mapping

LΨ : V ∗ → M̂, LΨv∗ = iΨ∗(.)v∗

is linear and continuous.

Lemma 1.2. [48] For every Ψ ∈ I we define

< ΓΨ f ,v∗ >=
∫ T

0
[K∗(i∗Ψ

∗(.)v∗)(t), f (t)]dt f or all f ∈ L2([0,T ];X), v∗ ∈V ∗.

In this way, one obtains a linear, bounded operator ΓΨ : L2([0,T ];X)→V ∗∗.

Proposition 1.6. [48] let the f.B.m BH be represented in the form 1.7. Then for each Ψ∈ I

the mapping

ZΨ : V ∗ → L2
p(Ω,R), ZΨv∗ :=

∞

∑
k=1

∫ T

0
< Ψ(t)iek,v∗ > dbk(t), (1.8)

defines a Gaussian cylindrical random variable in V with covariance operator

QΨ : V ∗ →V ∗∗, factorized by QΨ = ΓΨΓ∗
Ψ

. Furthermore, the cylindrical random variable

ZΨ is independent of the representation 1.7.

Definition 1.9. A function Ψ∈ I is called stochastically integrable is there exists a random

variable IΨ : Ω →V such that

ZΨv∗ =< IΨ,v∗ > for all v∗ ∈V ∗ where ZΨ denotes the cylindrical integral of Ψ. We use

the notation

IΨ :=
∫ T

0
Ψ(t)dBH(t).

Theorem 1.8. [48] For Ψ ∈ I the following are equivalent:

(a) Ψ is stochastically integrable,

(b) the operator ΓΨ is V-valued and γ-radonifying.

Let KH(t,s) be the kernel function, for 0 ≤ s ≤ t ≤ T ,

KH(t,s) = cH(t − s)H− 1
2 + cH

(1
2
−H

)∫ t

s
(u− s)H− 3

2
(
1−
( s

u

) 1
2−H);

where cH =
[2HΓ(H+ 1

2 )Γ(
3
2−H)

Γ(2−2H)

] 1
2 and H ∈ (0,1).
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If H ∈ (1
2 ,1), then KH has a simple form as

KH(t,s) = cH(H − 1
2
)s

1
2−H

t∫
s

(
u− s

)H− 3
2 uH− 1

2 du.

A definition of stochastic integral of deterministic K -valued function with respect to

a scalar fractional Brownian motion (B(t), t ≥ 0) is described.

Let K∗
H : ε −→ L2([0,T ],K ) be the linear operator given by

K∗
Hϕ(t) = ϕ(t)KH(T, t)+

∫ T

t

(
ϕ(s)−ϕ(t)

)∂KH(s, t)
∂s

ds; (1.9)

for ϕ ∈ ε, where ε is the linear space of K -valued step function on [0,T ].

For ϕ ∈ ε,

ϕ(t) =
n−1

∑
i=1

xiI[ti,ti+1](t),

where xi ∈ K, i ∈ {1, ...,n−1} and 0 = t1 < t2 < ... < tn = T.

We define ∫ T

0
ϕdB =

n−1

∑
i=1

xi(Bti+1 −Bti). (1.10)

It follows directly that

E
∥∥∫ T

0
ϕdB

∥∥2
=| K∗

Hϕ |2L2([0,T ],K ) . (1.11)

Let (H ,∥ . ∥H ,⟨., .⟩H ) be the Hilbert space obtained by the completion of the pre-

Hilbert space ε with the inner product ⟨ϕ,ψ⟩H := ⟨K∗
Hϕ,K∗

Hψ⟩L2([0,T ],K ), for ϕ,ψ ∈ ε.

The stochastic integral 1.10 is extended to ϕ ∈ H by the isometry 1.11 .

Thus H is the space of integrable functions. If H ∈ (1
2 ,1) then it is easily verified that

H̃ ⊂H , where H̃ is the Banach space of Borel measurable functions with the norm ∥ . ∥H̃
given by

∥ ϕ ∥2
H̃
=

∫ T

0

∫ T

0
|ϕ(u)||ϕ(v)|φ(u− v)dudv,

where φ(u) = H(2H −1)|u|2H−2 and it is elementary to verify that Lp([0, t],K )⊂ H̃ for

p > 1
H then,

E∥
∫ T

0
ϕdB∥2 =

∫ T

0

∫ T

0
⟨ϕ(u),ϕ(v)⟩φ(u− v)dudv.

If H ∈ (0, 1
2), then the space of integral functions is smaller than for H ∈ (1

2 ,1).

Associated with (B(t), t ≥ 0) is a standard cylindrical Wiener process (W (t), t ≥ 0) in K
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such that formally B(t) = KH(W (t)).

For x ∈ K ∖ {0}, let Bx(t) = ⟨B(t),x⟩, it is elementary to verify from 1.10 that there is a

scalar Wiener process (wx(t), t ≥ 0) such that

Bx(t) = ⟨B(t),x⟩=
∫ t

0
KH(t,s)dwx(s);

for t ∈ R+. Furthermore, wx(t) = Bx
(
(K∗

H)
−11[0,t]

)
, where K∗

H is given by 1.9.

Now we define the stochastic integral
∫ T

0 GdB for an operator-valued function

G : [0,T ]−→ L(K ) is a K -valued random variable.

Definition 1.9. [109] Let G : [0,T ] −→ L(K ), (en,n ∈ N) be a complete orthonormal

basis in K, Gen(t) = G(t)en, Gen ∈ H for n ∈N and B is a standard cylindrical fractional

Brownian motion. Define
T∫

0

GdB :=
∞

∑
n=1

T∫
0

GendBn; (1.12)

provided the infinite series converges in L2(Ω).

Proposition 1.4. [109] Let G : [0,T ] −→ L(K ) and G(.)x ∈ H for each x ∈ V . Let

ΓT : K −→ L2([0,T ],K ) be given as

(ΓT (x))(t) = (K∗
HGx)(t),

for t ∈ [0,T ] and x ∈ K . If ΓT ∈ L2(K ,L2([0,T ],K )) is a Hilbert Schmidt operator

then the stochastic integral (1.12) is a well-defined centered Gaussian K -valued random

variable with covariance operator Q̃T given by

Q̃T x =
T∫

0

∞

∑
n=1

⟨(ΓT en)(s),x⟩(ΓT en)(s)ds. (1.13)

This integral does not depend on the choice of the complete orthonormal basis

(en,n ∈ N).

Remark 1.1. Since ΓT ∈ L2(K ,L2([0,T ],K )), it follows that the map x −→ (ΓT x)(t) is

the Hilbert -Schmidt on K for almost all t ∈ [0,T ]. Let Γ∗
T be the adjoint of ΓT . Then Γ∗

T

is also Hilbert-Schmidt and Q̃T can be expressed as

Q̃T x =
T∫

0

(ΓT (Γ
∗
T x))(t)dt, (1.14)
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for x ∈ K .

If H ∈ (1
2 ,1) and G satisfies

∥G∥2
H̃ =

T∫
0

T∫
0

|G(u)|L2(K )|G(v)|L2(K )φ(u− v)dudv < ∞;

then

Q̃T =

T∫
0

T∫
0

G(u)G∗(v)φ(u− v)dudv;

where φ(u− v) = H(2H −1) | u− v |2H−2.

Proposition 1.5. [109] If Ã : Dom(Ã) −→ K is closed linear operator, G : [0,T ] −→ K
satisfies G([0,T ])⊂ Dom(Ã) and both G and ÃG satisfy the conditions for G in property

1.4, then
T∫

0

GdB ⊂ Dom(Ã) P.a.s,

and

Ã
T∫

0

GdB =

T∫
0

ÃGdB P.a.s.

1.6.3 Stochastic integral with respect to Q-sub fractional Brownian
motion

Let ε the linear space of R-valued step functions on [0,T ]. For ϕ ∈ ε, we define its

wiener integral with respect to one-dimensional sub fractional Brownian motion {SH(t)}t≥0

as follows ∫ T

0
ϕ(s)dSH(s) =

∞

∑
n=1

xi(SH
ti+1 −SH

ti ).

Let HSH be the canonical Hilbert space associated to the sub-fBm SH . That is HSH is

the cloture of the linear span ε with respect to the scalar product,

〈
1[0,t],1[0,s]

〉
HSH

= cov
(
SH(t),SH(s)

)
.

We know that the covariance of sub-fBm can be written as

E
[
SH(t)SH(s)

]
=

∫ t

0

∫ s

0
φH(u,v)dudv =CH(t,s), (1.15)
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where

φH(u,v) = H(2H −1)
(
| u− v |2H−2 −(u+ v)2H−2) .

Equation (1.15) implies that

⟨ϕ,ψ⟩HSH
=

∫ t

0

∫ t

0
ϕuψvφ(u,v)dudv. (1.16)

Now we consider the kernel

KH(t,s) =
21−H√π

Γ(H − 1
2)

s3/2−H

 t∫
s

(x2 − s2)H−3/2dx

1[0,t](s). (1.17)

By Dzhaparidze and Van Zanten [47], we have

CH(t,s) = c2
H

t∧s∫
0

KH(t,u)KH(s,u)du, (1.18)

where

c2
H =

Γ(1+2H)sin(πH)

π
.

Let K∗
H be the linear operator from ε to L2[0,T ] defined by

(K∗
Hϕ)(s) = cH

∫ r

s
ϕr

∂KH

∂r
(r,s)dr.

By using the equalities (1.16) (1.18), we obtain

⟨K∗
Hϕ,K∗

H⟩L2([0,T ]) = c2
H

T∫
0

 T∫
s

ϕr
∂KH

∂r
(r,s)dr

 T∫
s

ψu
∂KH

∂u
(u,s)du

ds

= c2
H

T∫
0

T∫
0

 r∧u∫
0

∂KH

∂r
(r,s)

∂KH

∂u
(u,s)ds

ϕrψudrdu

= c2
H

T∫
0

T∫
0

∂2KH

∂r∂u
(u,s)ϕrψudrdu

= H(2H −1)
T∫

0

T∫
0

(
| u− r |2H−2 −(u+ r)2H−2)

ϕrψudrdu

= ⟨ϕ,ψ⟩HSH
.

(1.19)
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As a consequence, the operator K∗
H provides an isometry between the Hilbert space

HSH and L2([0,T ]).

Hence, the process W defined by W (t) := SH ((K∗
H)

−11[0,t]
)

is a Wiener process, and SH

has the following Wiener integral representation:

SH(t) = cH

t∫
0

KH(t,s)dW (s),

because (K∗
H)(1[0,t])(s) = cHKH(t,s).

By Dzhapridze and Van Zanten [47], we have

W (t) =
t∫

0

ψH(t,s)dSH(s),

where

ψH(t,s) =
sH−1/2

Γ(3/2−H)

[
tH−3/2(t2 − s2)1/2−H − (H −3/2)

∫ t

s
(x2 − s2)1/2−HxH−3/2dx

]
1[0,t](s).

In addition, for any ϕ ∈ HSH ,

t∫
0

ϕ(s)dSH(s) =
t∫

0

(K∗
Hϕ)(t)dW (t),

if and only if K∗
Hϕ ∈ L2([0,T ]).

Also, denoting L2
HSH

([0,T ]) =
{

ϕ ∈ HSH ,K∗
Hϕ ∈ L2([0,T ])

}
.

Since H > 1
2 , we have by (1.19) and lemma 1.2 of [94],

L2([0,T ])⊂ L
1
H ([0,T ])⊂ L2

HSH
([0,T ]). (1.20)

Lemma 1.2. ([103]) For ϕ ∈ L
1
H ([0,T ]),

H(2H −1)
∫ T

0

∫ T

0
| ϕr || ϕu || u− r |2H−2 drdu ≤CH ∥ ϕ ∥

L
1
H ([0,T ])

,

where CH =

(
H(2H−1)

β(2−2H,H− 1
2 )

)1/2

, with β denoting the beta function.

To define the stochastic integral with respect to Q-sub-fractional Brownian motion we

proceed as follows: Let L0
Q(K ,U) be the space of all ξ ∈ L(K ,U) such that ξQ

1
2 is a
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Hilbert-Schmidt operator. The norm is given by

∥ξ∥2
L0

Q(K ,U)
= ∥ξQ

1
2∥2

HS = tr(ξQξ
∗).

Then ξ is called a Q-Hilbert Schmidt operator from K to U.

Let ϕ : [0,T ]−→ L0
Q(K ,U) such that

∞

∑
n=1

∥K∗
H(ϕQ

1
2 en)∥L2([0,T ],U) < ∞. (1.21)

Theorem 1.4. [16] Let ϕ : [0,T ]−→ L0
Q(K ,U) satisfy 1.21. Then its stochastic integral

with respect to the sub-fBm SH
Q is defined, for t ≥ 0, as follows

t∫
0

ϕ(s)dSH
Q(s) :=

∞

∑
n=1

t∫
0

ϕ(s)Q
1
2 endSH

n (s),

=
∞

∑
n=1

t∫
0

K∗(ϕQ
1
2 en)dW (s).

Notice that if
∞

∑
n=1

∥ϕ(s)Q
1
2 en∥

L
1
H ([0,T ],U)

< ∞, (1.22)

then in particular (1.21) holds, which follows immediately form (1.20).

The following lemma is obtained as a simple application of lemma 1.2.

Lemma 1.3. ([103]) For any ϕ : [0,T ] −→ L0
Q(K ,U) such that 1.22 holds, and for any

u,v ∈ [0,T ] with u > v,

E
∥∥∫ u

v
ϕ(s)dSH

Q(s)
∥∥2

U ≤CH(u− v)2H−1
∞

∑
n=1

∫ u

v
∥ϕ(s)Q

1
2 en∥2

U ds.

If, in addition,

∞

∑
n=1

∥ϕ(s)Q
1
2 en∥2

U is uniformly convergent for t ∈ [0,T ], (1.23)

then

E
∥∥∫ u

v
ϕ(s)dSH

Q(s)
∥∥2

U ≤CH(u− v)2H−1
∫ u

v
∥ϕ(s)∥2

L0
Q(K ,U)

ds.

Proof. Let {en}∞
n=1 be the complete orthonormal basis of K introduced above. Applying
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lemma 1.2, we obtain

E∥
∫ u

v
ϕ(s)dSH

Q(s)∥2
U = E∥

∞

∑
n=1

∫ u

v
ϕ(s)Q

1
2 endSH(s)∥2

U

=
∞

∑
n=1

E∥
∫ u

v
ϕ(s)Q

1
2 dSH(s)∥2

U

=
∞

∑
n=1

H(2H −1)
∫ u

v

∫ u

v
∥ϕ(t)Q

1
2 en∥U∥ϕ(s)Q

1
2 en∥U |t − s|2H−2dtds

≤ cH

∞

∑
n=1

(∫ u

v
∥ϕ(s)Q

1
2 en∥

1
H
U

)2H

≤ cH(u− v)
∞

∑
n=1

∫ u

v
∥ϕ(s)Q

1
2 en∥2

U ds.

Remark 1.2. If {λn}∞
n=1 is bounded sequence of non-negative real numbers such that the

nuclear operator Q satisfies Qen = λnen, assuming that there exists a positive constant

Kϕ such that

∥ϕ(t)∥L2
Q(K,U) ≤ Kϕ uniformly in [0, T],

then 1.23 holds automatically.
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1.7 The space of tempered distributions

For the convenience of the reader we recall some of the basic properties of the Schwartz

space S of rapidly decreasing smooth functions and its dual, the space S ′ of tempered

distributions.

1.7.1 The space of tempered distributions

Let n be a given natural number. Let S = S(Rn) be the space of rapidly decreasing smooth

real functions f on Rn equipped with the family of seminorms:

∥ f∥k,α := sup
y∈Rn

{
(1+ |y|k)|∂α f (y)|

}
< ∞,

where k = 0,1, ..., α = (α1, ...,αn) is a multi-index with α j = 0,1, ... ( j = 1, ...,n) and

∂
α f :=

∂|α|

∂yα1
1 · · ·∂yαn

n
f

for |α|= α1 + ...+αn.

Then S = S(Rn) is a Fréchet space.

Let S ′ = S ′(Rn) be its dual, called the space of tempered distributions. Let B denote

the family of all Borel subsets of S ′(Rn) equipped with the weak* topology. If Φ ∈ S ′

and f ∈ S we let

Φ( f ) or ⟨Φ, f ⟩ (1.24)

denote the action of Φ on f .

Example 1.1. • (Evaluations) For y ∈ IR define the function δy on S(IR) by δy(φ) =

φ(y). Then δy is a tempered distribution.

• (Derivatives) Consider the function D, defined for φ ∈ S(R) by D[φ] = φ′(y). Then

D is a tempered distribution.

• (Distributional derivative)

Let T be a tempered distribution, i.e. T ∈ S ′
(R). We define the distributional

derivative T
′
of T by

T
′
[φ] =−T [φ

′
]; φ ∈ S .
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Then T
′
is again a tempered distribution.

1.8 Theory of semigroup

In this part, we give some definitions and preliminaries results of semigroup theory that

will be needed in the sequel.

Definition 1.10. Let X be a Banach space. A family (T (t))t≥0 of bounded linear operators

from X to X is called a strongly continuous semigroup of bounded linear operators if the

following three conditions are satisfied

(i) T (0) = I,

(ii) T (t + s) = T (t)T (s),

(iii) ∀x ∈ X, the map R ∋ t → T (t)x ∈ X defined from [0,+∞ = into X is continuous at

the right of 0.

A strongly continuous semigroup of bounded linear operators on X will be called a C0-

semigroup.

Remark 1.4. A semigroup of bounded linear operators (T (t))t≥0 is uniformly continuous

if

lim
t→0

∥ T (t)− I ∥= 0.

Examples of semigroups
Infinitesimal generator of a C0-semigroup

Definition 1.11. The linear operator A defined by

D(A) = limt→0+
T (t)x−x

t = d+T (t)x
dt |t=0 for x ∈ D(A) is the infinitesimal generator of the

semigroup (T (t))t≥0; D(A) is the domain of A.

Theorem 1.9. [70] Let (T (t))t≥0 be a C0-semigroup then there exist constants w ∈R and

M ≥ 1, such that

∥ T (t) ∥≤ Mewt f or 0 ≤ t <+∞.

Theorem 1.10. [70] If (T (t))t≥0 is a C0-semigroup then ∀x ∈ X, t → T (t)x is continuous

from R+ into X.

Theorem 1.11. [51] Let (T (t))t≥0 be a C0-semigroup and A be its infinitesimal generator.

Then
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(a). For x ∈ X,

lim
h→0

∫ t+h

t
T (s)xds = T (t)x.

(b). For x ∈ X , ∫ t

0
T (s)xds ∈ D(A) and A(

∫ t

0
T (s)xds) = T (t)x− x.

(c). For x ∈ D(A),

T (t)x ∈ D(A), and
d
dt

T (t)x = AT (t)x = T (t)Ax.

(b). For x ∈ D(A),

T (t)x−T (s)x =
∫ t

s
T (τ)Axdτ =

∫ t

s
AT (τ)xdτ.

Corollary 1.3. [70] If A is the infinitesimal generator of a C0-semigroup (T (t))t≥0 then

D(A) the domain of A, is dense in X and A is closed linear operator.

Theorem 1.12. [70] A linear operator A is the infinitesimal generator of a uniformly

continuous semigroup if and only if A is a bounded linear operator.

Theorem 1.13. [70] Let (T (t))t≥0 and (S(t))t≥0 be two C0-semigroup on X, generated

respectively by A and B. If A=B then T (t) = S(t), t ≥ 0.

Definition 1.12. (T (t))t≥0 is a C0 semigroup of contraction if and only if

∥ T (t) ∥≤ 1, ∀t ≥ 0.

Integrated semigroups

Definition 1.13. [68] Let U be a Banach space. An integrated semigroup is a family of

operators (S(t)t≥0) of bounded linear operators S(t) on U with the following properties:

(i) S(0) = 0;

(ii) t → S(t) is strongly continuous;

(iii) S(s)S(t) =
∫ s

0 (S(t + r)−S(r))dr, ∀s, t ≥ 0.

Definition 1.14. [68] An operator is called a generator of an integrated semigroup if

there exists η ∈ R such that (η,+∞) ⊂ ρ(A) (the resolvent set of A), and there exists a
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strongly continuous exponentially bounded family (S(t))t≥0 of bounded linear operators

such that

S(0) = 0, (λI −A)−1 = λ

∫ +∞

0
e−λtS(t)dt, ∀λ > η.

Definition 1.15. [68] An integrated semigroup S(t))t≥0 is called exponentially bounded

if there exists constants M ≥ 0 and β ∈ R such that

∥ S2(t) ∥≤ Meβt , ∀t ≥ 0.

Definition 1.16. [134] We say that the linear operator A satisfies the Hill-Yosida condi-

tion if there exists constant M ≥ 0 and η ∈ R such that (η,+∞)⊂ ρ(A) and

sup
{
(λ−η)n | (λI −A)−n |: n ∈ N, λ > η

}
≤
√

M.

Definition 1.17. [68] An integrated semigroup (S(t))t≥0 is called locally Lipschitz con-

tinuous if, for all δ > 0, there exist a constant Λ ≥ 0 such that;

∥ S(t)−S(s) ∥≤ Λ | t − s |, t,s ∈ [0,δ].



Chapter 2
Fractional Calculus

2.1 Some historical facts on fractional calculus

We begin to call for the history of the fractional calculus given by [79], so the Fractional

Calculus (FC) is a generalization of classical calculus concerned with operations of in-

tegration and differentiation of non-integer (fractional) order. The concept of fractional

operators has been introduced almost simultaneously with the development of the classi-

cal ones. The first known reference can be found in the correspondence of G. W. Leibniz

and Marquis de l’Hospital in 1695 where the question of meaning of the semi-derivative

has been raised. This question consequently attracted the interest of many well- known

mathematicians, including Euler, Liouville, Laplace, Riemann, Grünwald, Letnikov and

many others. Since the 19th century, the theory of fractional calculus developed rapidly,

mostly as a foundation for a number of applied disciplines, including fractional geometry,

fractional differential equations (FDE) and fractional dynamics. The applications of FC

are very wide nowadays. It is safe to say that almost no discipline of modern engineering

and science in general, remains untouched by the tools and techniques of fractional calcu-

lus. For example, wide and fruitful applications can be found in rheology, viscoelasticity,

acoustics, optics, chemical and statistical physics, robotics, control theory, electrical and

mechanical engineering, bio-engineering, etc...In fact, one could argue that real world

processes are fractional order systems in general. The main reason for the success of

FC applications is that these new fractional-order models are often more accurate than

integer-order ones, i.e. there are more degrees of freedom in the fractional order model

than in the corresponding classical one. One of the intriguing beauties of the subject is

that fractional derivatives (and integrals) are not a local (or point) quantities. All frac-

tional operators consider the entire history of the process being considered, thus being

37
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able to model the non-local and distributed effects often encountered in natural and tech-

nical phenomena. Fractional calculus is therefore an excellent set of tools for describing

the memory and hereditary properties of various materials and processes.

2.2 Special functions of fractional calculus

We will recall in this section some results of the special functions of fractional calculus

which are important for other parts of this work.

2.2.1 Gamma function

Definition 2.1. [73] The gamma function Γ(z) is defined by the integral:

Γ(z) =
∫

∞

0
e−ttz−1dt,

where tz−1 = e(z−1)log(t). This integral is convergent for all complex z ∈ C.

Properties 2.1. [73] The gamma function satisfies the following functional equation:

Γ(z+1) = zΓ(z) . (2.1)

Another important property can be represented also by the following limit:

Γ(z) = lim
n→∞

n!n2

z(z+1) ...(z+n)
, (2.2)

where we initially suppose that Re(z)> 0.

2.2.2 Beta function

Definition 2.2. [73] The Beta function is defined by the following integral:

B(z,w) =
∫ 1

0
τ

z−1 (1− τ)w−1 dτ , (Re(z)> 0,Re(w)> 0) . (2.3)

Properties 2.2. [73] The principal property of the function Beta is:

B(z,w) =
Γ(z)Γ(w)
Γ(z+w)

, (2.4)
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from which it follows that:

B(z,w) = B(w,z) .

2.2.3 Wright function

Definition 2.3. The Wright function is defined by the following some by [49]

The series representation, valid in the whole complex plane

W (z;α,β) =
∞

∑
k=0

zk

k!Γ(αk+β)
, α >−1, β ∈ C, (2.5)

it is an entire function of order 1
1+α

, which has known also as generalized Bessel functions

cited by Podlubny [111] and Kiryakova [75].

Properties 2.3. The Wright function can be represented by the following integral given

by [49]

W (z;α,β) =
1

2πi

∫
Ha

τ
−βeτ+zτ−α

dτ,

where Ha denotes Hankel’s contour. It follows from (2.5) that

W (z,0,1) = ez.

2.2.4 The Mittag-Leffler functions

Definition 2.4. [102] The Mittag-Leffler function of two parameters α, β is denoted by

Eα,β(z) and defined by:

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk+β)
, (2.6)

where z, α, β ∈ C, Re(α)> 0 and Re(β)> 0, and Γ is the Gamma function.

For β = 1 we obtain the Mittag-Leffler function of one parameter α denoted by Eα(z)

and defined as:

Eα(z) =
∞

∑
k=0

zk

Γ(αk+1)
, (2.7)

where z, α ∈ C, Re(α)> 0.

Remark 2.1. Note that Eα(z) = Eα,1(z) and that

E1(z) =
∞

∑
k=0

zk

Γ(k+1)
=

∞

∑
k=0

zk

k!
= ez. (2.8)

Now, we need to introduce the following space.
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The space AC

Definition 2.1. [73] Let [a,b] (−∞ < a < b < ∞) be a finite interval and let AC[a,b] be

the space of functions of which are absolutely continuous on [a,b]. AC[a,b] coincides with

the space of primitives of Lebesgue summable function [see Kolmogorov and Fomin[77]]

f (x) ∈ AC[a,b]⇔ f (x) = c+
∫ x

a
ϕ(t)dt,

with (ϕ(t) ∈ L(a,b)), and therefore an absolutely continuous function has a summable

derivative f
′
(x) = ϕ(x) almost everywhere on [a,b].

Definition 2.2. [73] For n∈N= {1,2,3, ...} we denote by ACn[a,b] the space of complex-

valued functions f (x) which have continuous derivatives up to order n−1 on [a,b] such

that f (n−1)(x) ∈ AC[a,b]:

ACn[a,b] =
{

f : [a,b]→ C and
(
Dn−1 f

)
(x) ∈ AC[a,b] (D = d

dx)
}

. C being the set of

complex numbers. In particular, AC1[a,b] = AC[a,b].

Let us define now the space Cn
γ .

Definition 2.3. [73] Let n ∈ N0 = {0,1, ...} and γ ∈ C (0 ≤ R(γ)< 1).

The space Cn
γ [a,b] consists of those and only those functions of which are represented in

the form

f (x) =
1

(n−1)!

∫ x

a
(x− t)n−1

ϕ(t)dt +
n−1

∑
k=0

ck(x−a)k, (2.9)

where ϕ(t) ∈Cγ[a,b] and ck (k = 0,1, ...,n−1) are arbitrary constants. Moreover,

ϕ(t) = f (n)(t), ck =
f (k)(a)

k!
(k = 0,1, ...,n−1). (2.10)

In particular, when γ = 0, the space Cn[a,b] consists of those functions f which are repre-

sented in the form 2.9, where ϕ(t) ∈ C[a,b] and ck (k = 0,1, ...) are arbitrary constants.

Moreover, the relations in 2.10 holds.

2.3 Fractional derivatives and integrals

A fractional differential equation is an equation which contains fractional derivatives; a

fractional integral equation is an integral equation containing fractional integrals.

In this section we need to recall the definitions and the usefuls theorems and lemmas for

fractional derivatives and integrals.
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2.3.1 The Riemann-Liouville left-and right-sided fractional integrals

We first define the fractional integral operator according to Riemann-Liouville, which

is the most widely used definition in fractional calculus.

Definition 2.5. [101]Riemann-Liouville fractional integral on the real line

The Riemann-Liouville fractional integral on R are defined as

(
Iα
+ f
)
(x) :=

1
Γ(α)

∫ x

−∞

(x− t)α−1 f (t)dt =
1

Γ(α)

∫ x

−∞

(x− t)α−1
+ f (t)dt, (2.11)

and

(
Iα
− f
)
(x) :=

1
Γ(α)

∫
∞

x
(t − x)α−1 f (t)dt =

1
Γ(α)

∫
∞

x
(t − x)α−1

− f (t)dt. (2.12)

Remark 2.2. The function f ∈ D
(
Iα
+,−
)

if the corresponding integrals converge for a.a

x ∈ R.

Proposition 2.1. [101]

i. Fractional integration admits the following composition formulas for fractional in-

tegrals:

Iα
+,−Iβ

+,− f = Iα+β

+,− f (2.13)

for f ∈ Lp(R), α,β > 0 and α+β < 1
p .

ii. We consider f ∈ Lp(R), g ∈ Lq(R), p > 1, q > 1, and 1
p +

1
q = 1, then we obtain the

following integration by parts formula∫
R

g(x)
(
Iα
+ f
)
(x)dx =

∫
R

f (x)
(
Iα
−g
)
(x)dx. (2.14)

iii. (Inclusion property)

Let Cλ(T) be the set of Hölder continuous functions f : T→ R of order λ i.e,

Cλ(T) =

{
f : T→ R | ∥ f ∥λ:= sup

t∈T
| f (t) |+ sup

s,t∈T
| f (s)− f (t) | (t − s)−λ < ∞

}
.

If α > 0, and αp > 1, then,

Iα
+,− (Lp(R))⊂Cλ[a,b]
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for any −∞ < a < b < ∞ and 0 < λ < α− 1
p .

2.3.2 The Riemann-Liouville left-and right-sided fractional deriva-
tives

In this part we present the definitions and some properties of the Liouville fractional

derivatives on the whole axis R= (−∞,∞).

Definition 2.6. [73]Liouville fractional derivatives on the real axis.
The Liouville fractional derivatives on R are defined by the following formulas:

(
Dα
+y
)
(x) :=

(
d
dx

)n (
I n−α
+ y

)
(x) =

1
Γ(n−α)

(
d
dx

)n∫ x

−∞

y(t)dt
(x− t)α−n+1 , (2.15)

and

(
Dα
−y
)
(x) :=

(
− d

dx

)n (
I n−α
− y

)
(x) =

1
Γ(n−α)

(
− d

dx

)n∫ +∞

x

y(t)dt
(t − x)α−n+1 , (2.16)

where n = [Re(α)]+1, Re(α)≥ 0 and x ∈ R, respectively.

Lemma 2.1. [73] If α > 0, then, for "sufficiently good" functions f (x) the relations

(
Dα
+I α

+ f
)
(x) = f (x), (2.17)

(
Dα
−I α

− f
)
(x) = f (x), (2.18)

are true. In particular, these formulas holds for f (x) ∈ L1(R).

Properties 2.4. [73] Let α > 0, m ∈ N and D = d
dx .

i. If the fractional derivatives
(
Dα
+y
)
(x) and

(
Dα+m
+ y

)
(x) exists, then

(
DmDα

+y
)
(x) =

(
Dα+m
+ y

)
(x). (2.19)

ii. If the fractional derivatives
(
Dα
−y
)
(x) and

(
Dα+m
− y

)
(x) exist, then

(
DmDα

−y
)
(x) = (−1)m (Dα+m

− y
)
(x). (2.20)

2.3.3 Caputo fractional derivative

In this section we present the definitions and some properties of the Caputo derivatives.
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Definition 2.7. [101] The fractional derivatives
(cDα

a+ f
)
(x) and

(cDα

b− f
)
(x) of order

α ∈C, Re(α)≥ 0 on [a,b] are defined via the above Riemann-Liouville fractional deriva-

tives by (cDα
a+ f
)
(x) :=

(
Dα

a+

[
f (t)−

n−1

∑
k=0

f (k)(a)
k!

(t −a)k

])
(x), (2.21)

(cDα

b− f
)
(x) :=

(
Dα

b−

[
f (t)−

n−1

∑
k=0

f (k)(b)
k!

(b− t)k

])
(x). (2.22)

Respectively, where

n = [R(α)]+1 f or α /∈ N0; n = α f or α ∈ N0. (2.23)

These derivatives are called left-sided and right-sided Caputo fractional derivatives of

order α.

In particular, when 0 < Re(α) < 1, the relations (2.21) and (2.22) take the following

forms:

(cDα
a+ f
)
(x) =

(
Dα

a+ [ f (t)− f (a)]
)
(x) = (Dα

a+ f )(x)− f (a)
Γ(1−α)

(x−a)−α, (2.24)

(cDα

b− f
)
(x) =

(
Dα

b− [ f (t)− f (b)]
)
(x) = (Dα

b− f )(x)− f (b)
Γ(1−α)

(b− x)−α. (2.25)

The Caputo fractional derivatives are defined for functions f (x) belonging to the space

ACn [a,b] of absolutely continuous functions.

Now we discuss the following cases of α.

(1)- If α ̸=N0, then the Caputo fractional derivatives (2.21) and (2.22) coincide with the

Riemann-Liouville fractional derivatives (2.15), (2.16) in the following statements:

(cDα
a+ f
)
(x) =

(
Dα

a+ f
)
(x), (2.26)

if f (a) = f
′
(a) = ...= f n−1(a) = 0 (n = [R(α)]+1); and

(cDα

b− f
)
(x) =

(
Dα

b− f
)
(x), (2.27)

if f (b) = f
′
(b) = ...= f n−1(b) = 0 (n = [R(α)]+1).

In particular, when 0 < R(α)< 1, we have

(cDα
a+ f
)
(x) =

(
Dα

a+ f
)
(x), when f (a) = 0, (2.28)
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(cDα

b− f
)
(x) =

(
Dα

b− f
)
(x), when f (b) = 0. (2.29)

(2)- if α = n ∈ N0 and the usual derivative f n(x) exists, then

(cDn
a+ f
)
(x) = f (n)(x), (2.30)

and (cDn
b− f
)
(x) = (−1)n f (n)(x) (n ∈ N). (2.31)

Theorem 2.1. [73] Let R(α)≥ 0 and let n be given by (2.23).

If f (x) ∈ ACn[a,b], then the Caputo fractional derivatives
(cDα

a+ f
)
(x) and

(cDα

b− f
)
(x)

exist almost every where on [a,b].

(a-) If α /∈ N0,
(cDα

a+ f
)
(x) and

(cDα

b− f
)
(x) are represented by

(cDα
a+ f
)
(x) =

1
Γ(n−α)

∫ x

a

f (n)(t)dt
(x− t)α−n+1 =:

(
I n−α

a+ Dn f
)
(x), (2.32)

and

(cDα

b− f
)
(x) =

(−1)n

Γ(n−α)

∫ b

x

f (n)(t)dt
(t − x)α−n+1 =:

(
I n−α

b− Dn f
)
(x) (2.33)

respectively, where D = d
dx and n = [R(α)]+1.

In particular, when 0 < R(α)< 1 and f (x) ∈ AC[a,b].

(cDα
a+ f
)
(x) =

1
Γ(1−α)

∫ x

a

f
′
(t)dt

(x− t)α
=:
(

I 1−α
a+ D f

)
(x), (2.34)

and (cDα

b− f
)
(x) =− 1

Γ(n−α)

∫ b

x

f
′
(t)dt

(t − x)α
=:
(

I 1−α

b− D f
)
(x). (2.35)

(b)- If α = n ∈ N0, then
(cDn

a+ f
)
(x) and

(cDn
b− f
)
(x) are represented by (2.30) and

(2.31). In particular

(cD0
a+ f
)
(x) =

(cD0
b− f
)
(x) = f (x). (2.36)

Theorem 2.2. [73] Let R(α)≥ 0 and let n be given by (2.23), also let

f (x) ∈Cn[a,b]. Then the Caputo fractional derivatives
(cDα

a+ f
)
(x)and

(cDα

b− f
)
(x) are

continuous on [a,b]:(cDα
a+ f
)
(x) ∈C[a,b] and

(cDα

b− f
)
(x) ∈C[a,b].
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(a) If α /∈ N0, then
(cDα

a+ f
)
(x) and

(cDα

b− f
)
(x) are represented by (2.32) and (2.33)

respectively. Moreover

(cDα
a+ f
)
(a) =

(cDα

b− f
)
(b) = 0. (2.37)

In particular, they have respectively the forms (2.34) and (2.35)

for 0 < Re(α)< 1.

(b) If α = n ∈ N0, then the fractional derivatives
(cDn

a+ f
)
(x) and

(cDn
b− f
)
(x) have

representations given in (2.30) and (2.31). In particular, the relations in (2.36).

Lemma 2.2. [117] Let R(α)> 0 and let f (x) ∈ L∞(a,b) or f (x) ∈C[a,b]

(a) If R(α) /∈ N or α ∈ N, then

(cDα
a+Iα

a+ f
)
(x) = f (x),

and (cDα

b−Iα

b− f
)
(x) = f (x).

(b) If R(α) ∈ N and Im(α) ̸= 0, then

(cDα

a+Iα

a+ f )(x) = f (x)−
(Iα+1−n

a+ f )(a+)
Γ(n−α)

(x−a)n−α, (2.38)

(cDα

b−Iα

b− f )(x) = f (x)−
(Iα+1−n

a+ f )(b−)
Γ(n−α)

(b− x)n−α. (2.39)

2.3.4 Laplace transform of Caputo derivatives

Recall that the Laplace transform L is defined by

L f (s) =
∫

∞

0
e−st f (t)dt =: f̃ (s) (2.40)

for all f such that the integral converges.

Some of the properties of the Laplace transform that we will need are:
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L[
∂α

∂tα
f (t)](s) = sα(L f )(s)− sα−1 f (0), (2.41)

L[Eα(bxα)](s) =
sα−1

sα −b
, (2.42)

L[xα−1Eα,α(−bxα)](s) =
1

sα +b
. (2.43)

Recall that the convolution f ∗g of two functions f ,g : [0,∞) 7→ R is defined by

( f ∗g)(t) =
∫ t

0
f (t − r)g(r)dr; t ≥ 0. (2.44)

The convolution rule for Laplace transform states that

L
(∫ t

0
f (t − r)g(r)dr

)
(s) = L f (s)Lg(s),

or ∫ t

0
f (t −w)g(w)dw = L−1 (L f (s)Lg(s))(t). (2.45)

2.3.5 Hilfer fractional derivative

Hilfer [59] proposed a general operator for fractional derivative, called “Hilfer frac-

tional derivative”, which combines Caputo and Riemann-Liouville fractional derivatives.

Definition 2.8. [59] The Hilfer fractional derivative of order 0 ≤ α ≤ 1 and 0 < β < 1 for

a function f is defined by

Dα,β
0+ f (t) = Iα(1−β)

0+
d
dt

I(1−α)(1−β)
0+ f (t).

Remark 2.3. When α = 0, 0 < β < 1, the Hilfer fractional derivative coincides with

classical Riemann-Liouville farctional derivative

D0,β
0+ f (t) =

d
dt

I1−β

0+ f (t) =L Dβ

0+ f (t),

when α = 1, 0 < β < 1, the Hilfer fractional derivative coincides with classical Caputo

fractional derivative

D1,β
0+ f (t) = I1−β

0+
d
dt

f (t) =c Dβ

0+ f (t).
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Now, we introduce the next spaces:

Cα,β
1−γ

[a,b] = { f ∈C1−γ[a,b] : Dα,β
a+ f ∈C1−γ[a,b]},

and

Cγ

1−γ
[a,b] = { f ∈C1−γ[a,b] : Dγ

a+ f ∈C1−γ[a,b]}.

Since Cγ

1−γ
[a,b]⊂Cα,β

1−γ
[a,b]. The following lemmas follows directly from the semigroup

property.

Lemma 2.3. [50] Let 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and γ = α+β−αβ. If f ∈Cγ

1−γ
[a,b], then

Iγ

a+Dγ

a+ f = Iα

a+Dα,β
a+ f ,

and

Dγ

a+Iα

a+ f = Dβ(1−α)
a+ f .

Lemma 2.4. [50] Let f ∈ L1[a,b]. If Dβ(1−α)
a+ f exists and in L1[a,b] then

Dα,β
a+ Iα

a+ f = Iβ(1−α)
a+ Dβ(1−α)

a+ f .

Lemma 2.5. [50] Let 0 ≤ α ≤ 1, 0 ≤ β ≤ 1 and γ = α+β−αβ. If f ∈ C1−γ[a,b] and

I1−β(1−α)
a+ f ∈C1

1−γ
[a,b] then Dα,β

a+ Iα

a+ f exist in (a,b] and

Dα,β
a+ Iα

a+ f (x) = f (x) x ∈ (a,b].



Chapter 3
Differential inclusions

Differential inclusion plays an important role as a tool in the study of various dynamical

processes such a study of dynamics of economical, social and biological, macrosystems,

they also are very useful in proving existence theorems in control theory. A differential

inclusion is a relation of the form

x
′
∈ F(x),

where F is a multivalued map associating any point x ∈ Rn with a set F(x) ⊂ Rn. The

notion of a differential inclusion generalizes the notion of an ordinary differential equation

of the form

x
′
= F(x).

The key question is how to define the solution of such systems.

First of all it is important to introduce the basic definitions of a multivalued maps which

will be used in the sequel of this chapter.

Differential equations or inclusions have recentely proved to be strong tools in modeling

of many phenomena in various fields of engineering, physics and economics, see [139],

[69], [3], and [121], As well as other researchers have shown important results on differ-

ential inclusion problems and their applications with mechanical modeling [35], [28] and

a serie of books of Bressan [24],[25] and [23].

3.1 Multi-valued mapps

Multivalued maps play a significant role in the description of processes in control theory,

in this section we introduce some basic definitions and results of multivalued maps. For

more details on multivalued maps, see the books of Deimling [40], Hu and Papageorgiou

48
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[61].

Let X be a Banach space and P(X) denote the class of all subsets of X

Pf (H ) =
{

A ⊂ H /A is non− empty and has a property f
}
.

Thus Pbd (H ) ,Pcl (H ) ,Pcv (H ) ,Pcp (H ) ,Pcl,bd (H ) ,Pcp,cv (H ) denote the classes of bounded,

closed, convex,compact,closed-bounded and compact-convex subsets of X respectively.

Similary Pcl,cv,bd (H ) and Pcp,cv (H ) denote the classes of closed convex bounded and

compact,convex subsets of H respectively.

T : H → Pf (H ) is called a multivalued operator or a multivalued mapping on H .

A point u ∈ H is called a fixed point of T if u ∈ Tu.

Definition 3.1. [83] A multivalued map G : H → 2H \ /0 is convex(closed) valued if G(x)

is convex (closed) for all x ∈ H . G is bounded on bounded sets if G(B) =
⋃

x∈B
G(x) is

bounded in H for any bounded set B of H , i.e.,

sup
x∈B

{sup ∥ y ∥: y ∈ G(x)}< ∞.

Definition 3.2. [83] A multivalued map G is called upper semi-continuous (u.s.c) on H
if for each x0 ∈ H the set G(x0) is non empty closed subset of H , and if for each open set

N of H containing G(x0), there exists an open neighborhood V of x0 such that G(V )⊆ N.

Definition 3.3. [83] The multi-valued map G is called lower semi continuous (l.w.c) if U

is an open subset of H , then

G−1(U) =
{

x ∈ H /G(x)∩U ̸= /0
}

is an open subset of H .

Definition 3.4. [83] The multivalued operator G is called compact if G(H ) is a compact

subset of H . G is said to be completely continuous if G(B) is relatively compact for every

bounded subset B of H .

If the multivalued map G is completely continuous with nonempty values, then G is u.s.c,

if and only if G has a closed graph, i.e.,

xn → x∗ , yn → y∗ , yn ∈ G(xn) imply y∗ ∈ G(x∗).

Let us denote by BCC(H ) the set of all nonempty bounded, closed and convex subset of

H .
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Definition 3.5. [83] A multi-valued map G :→ BCC(H ) is said to be measurable if for

each x ∈ H , the function U : J → R, defined by

U(t) = d(x,G(t)) = in f {∥ x− z ∥: z ∈ G(t)}

belongs to L1(J,R).

Definition 3.6. [83] A multi-valued function G : J ×R→ Pcp(R) is called carathéodory

if

(i). t → G(t,x) is measurable for each x ∈ R and

(ii). x → G(t,x) is an upper semi-continuous almost everywhere for t ∈ J.

Definition 3.7. [83] A carathéodory multi-valued map G(t,x) is called L1-carathéodory

if there exists a function h ∈ L1(J,R) such that ∥ G(t,x) ∥< h(t) a.e. t ∈ J for all x ∈ R,

and the function h is called a growth function of G on J×R.

Definition 3.8. [83] The multi-valued map G : J × H → BCC(H ) is said to be L2-

carathéodory if

(i). t → G(t,x) is measurable for each x ∈ H

(ii). x → G(t,x) is u.s.c. for almost all t ∈ J

(iii). for each r > 0, there exists lr ∈ L1(J,R) such that

∥ G(t,x) ∥2:= sup
σ∈G(t,x)

E ∥ σ ∥2≤ lr(t)

for all ∥ x ∥2
b≤ r and for a.e. t ∈ J.

Lasota and Opial gives the following results

Lemma 3.1. [78] Let J be a compact real interval , BCC(H ) be the set of all non-empty,

bounded, closed and convex subset of H and G be a L2-carathéodory multi-valued map,

SG,x ̸= /0 and let Γ be a linear continuous mapping from L2(J,H ) to C(J,H ). Then the

operator

Γ◦SG : C(J,H )→ BCC(C(J,H ) , x → (Γ◦SG) := Γ(SG)

is a closed graph operator in C(J,H ), where SG,x is known as the selections set from G,

is given by

σ ∈ SG,x =
{

σ ∈ L2(L(K,H )) : σ(t) ∈ G(t,x), f or a.e. t ∈ J
}
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Definition 3.9. [135]

i. A subset A of a normed space X is said to be weakly (relatively) compact if (the

weak closure of) A is compact in the weak topology of X.

ii. A subset A of a Banach space X is weakly sequentially compact if any sequence in

A has a subsequence which converges weakly to an element of X.

Definition 3.10. [135]

Suppose that X and Y are Banach spaces. A linear operator T from X into Y is weakly

compact if T (B) is a relatively weakly compact subset of Y whenever B is a bounded

subset of X.

Theorem 3.1. [67] Let Ω be a subset of a Banach space X. The following statements are

equivalent:

i. Ω is relatively weakly compact.

ii. Ω is relatively weakly sequentially compact.

Theorem 3.2. [67] Let Ω be a subset of a Banach space X. The following statements are

equivalent:

i. Ω is weakly compact.

ii. Ω is weakly sequentially compact.

Definition 3.11. [135] Let D be a nonempty subset of Banach space Y and ϕ : D → P(Y )

be a multivalued map:

1. ϕ is said to have weakly sequentially closed graph if for every sequence {xn} ⊂ D

with xn ⇀ x in D and for every sequence {yn} with yn ∈ ϕ(xn) ∀n ∈ N yn ⇀ y ∈ Y

implies y ∈ ϕ(x).

2. ϕ is called weakly upper semi continuous if ϕ−1 (A) is closed for all weakly closed

A ⊂ Y .

3. β is ε− δ upper semi continuous if for every w0 ∈ Y and ε > 0 there exists δ > 0

such that β(y)⊂ β(w0)+Bε (0) for all y ∈ Bδ (w0)
⋂

D.

Now we define the set of selections of Σ by: Given x ∈Cr
(
[−r,T ] ,L2 (Ω,H )

)
SelΣ(x) =

{
σ ∈Cr

(
[−r,T ] ;L2 (Ω,H )

)
: σ(t − r) ∈ Σ(t − r,x(t − r))

}
.
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Lemma 3.2. [17] Let ϕ : D ⊂ Y → P(Z) be a multivalued map with weakly compact

values, then

1. ϕ is weakly u.s.c if ϕ is ε−δ u.s.c.

2. suppose further that ϕ has convex values and Z is reflexive then ϕ is weakly u.s.c if

and only if {xn} ⊂ D with xn → x0 ∈ D and yn ∈ ϕ(xn) implies yn ⇀ y0 ∈ ϕ(x0) up

to a subsequence.

Lemma 3.3. [130] Let X be reflexive and 1 < p < ∞. A subset K ⊂ Lp ([a,b] ,X) is

relatively weakly sequentially compact in Lp ([a,b] ,X) if and only if K is bounded in

Lp ([a,b] ,X).

Theorem 3.3. [43] The convex hull of a weakly compact set in a Banach space X is

weakly compact.

Theorem 3.4. [105] Let X be a metrisable locally convex linear topological space and

let D be a weakly compact convex subset of X.

Suppose, ϕ : D→ Pcl,cv (D) has weakly sequentially closed graph then ϕ has a fixed point.

3.2 Differential inclusion

In this section, we give an example of differential inclusion in deterministic case, for more

details see [37]. We consider the following differential inclusion
(

x(t)
f (t,x(t))

)′

∈ G(t,x) a.e t ∈ J

x(0) = x0 ∈ R,
(3.1)

where f : J ×R→ R \ {0} is continuous and G : J ×R→ Pcp,cv(R). Find a solution of

3.1 is to find a function x ∈ AC(J,R) that satisfies:

(i). the function t → x(t)
f (t,x(t) is differentiable, and

(ii).
(

x(t)
f (t,x(t))

)′

= v(t), t ∈ J for some v ∈ L1(J,R), satisfying v(t) ∈ G(t,x(t)) a.e t ∈ J

defined in (2.1).

If f (t,x) = 1, then the DI reduces to{
x(t)

′ ∈ G(t,x) a.e t ∈ J

x(0) = x0 ∈ R,
(3.2)
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in the case when G(t,x) = g(t,x), we obtain the differential equation
(

x(t)
f (t,x(t))

)′

= g(t,x) a.e t ∈ J

x(0) = x0 ∈ R,
(3.3)

in this section we shall prove the existence of solution of (3.1) under Lipschitz and

carathéodory conditions.

Define a norm ∥ . ∥ in C(J,R) by ∥ x ∥= sup
t∈J

| x(t) |.

Remark 3.1. It is known that if G : J → Pcp(R) is an integrably bounded multivalued

operator, then the set S1
G of all Lebesgue integrable selections of G is closed and non-

empty,

where

S1
G(x) =

{
v ∈ L1 (J,E)/v(t) ∈ G(t,x(t)) a.e. t ∈ J

}
,

then we have the following lemmas by Lasota and Opial.

Lemma 3.4. [78] Let E be a Banach space, If dim(E) < ∞ and G : J ×E → Pcp(E) is

L1-carathéodory, then S1
G(x) ̸= /0 for each x ∈ E.

Lemma 3.5. [78] Let E be a Banach space, G a carathéodory multi-valued operator with

S1
G ̸= /0 and let

L ◦S1
G : C(J,E)→ Pbd,cl(C(J,E)) be a closed graph operator on C(J,E)×C(J,E).

We need to suppose some hypotheses in the sequel.

(H1)− The function f is bounded on J×R→ R with bound k.

(H2)− The function f : J ×R → R \ 0 is continuous and there exists a bounded function

l : J → R with bound ∥ l ∥ satisfying

| f (t,x)− f (t,y) |≤ l(t) | x− y | a.e t ∈ Jfor allx,y ∈ R

(H3)− The multivalued operator G : J ×R→ Pcp,cv(R) is L1
X− carathéodory with growth

function h.

Theorem 3.5. [37] Assume that the hypotheses (H1)− (H3) hold. Further if

∥ l ∥
(
| x0

f (0,x0
|+ ∥ h ∥L1

)
< 1,

the DI (3.1) has a solution on J.
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Example 3.1. Let J = [0,1] and define a function f : J×R→ R by

f (t,x) =


1 if −∞ < x ≤ 0

1+ x if 0 ≤ x ≤ 1

2 if x ≥ 1,

(3.4)

for all t ∈ J.

Now we consider the DI 
(

x(t)
f (t,x(t))

)′

∈ G(t,x(t)) a.e t ∈ J

x(0) = 1
2 ∈ R,

(3.5)

where p : J → R is Lebesgue integrable, and G : J×R→ Pf (R) is given by

G(t,x) =

{
p(t) Si x < 0

[exp(−x) p(t) , p(t)] Si x ≤ 0.
(3.6)

The function f (t,x) is continuous and bounded on J×R with bound with Lipshitz constant

1. also it follows that G is L1
X−carathéodory with h(t) = p(t), t ∈ J. Therefore if

∥ p ∥L1< 1
2 , then the DI (3.5) has a solution on J.



Chapter 4
Stochastic fractional differential inclusion

driven by fractional Brownian motion

Many systems in physics, mechanic, biology and medecine use the concept of differen-

tial inclusions to modelise there phenomenas. Also the fractional differential inclusions

plays an important role in description of the memory and genetic properties, for this rea-

son many researches have been dedicated to the existence of mild solution for fractional

differential equations, please see Zhou [139]; Boudaoui and Caraballo[20], Kilbas[73],

Øksendal[53], Boudaoui and Ouahab [19].

In this part we aim to study the existence of the mild solution for the stochastic frac-

tional differential inclusion driven by cylindrical fractional Brownian motion with Hurst

parameter H ∈
(1

2 ,1
)

with finite delay of the form cDq
t x(t) ∈ Ax(t)+ f (x(t − r))+Σ(t − r,x(t − r))

dBH
Q(t)
dt for t ∈ [0,T ]

x(t) = ϕ(t) for t ∈ [−r,0],
(4.1)

where cDq
t is the Caputo fractional derivative of order q∈

(1
2 ,1
)

takes a values in a Hilbert

space H , x(.) which takes its values in H , A is the infinitesimal generator of a strongly

continuous semigroup {T (t) : t ≥ 0} in a Hilbert space, f : H → H is an appropriate

function.

Σ : [−r,T ]×H → H is a non empty bounded closed and convex multivalued map,

r ≥ 0 represent a finite delay.{
BH

Q (t) , t ≥ 0
}

is a cylindrical fractional Brownian motion on space K with Hurst pa-

rameter H ∈
(1

2 ,1
)
.

ϕ is a contionuous function such that ϕ ∈Cr
(
[−r,T ] ,L2 (Ω,H )

)
.

Let (H ,∥ . ∥H ) and (K ,∥ . ∥K ) denote two real separable Hilbert spaces, where ∥ . ∥
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denote the norms in H ,K , and (.,.) denote the inner product.

Suppose that BH
Q(t) is a cylindrical K -valued fractional Brownian motion with Hurst

parameter H ∈
(1

2 ,1
)
, T is a fixed real number.

Let (Ω,F,P) be a complete probability space furnished with a family of right con-

tinuous and increasing σ-algebras {Ft , t ∈ [0,T ]} satisfying Ft ⊂ F and for t ≥ 0 Ft is

generated by
{

BH
Q(s),s ∈ [0, t]

}
and the P-null sets.

L2 (Ω,H ) stands of the space of all H valued random variables x such that

E ∥ x ∥2=
∫
Ω

∥ x ∥2 dP < ∞,

for x ∈ L2 (Ω,H ) ,

∥ x ∥2=

∫
Ω

| x |2 dP

 1
2

.

L2 (Ω,H ) is a Hilbert space equipped with the norm ∥ . ∥2.

Let L(K ,H ) denote the space of all bounded linear operators from K to H and

Q ∈ L(K ,H ) represents a non negative self-adjoint operator.

Let Cr
(
[−r,T ] ,L2 (Ω,H )

)
denote the Banach space of the continuous functions {x(t − r) , t ∈ [0,T ]}

from [−r,T ] to L2 (Ω,H ) such that

sup
t∈[−r,T ]

E ∥ x(t) ∥2< ∞.

Let Hw denote the space H endowed with the weak topology, for D ∈ H ; Dw de-

notes the weak closure of D. Let K0 be an arbitrary separable Hilbert space and let

L2 = L2 (K0,H ) be a separable Hilbert space with respect to Hilbert Schmidt norm ∥ . ∥L0
2
,

let L2
Q (K ,H ) be a space of all ψ ∈ L(K ,H ) such that ψQ

1
2 is a Hilbert -Schmidt opera-

tor. The norm is given by

∥ ψ ∥2
L0

Q
=∥ ψQ

1
2 ∥2= tr (ψQψ

∗) .

Then ψ is called a Q Hilbert Schmidt operator from K to H . L0
2 (Ω,H ) denotes the

space of F0-measurable H valued and square integrable stochastic process.

Consider a time interval J = [0,T ] with arbitrary fixed horizon T and let
{

BH (t) , t ∈ J
}

be a one dimensional f.B.m with Hurst parameter H ∈
(1

2 ,1
)
. We need to cite the Mazur’s

lemma.

Lemma 4.1. [95] Let (X ,∥ . ∥) be a Banach space and let (un)n ∈ N be a sequence in X
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that converges weakly to some u0 in X, un ⇀ u0 as n → ∞.

That is for every continuous linear function f in X∗ the continuous dual space of X,

f (un)→ f (u0) as n → ∞ then there exist a function N : N→ N and a sequence of sets of

real numbers {α(n)k /k = n, ...,N (n)} such that α(n)k ≥ 0 and
N(n)
∑

k=n
α(n)k = 1 such that

the sequence (vn) defined by the convex combination vn =
N(n)
∑

k=n
α(n)k uk converges strongly

in X to u0 i.e

∥ vn −u0 ∥→ 0 as n → ∞.

4.1 Existence of mild solution

In this section we study the existence of mild solution for the system (4.1).

Definition 4.1. A stochastic process x ∈Cr
(
[−r,T ] ,L2 (Ω,H )

)
is mild solution of inclu-

sion if:

i. x(t) is measurable and Ft adapted for each t ≥− r and for each fixed r ≥ 0.

ii. x(t) ∈ L2 (Ω,H ) has cadlag paths on [−r,T ] and there exist σ(t − r) ∈ SelΣ(x(t−r))

for each t ∈ [0,T ] and r ≥ 0 satisfying the following integral equation:
x(t) = Sq (t)ϕ(t)+

∫ t
0 (t − s)q−1 Kq (t − s) f (x(s− r))ds

+
∫ t

0 (t − s)q−1 Kq (t − s)σ(s− r)dBH
Q (s) for t ∈]0,T ],

x(t) = ϕ(t) for t ∈ [−r,0].

(4.2)

We introduce two families of operators on H

Sq (t) =
∫

∞

0
ψq (θ)T (tq

θ)dθ f or t ≥ 0,

Kq (t) =
∫

∞

0
qθ

ψq (θ)T (tq
θ)dθ f or t ≥ 0,

where ψq is the Wright function.

Lemma 4.2. [139]

The operators Sq (t) ,Kq (t) have the following properties :
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1. For each fixed t ≥ 0, Sq (t) and Kq (t) are bounded operators, i.e. for any

x ∈Cr
(
[−r,T ] ,L2 (Ω,H )

)
Sq (t)≤ M1 | x |,

Kq (t)≤
M1 | x |
Γ(q)

.

2.
{

Sq (t)
}

t≥0 are strongly continuous .

3.
{

Sq (t)
}

t≥0 is compact, if {T (t)}t≥0 is compact.

Conditions and assumptions
We need to impose the following assumptions:

(H1): The operator A : D(A) ⊂ H → H is the infinitesimal generator of a strongly con-

tinuous semigroup of bounded linear operator {S (t) , t > 0} in H such that

∥ S (t) ∥2≤ M for some M ≥ 0 and for each t ∈ [0,T ] .

(H2): The function f : H → H is weakly sequentially continuous.

For every fixed r ≥ 0 we suppose that:

The multivalued map Σ : [−r,T ]×H → H has a closed bounded and convex values

and satisfies the following conditions.

(H3): Σ(.,x) : [−r,T ]→ H has a measurable selection.

(H4): Σ(t − r, .) : H → H is weakly sequentially closed for each t ∈ [0,T ] and for any

each fixed r ≥ 0 i.e it has a weakly sequentially closed graph.

(H5): Σ(t − r, .) : H → H is weakly u.s.c.

(H6): For every s > 0 there exists a function µs ∈ L1 ([−r,T ] ,R+) such that

∥Σ(t − r,x) ∥2
L0

2
= sup

{
∥ σ(t) ∥L0

2
: σ ∈ Σ(t − r,x)

}
≤ µs (t) ; ∀ | x |2≤ s, ∀t ∈ [−r,T ] .

(H7): ϕ ∈Cr
(
[−r,T ] ,L2 (Ω,H )

)
.

Now we need to prove that the set of selections of Σ is non empty.

Lemma 4.3. Assume that Σ satisfies conditions (H3-H6) then the SelΣ(x) is non empty.

Proof. Let x ∈ Cr
(
[−r,T ] ,L2 (Ω,H )

)
we have that x is uniformly continuous, so there

exists a sequence {xn} of step functions

xn : [−r,T ]→ L2 (Ω,H ) ,
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such that

sup
t∈[−r,T ]

∥ xn (t)− x(t) ∥2→ 0, as n → ∞, (4.3)

by (H3) there exists a sequence of measurable functions {σn} such that

σn (t − r) ∈ Σ(t − r,xn (t − r)) for any t ∈ [0,T ] and for each fixed r ≥ 0, by equation 4.3

there exists a bounded set E ⊂ L2 (Ω,H ) such that :

xn (t − r),x(t − r)∈E for any t ∈ [0,T ] and n∈N, by (H6) there exists µs ∈L1 ([−r,T ] ,R+)

such that:

∥ σn (t − r) ∥2
L0

2
≤∥ Σ(t − r) ∥2

L0
2
≤ µs (t) ∀n ∈ N for a.e. t ∈ [0,T ] .

Therefore {σn} ⊂ L2 ([−r,T ] ,L0
2
)

is bounded and uniformly integrable and {σn (t)} is

bounded in L0
2 for any t ∈ [−r,T ], there exist a subsequence denoted as the sequence such

that

σn ⇀ σ ∈ L2 ([−r,T ] ,L2
0
)
,

by lemma (4.1), we obtain a sequence σ̃ =
kn
∑

i=0
λn,iσn+i, λn,i ≥ 0,

kn
∑

i=0
λn,i = 1,

such that σ̃n −→ σ in L2 ([−r,T ] ,L0
2
)

and

σ̃n (t)−→ σ(t) ,

by (H4) the multivalued map Σ(t − r, .) is locally weakly compact for a.e. t ∈ [0,T ] and

r ≥ 0. Therefore by (H4) and the locally weak compactness, we get that

Σ(t − r, .) : H −→ Hw

is u.s.c for a e t ∈ [0,T ] and r ≥ 0.

Now we need to prove that σ(t − r) ∈ Σ(t − r,x(t − r)) for a.e. t ∈ [0,T ] and r ≥ 0 we

consider the lebesgue measure of N0 be zero such that:

Σ(t − r, .) : H −→ Hw is u.s.c.

We denote by t̃ = t − r for any t ∈ [0,T ] and for each fixed r ≥ 0.

σn (t̃) ∈ Σ(t̃,xn (t̃)) and σ̃n (t̃)→ σ(t̃) for all t̃ ∈ [−r,T ]\N0 and n ∈ N.
Now we fix t̃0 /∈N0 and we suppose by contradiction that σ(t̃0) /∈Σ(t̃0,x(t̃0)) but Σ(t̃0,x(t̃0))
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is closed and convex, by Hahn Banach theorem there is a weakly open convex set

V ⊃ Σ(t̃0,x(t̃0))

satisfying σ(t̃0) ∈ V since, Σ(t̃0, .) : H −→ Hw is u.s.c, there exist a neighborhood U of

x(t̃0) such that, Σ(t̃0,x) ⊂ V for all x ∈ U , the convergence xn (t̃0) ⇀ x(t0), as n −→ ∞

implies the existence of n0 ∈ N such that xn (t̃0) ∈ U for all n > n0 therefore σn (t̃0) ∈
Σ(t̃0,xn (t̃0))⊂V for all n> n0 and by the convergence we obtain contradiction conclusion

about σ(t̃0) ∈ V̄ . We arrive to the desired result; σ(t̃) ∈ Σ(t̃,x(t̃)) for a.e t̃ ∈ [−r,T ] .

Lemma 4.4. Let conditions (H3),(H5) and (H6) be satisfied, the SelΣ(x) is weakly u.s.c

with non empty convex and weakly compact values.

Proof. Let x ∈ Cr
(
[−r,T ] ,L2 (Ω,H )

)
, by the uniform continuity of x there exists a se-

quence {xn} of step functions.

xn : [−r,T ]−→ L2 (Ω,H ) such that:

sup
t∈[0,T ]

∥ xn (t − r)− x(t − r) ∥2→ 0, as n → ∞.

By (H3) there exists a sequence of functions {σn} such that

σn (t̃) ∈ Σ(t̃,xn (t̃)) ,

where t̃ = t − r for a.e. t ∈ [0,T ] and for each fixed r ≥ 0, note that σn : [−r,T ]→ L0
2 is

measurable for any n ∈ N.

By (H6) we have that {σn} ⊂ L2 ([−r,T ] ,L0
2
)

is bounded and uniformly integrable and

{σn (t̃)} is bounded in L0
2 for a.e t̃ ∈ [−r,T ] by using the same method as lemma 4.3 we

obtain a sequence σ̃n ∈ co{σk ; k ≥ n} such that σ̃n → σ in L2 ([−r,T ] ,L0
2
)

and up to

subsequence σ̃n (t̃)→ σ(t̃) for a.e t̃ ∈ [−r,T ] and σn (t̃) ∈ Σ(t̃,xn (t̃)) for all n ≥ 1.

Let N be the set of all t̃ ∈ [−r,T ] such that σn (t̃)−→σ(t̃) in L0
2 and σn (t̃)∈Σn (t̃,xn (t̃))

for all n ≥ 1, let x̃ ∈ L0
2, ε > 0 by (H5) it follows that;

< x̃,Σ(t̃ , .)> : H → P(R) is u.s.c with compact convex values so ε−δ u.s.c with com-

pact convex values and we have that:

< x̃ , σ̃n (t̃)> ∈ co{< x̃,σk (t̃)> ; k ≥ n} ⊂< x̃ , Σ(t̃ ,xn (t̃))> (4.4)

⊂< x̃ , Σ(t̃ ,xn (t̃))>+(−ε , ε) . (4.5)

Seeing that Σ has a convex and closed values we obtain that σ(t̃) ∈ Σ(t̃ , x(t̃)) for each
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t̃ ∈ N, by consequence, σ ∈ SelΣ(x).

Finally by using lemma 3.2 we obtain that SelΣ(x) is weakly u.s.c with convex and weakly

compact values, completing the proof.

For abreviation we will denote by Cr the space Cr
(
[−r,T ] ,L2 (Ω,H )

)
. For any x∈Cr,

we define the solution multioperator : F : Cr → P(Cr)

F= S◦SelΣ,

where

S (σ) = Sq (t)ϕ(t)+
∫ t

0
(t − s)q−1 Kq (t − s) f (x(s− r))ds

+
∫ t

0
(t − s)q−1 Kq (t − s)σ(s− r)dBH

Q (s) .

We verify that the fixed points of the multioperator F are mild solutions of our inclu-

sion, we fix n ∈ N and we consider the space Qn such that Qn =
{

x ∈Cr :∥ x ∥2
Cr
≤ n
}

.

Let be Fn = F |Qn: Qn → P(Cr).

Lemma 4.5. The multi-operator Fn has a weakly sequentially closed graph.

Proof. Let {xm} ⊂ Qn and ym ∈ Fn (xm) ∀m ∈ N and xm ⇀ x in Qn, ym −→ y in Cr, we

need to prove that y ∈ Fn (x), but xm ∈ Qn ∀m ∈ N and xm (t) ⇀ x(t) ∀t ∈ [−r,T ], So

∥ x(t − r) ∥≤ liminfm→∞ ∥ xm (t − r) ∥≤ n
1
2 , ∀t ∈ [0,T ] therefore ym ∈ F(xm) so there

exists a sequence σm; σm ∈ selΣ(xm) such that for every t ∈ [0,T ] and for each fixed r ≥ 0

ym (t) = Sq (t)ϕ(t)+
∫ t

0
(t − s)Kq (t − s) f (xm (s− r))ds (4.6)

+
∫ t

0
(t − s)q−1 Kq (t − s)σm (s− r)dBH

Q (s) . (4.7)

By (H6) we obtain that :

∥ σm (t − r) ∥2
L0

2
≤ µs (t) ∀ t ∈ [−r,T ] and ∀ m ≥ 0,

i.e. σm is bounded and uniformly integrable and {σm (t)} is bounded in L0
2 for a.e

t ∈ [−r,T ] by using the reflexivity of L0
2 and the lemma we get the existence of a subse-

quence denoted as a sequence such that σm ⇀ σ in L2 ([−r,T ] ,L0
2
)
.
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Moreover, we have :∫ t

0
(t − s)q−1 Kq (t − s)σm (s)dBH

Q ⇀
∫ t

0
(t − s)q−1 Kq (t − s)σ(s)dBH

Q .

Let x̃ : L2 (Ω,H )−→ R be a linear continuous operator. We must prove that the operator

R−→
∫ t

0 (t − s)q−1 Kq (t − s)R(s− r)dBH
Q (s) is linear and continuous from L2 ([−r,T ]L0

2
)

to L2 (Ω,H)

for any Rm,R ∈ L2 ([−r,T ]L0
2
)

and Rm −→ R(m → ∞) by (H6), we get that for each

t ∈ [0,T ] and for each fixed r ≥ 0;

E |
∫ t

0 (t − s)q−1 Kq (t − s) [Rm (s− r)−R(s− r)]dBH
Q (s) |2≤C2N (q)

∫ t
0 E ∥ (t − s)q−1 (Rm (s− r)−R(s− r)) ∥2

L0
2

ds

≤C2N (q)
(∫ t

0 (t − s)4(q−1) ds
)

1
2

(∫ t
0 E ∥ Rm (s− r)−R(s− r) ∥4 ds

) 1
2

≤C2N (q)b
4q−4

2
∫ t

0 E ∥ Rm (s− r)−R(s− r) ∥4 ds → 0 when m → 0,

where N (q) =
(

M1
Γ(q)

)2
, it follows that the operator

R −→
∫ t

0
(t − s)q−1 Kq (t − s)R(s− r)dBH

Q (s) ,

is continuous, consequentially we have that the operator.

R → x̃◦
∫ t

0 (t − s)q−1 Kq (t − s)R(s− r)dBH
Q (s) is linear and continuous from

L2 ([−r,T ]L0
2
)
→ R ∀t ∈ [−r,T ]. By the weak convergence of σm we get that for every

t ∈ [0,T ] and for each fixed r ≥ 0,

x̃◦
∫ t

0
(t − s)q−1 Kq (t − s)σm (s− r)dBH

Q (s)−→ x̃◦
∫ t

0
(t − s)q−1 Kq (t − s)σ(s− r)dBH

Q (s)

in the other part due to the hypothesis f (xm (s− r))⇀ f (x(s− r)), by the same method

we prove that the operator

g →
∫ t

0
(t − s)q−1 Kq (t − s)g(s− r)ds

is linear and continuous operator from L2 ([−r,T ] ,L2 (Ω,H )
)
to L2 (Ω,H ) thus

∫ t

0
(t − s)q−1 Kq (t − s) f (xm (s− r))ds ⇀

∫ t

0
(t − s)q−1 Kq (t − s) f (x(s− r))ds.

Finally we get that
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ym (t)⇀ Sq (t)ϕ(t)+
∫ t

0
(t − s)q−1 Kq (t − s) f (x(s− r))ds (4.8)

+
∫ t

0
(t − s)q−1 Kq (t − s)σ(s− r)dBH

Q (s) = ỹ(t) ∀t ∈ [0,T ] . (4.9)

By the uniqueness of the weak limit in L2 (Ω,H ), we obtain that,

ỹ(t) = y(t)

for all t ∈ [0,T ] and for each fixed r ≥ 0.

Lemma 4.6. The multi-operator Fn is weakly compact.

Proof. We prove as first that Fn (Qn) is relatively weakly sequentially compact.

Let xm ⊂ Qn and ym ⊂Cr satisfy ym ∈ Fn (xm) for all m ≥ 0. There exist a sequence {σm},

σm ∈ SelΣ(xm) such that for all t ∈ [0,T ] and for each fixed r ≥ 0.

ym (t) = Sq (t)ϕ(t)+
∫ t

0
(t − s)q−1 Kq (t − s) f (xm (s− r))ds

+
∫ t

0
(t − s)q−1 Kq (t − s)σm (s− r)dBH

Q (s) .

By lemma (4.3) we have that there exists a subsequence denoted as the sequence, and a

function σ such that σm ⇀ σ in L2 ([−r,T ] ,L0
2
)
, since the operator f maps bounded and

f (xm (s− r))⇀ f (x(s− r)) ∈ H up to subsequence, in addition

ym (t)⇀ l (t) = Sq (t)ϕ(t)+
∫ t

0
(t − s)q−1 Kq (t − s) f (x(s− r))ds

+
∫ t

0
(t − s)q−1 Kq (t − s)σ(s− r)dBH

Q (s) , ∀t ∈ [0,T ]

by (H1),(H2),(H6) we have :
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E | ym (t) |2≤ 3E | Sq (t)ϕ(t) |+3E |
∫ t

0 (t − s)q−1 Kq (t − s) f (xm (s− r))ds |2

+3E |
∫ t

0 (t − s)q−1 Kq (t − s)σm (s− r)dBH
Q (s) |

≤ 3M2
1E | ϕ(t) |2 +3N (q)E |

∫ t
0 (t − s)q−1 Kq (t − s) f (xm (s− r))ds |2

+CpN (q)3
∫ t

0 (t − s)2(q−1)E ∥ σm (s− r) ∥2
L0

2
ds

≤ 3M2
1E | ϕ(t) |2 +3N (q)E |

∫ t
0 (t − s)q−1 Kq (t − s) f (xm (s− r))ds |2

+CpN (q)3
∫ t

0 (t − s)2(q−1) µn (s− r)ds

≤ 3M2
1 ∥ ϕ(t) ∥2 +3N (q) 1

2q−1T 2ql∗+3C2N (q)

≤ N,

f or all m ∈ N f or a .e. t ∈ [0,T ].

By the weak convergence of Cr we have that ym ⇀ l in Cr so Fn (Qn) is relatively weakly

sequentially compact, by theorem (3.1) is weakly compact.

Lemma 4.7. The multi-operator Fn has convex and weakly compact values.

Proof. for x ∈ Qn; By the convexity of the multivalued map Σ and the linearity of the

integral; it follows that the set Fn (x) is convex, The weak compactness follows by the

previous lemmas.

Theorem 4.1. Assume that (H1) (H2) and (H6) hold, Moreover

lim
n→∞

in f
1
n

∫ t

0
µn (s− r)ds = 0,

then the inclusion 4.1 has at least a mild solution.

Proof. We indicate that there exists n ∈N such that the operator Fn maps the ball Qn into

itself.

Suppose on the contrary that there exist sequences {zn}, {yn} such that zn ∈ Qn,

yn ∈ Fn (zn) and yn /∈ Qn, ∀n ∈ N. Then there exist a sequence {σn} ⊂ L2 ([−r,T ] ,L0
2
)

σn (s− r) ∈ Σ(s− r,zn (s− r)) ∀n ∈ N and a.e t ∈ [0,T ] for each fixed r ≥ 0 such that,

yn (t)= Sq (t)ϕ(t)+
∫ t

0 (t − s)q−1 Kq (t − s) f (xn (s− r))ds+
∫ t

0 (t − s)q−1 Kq (t − s)σn (s− r)dBH
Q (s)
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∀t ∈ [0,T ] and r ≥ 0, as reason of the lemma (4.4), we get that

1 <
∥ y ∥Cr

n
≤ 1

n
3M2

1 ∥ ϕ(t) ∥2
Cr

+3
N (q)
2q−1

b2ql n ∈ N,

we get a contradiction with lemma (4.3).

Now, we fix n ∈ N such that Fn (Qn)⊆ Qn, by lemma (4.4) Fn (Qn) is weakly compact.

Let Un = Fn
w, we consider Ũn = co(Un), where co(Un) is the closed convex hull of Un by

theorem (3.3) Ũn is a weakly compact set. Additionally, we have that Fn (Qn) ⊂ Qn and

Qn is a convex closed set; we get that Ũn ⊂ Qn for this reason

Fn

(
Ũn
)
= Fn (co(Fn (Qn)))⊆ Fn (Qn)⊆ Fn (Qn)

ω
=Un ⊂ Ũn.

By lemma (4.4) Fn has a weakly sequentially closed graph, thus from theorem (3.4) in-

clusion (4.1) has a solution.

4.2 Numerical application

We consider cD
1
2
t y(t,ξ) ∈ ∂2y(t,ξ)

∂ξ2 + f (y(t −2,ξ))+G(t −2,y(t −2,ξ))
dBH

Q(t)
dt for t ∈ [0,1]

y(t,ξ) = ϕ(t)ξ for t ∈ [−2,0],
(4.10)

where
cD

1
2 is the Caputo derivative of order q = 1

2 we pose H = L2 ([0,π] ,R), f : H → H is a

continuous function and satisfy a condition (H2), G(.) : [−2,1]×H →H is a multivalued

map, ϕ is a continuous function such that ϕ ∈Cr
(
[−2,1] ,L2 ([0,π] ,H )

)
.

The operator A : D(A)⊂ H → H is defined by

D(A) =
{

y ∈ H /y,y
′
are absolutely continious,y” ∈ H /y(0) = y(π) = 0

}
.

{
BH

Q (t) , t ≥ 0
}

is a cylindrical fractional Brownian motion on space K with Hurst pa-

rameter H ∈
(1

2 ,1
)
.

such that :

Ay = y
′′

then Ay =
∞

∑
n=1

n2 (y,yn)yn,
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where yn (t) =
√

2
π

sin(nt) , n = 1,2, ... we see that A generates a compact analytic semi-

group {T (t)}t≥0 in H .

Now we assume that gi : [−2,1]×H → H i = 1,2 such that :

i. g1 and g2 are u.s.c.

ii. g1 < g2.

iii. For every s > 0 there exists a function µs ∈ L1 ([−2,1] ,R+) such that

∥ gi (t) ∥L0
2
≤ µs (t) ∀ | y |2≤ s ∀t ∈ [−2,1] for i = 1,2 .

We take G(t −2,y(t −2,ξ)) = [g1 (t −2,ξ) , g2 (t −2,ξ)], so we obtain the following

form: cDq
t x(t) ∈ Ax(t)+ f (x(t − r))+Σ(t − r,x(t − r))

dBH
Q(t)
dt for t ∈ [0,T ]

x(t) = ϕ(t) for t ∈ [−r,0],
(4.11)

where x(t)ξ = y(t,ξ), Σ(t,x(t))(ξ) = G(t,y(t,ξ)), from our assumptions (i)-(iii) it fol-

lows that the multivalued map Σ(.) : [−2,1]×H → H satisfies the conditions (H3)-(H6).

So all the assumptions in theorem 4.1 are verified thus this inclusion 4.10 has a mild

solution.



Chapter 5
The fractional stochastic heat equation

driven by time-space white noise

The fractional derivative of a function was first introduced by Niels Henrik Abel in 1823

[1], in connection with his solution of the tautochrone (isochrone) problem in mechanics.

The Mittag-Leffler function Eα(z) was introduced by Gösta Magnus Mittag-Leffler in

1903 [102]. He showed that this function has a connection to the fractional derivative

introduced by Abel.

The fractional derivative turns out to be useful in many situations, e.g. in the study of

waves, including ocean waves around an oil platform in the North Sea, and ultrasound in

bodies. In particular, the fractional heat equation may be used to describe anomalous heat

diffusion, and it is related to power law attenuation. This and many other applications of

fractional derivatives can be found in the book by S. Holm [60].

In this chapter, we study the following fractional stochastic heat equation

∂α

∂tα
Y (t,x) = λ∆Y (t,x)+σW (t,x); (t,x) ∈ (0,∞)×Rd (5.1)

where d ∈ N = {1,2, ...} and ∂α

∂tα is the Caputo derivative of order α ∈ (0,2), and λ > 0

and σ ∈ R are given constants,

∆Y =
d

∑
j=1

∂2Y
∂x2

j
(t,x) (5.2)

is the Laplacian operator and

W (t,x) =W (t,x,ω) =
∂

∂t
∂dB(t,x)
∂x1...∂xd

(5.3)
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is time-space white noise,

B(t,x) = B(t,x,ω); t ≥ 0,x ∈ IRd,ω ∈ Ω

is time-space Brownian sheet with probability law IP. The boundary conditions are:

Y (0,x) = δ0(x) (the point mass at 0), (5.4)

lim
x→+/− ∞

Y (t,x) = 0. (5.5)

In the classical case, when α = 1, this equation models the normal diffusion of heat

in a random or noisy medium, the noise being represented by the time-space white noise

W (t,x).

- When α > 1 the equation models superdiffusion or enhanced diffusion, where the

particles spread faster than in regular diffusion. This occurs for example in some biologi-

cal systems.

- When α < 1 the equation models subdiffusion, in which travel times of the particles

are longer than in the standard case. Such situation may occur in transport systems.

For more information about super- and subdiffusions, see Cherstvy et al. [34].

We consider the equation (5.1) in the sense of distribution, and in theorem (5.1) we

find an explicit expression for the S ′-valued solution Y (t,x), where S ′ is the space of

tempered distributions.

Following the terminology of Y. Hu [62], we say that the solution is mild if Y (t,x) ∈
L2(IP) for all t,x. It is well-known that in the classical case with α = 1, the solution is

mild if and only if the space dimension d = 1. See e.g.Y. Hu [62].

We show that if α ∈ (1,2) the solution is mild if d = 1 or d = 2.

Then we show that if α < 1 then the solution is not mild for any space dimension d.

There are many papers dealing with various forms of stochastic fractional differential

equations. Some papers which are related to ours are:

- In the paper by Kochubel et al. [76] the fractional heat equation corresponding to

random time change in Brownian motion is studied.

-The papers by Bock et al. [11], [14] are considering stochastic equations driven by

grey Brownian motion.

-The paper by Röckner et al. [88] proves the existence and uniqueness of general
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time-fractional linear evolution equations in the Gelfand triple setting.

-The paper which is closest to our work is Chen et al. [33], where a comprehensive

discussion is given of a general fractional stochastic heat equations with multiplicative

noise, and with fractional derivatives in both time and space, is given. In that paper, the

authors prove the existence and uniqueness results as well as the regularity results of the

solution, and they give sufficient conditions on the coefficients and the space dimension

d, for the solution to be a random field.

Our work, however, is dealing with additive noise and a more special class of frac-

tional heat equations. As in [33] we find explicit solution formulae in the sense of distri-

butions and give conditions under which the solution is a random field in L2(IP).

We refer to Holm [60], Ibe [64], Kilbas et al. [73] and Samko et al. [117] for more

information about fractional calculus and their applications.

5.1 The solution of the fractional stochastic heat equation

We now state and prove the first main result of this work:

Theorem 5.1. The unique solution Y (t,x) ∈ S ′ of the fractional stochastic heat equation

(5.1) - (5.5) is given by

Y (t,x) = I1 + I2, (5.6)

where

I1 = (2π)−d
∫
Rd

eixyEα(−λtα|y|2)dy = (2π)−d
∫
Rd

eixy
∞

∑
k=0

(−λtα|y|2)k

Γ(αk+1)
dy, (5.7)

and

I2 = σ(2π)−d
∫ t

0
(t − r)α−1

∫
Rd

(∫
Rd

ei(x−z)yEα,α(−λ(t − r)α|y|2)dy
)

B(dr,dz)

= σ(2π)−d
∫ t

0
(t − r)α−1

∫
Rd

(∫
Rd

ei(x−z)y
∞

∑
k=0

(−λ(t − r)α|y|2)k

Γ(αk+α)
dy

)
B(dr,dz), (5.8)

where |y|2 = y2 = ∑
d
j=1 y2

j .

Proof. a) First assume that Y (t,x) is a solution of (5.1). We apply the Laplace transform

L to both sides of (5.1) and obtain (see (2.41)):
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sαỸ (s,x)− sα−1Y (0,x) = λ∆̃Y (s,x)+σW̃ (s,x). (5.9)

Applying the Fourier transform F , defined by

Fg(y) =
∫
R

e−ixyg(x)dx =: ĝ(y); g ∈ L1(Rd), (5.10)

we get, since Ŷ (0,y) = 1,

sα̂̃Y (s,y)− sα−1 = λ

d

∑
j=1

y2
j
̂̃Y (s,y)+σ

̂̃W (s,y), (5.11)

or, (
sα +λ|y|2

) ̂̃Y (s,y) = sα−1Ŷ (0+,y)+σ
̂̃W (s,y). (5.12)

Hence

̂̃Y (s,y) = sα−1

sα +λ|y|2
+

σ
̂̃W (s,y)

sα +λ|y|2
. (5.13)

Since the Laplace transform and the Fourier transform commute, this can be written

˜̂Y (s,y) = sα−1

sα +λ|y|2
+

σ
˜̂W (s,y)

sα +λ|y|2
. (5.14)

Applying the inverse Laplace operator L−1 to this equation we get

Ŷ (t,y) = L−1
( sα−1

sα +λ|y|2
)
(t,y)+L−1

(
σ
˜̂W (s,y)

sα +λ|y|2
)
(t,y)

= Eα,1(−λ|y|2tα)+L−1
(

σ
˜̂W (s,y)

sα +λ|y|2
)
(t,y), (5.15)

where we recall that

Eα,β(z) =
∞

∑
k=0

zk

Γ(αk+β)
(5.16)

is the Mittag-Leffler function.

It remains to find L−1
(

σ
̂̃W (s,y)

sα+λ|y|2

)
:
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Recall that the convolution f ∗g of two functions f ,g : [0,∞) 7→ R is defined by

( f ∗g)(t) =
∫ t

0
f (t − r)g(r)dr; t ≥ 0. (5.17)

The convolution rule for Laplace transform states that

L
(∫ t

0
f (t − r)g(r)dr

)
(s) = L f (s)Lg(s),

or ∫ t

0
f (t −w)g(w)dw = L−1 (L f (s)Lg(s))(t). (5.18)

By (2.43) we have

L−1
(

1
sα +λ|y|2

)
(t) = tα−1Eα,α(−λtα|y|2)

=
∞

∑
k=0

tα−1(−λtα|y|2)k

Γ(αk+α)

=
∞

∑
k=0

(−λ|y|2)ktα(k+1)−1

Γ(α(k+1))

=
∞

∑
k=0

(−λtα|y|2)ktα−1

Γ(α(k+1))

=: Λ(t,y). (5.19)

In other words,
σ

sα +λ|y|2
= σLΛ(s,y), (5.20)

combining with (5.18) we get

L−1
(

σ

sα +λ|y|2
̂̃W (s,y)

)
(t) = L−1

(
L(σΛ(s,y)) ˜̂W (s,y)

)
(t) (5.21)

= σ

∫ t

0
Λ(t − r,y)Ŵ (r,y)dr. (5.22)

Substituting this into (5.15) we get

Ŷ (t,y) = Eα,1
(
−λtα|y|2

)
+σ

∫ t

0
Λ(t − r,y)Ŵ (r,y)dr. (5.23)

Taking inverse Fourier transform we end up with

Y (t,x) = F−1 (Eα,1
(
−λtα|y|2

))
(x)+σF−1

(∫ t

0
Λ(t − r,y)Ŵ (r,y)dr

)
(x). (5.24)
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Now we use that

F
(∫

R
f (x− z)g(z)dz

)
(y) = F f (y)Fg(y),

or ∫
R

f (x− z)g(z)dz = F−1
(

F f (y)Fg(y)
)
(x). (5.25)

This gives

F−1
(∫ t

0
Λ(t − r,y)Ŵ (r,y)dr

)
(x) =

∫ t

0
F−1

(
Λ(t − r,y)Ŵ (r,y)

)
(x)dr

=
∫ t

0
F−1

(
F
(
F−1

Λ(t − r,y)
)
(y)FW (r,x)(y)

)
(x)dr

=
∫ t

0

∫
Rd

(
F−1

Λ(t − r,y)(x− z)
)

W (r,z)dzdr

=
∫ t

0

∫
Rd

(
(2π)−d

∫
Rd

ei(x−z)y
Λ(t − r,y)dy

)
W (r,z)dzdr

= (2π)−d
∫ t

0

∫
Rd

(∫
Rd

ei(x−z)y
Λ(t − r,y)dy

)
B(dr,dz).

Combining this with (5.24), (5.16) and (5.19) we get

Y (t,x) = F−1(
∞

∑
k=0

(−λtα|y|2)k

Γ(αk+1)
)

+σ(2π)−d
∫ t

0

∫
Rd

(∫
Rd

ei(x−z)y
Λ(t − r,y)dy

)
B(dr,dz)

= (2π)−d
∫
Rd

eixy
∞

∑
k=0

(−λtα|y|2)k

Γ(αk+1)
dy

+σ(2π)−d
∫ t

0
(t − r)α−1

∫
Rd

(∫
Rd

ei(x−z)y
∞

∑
k=0

(−λ(t − r)α|y|2)k

Γ(α(k+1))
dy

)
B(dr,dz).

This proves uniqueness and also that the unique solution (if it exists) is given by the above formula.

b) Next, define Y (t,x) by the above formula. Then we can prove that Y (t,x) satisfies (5.1) by

reversing the argument above. We skip the details.
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5.2 The classical case (α = 1)

It is interesting to compare the above result with the classical case when α=1:

If α = 1, we get Y (t,x) = I1 + I2, where

I1 = (2π)−d
∫
Rd

eixy
∞

∑
k=0

(
−λt|y|2

)k

k!
dy

and

I2 = σ(2π)−d
∫ t

0

∫
Rd

∫
Rd

ei(x−z)y
∞

∑
k=0

(
−λ(t − r)|y|2

)k

k!
dyB(dr,dz),

where we have used that Γ(k+1) = k!

By the Taylor expansion of the exponential function, we get

I1 = (2π)−d
∫
Rd

eixye−λt|y|2dy

= (2π)−d
(

π

λt

) d
2

e−
|x|2
4λt

= (4πλt)−
d
2 e−

|x|2
4λt ,

where we used the general formula

∫
Rd

e−(a|y|2+2by)dy =
(

π

a

) d
2

e
b2
a ; a > 0; b ∈ Cd. (5.26)

Similarly,

I2 = σ(2π)−d
∫ t

0

∫
Rd

∫
Rd

ei(x−z)y
∞

∑
k=0

(
−λ(t − r)|y|2

)k

k!
dyB(dr,dz)

= σ(2π)−d
∫ t

0

∫
Rd

(
π

λ(t − r)

) d
2

e−
|x−z|2

4λ(t−r) B(dr,dz)

= σ(4πλ)−
d
2

∫ t

0

∫
Rd
(t − r)−

d
2 e−

|x−z|2
4λ(t−r) B(dr,dz).

Summarising the above, we get, for α = 1,

Y (t,x) = (4πλt)−
d
2 e−

|x|2
4λt

+σ(4πλ)−
d
2

∫ t

0

∫
Rd
(t − r)−

d
2 e−

|x−z|2
4λ(t−r) B(dr,dz). (5.27)

This is in agreement with a well-known classical result. See e.g. Section 4.1 in Y.Hu [62].
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5.3 When is Y (t,x) a mild solution?

It was pointed out already in 1984 by John Walsh [131] that (classical) SPDEs driven

by time-space white noise W (t,x);(t,x) ∈ [0,∞)× IRd may have only distribution valued

solutions if d ≥ 2. Indeed, the solution Y (t,x) that we found in the previous section is

in general distribution valued. But in some cases the solution can be represented as an

element of L2(IP). Following Y. Hu [62] we make the following definition:

Definition 5.1. The solution Y (t,x) is called mild if Y (t,x) ∈ L2(IP)

for all t > 0,x ∈ IRd .

The second main issue of this chapter is the following:

Problem For what values of α ∈ (0,2) and what dimensions d = 1,2, ... is Y (t,x) mild?

Before we discuss this problem, we prove some auxiliary results:

Lemma 5.1. (Abel’s test)

Suppose ∑
∞
n=1 bn is convergent and put M = sup

n
|bn|. Let {ρn} be a bounded monotone

sequence, and put R = sup
n
|ρn|. Then ∑

∞
n=1 bnρn is convergent, and |∑∞

n=1 bnρn| ≤ MR+

R|∑∞
n=1 bn|.

Proof. By summation by parts we have with

BN = ∑
N
k=1 bk; N = 1,2, ...,

N

∑
k=1

bkρk =
N

∑
k=0

ρk(Bk −Bk−1) (5.28)

=
N−1

∑
k=1

Bk(ρk −ρk+1)+ρNBN . (5.29)

Note that

|
N−1

∑
k=0

Bk(ρk −ρk+1)| ≤ M|
N−1

∑
k=0

ρk −ρk+1|= M(ρ1 −ρn) (5.30)

≤ MR. (5.31)

Hence

|
N

∑
k=1

bkρk| ≤ MR+R|BN |. (5.32)
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Lemma 5.2. Suppose α > 1. Define

ρk =
Γ(k+1)

Γ(αk+1)
;k = 1,2, ... (5.33)

Then {ρk}k is a decreasing sequence.

Proof. Consider

ρk+1

ρk
=

Γ(k+2)Γ(αk+1)
Γ(α(k+1)+1)Γ(k+1)

=
(k+1)Γ(k+1)Γ(αk+1)

α(k+1)Γ(α(k+1))Γ(k+1)

=
Γ(αk+1)
Γ(αk+α)

< 1, (5.34)

since α > 1.

Lemma 5.3. Suppose α > 1. Define

rk =
Γ(k+1)

Γ(αk+α))
; k = 1,2, ... (5.35)

Then {rk}k is a decreasing sequence.

Proof. Consider

rk+1

rk
=

Γ(k+2)Γ(α(k+1))
Γ(α(k+2))Γ(k+1)

=
(k+1)Γ(k+1)Γ(α(k+1))

(αk+2α−1)Γ(αk+2α−1)Γ(k+1)

=
k+1

αk+2α−1
· Γ(αk+α)

Γ(αk+2α−1)
< 1.

We now return to the question about mildness:

A partial answer is given in the following:

Theorem 5.2. Let Y (t,x) be the solution of the α-fractional stochastic heat equation.

Then the following holds:

• a) If α = 1, then Y (t,x) is mild if and only if d = 1.

• b) If α > 1 then Y (t,x) is mild if d = 1 or d = 2.

• c) If α < 1 then Y (t,x) is not mild for any d.
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Proof. Recall that Y (t,x) = I1 + I2, with

I1 = (2π)−d
∫
Rd

eixy
∞

∑
k=0

(−λtα|y|2)k

Γ(αk+1)
dy, (5.36)

I2 = σ(2π)−d
∫ t

0
(t − r)α−1

∫
Rd

(∫
Rd

ei(x−z)y
∞

∑
k=0

(−λ(t − r)α|y|2)k

Γ(α(k+1))
dy

)
B(dr,dz).

(5.37)

a) The case α = 1:
This case is well-known, but for the sake of completeness we prove this by our

method:

By (5.27) and the Ito isometry we get

E[Y 2(t,x)] = J1 + J2, (5.38)

where

J1 = I2
1 = (4πλt)−de−

∥x∥2

2λt (5.39)

and, by using (5.26),

J2 = σ
2(4πλ)−d

∫ t

0
(t − r)−d(2πλ(t − r))

d
2 dr

= σ
22−d(2πλ)−

d
2

∫ t

0
(t − r)−

d
2 dr, (5.40)

which is finite if and only if d = 1.

b) The case α > 1

By the Itô isometry we have E
[
Y 2 (t,x)

]
= J1 + J2, where

J1 = (2π)−2d

(∫
Rd

eixy
∞

∑
k=0

(
−λtα|y|2

)k

Γ(αk+1)
dy

)2

= (2π)−2d
(∫

Rd
eixyEα(−λtα|y|2)dy

)2

(5.41)
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and

J2 = σ
2(2π)−2d

∫ t

0

∫
Rd
(t − r)2α−2

(∫
Rd

ei(x−z)y
∞

∑
k=0

(
−λ(t − r)α|y|2

)k

Γ(αk+α))
dy

)2

dzdr

= σ
2(2π)−2d

∫ t

0

∫
Rd
(t − r)2α−2

(∫
Rd

ei(x−z)yEα,α(−λ(t − r)α|y|2)dy
)2

dzdr. (5.42)

By Abel’s test and Lemma 5.2 and (5.26) we get

J1 = (2π)−2d
(∫

Rd

(
∞

∑
k=0

eixy
(
−λtα|y|2

)k

Γ(k+1)
Γ(k+1)

Γ(αk+1)

)
dy
)2

≤C1

(∫
Rd

eixy
∞

∑
k=0

(
−λtα|y|2

)k

Γ(k+1)
dy
)2

=C1

(∫
Rd

eixye−λtα|y|2dy
)2

=C1

(
π

λtα

)d
e−

2|x|2
λtα < ∞ for all t > 0,x ∈ IRd and for all d.

By the Plancherel theorem, Lemma 5.3 and (5.26) we get

J2 = σ
2(2π)−2d

∫ t

0
(t − r)2α−2

∫
Rd

(
∞

∑
k=0

(−λ(t − r)α|x− z|2)k

Γ(αk+α)

)2

dzdr

= σ
2(2π)−2d

∫ t

0

∫
Rd
(t − r)2α−2

∫
Rd

(
∞

∑
k=0

(−λ(t − r)α|x− z|2)k

Γ(k+1)
Γ(k+1)

Γ(αk+α)

)2

dzdr

≤C2

∫ t

0
(t − r)2α−2

∫
Rd

(
∞

∑
k=0

(−λ(t − r)α|x− z|2)k

Γ(k+1)

)2

dzdr

=C2

∫ t

0
(t − r)2α−2

∫
Rd

(
e−λ(t−r)α|x−z|2

)2
dzdr

=C2

∫ t

0
(t − r)2α−2

∫
Rd

(
e−2λ(t−r)α|x−z|2

)
dzdr

=C2

∫ t

0
(t − r)2α−2

(
π

2λ(t − r)α

) d
2

dr

=C3

∫ t

0
(t − r)2α−2(t − r)−

αd
2 dr

=C3

∫ t

0
(t − r)2α−2− αd

2 dr.

This is finite if and only if 2α−2− αd
2 >−1, i.e. d < 4− 2

α

If α = 1+ ε, then 4− 2
α
= 2+ 2ε

1+ε
> 2 for all ε > 0.

Therefore J2 < ∞ for d = 1 or d = 2, as claimed.
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c) The case α < 1

Proof. By (5.37) we see that

J2 = σ
2(2π)−2d

∫ t

0
(t − r)2α−2

∫
Rd

(
Eα,α(−λ(t − r)α|x− z|2)

)2dzdr

= σ
2(2π)−2d

∫ t

0
(t − r)2α−2

∫
Rd

(
Eα,α(−λ(t − r)α|y|2)

)2dydr

Choose β such that 0 < α ≤ β ≤ 1.

A result of Pollard [113], as extended by Schneider [118], states that the map

x 7→ h(x) := Eα,β(−x); x ∈ Rd (5.43)

is completely monotone, i.e,

(−1)n dn

dxn h(x)≥ 0 f or all n = 0,1,2, ...; x ∈ Rd . (5.44)

Therefore by Bernstein’s theorem there exists a positive, σ-finite measure µ on R+ such that

Eα,β(−x) =
∫

∞

0
e−xsµ(ds). (5.45)

In fact, it is known that µ is absolutely continuous with respect to Lebesgue measure and

tβ−1Eα,β(−tα) =
∫

∞

0
e−stKα,β(s)ds (5.46)

where

Kα,β(s) =
sα−β [sin((β−α)π)+ sαsin(βπ)]

π [s2α +2sαcos(απ)+1]
(5.47)

See Capelas de Oliveira et al. [29], Section 2.3.

Putting tα = x this can be written

Eα,β(−x) = x
1−β

α

∫
∞

0
e−sx

1
α Kα,β(s)ds; x > 0. (5.48)

This gives

Eα,β(−ρ|y|2) = ρ
1−β

α |y|
2(1−β)

α

∫
∞

0
e−sρ

1
α |y| 2

α Kα,β(s)ds. (5.49)

It follows that

(
Eα,β(−ρ|y|2)

)2 ∼
(
ρ

1−β

α |y|
2(1−β)

α ρ
−1
α |y|

−2
α

)2

= ρ
− 2β

α |y|−
4β

α (5.50)
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Hence, by using polar coordinates we see that∫
IRd

(
Eα,β(−ρ|y|2)

)2dy ∼
∫

∞

0
R− 4β

α Rd−1dR = ∞, (5.51)

for all d.

Therefore J2 = ∞ for all d.

Remark 5.1. • See Y. Hu [62], Proposition 4.1 for a generalization of the above

result in the case α = 1.

• In the cases α > 1, d ≥ 3 we do not know if the solution Y (t,x) is mild or not. This

is a topic for future research.

5.4 Numerical examples

Example 1

Let us consider the following heat equation where α < 1. In this case our equation models

subdiffusion, in which travel times of the particles are longer than in the standard case.

Such situation may occur in transport systems. For α = 1
2 and d = 2 we get

∂
1
2

∂t
1
2
Y (t,x) = λ∆Y (t,x)+σW (t,x); (t,x) ∈ (0,∞)×R2 (5.52)

The solution is given by:

Y (t,x) = I1 + I2, (5.53)

where

I1 = (2π)−2
∫
R2

eixyE 1
2
(−λt

1
2 |y|2)dy = (2π)−2

∫
R2

eixyer f c(−λt
1
2 |y|2)

1
2 dy, (5.54)

(with er f c(z) = 2√
π

∫ z
0 exp(−t2)dt) and

I2 = σ(2π)−2
∫ t

0
(t − r)

1
2−1

∫
R2

(∫
R2

ei(x−z)yE 1
2 ,

1
2
(−λ(t − r)

1
2 |y|2)dy

)
B(dr,dz) (5.55)

By the Theorem 5.2 this solution is not mild.
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Example 2

Next, let us consider the heat equation for α = 3
2 . In this case the equation models superdiffusion

or enhanced diffusion, where the particles spread faster than in regular diffusion. This occurs for

example in some biological systems. Now the equation gets the form

∂
3
2

∂t
3
2
Y (t,x) = λ∆Y (t,x)+σW (t,x); (t,x) ∈ (0,∞)×R2 (5.56)

By Theorem 5.1 the solution is

Y (t,x) = I1 + I2, (5.57)

where

I1 = (2π)−2
∫
R2

eixyE 3
2
(−λt

3
2 |y|2)dy = (2π)−2

∫
R2

eixy
∞

∑
k=0

(−λt
3
2 |y|2)k

Γ(3
2 k+1)

dy, (5.58)

and

I2 = σ(2π)−2
∫ t

0
(t − r)

3
2−1

∫
R2

(∫
R2

ei(x−z)yE 3
2 ,

3
2
(−λ(t − r)

3
2 |y|2)dy

)
B(dr,dz)

= σ(2π)−2
∫ t

0
(t − r)

1
2

∫
R2

(∫
Rd

ei(x−z)y
∞

∑
k=0

(−λ(t − r)
3
2 |y|2)k

Γ(3
2 k+ 3

2))
dy

)
B(dr,dz) (5.59)

By Theorem 5.2 this solution is mild.



Chapter 6
Impulsive stochastic differential equations

involving Hilfer fractional derivatives

Differential equations and inclusions with fractional derivatives have recently proved to be strong

tools in the modeling of many phenomena in various fields of engineering, economics, physics,

biology, ecology, aerodynamics and fluid dynamic traffic models [6, 92, 114, 122]. For some fun-

damental results in the theory of differential equations involving Caputo and Riemann-Liouville

fractional derivatives, please see [4, 5, 82, 126, 128, 129, 138] and the references therein.

Since Hilfer [59] proposed the generalized Riemann-Liouville fractional derivative, there has

been shown some interest in studying differential equations involving Hilfer fractional derivatives

(see [59] and the references therein).

The two-parameter family of Hilfer fractional derivative Dα,β
a+ of order α and type β permits

to combine between the Caputo and Riemann derivatives and give an extra degree of freedom on

the initial conditions and produce more types of stationary states. Models with Hilfer fractional

derivatives are discussed in [52][126]. We prove the existence of integral solutions for stochastic

differential equation with impulses driven by sub-fractional Brownian motion with Hilfer frac-

tional derivative of the form
Dα,β

0+ X (t,xt) = A(t)X (t,xt)+ f (t,xt)+σ(t,xt)
dSH

Q (t)
dt for t ∈ [sk, tk+1], k = 0, ...m

x(t) = hk (t,xt) , for t ∈ (tk,sk], k = 1,2, ...m

(I1−γ

0 x)(t)|t=0 = φ ∈ DF0((−∞,0],U ].

(6.1)

Dα,β
0+ is the generalized Hilfer fractional derivative of orders α ∈ (0,1) and type β ∈ [0,1]. x(.)

takes value in a real separable Hilbert space U , with inner product (.,.) and norm ∥ . ∥, and A is the

infinitesimal generator of strongly continuous semigroup of bounded linear operator {T (t)}t≥0.

SH
Q is an Q-sub-fBm with Hurst parameter H ∈ (1

2 ,1), I1−γ

0 is the fractional integral of orders 1− γ

(γ = α+β−αβ).

81
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The impulses times satisfy:

0 = t0 = s0 < t1 ≤ s1 < t2 ≤ ... < tm ≤ sm < tm+1 = T, for t > 0.

xt mean a segment solution which is defined by

x(., .) : (−∞,T ]×Ω →U,

then for any t ≥ 0, xt(., .) : (−∞,0)×Ω →U is given by

xt(θ,ω) = x(t +θ,ω), for θ ∈ (−∞,0], ω ∈ Ω with is valued in Dγ

FT
,

where

Dγ

FT
=
{

x : (−∞,T ]×Ω →U ; x |Jk∈C (Jk;U) , t1−γx(t) ∈ DFT ,
}

k = 1, ...,m.

With the norm

∥ x ∥Dγ

FT
=∥ φ ∥DF0

+

(
sup

0≤t≤T
E ∥ t1−γx(t) ∥2

) 1
2

,

and φ ∈ DF0 , where, Jk = (sk, tk+1], k = 1, ...,m.

The space DFt is the space formed by all Ft-adapted measurable square integrable H -valued

stochastic process {x(t) : t ∈ [0,T ]} with norm ∥x∥2
DFt

= sup
t∈[0,T ]

E∥x(t)∥2, then (DFt ,∥.∥DFt
) is a

Banach space.

DF0 denote the family of all almost surely bounded F0-measurable, and D̃-valued random vari-

ables. D̃ = D((−∞,0],U) denotes the family of all right piecewise continuous functions with

left-hand limit φ from (−∞,0] to U, with the norm

∥ φ ∥t= sup
−∞<θ≤t

∥ φ(θ) ∥ .

We assume in the sequel that X(t,xt) : J×U −→U , such that X(t,xt) = φ(0)−g(t,xt),

g : J×Dγ

FT
→U and f : J×Dγ

FT
→U , hk ∈ (tk,sk]×Dγ

FT
−→U for all k = 1, ...,m.

σ : J×Dγ

FT
→ L0

Q(K,H).

In the next we mention an axiomatic definition of the phase space DF0 introduced by Hale and

Kato [58].

Definition 6.1. DF0 is a linear space of family of F0-measurable functions from (−∞,0] into U

endowed with a norm ∥ . ∥DF0
, which satisfies the following axioms:

(A-1) If x : (−∞,T ] → U, T > 0 is such that y0 ∈ DF0 , then for every t ∈ [0,T ) the following

conditions hold

(i) yt ∈ DF0
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(ii) ∥ y(t) ∥≤ L ∥ yt ∥DF0

(iii) ∥ yt ∥DF0
≤ K(t)sup{∥ y(s) ∥: 0 ≤ s ≤ t}+N(t) ∥ y(0) ∥DF0

,

where L > 0 is a constant; K, N : [0,∞) −→ [0,∞), K is continuous, N is locally

bounded and K, N are independent of y(.).

(A-2) : For the function y(.) in (A-1), yt is a DF0-valued function for t ∈ [0,T ).

(A-3) : The space DF0 is complete.

Denote

K̃ = sup{K(t) : t ∈ J} and Ñ = sup{N(t) : t ∈ J} .

Theorem 6.1. [37](Banach’s Fixed Point Theorem)

Let (X ,d) be a complete metric space and let T : X −→ X be a contraction on X. Then T has a

unique fixed point x ∈ X (such that T (x) = x).

Let us define the operators {Sα,β(t) : t ≥ 0} and {Pβ(t) : t ≥ 0} by

Sα,β(t) = Iα(1−β)
0+ Pβ(t),

Pβ(t) = tβ−1Tβ(t),

Tβ(t) =
∫

∞

0
βθΨβ(θ)T (t

β
θ)dθ;

where

Ψβ(θ) =
∞

∑
n=1

(−θ)n−1

(n−1)Γ(1−nβ)
,0 < β < 1,θ ∈ (0,∞)

is a function of wright type which satisfies

∫
∞

0
θ

ξ
Ψβ(θ)dθ =

Γ(1+ξ)

Γ(1+βξ)
, ξ ∈ (−1,∞).

Lemma 6.1. [56] The operator Sα,β and Pβ have the following properties

i) For any fixed t ≥ 0, Sα,β(t) and Pβ(t) are bounded linear operators, and

∥Pβ(t)x∥2 ≤ M
t2(β−1)

(Γ(β))2 ∥x∥2 and

∥Sα,β(t)x∥2 ≤ M
t2(α−1)(1−β)

(Γ(α(1−β)+β))2 ∥x∥2.

ii) {Pβ(t) : t ≥ 0} is compact if {T (t) : t ≥ 0} is compact.

Remark 6.1. Dα(1−β)
0+ Sα,β(t) = Pβ(t).
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6.1 Existence of mild solution

In this section, we first establish the existence of mild solutions to stochastic differential equations

with non-instantaneous impulses driven by a Q-sub-fractional Brownian motions. More precisely

we will formulate and prove sufficient conditions for the existence of solutions to 6.1. In order to

establish the results, we will need to impose some of the following conditions.

(H1) The operator A is the infinitesimal generator of a strongly continuous of bounded linear

operators {S(t)}t≥0 which is compact for t > 0 in H such that ∥ S(t) ∥2≤ M for each t ∈ J,

where J = [0,T ].

(H2) The operators Sα,β,Pβ ∈ D(A).

(H3) The function f : J×Dγ

FT
→U satisfies that:

E ∥ f (t,φ1)− f (t,φ2) ∥2≤ L f ∥ φ1 −φ2 ∥2
Dγ

FT

,

f or all φ1,φ2 ∈ Dγ

FT
, t ∈ (sk, tk+1] and k = 1, ...,m.

(H4) The function The function g : J×Dγ

FT
→U and there exist a positive number Kg. For t ∈ J,

we have

E ∥ g(t,φ1)−g(t,φ2) ∥2≤ Kg ∥ φ1 −φ2 ∥2
Dγ

FT

, f or all φ1,φ2 ∈ Dγ

FT
, t ∈ J.

(H5) The function σ : J×Dγ

FT
→ L0

Q satisfies that there exists a positive constant Lσ such that

E ∥ σ(t,φ1)−σ(t,φ2) ∥2
L0

2
≤ Lσ ∥ φ1 −φ2 ∥2

Dγ

FT

, f or all φ1,φ2 ∈ Dγ

FT
, t ∈ (sk, tk+1]

and k = 1, ...,m.

(H6) There exist constants Lhk > 0, for all φ1, φ2 ∈ Dγ

FT
, t ∈ (tk,sk] and k = 1, ...,m such that

E ∥ hk(t,φ1)−hk(t,φ2) ∥2≤ Lhk ∥ φ1 −φ2 ∥2
Dγ

FT

and hk ∈C((tk,sk]×Dγ

FT
,U), for all k = 1, ...,m.

Now, we give the definition of mild solutions to our problem.

Definition 6.2. An Ft-adapted stochastic process x : (−∞,T ]→ U is said to be an mild solution

of (1) if x0 = φ ∈ DF0 and

(i) {xt , t ∈ J} ∈ Dγ

FT
.

(ii)
∫ t

0 [xs +g(s,xs)]ds ∈ D(A) , t ∈ [0,T ].

(iii) for each t > 0
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x(t) =



Sα,β(t) [φ(0)−g(0,φ)]+g(t,xt)+
∫ t

0 Pβ(t − s) f (s,x(s))ds+
∫ t

0 Pβ(t − s)σ(s,xs)dSH
Q(s)

f or t ∈ [0, t1]

hk(t,xt),

f or t ∈ (tk,sk]; k = 1, ...,m.

Sα,β(t − sk)hk(sk,xsk)+g(sk,xsk)+
∫ t

sk
Pβ(t − s) f (s,xs)ds+

∫ t
sk

Pβ(t − s)σ(s,xs)dSH
Q(s)

f or t ∈ [sk, tk+1]; k = 1, ...m.

(6.2)

To establish the existence and uniqueness theorem of the mild solution for system 6.1.

We use a Banach fixed point to investigate the existence and uniqueness of solution for impul-

sive stochastic differential equations.

Theorem 6.2. Let (H1)-(H6) hold with φ(0)−g(0,φ) ∈ D(A). and

L0 = max(µ1, µ2, µ3)< 1,

where

µ1 = 3t2(αβ+1)
1

(
t1−α−β

1 Kg +
t−α

1 L f M
(Γ(β))2 +

MLσtH−α

1
(Γ(β))2

)
µ2 = max

k=1,...,m
2Lhk T

2(1−γ),

and

µ3 = max
k=1,...,m

[
4MLhk

Γ(α(1−α)+β)2 +4t2(1−γ)Kg +
4t2(1−γ)M(tk+1−sk)

2(β−1)L f
(Γ(β))2 + CH MLσt2(H−γ)+1(tk+1−sk)

2(β−1)

(Γ(β))2

]
.

Then for every initial function φ ∈ DF0 there exists a unique associated mild solution x ∈ Dγ

FT
of

the problem (6.1).

Proof. The proof is given in several steps. Consider the problem (6.1)
Dα,β

0+ X (t,xt) = A(t)X (t,xt)+ f (t,xt)+σ(t,xt)
dSH

Q (t)
dt , for t ∈ [sk, tk+1], k = 0, ...m

x(t) = hk (t,xt) , for t ∈ (tk,sk], k = 1,2, ...m

(I1−γ

0 x)(t)|t=0 = φ ∈ DF0((−∞,0],U ].

We transform our problem into a fixed point one. Consider the operator Φ : Dγ

FT
−→ Dγ

FT
defined

by
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Φ(x)(t)=



φ(t); t ∈ (−∞,0]

Sα,β(t) [φ(0)−g(0,φ)]+g(t,xt)+
∫ t

0 Pβ(t − s) f (s,xs)ds+
∫ t

0 Pβ(t − s)σ(s,xs)dSH
Q(s)

i f t ∈ (0, t1].

hk(t,xt),

i f t ∈ (tk,sk+1], k = 1, ...m,

Sα,β(t − sk)hk(sk,xsk)+g(sk,xsk)+
∫ t

sk
Pβ(t − s) f (s,xs)ds+

∫ t
sk

Pβ(t − s)σ(s,xs)dSH
Q(s)

i f t ∈ (sk, tk+1], k = 1, ...m.

For φ ∈ DF0 , we define φ̃ by

φ̃(t) =

{
φ(t), t ∈ (−∞,0]

Sα,β(t) [φ(0)−g(0,φ)] , t ∈ (0, t1].

It is clear that φ̃ ∈ Dγ

FT
. Let x(t) = z(t)+ φ̃(t); t ∈ (−∞,T ], z(t) satisfy that

z(t)=



0, f or t ∈ (−∞,0]

g(t,zt + φ̃t)+
∫ t

0 Sα,β(t − s) f (s,zs + φ̃s)ds+
∫ t

0 Pβ(t − s)σ(s,zs + φ̃s)dSH
Q(s)

f or t ∈ (0, t1]

hk(t,zt + φ̃t)

f or t ∈ (tk,sk]

Sα,β(t − sk)hk(sk,zsk + φ̃sk)+g(sk,zsk + φ̃sk)+
∫ t

sk
Pβ(t − s) f (s,zs + φ̃s)ds

+
∫ t

sk
Pβ(t − s)σ(s,zs + φ̃s)dSH

Q(s)

f or t ∈ (sk, tk+1], k = 1, ...,m.

So

D ′
FT =

{
z ∈ Dγ

FT
, such that z(0) = 0

}
, and for any z ∈ D ′

FT
, we have then

(
D ′

FT ,∥ . ∥FT

)
is a

Banach space.

Let the operator Φ̃ : D ′
FT

−→ D ′
FT

defined by

Φ̃(x)(t)=



0, f or t ∈ (−∞,0],

g(t,zt + φ̃t)+
∫ t

0 Pβ(t − s) f (s,zs + φ̃s)ds+
∫ t

0 Pβ(t − s)σ(s,zs + φ̃s)dSH
Q(s)

f or t ∈ (0, t1],

hk(t,zt + φ̃t),

f or t ∈ (tk,sk]

Sα,β(t − sk)hk(sk,zsk + φ̃sk)+g(sk,zsk + φ̃sk)+
∫ t

sk
Pβ(t − s)σ(s,zs + φ̃s)dSH

Q(s),

f or t ∈ (sk, tk+1], k = 1, ...,m.
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From the assumptions, it is clear that Φ̃ is well defined. Now we need only to show that Φ̃ is a

contraction mapping.

Case 1:
For u,v ∈ D ′

FT
, and for t ∈ [0, t1], by using Lemma 6.1 we have

E ∥ t1−γ
[
Φ̃(u(t))− Φ̃(v(t))

]
∥2 ≤ 3t2(1−γ)E ∥ g(t,ut + φ̃t)−g(t,vt + φ̃t) ∥2

+3t2(1−γ)E ∥
∫ t

0
Pβ(t − s)

[
f (s,us + φ̃s)− f (s,vs + φ̃s)

]
∥2 ds

+3t2(1−γ)E ∥
∫ t

0
Pβ(t − s)

[
σ(s,us + φ̃s)−σ(s,v(s)+ φ̃s)

]
dSH

I (s) ∥2

≤ I1 + I2 + I3,

(6.3)

where

I1 : = 3t2(1−γ)E ∥ g(t,ut + φ̃t)−g(t,vt + φ̃t) ∥2

≤ 3t2(1−γ)Kg ∥ u− v ∥2
D ′

FT

,

I2 : = 3t2(1−γ)E ∥
∫ t

0
Pβ(t − s)

[
f (s,us + φ̃s)− f (s,vs + φ̃s)

]
∥2 ds

≤ 3
t2(1−γ)M

Γ2(β)
E
∫ t

0
(t − s)2(β−1) ∥ f (s,us + φ̃s)− f (s,vs + φ̃s) ∥2 ds,

≤ 3
t2α(β−1)L f M
(Γ(β))2 ∥ u− v ∥2

D ′
FT

, and

I3 : = 3t2(1−γ)E ∥
∫ t

0
Pβ(t − s)

[
σ(s,us + φ̃s)−σ(s,v(s)+ φ̃s)

]
dSH

Q(s) ∥2

≤ 3t2(H−γ)+1CH

∫ t

0
∥ Pβ(t − s)

[
σ(s,us + φ̃s)−σ(s,v(s)+ φ̃s)

]
ds ∥2

L0
Q

≤ 3t2(H−γ)+1CHM
(Γ(β))2

∫ t

0
(t − s)2(β−1) ∥ σ(s,us + φ̃s)−σ(s,v(s)+ φ̃s) ∥L0

Q

≤ MLσt2(H−α+αβ)

(Γ(β))2 ∥ u− v ∥2
D ′

FT

.

By taking the supremum over t, we obtain

∥ Φ̃(u)(t)− Φ̃(v)(t) ∥2
D ′

FT
= sup

t∈[0,t1]
E ∥ t1−γ

[
Φ̃(u(t))− Φ̃(v(t))

]
∥2

≤ 3t2(αβ+1)
1

(
t1−α−β

1 Kg +
t−α

1 L f M
(Γ(β))2 +

MLσtH−α

1
(Γ(β))2

)
∥ u− v ∥2

D ′
FT

.

Case 2:

For u,v ∈ D ′

FT
, t ∈ (tk,sk], k = 1, ...,m
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E ∥ t1−γ
[
Φ̃(u)(t)− Φ̃(v)(t)

]
∥2 ≤ Lhk ∥ u− v ∥2

D ′
FT

≤ 2K̃t2(1−γ)Lhk ∥ ut − vt ∥2
D ′

FT

.

By taking the supremum over t, we obtain

∥ Φ̃(u)(t)− Φ̃(v)(t) ∥2
D ′

FT
= sup

t∈[tk,sk],k=1,...,m
E ∥ t1−γ

[
Φ̃(u(t))− Φ̃(v(t))

]
∥2

≤ 2Lhk T
2(1−γ) ∥ u− v ∥2

D ′
FT

.

Case 3:

For u,v ∈ D ′

FT
and for t ∈ (sk, tk+1], k = 1, ...,m. we have

E ∥ t1−γ
(
Φ̃(u)(t)− Φ̃(v)(t)

)
∥2 ≤ 4t2(1−γ)E ∥ Sα,β(t − sk)

[
h(sk,usk + φ̃sk)−h(sk,vsk + φ̃sk)

]
∥2

+4t2(1−γ)E ∥
(
g(t,ut + φ̃t)−g(t,vt + φ̃t)

)
∥2

+4t2(1−γ)E ∥
∫ tk+1

sk

Pβ(t − s)
[

f (s,us + φ̃s)− f (s,vs + φ̃s)
]
∥2 ds

+4t2(1−γ)E ∥
∫ tk+1

sk

Pβ(t − s)
[
σ(s,us + φ̃s)−σ(s,vs + φ̃s)

]
dSH

Q(s) ∥2

≤ I1 + I2 + I3 + I4,
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where

I1 = 4t2(1−γ)E ∥ Sα,β(t − sk)
[
h(sk,usk + φ̃sk)−h(sk,vsk + φ̃sk)

]
∥2

≤ 4t2(1−γ) Mt2(α−1)(β−1)

Γ(α(1−α)+β)2E ∥ h(sk,usk + φ̃sk)−h(sk,vsk + φ̃sk) ∥
2

≤ 4MLhk

Γ(α(1−α)+β)2 ∥ u− v ∥2
D ′

FT

.

I2 = 4t2(1−γ)E ∥
(
g(t,ut + φ̃t)−g(t,vt + φ̃t)

)
∥2

≤ 4t2(1−γ)Kg ∥ u− v ∥2
D ′

FT

.

I3 = 4t2(1−γ)E ∥
∫ tk+1

sk

Pβ(t − s)
[

f (s,us + φ̃s)− f (s,vs + φ̃s)
]

ds ∥2

≤ 4t2(1−γ)E
∫ tk+1

sk

∥ Pβ(t − s)
[

f (s,us + φ̃s)− f (s,vs + φ̃s)
]

ds ∥2

≤ 4t2(1−γ)M(tk+1 − sk)
2(β−1)

(Γ(β))2 E
∫ tk+1

sk

∥ f (s,us + φ̃s)− f (s,vs + φ̃s) ∥2 ds

≤
4t2(1−γ)M(tk+1 − sk)

2(β−1)L f

(Γ(β))2 ∥ u− v ∥2
D ′

FT

, and

I4 = 4t2(1−γ)E ∥
∫ tk+1

sk

Pβ(t − s)
[
σ(s,us + φ̃s)−σ(s,vs + φ̃s)

]
dSH

Q(s) ∥2

≤ 3t2(H−γ)+1CHE
∫ tk+1

sk

∥ Pβ(t − s)
[
σ(s,us + φ̃s)−σ(s,v(s)+ φ̃s)

]
∥2

L0
Q

ds

≤ 3t2(H−γ)+1CHM
(Γ(β))2 E

∫ tk+1

sk

(t − s)2(β−1) ∥ σ(s,us + φ̃s)−σ(s,v(s)+ φ̃s) ∥2
L0

Q

≤ CHMLσt2(H−γ)+1(tk+1 − sk)
2(β−1)

(Γ(β))2 ∥ u− v ∥2
D ′

FT

.

By taking the supremum over t, we obtain

∥ Φ̃(u)(t)− Φ̃(v)(t) ∥2
D ′

FT
≤
( 4MLhk

Γ(α(1−α)+β)2 +4t2(1−γ)Kg +
4t2(1−γ)M(tk+1 − sk)

2(β−1)L f

(Γ(β))2

+
CHMLσt2(H−γ)+1(tk+1 − sk)

2(β−1)

(Γ(β))2

)
∥ u− v ∥2

D ′
FT

.

Which implies that Φ̃ is a contraction and there exist a unique fixed point z(t) ∈ D ′

FT
so xt ∈ Dγ

FT

of Φ so is a mild solution of (6.1). The proof is completed.
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6.2 Numerical application

D
1
2 ,

1
4

0+ [vt(.,ξ)−G(t,vt(.,ξ))] =
∂2

∂ξ2 [vt(.,ξ)−G(t,vt(.,ξ))]dt +F(t,vt(.,ξ)+σ(t,vt(.,ξ))
dSH

Q (t)
dt

for 0 ≤ ξ ≤ π, t ∈ [sk, tk+1], k = 0, ...m,

v(t,ξ) = Hk(t,vt(.,ξ))

for t ∈ (tk,sk], k = 1,2, ...m,

vt(.,0) = vt(.,π) = 0

for t ∈ [0,2],

(I
3
8

0 vt(.,ξ))|t=0 = φ(t,ξ)

for t ∈ (−∞,0],
(6.4)

where

D
1
2 ,

1
4

0+ denotes the Hilfer fractional derivative. SH
Q(t) is an Q-sub-f.B.m with Hurst parameter

H ∈ (1
2 ,1), defined on a complete probability space (Ω,F ,P).

The impulses times satisfy:

0 = t0 = s0 < t1 ≤ s1 < t2 ≤ ... < tm ≤ sm < tm+1 = T, for t > 0.

vt mean a segment solution which is defined by

v(., .) : (−∞,T ]×Ω →U,

then for any t ≥ 0, vt(., .) : (−∞,0)×Ω →U is given by:

vt(θ,ω) = x(t +θ,ω), for θ ∈ (−∞,0], ω ∈ Ω which is valued in D
5
8

FT
, and U = L2[0,π].

F,G : [0,2]×D
5
8

FT
−→R are continuous functions. I

3
8

0 is the fractional integral of order 3
8 = 1− 5

8 ,

where γ = 5
8 = 1

2 +
1
4 −

1
8 .

Now let

y(t)(ξ) = u(t,ξ), t ∈ [0,2], ξ ∈ [0,π],

Hk(t,φ(θ,ξ)) = hk(t,φ)(ξ), θ ∈ (−∞,0), ξ ∈ [0,π] k = 1, ...m, and φ(θ)(ξ) = φ(θ,ξ). We need

now to define the operator Q : K −→ K, fot this we choose a sequence {σn}n≥1 ∈ R+ such that

Qen = σnen and suppose that tr(Q) = ∑
∞
n=1

√
σn < ∞.

The process SH
Q(s) will be defined by SH

Q(t)=∑
∞
n=1 SH

n (t)
√

σnen, where H ∈ (1
2 ,1) and

{
SH

n (t)
}

n∈N
is a sequence of one dimensional standard sub-fractional Brownian motions mutually independats

over (ω,F ,P).

Finally we assume that:

• For all k = 0, ...,m, the function f : [sk, tk+1]×D
5
8

FT
−→U defined by f (t,v)(.) = F(t,v(.))

is continuous and we impose conditions on F to verify assumption (H3). For example we

take
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F(t,φ) = t + 2φ

1+∥φ∥
D

5
8

; t ∈ [sk, tk+1]; φ ∈ D
5
8

FT
.

• For all k = 0, ...,m, the function σ[sk, tk+1]×D
5
8

FT
−→ L0

Q(K,U) is continuous, we impose

conditions on σ to make assuptions (H5) hold. We put: σ(t,φ) = t3+sinφ; t ∈ [sk, tk+1]; φ ∈
D

5
8

FT
.

• For all k = 0, ...,m, the function hk : [tk,sk]×D
5
8

FT
−→U defined by hk(t,v)(.) = Hk(t,v(.))

is continuous and we impose conditions on Hk to make assumption (H6) hold. For example

we take:

Hk(t,φ) = Rkφ, ξ ∈ Ω, t ∈ [sk, tk+1], φ ∈ D
5
8

FT
.

Thus the problem 6.4 can be written in the abstract form
Dα,β

0+ X (t,xt) = A(t)X (t,xt)+ f (t,xt)+σ(t,xt)
dSH

Q (t)
dt , for t ∈ [sk, tk+1], k = 0, ...m,

x(t) = hk (t,xt) , for t ∈ (tk,sk], k = 1,2, ...m,

(I1−γ

0 x)(t)|t=0 = φ ∈ DF0((−∞,0],U ].

(6.5)

Thanks to these assumptions, it is easy to check that (H1)-(H6) hold and thus assumptions in

Theorem 6.2 are fulfilled, ensuring that system (6.4) possesses a mild solution on (−∞,T ).



Chapter 7
Non-densely defined fractional stochastic

evolution equations driven by fractional

Brownian motion

The study of impulsive fractional differential and integro-differential systems is applicable to their

efficacity in simulating processes and phenomena to short-time perturbations during their evolu-

tion. The non instanteneous and neutral impulsive stochastic functional differential equations have

become an important object of investigation in recent years stimulated by their numerous appli-

cations in characterising many problems in physics, biology, mechanics, electrical engineering,

medecine, we refer reader to [2] [27]. Stochastic differential equations play an important role in

modeling many physical, biological, and engineering problems, see the monographs of Da-Prato

and Zabczyk[36] and Sobczyk [122]. The notions of basic theory concerning differential equa-

tions are given in the monographs of Bharucha-Reid [7], Da Prato and Zabczyk [36] and tsokos

and Padgett [124]. For more details, we give the reader to Liu [87] Mc Kibben[71] and [72].

Which, was very interesting to study a class of this type of equation by drawing inspiration from

the work of [136] and that of [18] with the fractional derivation of Caputo, so this work is con-

cerned with the existence of integral solutions for initial value problem with non-instantaneous

impulses driven by a fractional Brownian motion of the form:
cDq

t X (t,xt) = A(t)X (t,xt)+ f (t,xt)+σ(t)
dBH

Q(t)
dt for t ∈ [sk, tk+1] k = 0,1, ...m

x(t) = hk (t,xt) for t ∈ (tk,sk] k = 1,2, ...m

x(t) = φ(t) ∈ DB
F0
((−∞,0],U ],

(7.1)

where
cDq

t is the Caputo fractional derivative of order q ∈
(1

2 ,1
)

takes a values in a Hilbert space

U , x(.)takes value in a real separable Hilbert space U , with inner product (.,.) and norm ∥ . ∥,

92
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and A : D(A) ⊂ U → U is a family of closed operators of integral solutions for a class of first-

order non-densely defined semilinear stochastic equations with non local initial conditions. The

impulses times satisfy: 0 = t0 = s0 < t1 ≤ s1 < t2 ≤ ... < tm ≤ sm < tm+1 = T , for t > 0;

the delay function xt : (−∞,0)→ 0, xt(θ) = x(t +θ) with is valued in DFT , where

DFT = {x : (−∞,T ]×Ω →U ; x |Jk∈C ((sk, tk+1];U) ∀w ∈ Ω f or k = 0, ...,m.} ,

with the norm

∥ x ∥DFT
=

(
sup

0≤t≤T
E ∥ x ∥2

t

) 1
2

,

and x0 ∈ DB
F0
, where DB

F0
denote the family of all almost surely bounded F0-measurable, and D̃-

valued random variables.

D̃ = D((−∞,0],U) denotes the family of all right piecewise continuous functions with left-hand

limit ϕ from (−∞,0] to U, with the norm

∥ ϕ ∥t= sup
−∞<θ≤t

∥ ϕ(θ) ∥,

{
BH

Q (t) , t ≥ 0
}

is a cylindrical fractional Brownian motion on space K with Hurst parameter

H ∈
(1

2 ,1
)
. We assume in the sequel that X(t,xt) : J×U −→U , such that

X(t,xt) = φ(0)−g(t,xt),

g : J×DF0 →U , and

f : J×DF0 →U , hk ∈C((tk,sk]×DF0 ,U) for all k = 1, ...,m, σ : J → L0
Q(K,H).

Theorem 7.1. [13] Bihari inequality

Let T > 0, u0 > 0, and let u(t), v(t) be continuous functions on [0,T ].

let k : R+ → R+ be a concave continuous and non-decreasing function such that:

k(r)≥ 0 for r > 0. If

u(t)≤ u(0)+
∫ t

0
v(s)k(u(s))ds ∀t ∈ [0,T ],

then

u(t)≤ G−1(G(u0)+
∫ t

0
v(s)ds)

for all t ∈ [0,T ] such that

G(u0)+
∫ t

0
v(s)ds ∈ Dom(G−1),

where

G(r) =
∫ r

1

ds
k(s)

, r ≥ 0,
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and G−1 is the inverse function of G. In particular, if, moreover, u0 = 0 and
∫

0+
ds

k(s) = +∞, then

u(t) = 0 for all t ∈ [0,T ].

7.1 Main result

An Ft-adapted stochastic process x : (−∞,T ] → U is said to be an integral solution of (7.1) if

x0 = φ ∈ DB
F0

and

(i) {xt , t ∈ J} ∈ DFT .

(ii)
∫ t

0 [xs +g(s,xs)]ds ∈ D(A), t ∈ [0,T ].

(iii) for each t > 0

x(t) =



S
′
(t) [φ(0)−g(0,φ)]+g(t,xt)

+ 1
Γ(q−1)

∫ t
0(t − s)q−1S(t − s) f (s,xs)ds

+ 1
Γ(q−1)

∫ t
0(t − s)q−1S(t − s)σ(s)dBH

Q(s), f or t ∈ [0, t1]

hk(t,xt), f or t ∈ (tk,sk]; k = 1, ...,m.

S
′
(t − sk)hk(sk,xsk)+g(sk,xsk)

+ 1
Γ(q−1)

∫ t
sk
(t − s)q−1S(t − s) f (s,xs)ds

+ 1
Γ(q−1)

∫ t
sk
(t − s)q−1S(t − s)σ(s)dBH

Q(s). f or t ∈ [sk, tk+1] k = 1, ...m.

(7.2)

7.2 Conditions and assumptions

We will work under the following assumptions.

(H1) The operator A satisfies the Hille- Yosida condition, S
′
(t) is compact for t > 0, and there

exist constant M ≥ 0 and β > 0 such that ∥ S
′
(t) ∥2≤ Meβt , ∀t ≥ 0.

(H2) The function f : J×DFT →U satisfies the following conditions:

(i) ∥ f (t,xt)− f (t,yt) ∥2≤ H(∥ x− y ∥2
t ),

x,y ∈ DFT , t ∈ J, where: H(0) = 0, H(s)> 0 f or s > 0 and
∫

0+
ds

H(s) =+∞.

(ii) ∥ f (t,0) ∥2≤ M1 ∀t ∈ J, where M1 is a positive constant.

(H3) The function g : J ×DFT →U and there exist a positive number Kg such that for t ∈ [0,T ]

we have

∥ g(t,xt)−g(t,yt) ∥2≤ Kg ∥ x− y ∥2
t x,y ∈ DFT , t ∈ J,

and ∥ g(t,0) ∥2≤ M2, where M2 is a positive constant.

(H4) The function σ : J → L0
Q satisfies that there exists a positive constant L such that

∥ σ(s) ∥2
L0

2
≤ L.
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(H5) The functions hi ∈ C((ti,si]×U,U) and there exist a positive constant Lh such that ∥
hi(t,xt)−hi(t,yt) ∥2≤ Lh ∥ x− y ∥2, for all x,y ∈ DFT , t ∈ (ti,si]; i = 1,2, ...m.

In addition ∥ hi(t,0) ∥2≤ M3 ∀t ∈ J, and ∀i ≥ 1, where M3 is a positive constant.

7.3 Existence and uniqueness of integral solution

In this section we establish the existence and uniqueness theorem of the integral solution for sys-

tem 7.1. We construct the sequence of successive approximations defined as follows:

x0(t) = S
′
(t)φ(0)

xn(t) = S
′
(t) [φ(0)−g(0,φ)]+g(t,xn

t )+
1

Γ(q−1)

∫ t
0(t − s)q−1S(t − s) f (s,xn−1

s )ds

+ 1
Γ(q−1)

∫ t
0(t − s)q−1S(t − s)σ(s)dBH

Q(s), t ∈ [0, t1]; n ≥ 1.

xn(t) = hk(t,xt), t ∈ (tk,sk]; k = 1, ...,m.

xn(t) = S
′
(t − sk)hk(sk,xsk)+g(sk,xsk)+

1
Γ(q−1)

∫ t
sk
(t − s)q−1S(t − s) f (s,xn−1

s )ds

+ 1
Γ(q−1)

∫ t
sk
(t − s)q−1S(t − s)σ(s)dBH

Q(s), t ∈ (sk, tk+1], k = 1, ...,m.

xn(t) = φ(t), −∞ < t ≤ 0, n ≥ 1.

(7.3)

Theorem 7.2. Let (H1)-(H5) hold and φ(0)− g(0,φ) ∈ D(A). Then there exist a unique integral

solution of 7.1 in the space DFT if

K = max{8Kg,2Lh,3Kg +3Lh}< 1.

Proof. The proof is composed by several steps.

Step 1:

for all t ∈ (−∞,T ], the sequence xn(t) (n ≥ 1) ∈ DFT is bounded.

Case 1: for t ∈ (0, t1] we have

E ∥ xn(t) ∥2≤ 4M̃E ∥ φ(0)+g(0,φ) ∥2 +8E
[
∥ g(t,xn

t )−g(t,0) ∥2 + ∥ g(t,0) ∥2]
+

8
Γ2(q−1

M̃t2q−1
1 E

∫ t

0
eβs [∥ f (s,xn−1

s )− f (s,0) ∥2 + ∥ f (s,0) ∥2]ds

+
8M̃t2H−2q−3

1 H
Γ2(q−1)

E
∫ t

0
eβs ∥ σ(s) ∥2

L2
Q

ds.



7.3 Existence and uniqueness of integral solution 96

Thus

E ∥ xn(t) ∥2≤ C1

1−8Kg
+

8M̃M1t2q−1
1 eβt1

(1−8Kg)Γ2(q−1)
+

8M̃Ht2q+2H−3
1 Leβt1

(1−8Kg)Γ2(q−1)

+
8M̃t2q−1

1
(1−8Kg)Γ2(q−1)

∫ t

0
eβsE ∥ f (s,xn−1

s )− f (s,0) ∥2 ds

≤C2 +
8M̃t2q−1

1
(1−8Kg)Γ2(q−1)

∫ t

0
eβsEH(∥ xn−1

s ∥2)ds,

where,

C1 = 4M̃E ∥ φ(0)+g(0,φ) ∥2 +8M2,

and

C2 =
C1

1−8Kg
+

8M̃M1t2q−1
1 eβt1

(1−8Kg)Γ2(q−1)
+

8M̃Ht2q+2H−3
1 Leβt1

(1−8Kg)Γ2(q−1)
,

also we have that H(.) is concave and H(0) = 0; where there exist a positive constants a and b

such that H(t)≤ a+bt, t ≥ 0, in the sequel we get that for n ≥ 1

E ∥ xn(t) ∥2≤C2 +aeβt1 +b
∫ t

0
eβsE ∥ xn−1

s ∥2 ds.

Since;

E ∥ x0(t) ∥2≤ M̃E ∥ φ(0) ∥2:=C3 < ∞, we get that:

E ∥ xn ∥2
t < ∞, ∀n ≥ 1, t ∈ [0, t1].

Case 2:

For t ∈ (tk,sk], k = 1, ...,m

E ∥ xn(t) ∥2 = E ∥ hk(t,xn
t ) ∥2

= E ∥ [hk(t,xn
t )−hk(t,0)]+hk(t,0) ∥2

≤ 2E
[
Lh ∥ xn ∥2

t
]
+2E ∥ hk(t,0) ∥2

≤ M3

1−2Lh
< ∞, 0 < Lh <

1
2
.

Case 3:

For t ∈ (sk, tk+1] k = 1, ...,m

E ∥ xn(t) ∥2= E ∥ S
′
(t − sk)hk(sk,xn

sk
)+g(sk,xsk)

+
1

Γ(q−1)

∫ t

sk

(t − s)q−1S(t − s) f (s,xn−1
s )ds

+
1

Γ(q−1)

∫ t

sk

(t − s)q−1S(t − s)σ(s)dBH
Q(s) ∥2 .
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Then

E ∥ xn(t) ∥2≤ 8M̃LhE ∥ xn(sk) ∥2 +8M̃M3+8KgE ∥ xn(sk) ∥2 +8M2

+
1

Γ2(q−1)
t2q−1
k+1 E

∫ tk+1

sk

eβs ∥ f (s,xn−1
s )− f (s,0) ∥2 ds

+
8

Γ2(q−1)
t2q−1
k+1 eβtk+1M1 +

8
Γ2(q−1)

t2q−1
k+1 eβtk+1

L.

We obtain

E ∥ xn(t) ∥2≤C4E ∥ xn(sk) ∥2 +C5 +C6

∫ t

sk

eβsE ∥ xn−1(s) ∥2 ds,

where

C4 =
8btk+1eβtk+1

Γ2(q−1)
,

C5 = 8(M̃M3 +M2)+ max
k=1,...m

,

{
8eβtk+1t2q−1

k (M1 + t2H−2
k+1 LH +a)

Γ2(q−1)

}
,

and

C6 = max
k=1,...,m

8btk+1eβtk+1

Γ2(q−1)
.

We have that

(1) E ∥ xn(sk) ∥2≤ sup
k=1,...,m

E ∥ xn(sk) ∥2:=C7 < ∞,

(2) by case 2 we get that E ∥ xn−1(s) ∥2:=C8 < ∞.

We conclude that the sequence xn(t) (n ≥ 1) is bounded on the space DFT .

Step 2:

We show that the sequence xn(t) (n ≥ 1) is a Cauchy sequence.

Case 1:
For t ∈ [0, t1]

E ∥ xn+1 − xn ∥2
t ≤ 2E ∥ g(t,xn+1

t )−g(t,xn
t ) ∥2 +

2t2q−1
1 eβt1

Γ2(q−1)

∫ t

0
H(E ∥ xn − xn−1 ∥2

s ds (7.4)

Let

Φn(t) = sup
t∈[0,t1]

E ∥ xn+1 − xn ∥2
t .

Then for t ∈ [0, t1] we have

Φn(t)≤C9

∫ t

0
H(Φn−1(s))ds,
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where

C9 =
2t2q−1

1 eβt1

(1−2Kg)Γ2(q−1)
.

In the sequel we choose t such that

Φn(t)≤C9

∫ t

0
Φn−1(s)ds.

Moereover,

E ∥ x1 − x0 ∥2
t = E ∥ −S

′
(t)g(0,φ)+g(t,x1

t )+
1

Γ(q−1)

∫ t

0
(t − s)q−1S(t − s) f (s,x0

s )

+
1

Γ(q−1)

∫ t

0
(t − s)q−1S(t − s)σ(s)dBH

Q(s) ∥2

we obtain that

E ∥ x1 − x0 ∥2
t ≤C10,

where

C10 =
4M̃∥φ ∥2

0
1−4Kg

+
4KgC3

1−4Kg
+

4t2H+2q−2
1 eβt1LH

(1−4Kg)Γ2(q−1)
.

Taking the supremum over t, and using Φn, we have

Φ0(t) = sup
t∈[0,t1]

E ∥ x1 − x0 ∥2
t ≤C10.

For n = 1, we have

Φ1(t)≤C9

∫ t

0
Φ0(s)ds

≤C9C10t.

For n = 2

Φ2(t)C9

∫ t

0
Φ1(s)ds

≤C2
9C10

t2

2
.

By induction we obtain

Φn(t)≤Cn
9C10

tn

n!
.
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So for any m ≥ n ≥ 0 we have

sup
t∈[0,t1]

E ∥ xm − xn ∥2
t ≤

∞

∑
r=n

sup
t∈[0,t1]

E ∥ xr+1 − xr ∥2
t (7.5)

≤
∞

∑
r=n

Cr
9C10

tr

r!
−→ 0, n → ∞. (7.6)

Case 2:

For t ∈ (tk,sk], k = 1, ...,m

E ∥ xn+1 − xn ∥2
t = E ∥ hk(t,xn+1)−hk(t,xn) ∥2

t (7.7)

≤ LhE ∥ xn+1 − xn ∥2
t , (7.8)

0 ≤ E ∥ xn+1 − xn ∥2
t −LhE ∥ xn+1 − xn ∥2

t ≤ 0, Lh > 0, this implies that;

E ∥ xn+1 − xn ∥2
t → 0.

For any m ≥ n ≥ 0 we have

sup
t∈(tk,sk]

E ∥ xm − xn ∥2
t ≤

∞

∑
r=n

sup
t∈[0,t1]

E ∥ xr+1 − xr ∥2
t → 0 n → ∞

Case 3:
For t ∈ (sk, tk+1], k = 1, ...,m

Using the same method we obtain that

Φn(t)≤C11

∫ t

sk

H(Φn−1(s))ds

≤C11

∫ t

0
H(Φn−1(s))ds

we choose t ∈ (sk, tk+1] such that

Φn(t)≤C11

∫ t

sk

Φn−1(s)ds,

where

C11 =
t2q−1
k+1 eβtk+1

(1−3Lh −3Kg)Γ2(q−1)

and

Φ0(t)≤C12,

where

C12 =
t2q−1
k+1 eβtk+1C3

(1−3Lh −3Kg)Γ2(q−1)
.

For n = 1
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Φ1(t)≤C11C12t.

For n = 2

Φ2(t)≤C2
11C12

t2

2
,

by applying the mathematical induction we have,

Φn(t)≤Cn
11C12

tn

n!
.

So for any m ≥ n ≥ 0 we have

sup
t∈(sk,tk+1]

E ∥ xm − xn ∥2
t ≤

∞

∑
r=n

sup
t∈(sk,tk+1]

E ∥ xr+1 − xr ∥2
t

≤
∞

∑
r=n

Cr
11C12

tr

r!
−→ 0, n → ∞.

Step 3:

The existence and uniqueness of the solution for 7.1.

The lemma of Borel Cantelli give that xn(t)→ x(t) uniformly on each interval. Now we prove the

uniqueness on each interval of solution.

Case 1:
For t ∈ [0, t1], let x1,x2 ∈ DFT be two solution on [0, t1]. We have,

E ∥ x1 − x2 ∥2
t ≤ 2KgE ∥ x1 − x2 ∥2

t +
2t2q−1

1 eβt1

Γ2(q−1)

∫ t

0
H(E ∥ x1 − x2 ∥2

s ds

≤
2t2q−1

1 eβt1

(1−2Kg)Γ2(q−1)

∫ t

0
H(E ∥ x1 − x2 ∥2

s )ds.

Thus the Bihari inequality affirm that

sup
t∈(0,t1]

E ∥ x1 − x2 ∥2
t = 0 ⇐⇒ x1 = x2.

Case 2:
Let x1,x2 ∈ DFT be two solution on t ∈ (tk,sk], k = 1, ...,m.

We have

E ∥ x1 − x2 ∥2
t = E ∥ hk(t,x1)−hk(t,x2) ∥2

t (7.9)

≤ LhE ∥ x1 − x2 ∥2
t (7.10)

0 ≤ E ∥ x1 − x2 ∥2
t −LhE ∥ x1 − x2 ∥2

t ≤ 0, Lh > 0, this implies that;

sup
t∈(tk,sk], k=1,...,m

E ∥ x1 − x2 ∥2
t = 0 ⇐⇒ x1 = x2.



7.4 Numerical application 101

Case 3:
Let x1,x2 ∈ DFT be two solution on [sk, tk+1]. We have,

E ∥ x1 − x2 ∥2
t ≤ (3M̃Lh +3Kg)E ∥ x1 − x2 ∥2

sk
+

3t2q−1
k+1 eβtk+1

Γ2(q−1)

∫ t

sk

H(E ∥ x1 − x2 ∥2
s )ds.

By taking the supremum on the both side we obtain that

sup
t∈(sk,tk+1]

E ∥ x1 − x2 ∥2
t ≤

3t2q−1
k+1 eβtk+1

(1−3Kg −3M̃Lh)

∫ t

sk

H( sup
t∈(sk,tk+1]

E ∥ x1 − x2 ∥2
s ds),

the Bihari inequality affirm that E ∥ x1 − x2 ∥2
t → 0 ⇐⇒ x1 = x2.

The proof is completed.

7.4 Numerical application

cDβ [v(t,ξ)−G(t,v(t −h,ξ))] = ∂2

∂x2 [v(t,ξ)−G(t,v(t −h,ξ))dt]+σ(t)dBH
Q(t)

for 0 ≤ ξ ≤ π, h > 0, t ∈ [sk, tk+1] k = 1, ...m;

0 < β < 1

v(t,0) = v(t,π) = 0

v(t,ξ) =
∫ tk

0 hk(s− tk)v(s,ξ)ds for t ∈ (tk,sk] k = 1,2, ...m

v(t,ξ) = φ(t,ξ) for t ∈ (−∞,0],

(7.11)

where BH
Q(t) is an f.B.m with Hurst parameter H ∈ (1

2 ,1), defined on a complete probability space

(Ω,F ,P).

U =C[0,π] is a Banach space.

Az = ∂2

∂x2 z with domain D(A) =
{

z ∈U, z(0) = z(π) = 0; ∂2

∂x2 z ∈C([0,π])
}
.

D(A) =C0([0,π]) = {z ∈C([0,π]) : z(0) = z(π) = 0} .
A generates an integrated semigroup (S(t))t≥0 and

∥ S
′
(t) ∥2≤ eβt ,

and satisfy the Hille- Yosida condition.

g(t,v)(.) = G(t,v(.))

σ(t) =
∫ 0

−∞

ν(t)dt.



7.4 Numerical application 102

and

hk(t,v)(.) =
∫ 0

−∞

bk(s)v(s, .)ds.

We suppose that

∥ G ∥2≤ Mg.

So under this definitions and assumptions, our system can be written as the form of the problem

7.1, moreover, all the conditions of Theorem 7.2 are hold, so we conclude that system (7.11) has

a unique integral solution.



Chapter 8
Conclusion

The principal goal of my thesis is to develop the subject of fractional stochastic differential equa-

tions and inclusions in Hilbert space.

We studied some classes of stochastic differential equations and inclusions, when we proved

the existence results of a mild solution of fractional stochastic evolution inclusion involving Ca-

puto derivative in Hilbert space driven by the fractional Brownian motion.

Also we studied a class of non densely defined fractional stochastic differential equation with

non-instantaneous impulses driven by fractional Brownian motion under some conditions to prove

existence and unicity of integral solutions by using Bihary inequality.

Moreover, we have studied the time fractional stochastic heat equation dealing with additive

noise and more special classes of fractional heat equations.

Finally, we studied the existence of mild solution of Hilfer fractional stochastic differential

equation with impulses driven by sub-fractional Brownian motion, by using Banach’s fixed point

theorem.

Our future work will concentrate on Malliaivin calculus and how to join fractional stochastic

differential inclusion with Mallaivin calculus and how to apply these important tools in finance

theory with Lévy process.
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 "  الدراسة النظرية لبعض المعادلات العشوائية للتطور  "

 :الملخص 

ونثبت وجود وتفرد   الانتماءات في هذه الأطروحة ، نأخذ في الاعتبار فئات معينة من المعادلات التفاضلية الكسرية العشوائية و           

 .الحلول الخفيفة في فضاءات هيلبرت باستخدام نظرية النقطة الثابتة بالإضافة إلى طرق التقريب التي توضحها التطبيقات

 المعادلات التفاضلية العشوائية، الانتماءات التفاضلية العشوائية، التأثير الاندفاعي، نظرية النقطة الثابتة، الحركة: كلمات مفتاحية

 .البورونية الكسرية

 

 

«  Contribution à l’étude théorique de certaines équations d’évolutions stochastiques  » 

Résumé : 

 Dans cette thèse nous considérons certaines classes d'équations et d'inclusions différentielles fractionnaires 

stochastiques et nous prouvons l'existence et l'unicité de solutions mild dans les espaces de Hilbert.   

  Nous avons prouvé l’existence des résultats d’une solution mild d’inclusion d’évolution stochastique 

fractionnaire  dans l’espace de Hilbert dirigée par un mBf, les résultats  ont été obtenus en utilisant le calcul fractionnaire 

ainsi que la théorie du point fixe. 

               D’autre part, nous avons étudié le résultat de l’existence d’une solution mild de l’équation différentielle 

stochastique  fractionnaire de Hilfer avec des impulsions entraînées par sub-mBf, les résultats sont obtenus en utilisant 

le théorème du point fixe. 

  Ensuite, nous avons étudié l’équation  stochastique  fractionnaire de chaleur  muni d’un bruit additif, nous avons 

trouvé une formule de solution explicite dans le sens de distributions sous laquelle la solution est un corps aléatoire dans 

L²(P). 

                Enfin, des conditions suffisantes sont données pour prouver l’existence et l’unicité de la solution intégrale 

d’une équation différentielle stochastique fractionnaire  avec des impulsions non instantanées entraînées par mBf.  

  

Mots clés : Equations différentielles stochastiques, Inclusions différentielles stochastiques, Effet impulsif, Théorie 

du point fixe, Mouvement Borownien fractionnaire (mBf) . 

 

 

« Contribution to the theoretical study of certain stochastic  evolution equations » 

Abstract : 

 The research circulated in this thesis loads with the problem of fractional stochastic differential equations and 

inclusions in     Hilbert space. 

  We  proved the existence results of a  mild solution of fractional stochastic evolution inclusion involving the 

Caputo derivative in Hilbert space driven by a fBm, our desired results were obtained by using different tools such as; 

fractional calculation, operator semigroups, and fixed point theory.  

  Also, we have studied the existence result of mild solution of Hilfer fractional stochastic differential equation with 

impulses driven by sub-fBm, the results are obtained by using fixed point theorem. 

  Then, we have studied the time fractional stochastic heat equation dealing with additive noise. we found explicit 

solution formula in the sense of distributions under which the solution is a random field in L²(P).  

   Finally, sufficient conditions are given to prove the existence and unicity of integral solution of non-

densely defined fractional stochastic differential equation with non-instantaneous impulses driven by  fBm. 

 

Key words :Stochastic functional differential equations, Stochastic functional differential inclusions, Impulsive effect, 

fixed point theory, fractional Brownian motion (fBm). 
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